

Redis Stack for Application
Modernization

Build real-time multi-model applications at any scale with Redis

Luigi Fugaro

Mirko Ortensi

BIRMINGHAM—MUMBAI

Redis Stack for Application Modernization
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Kaustubh Manglurkar
Publishing Product Manager: Heramb Bhavsar
Book Project Manager: Kirti Pisat
Content Development Editor: Manikandan Kurup
Technical Editor: Kavyashree K S
Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Alishon Mendonca
Senior DevRel Marketing Coordinator: Nivedita Singh

First published: December 2023

Production reference: 1151223

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-83763-818-5

www.packtpub.com

http://www.packtpub.com

Dedications are always tough. To mention or not to mention your beloved ones is the real dilemma.
Unfortunately, this year I lost a special person in my life, so I decided to dedicate this book to him –

Grazie Oscarino.

– Luigi Fugaro

Dedicated to Angela, my remarkable 101-year-old grandmother. Your enduring patience, infectious
good humor, melodious singing voice, and quiet resilience have imparted invaluable life lessons. This

book is a tribute to you.

– Mirko Ortensi

Contributors

About the authors
Luigi Fugaro’s computer science career began with a fascination for video games on the Vic 20 and
Atari ST1040, where he enjoyed manipulating game code. This interest sparked his journey into
programming, leading to a varied career in mastering numerous languages, including Fortran, Java,
Go, Delphi, Visual Basic, and Python. While he is ambivalent about JavaScript and doesn’t consider
HTML a programming language, he appreciates its utility.

Luigi’s career expanded into observability, monitoring, and data management, with significant
experiences at Red Hat and Redis, where he understood the importance of application performance.
Despite many side projects, most unfinished, Luigi’s notable contributions to literature reflect his
enduring passion and drive for technology and innovation in computer science.

In the journey of crafting a book, a myriad of dynamics come into play, mirroring the numerous
individuals who grace our daily lives. This holds particularly true for my family, including my children,

Giada, Filippo, and Viola. I’ve borrowed time from them – moments that I couldn’t spend by their
side. Yet, they are the spark that kindles my hope and fuels my drive to be better. For this gift, my

gratitude and love for them knows no bounds.

Mirko Ortensi wrote his first lines of code on a Commodore 64 in Basic when he was 10. It was
love at first sight. Eventually, he earned a degree in electronic engineering and a master’s degree
in software engineering at Università Politecnica delle Marche in Italy in 2002, with a thesis about
pattern recognition at UPC in Barcelona, Spain. Mirko’s career has spanned several roles in software
and services businesses, encompassing development and testing, system management, and support,
mainly centered around databases and distributed systems. As a senior technical enablement architect
at Redis, Mirko shares technical knowledge about Redis’s products, services, and features.

I extend heartfelt thanks to my incredible family – my loving wife, children, and Gizmo the cat – for their
unwavering patience and support during the countless hours I disappeared into the world of writing and
coding. Your understanding and encouragement were my pillars throughout this journey.

Luigi and Mirko express their deep gratitude to everyone at Redis who contributed to this book. They
extend special thanks to Alexandre Vasseur, David Maier, Tal Shkolnik, Raffaele Landoni, Cody Henshaw,
Myra El-Bayoumi, Claudia Di Martino, and all the contributors to Redis open source. Additionally, they
thank Packt for believing in this project, particularly Heramb Bhavsar, Kirti Pisat, and Manikandan

Kurup for their support throughout Luigi and Mirko’s journey.

About the reviewer
Sumit Shatwara, a solution architect, brings a wealth of expertise from his previous role at Redis, the
global leader in real-time data platforms. At Redis, Sumit led the charge in designing and building
cutting-edge, real-time data solutions, driving technology sales, and serving as a trusted advisor to
enterprise clients within the banking, financial services, and digital native sectors. Sumit’s extensive
career spans experiences with renowned companies such as Red Hat, NetApp, and Capgemini, where
he facilitated the adoption of cloud-native technologies for numerous clients. Sumit’s future aspirations
include becoming an artificial intelligence specialist and ultimately establishing himself as a thought
leader in the realms of data and AI.

Preface� xiii

Part 1: Introduction to Redis Stack

1
Introducing Redis Stack� 3

Technical requirements� 4
Exploring the history of Redis� 4
The open source project� 5
From key-value to multi-model
real-time databases� 7
Primary key lookup� 8
Secondary key lookup� 9

Pipelining� 10
Using functions� 10
Using indexes� 12
Redis Stack capabilities� 14
So, what is Redis Stack?� 22

Redis Stack deployment types� 24
Summary� 24

2
Developing Modern Use Cases with Redis Stack� 27

Technical requirements� 27
Caching, rate-limiting,
geo-positioning, and other
Redis traditional use cases� 28
Caching� 28
Session store� 29
Rate limiter� 32
Leaderboards� 34

Data deduplication� 35
Geo-positioning� 36
Message processing and delivery� 37

Going beyond the real-time cache
with Redis Stack� 43
Querying, indexing, and search� 44
Monitoring and analysis� 49
Fraud detection� 50

Table of Contents

Table of Contentsviii

Feature store for machine learning� 52

Designing microservice architectures
with Redis Stack� 53

API gateway� 55

Summary� 61

3
Getting Started with Redis Stack� 63

Installing Redis Stack using binary
packages� 64
Installing Redis Stack using native
packages� 67
macOS-native package� 67
Linux-native package� 68
Running Redis Stack using Docker� 69

Using Redis Cloud� 70
Installing RedisInsight� 72

Installing the Redis Stack client
libraries� 72
Java client library� 73
JavaScript client library� 73
Python client library� 73
Golang client library� 74
C#/.NET client library� 74

Running health checks� 74
Summary� 75

4
Setting Up Client Libraries� 77

Technical requirements� 77
Redis Stack client libraries� 78
Programming in Python using
redis-py� 79
Storing information in Redis Stack
using Python� 81
Redis OM for Python� 84

Programming in Java using Jedis� 89
Storing information in Redis Stack using Java� 91
Redis OM for Java� 95

Programming in JavaScript using
node-redis� 100

Redis OM for JavaScript� 106

Programming in Go using go-redis� 110
Storing information in Redis Stack using Go� 111

Programming in C#/.NET using
NRedisStack� 116
Storing information in Redis Stack using C#/.
NET� 116
Redis OM for C#/.NET� 120

Summary� 124

Table of Contents ix

Part 2: Data Modeling�

5
Redis Stack as a Document Store� 129

Technical requirements� 129
Storing and querying documents in
Redis Stack� 130
The dialect and other
configuration parameters� 131
The query language� 133
Simple terms� 135
Using field modifiers� 135
Intersection of results (AND)� 136
Union of results (OR)� 136
Exact query matches� 137
Stop words� 137
Negation and purely negative queries� 138
Prefix, infix, and suffix queries� 138
Wildcard matching� 138
Fuzzy matching� 138
Numeric filters� 139
Tag filters� 139
Geospatial filters� 140
Aggregation and transformation� 141
Cursor-based requests� 143
Faceted search using aggregations� 144
Updating an index in production� 146
Temporary indexes� 148
Additional commands� 148

Working with Hashes� 149

Highlighting and summarizing� 153
Synonyms support� 154
Spellchecking� 155
Auto-completion� 156
Phonetic matching� 157

Working with JSON� 158
The JSONPath syntax� 158
Indexing a JSON document� 160
Indexing arrays and objects� 162
Multi-value indexing� 163
Extracting partial data from
JSON documents� 165

Redis Stack as a recommendation
engine� 165
Recommendation using scores� 166

Redis Stack as a session store� 168
Redis data structures for session data� 169
Additional Redis data structures� 169
Modeling key-value pairs� 170
Modeling objects� 170
Modeling collections� 171
Session management for
real-time applications� 172

Summary� 176

Table of Contentsx

6
Redis Stack as a Vector Database� 177

Technical requirements� 178
Vector embeddings for unstructured
data modeling� 178
Storing the embeddings� 179
Hashes� 179
JSON� 180

Indexing the embeddings� 180
The algorithms – FLAT and HNSW� 181
Type� 181

Index dimension� 181
Distance metrics� 182

Performing similarity search� 183
Performing hybrid queries� 184
Performing VSS range queries� 185
Recommendations based on visual
search� 185
Integrating Redis with generative AI� 188
Summary� 189

7
Redis Stack as a Time Series Database� 191

Technical requirements� 192
Why Redis Stack for Time Series?� 192
Working with time series� 193
Adding labels to data points� 197

Aggregation framework� 200
Compaction rules for Time Series� 201
Summary� 203

8
Understanding Probabilistic Data Structures� 205

Technical requirements� 206
HyperLogLog� 206
Bloom filter� 207
Cuckoo filters� 209

Count-Min sketch� 210
Top-K� 211
t-digest� 213
Summary� 215

Table of Contents xi

Part 3: From Development to Production

9
The Programmability of Redis Stack� 219

Technical requirements� 220
The single-threaded architecture� 220
Programming complex business logic
with Redis Stack� 220
Lua scripting� 221
Redis functions� 223
Triggers and functions� 227
Anatomy of a function� 228

Working with data� 229
Batch processing� 230
Asynchronous functions� 230
Cluster awareness� 233
Keyspace triggers� 234
Stream triggers� 237
Comparing Lua scripts, Lua functions, and
JavaScript functions� 239

Summary� 239

10
RedisInsight – the Data Management GUI� 241

Technical requirements� 242
Connecting to the Redis Stack
database� 242
Browsing keys� 245

Interacting with data� 247

Analyzing data� 248
Troubleshooting PubSub channels� 252

Summary� 253

11
Using Redis Stack as a Primary Database� 255

Technical requirements� 256
What is a primary database?� 256
Redis as a primary database� 256
The BASE and ACID properties� 257
The BASE properties� 257
The ACID properties� 258

Configuring Redis for durability,
consistency, and availability� 268
Configuring snapshots� 269
Configuring AOF� 269
Configuring high availability� 271
Configuring consistency� 272

Summary� 272

Table of Contentsxii

12
Managing Development and Production Environments� 275

Technical requirements� 276
Redis Stack as a development
environment� 276
HA� 276
Scalability� 279
Security� 283
Limitations� 288

Preparing for production with
Redis Enterprise� 289

Redis Enterprise architecture� 290
A multi-tenancy architecture� 291
HA� 292
Horizontal and vertical scalability and
dynamic auto-tiering� 293
Security hardening� 295
Observability and monitoring� 296

Redis Cloud – an enterprise-ready
Redis DBaaS� 298
Summary� 302

Index� 303

Other Books You May Enjoy� 314

Preface

Redis Stack for Application Modernization is written by industry experts from Redis, making this an
insightful reference for database administrators and developers, with best practices to administer and
manage the server, scalability, high availability, data integrity, stored functions, and more.

Modern applications require efficient operational and analytical capabilities and must ensure predictable
performance regardless of the workload. Redis is a de facto standard caching system, with real-time
response and flexible data types that fulfill all the different data modeling requirements. This book
introduces you to Redis Stack, an extension of Redis presented in 2022, and it guides you through
the multiple data modeling capabilities, together with examples to perform real-time queries and
searches. Redis Stack represents a new approach to providing a rich data modeling experience all
within the same database server.

You will learn how to model and search your data in the JSON and hash data types and work with
features such as vector search, which adds semantic search capabilities to your application (for example,
to search for similar texts, images, or audio files). You will understand how to use the probabilistic
Bloom filters to resolve efficiently recurrent big data problems. Next, we dive into the strengths of
Redis Stack as a data platform, show use cases to manage database events, and introduce stream
processing features. Scenarios to use Redis Stack in microservices architectures complete the picture.

Who this book is for
This book is for software developers, software architects, and database administrators who want to
discover the powerful real-time, multi-model capabilities of the Redis Stack database.

You will work with JSON and hash documents, vectors, time series models, probabilistic data
structures, and stream processing, with an eye on the performance and security of the database and
the integrity of the data.

The prerequisite to reading this book is a basic understanding of Redis and databases in general and
software development skills in at least one of the Java, Python, C#, Golang, or JavaScript languages.

Prefacexiv

What this book covers
Chapter 1, Introducing Redis Stack, introduces you to Redis Stack, its differences with Redis, and
why Redis can’t be considered as a caching system only, but a full-fledged database, augmenting and
replacing relational databases in many use cases.

Chapter 2, Resolving Use Cases with Redis Stack, explores how Redis Stack extends Redis’s well-known
capabilities thanks to its modular architecture, thus becoming a document store, a vector database, and
a time series database. The probabilistic data types help to efficiently resolve many problems. Redis
Stack is a modern real-time solution that can replace traditional relational databases in many use cases.

Chapter 3, Getting Started with Redis Stack, teaches you how Redis Stack can be installed in a variety
of methods and on the most popular operative systems. This means that Redis Stack can be installed
easily on Linux, macOS, and Windows systems using native installation packages (Linux tarballs are
also available). Docker images are also available in Docker Hub. In addition, Redis Stack is available
as a service with Redis Cloud.

Chapter 4, Setting Up Client Libraries, describes how the Redis Stack ecosystem provides a set of client
libraries to ease developers’ lives. Those include libraries for the most used programming languages
such as Python, Java, GoLang, C#, and JavaScript. In addition to client libraries, Redis provides a
framework used for object mapping: Redis OM.

Chapter 5, Redis Stack as a Document Store, presents Redis Stack’s capability to perform real-time
queries and searches against the hash and JSON types. From full-text to tagging, from aggregation
to auto-completion, and the new vector search, Redis Stack can be used as a document store with
advanced features.

Chapter 6, Redis Stack as a Vector Database, highlights why, among the advanced search features of
Redis Stack, Vector Search stands as a core feature and deserves a chapter on its own. You will learn
data modeling concepts and how to perform similarity searches for recommendation engines.

Chapter 7, Redis Stack as a Time Series Database, explains how Redis Stack, as a multi-model, real-time
data structure server, can store data using data points for time series. Each data point can be enriched
by adding metadata, known as labels. Each data point can have multiple labels that can be used for
filtering, searching, querying, and aggregations using the built-in reducer functions.

Chapter 8, Understanding Probabilistic Data Structures, explores probabilistic data structures, which
are a group of data structures that give a very reasonable approximation of an answer in just a fraction
of the usual time and use very little memory. Questions such as “Has the user paid from this location
already?”, “What are the 10 players with the highest score?”, or “How many unique users have played
this song?” address the typical use cases for these data structures

Preface xv

Chapter 9, Programmability of Redis Stack, describes how, in addition to the traditional Redis Lua
scripts and functions, Redis Stack includes a JavaScript serverless engine for transaction, batch, and
event-driven data processing, allowing users to write and run their functions on data stored in Redis.
With this capability, the database reacts to events occurring in the data while taking advantage of
different Redis data structures and modules and promoting interoperability between them.

Chapter 10, RedisInsight – the Data Management GUI, covers RedisInsight, which is a graphical
desktop manager that connects to Redis Stack databases and offers useful visualization tools for the
different data models that can be stored.

Chapter 11, Using Redis Stack as a Primary Database, explains how Redis, as the leading real-time
database, is used often as an in-memory cache, backed by a primary database. However, Redis Stack
extends Redis with multi-model capabilities and is a good fit in many use cases to replace a traditional
relational database. In this chapter, you will learn about the configuration to work with Redis Stack
as the only primary database serving multi-model applications

Chapter 12, Managing Development and Production Environments, explains how moving from a
development environment to deploying and running Redis at scale and monitoring the systems where
the databases are running requires effort and the implementation of several maintenance duties. Redis
Enterprise and Redis Cloud alleviate system and database administrators from their duties and can
be managed using an intuitive UI.

To get the most out of this book
It is important that you have an understanding of database platforms, specifically in the areas of data
insertion, updating, and deletion. Additionally, having a basic knowledge of SQL would be beneficial. You
should also be comfortable with executing commands using a command-line interface, and familiarity
with Unix-like systems is a plus. Prior experience with Redis or similar technologies is not required.

Software/hardware covered in the book Operating system requirements
Redis Stack 7.2 or later Windows, macOS, or Linux
RedisInsight 2.36 or later Windows, macOS, or Linux

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Redis-Stack-for-Application-Modernization. If there’s an
update to the code, it will be updated in the GitHub repository.

https://github.com/PacktPublishing/Redis-Stack-for-Application-Modernization
https://github.com/PacktPublishing/Redis-Stack-for-Application-Modernization

Prefacexvi

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “However,
since Python version 3.3, a tool named virtualenv was integrated into Python’s standard library.”

A block of code is set as follows:

client = redis.Redis(host='127.0.0.1', port=6379,
username='<YOUR_USERNAME>',
password='<YOUR_PASSWORD>')
client.set("Redis", "Stack")
print(client.get("Redis"))

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

<dependency>
    <groupId>redis.clients</groupId>
    <artifactId>jedis</artifactId>
    <version>5.0.0</version>
</dependency>

Any command-line input or output is written as follows:

$ apt install python3.9-venv

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in
menus or dialog boxes appear in bold. Here is an example: “The application prompts you first to establish a
connection with a Redis database. Start this process by clicking on the ADD REDIS DATABASE button.”

Tips or important notes
Appear like this.

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface xvii

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Redis Stack for Application Modernization, we’d love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
https://packt.link/r/1-837-63818-7

Prefacexviii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837638185

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781837638185

Redis Stack combines the core features of Redis with its most successful capabilities, offering a comprehensive
understanding of Redis fundamentals and advanced functionalities. It distinguishes itself from Redis by
its modular architecture, expanding its capabilities to serve as a document store, vector database, and
time-series database. Redis Stack is versatile, functioning as an in-memory real-time cache, session store,
leaderboard storage, and message broker. Its probabilistic data types enhance problem-solving efficiency,
positioning it as a modern alternative to traditional relational databases for various applications.

The installation of Redis Stack is straightforward across popular operating systems such as Linux,
macOS, and Windows, with native packages and Docker images available. To support developers,
Redis Stack includes client libraries for major programming languages such as Python, Go, C#, Java,
and JavaScript, along with the Redis OM framework for object mapping. This makes Redis Stack a
user-friendly and adaptable solution for real-time data processing and management needs.

This part contains the following chapters:

•	 Chapter 1, Introducing Redis Stack

•	 Chapter 2, Developing Modern Use Cases with Redis Stack

•	 Chapter 3, Getting Started with Redis Stack

•	 Chapter 4, Setting Up Client Libraries

Part 1: Introduction to
Redis Stack

1
Introducing Redis Stack

Redis has achieved several important milestones since its inception in 2009, from taking the lead as
the most popular key-value data store, according to the ranking published every month by the website
DB-Engines (and the sixth among all database systems), up to establishing the record as the most
downloaded container image on Docker. Not to mention that Redis has been the most loved database
for five years in a row, according to the Developer Survey published by Stack Overflow in the years
2016-2021. And, for sure, you, or a friend of yours, have used it for some reason, work, or hobby.

If you are reading this book, chances are you have programmed an application using a Redis server,
or at least you know what it is and what it is used for. In this chapter, we’ll recap what made Redis
the most famous caching system in the world and we’ll share some anecdotes about the development
undertaken by its creator, Salvatore Sanfilippo. We won’t stay long on the story of Redis, though, because
this book is about application modernization. As you read through, you will discover how the original
database, designed for speed and simplicity, has evolved to resolve many of the new challenges of this
age, without compromising on the ease of adoption, flexibility, and, above all, speed.

Redis Stack is an extension of Redis presented in 2022, which introduces JSON, vector, and time series
data modeling capabilities, all supporting real-time queries and searches. Redis Stack represents a new
approach to providing a rich data modeling experience all within the same database server. It introduces
features such as vector similarity search to query structured and unstructured data (for example, text,
images, or audio files) and delivers probabilistic Bloom filters to efficiently resolve recurrent big data
problems. Redis Stack is also a data platform that supports event-driven programming and introduces
stream processing features. By the end of this chapter, you will understand what Redis Stack is and
how it enhances the Redis server with many new capabilities. Above all, you will learn the motivation
behind Redis Stack and why multi-model databases can increase the speed of technological innovation
for organizations of all sizes. In this chapter, we are going to cover the following topics:

•	 Exploring the history of Redis

•	 The open source project

•	 From key-value to multi-model real-time databases

•	 Redis Stack deployment types

Introducing Redis Stack4

Technical requirements
To follow along with the examples in the chapter, you will need the following:

•	 Redis Stack Server version 7.2 or later installed on your development environment. Alternatively,
you can create a free Redis Cloud subscription to achieve a free plan and use a managed Redis
Stack database. Refer to Chapter 3, Getting Started with Redis Stack.

•	 The dataset used in the examples – a conversion of the rows in the popular MySQL World database
to Redis Hash data types. Find and download it from this book’s repository if you’d like to test the
examples that we propose in this chapter: https://github.com/PacktPublishing/
Redis-Stack-for-Application-Modernization.

Exploring the history of Redis
Redis was conceived and designed in 2009 by the Italian software engineer Salvatore Sanfilippo as a
solution to scaling LLOOGG, an online analytics server co-founded with Fabio Pitrola that empowered
web admins to track user activities. Challenged by the scalability limitations of MySQL, Salvatore
decided to rethink the concept of key-value storage and design something that would (admittedly)
be different from Memcached, while preserving its simplicity and speed. The first beta release was
shared on Google Code on February 25, 2009. A few months later, in September 2009, the first stable
release, Redis 1.0, was published as a tar package of less than 200 KB.

Redis has been designed to offer an alternative for problems where relational databases (RDBMSs) are
not a good fit because there is something wrong if we use an RDBMS for all kinds of work. However, in
comparison to other data storage options that became popular when the NoSQL wave shook the world
of databases (Memcached, the key-value data store released in 2003, or MongoDB, the document store
released in 2009, and many more), Redis has its roots in computer science and makes a rich variety
of data structures available. This is one of the distinguishing features of Redis and the likely reason
that fostered its adoption by software engineers and developers – presenting data structures such as
hashes, lists, sets, bitmaps, and so on that are familiar to software engineers so they could transfer
the programming logic to data modeling without any lengthy and computationally expensive data
transformation. Viewed in this light, we could say that Redis is about persisting the data structures
of a programming language. An example of the simplicity of storing a Python dictionary in a Redis
hash data structure follows:

user = {"name":"John",
        "surname":"Smith",
        "company":"Redis",
        "department":"Sales"}
r.hset("user:{}".format(str(2345)), mapping=user)

https://github.com/PacktPublishing/Redis-Stack-for-Application-Modernization
https://github.com/PacktPublishing/Redis-Stack-for-Application-Modernization

The open source project 5

In the same way, adding elements to a Redis Set can be done using Python lists:

languages = ['Python', 'C++', 'JavaScript']
r.sadd("coding", *languages)

In these examples, the user dictionary and the languages list are stored without transformations,
and this is one of the advantages that Redis data structures offer to developers: simplifying data
modeling and reducing the transformational overhead required to convert the data in a format that
can be mapped to the data store (thus reducing the so-called impedance mismatch).

There was a short gap between the first release and its adoption by Instagram and GitHub. If we try
to dig into the reasons that made Redis so popular, we can mention a few, among which we count the
speed and simplicity of deployment. Beyond the user experience, Redis is an act of dedication and
passion, and as we read in Redis’s own manifesto, code is like poetry; it’s not just something we write
to reach some practical result. People love beautiful stories and simplicity and everybody should fight
against complexity.

What is surely true is that Redis is an idea to solve problems where relational databases, still tied
to rigid paradigms, wouldn’t fit the purpose. It is the product of creativity, inspiration, and love for
things done manually, where good design and craftsmanship intertwine to accomplish something
that simply works. An intimate artwork. And we like to recall Salvatore’s words about the creative
approach when writing Redis:

My wife claims I wrote it mostly while sitting on the WC for the first years, on a MacBook Air 11. Would
be nice to tell her she is wrong, but she happens to be perfectly right about the matter.

From the most-used thinking room in Sicily to becoming the most-loved and used key-value database
in the world, this is the story we have decided to tell in this book, and we are sure you will find the
journey through the pages an exciting adventure.

One of the guiding principles behind Redis is being open source and driven by a community of
enthusiast contributors. We’ll explore that in the next section.

The open source project
The success of a technical project is always measurable in terms of the innovation of the proposal,
simplicity of use, exhaustive documentation, high performance, low footprint, and stability, among
other aspects. However, and this is true for many things, at the end of the day what matters is the
capacity to resolve a problem and the impact of the solution. Organizations that decide to add new
technology to their stack face several challenges to understand, prototype, validate, and set up a plan
to deploy test environments together with a release strategy, a maintenance plan, and, finally, a plan
to develop competence. Success stories require careful planning. From these many perspectives,

Introducing Redis Stack6

Redis is considered first-in-class, and in this book, we will expose many of the reasons that made
Redis the de-facto standard among the in-memory data stores in the world. But even before digging
into the features of Redis Stack, Redis, as an open source project, has undoubtedly added value to
many businesses:

•	 A variety of options exist to get it running close to the application. It is available as a managed
service in every public cloud provider, it can be installed from the source code or as a binary
file, and Docker images are available for all the versions and flavors.

•	 It has good documentation and a command reference, together with examples (from the
https://redis.io/ website).

•	 It is straightforward to set up and test. The source code is self-contained and does not depend
on external libraries.

•	 Client libraries for the most popular programming languages are available and supported (Java,
JavaScript, Python, Go, and C#/.NET).

•	 The well-known and permissive BSD license grants the freedom to use, modify, and distribute
Redis, among other advantages. Users can test and run Redis in production without any concerns.

These reasons, together with the fact that it’s very easy to learn Redis, make it an attractive option to set
up and use. On a computer configured to build C projects, pulling the source code from the GitHub
repository, compiling it, and running the server can be done in less than a minute:

git clone https://github.com/redis/redis.git
cd redis/
make
./src/redis-server &
./src/redis-cli PING
PONG

The open source project delivers the core Redis server plus additional utilities, such as these:

•	 redis-cli, the command-line interface to administer the server and manage the data. This
utility assists also in configuring scalable deployments with Redis Cluster and high availability
with replication and Sentinel. Among other features, it includes auto-completion, online help
for single commands (for example, HELP HSET), or by group of commands (for example,
HELP @hash, to learn about the commands that can be used with the Hash data structure).
Just type HELP to understand how to make use of the online help.

•	 redis-benchmark, a simple benchmarking utility to perform batches of tests for different
data structures. Useful to evaluate how well the server performs on determined hardware.

•	 redis-sentinel, the agent that automates the management of replicated topologies and
provides clients with a discovery service.

https://redis.io/

From key-value to multi-model real-time databases 7

•	 create-cluster, a utility useful to set up a Redis Cluster environment for testing.

•	 redis-check-rdb and redis-check-aof, utilities to health check AOF and RDB
persistence files.

Now that we have reviewed the basic principles behind Redis and its utilities, we are ready to dive
into the world of data modeling. This journey will take us from relational databases to Redis core
data structures, and we will see how the multi-model capabilities of Redis Stack simplify many data
modeling problems.

From key-value to multi-model real-time databases
The core data structures that are available out of the box in the Redis server solve a variety of problems
when it comes to mapping entities and relationships. To start with concrete examples of modeling
using Redis, the usual option to store an object is the Hash data structure, while collections can be
stored using Sets, Sorted Sets, or Lists (among other options because a collection can be modeled in
several other ways). In this section, we will introduce the multi-model features of Redis Stack using
a comprehensive approach, which may be useful for those who are used to storing data using the
relational paradigm, which implies organizing the data in rows and columns of a table.

Consider the requirement to model a list of cities. Using the relational data model, we can define a
table using the SQL data definition language (DDL) instruction CREATE TABLE as follows:

CREATE TABLE `city` (
  `ID` int NOT NULL AUTO_INCREMENT,
  `Name` char(35) NOT NULL DEFAULT '',
  `CountryCode` char(3) NOT NULL DEFAULT '',
  `District` char(20) NOT NULL DEFAULT '',
  `Population` int NOT NULL DEFAULT '0',
  PRIMARY KEY (`ID`),
  KEY `CountryCode` (`CountryCode`)
)

This table definition defines attributes for the city entity and specifies a primary key on an integer
identifier (a surrogate key, in this case, provided the uniqueness of the attributes is not guaranteed
for the city entity). The DDL command also defines an index on the CountryCode attribute.
Data encoding, collation, and the specific technology adopted as the storage engine are not relevant
in this context. We are focused on understanding the model and the ability that we have to query it.

Introducing Redis Stack8

Primary key lookup

Primary key lookup is the most efficient way to access data in a relational table. Filtering the table on
the primary key attribute is as easy as executing the SQL SELECT statement:

SELECT * FROM city WHERE ID=653;
+-----+--------+-------------+----------+------------+
| ID  | Name   | CountryCode | District | Population |
+-----+--------+-------------+----------+------------+
| 653 | Madrid | ESP         | Madrid   |    2879052 |
+-----+--------+-------------+----------+------------+
1 row in set (0.00 sec)

Modeling a city using one of the Redis core data structures leads to mapping the data in the SQL table to
Hashes, so we can store the attributes as field-value pairs, with the key name including the primary key:

127.0.0.1:6379> HSET city:653 Name "Madrid" CountryCode "ESP" District
"Madrid" Population 2879052

The HGETALL command can be used to retrieve the entire hash with minimal overhead (HGETALL
has direct access to the value in the Redis keyspace):

HGETALL city:653
1) "Name"
2) "Madrid"
3) "CountryCode"
4) "ESP"
5) "District"
6) "Madrid"
7) "Population"
8) "2879052"

In addition, we can limit the bandwidth usage caused by the entire row transfer to the client and select
only specific attributes. The SQL syntax is as follows:

SELECT Name, Population FROM city WHERE ID=653;
+--------+------------+
| Name   | Population |
+--------+------------+
| Madrid |    2879052 |
+--------+------------+
1 row in set (0.00 sec)

From key-value to multi-model real-time databases 9

In this analogy between the relational model and Redis, the command is HGET (or HMGET for
multiple values):

127.0.0.1:6379> HMGET city:653 Name Population
1) "Madrid"
2) "2879052"

While we need to extract data based on the primary key identifier, the solution is at hand in both
the relational database and in Redis. Things get more complicated if we want to perform lookup and
search queries on the dataset. In the next examples, we’ll see how the complexity and performance of
such operations may vary substantially.

Secondary key lookup

Primary key lookups are efficient: after all, the primary key is an index, and it guarantees direct access
to the table row. But what if we want to search for cities by filtering on an attribute? Let’s try an indexed
search against our relational database over the CountryCode column, which has a secondary index:

mysql> SELECT Name FROM city WHERE CountryCode = "ESP";
+--------------------------------+
| Name                           |
+--------------------------------+
| Madrid                         |
| Barcelona                      |
| [...]                          |
+--------------------------------+
59 rows in set (0.02 sec)

This is an efficient search because the table defines an index on the CountryCode column. To
continue the comparison of the relational database versus Redis, we will need to execute the same
query against the stored Hashes. For this demonstration, we will assume that we have migrated the
city table to Hashes in the Redis server. By design, Redis has no secondary indexing feature for any
of the core data structures, which means that we should scan all the Hashes prefixed by the “city:”
namespace, then read the city name from every Hash and check whether it matches our search term.
The following example performs a non-blocking scan of the keyspace, filtering on the key name
(“city:*”) in batches of configurable size (three, in the example):

127.0.0.1:6379> SCAN 0 MATCH city:* COUNT 3
1) "512"
2) 1) "city:4019"
   2) "city:9"
   3) "city:103"

Introducing Redis Stack10

The client should now extract the CountryCode value from every city, compare it to the search term,
and repeat until the scan is concluded. This is obviously a time-consuming and expensive approach.
There are ways to improve the efficiency of such batched operations. We will explore three standard
options and then show how to resolve the problem using the Redis Stack capabilities:

•	 Pipelining

•	 Using functions

•	 Using indexes

•	 Redis Stack capabilities

We will look at these in detail next.

Pipelining

The first approach to reducing the overhead of the search operation is to use pipelining, which is
supported by all major client libraries. Pipelining collects a batch of commands, delivers them to the
server, and collects the outputs from the server immediately before returning the result to the client.
This option dramatically reduces the latency of the overall operation, as it saves on the roundtrip time
to the server (an analogy that works is going to the supermarket once to purchase 30 items rather than
going 30 times and purchasing one item on every visit). The pros and cons of pipelining are as follows:

•	 Pros: Saves on roundtrip time and does not block the server, as the server executes a batch of
commands and returns the results to the client. Therefore, it increases overall system throughput.
Pipelining is especially useful when batching operations.

•	 Cons: The complexity of the operation is proportional to the number and complexity of the
operations in the pipeline that are executed by the server. This may increase the memory usage
on the server, as it keeps the intermediate results in memory until all commands in the pipeline
are processed. The client manages multiple responses, which adds complexity to its business
logic, especially when it has to deal with errors of some operations in the pipeline.

Using functions

Lua scripting and functions (functions were introduced in Redis 7.0 and represent an evolution of
Lua scripting for remote server execution) help to offload the client and remove network latency. The
search is local to the server and close to the data (equivalent to the concept of stored procedures). The
following function is an example of local search:

#!lua name=mylib

local function city_by_cc(keys, args)
   local match, cursor = {}, "0";
   repeat

From key-value to multi-model real-time databases 11

      local ret = redis.call("SCAN", cursor, "MATCH", "city:*",
"COUNT", 100);
      local cities = ret[2];
        for i = 1, #cities do
         local keyname = cities[i];
         local ccode = redis.
call('HMGET',keyname,'Name','CountryCode')
         if ccode[2] == args[1] then
            match[#match + 1] = ccode[1];
         end;
        end;
        cursor = ret[1];
      until cursor == "0";
   return match;
end
redis.register_function('city_by_cc', city_by_cc)

In this function, we do the following:

1.	 We perform a scan of the entire keyspace, filtering by the “city:*” prefix, which means that
we will iterate through all the keys in the Redis server database.

2.	 For every key returned by the SCAN command, we retrieve the name and CountryCode of
the city using the HMGET command.

3.	 If CountryCode matches our search filter, we add the city to an output array.

4.	 When the scan is completed, we return the array to the client.

Type the code into the mylib.lua file and import the library as follows:

cat mylib.lua | redis-cli -x FUNCTION LOAD

The function can be invoked using the following command:

127.0.0.1:6379> FCALL city_by_cc 0 "ESP"
 1) "A Coru\xf1a (La Coru\xf1a)"
 2) "Almer\xeda"
[...]
59) "Barakaldo"

The pros and cons of using functions are as follows:

•	 Pros: The operation is executed on the server, and the client does not experiment with any overhead.

•	 Cons: The complexity of the operation is linear, and the function (like any other Lua script or
function) blocks the server. Any other concurrent operation must wait until the execution of
the function is completed. Long scans make the server appear stuck to other clients.

Introducing Redis Stack12

Using indexes

Data scans, wherever they are executed (client or server side), are slow and ineffective in satisfying
real-time requirements. This is especially true when the keyspace stores millions of keys or more. An
alternative approach for search operations using the Redis core data structures is to create a secondary
index. There are many options to do this using Redis collections. As an example, we can create an
index of Spanish cities using a Set as follows:

SADD city:esp "Sevilla" "Madrid" "Barcelona" "Valencia" "Bilbao" "Las
Palmas de Gran Canaria"

This data structure has interesting properties for our needs. We can retrieve all the Spanish cities in
a single command:

127.0.0.1:6379> SMEMBERS city:esp
1) "Madrid"
2) "Sevilla"
3) "Valencia"
4) "Barcelona"
5) "Bilbao"
6) "Las Palmas de Gran Canaria"

Or we can check whether a specific city is in Spain using SISMEMBER, a constant time-complexity command:

127.0.0.1:6379> SISMEMBER city:esp "Madrid"
(integer) 1

And we can even search the index for cities having a name that matches a pattern:

127.0.0.1:6379> SSCAN city:esp 0 MATCH B*
1) "0"
2) 1) "Barcelona"
   2) "Bilbao"

We can refine our search requirements and design an index that considers the population. In such a
case we could use a Sorted Set and Set the population as the score:

127.0.0.1:6379> ZADD city:esp 2879052 "Madrid" 701927 "Sevilla"
1503451 "Barcelona" 739412 "Valencia" 357589 "Bilbao" 354757 "Las
Palmas de Gran Canaria"
(integer) 6

From key-value to multi-model real-time databases 13

The main feature of the Sorted Set data structure is that its members are stored in an ordered tree-like
structure (Redis uses a skiplist data structure), and with that, it is possible to execute low-complexity
range searches. As an example, let’s retrieve Spanish cities with more than 2 million inhabitants:

127.0.0.1:6379> ZRANGE city:esp 2000000 +inf BYSCORE
1) "Madrid"

We can also check whether a city belongs to the index of Spanish cities:

127.0.0.1:6379> ZRANK city:esp Madrid
(integer) 5

In the former example, the ZRANK command informs us that the city Madrid belongs to the index
and is fifth highest in the ranking. This solution resolves the overhead caused by having to scan the
entire keyspace looking for matches.

The drawback of such a manual approach to indexing the data is that indexes need to reflect the data
at any time. Considering scenarios where we want to add or remove a city from our database, we need
to perform the two operations of removing the city Hash and updating the index, atomically. We can
use a Redis transaction to perform atomic changes on both the data and the index:

127.0.0.1:6379> MULTI
OK
127.0.0.1:6379(TX)> DEL city:653
QUEUED
127.0.0.1:6379(TX)> ZREM city:esp "Madrid"
QUEUED
127.0.0.1:6379(TX)> EXEC
1) (integer) 1
2) (integer) 1

Custom secondary indexes come at a price, though, because complex searches become hard to manage
using multiple data structures. Indexes must be maintained, and the complexity of such solutions
may get out of hand, putting the consistency of search operations at risk. The pros and cons of using
indexing are as follows:

•	 Pros: Simple and fast search operations are possible using Redis core data structures to create
a secondary index

•	 Cons: The secondary index needs to be maintained, and search operations on multiple fields
(what is called a composite index in relational databases) are not immediate and need thoughtful
planning, implementation, and maintenance

Next, we will examine the capabilities of Redis Stack.

Introducing Redis Stack14

Redis Stack capabilities

Caching is one of the frequent use cases for which Redis shines as the best-in-class storage solution.
This is because it stores data in memory, and offers real-time performance. It is also lightweight, as data
structures are optimized to consume little memory. Redis does not need any complex configuration
or maintenance and it is open source, so there is no reason not to give it a try. As a real-time data
storage, it seems plausible that complex search operations may not be the primary use case users are
interested in when using Redis. After all, fast retrieval of data by key is what made Redis so versatile
as a cache or as a session store.

However, if in addition to the ability to use core data structures to store the data, we ensure that fast
searches can be performed (besides primary key lookup), it is possible to think beyond the basic
caching use case and start looking at Redis as a full-fledged database, capable of high-speed searches.

So far, we have presented simple and common search problems and both solutions using the traditional
SQL approach and possible data modeling strategies using Redis core data structures. In the following
sections, we will show how Redis Stack resolves query and search use cases and extends the core
features of Redis with an integrated modeling and developing experience. We will introduce the
following capabilities:

•	 Querying, indexing, and searching documents

•	 Time series data modeling

•	 Probabilistic data structures

•	 Programmability

Let’s discuss each of these capabilities in detail.

Querying, indexing, and searching documents

Redis Stack complements Redis with the ability to create secondary indexes on Hashes or JSON
documents, the two document types supported by Redis Stack. The search examples seen so far can
be resolved with the indexing features. To perform an indexed search, we create an index against the
hashes modeling the cities using the following syntax:

FT.CREATE city_idx
ON HASH
PREFIX 1 city:
SCHEMA Name AS name TEXT
CountryCode AS countrycode TAG SORTABLE
Population AS population NUMERIC SORTABLE

From key-value to multi-model real-time databases 15

The FT.CREATE command instructs the server to perform the following operations:

1.	 Create an index for the desired values of the Hash document.

2.	 Scan the keyspace and retrieve the documents prefixed by the “hash:” string.

3.	 Create the index corresponding to the desired data structure and, as specified by the FT.CREATE
command, the Hash in this case. The indexes defined in this example are of the following types:

	� TEXT, which enables full-text search on the Name field

	� TAG SORTABLE, which enables an exact-match search against the CountryCode field
and enables high-performance sorting by the value of the attribute

	� NUMERIC SORTABLE, which enables range queries against the Population field and
enables high-performance sorting by the value of the attribute

As soon as the indexing operation against the relevant data – all the keys prefixed by “hash:”– is
completed, we can execute the queries and searches seen so far, and more. The syntax in the following
example executes a search of all the cities with the value “ESP” in the TAG field type and returns
only the name of the cities, sorted in lexicographical order. Finally, the first three results are returned
using the LIMIT option. Note that this query is executed against the new city_idx index, and
not directly against the data:

127.0.0.1:6379> FT.SEARCH city_idx '@countrycode:{ESP}' RETURN 1 name
SORTBY name LIMIT 0 3
1) (integer) 59
2) "city:670"
3) 1) "name"
   2) "A Coru\xc3\xb1a (La Coru\xc3\xb1a)"
4) "city:690"
5) 1) "name"
   2) "Albacete"
6) "city:687"
7) 1) "name"
   2) "Alcal\xc3\xa1 de Henares"

It is possible to combine several textual queries/filters in the same index. Using exact-match and full-
text search, we can verify whether Madrid is a Spanish city:

127.0.0.1:6379> FT.SEARCH city_idx '@name:Madrid @countrycode:{ESP}'
RETURN 1 name
1) (integer) 1
2) "city:653"
3) 1) "name"
   2) "Madrid"

Introducing Redis Stack16

In a previous example, the range search was executed using the ZRANGE data structure. Using the
indexing capability of Redis Stack, we can execute range searches using the NUMERIC field type.
So, if we want to retrieve the Spanish cities with more than 2 million inhabitants, we will write the
following search query:

127.0.0.1:6379> FT.SEARCH city_idx '@countrycode:{ESP}' FILTER
population 2000000 +inf RETURN 1 name
1) (integer) 1
2) "city:653"
3) 1) "name"
   2) "Madrid"

Redis Stack offers flexibility and concise syntax to combine several field types, of which we have seen
only a limited but representative number of examples. Once the index is created, the user can go
ahead and use it, and add new documents or update existing ones. The database maintains the indexes
updated synchronously as soon as documents are created or changed.

Besides full-text, exact-match, and range searches, we can also perform data aggregation (as we would
in a relational database using the GROUP BY statement). If we would like to retrieve the three most
populated countries, sorted in descending order, we would solve the problem in SQL as follows:

SELECT CountryCode,
SUM(Population) AS sum
FROM city
GROUP BY CountryCode
ORDER BY sum DESC
LIMIT 3;
+-------------+-----------+
| CountryCode | sum       |
+-------------+-----------+
CHN	175953614
IND	123298526
BRA	85876862
+-------------+-----------+
3 rows in set (0.01 sec)

We can perform complex aggregations with the FT.AGGREGATE command. Using the following
command, we can perform a real-time search and aggregation to compute the total population of the
top three countries by summing up the inhabitants of the cities per country:

127.0.0.1:6379> FT.AGGREGATE city_idx * GROUPBY 1 @countrycode REDUCE
SUM 1 @population AS sum SORTBY 2 @sum DESC LIMIT 0 3
1) (integer) 232
2) 1) "countrycode"
   2) "chn"

From key-value to multi-model real-time databases 17

   3) "sum"
   4) "175953614"
3) 1) "countrycode"
   2) "ind"
   3) "sum"
   4) "123298526"
4) 1) "countrycode"
   2) "bra"
   3) "sum"
   4) "85876862"

To summarize this brief introduction where we addressed the search and aggregation capabilities, it is
worth mentioning that there are multiple types of searches, such as phonetic matching, auto-completion
suggestions, geo searches, or a spellchecker to help design great applications. We will cover them in depth
in Chapter 5, Redis Stack as a Document Store, where we showcase Redis Stack as a document store.

Besides modeling objects as Hash, it is possible to store, update, and retrieve JSON documents. The
JSON format needs no introduction, as it permeates data pipelines including heterogeneous subsystems,
protocols, databases, and so on. Redis Stack delivers this capability out of the box and manages JSON
documents in a similar way to Hashes, which means that it is possible to store, index, and search JSON
objects and work with them using JSONPath syntax:

1.	 To illustrate the syntax to store, search, and retrieve JSON data along the lines of the previous
examples, let’s store city objects formatted as JSON:

JSON.SET city:653 $ '{"Name":"Madrid", "CountryCode":"ESP",
"District":"Madrid", "Population":2879052}'
JSON.SET city:5 $ '{"Name":"Amsterdam", "CountryCode":"NLD",
"District":"Noord-Holland", "Population":731200}'
JSON.SET city:1451 $ '{"Name":"Tel Aviv-Jaffa",
"CountryCode":"ISR", "District":"Tel Aviv",
"Population":348100}'

2.	 We don’t need anything else to start working with the JSON documents stored in Redis Stack.
We can then perform basic retrieval operations on entire documents:

127.0.0.1:6379> JSON.GET city:653
"{\"Name\":\"Madrid\",\"CountryCode\":\"ESP\",\"District\":\"Ma-
drid\",\"Population\":2879052}"

3.	 We can also retrieve the desired property (or multiple properties at once) stored on a certain
path, with fast access guaranteed, because the document is stored in a tree structure:

127.0.0.1:6379> JSON.GET city:653 $.Name
"[\"Madrid\"]"
127.0.0.1:6379> JSON.GET city:653 $.Name $.CountryCode
"{\"$.Name\":[\"Madrid\"],\"$.CountryCode\":[\"ESP\"]}"

Introducing Redis Stack18

4.	 As we have seen for Hash documents, we can index JSON documents using a similar syntax
and perform search operations. The following command creates an index for all the JSON
documents with the city: prefix in the database:

FT.CREATE city_idx ON JSON PREFIX 1 city: SCHEMA $.Name AS name
TEXT $.CountryCode AS countrycode TAG SORTABLE $.Population AS
population NUMERIC SORTABLE

5.	 And using the FT.SEARCH command with an identical syntax as seen for the Hash documents,
we can perform search operations:

127.0.0.1:6379> FT.SEARCH city_idx '@countrycode:{ESP}' FILTER
population 2000000 +inf RETURN 1 name
1) (integer) 1
2) "city:653"
3) 1) "name"
   2) "Madrid"

Unlike Hash documents, the JSON supports nested levels (up to 128) and can store properties, objects,
arrays, and geographical locations at any level in a tree-like structure, so the JSON format opens up
a variety of use cases using a compact and flexible data structure.

Time series data modeling

Time series databases do not need any long introduction: they are data structures that can store data
points happening at a certain time, indicated by a Unix timestamp expressed in milliseconds, with an
associated numeric data value, typically with double precision. This data structure applies to many use
cases, such as monitoring entities over time or tracking user activities for a determined service. Redis
Stack has an integrated time series database that offers many useful features to manage the data points,
for querying and searching, and provides convenient formatting commands for data processing and
visualization. Beginning with time series modeling is straightforward:

1.	 We can create a time series from the command-line interface (or from any of the client libraries
that support time series):

TS.CREATE "app:monitor:temp"

2.	 Storing samples into the time series can be done with the TS.ADD command. If we would like
to store the temperature measured by the sensor of a meteorological station captured every few
seconds, the commands would be as follows:

127.0.0.1:6379> "TS.ADD" "app:monitor:temp" "*" "20"
(integer) 1675632813307
127.0.0.1:6379> "TS.ADD" "app:monitor:temp" "*" "20"
(integer) 1675632818179

From key-value to multi-model real-time databases 19

127.0.0.1:6379> "TS.ADD" "app:monitor:temp" "*" "20"
(integer) 1675632824174
127.0.0.1:6379> "TS.ADD" "app:monitor:temp" "*" "20.1"
(integer) 1675632829519
127.0.0.1:6379> "TS.ADD" "app:monitor:temp" "*" "20"
(integer) 1675632835052

3.	 We are instructing the database to insert the sample at the current time, so we specify the *
argument. We can finally retrieve the samples stored in the time series for the desired interval:

127.0.0.1:6379> "TS.RANGE" "app:monitor:temp" "1675632818179"
"1675632829519"
1) 1) (integer) 1675632818179
   2) 20
2) 1) (integer) 1675632824174
   2) 20
3) 1) (integer) 1675632829519
   2) 20.1

We have just scratched the surface of using time series with Redis Stack, because data may be aggregated,
down-sampled, and indexed to address many different uses.

Probabilistic data structures

Deterministic data structures – all those structures that store and return the same data that was stored
(such as Strings, Sets, Hashes, and the rest of Redis structures) – are a good solution for standard
amounts of data, but they may become inadequate due to the constantly growing volumes of data that
systems must handle. Redis offers several options to store and present data to extract different types
of insights. Strings are an example because they can be encoded as integers and used as counters:

127.0.0.1:6379> INCR cnt
(integer) 1
127.0.0.1:6379> INCRBY cnt 3
(integer) 4

Strings can also be managed down to the bit level to store multiple integer counters of variable length and
stored at different offsets of a single string to reduce storage overheads using the bitfield data structure:

127.0.0.1:6379> BITFIELD cnt INCRBY i5 0 5
1) (integer) 5
127.0.0.1:6379> BITFIELD cnt INCRBY i5 0 5
1) (integer) 10
127.0.0.1:6379> BITFIELD cnt GET i5 0
1) (integer) 10

Introducing Redis Stack20

Regular counters, sets, and hash tables perform well for any amount of data but handling large amounts
of data represents a challenge to scale the resources of the machine where Redis Stack is running,
because of its memory requirements.

Deterministic data structures have given way to probabilistic data structures because of the need to
scale up to large quantities of data and give a reasonably approximated answer to questions such as
the following:

•	 How many different pages has the user visited so far?

•	 What are the top players with the highest score?

•	 Has the user already seen this ad?

•	 How many unique values have appeared so far in the data stream?

•	 How many values in the data stream are smaller than a given value?

In the attempt to give an answer to the first question in the list, we could calculate the hash of the URL
of the visited page and store it in a Redis collection, such as a Set, and then retrieve the cardinality of
the structure using the SCARD command. While this solution works very well (and is deterministically
exact), scaling it to many users and many visited pages represents a cost.

Let’s consider an example with a probabilistic data structure. HyperLogLog estimates the cardinality
of a set with minimal memory usage and computational overhead without compromising the accuracy
of the results, while consuming only a fraction of memory and CPU, so you would count the visited
pages and get an estimation as follows:

127.0.0.1:6379> PFADD pages "https://redis.com/" "https://redis.io/
docs/stack/bloom/" "https://redis.io/docs/data-types/hyperloglogs/"
(integer) 1
127.0.0.1:6379> PFCOUNT pages
(integer) 3

Redis reports the following memory usage for HyperLogLog:

127.0.0.1:6379> MEMORY USAGE pages
(integer) 96

Attempting to resolve the same problem using a Set and storing the hashes for these URLs would be
done as follows:

127.0.0.1:6379> SADD hashpages "522195171ed14f78e1f33f84a98f0de6"
"f5518a82f8be40e2994fdca7f71e090d" "c4e78b8c136f6e1baf454b7192e89cd1"
(integer) 3
127.0.0.1:6379> MEMORY USAGE hashpages
(integer) 336

From key-value to multi-model real-time databases 21

Probabilistic data structures trade accuracy for time and space efficiency and give an answer to this
and other questions by addressing several data analysis problems against big amounts of data and,
most relevantly, efficiently.

Programmability

Redis Stack embeds a serverless engine for event-driven data processing allowing users to write
and run their own functions on data stored in Redis. The functions are implemented in JavaScript
and executed by the engine upon user invocation or in response to events such as changes to data,
execution of commands, or when events are added to a Redis Stream data structure. It is also possible
to configure timed executions, so periodical maintenance operations can be scheduled.

Redis Stack minimizes the execution time by running the functions as close as possible to the data,
improving data locality, minimizing network congestion, and increasing the overall throughput of
the system.

With this capability, it is possible to implement event-driven data flows, thus opening the doors to
many use cases, such as the following:

1.	 A basic library including a function can be implemented in text files, as in the following snippet:

#!js api_version=1.0 name=lib
redis.registerFunction('hello', function(){
    return 'Hello Gears!';
});

2.	 The lib.js file containing this function can then be imported into Redis Stack:

redis-cli -x TFUNCTION LOAD < ./lib.js

3.	 It can then be executed on demand from the command-line interface:

127.0.0.1:6379>  TFCALL lib.hello 0
"Hello Gears!"

4.	 Things become more interesting if we subscribe to data changes as follows:

redis.registerKeySpaceTrigger("key_logger", "user:",
function(client, data){
    if (data.event == 'del'){
        client.call("INCR", "removed");
        redis.log(JSON.stringify(data));
        redis.log("A user has been removed");
    }
});

Introducing Redis Stack22

In this function, we do the following:

	� We are subscribing to events against the keys prefixed by the “user:” namespace

	� We check the command that triggered the event, and if it is a deletion, we act and specify
what’s going to happen next

	� The triggered action will be the increment of a counter, and it will also write a message into
the server’s log

5.	 To test this function, we proceed to create and delete a user profile:

127.0.0.1:6379> HSET user:123 name "John" last "Smith"
(integer) 2
127.0.0.1:6379> DEL user:123
(integer) 1

6.	 A quick check of the server’s log verifies that the condition has been met, and the information logged:

299:M 05 Feb 2023 19:13:09.004 * <redisgears_2>
{"event":"del","key":"user:123","key_raw":{}}
299:M 05 Feb 2023 19:13:09.005 * <redisgears_2> A user has been
removed

And the counter has increased:
127.0.0.1:6379> GET removed
"1"

Through this book, we will come to understand the differences between Lua scripts, Redis functions,
and JavaScript functions, and we will explore the many possible programmability features along with
proposals to resolve challenging problems with simple solutions.

So, what is Redis Stack?

Redis Stack combines the speed and stability of the Redis server with a set of well-established capabilities
and integrates them into a compact solution that is easy to install and manage – Redis Stack Server.
The RedisInsight desktop application is a visualization tool and data manager that complements
Redis Stack Server with a set of functionalities useful for visualizing data stored by different models
as well as providing interactive tutorials with popular examples, and more.

To complete the picture, the Redis Stack Client SDK includes the most popular client libraries to
develop against Redis Stack in the Java, Python, and JavaScript programming languages.

From key-value to multi-model real-time databases 23

Figure 1.1 – The Redis Stack logo

Redis Stack empowers users with the liberty to use it for free in development and production environments
and merges the open source BSD-licensed Redis with search and query capabilities, JSON support,
time series handling, and probabilistic data structures. It is available under a dual license, specifically
the Redis Source Available License (RSALv2) and the Server Side Public License (SSPL).

So, in a few examples, we have introduced new possibilities to modernize applications, and now we
owe you an answer to the original question, “What is Redis Stack?”

Key-value storage

To define what Redis Stack is, we need to go back for a moment to its origins, because Redis is the
spinal cord of Redis Stack. Redis was born as in-memory storage to accelerate massive amounts of
queries and achieve sub-millisecond latency while optimizing memory usage and maximizing the
ease of adoption and administration. It appeared at the same time as other solutions taking part in
the NoSQL wave and deviating from relational modeling. While the key-value Memcached store was
an already established solution, Redis became popular too as a type of key-value storage. So, we can
surely say that Redis Stack can be used as a key-value store.

Data structure server

However, considering Redis Stack as a simple key-value data store is reductive. Redis is best known
for its flexibility in storing collections such as Hashes, Sets, Sorted Sets or Lists, Bitmaps and Bitfields,
Streams, HyperLogLog probabilistic data structures, and geo indexes. And, together with data
structures, its efficient low-complexity algorithms make storing and searching data a joy for developers.
We can certainly say that Redis Stack is also a data structure store.

Multi-model database

The features introduced so far are integrated into Redis Stack Server and extend the Redis server,
turning the data structure server into a multi-model database. This provides a rich data modeling
experience where multiple heterogeneous data structures such as documents, vectors, and time series
coexist in the same database. Software architects will appreciate the variety of possibilities for designing
new solutions without multiple specialized databases and software developers will be empowered
with a rich set of client libraries that improve the ease of software design. Database administrators
will discover how shallow the learning curve is to learn to administer a single database rather than
installing, configuring, and maintaining several data stores.

Introducing Redis Stack24

Data platform

The characteristics discussed so far, together with stream processing and the possibility to execute
JavaScript functions for event-driven development, push Redis Stack beyond the boundaries of the
multi-model database definition. Combining Redis, the key-value data store that is popular as a cache,
with advanced data structures and multi-model design, and with the capability of a message broker
with event-driven programming features, turns Redis Stack into a powerful data platform.

We have completed the Redis Stack walk-through, and to conclude this chapter, we will briefly discuss
how to install it using different methods.

Redis Stack deployment types
We have completed an overview of Redis Stack and its key differentiators from the Redis server. In the
next chapters, we will dive into the many use cases that can be solved and will discuss lots of examples
and code snippets. For the time being, you can start planning your next Redis Stack-based modern
application and think about the platform that will host the data store.

Redis Stack is available on all main operating systems (Linux, Mac, Windows) in binary format. It
is also available as a Docker image, so you can start it right now by launching a container on your
machine as follows:

docker run -d --name redis-stack-server -p 6379:6379 redis/redis-
stack-server:latest

Redis Stack is free, and you can install, manage, and deploy it in production without any license fee.
It’s Redis, after all. You can also install RedisInsight and connect it to Redis Stack Server to see how
easy is to bring your data under control.

If you don’t want to install Redis Stack, you can also create a free Redis Cloud account at https://
redis.com/try-free/. You can get a 30 MB forever-free database and a public endpoint to use
it from your laptop. No VPN is needed, and no certificate setup is required. You can choose where to
create your free instance, for example on Amazon AWS, Google Cloud, or Microsoft Azure.

Be prepared, because if you haven’t already thought, “I didn’t know that Redis could do this,” we will
surprise you with the many things you will be able to do, for free, with Redis Stack!

Summary
In this chapter, we have introduced Redis Stack starting from its foundation, the open source Redis
server. We have introduced the multi-model approach of Redis Stack with examples, and we have
performed simple searches beyond primary key lookup. You have learned about the syntax of the
commands to use Redis Stack as a document store capable of storing Hash and JSON documents, and
as a time series store, to store data points and search through them. Finally, we explored probabilistic
data structures and have shown examples of database programmability.

https://redis.com/try-free/

Summary 25

In Chapter 2, Developing Modern Use Cases with Redis Stack, we will see that Redis Stack can be
used in many different scenarios. From an in-memory, real-time cache and session store, to storing
leaderboards, or being used as a message broker in a microservice architecture, you will learn that
Redis Stack can be a better fit than deploying multiple specialized databases and messaging solutions.

2
Developing Modern Use Cases

with Redis Stack

Redis Stack can be used in many different scenarios. While Redis is traditionally used as an in-memory
real-time cache and as a session store, or it can be used to store leaderboards or act as a message broker
using different core data structures, Redis Stack extends Redis’s well-known features, thus becoming
a flexible solution to many emerging problems. In this chapter, we will present an overview of the
traditional use cases so that you will find solutions to classical problems. We will focus on the new
use cases that are possible using Redis Stack’s multi-model capabilities.

In this chapter, you will learn how Redis Stack can prevent denial-of-service (DoS) attacks or spot
attempts of fraud, thus helping secure the stability of an application and the confidentiality of data. You
will also discover how to track the nearest available bikes of the urban bike-sharing service and how
to efficiently count all the user authentications over a certain period, from tracking the temperature
of thousands of meteorological stations or analyzing massive volumes of trades of a stock market to
computing statistical analysis over time series. You will also learn how to build a recommendation
engine using object recognition and audio matching. You will understand how Redis Stack can replace
monolithic data layers by adapting to the different requirements of a microservice architecture. These
and many more problems can be solved using Redis Stack.

In this chapter, we are going to cover the following topics:

•	 Caching, rate-limiting, geo-positioning, and other Redis traditional use cases

•	 Going beyond the real-time cache with Redis Stack

•	 Redis Stack for microservice architectures

Technical requirements
To follow along with the examples in the chapter, you will need to install Redis Stack Server 7.2 or
a later version on your development environment. Alternatively, you can create a free Redis Cloud
subscription to get a free plan and use a managed Redis Stack database.

Developing Modern Use Cases with Redis Stack28

Caching, rate-limiting, geo-positioning, and other Redis
traditional use cases
Implementing the many use cases that companies demand from their technical staff requires a technological
stack and a competence development plan to sustain the efforts of designing, implementing, testing,
and maintaining a solution. Evaluating and benchmarking the different options is time-consuming,
and introducing a new technology demands processes and often increases the time to market for new
features and products, thus slowing down the innovation and competitiveness of a company. Redis
Stack is often regarded as a Swiss Army knife when it comes to solving different problems. As a data
structures server, it allows you to transfer many responsibilities from application servers or specialized
databases to a single, compact database server. In this section, we will recap the classical use cases that
made Redis popular. Those uses include the following:

•	 Caching

•	 Session store

•	 Rate limiter

•	 Leaderboards

•	 Data deduplication

•	 Geo-positioning

•	 Message processing and delivery

Let’s go through each of these in turn.

Caching

Speed and flexibility are among the features that made Redis the most popular cache in the world.
As an in-memory data store, with additional features such as data persistence, high availability, and
scalability, Redis can survive massive failures and reload data from disk, failover to a replica, and
scale beyond a single machine if configured as a cluster. Redis is also easy to set up and maintain,
and it’s self-contained: everything you need to set up a full-fledged caching layer is there in the open
source package.

Data can be cached using different data structures, each with different trade-offs. It is possible to
cache data in strings, as follows:

127.0.0.1:6379> GET "wp:posts:3288"
"O:8:\"stdClass\":23:{s:2:\"ID\";s:4:\"3288\";s:11:\"post_
author\";s:1:\"2\";s:9:\"post_date\";s:19:\"2016-03-29
22:15:41\";s:13:\"post_date_gmt\";s:19:\"2016-03-29
21:15:41\";s:12:\"post_content\";s:6519:\"La f\xc3\xadsica cu\xc3\

Caching, rate-limiting, geo-positioning, and other Redis traditional use cases 29

xa1ntica indica que\xc2\xa0la realidad es un conjunto de posibilidades
potencialmente infinitas. Con los \xc3\xbaltimos desconcertantes
descubrimientos, nos damos cuenta siempre..."

In this example, a single article in a WordPress blog is cached using the string data structure, and
it will accelerate retrieving the post’s content rather than accessing it from the MySQL relational
database WordPress uses. Cached data is read from memory and then deserialized, after which it can
be returned to the web client and rendered into a web page.

Alternatively, it is possible to cache data in a Hash data structure, with information organized in a
dictionary format, which is useful if you only wish to retrieve the metadata of the posts when, for
example, you would like to present a list of articles to choose from, without the overhead caused by
retrieving and transferring the entire post, thus saving time and bandwidth:

127.0.0.1:6379> HMGET "wp:posts:3288" post_status post_modified post_
date_gmt ID
1) "publish"
2) "2016-03-29 22:15:41"
3) "2016-03-29 21:15:41"
4) "3288"

Redis is a good fit for the different caching strategies (cache-aside, write-behind, write-through, and
read-replica) and is flexible concerning the typical requirements a cache should fulfill, such as flexible
expiration (TTL) and eviction policies (LRU or LFU), configurable time-to-live and the already
mentioned persistence, high availability, and scalability.

Session store

The HTTP protocol is stateless: every request is independent and unrelated to other requests. Servers
ignore the user identity and don’t distinguish between new visitors and returning visitors. But what if
we need to keep track of a client’s activity across multiple requests? Session management strategies
are used by websites to store session information for a particular user and track their activity. Let’s
look at a high-level description of user interaction with a website through a browser:

1.	 The user browses a certain website, and the server receives the request.

2.	 The server generates a random ID (for example, a UUID).

3.	 The ID is associated with session data on the server.

4.	 The ID is delivered to the client and stored in a cookie.

5.	 The browser attaches the cookie to every subsequent request.

6.	 The server identifies the returning user from the ID stored in the cookie.

Developing Modern Use Cases with Redis Stack30

The server, by managing session data associated with the user, can retrieve the user preferences, such
as items added to a shopping cart (regardless of whether the user has authenticated to the website).
Session information is stored in memory in the application server:

Figure 2.1 – Application servers as session managers

This approach is simplified and may work until we start adding requirements to our service. Guaranteeing
the best user experience possible, a typical requirement, becomes challenging during peaks of traffic.
Distributing the load to multiple application servers helps us manage increasing workloads:

Figure 2.2 – Load balancers in client/server architectures

Scaling application servers is easy: clients are routed by a load balancer to different application servers
and the service scales the workload accordingly by relying on multiple machines that receive and
process a subset of the user requests. However, this approach has an inconvenience: session data
is saved locally to the application server, and a subsequent request from a user will be served by a
different application server and will create a new session. One solution to this problem is to use a
sticky session: load balancers issue a cookie or track information such as the IP address and route
requests to the server where the session was first created:

Caching, rate-limiting, geo-positioning, and other Redis traditional use cases 31

Figure 2.3 – Load balancers map clients to application servers

Sticky sessions resolve the problem of identifying returning users in the presence of multiple application
servers, but there are still open points that need to be addressed. What if the service owner wants to
collect information about the active sessions? And how can we deal with service outages, which may
cause the loss of session data? Application servers are not specialized to persist data and don’t have a
suitable interface to serve session information to other services for data collection and offline analysis.
Wrapping up, session management needs to address the following challenges:

•	 Applications, application servers, or load balancers can be unavailable, causing the loss of
session information

•	 There may also be the requirement to centralize session data to make it available to other services

•	 Container-specific sessions generate local session information that’s not shared across different
application servers in a load-balancing scenario

These challenges pave the way to introducing Redis Stack as a central, scalable, and highly available session
store. A session store needs to be fast and requires an in-memory solution. The user is waiting for their
details to be retrieved before their unique data can be returned. Writes also need to be fast as sessions
need to be updated frequently, at least to extend the time-to-live when the user is active on the website:

Figure 2.4 – Redis Stack as a distributed session store

Developing Modern Use Cases with Redis Stack32

Several frameworks can manage Redis as a session store behind the scenes. Let’s mention a few:

•	 Spring with the Spring Session Data Redis module

•	 Express with the connect-redis npm package

•	 Flask, using the Flask-Session extension

Having a centralized session store with search, query, and aggregation capabilities enables many new
use cases. Relevant data can be extracted from the open sessions (such as the number of users about
to buy certain products, the total cost of items in the open shopping cart, and more).

Rate limiter

Redis presents several options to model a counter using the core data structures. Everything can be
counted – visits to a website, the number of daily or monthly authentications, transactions per day
and user, the number of clicks on a web page, and so on. Redis is a flexible and efficient solution when
it’s used to implement counters, and in particular rate-limiting policies, which use counters under
the hood. A rate-limiting mechanism protects against burst traffic inside a time window, attempts
to break a password, or a distributed denial-of-service (DDoS) attack. Rate-limiting mechanisms
are usually applied before the request is processed by the application servers and applied at the load
balancer or gateway layer, but they can be also applied specifically per service, behind the gateway. A
rate limiter that’s implemented externally is useful when we want a distributed rate-limiting policy
across multiple nodes, as in the case where the API gateway is deployed as a multi-node cluster:

Figure 2.5 – Redis Stack as a rate limiter

We can create a Redis key counter for every minute per user. Every time a request comes in, we’ll update
the appropriate counter for a determined user (or for the number of overall requests), based on the current
minute. To make sure we don’t fill up our entire database with junk, we’ll expire that key after 1 minute.

The key name can be a combination of the user identity and the minute portion of the current time.
The user identity can be expressed as a session identifier, or as an API-KEY identifier. So, if we
decide to keep the requests of a determined API-KEY identifier under control, we would name the
key {API-KEY}:{MINUTE}. Since we’re always expiring the keys, we only need to keep track of
the minute; when the hour rolls around from 59 to 00, we can be certain that another limiter for 59
doesn’t exist (it would have expired 58 minutes prior).

Caching, rate-limiting, geo-positioning, and other Redis traditional use cases 33

Let’s illustrate this with an example where we allow a maximum of 10 requests per minute. Every time
there is a request for a certain API-KEY identifier, we check the current usage per minute:

GET [user-api-key]:[current minute number]

If the number of requests is under a certain threshold (10 requests), we can increase the counter;
otherwise, we can reject the request and exit:

MULTI
INCR [user-api-key]:[current minute number]
EXPIRE [user-api-key]:[current minute number] 59
QUEUED
EXEC

In this example, for every request that is received during a certain minute, the rate limiter will check
the value of the related counter and, if allowed, increase its value. When the minute changes, the
requests will get checked against a new counter and the old one will expire in a maximum of 60 seconds.
This example is a basic fixed time window rate limiter. Using the Redis Sorted Set data structure, it
is possible to create a sliding window rate limiter. A sliding window rate limiter can be implemented
using the following commands:

MULTI
ZREMRANGEBYSCORE [user-api-key] 0 [current-timestamp-ms - 86400000]
ZADD [user-api-key] [current-timestamp-ms] [current-timestamp-
ms:weight]
ZRANGE [user-api-key] "0" "-1"
EXPIRE [user-api-key] [time-to-live]
EXEC

This daily rate limiter for a single API-KEY with an identifier of user-api-key is invoked on
every request and performs the following actions:

1.	 It uses a transaction: all the commands within MULTI and EXEC are executed atomically.

2.	 The ZREMRANGEBYSCORE command removes all the entries from the Sorted Sets with a
score older than the current timestamp expressed in milliseconds minus 86400000, where
86400000 is the number of milliseconds in a day. After this operation, the Sorted Set will
store only those entries that were added within the last 24 hours.

3.	 The ZADD command adds a member-score pair to the Sorted Set, where the score is the current
timestamp in milliseconds, and the member is the string composed of the current timestamp plus
a weight – for example, 1676895115768:1. The weight can be any natural number and is used
to implement a weighted rate limiter, where certain heavy operations have higher weights than
others. If weights are not desired, the weight can be equal to 1 or omitted from the implementation.

Developing Modern Use Cases with Redis Stack34

4.	 The ZRANGE command fetches all the elements in the Sorted Set, and the application will
count the weights and compare them to the threshold. If weights are not required, entries can
be simply counted using ZCOUNT.

As an example, requests were registered by the rate limiter as follows:

127.0.0.1:6379> ZRANGE 1yp3ic445r:daily 0 -1
 1) "1676895115768:1"
 2) "1676895115768"
 3) "1676895144468:5"
 4) "1676895144468"
 5) "1676895183756:3"
 6) "1676895183756"
 7) "1676895194401:1"
 8) "1676895194401"
 9) "1676895214146:1"
10) "1676895214146"

These are the four requests that remain logged after trimming using ZREMRANGEBYSCORE, so they
were received in the past 24 hours, and the total weights add up to 11. If we set a threshold of 10000
in a day, there is still room for more operations in our service for that API key. Scores in the Sorted Set
are a temporal reference for trimming. This simple algorithm can be executed from the client using a
pipeline or stored as a function in the server and adapted at will to size the desired window duration.

In this section, we modeled a rate limiter with the string data type and the Sorted Set. In the
next section, we will discover another popular use of the Sorted Set in application development for
gaming: leaderboards.

Leaderboards

Gaming leaderboards enable players to track performance against each other. They have a social
component of encouraging competition but may also contribute to the overall logic of a game for
tuning or matching players with similar skill levels.

Leaderboards require every participant’s score to be updated and calculated against the overall group.
This demands simultaneous updates from thousands/millions of active participants, making this an
intensive write-load scenario. The results need to be accurately displayed by thousands/millions of
users with periodic polls for updates, making this a high-read scenario.

The Sorted Set can model a leaderboard efficiently and guarantee fast access, even when storing the
score of millions of players. The Sorted Set is implemented as a skip list and is optimized for random
access, which guarantees efficient range searches. Using a Sorted Set is equivalent to having direct
access to a secondary index, without the overhead of the traditional layers of relational databases in
front of the storage engine, such as the query parsing and validation stage, the optimizer, fetching
data from disk if it’s not present in the buffer pool, and so on.

Caching, rate-limiting, geo-positioning, and other Redis traditional use cases 35

Using the Sorted Set, a collection of members that are automatically ordered by their associated score,
is as easy as adding score-member pairs to the data structure:

127.0.0.1:6379> ZADD user:score 234 John 232 Tim 1234 Dan 27 Eva 2213
Julia 32 Dylan 898 Molly
(integer) 7

The ZRANGE command retrieves the entries in the desired score range:

127.0.0.1:6379> ZRANGE user:score 0 100 BYSCORE WITHSCORES
1) "Eva"
2) "27"
3) "Dylan"
4) "32"

The ZRANGE command can also be used to retrieve the entries with the highest scores:

127.0.0.1:6379> ZRANGE user:score -2 -1 WITHSCORES
1) "Dan"
2) "1234"
3) "Julia"
4) "2213"

A rich set of commands to query and manipulate the Sorted Sets helps with addressing many
leaderboard-related problems. In addition, the Sorted Set can be used for lexicographic ordering when
all the scores are set to an equal number, which helps fetch data in alphabetical order:

127.0.0.1:6379> ZADD user:names 234 John 0 Tim 0 Dan 0 Eva 0 Julia 0
Dylan 0 Molly
(integer) 7
127.0.0.1:6379> ZRANGE user:names [D "(D\xff" BYLEX
1) "Dan"
2) "Dylan"

Next, we’ll look at data deduplication.

Data deduplication

A popular use case for which Redis Stack has multiple solutions is data deduplication. The title
may suggest that we would use Redis Stack to remove duplicates in the database; however, the data
deduplication functionality (often referred to as dedup) helps resolve questions such as “Is this email
in the database?”, “Is this user identifier already used by an existing user?”, and “Has the user already
visited this web page?”.

Developing Modern Use Cases with Redis Stack36

Redis Stack offers several efficient methods to resolve these cases, with the Set and Bloom filters being
the most popular options. So, if we would like to know if a user identifier has already been used (or
an email address), we may resort to using a Set, as follows:

127.0.0.1:6379> SADD users user-id-1 user-id-2 user-id-3
(integer) 3
127.0.0.1:6379> SISMEMBER users user-id-3
(integer) 1
127.0.0.1:6379> SISMEMBER users user-id-4
(integer) 0

With the Bloom filters, we have an efficient solution to check if an element is present in a Set by
storing only a hashed representation of the data. Given the approximate behavior of the Bloom filter,
false positives are possible. However, no false negatives can happen – if an item does not belong to
the filter, I can be sure it was not added to it:

127.0.0.1:6379> BF.ADD visited www.redis.com
(integer) 1
127.0.0.1:6379> BF.ADD visited www.redis.io
(integer) 1
127.0.0.1:6379> BF.ADD visited www.mortensi.com(integer) 1
127.0.0.1:6379> BF.EXISTS visited www.learn.redis.com
(integer) 0

Redis Stack is especially useful for resolving common problems with minimal waste in terms of memory and
resources, which makes it an ideal component in any technological stack. We will talk about probabilistic
data structures, including Bloom filters, in Chapter 8, Understanding Probabilistic Data Structures.

Geo-positioning

Using Redis’ geospatial indexes, you can implement systems that efficiently resolve problems such
as the following:

•	 Searching for restaurants or cabs close to your position

•	 Calculating the distance between your position and an arbitrary place

•	 Finding locations contained in a rectangular or circular area of the desired size

•	 Finding the location of a mobile phone

Redis represents locations as strings using the Geohash encoding system, which encodes a location
expressed with latitude and longitude as a string. As an example, Redis’ headquarters can be expressed
using latitude and longitude:

37.37778536400017, -122.0645497140350

Caching, rate-limiting, geo-positioning, and other Redis traditional use cases 37

Here’s the equivalent Geohash for the same location:

9q9hwk7m3u0

Using this encoding and the naturally ordered Sorted Set data structure, Redis achieves fast geospatial
searches and addresses many geo-positioning requirements. As an example, let’s say we add cities to
a geospatial index, as follows:

GEOADD Italy 14.166667 42.349998 Chieti
GEOADD Italy 11.330556 43.318611 Siena
GEOADD Italy 7.783333 43.816666 Sanremo
GEOADD Italy 10.328000 44.801472 Parma 13.45293 43.29789 Macerata

Now, we can retrieve the distance between members added to this index:

GEODIST Italy Chieti Siena km
"255.1656"

We can also find the location within a certain distance from an arbitrary location, expressed using
the latitude and longitude pair:

127.0.0.1:6379> GEOSEARCH Italy FROMLONLAT 13 43 BYRADIUS 200 km ASC
WITHDIST
1) 1) "Macerata"
   2) "49.4841"
2) 1) "Chieti"
   2) "119.7010"
3) 1) "Siena"
   2) "140.0060"

Geospatial capabilities are simple and efficient, and plenty of different applications can leverage this
feature to resolve many geo-localization problems.

Message processing and delivery

A typical pattern of distributed architectures is the messaging pattern, where several loosely
coupled components or services are deployed over the network and need to exchange information.
Communicating several distributed services implies resolving problems such as disconnections,
ordering of messages, repeated messages (idempotency), and more. A widely accepted solution is to
adopt asynchronous messages exchanged over a channel: publishers and consumers are decoupled
and manage disconnections and reconnections while guaranteeing that no message will be lost.

Developing Modern Use Cases with Redis Stack38

Redis core data structures can be adopted to implement the messaging pattern while also allowing
the traditional publish/subscribe fire-and-forget type of communication. The suitable data structures
for this pattern are as follows:

•	 Lists

•	 Sorted Sets

•	 Pub/Sub

•	 Streams

Let’s break these down.

Lists

Redis Lists can be used to implement FIFO queues. This data structure maintains the ordering of
items pushed to it. Items can be pushed or popped on both ends of a List, using LPUSH, RPUSH,
LPOP, and RPOP. Lists ensure that the queue of events is persisted and survives a failure of the server.
It also guarantees that messages are delivered in order and that at least one consumer pulls a specific
message. Lists can be used as an inter-process communication method and are helpful as a means to
decouple the processing of a list of items. However, Lists do not offer an acknowledgment mechanism:
if a client crashes after pulling an item from a queue implemented as a List, it may lose the information
about the item that needs to be processed. The following is one example of using a List as a queue:

127.0.0.1:6379> LPUSH queue item1 item2 item3
(integer) 3
127.0.0.1:6379> LRANGE queue 0 -1
1) "item3"
2) "item2"
3) "item1"
127.0.0.1:6379> RPOP queue
"item1"
127.0.0.1:6379> LRANGE queue 0 -1
1) "item3"
2) "item2"

This example shows how to add items to the queue on the left-hand side and pop them from the
right-hand side.

Sorted Sets

Similarly to Lists, Sorted Sets can be used to implement priority message queues. Items can be inserted
anywhere in the Sorted Set based on their score using the ZADD command, and the consumers can

Caching, rate-limiting, geo-positioning, and other Redis traditional use cases 39

pop the elements with the highest or lowest score using the ZPOPMAX and ZPOPMIN commands. As
for Lists, there is no acknowledgment mechanism and messages can get lost if the client that has just
popped the message crashes. Therefore, it is unable to finish processing the item:

127.0.0.1:6379> ZADD priority_queue 1 item1 2 item2 4 item4
(integer) 3
127.0.0.1:6379> ZADD priority_queue 3 item3
(integer) 1
127.0.0.1:6379> ZRANGE priority_queue 0 -1 WITHSCORES
1) "item1"
2) "1"
3) "item2"
4) "2"
5) "item3"
6) "3"
7) "item4"
8) "4"
127.0.0.1:6379> ZPOPMAX priority_queue
1) "item4"
2) "4"
127.0.0.1:6379> ZRANGE priority_queue 0 -1
1) "item1"
2) "item2"
3) "item3"

Next, we’ll look at Pub/Sub.

Pub/Sub

Using Redis Pub/Sub, messages can be broadcasted (using the PUBLISH command) over a channel
and to an arbitrary number of subscribers (subscribers listen on a channel using the SUBSCRIBE
command). Subscribers can listen on several channels, and multiple subscribers can subscribe to the
same channel, so the same message is consumed in parallel. Redis Pub/Sub is characterized by the fire-
and-forget delivery method: if subscribers disconnect from the channel, messages that are published
while they persist in a disconnected state are lost. Messages are delivered immediately and not saved
in a queue or persisted, which makes the Pub/Sub delivery method suitable for use cases such as
reporting or alerting, but less suitable when guarantees that a certain message has been received and
processed by at least a client are required.

Developing Modern Use Cases with Redis Stack40

Using Pub/Sub to deliver messages is straightforward. In the following example, we’ll consider a kitchen
in a restaurant that needs to inform the waiters when a plate is ready to be delivered to a table. The
kitchen will publish messages to the waiters so that they can pick up the plates and serve them to the
clients sitting at the tables. One or more waiters subscribe to the same channel used by the kitchen:

127.0.0.1:6379> SUBSCRIBE lunch_channel
Reading messages... (press Ctrl-C to quit)
1) "subscribe"
2) "lunch_channel"
3) (integer) 1

Then, the publisher in the kitchen broadcasts messages:

127.0.0.1:6379> PUBLISH lunch_channel "client:34:ready"
(integer) 1
127.0.0.1:6379> PUBLISH lunch_channel "client:12:ready"
(integer) 1

All the waiters subscribed to the channel will get the message, go to the kitchen, and serve the dish
to the clients:

1) "message"
2) "lunch_channel"
3) "client:34:ready"
1) "message"
2) "lunch_channel"
3) "client:12:ready"

As mentioned previously, if a waiter disconnects from the lunch_channel channel, once reconnected,
they won’t be able to dig into the history of messages, and the client will be waiting for the food, which
is going cold in the kitchen.

Streams

Using Redis Streams, messages are pushed (using the XADD command) in an append-only log-like
data structure where producers add messages to a stream, and consumers pull the messages, which
are ordered by the time of insertion. Consumers of a Redis Stream can pull messages out immediately
(XREAD) or replay messages from the past. Consumers’ scalability is also ensured: multiple consumer
groups can read from the same stream and will get access to the entire stream of events, while a
consumer group can distribute events to several consumers in the same group. Redis Streams are
persisted differently from a Pub/Sub channel. Here, events are not lost, even in the case of a disaster
causing the Redis Stack Server to be restarted.

Persistence, the capacity to manage disconnections so that consumers can read a Stream starting from
the desired event in the past, and the possibility to acknowledge an event when it is processed, turn

Caching, rate-limiting, geo-positioning, and other Redis traditional use cases 41

Redis Streams into a good option for asynchronous inter-service communication. In the following
example, we will revisit the example of a kitchen dispatching orders to waiters, already seen using Pub/
Sub. Using the following instruction, we can create a common channel called lunch_channel to
be used by the kitchen and by waiters as well as a consumer group named waiters:

127.0.0.1:6379> XGROUP CREATE lunch_channel waiters $ MKSTREAM
OK

Now, the kitchen can publish messages on the channel using the XADD command:

127.0.0.1:6379> XADD lunch_channel * client:34 pasta
"1676982250423-0"
127.0.0.1:6379> XADD lunch_channel * client:12 pizza
"1676982253435-0"
127.0.0.1:6379> XADD lunch_channel * client:5 coffee
"1676982256586-0"

The two waiters in our restaurant, Alice and Tom, will get an order from the kitchen using their palm
devices and using the > symbol, they will get only messages that have never been delivered to other
consumers so far:

127.0.0.1:6379> XREADGROUP GROUP waiters Alice COUNT 1 STREAMS lunch_
channel >
1) 1) "lunch_channel"
   2) 1) 1) "1676982250423-0"
      2) 1) "client:34"
         2) "pasta"

While Alice delivers the plate, Tom reads the next order that was never delivered, again using the >
symbol. So, he’s sure that the next dish isn’t already managed by Alice:

127.0.0.1:6379> XREADGROUP GROUP waiters Tom COUNT 1 STREAMS lunch_
channel >
1) 1) "lunch_channel"
   2) 1) 1) "1676982253435-0"
      2) 1) "client:12"
         2) "pizza"

Alice is back from the table and checks her device to see whether there’s another plate to deliver:

127.0.0.1:6379> XREADGROUP GROUP waiters Alice COUNT 1 STREAMS lunch_
channel >
1) 1) "lunch_channel"
   2) 1) 1) "1676982256586-0"
      2) 1) "client:5"
         2) "coffee"

Developing Modern Use Cases with Redis Stack42

Tom is free again and checks his device and, lucky him, there is no further work to do:

127.0.0.1:6379> XREADGROUP GROUP waiters Tom COUNT 1 STREAMS lunch_
channel >
(nil)

However, the cook checks the screen and still sees that the dishes haven’t been delivered. How is
that possible?

127.0.0.1:6379> XPENDING lunch_channel waiters
1) (integer) 3
2) "1676982250423-0"
3) "1676982256586-0"
4) 1) 1) "Alice"
      2) "2"
   2) 1) "Tom"
      2) "1"

The explanation is that Alice and Tom did not acknowledge in their devices that the tables were served.
So, they do this now and mark the pasta and pizza as delivered:

127.0.0.1:6379> XACK lunch_channel waiters 1676982253435-0
(integer) 1
127.0.0.1:6379> XACK lunch_channel waiters 1676982250423-0
(integer) 1

A further check in the kitchen misses an acknowledgment for coffee:

127.0.0.1:6379> XPENDING lunch_channel waiters
1) (integer) 1
2) "1676982256586-0"
3) "1676982256586-0"
4) 1) 1) "Alice"
      2) "1"

This is set to completed soon afterward, and the kitchen to-do list is finally empty!

127.0.0.1:6379> XACK lunch_channel waiters 1676982256586-0
(integer) 1
127.0.0.1:6379> XPENDING lunch_channel waiters
1) (integer) 0
2) (nil)
3) (nil)
4) (nil)

Going beyond the real-time cache with Redis Stack 43

As shown in this example, consumers can read asynchronously from the stream of events as they don’t
need to stay connected, and the producer can verify that all the events were dispatched, to whom,
and if they were completed.

We have concluded this short overview of the traditional use cases for which Redis is popular, but
there are many more situations where developers will find the classical data structures useful, such
as building distributed locks to grant exclusive access to shared resources or implementing several
counting patterns efficiently (and with minimal memory overhead) using Hashes, Bitmaps, or Bitfields.
In the next section, we will focus on the new capabilities that will help modernize your applications
and open the doors to new and advanced use cases.

Going beyond the real-time cache with Redis Stack
With the addition of new capabilities, Redis Stack pushes Redis forward and meets the expectations of
software architects and developers who are having to deal with myriad new requirements. However, it
also pushes the old traditional ones to the next step, which means finding new ways to resolve traditional
problems with real-time performance, scalability, and high availability easily and inexpensively. Since
its inception, Redis’ objective has been to provide suitable data structures and algorithms to ensure
speed and minimal footprint. As an example, think of the Bitmap data structure, which grants access
down to the bit level. With such flexibility, we can flag the days in a given month when a user has
authenticated to a certain service:

127.0.0.1:6379> SETBIT user:032023 0 1
(integer) 0
127.0.0.1:6379> SETBIT user:032023 5 1
(integer) 0
127.0.0.1:6379> SETBIT user:032023 10 1
(integer) 0
127.0.0.1:6379> SETBIT user:032023 19 1
(integer) 0
127.0.0.1:6379> SETBIT user:032023 30 1
(integer) 0

Then, we count the number of authentications in March 2023:

127.0.0.1:6379> BITCOUNT user:032023 0 31
(integer) 5

We consume only 72 bytes to store this information per month, per user:

127.0.0.1:6379> MEMORY USAGE user:032023
(integer) 72

Developing Modern Use Cases with Redis Stack44

While the classical and well-known use cases are consolidated in Redis Stack with continuous
improvements and optimization to Redis Server (the core of Redis Stack), new possibilities are
around the corner with the capabilities that we will introduce in this chapter and will explore in
detail throughout this book. From working with bits to full-text and faceted search in Hash and JSON
documents, from fraud detection to recommendation engines, you will likely find a suitable solution
to your modeling problems.

Querying, indexing, and search

We explored the search capabilities of Redis Stack in the previous chapter, where we also introduced
full-text, tag, and numeric search. In this section, we will introduce further use cases that are based
on secondary indexing.

Faceted search

Objects have attributes. Think of an online retail store, and think of the search bar where you can
search by a keyword and get results aggregated by an attribute such as the category of the product,
its color, or its size. The ability to search by attribute (or facet) goes by the name of faceted search.
Redis Stack implements a multi-dimensional faceted search by defining the desired attributes as tags.
Let’s see this with an example:

1.	 First, we will insert a few shirts into our online store, modeled as Hash objects:

HSET item:1 Name "Polo Shirt" Color green Brand "Lacoste"
HSET item:2 Name "Polo Shirt" Color blue Brand "Calvin Klein"
HSET item:3 Name "Polo Shirt" Color orange Brand "Calvin Klein"
HSET item:4 Name "Polo Shirt" Color orange Brand "Lacoste"
HSET item:5 Name "Cotton T-Shirt" Color blue Brand "Sergio
Tacchini"
HSET item:6 Name "Cotton T-Shirt" Color orange Brand "Sergio
Tacchini"

2.	 Now, we will create the index as usual and specify the desired attribute that will represent our
facets as tags:

FT.CREATE product_idx
ON HASH
PREFIX 1 item:
SCHEMA Name AS name TEXT
Color AS color TAG SORTABLE
Size AS size TAG SORTABLE
Brand as brand TAG SORTABLE

Going beyond the real-time cache with Redis Stack 45

3.	 Then, we can experiment with some aggregations. The following command groups the items
and returns the cardinality by color:

127.0.0.1:6379> FT.AGGREGATE product_idx * GROUPBY 1 @color
REDUCE COUNT 0 AS items SORTBY 2 @items DESC
1) (integer) 3
2) 1) "color"
   2) "orange"
   3) "items"
   4) "3"
3) 1) "color"
   2) "blue"
   3) "items"
   4) "2"
4) 1) "color"
   2) "green"
   3) "items"
   4) "1"

4.	 The following command groups the items and returns the cardinality by brand:

127.0.0.1:6379> FT.AGGREGATE product_idx * GROUPBY 1 @brand
REDUCE COUNT 0 AS items SORTBY 2 @items DESC
1) (integer) 3
2) 1) "brand"
   2) "Sergio Tacchini"
   3) "items"
   4) "2"
3) 1) "brand"
   2) "Calvin Klein"
   3) "items"
   4) "2"
4) 1) "brand"
   2) "Lacoste"
   3) "items"
   4) "2"

5.	 Finally, we can perform a full-text search by name and aggregate the results by color, all at once:

FT.AGGREGATE product_idx '@name:polo @brand:{lacoste}' GROUPBY 1
@color REDUCE COUNT 0 AS items SORTBY 2 @items DESC
1) (integer) 2
2) 1) "color"
   2) "green"
   3) "items"
   4) "1"

Developing Modern Use Cases with Redis Stack46

3) 1) "color"
   2) "orange"
   3) "items"
   4) "1"

Indexing our data using tags for faceted search enables better searches and drives the design of expressive
user interfaces, thus boosting the user experience in online retail stores and similar websites, where
finding what we are looking for quickly is a must.

Ephemeral search (retail)

Sometimes, it is desirable to index only a subset of data, especially if the data is stored in an external
primary database and we are looking into speeding up searches for a small portion of data, such as
customer search history, a shopping cart, or any other user-related information. In such cases, it is
possible to create an index on demand. This is an effective option compared to massively indexing an
entire dataset, which may even include obsolete or, what’s worse, archived data. So, it is possible to
create a temporary index, which is a standard index in all respects. Let’s see an example for the active
user, user:241245:

FT.CREATE user:241245:idx
ON HASH
PREFIX 1 user:241245
SCHEMA Name AS name TEXT
Id AS id TEXT
Quantity AS quantity NUMERIC

This command will scan all the existing and future keys prefixed by the user:241245 string and
will index the fields that have been specified. Let’s create some data for this user, which may proceed
from an external data source or belong to this Redis Stack Server instance:

HSET user:241245:89hgw98 Name "Fashion socks" Id "89hgw98" quantity 1
HSET user:241245:28h880f Name "Printer toner" Id "28h880f" quantity 3

Now, we can search this user index as usual:

127.0.0.1:6379> FT.SEARCH user:241245:idx toner RETURN 1 name
1) (integer) 1
2) "user:241245:28h880f"
3) 1) "name"
   2) "Printer toner"

Going beyond the real-time cache with Redis Stack 47

Once the user logs out, the index can be explicitly dropped, and if desired, together with the document
using the DD option:

127.0.0.1:6379> FT.DROPINDEX user:241245:idx DD
OK

Compared to indexing millions of objects for non-active users, this is surely a cost-effective option.

Research portal

Modeling documents and their related metadata using a Hash or JSON data structure is yet another
use case:

1.	 Creating a knowledge base of documents, articles, or any kind of textual entry for full-text
search against a local database or as an external index of resources available elsewhere is as
easy as creating an index, as follows:

FT.CREATE docs_idx
ON HASH
PREFIX 1 doc:
SCHEMA Name AS name TEXT
Isbn AS isbn TEXT
Category AS category TAG
Library as library TEXT
Location AS location GEO

2.	 This command creates an index of books available in public libraries. Let’s consider a couple
of copies of a certain book, available in two public libraries in the United Kingdom and Italy:

HSET doc:2334 Name "Wuthering Heights" Isbn "978-0141439556"
Category "Novel" Library "The London Library" Location
"-0.058750,51.510899"
HSET doc:3523 Name "Wuthering Heights" Isbn "978-0141439556"
Category "Novel" Library "Biblioteca Mozzi Borgetti" Location
"13.451154,43.298791"

3.	 Searching for the closest copy to a certain location in Italy, specified by a longitude and latitude
pair, would return the desired result:

127.0.0.1:6379> FT.SEARCH docs_idx "Wuthering @
location:[13.50337 43.5942 100 km]"
1) (integer) 1
2) "doc:3523"
3)  1) "Name"
    2) "Wuthering Heights"

Developing Modern Use Cases with Redis Stack48

    3) "Isbn"
    4) "978-0141439556"
    5) "Category"
    6) "Novel"
    7) "Library"
    8) "Biblioteca Mozzi Borgetti"
    9) "Location"
   10) "13.451154,43.298791"

Using different index types, it is possible to index heterogeneous metadata (including the geographic
location of an item, the genre, the year, and so on) and create indexes of content available elsewhere,
digitally stored in an external data store or physically available in a location, such as a public library.

Similarity search

With Redis Stack, it is possible to build a recommendation system based on the similarity search
of unstructured data, such as images, audio files, text, graphs, and other types of data modeled as
vectors. Typical applications of the vector similarity search (VSS) feature are as follows:

•	 E-commerce product recommendations, based on visual similarity

•	 Time series similarity, to correlate similar patterns and build a trading recommendation engine
or study a disease spread pattern

•	 Detect similar transactions and reveal fraud attempts based on historical data

•	 Music recommendation systems, for playlist suggestions based on users’ preferences

•	 Social networks, where users can connect based on similar profiles and interests

The heart of VSS is Redis Stack’s ability to compare vectors and find the best matches. For example,
building a similarity search engine for voice recordings means implementing the following pipeline:

1.	 Use a data model that converts unstructured data into its vector representation. A voice recording
is converted into a vector of numbers, which is called a feature vector, or vector embedding.
This conversion is performed by the client application or an external/third-party service.

2.	 Store the vector embeddings that correspond to a dataset of voice recordings in Redis Stack
and index them so that a database of known voice recordings is built.

3.	 Match a voice recording to similar recordings in the database by finding the most similar
vector representations.

This is illustrated in the following diagram:

Going beyond the real-time cache with Redis Stack 49

Figure 2.6 – VSS

Many open and available free data models convert data into their corresponding vector representations.
By using those models to convert pictures, audio files, or time series data into vector representations,
you can build a recommendation system with a few lines of code.

Monitoring and analysis

Many applications can take advantage of time series data modeling to store continuously evolving data,
such as climatic data and metrics from monitoring devices. We can try to categorize such use cases:

•	 IoT and sensor monitoring: Devices that emit a stream of events and store data points captured
by sensors can help reconstruct a timeline of events (think of flight data captured and stored
in a black box) and maximize the health and safety conditions of the crew by creating detailed
reports for the equipment manufacturers.

•	 Application performance/health monitoring: Monitor the performance and availability of
applications and services such as CPU usage, network latency, memory usage, or I/O pressure. A
time series allows us to monitor and react to this data in real time and anticipates any scalability
or availability issues.

•	 Real-time analytics: Process, analyze, and react in real time (for example, for selling equities
and performing predictive maintenance, product recommendations, or price adjustments).

Beyond storing time series and fetching data from them, Redis Stack can perform aggregated queries for
the desired time bucket, or label and index multiple time series and retrieve data points from multiple
series at once. Based on data from a master time series, we can create derived and downsampled time
series that perform aggregation using options such as avg, sum, min, max, range, count, first,
last, and more. If, for example, we would like to store the CPU usage data points for a certain device,
we can create the following time series:

TS.CREATE app:34:cpu

Then, we can create a new time series to store the maximum CPU usage for every bucket with a
duration of 10 seconds:

TS.CREATE app:34:cpu:max
TS.CREATERULE app:34:cpu app:34:cpu:max AGGREGATION max 10000

Developing Modern Use Cases with Redis Stack50

We can test this by adding samples that describe the CPU usage, expressed as a percentage:

TS.ADD app:34:cpu "*" 67
TS.ADD app:34:cpu "*" 34
TS.ADD app:34:cpu "*" 56
TS.ADD app:34:cpu "*" 32
TS.ADD app:34:cpu "*" 78
TS.ADD app:34:cpu "*" 66
TS.ADD app:34:cpu "*" 65
TS.ADD app:34:cpu "*" 64
TS.ADD app:34:cpu "*" 69

We can also check the derived app:34:cpu:max time series to get an insight into the maximum
CPU usage over time, with a granularity of 10 seconds:

127.0.0.1:6379> TS.RANGE app:34:cpu:max - +
1) 1) (integer) 1677061500000
   2) 67
2) 1) (integer) 1677061510000
   2) 78
3) 1) (integer) 1677061520000
   2) 69

There are many ways to store, aggregate, and retrieve data points using the time series capability of
Redis Stack, without resorting to a specialized time series database and simplifying the development
and integration of new use cases to new and existing applications using Redis Stack data modeling.

Fraud detection

By using time series to model the evolution of a system and the relationships between entities together
with the VSS feature of Redis Stack, it is possible to design a fraud detection system. In addition,
probabilistic data structures in Redis let you verify if certain behaviors resemble known fraudulent
patterns and raise an alert for suspect user behaviors. Probabilistic data structures help answer
questions such as the following:

•	 Has the user paid from this location before?

•	 Has the user ever made purchases in this category of products/services?

•	 Has this credit card been reported as lost/stolen?

•	 Do I need to skip some security steps when the user is buying?

Using probabilistic data structures, we can represent a set of items compactly, with a reasonable
approximation and high performance, which helps us manage and verify the massive amount of user
data in high load/data scenarios. To illustrate this capability, let’s assume that we establish criteria to

Going beyond the real-time cache with Redis Stack 51

validate a transaction based on the location from where the user connects and the time of the day an
operation is executed (such as authenticating to a bank account or purchasing an expensive item). In
the case of the geographic check, we may want to verify whether a certain location is expected – if the
location is new and distant from the known locations, we may want to require additional verification.
We can also check if the user is authenticating at an unusual hour; if so, we need to record hours of
valid logins beforehand and verify subsequent logins. Using Redis Bloom filters, we can verify if an
element is present in a set using a small amount of memory of a fixed size. This is because Bloom
filters only store a hashed representation of the data.

The implementation of a minimalistic fraud detection system only uses a few commands to profile
user activity. Using the Bloom filter approach, we would create a filter per user, and add to it the
location and hour that have already been verified. As an example, if a user is connecting from Italy
in the morning, we would add the following to the filter:

127.0.0.1:6379> BF.MADD usr:1 ITA 11
1) (integer) 1
2) (integer) 1
127.0.0.1:6379> BF.MADD usr:1 ITA 10
1) (integer) 0
2) (integer) 1
127.0.0.1:6379> BF.MADD usr:1 ITA 9
1) (integer) 0
2) (integer) 1

Now, we can verify new subsequent operations that happen in Italy in the morning:

127.0.0.1:6379> BF.MEXISTS usr:1 ITA 9
1) (integer) 1
2) (integer) 1
127.0.0.1:6379> BF.MEXISTS usr:1 ITA 10
1) (integer) 1
2) (integer) 1

As we can see, there is no reason to raise an alert. But if an operation occurs at an unusual time in
Canada and is checked for this user against the related filter, usr:1, we would get the following output:

127.0.0.1:6379> BF.MEXISTS usr:1 CAN 3
1) (integer) 0
2) (integer) 0

We would spot suspicious activity and take action to verify the operation or enforce a stronger
authentication method.

There are many different checks we may implement in a fraud detection system using probabilistic
data structures or the other Redis Stack modeling and search capabilities.

Developing Modern Use Cases with Redis Stack52

Feature store for machine learning

Looking at the emerging technologies and techniques to resolve the hottest problems in the areas of
data classification and predicting events, there is undoubtedly artificial intelligence (AI) and the
ability to create systems that learn from existing data without being specifically programmed. Creating
models to generate predictions from data is referred to as machine learning (ML), a branch of AI.

In addition to the traditional use cases that are becoming innovative and being able to perform more
solutions using AI techniques, such as video recommendation, fraud detection, online advertising, spam
filtering, and speech and identity recognition, we have new emerging fields where AI has gained relevance
and becoming central and irreplaceable, such as medical diagnosis or self-driving cars. Traditional use
cases are becoming real time, and emerging use cases natively need real-time responsiveness (a self-driving
car) and are fed with freshly captured data as events occur and data is registered and passed through a
pipeline. While implementing a real-time pipeline using AI techniques is complex and expensive, it’s
doubtful that the ability to classify data and make predictions in real time contributes to speeding up
the innovation of original solutions when they’re used on older and newer problems.

To simplify the workflow, which takes data as input and returns a prediction as output, we can summarize
the entire matter in two big branches: training a model and performing a prediction. Both branches
are developed around the concept of features.

ML model training

ML systems are taught to perform the duty they’re designed for by creating a model from existing
known data. You can think of a model as a function that takes data in as input, attempts to classify it, and
returns an output. Data that will be used to create the model must be transformed and cleaned to extract
relevant information, such as IP addresses, locations, emails, timestamps, or unstructured data such as
voice recordings and traffic images… anything that defines an event and that is relevant to describe the
behaviors that we want our model to recognize. Once the data has been polished and structured using
standard criteria, we obtain features. As an example, if we have an array of data describing a transaction
and we know that such data is describing a fraud attempt that happened in the past, we can use such
data to train a model. This model will help determine whether a future transaction is classified as fraud
or not. A data scientist must build a set of representative and non-redundant features.

Performing predictions

Once we have trained a model to perform a job (for example, classifying transactions as legitimate
or fraudulent), we need to understand what use cases our model can serve. If the model is used with
data from a data warehouse or offline storage, we can have predictions, but these won’t be in real
time. We need fast storage to get real-time predictions that will store only fresh and relevant features
in an online feature store. With a real-time feature store, we can input data into the model as fast
as possible and achieve online predictions. In addition, we can stream data (from Redis Streams or
Kafka, for example) into a Redis online feature store to serve real-time predictions. This way, we can
detect a fraud attempt as it happens.

Designing microservice architectures with Redis Stack 53

Redis as an online feature store

An online feature store holds input data that is fed into ML models. Its main features are as follows:

•	 It acts as the single source of truth for features

•	 It allows data scientists to find new features and reuse them for different ML use cases

•	 The features need to be served in real time for real-time predictions; this is where Redis comes
into play:

Figure 2.7 – ML pipeline

Online feature stores are used for real-time predictions where the data source is live data, in addition
to data from offline stores (such as archives). Offline stores, which usually store historical and
consolidated data of some kind, serve different use cases, such as batch predictions, though they can
be used to train new models.

With that, we have concluded this overview of the traditional use cases and the new possible scenarios
that can be addressed using Redis Stack. In the next section, we will discover how Redis Stack can
help implement the design patterns of a microservice architecture.

Designing microservice architectures with Redis Stack
Microservice architecture is a system design pattern that promotes subdividing large services into
smaller units by decomposing the business logic into decoupled and independent services, each
depending on the preferred technology stack, languages data models, and more. These services take the
name of microservices and, communicating over a network, deliver the functionality of a larger system.

Developing Modern Use Cases with Redis Stack54

In this section, we will introduce some of the principal patterns for microservice architectures. These
patterns are guidelines for designing, developing, and deploying microservices. We will approach this
subject by presenting the value that the capabilities of Redis Stack provide at the time of choosing the
suitable technology for the implementation. In this section, we will discuss the following patterns:

•	 API gateway

•	 API gateway caching

•	 Domain-driven design

•	 Query caching

•	 Command query responsibility segregation

•	 Inter-service communication

These patterns can be combined and implement architectures such as the one shown in the following
figure, which describes the typical microservices in an online retail store:

Figure 2.8 – Redis Stack in microservice architectures

Let’s break this architecture down and look at each part of it.

Designing microservice architectures with Redis Stack 55

API gateway

Clients of a service that have been designed as per the principles of a microservice architecture should
not have access to the individual microservices. There are a few good reasons to justify this pattern:

•	 A frontend client needs to aggregate heterogeneous data and should retrieve it from
multiple microservices

•	 An API endpoint may change (signature, IP, or port)

•	 A microservice can be split into more microservices

•	 A microservice may expose a specific protocol

These and other problems increase the complexity from the perspective of the client and their life cycle.
This is why we need to simplify the way clients can consume services. We can do this by creating an
abstraction layer, which exposes a more compact REST API endpoint, implements additional logic,
and represents the single entry point to the microservices.

Clients accessing functionality from this layer don’t need to know anything about the complexity
of the microservices. This abstraction layer is what we call an API gateway, one of the fundamental
patterns for microservice architectures.

The API gateway is an entry point for external clients, a fundamental component of the microservice
architecture that abstracts the multi-domain business logic of the different microservices.

Microservices expose the functionality they implement to other microservices or directly to external
clients via a REST API. Having to deal with multiple REST API endpoints for several microservices
adds complexity from the perspective of the client:

Figure 2.9 – API gateway pattern

The API gateway acts as an entry point for a system that’s implemented with the microservice
architecture pattern. Every time the client makes requests, the API gateway performs authentication
and authorization checks and forwards the request to the correct microservice based on the REST
path requested.

Developing Modern Use Cases with Redis Stack56

In the context of the API gateway, Redis Stack can be adopted as an external and distributed rate
limiter to enforce rate-limiting policies using the desired method (fixed window, sliding window, and
more). Developers can limit requests to a particular service over a given period by identifying users
by an API key. The API gateway can limit to a given number of requests in any given timespan, which
can prevent the system from being overloaded and mitigate DDoS attacks.

Now that we have introduced the API gateway, it is important to understand the importance of a
healthy gateway, and how a real-time caching layer may resolve latency issues. The following section
focuses on using Redis Stack as a cache at this layer of the architecture.

API gateway caching

Authenticating millions of users and managing their entitlements can quickly become a significant
bottleneck when large volumes of API calls overwhelm the API gateway. This causes unresponsive
services, which leads to poor customer experience.

In addition to variable throughput, API gateways usually manage data that must be accessed by all
microservices (such as session data or authentication tokens) at the API gateway level.

Caching at the API gateway level alleviates the load on underlying application servers and makes
globally accessed data available with high performance by all services. Examples of data that is
managed by the API gateway include sessions (user ID, preferences, and so on) and authentication
data (tokens, authorization status, permissions, and so on). API gateway caching enables frequently
needed data available in real time to all services, reducing application latency without breaking the
bounds of each microservice business context:

Figure 2.10 – API gateway caching pattern

Redis Stack caches authentication data in a token that can be quickly pulled by the API gateway to
authenticate users and relay key session information such as user settings and permissions or user
data, such as a shopping cart.

Designing microservice architectures with Redis Stack 57

Domain-driven design

Microservice architectures are decentralized and implemented by orchestrating multiple small
loosely coupled services: the microservices. Isolated or bounded context is a key characteristic of a
microservice architecture. As a result of this strategy, different microservices can adopt many different
technology stacks to do a particular job; autonomous teams own one or more microservices and have
the right skills in those domains. The consequences of the domain-driven design approach extend to
the storage layer: each service can have its own unique data model and service level agreement goals,
which require a dedicated database. The database must be decentralized: shared data across multiple
microservices can cause major scalability or availability issues and is bad practice (so, rather than a
pattern, it is referred to as an anti-pattern).

To provide loosely coupled services with the ability to manage (and eventually persist) data, the preferred
approach is to let every team decide what kind of data store best fits the data model that is managed
by the application. Polyglot persistence, which shares the same mission as polyglot programming
(that is, letting the team choose the right programming languages to design the service), implies the
introduction of specialized databases to satisfy specific requirements or use cases. Redis Stack is a
multi-model database and can manage heterogeneous data models:

Figure 2.11 – The data layer in the domain-driven design pattern

Managing different data models in the same database has several advantages. Let’s mention a few of them:

•	 It simplifies the paperwork and reduces licensing and maintenance costs

•	 Developing a competence plan is easier

•	 Scalability and high availability are addressed at the data layer level

•	 The ability to combine different data models promotes new approaches to problems

•	 The semantic data model is abstracted with a unified/compact query language

•	 Administration and performance-tuning efforts can focus on a single data store

Next, we’ll examine query caching.

Developing Modern Use Cases with Redis Stack58

Query caching

The query caching pattern helps improve the performance of a microservice, especially when the
database can’t serve queries with real-time performance, can’t scale the number of concurrent queries
beyond a certain degree, or both. Typically, the database that’s used and considered the authoritative
data source (also referred to as a system of record) is a relational database with atomicity, consistency,
isolation, and durability (ACID) properties. Introducing a caching layer reduces latency for microservice
application performance, but it also presents several challenges.

The cache-aside cache pattern can be used to reduce microservices response times. Query caching
works by deploying a cache alongside each microservice to deliver domain-specific data that is needed
within a single business context (it serves only one microservice):

Figure 2.12 – Query caching pattern

Data is cached on demand and returned to the user requesting it using the following algorithm:

1.	 Queries from the microservice or application are first sent to a Redis Stack database acting as
a cache.

2.	 If data is present (cache hit), it is delivered with real-time performance.

3.	 If the data does not reside in the cache (cache miss), it is delivered by the slower system of
record, and then stored in the cache to reduce the latency of future requests.

Next, we’ll look at segregating commands and queries to speed up read operations and alleviate the
pressure on the primary database.

Command query responsibility segregation

Not all microservices have the same requirements for the data layer. When durability is an unavoidable
requirement, one microservice owns the authoritative copy of data (system of record), while other
microservices may require the same information in real time, for different business contexts. If the
same database is used for all the microservices, their deployment would be coupled, breaking the
isolation principle, and could only be optimized for either write or read operations, but not both.
Excessive calls to the system of record database for read-only data will cause performance penalties
and higher costs.

Designing microservice architectures with Redis Stack 59

Command query responsibility segregation (CQRS) is a critical pattern within a microservice
architecture that decouples reads (queries) and writes (commands). Commands focus on higher
durability and consistency, while queries focus on performance. This enables a microservice to write
data to a slower system of record (SOR) (the authoritative data source) disk-based database while
pre-fetching and caching that data in a cache for reads. This makes that data available in real time to
other associated microservices that need it while maintaining isolation between microservices and
optimizing both reads and writes:

Figure 2.13 – The CQRS pattern

With this pattern, data is written to its original system of record database in a microservice domain,
and data is replicated to the cache as it changes in the system of record so that it is available locally or
to other microservices for read operations, in a cross-domain caching scenario. Other microservices
can then read directly from the cache.

Inter-service communication

The microservice architecture is effective at splitting the responsibility of a bigger monolithic system
into smaller, loosely coupled microservices. However, the microservices resulting from this functional
decomposition must communicate their state, events, and data among one another without breaking
isolation, and they must stay decoupled.

Inter-service communication can be implemented via an event-driven asynchronous publish-
subscribe message broker. This pattern introduces several advantages, such as decoupling between
the producers, which publish events at their own pace to a shared channel, and the consumers, which

Developing Modern Use Cases with Redis Stack60

read asynchronously from it. Another relevant benefit of using message brokers for inter-service
communication is the tolerance to disconnections: consumers can reconnect and restart reading from
the desired event in the past. Scalability is another strong point: multiple concurrent consumers can
assign and process a subset of events from the queue. Additionally, with a message broker, producers
do not need to know the location (IP and port) of consumers in the network.

Redis Stream is an append-only log data structure with multiple features, such as persistence, random access,
read-scalability through consumer groups, data persistence, and more, making this data structure comparable
to Apache Kafka topic partitions. Redis Streams provides delivery guarantees, so a single message can only
be processed by a single consumer in a consumer group, and a consumer can retrieve messages that were
never delivered to other consumers. The state of consumers is observable – it is possible to monitor which
messages were never delivered, or the messages that were delivered but not acknowledged:

Figure 2.14 – Inter-service communication pattern

Redis Streams can increase the processing throughput with consumer groups. When every service
needs to access all the messages in the stream, but it is also desired to process such messages in
parallel using several workers, it is possible to provide different messages to the consumers in the
same consumer group:

•	 Multiple consumer groups can read from the same stream

•	 A consumer group can have multiple consumers

•	 A typical design where Redis Streams is used as a message broker would use a consumer group
per microservice

Let’s recap what we’ve discussed in this chapter.

Summary 61

Summary
In this chapter, we reviewed the common scenarios Redis is known for: a real-time store for caching, a
compact session store, a flexible message broker, and more. We also introduced modern use cases that
can be implemented using the capabilities of Redis Stack. You learned about the indexing features to
implement a faceted search in an online retail store and the convenience of indexing a dataset partially.
You also discovered how to work with unstructured data to implement a recommendation system
based on VSS or to serve an ML pipeline when Redis Stack is used as an online feature store. Finally,
you explored microservice architecture patterns and learned how to implement them with Redis Stack.

In Chapter 3, Getting Started with Redis Stack, you will learn how to install Redis Stack on different
environments using binary packages, Docker images, and more. You will also prepare your environment
so that you can work with the client libraries for the desired programming language and install
RedisInsight, a graphical data management tool.

3
Getting Started with

Redis Stack

Redis Stack is a collection of software components that together provide a complete solution for
managing data.

As we saw in the previous chapter, Redis Stack is a bundle composed of Redis, plus additional capabilities
and data structures. Redis Stack operates under a dual-license framework: the Redis Source Available
License (RSALv2) and the Server Side Public License (SSPL). Before Redis Stack was released, each
additional data structure and functionality needed to be added separately and activated for each Redis
database. Now, everything is integrated and activated by default, easing both the developer and the
operational experience.

The Redis Stack community has been focusing on improving the Developer eXperience (DX) for its
users. In general, DX refers to the experience of developers as they work with tools, technologies, and
platforms to create software. It encompasses everything from the ease of setting up a development
environment to the intuitiveness of an API, and the quality of documentation and support available.

Redis Stack aims to provide the best experience possible for your Redis infrastructure and architecture;
as such, Redis Stack can be installed using native packages, as a Linux container using the Docker
format image, or directly, by downloading the source code.

By the end of this chapter, you will understand how to install Redis Stack for your developer and
production-like environments in a few easy steps. You will learn the basics of the Redis Stack architecture
to start managing and visualizing your data in a fully integrated environment using RedisInsight.

In this chapter, we are going to cover the following:

•	 Installing Redis Stack using binary packages

•	 Installing Redis Stack using native packages

•	 Using Redis Cloud

Getting Started with Redis Stack64

•	 Installing RedisInsight

•	 Installing the Redis Stack client libraries

•	 Running health checks

Installing Redis Stack using binary packages
Redis Stack is source-available software, allowing users to freely access and modify its source code.
However, executing the software requires first building it, which can occasionally be complex due to
hard-to-find dependencies on system libraries. The simplest way to initiate the software is by obtaining
its precompiled binary and executing it. This method is the primary focus of the discussion in this
section. However, the complete list of installation options can be found at the following site: https://
redis.io/download/#redis-stack-downloads.

Because most of the server environments, either developer local desktop or production, are based on
Linux machines, for our example, I’ll use the Ubuntu Focal x86_64 binary:

1.	 Let’s start by opening your preferred terminal application and navigating in the filesystem to
the path that you want your Redis Stack software to be. In my case, I’m creating a folder called
rs in my user-home:

root@foogaro-linux:~# mkdir rs
root@foogaro-linux:~# cd rs
root@foogaro-linux:~/rs#

2.	 Now, we can proceed by downloading the Redis Stack binary, as follows:

root@foogaro-linux:~/rs# wget  https://packages.redis.io/redis-
stack/redis-stack-server-7.2.0-v3.focal.x86_64.tar.gz
…
 2023-10-08 18:56:39 (18.1 MB/s) - 'redis-stack-server-7.2.0-v3.
focal.x86_64.tar.gz' saved [54926682/54926682]

root@foogaro-linux:~/rs#

3.	 Next, we need to extract the compressed binary, as follows:

root@foogaro-linux:~/rs# tar zxvf  redis-stack-server-7.2.0-v3.
focal.x86_64.tar.gz
./
./redis-stack-server-7.2.0-v3/
./redis-stack-server-7.2.0-v3/lib/
./redis-stack-server-7.2.0-v3/lib/libredisgears_v8_plugin.so
./redis-stack-server-7.2.0-v3/lib/redistimeseries.so
./redis-stack-server-7.2.0-v3/lib/redisbloom.so
./redis-stack-server-7.2.0-v3/lib/redisgears.so

https://redis.io/download/#redis-stack-downloads
https://redis.io/download/#redis-stack-downloads

Installing Redis Stack using binary packages 65

./redis-stack-server-7.2.0-v3/lib/rejson.so

./redis-stack-server-7.2.0-v3/lib/redisearch.so

./redis-stack-server-7.2.0-v3/share/

./redis-stack-server-7.2.0-v3/share/RSAL_LICENSE

./redis-stack-server-7.2.0-v3/share/APACHE_LICENSE

./redis-stack-server-7.2.0-v3/etc/

./redis-stack-server-7.2.0-v3/etc/redis-stack.conf

./redis-stack-server-7.2.0-v3/etc/redis-stack-service.conf

./redis-stack-server-7.2.0-v3/etc/README

./redis-stack-server-7.2.0-v3/bin/

./redis-stack-server-7.2.0-v3/bin/redis-sentinel

./redis-stack-server-7.2.0-v3/bin/redis-server

./redis-stack-server-7.2.0-v3/bin/redis-benchmark

./redis-stack-server-7.2.0-v3/bin/redis-cli

./redis-stack-server-7.2.0-v3/bin/redis-check-rdb

./redis-stack-server-7.2.0-v3/bin/redis-check-aof

./redis-stack-server-7.2.0-v3/bin/redis-stack-server
root@foogaro-linux:~/rs#

Let’s pause for a second and analyze the content of the Redis Stack bundle.

It has four different folders:

•	 share: This folder stores the licenses related to Redis Stack (RSAL_LICENSE) and to the
Redis modules (APACHE_LICENSE)

•	 lib: This folder stores the modules that come with Redis Stack: RedisTimeSeries,
RedisBloom, RedisJSON, RediSearch, and triggers and functions

•	 etc: This folder stores the configuration files with its default values

•	 bin: This folder stores the actual binaries that will be used to run Redis Stack

Let’s take a closer look at the contents of the bin folder. Inside we can find a series of executable files,
each with a specific task.

In lexicographic order, the first one is redis-benchmark, which is an efficient and valuable method
to obtain statistics and assess the performance of a Redis instance on specific hardware.

The program named redis-check-aof is a method to check whether the persisted Redis database
in the AOF format was saved correctly. It also provides a method to fix any eventual issues (for example,
data corruption). This implies, and we will see more in the later chapter, that Redis Stack can work as
a primary database, thanks to its persistence capabilities.

The program named redis-check-rdb provides the same capabilities as the previous program,
redis-check-aof, but it’s specific to a Redis database persisted using the RDB format.

Getting Started with Redis Stack66

The program named redis-cli is used to interact with Redis Stack via a command-line interface
(CLI). This is one of the most used tools to access a Redis database, browse through its keys, execute
queries, and write data.

The program named redis-sentinel is a monitoring tool designed for Redis instances, which
manages the automatic failover of the Redis master in a replicated topology. In addition to failover
management, redis-sentinel also facilitates a discovery service by providing a way for clients
to find the current Redis master instance. We will discuss redis-sentinel in more detail in
Chapter 12, Managing Development and Production Environments. Last but not least, the program named
redis-server is the main program of Redis. In addition, the native binary also provides a shell
script named redis-stack-server, which is used to start the complete Redis Stack environment.

Let’s see Redis Stack in action by going back to the terminal and launching the redis-stack-
server script in the bin folder, as follows:

./redis-stack-server
 Starting redis-stack-server, database path ../var/db/redis-stack
31502:C 08 Oct 2023 19:24:59.556 * oO0OoO0OoO0Oo Redis is starting
oO0OoO0OoO0Oo
31502:C 08 Oct 2023 19:24:59.557 * Redis version=7.2.1, bits=64,
commit=00000000, modified=0, pid=31502, just started
…
 2753:M 08 Oct 2023 19:37:57.230 * Ready to accept connections tcp

Redis Stack Server has been launched successfully, and you can now start managing your data.

During the startup, you might encounter an error related to a system library not being found. This
is highly dependent on the OS you choose to use for the examples. I opted for Ubuntu version 20.04
named Focal Fossa and, indeed, faced several issues, such as the one shown here:

libgomp.so.1: cannot open shared object file: No such file or
directory

If that is the case, it means you are missing that specific library in your system, and it’s related to GCC’s
OpenMP. The GCC OpenMP is a library that enables concurrency and parallelism. To install the GCC
OpenMP system library for Linux Debian-based systems, do the following:

sudo apt-get install libgomp1

And for CentOS-based systems, do the following:

yum install libgomp

What we have seen so far is the installation process for a Linux Ubuntu environment. For other
operating systems, the approach is similar but you may find a few variations. Now, let’s try to install
Redis Stack using native packages.

Installing Redis Stack using native packages 67

Installing Redis Stack using native packages
Different operating systems have their own native package managers that allow you to easily download
and install software from a repository of pre-built packages. For example, on Linux, package managers
such as APT, YUM, and Pacman are used to manage the installation of software. On macOS, the
native package manager is Homebrew, and on Windows, it is Windows Package Manager (WinGet).

To install software using native packages, you simply need to run a command in the command line
or use a graphical user interface (GUI) to search for the desired package and initiate the installation
process. The package manager will then download the required files and dependencies and install
the software on the system.

Using native packages for installation has several advantages over other methods, such as manual
installation or downloading from third-party websites. These advantages include the following:

•	 Convenience: The installation process is typically automated and requires minimal user intervention

•	 Security: Native packages are typically signed and verified to ensure that they are from a
trusted source

•	 Dependency management: The package manager automatically handles the installation and
management of dependencies required by the software

•	 Updates: The package manager can also be used to manage updates and upgrades for the installed
software, ensuring that the system is always up to date with the latest patches and features

Let’s see some of the package tools for each OS.

macOS-native package

For macOS users, Homebrew is used, so make sure it is installed.

Open a terminal window and search for Redis Stack, as follows:

foogaro@~ # brew search redis-stack/redis-stack
==> Casks
redis-stack/redis-stack/redis-stack
redis-stack/redis-stack/redis-stack-redisinsight
redis-stack/redis-stack/redis-stack-server
foogaro@~ #

As you can see from the output of the previous command, there are three casks available:

•	 redis-stack-server contains Redis Stack Server

•	 redis-stack-redisinsight contains the RedisInsight tool

•	 redis-stack contains both redis-stack-server and redis-stack-redisin-
sight casks

Getting Started with Redis Stack68

The natural choice for a development environment is of course the redis-stack cask, and to
proceed with the installation, do the following:

foogaro@~ # brew tap redis-stack/redis-stack
foogaro@~ # brew install redis-stack

Next, we’ll look at Linux.

Linux-native package

There are many different Linux distributions out there, and each one of them comes with its preferred
package manager. In this guide, we will see how to install Redis Stack using the APT and YUM
package managers.

Debian/Ubuntu APT repository

The APT repository supports the following versions:

•	 Debian Bullseye (11)

•	 Ubuntu Xenial (16.04)

•	 Ubuntu Bionic (18.04)

•	 Ubuntu Focal (20.04)

All of them are supported on the x86 hardware architecture.

Before proceeding with the installation command, we first need to add the repository to the APT
index, update the APT index, and finally install it, as follows:

curl -fsSL https://packages.redis.io/gpg | sudo gpg –dearmor -o /usr/
share/keyrings/redis-archive-keyring.gpg
echo "deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg]
https://packages.redis.io/deb $(lsb_release -cs) main" | sudo tee /
etc/apt/sources.list.d/redis.list
sudo apt-get update
sudo apt-get install redis-stack-server

At this point, Redis Stack should now be ready to run on Debian/Ubuntu.

RedHat/CentOS YUM repository

The YUM repository supports the following versions:

•	 RHEL 7

•	 CentOS 7

Installing Redis Stack using native packages 69

•	 RHEL 8

•	 CentOS Stream 8

All of them are supported on the x86 hardware architecture.

Before proceeding with the installation command, we first need to add the repository to the YUM
index and install it:

1.	 Create the /etc/yum.repos.d/redis.repo file, and enter the following code:

[Redis]
name=Redis
baseurl=http://packages.redis.io/rpm/rhel7
enabled=1
gpgcheck=1

2.	 Now the installation can proceed with the following command:

curl -fsSL https://packages.redis.io/gpg > /tmp/redis.key
sudo rpm --import /tmp/redis.key
sudo yum install epel-release
sudo yum install redis-stack-server

Now we’ll check Windows.

Windows-native package

At the time of writing, the Redis Stack installation relies on Docker, which needs to be already installed
on your Windows machine. Once Docker is available, you can follow what is described in the next
section, Running Redis Stack using Docker.

Running Redis Stack using Docker

If you try to search for the Redis Stack images using the Docker daemon on your machine, you will
notice that there is more than one image available, as shown in the following code block:

foogaro@~ # docker search redis-stack
NAME                               DESCRIP-
TION                                     STARS     OFFICIAL   AUTOMAT-
ED
redis/redis-stack                  redis-stack installs a Redis server
with add…   37
redis/redis-stack-server           redis-stack-server installs a Redis
server w…   18

Which image name is right for you?

Getting Started with Redis Stack70

The image named redis/redis-stack-server provides Redis Stack Server without any
additional tools. On the other hand, the image named redis/redis-stack provides Redis Stack
Server plus RedisInsight, the official Redis visualization tool.

For a production-like environment based on containers or Kubernetes, the redis/redis-stack-
server image is definitely the best option. For a development environment, such as your machine,
redis/redis-stack provides the best developer experience.

So, for a production-like environment, you can run the redis/redis-stack-server image,
as follows:

docker run -d --name redis-stack-server -p 6379:6379 redis/redis-
stack-server:latest

And, for a developer environment, you can run the redis/redis-stack image, as follows:

docker run -d --name redis-stack -p 6379:6379 -p 8001:8001 redis/
redis-stack:latest

As you can see, the last docker run exposes an additional port, 8001, that you can use to connect
to RedisInsight using a browser, pointing at the following URL: http://127.0.0.1:8081.

We will have a closer look at RedisInsight in later sections and chapters.

Using Redis Cloud
In the previous sections, we saw how easy it is to install Redis Stack, but there is another option that is
even easier. You can avoid installation entirely, by using Redis Cloud, a service provided by Redis (the
company). Redis Cloud can be used as a Database as a Service (DBaaS) on leading cloud providers
such as Google Cloud, Azure, and AWS.

The only prerequisite is registering to the Redis portal, at the following link: https://app.
redislabs.com/.

Once registered, you can start configuring the size of your Redis Stack database in a few seconds,
as follows:

https://app.redislabs.com/
https://app.redislabs.com/

Using Redis Cloud 71

Figure 3.2 – Redis Cloud

Once configured, Redis Cloud will provide the endpoint of your Redis Stack database, which is
accessible with the credentials you provided, as depicted in the following figure:

Figure 3.2 – Redis Cloud database endpoint

Overall, the fully managed service offers an easy and convenient way to use Redis Stack without the
need for installation and management.

Getting Started with Redis Stack72

Installing RedisInsight
RedisInsight is designed with a strong focus on developer experience. Its web-based interface is
intuitive and user-friendly, providing a visual way for developers and database administrators to
interact with Redis instances.

RedisInsight can be downloaded from the following link: https://redis.com/redis-
enterprise/redis-insight/.

Installation packages are provided for Linux, Windows, and macOS.

The tool provides real-time monitoring and debugging capabilities, allowing developers to quickly identify
and resolve issues in Redis databases. It also includes a number of features designed to simplify common
Redis tasks, such as adding and modifying Redis keys and executing Redis commands and scripts.

Figure 3.3 – RedisInsight

Overall, RedisInsight’s focus on the developer experience makes it a valuable tool for any team working
with Redis. By providing a simple and intuitive interface, as well as powerful monitoring and debugging
capabilities, RedisInsight helps developers work more efficiently and effectively with Redis databases.

Installing the Redis Stack client libraries
Redis Stack is based on Redis, which means it uses the same protocol, REdis Serialization Protocol
(RESP). Therefore, all the Redis client libraries available are also valid for Redis Stack.

Here is a list of the supported client libraries:

•	 jedis: The Java client library supported by Redis and its community

•	 node-redis: The JavaScript client library supported by Redis and its community

•	 redis-py: The Python client library supported by Redis and its community

https://redis.com/redis-enterprise/redis-insight/
https://redis.com/redis-enterprise/redis-insight/

Installing the Redis Stack client libraries 73

•	 go-redis: The Golang client library supported by Redis and its community

•	 NRedisStack: The C#/.NET client library supported by Redis and its community

In this section, we will see how to import those libraries into your code.

Java client library

To use the jedis library, it has to be imported and declared as a dependency in your code.

For Maven-based projects, you can use the following code snippet:

<dependency>
    <groupId>redis.clients</groupId>
    <artifactId>jedis</artifactId>
    <version>4.3.1</version>
</dependency>

For Gradle-based projects, you can use the following code snippet:

implementation 'redis.clients:jedis:4.3.1'

Additional information can be found in its GitHub repository at the following link: https://
github.com/redis/jedis.

JavaScript client library

To use the node-redis library, it has to be installed in your Node.js environment, using the npm
package manager, as follows:

npm install redis

Additional information can be found in its GitHub repository at the following link: https://
github.com/redis/node-redis.

Python client library

To use the redis-py library, it has to be installed in your Python environment, using the pip
package manager, as follows:

pip install redis

Additional information can be found in its GitHub repository at the following link: https://
github.com/redis/redis-py.

https://github.com/redis/jedis
https://github.com/redis/jedis
https://github.com/redis/node-redis
https://github.com/redis/node-redis
https://github.com/redis/redis-py
https://github.com/redis/redis-py

Getting Started with Redis Stack74

Golang client library

To use the go-redis library, it has to be installed in your Golang environment after you have
initialized your module, as follows:

go mod init github.com/my/repo
go get github.com/redis/go-redis/v9

Additional information can be found in its GitHub repository at the following link: https://
github.com/redis/go-redis.

C#/.NET client library

To use the NRedisStack library, it must be installed in your C#/.NET environment, as follows:

dotnet add package NRedisStack

Additional information can be found in its GitHub repository at the following link: https://
github.com/redis/NRedisStack.

Running health checks
Redis is a powerful, yet simple-to-use, open source data structure server that is designed for high
performance and scalability. One of the core principles behind Redis is simplicity, which is reflected
both in its design and its architecture. And the question “Is my Redis ready?” finds its answer in the
redis-cli tool.

Verifying whether the installation has been completed correctly is as simple as running the following
command in a terminal window:

redis-cli –h 127.0.0.1 -p 6379 PING
PONG

This is the most reliable and secure way to check whether Redis is up and running. If it is, a PONG
response message will be given. Failing that, an alternative message will be reported, as follows:

redis-cli –h 127.0.0.1 -p 6379 PING
LOADING Redis is loading the dataset in memory

Automating the health check for Redis is possible using the redis-cli executable. This means that
scripts can be written to interpret the output message from the executable, enabling additional checks
to be executed using other tools. These checks may include examining open ports, sockets, and other
relevant factors. In essence, automating the health check process using redis-cli provides a flexible
and customizable solution that can be tailored to the specific needs of each user.

https://github.com/redis/go-redis
https://github.com/redis/go-redis
https://github.com/redis/NRedisStack
https://github.com/redis/NRedisStack

Summary 75

Summary
In this chapter, we have conducted a comprehensive review of the various techniques for installing
Redis Stack, encompassing the use of binaries, native packages, and Docker. Additionally, we delved
into the process of optimizing the development experience by installing RedisInsight, a GUI, alongside
client libraries suitable for different programming languages. Moreover, we addressed the crucial topic
of running Redis health checks in a straightforward and dependable manner. It is our expectation
that after studying this chapter, you will possess a sound understanding of the procedures involved in
installing Redis, and that you will be equipped with the knowledge and tools necessary for monitoring
its health to ensure the smooth and uninterrupted functioning of Redis Stack.

In Chapter 4, Setting Up Client Libraries, we will focus on the developer experience by building
projects for each Redis-supported client library, and we will start coding some examples using the
Redis OM framework.

4
Setting Up Client Libraries

In the previous chapter, we learned that Redis Stack is a powerful and versatile in-memory data
structure store that is widely used for caching, message brokering, and real-time data processing. To
facilitate seamless interaction between various programming languages and Redis, a variety of client
libraries have been developed. These client libraries, also known as Redis clients, provide a convenient
interface to access and manipulate Redis data structures through their respective language-specific APIs.

In this chapter, you will learn how to properly initialize and set up your Redis project in your preferred
programming language, using Redis-supported client libraries.

First, you will learn the basics of the Redis Stack client libraries, and then you will learn, with hands-on
examples, how to use those client libraries for your projects in your preferred programming languages:

•	 Programming in Python using redis-py

•	 Programming in Java using Jedis

•	 Programming in JavaScript using node-redis

•	 Programming in Go using go-redis

•	 Programming in C#/.NET using NRedisStack

Each section is self-contained, so unless you want to try the support for each programming language,
you can jump directly to the section that matches your preferred programming language, client
libraries, or your day-to-day runtime environment.

Technical requirements
In this chapter, we will begin the hands-on part of the book by exploring various programming
languages and their individual configurations. We will provide a comprehensive overview of the required
resources for each Redis Stack client library variant with details laid out in their respective sections.

Setting Up Client Libraries78

Redis Stack client libraries
Redis Stack client libraries enable you to easily integrate Redis into your applications, regardless of
your preferred programming language. By using the appropriate Redis Stack client library, you can
significantly improve the performance, scalability, and reliability of your applications, while also
benefiting from the extensive features and capabilities of Redis.

The supported Redis Stack client libraries are as follows:

•	 redis-py (Python): A widely used and well-maintained Python client library that supports
various Redis features and offers thread-safe and robust connection handling.

•	 Jedis (Java): A popular Java client library with high performance and comprehensive support
for Redis commands. It provides both synchronous and asynchronous command execution,
as well as connection pooling for efficient resource management.

•	 node-redis (Node.js): A robust and feature-rich Redis client for Node.js, offering complete
support for Redis commands, and an asynchronous, non-blocking design.

•	 go-redis (Go): A powerful and efficient Go client library that supports a wide range of Redis
features, including pipelining, transactions, and custom command creation.

•	 NRedisStack (C#/.NET): A new client library that provides Redis Stack support to the
.NET ecosystem.

In addition to the Redis client libraries, there is also an object mapping (OM) framework called
Redis OM.

Redis OM is a framework that simplifies interaction with Redis by providing an object-oriented
approach to managing Redis data structures. With Redis OM, developers can work with Redis data
structures as if they were native objects of your preferred programming language. This enables a more
intuitive way to interact with Redis, reducing the complexity of handling raw Redis commands and
improving the development experience.

Some key features of Redis OM include the following:

•	 Object mapping: Redis OM maps objects to Redis data structures, allowing developers to
interact with these structures using familiar syntax and idioms. It supports the JSON and Hash
Redis data structures.

•	 Schema definition: Developers can define objects that represent Redis data structures,
providing structure and validation to the data stored in Redis. This makes it easier to enforce
data consistency and integrity.

•	 Querying: Redis OM offers a simple yet powerful querying interface to retrieve and manipulate
data stored in Redis. It supports operations such as filtering, sorting, and pagination, enabling
developers to perform complex queries with minimal effort.

Programming in Python using redis-py 79

•	 Indexing: Redis OM provides support for indexing, allowing developers to create and manage
secondary indexes on Redis JSON and Hash data structures. This enables more efficient and
flexible querying capabilities.

•	 Transactions: Redis OM supports transactions, enabling developers to perform multiple Redis
operations atomically. This ensures data consistency and integrity when executing complex
operations involving multiple data structures.

•	 Pipeline: Redis OM allows developers to use pipelining for batch execution of Redis commands,
improving performance by reducing the number of round-trip calls to the server.

By abstracting away the lower-level details of Redis, Redis OM enables you to focus on your application
logic and write cleaner, more maintainable code. This makes it a valuable tool when working with
Redis on your projects.

Programming in Python using redis-py
Python is a versatile, high-level, and easy-to-learn programming language that has gained immense
popularity among developers, data scientists, and software engineers alike. Created by Guido van
Rossum and first released in 1991, Python emphasizes readability and simplicity, making it an excellent
choice for beginners and experienced programmers.

Python is available on various platforms, such as Windows, macOS, Linux, and Unix, allowing developers
to write code that can run on different operating systems. Python supports various programming
paradigms, such as object-oriented, procedural, and functional programming, allowing developers
to choose the most suitable approach for their projects.

Python’s simplicity and power have made it an essential tool in a wide range of industries, including
web development, scientific computing, data analysis, artificial intelligence, and automation. With
an ever-growing community and a plethora of resources available, learning Python can open doors
to numerous opportunities in the world of programming and technology.

As we learned in the previous chapter, the Redis client library for Python can be installed very easily,
using the pip package manager.

However, since Python version 3.3, a tool named virtualenv was integrated into Python’s standard
library. A Python virtualenv (virtual environment) is an isolated environment that enables developers
to work with different Python projects without interfering with each other’s dependencies, settings,
and configurations. Virtual environments are particularly useful when dealing with multiple projects
that require different versions of Python libraries or even different Python interpreter versions.

Using virtual environments has several benefits:

•	 Dependency management: Each virtual environment can have its own set of installed packages,
which helps prevent conflicts between different projects with varying requirements

Setting Up Client Libraries80

•	 Consistency: Virtual environments ensure a consistent environment for development, testing,
and deployment, reducing the risk of issues caused by varying package versions or configurations
across different systems

•	 Simplified collaboration: By using virtual environments and specifying project dependencies,
developers can easily share their work with others, who can recreate the same environment
without any hassle

To create and use virtual environments in Python, you can use tools such as venv (included in the
Python 3.3+ standard library) or virtualenv (a separate package for earlier Python versions).

To install the virtual environment tool for Python, enter the following into a terminal or command prompt:

apt install python3.9-venv

Here’s a basic example of how to create and activate a virtual environment using the venv option:

1.	 First, open a terminal or command prompt and navigate to your project directory.

2.	 Create a new virtual environment using the following command:

python -m venv redis-stack-venv

This will create a new directory named redis-stack-venv in your project folder, containing
the virtual environment’s files.

3.	 To activate the virtual environment, use the appropriate command for your operating system:

	� For Windows, use the following:

redis-stack-venv\Scripts\activate.bat

	� For macOS/Linux, use the following:

source redis-stack-venv/bin/activate

After activating the virtual environment, your terminal or command prompt should show the
environment name (in this example, redis-stack-venv), indicating that you’re now working
within the virtual environment.

4.	 With the virtual environment active, you can now install packages using pip without affecting
the global Python environment. To install the Redis client library, do as follows:

pip install redis

5.	 To deactivate the virtual environment and return to the global Python environment, simply
run the following command:

deactivate

Programming in Python using redis-py 81

By using virtual environments, you can maintain clean and organized Python projects, ensuring that
each project has its own isolated environment with specific dependencies, settings, and configurations.

Now it’s time to code a bit in Python by implementing a connection to Redis Stack and storing some
data in it.

Storing information in Redis Stack using Python

Before you begin, pick the integrated developer environment of your choice and create a new Python
file named example.py:

1.	 The first line we are going to insert is the import of the Redis library, as follows:

import redis

2.	 Next, we are going to connect to a Redis Stack instance. In the previous chapter, you learned
how to install Redis Stack in different ways, using binaries, using Docker, and through Redis
Cloud, which is still the easiest and fastest way to get a Redis Stack instance.

Having said that, to connect to your Redis Stack instance you need the hostname or IP of your
server, the port Redis Stack is exposed on, and the credentials to authenticate.

For convention, the hostname will be mapped to localhost and the port to 6379.

In our example.py file, add the following content:
client = redis.Redis(host='127.0.0.1', port=6379,
username='<YOUR_USERNAME>', password='<YOUR_PASSWORD>')
client.set("Redis", "Stack")
print(client.get("Redis"))

Make sure you replace <YOUR_USERNAME> and <YOUR_PASSWORD> accordingly with the
ones you set when you created and configured your Redis Stack database.

3.	 To execute this script, just run the following commands in the terminal:

(redis-stack-venv) root@foogaro-linux:~/redis-stack-py# python
example.py
b'Stack'

Hurray! You just learned how to use the Redis Stack client library for Python and how to connect to
Redis Stack. However, one of the advantages of Redis Stack is its data structures, and those can be
mapped one to one with objects in programming languages such as Python.

Nonetheless, storing a simple string is not a big deal, however, the same simplicity can be applied to
other Redis data types such as Lists, Sets, Sorted Sets, and Hashes, where for each of them, Python
provides a corresponding structure.

Setting Up Client Libraries82

Lists

The List data structure in Redis Stack bears a striking resemblance to its Python counterpart, which
are also called Lists. These collections of elements allow for efficient manipulation and storage in their
respective environments, highlighting the similarity in functionality between the two.

Let us now enhance the earlier example.py script to generate a Python list and subsequently save
it as a Redis List for seamless integration and usage:

departmentList = ['Sales','Solution Architects','Technical Enablement
Managers']
client.lpush("redis:departments", *departmentList)
print(client.lrange("redis:departments", 0, -1))
print(client.rpop("redis:departments"))
print(client.lrange("redis:departments", 0, -1))

When the script is executed, we get the following output:

[b'Technical Enablement Managers', b'Solution Architects', b'Sales']
b'Sales'
[b'Technical Enablement Managers', b'Solution Architects']

Next, we will look at Sets.

Sets

The Set data structure in Redis Stack is analogous to a Python Set, serving the same purpose in both
systems. A Set is a collection of distinct, unordered elements, ensuring that no duplicates are present.

Again, let’s update the Python script to generate a Python Set and store it as a Redis Set:

favouriteCitySet = {'Macerata','Roma','Atlantis'}
print(favouriteCitySet)
client.sadd("city:favourites", *favouriteCitySet)
print(client.smembers("city:favourites"))

When the script is executed, it leads to the following output:

{'Macerata', 'Atlantis', 'Roma'}
{b'Macerata', b'Atlantis', b'Roma'}

The redis-py client offers easy integration for the Set data type.

Sorted Sets

The Sorted Sets data type in Redis differs from Sets due to the ordering of its elements based on a
corresponding score value. In Python, the closest data structure to Sorted Sets is the Dictionary.

Programming in Python using redis-py 83

Let’s update our example.py script to create a Python Dictionary, store it as a Redis Sorted Set,
and query it in different ways:

cityPopulation = {"city:italy:roma": 2748109, "city:italy:macerata":
40820, "city:italy:catania": 298762}
print(cityPopulation)
print(client.zadd("city:italy", cityPopulation))
res = client.zrange("city:italy", 0, -1, withscores=True)
print(res)
cnt = client.zcard("city:italy")
print(cnt)

And when the script is executed, we get the following:

{'city:italy:roma': 2748109, 'city:italy:macerata': 40820,
'city:italy:catania': 298762}
3
[(b'city:italy:macerata', 40820.0), (b'city:italy:catania', 298762.0),
(b'city:italy:roma', 2748109.0)]
3

The integration for the Sorted Set is straightforward and no additional mapping is needed.

Hashes

The Hash data type in Redis is comparable to a Python Dictionary. Both essentially behave as maps
of elements. Let’s update our example.py script to create a Python Dictionary, store it as a Redis
Hash, and query it in different ways.

Let’s update our Python file to write and read a Dictionary object into a Hash data type, as follows:

employee = {"firstname":"Luigi",
     "lastname":"Fugaro",
     "company":"Redis",
     "role":"Solutions Architect",
     "note":"No matter what, we are all in sales!"}
print(employee)
client.hset("employee:1", mapping=employee)
print(client.hgetall("employee:1"))

And when the script is executed, we get the following:

{'firstname': 'Luigi', 'lastname': 'Fugaro', 'company': 'Redis',
'department': 'Solutions Architect', 'note': 'No matter what, we are
all in sales!'}

Setting Up Client Libraries84

{b'firstname': b'Luigi', b'lastname': b'Fugaro', b'company': b'Redis',
b'department': b'Solutions Architect', b'note': b'No matter what, we
are all in sales!'}

In conclusion, while storing a basic string may not pose a significant challenge, the same ease of use
can be extended to other Redis data types, including Lists, Sets, Sorted Sets, and Hashes. For each
of these data structures, Python offers a corresponding structure, facilitating seamless interaction
between the data modeled in Python and stored in Redis Stack, and enhancing the overall functionality
and flexibility of data manipulation. Additionally, Redis provides other data types such as Streams,
Geospatial, and Pub/Sub, which also have valuable use cases. We will delve deeper into these data
types and explore their functionality later, in Chapter 9, The Programmability of Redis Stack.

Redis OM for Python

As previously stated, Redis OM is a framework created by Redis to further enhance the Developer
Experience (DX). This framework aims to provide seamless integration for two primary objectives:
facilitating document management for both JSON and Hash while offering search capabilities for
the latter.

Let’s see Redis OM in action.

In order to utilize Redis OM with Python, your project needs the Pydantic library, as it relies on it
to function properly. To ensure that your project has access to this library, you should include it in
your project’s requirements.txt file, which is a list of dependencies your project requires. By
adding pydantic to the requirements.txt file, you ensure that anyone using your project
will install the correct dependencies.

Your project should have the following dependencies:

•	 redis==4.1.4

•	 pydantic==1.9.0

•	 redis-om==0.2.1

We will be modeling an Employee object that consists of various attributes, including another
custom object called Office. This naturally leads to the question: should we use the Hash or JSON
data type for this purpose?

A Hash is a flat map consisting of attribute-value pairs, with values restricted to the String data type
(string, number, or binary value). In contrast, a JSON can also be viewed as a map, but it supports a
broader range of value types, including strings, numbers, arrays, and nested JSONs.

Programming in Python using redis-py 85

Given these characteristics, the JSON data type is the most suitable choice for modeling the
Employee object:

1.	 Create a new Python project in your preferred IDE, and put the following lines in your
requirements.txt file:

redis==4.1.4
redis-om==0.0.20

2.	 Then, create a new file called model.py, with the following content:

class Office:
     address: str
     address_number: int
     city: str
     state: str
     postal_code: str
     country: str

class Employee:
     firstname: str
     lastname: str
     age: int
     roles: List[str]
     fun_fact: str
     office: Office

And so far, it’s just standard Python.

3.	 Now, to transform these objects into things that can be stored and managed as JSON documents,
we need to enrich their constructors with specific directives, such as JsonModel and
EmbeddedJsonModel from the redis_om library:

class Office(EmbeddedJsonModel):
…
class Employee(JsonModel):
…

Both JsonModel and EmbeddedJsonModel objects inherit from the base RedisModel class,
which supplies extra methods for persisting objects according to their data types. Consequently,
if an object is designated as JSON, it will be persisted using the Redis Stack JSON data type; if
it is designated as a Hash, the Redis Stack Hash data type will be used for persistence.

Setting Up Client Libraries86

4.	 If a Hash data type is suitable for modeling objects, the corresponding directive would be
HashModel, as demonstrated in the following example:

class User(HashModel):
     firstname: str
     lastname: str
     email: str
     username: str

To harness the indexing capabilities provided by Redis Stack, two options are considered:

•	 Create indexes using Redis Stack syntax with redis-cli, as outlined in Chapter 1, Introducing
Redis Stack

•	 Create indexes using Redis OM commands directly on the object class

In this case, Redis OM directives will be employed to define and declare the indexing approach for
the objects programmatically.

Indexes are used to enhance query performance; in fact, they should be designed to align with how
you search and query your data, considering your preferred aggregation methods and sorting.

For instance, with the Employee entity, it might be beneficial to search for employees based on their
names and surnames. Additionally, grouping employees by attributes such as role, age, or office, or
even concentrating on a particular office, could be insightful. There are countless ways to obtain value
from data, and no universal solution exists. The most effective approach is the one that corresponds
to specific business requirements.

Here is what our model.py file looks like after adding Redis OM directives for connection, JSON,
and querying capabilities:

from typing import List

from redis_om import EmbeddedJsonModel, Field, JsonModel, get_redis_
connection, Migrator

redisClient = get_redis_connection(
     host='<YOUR_HOSTNAME>',
     port=<YOUR_PORT>,
     username='<YOUR_USERNAME>',
     password='<YOUR_PASSWORD>',
     decode_responses=True
)

class Office(EmbeddedJsonModel):

Programming in Python using redis-py 87

     address: str = Field(index=True)
     address_number: int = Field(index=True)
     city: str = Field(index=True)
     state: str = Field(index=True)
     postal_code: str = Field(index=True)
     country: str = Field(index=True, default="Remote")

     class Meta:
           database = redisClient

class Employee(JsonModel):
     firstname: str = Field(index=True)
     lastname: str = Field(index=True)
     age: int = Field(index=True)
     office: Office
     roles: List[str] = Field(index=True)
     fun_fact: str = Field(index=True, full_text_search=True)

     class Meta:
           database = redisClient

Migrator().run()

The primary purpose of the JsonModel parent class is to identify entities as JSON documents.
Additionally, it offers methods for saving, finding, updating, and deleting these entities. Additionally,
Redis OM requires a distinct approach for defining connections compared to the redis-py library.
The connection must then be associated with the JsonModel entities. Finally, to facilitate the creation
of indexes, the run method of the Migrator helper class must be called.

For instance, to save our Employee entity, we can use its save method, as follows:

new_office = Office(
     address="Via Italia",
     address_number=1,
     city="Roma",
     state="Roma",
     postal_code="00100",
     country="Italy"
)
new_employee = Employee(
     firstname="Luigi",
     lastname="Fugaro",
     age=44,

Setting Up Client Libraries88

     office=new_office,
     roles=["Solution Architect"],
     fun_fact="No matter what, we are all in sales!"
)
new_employee.save()

To update it, do as follows:

emp.age = 45
emp.save()

To delete it, do the following:

Employee.delete(1)

And to find it, apart from its ID, which would be the most common way in any key-value store such
as Redis Stack, Redis OM provides the capability to combine different criteria:

•	 Here’s how you find by ID:

employee = Employee.get(1)

•	 To find by matching first name and last name, do the following:

employees = Employee.find(
        (Employee.first_name == "Luigi") &
        (Employee.last_name == "Fugaro")
  ).all()

•	 You can also find by age range:

employees = Employee.find(
        (Employee.age >= 35) &
        (Employee.age <= 45)
  ).sort_by("age").all()

•	 The following will let you find by role and office:

employees = Employee.find(
        (Employee.roles << "Solution Architect") &
        (Employee.office.city == "Rome")
  ).all()

•	 You can find by “fun fact” using a full-text search:

employees = Employee.find(Employee.fun_fact % "monkey island").
all()

Programming in Java using Jedis 89

Utilizing Python and Redis Stack together forms a potent environment for swiftly developing
applications, catering to both frontend and backend services.

Next, we’ll look at one of the alternatives to using Python.

Programming in Java using Jedis
Java is a robust, high-level, and widely used programming language that has become a staple for
developers, software engineers, and IT professionals across various industries. Developed by James
Gosling at Sun Microsystems and released in 1995, Java prioritizes portability, scalability, and
maintainability, making it a popular choice for both novice and experienced programmers.

Java is platform-independent, thanks to its “write once, run anywhere” philosophy, which allows
developers to create code that can be executed on different operating systems, such as Windows,
Macintosh, Solaris, Linux, and Unix. This is made possible by the Java Virtual Machine (JVM), which
translates Java bytecode into machine code for the specific platform.

Java supports object-oriented programming principles, encouraging modular, reusable, and maintainable
code. Its extensive standard library, known as the Java Development Kit (JDK), provides developers
with a wide array of tools and resources to create powerful applications.

Java’s versatility and robustness have made it an integral part of various industries, including web
development, enterprise software, mobile app development, embedded systems, and big data processing.
With a thriving community, numerous resources, and a strong focus on enterprise solutions, learning
Java can unlock a wealth of opportunities in the ever-evolving world of technology and programming.

As covered in the previous chapter, installing the Redis client library for Java is a straightforward
process, thanks to widely used project management tools such as Maven and Gradle. This section
will not delve deeply into Maven and Gradle, nor discuss which tool is superior or how to create a
new project using either of these tools. Instead, the focus will be on properly setting up your project
dependencies for the Redis Stack Java client library, Jedis, in a courteous manner.

In order to significantly enhance developer productivity and facilitate readability without introducing
excessive technical detail, the implementation of Java code will be carried out using Spring Boot
applications, and then its structure will be generated using the Spring Initializr site.

Therefore, according to individual preferences, choose the appropriate option, as demonstrated in
this example:

•	 Project: Maven

•	 Language: Java

•	 Spring Boot: 3.0.5

Setting Up Client Libraries90

•	 Project Metadata:

	� Group: my.app

	� Artifact: demo

	� Name: demo

	� Description: Demo project for Spring Boot using Redis Stack

	� Package name: my.app.demo

	� Packaging: Jar

	� Java: 17

•	 Dependencies:

	� Spring Web

	� Spring Boot DevTools

	� Lombok

Those options can be easi ly loaded by constructing a URL that looks like the
following: https://start.spring.io/#!type=maven-project&language=
java&platformVersion=3.0.5&packaging=jar&jvmVersion=17&groupId
=my.app&artifactId=demo&name=demo&description=Demo%20project%20
for%20Spring%20Boot%20using%20Redis%20Stack&packageName=my.app.
demo&dependencies=web,devtools,lombok

On the aforementioned website, if you click the button labeled GENERATE located in the bottom-
left corner, a file named demo.zip will be created and downloaded to your workstation. This file
contains the structure of your Java project, tailored for the selected project management tool.

Unzip the content of the file and open your project with your favorite IDE. Once done, open your
project file descriptor and add the Jedis dependency:

•	 For a Maven-based project, open the pom.xml file and add the following code snippet:

<dependency>
     <groupId>redis.clients</groupId>
     <artifactId>jedis</artifactId>
     <version>5.0.0</version>
</dependency>

•	 For a Gradle-based project, open the build.gradle file and add the following code snippet:

implementation 'redis.clients:jedis:5.0.0'

Let’s start some coding.

https://start.spring.io/#!type=maven-project&language=java&platformVersion=3.0.5&packaging=jar&jvmVersion=17&groupId=my.app&artifactId=demo&name=demo&description=Demo%20project%20for%20Spring%20Boot%20using%20Redis%20Stack&packageName=my.app.demo&dependencies=web,devtools,lombok
https://start.spring.io/#!type=maven-project&language=java&platformVersion=3.0.5&packaging=jar&jvmVersion=17&groupId=my.app&artifactId=demo&name=demo&description=Demo%20project%20for%20Spring%20Boot%20using%20Redis%20Stack&packageName=my.app.demo&dependencies=web,devtools,lombok
https://start.spring.io/#!type=maven-project&language=java&platformVersion=3.0.5&packaging=jar&jvmVersion=17&groupId=my.app&artifactId=demo&name=demo&description=Demo%20project%20for%20Spring%20Boot%20using%20Redis%20Stack&packageName=my.app.demo&dependencies=web,devtools,lombok
https://start.spring.io/#!type=maven-project&language=java&platformVersion=3.0.5&packaging=jar&jvmVersion=17&groupId=my.app&artifactId=demo&name=demo&description=Demo%20project%20for%20Spring%20Boot%20using%20Redis%20Stack&packageName=my.app.demo&dependencies=web,devtools,lombok
https://start.spring.io/#!type=maven-project&language=java&platformVersion=3.0.5&packaging=jar&jvmVersion=17&groupId=my.app&artifactId=demo&name=demo&description=Demo%20project%20for%20Spring%20Boot%20using%20Redis%20Stack&packageName=my.app.demo&dependencies=web,devtools,lombok

Programming in Java using Jedis 91

Storing information in Redis Stack using Java

Before storing information in Redis, it is necessary to establish a connection by utilizing a connection pool.
Although not strictly required, using a connection pool is highly recommended, particularly for production
environments. In Jedis, a connection pool is known as a JedisPool and can be instantiated as follows:

JedisPool pool = new JedisPool("localhost", 6379, "<YOUR_USERNAME>",
"<YOUR_PASSWORD>");

The localhost and 6379 items represent the hostname and port of an active Redis Stack instance,
respectively. As noted in the previous chapter, the most convenient method for running Redis Stack
is by utilizing Redis Cloud, a comprehensive DBaaS environment for Redis Stack. Other alternatives
are detailed in Chapter 3, Getting Started with Redis Stack. For the example provided in this chapter,
it is assumed that a Redis Stack instance is already set up and operational.

Make sure you replace "<YOUR_USERNAME>" and "<YOUR_PASSWORD>" accordingly with the
ones you set when you created and configured your Redis Stack database.

Once the pool is created, a connection can be requested, as follows:

try (Jedis jedis = pool.getResource()) {
  jedis.set("client", "Jedis");
  String val = jedis.get("client");
  log.info("Retrieved value {}, for key \"client\".", val)
} catch (Exception ex) {
  log.error("Exception caught in set", ex);
}

The Jedis resource implements the java.lang.AutoCloseable interface. As such, it can be used
with a try-with-resources statement, and there is no need to close the resource and return it
to the pool. This process is done automatically at the end of the statement.

Both JedisPool and Jedis classes belong to the redis.clients.jedis Java package, so
the following imports need to be set:

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;

Running the application will output the following:

2023-03-26T23:56:25.623+02:00  INFO 27401 --- [               main]
my.app.demo.DemoApplication                    : Retrieved value Luigi
for key name

You are now acquainted with using the Redis Stack client library for Java and connecting to Redis
Stack. A significant benefit of Redis Stack lies in its data structures, which can be directly mapped to
objects in programming languages such as Java.

Setting Up Client Libraries92

Storing a simple string may not be a challenging task, but the same ease can be extended to other
Redis data types, including Lists, Sets, Sorted Sets, and Hashes. Jedis offers seamless integration for
these data types as well.

Lists

Redis Lists are data structures that store ordered collections of strings, arranged according to the order
in which they are inserted. This property of maintaining the insertion order makes them an excellent
choice for a range of applications, including the implementation of message queues.

As ordered collections, Redis Lists allow for efficient manipulation of elements at both the beginning
and the end of the list. They provide a variety of commands for adding, removing, and querying
elements, as well as for trimming and modifying the list based on specific requirements.

The following code is an example:

long numberOfTasks = client.lpush("queue:tasks", "Task-1");
log.info("numberOfTasks {}", numberOfTasks);
numberOfTasks = client.lpush("queue:tasks", "Task-2");
log.info("numberOfTasks {}", numberOfTasks);
String task = client.rpop("queue:tasks");
log.info("Retrieved task {}", task);

The output is as follows:

2023-03-27T00:20:47.673+02:00  INFO 28100 --- [               main]
my.app.demo.DemoApplication                    : numberOfTasks 1
2023-03-27T00:20:47.802+02:00  INFO 28100 --- [               main]
my.app.demo.DemoApplication                    : numberOfTasks 2
2023-03-27T00:20:47.934+02:00  INFO 28100 --- [               main]
my.app.demo.DemoApplication                    : Retrieved task Task-1

Next, we’ll look at sets.

Sets

Redis Sets are data structures that store unordered collections of unique strings, making them
particularly valuable when it is essential to ensure that duplicate elements are not present within the
collection. These sets provide an efficient way to represent, store, and manipulate distinct pieces of
data, such as user IDs, unique tokens, or IP addresses.

The following code is an example:

client.sadd("employee:ids", "00000001");
client.sadd("employee:ids", "00000002");
client.sadd("employee:ids", "00000001");
Set<String> employeeIds = client.smembers("employee:ids");

Programming in Java using Jedis 93

log.info("Employee IDs {}", employeeIds);
employeeIds.forEach(s -> log.info("Employee: {}", s));
boolean exists = client.sismember("employee:ids", "00000001");
log.info("Employee id \"00000001\" exists {}", exists);

You should see the following output:

2023-03-27T00:33:48.126+02:00  INFO 28508 --- [               main]
my.app.demo.DemoApplication                    : Employee IDs
[00000002, 00000001]
2023-03-27T00:33:48.127+02:00  INFO 28508 --- [               main]
my.app.demo.DemoApplication                    : Employee: 00000002
2023-03-27T00:33:48.127+02:00  INFO 28508 --- [               main]
my.app.demo.DemoApplication                    : Employee: 00000001
2023-03-27T00:33:48.254+02:00  INFO 28508 --- [               main]
my.app.demo.DemoApplication                    : Employee id
"00000001" exists true

Next, we’ll look at Sorted Sets.

Sorted Sets

Sorted Sets are a specialized type of Set in Redis, with the key difference being that each member in a
Sorted Set has an associated score, or ranking, which dictates its position within the collection. This
additional attribute allows Sorted Sets to maintain a consistent order based on the scores assigned
to each member.

For an example, see the following code:

Map<String, Double> scores = new HashMap<>();
scores.put("PlayerOne", 22.0);
scores.put("PlayerTwo", 10.0);
scores.put("PlayerThree", 78.0);
log.info("Scores map {}", scores);
Long addedScores = client.zadd("players", scores);
log.info("Added scores {}", addedScores);
List<String> players = client.zrangeByScore("players", 0, 50);
log.info("Players with score in range 0-50 {}", players);
Double score = client.zscore("players", "PlayerTwo");
log.info("Score for \"PlayerTwo\" {}", score);

The output is as follows:

2023-03-27T01:06:17.125+02:00  INFO 29367 --- [               main]
my.app.demo.DemoApplication                    : Scores map
{PlayerThree=78.0, PlayerTwo=10.0, PlayerOne=22.0}
2023-03-27T01:06:17.257+02:00  INFO 29367 --- [               main]
my.app.demo.DemoApplication                    : Added scores 3

Setting Up Client Libraries94

2023-03-27T01:06:17.384+02:00  INFO 29367 --- [               main]
my.app.demo.DemoApplication                    : Players with score in
range 0-50 [PlayerTwo, PlayerOne]
2023-03-27T01:06:17.511+02:00  INFO 29367 --- [               main]
my.app.demo.DemoApplication                    : Score for "PlayerTwo"
10.0

Next, we’ll look at Hashes.

Hashes

Redis Hashes are data structures that establish relationships between string fields and their associated
string values. These mappings allow for efficient storage and retrieval of key-value pairs, making
them particularly useful for organizing and managing data within a Redis database. In essence, Redis
Hashes enable users to store, access, and manipulate data as a collection of field-value pairs, where
both fields and values are strings.

For an example, see the following:

Map<String,String> user = new HashMap<>();
user.put("firstname", "Luigi");
user.put("lastname", "Fugaro");
user.put("username", "foogaro");
log.info("User {}", user);

Long numberOfFields = client.hset("user:1", user);
log.info("numberOfFields {}", numberOfFields);
numberOfFields = client.hset("user:1", "email", "luigi@foogaro.com");
log.info("numberOfFields {}", numberOfFields);
String firstname = client.hget("user:1", "firstname");
log.info("User firstname {}", firstname);
Map<String, String> fields = client.hgetAll("user:1");
log.info("All fields {}", fields);

This produces the following output:

2023-03-27T01:25:02.048+02:00  INFO 29862 --- [               main]
my.app.demo.DemoApplication                    : User
{firstname=Luigi, lastname=Fugaro, username=foogaro}
2023-03-27T01:25:02.181+02:00  INFO 29862 --- [               main]
my.app.demo.DemoApplication                    : numberOfFields 3
2023-03-27T01:25:02.317+02:00  INFO 29862 --- [               main]
my.app.demo.DemoApplication                    : numberOfFields 1
2023-03-27T01:25:02.458+02:00  INFO 29862 --- [               main]
my.app.demo.DemoApplication                    : User firstname Luigi

Programming in Java using Jedis 95

2023-03-27T01:25:02.594+02:00  INFO 29862 --- [               main]
my.app.demo.DemoApplication                    : All fields
{firstname=Luigi, email=luigi@foogaro.com, lastname=Fugaro,
username=foogaro}

Finally, we’ll set up Redis OM for Java.

Redis OM for Java

Redis OM for Spring not only streamlines the process of mapping Java objects to Redis data structures but
also provides robust support for managing JSON documents and creating indexes. This added functionality
makes it even more convenient for developers to work with Redis databases in their Spring applications.

Utilizing Redis OM for Spring, developers can easily store, retrieve, and manipulate JSON documents
within Redis, taking advantage of the flexibility and performance that JSON data types offer. Additionally,
the library allows for the creation and management of indexes, which facilitates efficient querying
and searching of data stored in Redis.

By combining the powerful features of Spring Data for Redis with the enhanced capabilities of Redis
OM, such as JSON document management and indexing, developers can build more sophisticated
and performant Spring applications that interact seamlessly with Redis databases:

1.	 To use the Redis OM framework, your Java project needs an additional dependency, which
belongs to a custom repository, as described in the following code block:

<repositories>
  <repository>
     <id>snapshots-repo</id>
<url>https://s01.oss.sonatype.org/content/repositories/
snapshots/</url>
  </repository>
</repositories>

<dependency>
  <groupId>com.redis.om</groupId>
  <artifactId>redis-om-spring</artifactId>
  <version>0.8.0-SNAPSHOT</version>
</dependency>

Because Redis OM is an extension of Spring Data for Redis, which already uses the Jedis
client, there is no need to include Jedis as a separate dependency, so it can be removed from
the previous declaration.

The next task involves modeling an Employee object that comprises several attributes, one
of which is a custom object called Office. This raises the question of whether to employ the
Hash or the JSON data type for this purpose.

Setting Up Client Libraries96

A Hash is a flat map composed of attribute-value pairs, where values are limited to the String
data type (string, number, or binary value). Conversely, a JSON functions as a map but
accommodates a wider variety of value types, such as strings, numbers, arrays, and nested
JSONs. Based on these properties, the JSON data type emerges as the optimal choice for
modeling the Employee object.

2.	 Create a new class called Employee.java, with the following content:

package my.app.demo;

import com.redis.om.spring.annotations.Document;
import com.redis.om.spring.annotations.Indexed;
import com.redis.om.spring.annotations.Searchable;
import lombok.*;
import org.springframework.data.annotation.Id;

import java.util.Set;

@RequiredArgsConstructor(staticName = "of")
@AllArgsConstructor(access = AccessLevel.PROTECTED)
@Data
@Document
public class Employee {

     @Id
     @Indexed
     private String id;

     @Indexed @NonNull
     private String firstName;

     @Indexed @NonNull
     private String lastName;

     @Indexed @NonNull
     private Integer age;

     @Searchable @NonNull
     private String funFact;

     @Indexed @NonNull
     private Office office;

Programming in Java using Jedis 97

     @Indexed @NonNull
     private Set<String> roles;
}

The Employee class is marked with the @Document annotation, designating it as a JSON
document. Moreover, additional annotations are employed to establish the necessary indexes
for querying, searching, and aggregating data.

3.	 Next, the Office class should be created, which will be maintained as a nested JSON document
within the Employee structure:

package my.app.demo;

import com.redis.om.spring.annotations.Indexed;
import com.redis.om.spring.annotations.Searchable;
import lombok.Data;
import lombok.NonNull;
import lombok.RequiredArgsConstructor;

@Data
@RequiredArgsConstructor(staticName = "of")
public class Office {

     @NonNull
     @Searchable(nostem = true)
     private String address;

     @NonNull
     @Indexed
     private String addressNumber;

     @NonNull
     @Indexed
     private String city;

     @NonNull
     @Indexed
     private String state;

     @NonNull
     @Indexed
     private String postalCode;

     @NonNull

Setting Up Client Libraries98

     @Indexed
     private String country;
}

The integration of Redis OM with Spring simplifies the development process for domain models,
allowing them to benefit from standard annotations such as @Id, @NotNull, and others for
data modeling purposes. Another outstanding feature is the ability to utilize a Spring repository
with Redis Stack as the target data store.

4.	 Create a Redis repository called EmployeeRepository.java, with the following content:

package my.app.demo;

import com.redis.om.spring.repository.RedisDocumentRepository;

import java.util.List;

public interface EmployeeRepository extends
RedisDocumentRepository<Employee,String> {
     List<Employee> findByLastNameAndFirstName(String lastName,
String firstName);
}

Now we are ready to save and retrieve the information to and from Redis Stack. To facilitate
this process, we rely on the concept of CommandLineRunner to load some data and execute
our queries on it.

5.	 Add the following Bean declarations to your code:

@Bean @Order(1)
CommandLineRunner loadTestData() {
   return args -> {
        employeeRepository.deleteAll();
        Office romeOffice = Office.of("Via Roma", "1", "Roma",
"Roma", "00100", "Italy");
        Office macerataOffice = Office.of("Via Macerata", "1",
"Macerata", "Macerata", "62100", "Italy");

        Employee luigi = Employee.of("Luigi", "Fugaro",
44, "When I was younger, I spent more than a day without
interruption playing Monkey Island. And I couldn't go to school
of course.", romeOffice, Set.of("Solution Architect"));
        Employee mirko = Employee.of("Mirko", "Ortensi",
44, "When I was younger, I spent more than a day without
interruption playing Pac-Man. And I couldn't go to school of
course.", macerataOffice, Set.of("Technical Architect"));

        employeeRepository.save(luigi);

Programming in Java using Jedis 99

        employeeRepository.save(mirko);
   };
}

@Bean @Order(2)
CommandLineRunner findAll() {
   return args -> {
        List<Employee> employees = employeeRepository.findAll();
        employees.forEach(employee -> log.info("Find all
Employee: {}", employee));
   };
}

@Bean @Order(3)
CommandLineRunner findById() {
   return args -> {
        Optional<Employee> employee = employeeRepository.
findById("000001");
        log.info("Find by ID '000001' Employee: {}", employee.
orElseThrow());
   };
}

@Bean @Order(4)
CommandLineRunner findByLastNameAndFirstName() {
   return args -> {
        List<Employee> employees = employeeRepository.
findByLastNameAndFirstName("Ortensi", "Mirko");
        employees.forEach(employee -> log.info("Find by
firstnale and lastname - Employee: {}", employee));
   };
}

This is the output collected when this Spring application is executed:
2023-03-27T12:47:19.691+02:00  INFO 46533 --- [  restartedMain]
my.app.demo.DemoApplication                    : Find all
Employee: Employee(id=000001, firstName=Luigi, lastName=Fugaro,
age=44, funFact=When I was younger, I spent more than a day
without interruption playing Monkey Island. And I couldn't
go to school of course., office=Office(address=Via Roma,
addressNumber=1, city=Roma, state=Roma, postalCode=00100,
country=Italy), roles=[Solution Architect])
2023-03-27T12:47:19.692+02:00  INFO 46533 --- [  restartedMain]
my.app.demo.DemoApplication                    : Find
all Employee: Employee(id=000002, firstName=Mirko,
lastName=Ortensi, age=44, funFact=When I was younger, I spent
more than a day without interruption playing Pac-Man. And I

Setting Up Client Libraries100

couldn't go to school of course., office=Office(address=Via
Macerata, addressNumber=1, city=Macerata, state=Macerata,
postalCode=62100, country=Italy), roles=[Technical Architect])
2023-03-27T12:47:19.692+02:00  INFO 46533 --- [  restartedMain]
my.app.demo.DemoApplication                    : Find all
Employee: Employee(id=000003, firstName=Luigi, lastName=Fugaro,
age=44, funFact=When I was younger, I spent more than a day
without interruption playing Monkey Island. And I couldn't
go to school of course., office=Office(address=Via Roma,
addressNumber=1, city=Roma, state=Roma, postalCode=00100,
country=Italy), roles=[Senior Solution Architect])
2023-03-27T12:47:19.833+02:00  INFO 46533 --- [  restartedMain]
my.app.demo.DemoApplication                    : Find by
ID '000001' Employee: Employee(id=000001, firstName=Luigi,
lastName=Fugaro, age=44, funFact=When I was younger, I spent
more than a day without interruption playing Monkey Island. And
I couldn't go to school of course., office=Office(address=Via
Roma, addressNumber=1, city=Roma, state=Roma, postalCode=00100,
country=Italy), roles=[Solution Architect])
2023-03-27T12:47:19.976+02:00  INFO 46533 --- [  restartedMain]
my.app.demo.DemoApplication                    : Find by
firstnale and lastname - Employee: Employee(id=000002,
firstName=Mirko, lastName=Ortensi, age=44, funFact=When I
was younger, I spent more than a day without interruption
playing Pac-Man. And I couldn't go to school of course.,
office=Office(address=Via Macerata, addressNumber=1,
city=Macerata, state=Macerata, postalCode=62100, country=Italy),
roles=[Technical Architect])

By making use of a Spring repository, developers can benefit from a standardized method for declaring
information requests, which simplifies the process of accessing and managing data in their applications.
Additionally, the @Query annotation plays a significant role in enhancing data retrieval capabilities,
offering more flexibility and control over the way data is searched for, filtered, and retrieved from the
underlying data source.

In essence, the combination of a Spring repository and the @Query annotation allows developers
to create more efficient and maintainable data access layers in their applications, contributing to an
overall improvement in application performance and code quality.

With Java’s role in the programming world established, let’s now turn our attention to another influential
language, JavaScript, which has made a significant impact on web development and user experiences.

Programming in JavaScript using node-redis
Node.js is an excellent choice for various types of applications, particularly those that require real-
time communication, scalability, and high performance. One of its main strengths is its non-blocking,
event-driven architecture. This means that Node.js can handle multiple requests simultaneously without
waiting for any single request to complete. As a result, it is especially suitable for applications that
require real-time communication, such as chat applications and online gaming.

Programming in JavaScript using node-redis 101

Another advantage of Node.js is that it allows you to use JavaScript on the server side. By using the
same language for both frontend and backend development, you can streamline your workflow and
reduce the learning curve for your development team. This consistency between the frontend and
backend can lead to faster development times and improved maintainability.

Node.js also boasts a large and active community of developers, which means you’ll have access to a
wealth of resources, tutorials, and libraries to help you get started and build your applications. The Node
Package Manager (npm) is the largest ecosystem of open source libraries, providing a wide range of
pre-built modules to help you with anything from handling HTTP requests to working with databases.

Scalability is another key reason to choose Node.js for your projects. Its lightweight architecture and
ability to handle a large number of simultaneous connections make it ideal for applications that need
to scale as they grow. With support for both horizontal and vertical scaling, Node.js can be easily
adapted to meet the demands of your growing user base.

As discussed in the previous section, the installation of the Redis client library for JavaScript is a
simple procedure, assuming that your workstation already has the Node.js runtime up and running.
At the time this content was created, the version used was 18.14.0.

The installation of the Redis Stack client library for Node.js requires the invocation of the
following command:

npm install redis

And that’s all that is needed to start programming in JavaScript, targeting Redis Stack as a data store.

Let’s create a folder for your project and edit the app.js file, with the following content:

import { createClient } from 'redis';

const client = createClient({
     password: '<PASSWORD>',
     socket: {
           host: 'localhost',
           port: 6379
     }
});

(async () => {
     console.log('Connecting...');
     await client.connect();
})();

client.on('error', (err) => {
     console.log('Could not establish a connection with redis. ' +
err);

Setting Up Client Libraries102

});

client.on('connect', function (err) {
     console.log('Connected to Redis Stack successfully');
});

const resp = await client.set('client', 'node-redis', (err, reply) =>
{
    console.log(err);
    console.log(reply);
});
console.log('Set: ' + resp);

const val = await client.get('client', (err, reply) => {
    console.log(err);
    console.log(reply);
});
console.log('Val: ' + val);

await client.quit();

Upon running the application, the output will be the following:

Connecting...
Connected to Redis Stack successfully
Set: OK
Val: redis

The terms localhost and 6379 denote the hostname and port of a running Redis Stack instance, respectively.
As mentioned earlier, the easiest way to operate Redis Stack is through Redis Cloud, a fully featured DBaaS
platform for Redis Stack. Chapter 3, Getting Started with Redis Stack elaborates on other options. It is assumed
in this chapter’s example that a Redis Stack instance has already been established and is functioning.

Ensure that you substitute <PASSWORD> with the appropriate password that you assigned when
creating and configuring your Redis Stack database.

By now, you have familiarized yourself with the Redis Stack client library for JavaScript and how to
connect to Redis Stack. One of the key advantages of Redis Stack is its data structures, which can be
easily mapped to objects in programming languages such as JavaScript, especially when it comes to
JSON, which is natively supported by the language.

While storing a simple string might not pose many difficulties, the same level of simplicity can be
applied to other Redis data types such as Lists, Sets, Sorted Sets, and Hashes. The node-redis client
library provides smooth integration for these data types too.

Programming in JavaScript using node-redis 103

Lists

Redis Lists are data structures that hold ordered collections of strings, organized based on the sequence
of their insertion. This attribute of preserving the insertion order makes them a superb choice for
numerous applications, such as implementing message queues.

Being ordered collections, Redis Lists enable efficient handling of elements at the List’s start and end.
They offer an array of commands for inserting, deleting, and retrieving elements, along with trimming
and modifying the list according to particular needs.

The following is some example code:

let result = await client.lPush("queue:tasks", "Task-1");
console.log("numberOfTasks {}"+ result);
result = await client.lPush("queue:tasks", "Task-2");
console.log("numberOfTasks {}"+ result);
result = await client.rPop("queue:tasks");
console.log("Retrieved task {}"+ result);

The output should be as follows:

Connecting...
Connected to Redis Stack successfully
Set: OK
Val: redis
numberOfTasks {}1
numberOfTasks {}2
Retrieved task {}Task-1

Next, we’ll look at Sets.

Sets

Redis Sets are data structures that hold unordered collections of distinct strings, which makes them
especially useful when preventing duplicate elements in the collection is crucial. These sets offer an
effective method for representing, storing, and managing unique data items, such as user IDs, one-of-
a-kind tokens, or IP addresses.

For an example, see the following code:

result = await client.sAdd('employee:ids', '00000001');
console.log('Added employee:00000001' + result);
result = await client.sAdd('employee:ids', '00000002');
console.log('Added employee:00000002' + result);
result = await client.sAdd('employee:ids', '00000001');
console.log('Added employee:00000001' + result);

Setting Up Client Libraries104

let employeeIds = await client.sMembers('employee:ids');
console.log('Employee IDs: ' + employeeIds);
employeeIds.forEach(employee => {
     console.log('Employee ID: ' + employee);
});
let exists = await client.sIsMember('employee:ids', '00000001');
console.log('Employee ID-00000001 exists? ' + exists);

The output should be as follows:

Added employee:00000001 - 1
Added employee:00000002 - 1
Added employee:00000001 - 0
Employee IDs: 00000002,00000001
Employee ID: 00000002
Employee ID: 00000001
Employee ID-00000001 exists? True

Next, we’ll look at Sorted Sets.

Sorted Sets

Sorted Sets in Redis represent a unique variant of Sets, characterized by the fact that every member
in a Sorted Set possesses a related score or ranking, determining its placement within the collection.
This supplementary characteristic enables Sorted Sets to preserve a stable order based on the scores
allocated to each member.

The following is some example code:

const players = [
     {
           score: 22.0,
           value: "PlayerOne"
     },
     {
           score: 10.0,
           value: "PlayerTwo"
     },
     {
           score: 78.0,
           value: "PlayerThree"
     }
];
console.log('Players map:' + players);
let added = await client.zAdd('players', players);

Programming in JavaScript using node-redis 105

console.log('Added players: ' + added);
let playersWithScores = await client.zRangeByScore("players", 0, 50);
console.log('Players with score in range 0-50: ' + playersWithScores);
playersWithScores.forEach(element => {
     console.log('Player with score: ' + element);
});
let score = await client.zScore("players", "PlayerTwo");
console.log('Player PlayerTwo with score: ' + score);

You should see the following output:

Players map:[object Object],[object Object],[object Object]
Added players: 3
Players with score in range 0-50: PlayerTwo,PlayerOne
Player with score: PlayerTwo
Player with score: PlayerOne
Player PlayerTwo with score: 10

We will look at Hashes next.

Hashes

Redis Hashes are data structures that create connections between string fields and their corresponding
string values. These associations facilitate effective storage and retrieval of key-value pairs, making them
especially advantageous for organizing and handling data within a Redis database. Fundamentally,
Redis Hashes allow users to store, access, and modify data as an assembly of field-value pairs, with
both fields and values being strings.

Here is some example code:

let user =
{'firstname':'Luigi','lastname':'Fugaro','username':'foogaro'}
console.log('User: ' + user);
let fieldValuePairs = await client.hSet('user:1', user);
console.log('User fields added in Hash: ' + fieldValuePairs);
let email = await client.hSet('user:1', 'email', 'luigi@foogaro.com');
console.log('Email added: ' + email);
let firstname = await client.hGet('user:1', 'firstname');
console.log('User firstname: ', firstname);
let fields = await client.hGetAll('user:1');
console.log('All fields: ', JSON.parse(JSON.stringify(fields)));

And here is the expected output:

User: [object Object]
User fields added in Hash: 3

Setting Up Client Libraries106

Email added: 1
User firstname:  Luigi
All fields:  {
  firstname: 'Luigi',
  lastname: 'Fugaro',
  username: 'foogaro',
  email: 'luigi@foogaro.com'
}

Let’s go through Redis OM for JavaScript.

Redis OM for JavaScript

Redis OM for Node.js not only simplifies working with Redis data structures but also provides the
ability to manage JSON documents and create secondary indexes for performing full-text search
queries. This feature further enhances the versatility of Redis OM for Node.js, as it allows you to work
with JSON data in a more efficient manner and perform powerful search operations on your dataset.

By using secondary indexes, you can optimize the search performance of your Node.js applications and
quickly retrieve relevant information based on specific criteria. This makes Redis OM for Node.js an even
more powerful tool for building feature-rich applications that require sophisticated data management
and search capabilities.

The Redis OM integration for Node.js applications involves adding the Redis OM package to the
project, using NPM, or editing the package.json file with the following content:

{
  "name": "app",
  "version": "1.0.0",
  "description": "",
  "main": "app.js",
  "type": "module",
  "scripts": {
     "test": "echo \"Error: no test specified\" && exit 1"
  },
  "dependencies": {
     "redis": "^4.6.5",
     "redis-om": "^0.4.2"
  },
  "author": "Luigi Fugaro",
  "license": "ISC"
}

The following task requires creating an Employee object containing various attributes, and this leads
to the consideration of whether to use the Hash or JSON Redis data type for this purpose.

Programming in JavaScript using node-redis 107

A Hash is a flat map consisting of attribute-value pairs, with values restricted to the String data
type (string, number, or binary value). On the other hand, a JSON data type serves as a map but
supports a broader range of value types, such as strings, numbers, arrays, and geospatial objects.
Given these characteristics, the JSON data type appears to be the most suitable option for modeling
the Employee object.

Let’s create a new Node.js application by editing a new file named redis-om.js, starting with the
statements needed to establish a connection to Redis Stack, as follows:

import { createClient } from 'redis';
import {EntityId, EntityKeyName, Schema} from 'redis-om'
import { Repository } from 'redis-om'

const redisClient = createClient({
     password: '<PASSWORD>',
     socket: {
           host: 'localhost',
           port: 6379
     }
});
(async () => {
     console.log('Connecting...');
     await redisClient.connect();
})();
redisClient.on('error', (err) => {
     console.log('Could not establish a connection with Redis
Stack.');
     console.log(err);
});
redisClient.on('connect', function (err) {
     console.log('Connected to Redis Stack successfully');
});

Next, we will define our schema for the Employee model and we will initialize its repository, as follows:

const employeeSchema = new Schema('Employee', {
     firstName: { type: 'string' },
     lastName: { type: 'string' },
     age: { type: 'number' },
     roles: { type: 'string[]' },
     office: { type: 'text' },
     funFact: { type: 'text' }
},{

Setting Up Client Libraries108

     dataStructure: 'JSON'
});
export const employeeRepository = new Repository(employeeSchema,
redisClient);

await employeeRepository.createIndex();

Last, but not least, we can define two Employee instances and save them into Redis Stack using the
previously declared repository, as follows:

let luigi = {
     'firstName': 'Luigi',
     'lastName': 'Fugaro',
     'age': 45,
     'roles': ['Solution Architect'],
     'office': 'Roma',
     'funFact': 'I still play PAC-MAN.'
}
console.log('Luigi: ' + luigi);
let mirko = {
     'firstName': 'Mirko',
     'lastName': 'Ortensi',
     'age': 46,
     'roles': ['Technical Architect'],
     'office': 'Macerata',
     'funFact': I still play Arkanoid.'
}
console.log('Mirko: ' + mirko);

const luigiEmployee = await employeeRepository.save(luigi)
const mirkoEmployee = await employeeRepository.save(mirko)

And for debugging purposes, we will print to the console the values of our newly created and stored
Employee objects, as follows:

console.log('luigiEmployee.EntityId: ' + luigiEmployee[EntityId]);
console.log('luigiEmployee.EntityKeyName: ' +
luigiEmployee[EntityKeyName]);
console.log('mirkoEmployee.EntityId: ' + mirkoEmployee[EntityId]);
console.log('mirkoEmployee.EntityKeyName: ' +
mirkoEmployee[EntityKeyName]);

let employees = await employeeRepository.search().return.all();
console.log('employees: ' + employees);

Programming in JavaScript using node-redis 109

employees.forEach(employee => {
     console.log('Employee: ' + employee);
});

await redisClient.quit();

From the preceding code, there are two main concepts that deserve special mention: schema,
repository, and entity.

A schema in Redis OM is defined using JavaScript classes and decorators. The decorators are used to
associate class properties with corresponding Redis data structures, such as Strings, Lists, Sets, Sorted
Sets, and Hashes. These decorators help to define the structure and constraints of the data model,
enabling Redis OM to map JavaScript objects to Redis data structures accurately. By defining a schema
for your entities, you can ensure data consistency and validation when working with Redis data.
Additionally, it provides a clear representation of your data models, making it easier to understand
and maintain the code base in your Node.js application.

A repository is a design pattern that provides a higher-level, abstract interface for managing entities
and their persistence in the Redis database. It encapsulates the operations associated with querying,
storing, updating, and deleting data, allowing you to interact with the Redis data structures in a more
object-oriented and consistent manner.

Repositories in Redis OM help separate the concerns of data access and manipulation from the rest of your
application logic. This separation makes your code base more maintainable, testable, and easier to understand.

To implement a repository in your Node.js application using Redis OM, you would typically create
a custom class that encapsulates the Redis OM client operations for a specific entity type. This class
would contain methods for common data access and manipulation tasks, such as creating, updating,
fetching, and deleting instances of the entity.

An entity represents the domain object you intend to store via the repository. Upon saving the entity
into the repository, an EntityID is created. This ID is a unique, randomly generated identifier that
acts as the primary key for the entity.

After running the Node.js application, this is the output:

Connecting...
Connected to Redis Stack successfully.
Luigi: [object Object]
Mirko: [object Object]
luigiEmployee.EntityId: 01GWKJ094J538KQ2XD2MJ8DRWZ
luigiEmployee.EntityKeyName: Employee:01GWKJ094J538KQ2XD2MJ8DRWZ
mirkoEmployee.EntityId: 01GWKJ098HTM49C6W7XXE0CPF0
mirkoEmployee.EntityKeyName: Employee:01GWKJ098HTM49C6W7XXE0CPF0

For the sake of brevity, I have kept the output log that identifies our Employee models, and I removed
the output log typically used for debugging purposes.

Setting Up Client Libraries110

With Redis OM for Node.js, you can further streamline your data management code and create a
more organized and maintainable application structure.

Having discussed JavaScript, let’s shift our focus to the next programming language in line, Golang,
which has been gaining traction for its unique features and performance capabilities.

Programming in Go using go-redis
Golang, more commonly known as Go, is an open source programming language that has grown in
popularity due to its many advantages. One of the most significant benefits of using Go is its simplicity
and minimalistic design. This aspect makes it easy to learn and understand for developers of varying
experience levels, from beginners to seasoned professionals.

The Go community is another reason to consider using the language. It is an active and growing group
of developers that contributes to an ever-expanding ecosystem of libraries and frameworks. This
evolving ecosystem offers resources and support to help you learn about and use the language effectively.

In order to install the Golang Redis library, you need to utilize the widely used go-redis/redis
package, which is a thoroughly maintained and feature-packed Redis client for Go. Before installing
the package, ensure that Go is already set up on your system. At the time this content was created,
the version used was go version go1.20.2 darwin/amd64.

To install the Golang Redis client library, follow these steps:

1.	 Initialize the Go module for your project:

go mod init <PROJECT_MODULE>

The output should be similar to the following:
go: creating new go.mod: module <PROJECT_MODULE>

2.	 Install the go-redis/v9 module as follows:

go get github.com/redis/go-redis/v9

The output should be similar to the following:
go: downloading github.com/redis/go-redis/v9 v9.0.2
go: downloading github.com/redis/go-redis v6.15.9+incompatible
go: downloading github.com/cespare/xxhash/v2 v2.2.0
go: added github.com/cespare/xxhash/v2 v2.2.0
go: added github.com/dgryski/go-rendezvous v0.0.0-
20200823014737-9f7001d12a5f
go: added github.com/redis/go-redis/v9 v9.0.2

Now it’s time to code a bit in Go by implementing a connection to Redis Stack and storing some data in it.

Programming in Go using go-redis 111

Storing information in Redis Stack using Go

Before you begin, pick the integrated developer environment of your choice and create a new Go file
named main.go:

1.	 The first line we are going to insert is the import of the Redis library, as follows:

import (
  "github.com/redis/go-redis/v9"
)

Next, we are going to connect to a Redis Stack instance. In the previous chapter, you learned
how to install Redis Stack in different ways, using binaries, using Docker, and through Redis
Cloud, which is still the easiest and fastest way to get a Redis Stack instance. Having said that,
to connect to your Redis Stack instance, you need the hostname or IP of your server, the port
Redis Stack is exposed on, and the credentials to authenticate.

2.	 For convention, the hostname will be mapped to localhost and the port to 6379. In our
main.go file, add the following content:

func main() {
  rdb := redis.NewClient(&redis.Options{
     Addr:      "localhost:6379",
     Username: "<USERNAME>",
     Password: "<PASSWORD>",
  })

  ctx := context.Background()
  err := rdb.Set(ctx, "client", "go-redis", 0).Err()
  if err != nil {
     panic(err)
  }

  val, err := rdb.Get(ctx, "client").Result()
  if err != nil {
     panic(err)
  }
  fmt.Printf("The value of key 'client' is: %s\n", val)
}

Make sure you replace "<USERNAME>" and "<PASSWORD>" accordingly with the ones you
set when you created and configured your Redis Stack database.

3.	 To compile and launch the application, just run the following commands from the terminal:

go run main.go
The value of key 'client' is: go-redis

Setting Up Client Libraries112

Congratulations! You’ve now learned how to utilize the Redis Stack client library for Golang and
establish a connection to Redis Stack. One of the key benefits of Redis Stack lies in its data structures,
which can be mapped one to one with objects in programming languages such as Go.

While storing a simple string is straightforward, the same ease of use can be extended to other Redis
data types such as Lists, Sets, Sorted Sets, and Hashes. For each of these data types, Golang offers a
corresponding structure.

Lists

Redis Lists serve as data structures that maintain ordered collections of strings, arranged according
to the order in which they were added. Their ability to preserve the insertion order makes them an
excellent option for various applications, including the implementation of message queues.

As ordered collections, Redis Lists facilitate effective management of elements at the beginning and
end of the list. They provide a range of commands for adding, removing, and fetching elements, as
well as trimming and altering the list based on specific requirements.

For instance, see the following:

cities := []string{"Roma", "Macerata", "Atlantis"}
err = rdb.RPush(ctx, "cities", cities).Err()
if err != nil {
  panic(err)
}
err = rdb.LPush(ctx, "queue:tasks", "Task-1").Err()
if err != nil {
  panic(err)
}
err = rdb.LPush(ctx, "queue:tasks", "Task-2").Err()
if err != nil {
  panic(err)
}
task, err := rdb.RPop(ctx, "queue:tasks").Result()
if err != nil {
  panic(err)
}
fmt.Printf("The task retrieved from the list 'queue:tasks' is: %s\n",
task)

You should see the following output:

The value of key 'client' is: go-redis
The task retrieved from the list 'queue:tasks' is: Task-1

Let’s now see how to manage the Sets data type.

Programming in Go using go-redis 113

Sets

Redis Sets are data structures containing unordered collections of unique strings, making them
particularly valuable when ensuring no duplicate elements exist within the collection. These sets
provide an efficient approach to represent, store, and handle distinct data items, such as user IDs,
unique tokens, or IP addresses.

For example, see the following:

resp, err := rdb.SAdd(ctx, "employee:ids", "00000001", "00000002").
Result()
if err != nil {
  panic(err)
}
fmt.Printf("Added %d employees\n", resp)
resp, err = rdb.SAdd(ctx, "employee:ids", "00000001").Result()
if err != nil {
  panic(err)
}
fmt.Printf("Added %d employees\n", resp)
emps, err := rdb.SMembers(ctx, "employee:ids").Result()
if err != nil {
  panic(err)
}
for index, emp := range emps {
  fmt.Printf("All employees[%d]: %s\n", index, emp)
}
emp, err := rdb.SIsMember(ctx, "employee:ids", "00000001").Result()
if err != nil {
  panic(err)
}
fmt.Printf("Employee '00000001' exists %t\n", emp)

The output would be as follows:

Added 2 employees
Added 0 employees
All employees[0]: 00000002
All employees[1]: 00000001
Employee '00000001' exists true

Let’s see now how to manage the Sorted Sets data type.

Setting Up Client Libraries114

Sorted Sets

Redis Sorted Sets are a specialized version of Sets, distinguished by each member having an associated
score or rank that determines its position in the collection. This additional feature allows Sorted Sets
to maintain a consistent order based on the scores assigned to each member.

For example, see the following:

const players = [
     {
           score: 22.0,
           value: "PlayerOne"
     },
     {
           score: 10.0,
           value: "PlayerTwo"
     },
     {
           score: 78.0,
           value: "PlayerThree"
     }
];
console.log('Players map:' + players);
let added = await client.zAdd('players', players);
console.log('Added players: ' + added);
let playersWithScores = await client.zRangeByScore("players", 0, 50);
console.log('Players with score in range 0-50: ' + playersWithScores);
playersWithScores.forEach(element => {
     console.log('Player with score: ' + element);
});
let score = await client.zScore("players", "PlayerTwo");
console.log('Player PlayerTwo with score: ' + score);

You should see the following output:

Players map:[object Object],[object Object],[object Object]
Added players: 3
Players with score in range 0-50: PlayerTwo,PlayerOne
Player with score: PlayerTwo
Player with score: PlayerOne
Player PlayerTwo with score: 10

Let’s see now how to manage the Hash data type.

Programming in Go using go-redis 115

Hashes

Redis Hashes are data structures that establish relationships between string fields and their respective
string values. These connections enable efficient storage and retrieval of key-value pairs, making
them particularly useful for organizing and managing data within a Redis database. Essentially, Redis
Hashes permit users to store, access, and modify data as a collection of field-value pairs, where both
fields and values are strings.

The following is some example code:

user := map[string]interface{}{
  "firstname": "Luigi",
  "lastname":  "Fugaro",
  "username":  "foogaro",
}
fmt.Printf("User %s:\n", user)
err = rdb.HMSet(ctx, "user:1", user).Err()
if err != nil {
  panic(err)
}
fmt.Println("Hash saved to Redis successfully")
resp, err = rdb.HSet(ctx, "user:1", "email", "luigi@foogaro.com").
Result()
if err != nil {
  panic(err)
}
fmt.Println("Email field added to the Hash user:1")
firstname, err := rdb.HGet(ctx, "user:1", "firstname").Result()
if err != nil {
  panic(err)
}
fmt.Printf("User Firstname %s\n", firstname)
allFields, err := rdb.HGetAll(ctx, "user:1").Result()
if err != nil {
  panic(err)
}
fmt.Printf("User all fileds %s\n", allFields)

You should see the following output:

User map[firstname:Luigi lastname:Fugaro username:foogaro]:
Hash saved to Redis successfully
Email field added to the Hash user:1
User Firstname Luigi

Setting Up Client Libraries116

User all fileds map[email:luigi@foogaro.com firstname:Luigi
lastname:Fugaro username:foogaro]

As of the time of writing, the Redis OM framework for Go and full support for the Redis Stack capabilities
have not been released yet. However, the Redis community is continuously working on developing
new tools and libraries to enhance the experience of working with Redis in various programming
languages. In the meantime, you can continue to use existing libraries such as go-redis/redis
for your Redis operations in Go.

Programming in C#/.NET using NRedisStack
.NET Framework boasts a comprehensive standard library, streamlining many development tasks.
It provides a myriad of built-in functionalities, reducing the need for external libraries and helping
you to build applications more efficiently.

While .NET Framework has traditionally been Windows-centric, the introduction of .NET Core
extends support to macOS and Linux. This ensures your applications can reach a broader audience
without significant code changes.

To work with Redis Stack in a C#/.NET environment, you would typically use the StackExchange.
Redis package. It’s a high-performance, fully featured client dedicated to Redis for .NET. Before
incorporating the package, ensure that .NET is properly configured on your system. As of the time
this content was crafted, the version referenced was .NET 7.0.

To install the C#/.NET Redis client library, follow these steps:

Install-Package StackExchange.Redis

Let’s dive into some C# coding by establishing a connection to Redis Stack and saving some data within it.

Storing information in Redis Stack using C#/.NET

Before you begin, pick the integrated developer environment of your choice and create a new console
application project, targeting .NET Core 7.0 and the C# programming language.

The first line we are going to insert is the import of the Redis library, as follows:

using NRedisStack;
using NRedisStack.RedisStackCommands;
using StackExchange.Redis;

Next, we are going to connect to a Redis Stack instance. In the previous chapter, you learned how to
install Redis Stack in different ways, using binaries, using Docker, and through Redis Cloud, which
is still the easiest and fastest way to get a Redis Stack instance. Having that said, to connect to your
Redis Stack instance you need the hostname or IP of your server, the port Redis Stack is exposed on,
and the credentials to authenticate.

Programming in C#/.NET using NRedisStack 117

For convention, the hostname will be mapped to localhost and the port to 6379. In our Program.
cs file, add the following content:

ConnectionMultiplexer redis = ConnectionMultiplexer.
Connect("localhost:6379,username=<USERNAME>,password=<PASSWORD>");
IDatabase db = redis.GetDatabase();
db.StringSet("client", "NRedisStack");
Console.WriteLine("Retrieved value {0} for key client",
db.StringGet("client"));

Make sure you replace <USERNAME> and <PASSWORD> accordingly with the ones you set when
you created and configured your Redis Stack database.

Compile and start the application from your IDE, and observe the following message displayed in
the console output:

Retrieved value NRedisStack for key client

Congratulations! You’ve now learned how to utilize the Redis Stack client library for C#/.NET and
establish a connection to Redis Stack.

While storing a simple string is straightforward, the same ease of use can be extended to other Redis
data types such as Lists, Sets, Sorted Sets, and Hashes.

Lists

Redis Lists act as data structures that hold ordered sequences of strings, organized by their insertion
sequence. This inherent ordering capability renders them ideal for multiple uses, notably for setting
up message queues. Being ordered lists, Redis Lists enable efficient handling of items at both the
head and tail of the list. They come equipped with a suite of commands to insert, delete, and retrieve
elements, and also to modify and trim the list as per distinct needs. For an example, see the following:

long numberOfTasks = db.ListLeftPush("queue:tasks", "Task-1");
Console.WriteLine("Number of tasks: {0}", numberOfTasks);
numberOfTasks = db.ListLeftPush("queue:tasks", "Task-2");
Console.WriteLine("Number of tasks: {0}", numberOfTasks);
string task = db.ListRightPop("queue:tasks").ToString();
Console.WriteLine("Retrieved task: {0}", task);

You should see the following output:

Number of tasks: 1
Number of tasks: 2
Retrieved task: Task-1

Next, we’ll look at Sets.

Setting Up Client Libraries118

Sets

Redis Sets are data structures that house unordered groupings of distinct strings. Their intrinsic nature
ensures the exclusion of any repeated elements within the collection. These sets offer a streamlined
method for representing, preserving, and managing unique data pieces, such as user IDs, exclusive
tokens, or IP addresses.

For example, see the following:

db.SetAdd("employee:ids", "00000001");
db.SetAdd("employee:ids", "00000002");
db.SetAdd("employee:ids", "00000001");
RedisValue[] employeeIds = db.SetMembers("employee:ids");
Console.WriteLine("Employee IDs {0}", employeeIds);
Array.ForEach(employeeIds, employeeId => Console.WriteLine("Employee:
{0}", employeeId));
bool exists = db.SetContains("employee:ids", "00000001");
Console.WriteLine("Employee id \"00000001\" exists {0}", exists);

You should see the following output:

Employee IDs StackExchange.Redis.RedisValue[]
Employee: 00000001
Employee: 00000002
Employee id "00000001" exists True

Next, we’ll look at Sorted Sets.

Sorted Sets

Redis Sorted Sets are a specialized version of Sets, distinguished by each member having an associated
score or rank that determines its position in the collection. This additional feature allows Sorted Sets
to maintain a consistent order based on the scores assigned to each member.

For example, see the following code:

SortedSetEntry[] scores = new SortedSetEntry[3];
scores[0] = new SortedSetEntry("PlayerOne", 22.0);
scores[1] = new SortedSetEntry("PlayerTwo", 10.0);
scores[2] = new SortedSetEntry("PlayerThree", 78.0);
Console.WriteLine("Scores map {0}", scores);
long addedScores = db.SortedSetAdd("players", scores);
Console.WriteLine("Added scores {0}", addedScores);
RedisValue[] players = db.SortedSetRangeByScore("players", 0, 50);
Console.WriteLine("Players with score in range 0-50:");
Array.ForEach(players, player => Console.WriteLine(player));

Programming in C#/.NET using NRedisStack 119

double score = db.SortedSetScore("players", "PlayerTwo").Value;
Console.WriteLine("Score for \"PlayerTwo\" {0}", score);

You should see the following output:

Scores map StackExchange.Redis.SortedSetEntry[]
Added scores 3
Players with score in range 0-50:
PlayerTwo
PlayerOne
Score for "PlayerTwo" 10

We will look at Hashes next.

Hashes

Redis Hashes are data constructs linking string fields to their corresponding string values. This
association facilitates swift storage and fetching of key-value duos, rendering them exceptionally
useful for structuring and handling data in a Redis database. In essence, Redis Hashes allow users to
manage data as sets of field-value pairings, with both the fields and values being strings.

The code shown here is an example:

HashEntry[] user = new HashEntry[3];
user[0] = new HashEntry("FirstName", "Luigi");
user[1] = new HashEntry("LastName", "Fugaro");
user[2] = new HashEntry("UserName", "foogaro");
db.HashSet("user:1", user);
string firstName = db.HashGet("user:1", "FirstName").ToString();
Console.WriteLine("User firstname {0}", firstName);
HashEntry[] userFields = db.HashGetAll("user:1");
Array.ForEach(userFields, userField => Console.WriteLine("Field {0}:
{1}", userField.Name, userField.Value));

You should see the following output:

User firstname Luigi
Field FirstName: Luigi
Field LastName: Fugaro
Field UserName: foogaro

Let’s go through the OM for C#/.NET.

Setting Up Client Libraries120

Redis OM for C#/.NET

Redis OM serves as a powerful interface for .NET developers, offering elevated abstractions tailored
for Redis usage.

In this latest release, the enhancements and features provided include the following:

•	 Intuitive object mapping for Redis objects, allowing for a declarative approach

•	 The ability to automatically generate secondary indices in a declarative manner, enhancing
data retrieval efficiency

•	 A fluent API system designed for more streamlined querying within Redis

•	 Another set of fluent APIs dedicated to executing aggregation operations in Redis, providing
more versatility in data operations

Redis OM simplifies the task of modeling and querying your domain objects within Redis, ensuring
a more intuitive experience for developers:

1.	 To use the Redis OM framework, your .NET project needs to load an additional package, by
invoking the following command:

dotnet add package Redis.OM

2.	 The upcoming task is to design an Employee object containing multiple attributes, including
a specialized object named Office. This prompts the consideration of whether to use the
Hash or the JSON data type for this endeavor.

A Hash essentially represents a simple map consisting of attribute-value pairs, with the caveat that
values can only be of the String data type, be it a string, number, or binary value. On the other
hand, JSON operates similarly to a map but is more versatile, supporting a broader array of value
types such as strings, numbers, arrays, and even embedded JSONs. Given these characteristics,
the JSON data type stands out as the more suitable option for representing the Employee object:

using Redis.OM.Modeling;

namespace dotnet;

[Document(StorageType = StorageType.Json, Prefixes = new []
{"Employee"})]
public class Employee
{
     [RedisIdField] [Indexed] public string? Id { get; set; }
     [Indexed] public string? FirstName { get; set; }
     [Indexed] public string? LastName { get; set; }
     [Indexed] public int? Age { get; set; }
     [Searchable] public string? FunFact { get; set; }

Programming in C#/.NET using NRedisStack 121

     [Indexed(CascadeDepth = 1)] public Office? Office { get;
set; }
     [Indexed] public string[] Roles { get; set; } = Array.
Empty<string>();
}

The Employee class is decorated as Document, meaning its role as a JSON document.
Furthermore, supplementary decorators are utilized to define the essential indexes for data
querying, searching, and aggregation.

3.	 Next, the Office class should be created, which will be maintained as a nested JSON document
within the Employee structure:

using Redis.OM.Modeling;

namespace dotnet;

public class Office
{
     [Searchable] public string? Address { get; set; }
     [Indexed] public string? AddressNumber { get; set; }
     [Indexed] public string? City { get; set; }
     [Indexed] public string? State { get; set; }
     [Indexed] public string? PostalCode { get; set; }
     [Indexed] public string? Country { get; set; }
}

In this setup, you’ll observe that all fields have the Indexed attribute, except for Address,
which is specifically tagged as Searchable. These designations, Indexed and Searchable,
clearly instruct Redis OM as to which fields to consider during queries within Redis Stack.
Address isn’t set up as an independent document, so no overarching attributes are applied
to the main class. Instead, the Office model is neatly nested within the Employee model.

4.	 To begin, we’ll generate load test data by setting up two Employee objects, each with its
associated Office, as described in the following code.

The following initializes the first employee:
Employee luigi = new Employee();
luigi.FirstName = "Luigi";
luigi.LastName = "Fugaro";
luigi.Age = 44;
luigi.FunFact = "What goes around, comes around!";
luigi.Roles = new[] { "Solution Architect" };

Office romeOffice = new Office();
romeOffice.Address = "Via Roma";

Setting Up Client Libraries122

romeOffice.AddressNumber = "1";
romeOffice.PostalCode = "00100";
romeOffice.City = "Rome";
romeOffice.Country = "Italy";
romeOffice.State = "Italy";

luigi.Office = romeOffice;

This is for the second employee:
Employee mirko = new Employee();
mirko.FirstName = "Mirko";
mirko.LastName = "Ortensi";
mirko.Age = 44;
mirko.FunFact = "Sing a song and jump around!";
mirko.Roles = new[] { "Technical Enablement Architect" };

Office macerataOffice = new Office();
romeOffice.Address = "Via Macerata";
romeOffice.AddressNumber = "1";
romeOffice.PostalCode = "62100";
romeOffice.City = "Macerata";
romeOffice.Country = "Italy";
romeOffice.State = "Italy";

mirko.Office = macerataOffice;

5.	 Now, we’ll establish a connection to Redis using the steps outlined here:

var provider = new RedisConnectionProvider("redis://<USER-
NAME>:<PASSWORD>@<HOSTNAME>:<PORT>");

Replace the placeholders with the values related to your environment.

6.	 Now, we’ll set up the handler class responsible for managing Employee entities, as outlined here:

var employees = provider.RedisCollection<Employee>();

7.	 Now, we’ll proceed to save our entities in Redis using the steps provided here:

var employeeLuigi = employees.InsertAsync(luigi);
Console.WriteLine("Employee ID: {0}", employeeLuigi.Result);
var employeeMirko = employees.InsertAsync(mirko);
Console.WriteLine("Employee ID: {0}", employeeMirko.Result);

Programming in C#/.NET using NRedisStack 123

By executing the preceding code, the output should be similar to the following:
Employee ID: Employee:01HCD2SYHEKK6STHZBRK70J0VH
Employee ID: Employee:01HCD2SYS3B4PSJ0HH7CM98VMF

The ID won’t match exactly since it’s generated randomly.

8.	 Having saved our entities, we’ll now set up the Index to search and query our data using the
following steps:

var connection = provider.Connection;
var indexCreated = connection.CreateIndex(typeof(Employee));

Even if the database is empty, you can still create the Index. It will update automatically as new
data comes in.

9.	 To locate our entities by ID, we have two options: using the general Redis connection handler
or the specific employees handler for Employee entities.

We’ll explore both approaches:
var loo = connection.GetAsync<Employee>(employeeLuigi.Result);
Console.WriteLine("GetAsync Employee LastName: {0}", loo.
Result?.LastName);
var mee = employees.FindByIdAsync(employeeMirko.Result);
Console.WriteLine("FindByIdAsync Employee LastName: {0}", mee.
Result?.LastName);

By executing the preceding code, the output should look like the following:
GetAsync Employee LastName: Fugaro
FindByIdAsync Employee LastName: Ortensi

10.	 To search our data, we’ll use the handler specific to Employee. Depending on the attribute in
the search criteria, it will either use the exact-match or the full-text search method.

We’ll experiment with both approaches:
var empsByExactMatch = employees.Where(x => x.FirstName ==
"Luigi");
foreach (var emp in empsByExactMatch)
{
     Console.WriteLine($"{emp.FirstName} is {emp.Age} years old
and works as {emp.Roles[0]}!");
}

var empsByFullText = employees.Where(e => e.FunFact ==
"around");
foreach (var emp in empsByFullText)
{

Setting Up Client Libraries124

     Console.WriteLine($"{emp.FirstName} is {emp.Age} years old
and works as {emp.Roles[0]}!");
}

By executing the code, the output should look like the following:
Luigi is 44 years old and works as Solution Architect!
Mirko is 44 years old and works as Technical Enablement
Architect!

As you’ve likely observed, the code is remarkably intuitive and direct. The Redis OM framework not
only streamlines your development process but also elevates your applications. Its inherent flexibility
combined with its user-friendly design ensures that developers can harness the full potential of Redis
without steep learning curves, enabling rapid development and robust application performance.

Summary
In this chapter, we have explored various Redis client libraries and OM solutions across five popular
programming languages: Python, Java, JavaScript, C#, and Go..

For Python, we learned about redis-py, a widely used Redis client library that provides an easy-
to-use interface for interacting with Redis data structures and commands. To simplify working with
Redis data structures in Python applications, Redis OM allows us to map Redis data to Python objects,
offering a more intuitive, object-oriented approach to data management.

In the Java programming language, Jedis is a popular client library that enables developers to
work seamlessly with Redis data structures. With Redis OM for Java, developers can further enhance
their experience by mapping Java objects to Redis data structures, improving code organization
and maintainability.

For JavaScript, we discussed node-redis, a widely used Redis client library designed to work
efficiently with Node.js, offering a straightforward way to interact with Redis data structures. By
utilizing Redis OM for JavaScript, we can map Redis data structures to JavaScript objects, providing
a more natural, object-oriented approach to data management in Node.js applications.

In C#, NRedisStack is a widely-used client library that simplifies working with Redis data structures.
Redis OM for .NET enhances this by allowing developers to link their domain objects to Redis data
structures, making the code more organized and easier to maintain.

Lastly, we have explored programming in Golang using go-redis, a robust Redis client tailored for
Go. This client boasts a comprehensive set of features, making it a versatile tool for handling various
Redis operations in your Go projects. The go-redis library provides an idiomatic API that adheres
to Go’s conventions and best practices, ensuring a seamless experience for developers familiar with
the language.

Summary 125

By understanding these libraries and OM solutions, we can effectively work with Redis across Python, Java,
JavaScript, and Go, harnessing their respective features to build efficient and maintainable applications.

In Chapter 5, Redis Stack as a Document Store, we will delve much deeper into how data modeling
techniques can be achieved using the core data types, focusing on Redis Stack’s ability to execute
real-time queries and searches for Hashes and JSON types. From full-text searching and tagging
to aggregation, auto-completion, and the novel Vector Similarity Search, Redis Stack can serve as a
document store equipped with sophisticated features.

Redis Stack extends the capabilities of Redis, allowing for real-time queries and searches on Hashes and
JSON types. It encompasses a variety of functionalities, including full-text search, tagging, aggregation,
and notably, vector search, which is ideal for recommendation engines.

The focus is on data modeling techniques within Redis Stack, particularly the application of vector search.
As a multi-model, real-time data server, Redis Stack efficiently manages time-series data, where each
point can be augmented with metadata labels, facilitating advanced filtering, searching, and aggregation.

Another significant aspect of Redis Stack is its incorporation of probabilistic data structures. These
structures provide fast, approximate answers using minimal time and memory, and are well-suited
for queries such as verifying user locations, identifying top players in games, or tracking unique user
activities. The content in this part aims to convey the advanced features of Redis Stack and their
practical applications in various scenarios.

This part contains the following chapters:

•	 Chapter 5, Redis Stack as a Document Store

•	 Chapter 6, Redis Stack as a Vector Database

•	 Chapter 7, Redis Stack as a Time Series Database

•	 Chapter 8, Understanding Probabilistic Data Structures

Part 2:
Data Modeling

5
Redis Stack as a
Document Store

The traditional data modeling technique of using Redis’ core data types is possible with Redis Stack,
which means that we can model an object using the popular Hash data structure, for example. This
chapter presents Redis Stack’s capability to perform real-time queries and searches against the Hash
data type, with the advantages of secondary indexing and additional search features. After that, we
will discover how data modeling can be addressed using the JSON data structure. We will present
different search and query features, from full-text to tagging, from aggregation to auto-completion,
so that you understand how to use Redis Stack as a document store with advanced features.

By the end of this chapter, you will know how to rethink the data model of your application and use Redis
Stack data structures to perform real-time queries and searches. You will also know how to use Hash
and JSON data structures to store, query, and search documents through practical real-life examples.

In this chapter, we are going to cover the following topics:

•	 Storing and querying documents in Redis Stack

•	 Working with Hashes

•	 Working with JSON

•	 Redis Stack as a recommendation engine

•	 Redis Stack as a session store

Technical requirements
To follow along with the examples in this chapter, you will need the following:

•	 Install Redis Stack Server 7.2 or a later version on your development environment. Alternatively,
you can create a free Redis Cloud subscription to achieve a free plan and use a managed Redis
Stack database.

Redis Stack as a Document Store130

•	 The dataset that will be used in the examples is a conversion of the popular MySQL World
database to Redis Hashes.

•	 We will introduce data modeling through Hash and JSON data structures with examples that
can be tested using a simple KnowledgeBase dataset.

•	 Find and download all the datasets from this book’s repository if you’d like to test the examples
that we’ll propose in this chapter: https://github.com/PacktPublishing/Redis-
Stack-for-Application-Modernization.

Storing and querying documents in Redis Stack
The usual approach to organizing information that helps to describe a system is to identify the entities
in the specific business domain and the relationships interconnecting them. Examples of entities
could be companies and employees, and the relationship interconnecting them would describe the
employee as part of the headcount. Other examples include universities and students, cars and their
components, and so on. This high-level description is referred to as the conceptual data model, where
we describe the things that are interesting for the domain we are considering.

Once this synthetic description has been completed, we refine it into a logical data model by
describing all the elements in detail. Here, the entities and relationships are defined more specifically,
with attributes, keys, and data types (for example, strings or integers). Finally, when the domain
description is completed and we need a concrete implementation to manage the information in the
domain under analysis, the conclusive phase of the data model design is to implement the physical
data model. Such a model uses the low-level description provided by the logical data model, and
entities and relationships are mapped to a concrete database instance, with the data structures and
the features that the specific storage technology offers.

Jumping back in time for a second, the relational database was theorized in 1970 by Ted Codd, a
computer scientist at IBM, and first implemented in 1973 (Ingress), while the entity-relationship model
was formulated in 1976 by computer scientist Peter Chen (The Entity-Relationship Model - Toward a
Unified View of Data, MIT). It is easy to anticipate the logical consequence, which saw the physical
data model implementation based on relational databases, where data is stored in tables of related
information and manipulated using a Structured Query Language (SQL).

Back in our days, limitations of relational databases to answer scalability, performance, and other
requirements cleared the way for the popularity of the NoSQL movement. The main idea behind a
NoSQL database is that data is not stored in tables as the relational model dictates but structured in
different ways and aggregated and optimized for scalability over multiple machines. Hence, there are
four main NoSQL databases:

•	 Document stores

•	 Key-value stores

https://github.com/PacktPublishing/Redis-Stack-for-Application-Modernization
https://github.com/PacktPublishing/Redis-Stack-for-Application-Modernization

Storing and querying documents in Redis Stack 131

•	 Columnar databases

•	 Graph databases

Among the main features of a NoSQL database, we find the simplicity and flexibility to store, organize,
access, and modify the data. The data model is not strictly defined by a schema, so it is easy to
modify the objects, for example, by adding additional fields without limitations on their number or
size. Horizontal scalability is another important capability that differentiates NoSQL databases from
relational databases as they support reorganizing the dataset into multiple partitions, thus turning a
NoSQL database into a distributed system.

In this chapter, we will focus on Redis Stack’s ability to manage Hash-encoded and JSON-encoded
documents, and the rich set of features to design a data model using its indexing features, so that it is
possible to either retrieve (query) a document by known criteria or get a list of documents (search)
based on a search. Let’s continue looking at database interactions:

•	 Real-time querying: Queries are deterministic – you know precisely what you’re going to get.
Retrieving data via tags or numerical ranges are examples of queries.

•	 Real-time searching: Searches are not deterministic – you ignore the data that will be searched,
and there is no formal categorization or taxonomy for it. Results are filtered and returned
based on their relevance, which is calculated using scores and the frequency of the terms in
the documents that are indexed, for example.

Storing documents while having the flexibility to choose between the Hash and JSON formats and
the ability to index the documents is a great asset not just for storing and serving data with real-time
speed and efficiency but also for performing complex queries and aggregation. Users will be satisfied
with their decision to choose Redis as their primary data store, migrate from a relational database, or
pair it with an authoritative data source to achieve real-time performance.

These search capabilities extend Redis with specialized data structures and algorithms that index the
data transparently and compute queries and complex searches while maintaining high throughput.
Data is stored using core data structures (Hash and JSON), while indexes live out of the keyspace, are
detached from data, and follow data changes so that the index is updated as soon as updates happen.

In the following subsections, we will learn how to index the data that’s stored in a Redis Stack database
and understand how to write elegant queries to implement query and search operations. Concrete
examples will be presented so that you can reproduce the syntax and verify the results.

The dialect and other configuration parameters

Before we start exploring the modeling, indexing, and search features of Redis Stack, let’s anticipate
a few notes about search-related configuration parameters. Parameters can be set at load time or
runtime. In particular, parameters that are set at runtime can influence the behavior of the search
features and determine how the query executes. The configuration at runtime can be managed by the

Redis Stack as a Document Store132

FT.CONFIG command, which will set and get the configuration parameters. So, you would read the
entire configuration parameters as follows:

FT.CONFIG GET *

You can get a specific parameter:

FT.CONFIG GET CONCURRENT_WRITE_MODE
1) 1) CONCURRENT_WRITE_MODE
    2) false

You can also set a parameter:

FT.CONFIG SET DEFAULT_DIALECT 2
OK

Of all the parameters, dialect is worth mentioning because, in some cases, it influences the results that
are returned by certain queries. As an example, the following query, when executed with DIALECT
1 (which is the default), returns 234 results:

FT.SEARCH country_idx @region:"-North America" RETURN 0
 1) (integer) 234
 2) "country:abw"
 3) "country:afg"
...

This query retrieves all the results that do not contain either “North” or “America” in the region. Note
the use of RETURN 0, which omits the field-value pairs in the results; it just returns the key name
matching the clauses in the query. Now, let’s change the default dialect to DIALECT 2:

FT.CONFIG SET DEFAULT_DIALECT 2

Here, the number of returned results is quite different:

FT.SEARCH country_idx @region:"-North America" RETURN 0
 1) (integer) 22
 2) "country:bra"
 3) "country:guf"
...

The reason for this is that when using DIALECT 2, only the negation on "North" applies, while
“America” is still valid as a match. We can override the default DIALECT using the inline specification:

FT.SEARCH country_idx @region:"-North America" RETURN 0 DIALECT 1
 1) (integer) 234
 2) "country:abw"

Storing and querying documents in Redis Stack 133

 3) "country:uga"
...

It is also possible to rewrite the query using parentheses:

FT.SEARCH country_idx @region:"-(North America)" RETURN 0
 1) (integer) 234
 2) "country:abw"
 3) "country:uga"
...

To wrap up, if your query does not behave as expected, make sure you are using the correct DIALECT;
refer to the documentation available at https://redis.io/docs/stack/search/reference/
query_syntax/ to learn more about the available dialects (there are three in total) and to discover
the rest of configuration parameters.

In this chapter, we will execute the examples using the default DIALECT 1.

The query language

We introduced the syntax to create an index in Chapter 1, Introducing Redis Stack:

FT.CREATE city_idx
ON HASH
PREFIX 1 city:
SCHEMA Name AS name TEXT
CountryCode AS countrycode TAG SORTABLE
Population AS population NUMERIC SORTABLE

Using this syntax, we have chosen the index name and defined a schema and the fields – that is, Name,
CountryCode, and Population.

We have also queried the index and understood how to specify the query to retrieve results, filtering
on the country and the population:

FT.SEARCH city_idx '@countrycode:{ESP}' FILTER population 2000000 +inf
RETURN 1 name

We can introduce a query term and search by the city’s name while excluding a country using the –
symbol, as well as a numeric range match so that we can filter by population:

FT.SEARCH city_idx "London @population:[300000 +inf] -@
countrycode:{GBR}" RETURN 1 District
1) (integer) 1
2) "city:1820"

https://redis.io/docs/stack/search/reference/query_syntax/
https://redis.io/docs/stack/search/reference/query_syntax/

Redis Stack as a Document Store134

3) 1) "District"
   2) "Ontario"

In this example, we used a search term, introduced a negative tag clause to remove results, and
filtered by a numeric range. Using a relational database, we can achieve the result using the following
SQL statement:

ALTER TABLE city ADD FULLTEXT(Name);

mysql> SELECT District FROM city WHERE MATCH(Name) AGAINST("London" IN
NATURAL LANGUAGE MODE) AND Population>=300000 AND CountryCode!="GBR";

+----------+
| District |
+----------+
| Ontario  |
+----------+

1 row in set (0.00 sec)

Most of the usual SQL statements can be mapped using the Redis Stack query syntax, which is executed
in real time, including aggregations with the FT.AGGREGATE command. Furthermore, Redis Stack
goes beyond the traditional keyword-based search, as we will see in the next chapter when we discuss
semantic search with vector similarity search. Let’s consider additional examples of the query search
syntax in Redis Stack. Let’s create an additional and more detailed index that we will use in the
subsequent examples for more complex queries:

FT.CREATE country_idx
ON HASH
PREFIX 1 country:
SCHEMA Name AS name TEXT
LocalName AS localname TEXT
Region AS region TEXT
Continent AS continent TAG
HeadOfState AS headofstate TEXT
SurfaceArea as surfacearea NUMERIC SORTABLE
Population AS population NUMERIC SORTABLE
GovernmentForm AS governmentform TAG SORTABLE

Storing and querying documents in Redis Stack 135

In the next few sections, we will learn how to write queries and leverage all the search features. A
query can be decomposed as follows:

•	 The index: The index name is required and must be specified as the first parameter when
executing the FT.SEARCH command.

•	 The query: This is required and specifies what we are looking for and in what fields. It can be
composed of multiple clauses and their intersection, union, or negation.

•	 Optional arguments: Arguments help format the results and extend them with the numerous
available features. You can find a comprehensive list of such arguments in the documentation
at https://redis.io/commands/ft.search/; we’ll see a few examples later in
this chapter.

If you’d like to test the examples in this section, import the World dataset as follows (assuming Redis
Stack is running locally and on the default port, 6379; otherwise, specify the connectivity parameters):

cat world.txt | redis-cli

Then, make sure you have created the city_idx and country_idx indexes and verify their
existence with the following command:

FT._LIST

You are now ready to dive into querying and searching using Redis Stack!

Simple terms

You can search for a term in all the fields of the schema that are indexed as TEXT. Then, you can specify
both the index and the query, which is the required argument of FT.SEARCH:

FT.SEARCH country_idx Italy

This command will return all the objects that contain the search term in any of the TEXT fields.

Using field modifiers

If you’d like to specify that the search should be only on a specific field indexed as TEXT, you must
specify the field using the @ symbol. For simplicity, in these examples, we will skip the returned field
often and get the key name only using the NOCONTENT argument (or RETURN 0):

FT.SEARCH country_idx '@name:Italy' NOCONTENT
1) (integer) 1
2) "country:ita"

https://redis.io/commands/ft.search/

Redis Stack as a Document Store136

Intersection of results (AND)

You can use quotes if you’re searching for results that contain multiple terms. It is equivalent to the
AND (intersection) logical operator, regardless of the order. For the country named “United Arab
Emirates,” you would get the following result:

FT.SEARCH country_idx 'United Emirates Arab' RETURN 0
1) (integer) 1
2) "country:are"

If the order of the terms is important, you can add the INORDER argument:

FT.SEARCH country_idx 'United Emirates Arab' RETURN 0 INORDER
1) (integer) 0

And if you want no intermediate or a maximum number of terms between the terms to be matched
in the query, you can set SLOP accordingly to indicate this:

FT.SEARCH country_idx 'United Emirates' RETURN 0 INORDER SLOP 0
1) (integer) 0
FT.SEARCH country_idx 'United Emirates' RETURN 0 INORDER SLOP 1
1) (integer) 1
2) "country:are"

To compose a query that will retrieve those results with the desired terms, you can use multiple modifiers:

FT.SEARCH country_idx "@region:europe @headofstate:carlo" RETURN 2
name headofstate

Union of results (OR)

Using the pipe (|) symbol, it is possible to perform the union of the results. So, we can research the
results that contain at least one of the terms:

FT.SEARCH country_idx "@region:europe | @region:america" NOCONTENT
LIMIT 0 100

We can use the equivalent and more compact syntax:

FT.SEARCH country_idx "@region:(europe|america)" NOCONTENT LIMIT 0 100

We can also compose a query with an AND operator to filter the results further:

FT.SEARCH country_idx "@name:(Spain|Italy) @region:'Southern Europe'"
RETURN 2 name region

Storing and querying documents in Redis Stack 137

Searching for the same term in multiple fields is also possible using the pipe symbol. A valid example
would be performing a search in the title and the content of a document. Sticking to the country
examples, it would look something like this:

FT.SEARCH country_idx "@name|localname:Ital*" RETURN 2 name localname

Exact query matches

You can also add additional quotation marks if you’re looking for an exact query match:

FT.SEARCH country_idx 'United Emirates' RETURN 0
1) (integer) 1
2) "country:are"
FT.SEARCH country_idx '"United Emirates"' RETURN 0
1) (integer) 0

As you can see, if the country is stored as “United Arab Emirates,” then it is not returned if we introduce
the quotes to get an exact match.

Stop words

If we would like to look for “Trinidad and Tobago” by specifying the terms “Trinidad and Tobago,”
the exact match would return an error:

FT.SEARCH country_idx '"Trinidad and Tobago"' RETURN 0
(error) Syntax error at offset 10 near and

The reason is that the term “and” is excluded from indexing. This is the default configuration of an
index: the following terms are not indexed because they don’t provide relevant information to an index
and a search, and the query should not include them. These terms are referred to as stop words. By
default, they are as follows:

a,    is,    the,   an,   and,  are, as,  at,   be,   but,  by,   for,
if,   in,    into,  it,   no,   not, of,  on,   or,   such, that,
their, then, there, these, they, this, to,  was, will, with

You can configure your desired stop words or exclude them all at once by recreating the index with
the STOPWORDS 0 argument. The former search without stop words would return the following:

FT.SEARCH country_idx '"Trinidad and Tobago"' RETURN 0
1) (integer) 1
2) "country:tto"

Redis Stack as a Document Store138

Negation and purely negative queries

You can exclude results from your search by using the - symbol on the desired modifier:

FT.SEARCH country_idx "@region:europe -@region:'Southern Europe'"
RETURN 1 name LIMIT 0 100

You can also perform purely negative queries:

FT.SEARCH country_idx "-@region:'Southern Europe'" RETURN 1 name LIMIT
0 100

Prefix, infix, and suffix queries

Case-insensitive prefix, infix, and suffix queries can be executed by using the * symbol:

FT.SEARCH country_idx "@name:'hond*'" RETURN 2 name headofstate

FT.SEARCH country_idx "@name:'*dura*'" RETURN 2 name headofstate

FT.SEARCH country_idx "@name:'*uras'" RETURN 2 name headofstate

Wildcard matching

Wildcard matching is possible using the ? symbol, matching a single character, or *, for any character
that repeats 0 or more times:

FT.SEARCH country_idx "@name:'*ndura?'" RETURN 2 name headofstate

Note
Note that when using DIALECT 2, the wildcard pattern is expressed as follows (forcing
DIALECT 2 inline for demonstrative purposes):

FT.SEARCH country_idx "@name:w'*ndura?'" RETURN 2 name headofstate
DIALECT 2

Fuzzy matching

Redis Stack supports fuzzy matching, which permits approximate matching of search terms based on
the Levenshtein distance, which measures the difference between terms. Oversimplifying the theory,
the Levenshtein distance is equivalent to the number of single-character edits to turn one string into
another. Here are some examples:

•	 The distance between back and black is 1

Storing and querying documents in Redis Stack 139

•	 The distance between understanding and undestandig is 2

•	 The distance between crystal and ctal is 3

Fuzzy matching in Redis Stack is based on the Levenshtein distance and is executed by surrounding
the search term with the % symbol several times equal to the maximum distance of the resulting terms.
Here are some examples of fuzzy matching:

FT.SEARCH country_idx "@name:%hondras%" RETURN 1 name
1) (integer) 1
2) "country:hnd"
3) 1) "name"
   2) "Honduras"
FT.SEARCH country_idx "@name:%%hondur%%" RETURN 1 name
1) (integer) 1
2) "country:hnd"
3) 1) "name"
   2) "Honduras"

Numeric filters

With Redis Stack, it is possible to create indexes to perform numeric-based filtering or range searches.
Continuing with the series of examples to extract relevant data from our World dataset, we can write
either a modifier-based syntax or use the FILTER argument, so the following two queries are equivalent:

FT.SEARCH country_idx "@region:'Southern Europe' @population:[50000000
+inf]" RETURN 1 name
FT.SEARCH country_idx "@region:'Southern Europe'" FILTER population
50000000 +inf RETURN 1 name

You can use -inf and +inf to specify unbounded limits, and you can exclude the boundaries (by
default, they are included) using parenthesis, as shown in the following example:

FT.SEARCH country_idx "@region:'Southern Europe'" FILTER population
(39441700 +inf RETURN 1 population

Tag filters

It is possible to classify and search documents with labels, categories, versions, serial numbers/
identifiers, genre, style, color, features, and more. Tag filters come to the rescue here:

FT.SEARCH country_idx '@governmentform:{monarchy}' RETURN 1 name LIMIT
0 100

Redis Stack as a Document Store140

We can specify that we desire the intersection or the union as usual:

FT.SEARCH country_idx '@governmentform:{monarchy|republic}' RETURN 1
name LIMIT 0 100

We can compose the query with several modifiers and filters:

FT.SEARCH country_idx '@governmentform:{republic} @population:[-inf
100000]' RETURN 2 name surfacearea LIMIT 0 3 SORTBY surfacearea ASC

Using the examples proposed so far, you will be able to address the majority of query and search
problems to extract the relevant information from your data. Let’s use this simple World dataset once
more by feeding query results to a pipeline of operations for aggregation, sorting, and transformation
using the FT.AGGREGATE command.

Geospatial filters

Real-time tracking systems, which require real-time geographical positions to be processed and
displayed, have long been supported by the GEO field in indexed Hash and JSON documents.

Redis Stack 7.2 enhances geospatial capabilities and introduces the ability to model polygons while
maintaining compatibility with the GEO type. At the time of writing, the new GEOSHAPE index field
type can model points and polygons. In particular, you can decide whether to model geometries as
geographical entities or not using the corresponding coordinates:

•	 SPHERICAL, to specify longitude and latitude coordinates

•	 FLAT, to specify the X and Y coordinates on a Cartesian plane

Using the FLAT coordinate systems, we can model geometries on a Cartesian plane and store them
in the database. The index can be created as follows:

FT.CREATE polygon_idx PREFIX 1 shape: SCHEMA g GEOSHAPE FLAT t TEXT

Once the index has been created, we can model and store geometries. The currently supported format
to describe the geometries is the Well-Known Text (WKT) format, a text markup language format.
As an example, a point in the WKT format has the following syntax:

POINT (-73.9857 40.7484)

The two following commands create two shapes: a triangle and a square. Note that the polygons must
be closed – the first and the last point must match:

HSET shape:1 t "this is a triangle" g "POLYGON((2 2, 6 8, 10 2, 2 2))"
HSET shape:2 t "this is a square" g "POLYGON((3 3, 3 7, 7 7, 7 3, 3
3))"

Storing and querying documents in Redis Stack 141

Points can be modeled with the POINT keyword:

HSET shape:point:1 g 'POINT(3 3)'
HSET shape:point:2 g 'POINT(14 14)'

Having inserted a few geometries into the database, we can now test relations. Currently, the CONTAINS
and WITHIN relations are supported, and more are under development.

In this example, the CONTAINS clause returns the documents containing the query geometry:

127.0.0.1:6379> FT.SEARCH polygon_idx "@g:[CONTAINS $poly]" PARAMS 2
poly 'POLYGON((6 6, 6 7, 7 7, 7 6, 6 6))' DIALECT 3
1) (integer) 1
2) "shape:2"
3) 1) "t"
   2) "this is a square"
   3) "g"
   4) "POLYGON((3 3, 3 7, 7 7, 7 3, 3 3))"

WITHIN, on the other hand, returns all the geometries within a certain area, which is a point in the
following example:

127.0.0.1:6379> FT.SEARCH polygon_idx "@g:[WITHIN $poly]" PARAMS 2
poly 'POLYGON((13 13, 13 15, 15 15, 15 13, 13 13))' DIALECT 3
1) (integer) 1
2) "shape:point:2"
3) 1) "g"
   2) "POINT(14 14)"

New and powerful use cases can be implemented with these new geospatial capabilities thanks to the
combined searches and queries on multiple fields that are defined in the index.

Aggregation and transformation

Using Redis Stack, you can query the database as usual and manipulate the results that are returned
by your queries by aggregating, transforming, filtering, and sorting them in cascade, in a pipeline
fashion. For example, to group countries by continent, we would use the GROUPBY clause to group
the results based on the corresponding property (in the same way as the “GROUP BY” SQL statement
does). In addition to grouping the results, we need to represent the groups with a single record that’s
been computed using the desired reducer, introduced by the REDUCE clause.

Redis Stack as a Document Store142

Then, to discover the flexibility of data aggregation in Redis Stack, we can compute the total population
per continent and return the most populated one. You can write such a query and aggregate the results
using an FT.AGGREGATE request that has the following syntax:

FT.AGGREGATE country_idx *
GROUPBY 1 @continent
REDUCE SUM 1 @population AS population
SORTBY 2 @population DESC
LIMIT 0 1
1) (integer) 7
2) 1) "continent"
   2) "Asia"
   3) "population"
   4) "3705025700"

Taking this example a step further, if we would like to compute the population density by continent
and sort the results, we would execute a transformation that uses the APPLY argument and the desired
expression or function:

FT.AGGREGATE country_idx *
GROUPBY 1 @continent
REDUCE SUM 1 @population AS tot_pop
REDUCE SUM 1 @surfacearea AS tot_sur
APPLY "floor(@tot_pop/@tot_sur)" AS people_per_km2
SORTBY 2 @people_per_km2 DESC
LIMIT 0 1
1) (integer) 7
2) 1) "continent"
   2) "Asia"
   3) "tot_pop"
   4) "3705025700"
   5) "tot_sur"
   6) "31881005"
   7) "people_per_km2"
   8) "116"

Finally, we can filter the results using a FILTER expression, which is evaluated at the end of the
pipeline and can be used to retain the desired results:

FT.AGGREGATE country_idx *
GROUPBY 1 @continent
REDUCE SUM 1 @population AS tot_pop
REDUCE SUM 1 @surfacearea AS tot_sur
APPLY "floor(@tot_pop/@tot_sur)" AS people_per_km2

Storing and querying documents in Redis Stack 143

SORTBY 2 @people_per_km2 DESC
FILTER "@continent=='Europe'"
1) (integer) 7
2) 1) "continent"
   2) "Europe"
   3) "tot_pop"
   4) "730074600"
   5) "tot_sur"
   6) "23049133.9"
   7) "people_per_km2"
   8) "31"

Cursor-based requests

Another feature of aggregations is their support for cursor-based FT.AGGREGATE requests, enabling
users to consume only a part of the results. The advantage of using cursors compared to requesting
partial results with the LIMIT sub-command is that with cursors, the query is computed only once,
and the results are stored on the server and consumed by the client in iterations. As an example, let’s
aggregate cities by country and return batches of five countries:

FT.AGGREGATE city_idx * WITHCURSOR COUNT 5 GROUPBY 1 @countrycode
1) 1) (integer) 232
   2) 1) "countrycode"
      2) "swz"
   3) 1) "countrycode"
      2) "are"
   4) 1) "countrycode"
      2) "blr"
   5) 1) "countrycode"
      2) "kna"
   6) 1) "countrycode"
      2) "shn"
2) (integer) 1032568724

This command reports the total number of results (232), some results (5, as indicated by the COUNT
argument), and the next cursor to be invoked. We can read from the existing cursor using the
FT.CURSOR command. By default, the number of results returned by FT.CURSOR is the same as
indicated in FT.AGGREGATE, which originated at the cursor – 5, in this example:

FT.CURSOR READ city_idx 1032568724
1) 1) (integer) 0
   2) 1) "countrycode"
      2) "syc"
   3) 1) "countrycode"

Redis Stack as a Document Store144

      2) "tkm"
   4) 1) "countrycode"
      2) "mkd"
   5) 1) "countrycode"
      2) "pse"
   6) 1) "countrycode"
      2) "plw"
2) (integer) 1032568724

We can override the value of COUNT when reading from the cursor:

FT.CURSOR READ city_idx 1032568724 COUNT 3
1) 1) (integer) 0
   2) 1) "countrycode"
      2) "mys"
   3) 1) "countrycode"
      2) "msr"
   4) 1) "countrycode"
      2) "myt"
2) (integer) 1032568724

Repeating the read operation will return different results until we fetch all of them, and the cursor
will indicate that the iteration has concluded, reporting a value of 0:

FT.CURSOR READ city_idx 1032568724
1) 1) (integer) 0
   2) 1) "countrycode"
      2) "ner"
   3) 1) "countrycode"
      2) "irq"
2) (integer) 0

The cursor uses resources on the database, and it is removed in one of the following situations:

•	 If not consumed, the cursor will time out after 300 seconds. This timeout can be configured
with MAXIDLE.

•	 When the results are entirely consumed, the cursor is deleted automatically and resources
are freed.

•	 On demand with the FT.CURSOR DEL command.

Faceted search using aggregations

We have considered the capability to perform searches and obtain results that have been aggregated by
an attribute of a certain item, such as shirts in a retail store, aggregated by color or brand, and returning

Storing and querying documents in Redis Stack 145

the cardinality for the products in the store. In addition to modeling one attribute per TAG, we can
perform a faceted search by modeling multiple categories using a flat string with all the categories
(such as cotton, wool, spandex, polyester, flannel, and more) separated by a comma or other separator.

We could also specify some laundry recommendations, such as handwash, no bleach, machine
wash, and no iron. If we would like to get clothes classified by individual categories, we can use the
FT.AGGREGATE command on the dataset and the split function on this flat comma-separated
list of categories indexed as TAG. Let’s create a new index to see an example:

FT.CREATE product_idx
PREFIX 1 item:
SCHEMA laundry TAG SEPARATOR "," SORTABLE

Let’s add some shirts to our store, including laundry recommendations as a single comma-separated
list of values:

HSET item:1 Name "Cotton Shirt" laundry "handwash,iron"
HSET item:2 Name "Polo Shirt" laundry "machinewash,handwash,nobleach"
HSET item:3 Name "Cotton T-Shirt" laundry "machinewash,nobleach"
HSET item:4 Name "Polo Shirt" laundry "machinewash,iron"

The desired aggregation will get the clothes grouped by laundry recommendation; this should include
the cardinality of the items per category. Resolving this requirement is as easy and efficient as running
the following statement to classify and count the shirts per laundry recommendation:

FT.AGGREGATE product_idx *
APPLY "split(@laundry)" AS laundry_recommend
GROUPBY 1 @laundry_recommend
REDUCE COUNT 0 AS num_per_ctg
SORTBY 2 @num_per_ctg ASC
1) (integer) 4
2) 1) "laundry_recommend"
   2) "handwash"
   3) "num_per_ctg"
   4) "2"
3) 1) "laundry_recommend"
   2) "iron"
   3) "num_per_ctg"
   4) "2"
4) 1) "laundry_recommend"
   2) "nobleach"
   3) "num_per_ctg"
   4) "2"
5) 1) "laundry_recommend"
   2) "machinewash"

Redis Stack as a Document Store146

   3) "num_per_ctg"
   4) "3"

The ability to group, reduce, transform, and filter the data offers flexibility and real-time performance
to present results in the desired format and enables several use cases, ranging from faceted search
to reporting. In the documentation, you will find the list of supported GROUPBY reducers, as well as
the functions that can be used in APPLY expressions.

The documentation also specifies additional examples, including optional terms, query attributes (to
customize the behavior of only certain clauses of a query), and more alternatives to address specific
data retrieval requirements, such as vector similarity search, which will be discussed in the next
chapter. Refer to the Query syntax document at https://redis.io/docs/stack/search/
reference/query_syntax.

Updating an index in production

Sometimes, you need to update the data model of your application, which means you have to modify
the schema of your physical data model. This translates into adding, removing, or modifying attributes
in the database, and recalculating the indexes. This is nothing too infrequent, but like all changes, this
comes with a price. While modifying the clients to manage the changed data model is in the hands of
the developer, the database must support a smooth transition to the newer data model, where a new
schema comes into play and indexes are updated. Redis Stack allows you to work with schema-less
data structures, so if all of a sudden you require new field-value pairs to be added to a Hash, or new
properties injected into a JSON object, you can go ahead and make the change. However, the index
related to the data structure may need to be updated if the new attribute needs to be searchable. Redis
Stack supports two methods to reconfigure indexes.

FT.ALTER

Using the FT.ALTER command, we can add new attributes to the index, causing the existing documents
in the index to be scanned to add the new attribute. Referring to the World dataset we’ve considered so
far, let’s support an additional search by district, not included in the former city_idx index. You can
verify that a search by an arbitrary district does not return any result because districts are not indexed:

FT.SEARCH city_idx @district:{Marche}
1) (integer) 0

Using the FT.ALTER command, we will add the attribute to the index:

FT.ALTER city_idx SCHEMA ADD District AS district TAG
OK

https://redis.io/docs/stack/search/reference/query_syntax
https://redis.io/docs/stack/search/reference/query_syntax

Storing and querying documents in Redis Stack 147

Finally, we can verify that the document has been indexed correctly:

FT.SEARCH city_idx @district:{Marche} NOCONTENT
1) (integer) 2
2) "city:1506"
3) "city:1521"

This command does not support deleting or updating attributes, so if you want to do that, you should
drop and recreate the index using a new index definition. Note that this may not be desired in a
production environment. If you need the flexibility to change the index at will without disruption,
you may want to use the FT.ALIAS command, as explained in the next section.

FT.ALIAS

You can connect your index to an alias and use the alias in your applications. This allows you to create
a new index with the desired schema, where this new index is meant to replace an older version of
the index. Once you’re ready, you can point the alias to the new index so that the application can use
it transparently. Let’s consider an example. First, let’s associate our current index (if you are following
on from the previous example, drop it and recreate it) with an alias:

FT.ALIASADD city_alias_idx city_idx

Then, let’s verify that the alias can be used but does not return the desired result:

FT.SEARCH city_alias_idx @district:{Marche} NOCONTENT
1) (integer) 0

Now, we will create a brand-new index called city_new_idx that includes the new District
attribute in the schema:

FT.CREATE city_new_idx
ON HASH
PREFIX 1 city:
SCHEMA Name AS name TEXT
CountryCode AS countrycode TAG SORTABLE
District AS district TAG
Population AS population NUMERIC SORTABLE

Now, we can reconnect the alias to the new index using the FT.ALIASUPDATE command:

FT.ALIASUPDATE city_alias_idx city_new_idx

Redis Stack as a Document Store148

Finally, we can verify that the search operation now returns the expected result:

FT.SEARCH city_alias_idx @district:{Marche} NOCONTENT

1) (integer) 2
2) "city:1506"
3) "city:1521"

This method applies changes to indexes transparently and does not cause any client disruption.

Temporary indexes

If you would like to perform search operations on temporary data, you can create a temporary index
using the TEMPORARY keyword. A temporary index will expire after the desired number of seconds
of inactivity. We have discussed ephemeral search, and we have seen that the index can be created and
dismissed together with the documents by using the FT.DROPINDEX command and the DD option.
A TEMPORARY index automates index and related document removal. Create the index as follows:

FT.CREATE user:241245:idx
ON HASH
PREFIX 1 user:241245
TEMPORARY 5
SCHEMA Name AS name TEXT
Id AS id TEXT
Quantity AS quantity NUMERIC

If you check the information for this index after more than 5 seconds, you will see that the index
has disappeared:

FT.INFO user:241245:idx

(error) Unknown Index name

Additional commands

In this section, we discovered several features we can use to write queries against a basic database, but
you can do more using additional commands. If you would like to get the entire list of indexed tags
that are stored in the index for an attribute, you can do that easily:

FT.TAGVALS city_idx countrycode

  1) "abw"
  2) "afg"
  3) "ago"
...

Working with Hashes 149

You can also list the existing indexes that Redis Stack is managing:

FT._LIST

1) "country_idx"
2) "city_idx"

You can also understand the execution plan of a complex query:

FT.EXPLAINCLI country_idx '@governmentform:{republic} @population:[-
inf 100000]' RETURN 2 name surfacearea

1) INTERSECT {
2)   TAG:@governmentform {
3)  republic
4)   }
5)   NUMERIC {-inf <= @population <= 100000.000000}
6) }
7)

Refer to the documentation to consult the full list of FT.* commands.

We’ll conclude this section by reminding you that Redis Stack is built on top of Redis, and it extends
the classic key-value data modeling capability with support for real-time document querying and
searching. Now, let’s dive into the Hash and JSON data structures to learn how to put the features
we’ve covered so far into practice and create powerful applications with them.

Working with Hashes
The capabilities we’ve introduced so far have been explored through concise examples using cities
and countries from the World dataset. In this section, we’ll consider a full-fledged use case, such as
an application that stores and searches documents: a knowledge base (along the same lines, we could
think of a learning management system, a blogging platform, or a generic and extensible content
management system (CMS) or even a customer relationship management (CRM) tool). This kind
of application works pretty well to present a walk-through of Redis Stack when used as a document
store as we need solid classification and search capabilities to provide the best user experience,
together with friendly user flows and, as usual, the real-time performance that is only possible when
all the data is stored in the main memory. Let’s proceed to imagine what data we would store in our
knowledge base to model a document:

•	 The title.

•	 The content of the document, whatever the format is: HTML, Markdown, and unformatted
text, to name a few.

Redis Stack as a Document Store150

•	 Document creation and update specified as Unix timestamps (so, the number of seconds since
January 1, 1970). This is a popular format for storing timestamps, provided it is easily sortable
and does not leave room for misleading time zone interpretations.

•	 The author of the document, or whoever introduced the document in the database.

•	 The owner of the document – that is, an accountable person that is maintaining the document.

•	 Comma-separated tags (the comma is the default separator, but this can be changed depending
on the index definition).

•	 The state of the document: draft, review, published, archived, or deleted.

•	 The privacy setting of the document, either internal or public, or any other label to define who
should see the document. This can be a single person, a team, or a custom permission.

You can import the simple KnowledgeBase dataset with 20 documents as follows:

cat kb.txt | redis-cli

Verify that the dataset has been imported by getting the entire content for a single document:

HGETALL kb:aasd999vod
 1) "update"
 2) "1634121118"
 3) "content"
 4) "It is always recommended to use connection pooling, otherwise,
each request will open a new connection. This exposes you to many
possible momentary problems that could prevent the opening of the
connection. In addition, if you make many requests, you will be
frequently opening and closing connections, operations that might fail
from time to time."
 5) "type"
 6) "q&a"
 7) "privacy"
 8) "public"
 9) "owner"
10) "73kd94jh5v2p9dh583ld"
11) "title"
12) "Should connection pooling be used?"
13) "creation"
14) "1627474864"
15) "tags"
16) "connectivity, client, connection, pooling"
17) "author"
18) "73kd94jh5v2p9dh583ld"
19) "state"
20) "published"

Working with Hashes 151

The dataset includes the statement to create the kb_idx index and is written as follows:

FT.CREATE kb_idx
ON HASH
PREFIX 1 kb:
SCHEMA title AS title TEXT
content AS content TEXT
creation AS creation NUMERIC SORTABLE
update AS update NUMERIC SORTABLE
tags AS tags TAG SORTABLE
privacy AS privacy TAG
state AS state TAG
author AS author TAG
owner AS owner TAG
type AS type TAG

The kb_idx index enables the following:

•	 Full-text search on the title and the content

•	 Tag search to filter the documents based on the tags, privacy, state, type, author, and owner

•	 Numeric searches based on the creation and last update timestamp

An example of searching for the desired documents in our database would be by a search term:

FT.SEARCH kb_idx "scalability" RETURN 1 title
1) (integer) 1
2) "kb:vvnoino242"
3) 1) "title"
   2) "Scalability Configuration for Redis Cloud Databases"

We could search for the most recently updated document using the following code:

FT.SEARCH kb_idx * RETURN 1 update SORTBY update DESC LIMIT 0 1
1) (integer) 20
2) "kb:243oifoiff"
3) 1) "update"
   2) "1672339442"

While the FT.AGGREGATE command is usually adopted to perform aggregations, we can take advantage
of the transformation functions, as shown in the following example, and get the latest update timestamp.
To format the timestamp as desired, we can use APPLY with the standard strftime formatting options:

FT.AGGREGATE kb_idx * APPLY "timefmt(@update, '%c')" AS human_readable
SORTBY 2 @update DESC LIMIT 0 1
1) (integer) 20

Redis Stack as a Document Store152

2) 1) "update"
   2) "1672339442"
   3) "human_readable"
   4) "Thu Dec 29 18:44:02 2022"

In this example, the timestamp is formatted with the %c code, which provides a date and time
representation using the current locale. Another handy feature offered by FT.AGGREGATE is the
ability to perform numeric sorts on multiple fields. This can be seen in the following example, where
we specify a search term and sort by the two numeric indexes, creation and update:

FT.AGGREGATE kb_idx "delete" APPLY "timefmt(@update, '%c')" AS human_
readable SORTBY 4 @update DESC @creation DESC LIMIT 0 2
1) (integer) 4
2) 1) "update"
   2) "1668789612"
   3) "human_readable"
   4) "Fri Nov 18 16:40:12 2022"
   5) "creation"
   6) "1639641925"
3) 1) "update"
   2) "1645323476"
   3) "human_readable"
   4) "Sun Feb 20 02:17:56 2022"
   5) "creation"
   6) "1582566809"

Going back to using FT.AGGREGATE with GROUPBY, we can find the two authors who made the
last updates to their documents:

FT.AGGREGATE kb_idx * GROUPBY 1 @author REDUCE MAX 1 @update as last_
updated APPLY "timefmt(@last_updated, '%c')" AS human_readable LIMIT 0
2 SORTBY 2 @last_updated DESC
1) (integer) 3
2) 1) "author"
   2) "73kd94jh5v2p9dh583ld"
   3) "last_updated"
   4) "1672339442"
   5) "human_readable"
   6) "Thu Dec 29 18:44:02 2022"
3) 1) "author"
   2) "74uvk593odt6g9h5fukv"
   3) "last_updated"
   4) "1671674172"
   5) "human_readable"
   6) "Thu Dec 22 01:56:12 2022"

Working with Hashes 153

The strength of the FT.AGGREGATE command is in (mind the repetition!) aggregations, so we could
use it to provide an overview of the types of documents, as follows:

FT.AGGREGATE kb_idx * GROUPBY 1 @type REDUCE COUNT 0 AS docs
1) (integer) 3
2) 1) "type"
   2) "troubleshooting"
   3) "docs"
   4) "2"
3) 1) "type"
   2) "how-to"
   3) "docs"
   4) "12"
4) 1) "type"
   2) "q&a"
   3) "docs"
   4) "6"

Aggregating results using the document type attribute (or facet) is a useful option for users to refine
the search and is finalized by retrieving the desired content in the shortest time possible. In the next
few sections, we will dive into the optional features we can use to customize the queries using the
related arguments and showcase some use cases with practical examples.

Highlighting and summarizing

Sometimes, you would like to propose a series of results to the users, in which you present an excerpt
of the documents returned by the search operation with the search terms highlighted in some way
(typically boldened), much like an internet search engine. Using the HIGHLIGHT argument of
the FT.SEARCH command, you can instruct the database to highlight the search terms using the
desired text format, such as the HTML bold tags, and , if the text must be rendered by a
web browser or any other format, depending on the rendering engine. A simple example would be
using the following syntax:

FT.SEARCH kb_idx "delete keys" RETURN 1 content HIGHLIGHT TAGS ""
"" LIMIT 0 1
1) (integer) 4
2) "kb:2axgd318xp"
3) 1) "content"
   2) "Check the slow log looking for EVALSHA, HGETALL, HMGET,
MGET, and all types of SCAN commands. Lower the slow log threshold
to capture more slow commands. Verify the size of keys
using redis-cli --bigkeys. Delete huge keys using
the asynchronous UNLINK rather than deleting keys using the
synchronous DEL. Verify that LUA scripts do not keep the state machine
busy with long executions."

Redis Stack as a Document Store154

Note how the desired tags enclose the relevant search terms. Also, note that variations of the search
terms, such as “deleting,” are highlighted. The reason is that Redis Stack supports stemming – that is,
base forms for the words are added to the index, so in this example, both “delete” and “deleting” are
good matches and the related documents are returned. Redis Stack uses the Snowball stemmer library,
which includes most European languages. You can learn more from Snowball’s website at https://
snowballstem.org/.

If you would like to perform an exact FT.SEARCH search, you can discard variants by disabling
stemming using the optional VERBATIM argument. You can entirely disable stemming for an attribute
in an index using the NOSTEM argument when creating the index with FT.CREATE, so no variants
will be considered when indexing a term.

In addition to highlighting results, you can request the database to summarize them and configure
the results by number of fragments, number of fields to summarize, and more:

FT.SEARCH kb_idx "delete keys" RETURN 1 content SUMMARIZE HIGHLIGHT
TAGS "" "" LIMIT 0 2
1) (integer) 4
2) "kb:2axgd318xp"
3) 1) "content"
   2) "commands. Verify the size of keys using redis-cli
--bigkeys. Delete huge keys using the asynchronous
UNLINK rather than deleting keys using the synchronous... "
4) "kb:uiuu43hib7"
5) 1) "content"
   2) "using DEL to delete large keys, it is possible
to increase the latency when the target is a huge key. Try
replacing DEL with UNLINK... this command is very similar to DEL: it
deletes the specified keys. Just like DEL, a key
is ignored if it does not exist. However, the... "

Using the highlighting and summarizing features will allow you to present results so that users can see
whether their search was good enough. If not, the user can decide to refine the search by specifying
additional filters on tags, type of document, or other custom attributes.

Synonyms support

We cannot anticipate what search terms will be employed by users to locate the desired documents
in our database. Imagine a scenario where a user wants to know how to perform a delete operation
but specifies the “removal” search term. This term is not included in either the titles or the contents
of the indexed documents, and because of this, no result is returned:

127.0.0.1:6379> FT.SEARCH kb_idx removal NOCONTENT
1) (integer) 0

https://snowballstem.org/
https://snowballstem.org/

Working with Hashes 155

However, if the user uses the right (and indexed) “delete” search term, four documents will be returned:

127.0.0.1:6379> FT.SEARCH kb_idx delete NOCONTENT
1) (integer) 4
2) "kb:2axgd318xp"
3) "kb:uiuu43hib7"
4) "kb:fworouwiuv"
5) "kb:vuu7887877"

We want to avoid such situations and be able to improve the user experience when a user is browsing
our website to retrieve useful content. Redis Stack offers the option to create a dictionary of synonyms
by complementing the index with synonyms. So, in this example, if we estimate that a user would
use similar but different terms to find out how to perform a deletion, we can create a group of terms:

127.0.0.1:6379> FT.SYNUPDATE kb_idx del_group delete deletion remove
removal purge
OK

As soon as the group is created, the search is successful:

127.0.0.1:6379> FT.SEARCH kb_idx removal NOCONTENT
1) (integer) 3
2) "kb:2axgd318xp"
3) "kb:vuu7887877"
4) "kb:uiuu43hib7"

Improving the user experience is crucial to the success of your service. You can start collecting those
search terms that return no results, store them (in a Redis Set, List, or a Sorted Set to count the repetitions
of the failed searches caused by a certain term), and create synonym groups after a review. This iterative
process will lead you to better engagement and increase the chances of users returning to the portal.

Spellchecking

Increasing the chances of users retrieving what they are looking for will also require you to manage the
discrepancy between what users would like to search and what users type in your input form. Typos
are frequent, and an innocent oversight by the user can compromise the experience when they’re
using your application. The spellchecking feature is yet another useful asset for guessing the desired
search terms in the presence of misspellings and providing feedback to the users in the usual form –
that is, “You have searched for… did you mean…?” You can even automate the decision and present
results based on the most likely terms, as suggested by the spellchecker. An example of introducing
spellchecking in the search pipeline could be to test the terms as follows:

FT.SPELLCHECK kb_idx "Redis Stack" DISTANCE 1
(empty array)

Redis Stack as a Document Store156

And if they are good, go ahead with the FT.SEARCH command. If the spellchecker returns suggestions,
you may replace words and try the search with the corrected words:

FT.SPELLCHECK kb_idx "Reds Stak" DISTANCE 1
1) 1) "TERM"
   2) "reds"
   3) 1) 1) "0.80000000000000004"
         2) "redis"
2) 1) "TERM"
   2) "stak"
   3) 1) 1) "0.14999999999999999"
         2) "stack"

Based on the previous example, we could just get the suggested search terms and go ahead with the
search operation, transparently, and maybe inform the user that the terms were rectified. You can
refine the precision of the spellchecker by managing the desired dictionary via the FT.DICTADD,
FT.DICTDEL, and FT.DICTDUMP commands, which add, remove, and dump the desired terms
from the spellchecking dictionary, respectively.

Auto-completion

If you would like to propose results, anticipating the input by the user on a form input field, you don’t
need to develop a complex frontend implementation of auto-completion – you can use Redis Stack’s
auto-completion feature. You would use auto-completion when, for example, the user expects a
concrete option out of a discrete number of results (this could be an airline, a color, a brand, a label,
and so on). To use this feature, you need to create a dictionary of auto-complete suggestions:

FT.SUGADD tag_suggestions "oss" 1
(integer) 1
FT.SUGADD tag_suggestions "enterprise" 1
(integer) 2
FT.SUGADD tag_suggestions "scalability" 1
(integer) 3
FT.SUGADD tag_suggestions "connection" 1
(integer) 4
FT.SUGADD tag_suggestions "pooling" 1
(integer) 5

Once you’ve done this, you can query the auto-complete dictionary and get a proposal for the user:

FT.SUGGET tag_suggestions "scala"
1) "scalability"
FT.SUGGET tag_suggestions "conn"
1) "connection"

Working with Hashes 157

As you know, typos are around the corner. So, if you would like to prevent no auto-complete suggestions
from being returned because of user mistakes when typing a term, as in this example, you could resort
to fuzzy suggestions and get results even in the case of typos in the prefix:

FT.SUGGET tag_suggestions "scalbi"
(empty array)

Here’s an example of using fuzzy suggestions:

FT.SUGGET tag_suggestions "scalbi" FUZZY
1) "scalability"

Using fuzzy suggestions may be expensive with dictionaries of considerable size because of the
performance penalty introduced by dictionary traversal. This overhead becomes negligible when
dictionaries are limited in size, and the feature will contribute to maximizing the responsiveness and
usability of your application.

Phonetic matching

Another useful feature when searching for phonetically similar terms, such as names of entities
(you are storing and making a list of employees or cities searchable), is phonetic matching. When
a TEXT field in the index is defined with the PHONETIC attribute, both the term and its phonetic
approximation will be indexed. This contributes to finding results when the spelling is not correct, so
the search is performed based on how a word sounds rather than how it is written. This helps with
retrieving results, even in the presence of typing errors.

For example, using the dataset we’ve considered so far, we may define another index to include phonetic
variations of the city name, as follows:

FT.CREATE city_phonetic_idx
ON HASH PREFIX 1 "city:"
SCHEMA Name AS name TEXT PHONETIC "dm:en"

Then, we can search the index with an intentional misspelling and still be able to retrieve results:

FT.SEARCH city_phonetic_idx Rawma RETURN 1 Name
1) (integer) 2
2) "city:1464"
3) 1) "Name"
   2) "Roma"
4) "city:3388"
5) 1) "Name"
   2) "\xc3\x87orum"

Redis Stack as a Document Store158

Such results would have been omitted by the former index:

FT.SEARCH city_idx Rawma
1) (integer) 0

Managing documents in Redis Stack together with the advanced search capabilities we’ve explored so
far means bringing legacy applications running on Redis and using the Hash data structure to a new
level. In the next section, we’ll go a step further and discover how to develop applications or integrate
Redis Stack with other systems using the standard JSON format.

Working with JSON
The JSON format does not need too much of an introduction. As a JavaScript native object, born for
lightweight communication between web clients and servers, and adopted in general for electronic
communications, it is supported by most client libraries and databases. Redis Stack does not make
exceptions and extends the data modeling capabilities to JSON objects, together with the indexing
features we’ve learned so far. Using the JSON data structure in Redis Stack, you can store, retrieve,
and update JSON documents efficiently using the popular JSONPath syntax. The many commands to
manipulate strings, counters, arrays, and object literals, and all the data stored in a JSON document,
help address the requirements of several data modeling problems.

The JSONPath syntax

The JSONPath syntax helps with accessing a single element or multiple elements within a JSON document.

Using the JSON.* suite of commands together with JSONPath, you can work with the JSON data
structure and perform operations on multiple elements. Examples of using JSONPath, whose complete
documentation can be found online at https://redis.io/docs/data-types/json/
path/, follow.

Let’s store a JSON string, which includes properties (such as the name of an author), arrays (of text,
tags, and numbers of geographical locations), and object literals. It can also store a combination of
these elements, such as an array of objects as a list of books, as shown in the following example:

JSON.SET author:1 $ '{"name":"Stephen King", "genre":["horror",
"suspense", "crime"], "books":[{"isbn":"8845295303","title":"The
Shining", "year":1977},{"isbn":"8820062909","title":"It",
"year":1986},{"isbn":"8845294021", "title":"Carrie", "year":1974}]}'

The root of a document can be accessed using the $ symbol in JSONPath. You can retrieve a value
attached to the root path:

JSON.GET author:1 $.name
"[\"Stephen King\"]"

https://redis.io/docs/data-types/json/path/
https://redis.io/docs/data-types/json/path/

Working with JSON 159

You can access an array by index, where the subscript operator, [], accesses elements in an array:

JSON.GET author:1 $.books[0]
"[{\"isbn\":\"8845295303\",\"title\":\"The Shining\",\"year\":1977}]"

You can also search using a filter condition, using the ?() syntax to specify a filter, and the @ symbol
to indicate to which attributes the filter must be applied, which is isbn in this case:

JSON.GET author:1 '$.books[?(@.isbn=="8845294021")]'
"[{\"isbn\":\"8845294021\",\"title\":\"Carrie\"}]"

You can only retrieve what you need from a JSONPath-based search by using the . (dot) syntax to
select a child element:

JSON.GET author:1 '$.books[?(@.isbn=="8845294021")].title'
"[\"Carrie\"]"

Using the commands from the JSON suite, you can append an element (an object literal, in this
example) to an array:

JSON.ARRAPPEND author:1 $.books '{"isbn":"886836204X","title":"Cujo"}'
4

In this example, we’re iterating over all the object literals stored by an array and extracting the
desired values:

JSON.GET author:1 '$.books.*.title'
["The Shining","It","Carrie","Cujo"]

You also have the option to interact with object literals directly:

JSON.OBJKEYS author:1 $.books[1]
1) 1) "isbn"
   2) "title"
   3) "year"

To conclude this introduction to the JSON data structure, you can format a JSON response in a human-
readable format. Just connect with the command-line interface using the redis-cli –raw option:

JSON.GET author:1 INDENT "\t" NEWLINE "\n" SPACE " " $.books[1]
[
     {
           "isbn": "8820062909",
           "title": "It",
           "year": 1986

Redis Stack as a Document Store160

      }
]

The ability to model data as JSON and access it easily by using the concise JSONPath syntax allows you
to store complex objects in a tree-like structure, with multiple nested levels. This capability, together
with the well-known real-time features of Redis, contributes to simplifying electronic communications
(in particular, between web frontends and backends) and breaking the data impedance mismatch
down. In addition, by putting together JSON data structures with the indexing capabilities of Redis
Stack, we have the full potential to model and search JSON documents.

Indexing a JSON document

JSON documents can be indexed in the same way as Hash documents, using a similar syntax, where
we specify the desired type of index. This means that the equivalent index that we created for the
KnowledgeBase dataset can be written using the following command:

FT.CREATE json_idx
ON JSON
PREFIX 1 json:
SCHEMA  $.title AS title TEXT
$.content AS content TEXT
$.creation AS creation NUMERIC SORTABLE
$.update AS update NUMERIC SORTABLE
$.tags AS tags TAG SEPARATOR "," SORTABLE
$.privacy AS privacy TAG
$.state AS state TAG
$.author AS author TAG
$.owner AS owner TAG
$.type AS type TAG

There are slight changes in the syntax if we compare indexing JSON documents to indexing
Hash documents:

•	 The ON JSON clause defines the type of index to be created

•	 The attributes must be specified with their JSONPath

You can import the simple KnowledgeBase dataset with 20 documents in JSON format as follows:

cat jsonkb.txt | redis-cli

Working with JSON 161

Besides the differences in the syntax to create the index, searching and aggregating the dataset does
not depend on the format of the documents stored in the database. You would write queries like so
for a full-text search:

FT.SEARCH json_idx "scalability" RETURN 1 title
1) (integer) 1
2) "json:vvnoino242"
3) 1) "title"
   2) "Scalability Configuration for Redis Cloud Databases"

You can also aggregate data using the FT.AGGREGATE command:

FT.AGGREGATE json_idx * GROUPBY 1 @type REDUCE COUNT 0 AS docs
1) (integer) 3
2) 1) "type"
   2) "troubleshooting"
   3) "docs"
   4) "2"
3) 1) "type"
   2) "how-to"
   3) "docs"
   4) "12"
4) 1) "type"
   2) "q&a"
   3) "docs"
   4) "6"

Alternatively, you can use the same arguments that we saw when we looked at using Hash, such as
spellchecking, highlighting, summarizing, and others.

While a JSON document can replace a Hash document for the modeling and indexing capabilities we’ve
explored so far, we can go beyond indexing a flat document and create multiple indexes, regardless of
the position and cardinality of the attribute in the document. This means you can index the following:

•	 Arrays of text, tags, numbers, and geographical locations

•	 Individual elements in objects

•	 Multiple values in the document, known as multi-value indexing

•	 Arrays as embeddings, for vector similarity search

Let’s consider a few examples to illustrate JSON’s indexing capabilities.

Redis Stack as a Document Store162

Indexing arrays and objects

To explore how to index and search JSON documents, let’s add some additional data to our database of
authors so that the dataset includes three authors, where each author is associated with genres. Authors
write books, and books are associated with isbn, title, and year details, as well as one or more
genre attributes (stored in an array). Let’s consider three authors. The first has three books listed:

JSON.SET author:1 $ '{"name":"Stephen King", "genre":["horror",
"suspense", "crime"], "books":[{"isbn":"8845295303", "title":"The
Shining", "year":1977, "genre":["suspense"]}, {"isbn":"8820062909",
"title":"It", "year":1986, "genre":["horror"]}, {"isbn":"8845294021",
"title":"Carrie", "year":1974, "genre":["horror"]}]}'

The second author has two books listed:

JSON.SET author:2 $ '{"name":"Javier Marías", "genre":["fiction",
"suspense", "essay"], "books":[{"isbn":"8483465698","title":"Tu rostro
mañana", "year":2007, "genre":["fiction"]}, {"isbn":"8499899714",
"title":"Los Enamoramientos", "year":2011, "genre":["fiction",
"suspense"]}]}'

The third author has just one book listed:

JSON.SET author:3 $ '{"name":"Haruki Murakami",
"genre":["sci-fi", "fantasy", "crime", "novel", "fiction"],
"books":[{"isbn":"8806216465", "title":"Norwegian wood", "year":1987,
"genre":["romance novel"]}]}'

Here are some examples of searches we may want to perform:

•	 Find an author by name

•	 Retrieve authors by genre

•	 Get all the books written in a range of time

•	 Discover what author has written a certain book

We can create the following index to satisfy these requirements:

FT.CREATE author_idx
ON JSON
PREFIX 1 author:
SCHEMA $.name AS name TEXT
$.genre AS genre TAG
$.books[*].year AS year NUMERIC SORTABLE
$.books[*].isbn AS isbn TAG
$.books[*].title AS title TEXT SORTABLE

Working with JSON 163

This definition provides the name index for full-text search, so you can perform this query like so:

FT.SEARCH author_idx @name:stephen RETURN 1 name
1) (integer) 1
2) "author:1"
3) 1) "name"
   2) "Stephen King"

The genre index makes the $.genre array of tags searchable, so you can do the following:

FT.SEARCH author_idx '@genre:{horror}' RETURN 1 name
1) (integer) 1
2) "author:1"
3) 1) "name"
   2) "Stephen King"

The year, isbn, and title indexes have been created on the corresponding individual elements
of the objects in the array of books. So, the following query would return the authors with books
published in a certain range of years:

FT.SEARCH author_idx '@year:[1974, 1980]' RETURN 1 $.name
1) (integer) 1
2) "author:1"
3) 1) "$.name"
   2) "Stephen King"

The following query would perform a full-text search across all authors’ books:

FT.SEARCH author_idx '@title:wood' RETURN 1 title
1) (integer) 1
2) "author:3"
3) 1) "title"
   2) "Norwegian wood"

Multi-value indexing

Another useful feature is the option to create multi-value indexes – that is, indexes of data stored at
different paths, and matched by a JSONPath expression. Before the introduction of the multi-value
indexing method, we could only index JSONPath expressions that resolved into a scalar. Now, we
can do it on paths that return arrays. Let’s introduce this useful feature with an example. Consider
the JSON author:3 object, which defines the genre attributes at the author’s level and the books’
level. We can retrieve each genre qualifier for both the author and the related books as follows:

JSON.GET author:2 $.genre.*
"[\"fiction\",\"suspense\",\"essay\"]"

Redis Stack as a Document Store164

JSON.GET author:2 $.books[*].genre.*
"[\"fiction\",\"fiction\",\"suspense\"]"

We can also merge these with a single query by using .. in the syntax:

JSON.GET author:2 $..genre.*
"[\"fiction\",\"suspense\",\"essay\",\"fiction\",\"fiction\",\"sus-
pense\"]"

With this result in mind – that is, a single JSONPath query returning an array of values (or multiple
scalars using different JSONPath queries) – we can create an index that accounts for such values:

FT.CREATE author_idx
ON JSON
PREFIX 1 author:
SCHEMA $.name AS name TEXT
$..genre.* AS genre TAG
$.books[*].year AS year NUMERIC SORTABLE
$.books[*].isbn AS isbn TAG
$.books[*].title AS title TEXT SORTABLE

The "$..genre.* AS genre TAG” definition will index the values returned by the query
with the .. operator. Finally, we can search both the authors and the books that have a certain value
indexed as TAG:

FT.SEARCH author_idx "@genre:{'romance novel'}" RETURN 1 name
1) (integer) 1
2) "author:3"
3) 1) "name"
   2) "Haruki Murakami"

The previous query returns the only author who has a book classified as romance novel. The
following query returns authors who write fiction:

FT.SEARCH author_idx "@genre:{'fiction'}" RETURN 1 name
1) (integer) 2
2) "author:3"
3) 1) "name"
   2) "Haruki Murakami"
4) "author:2"
5) 1) "name"
   2) "Javier Mar\xc3\xadas"

Multi-value indexing is supported for the TEXT, TAG, GEO, NUMERIC, and VECTOR attributes, boosts
the user search experience, and increases the chances of retrieving the data from multiple paths either
in the document or across documents.

Redis Stack as a recommendation engine 165

Extracting partial data from JSON documents

We have reviewed many indexing techniques and discovered the flexibility of using JSONPath to read,
index, and search different portions of documents. An additional advantage of JSONPath is that it can
be used in the RETURN clause to select what to return for the matched documents.

If we would like to search a document by tag and return its title, we would execute this command:

FT.SEARCH author_idx '@isbn:{8806216465}' RETURN 6 $.name AS Author
'$.books[?(@.isbn=="8806216465")].title' AS Title
1) (integer) 1
2) "author:3"
3) 1) "Author"
   2) "Haruki Murakami"
   3) "Title"
   4) "Norwegian wood"

Wrapping up, JSONPath helps retrieve the desired portion of a JSON document and is an essential
asset to index, search, and retrieve data from a Redis Stack database.

The last type of index that both the Hash and the JSON documents support is the VECTOR type. We
have postponed introducing the indexing of vectors until now because the topic demands a dedicated
chapter, partly due to the innovation that this feature adds to database traditional searches and because
modern use cases can be implemented with it, so it seems better to keep the discussion separate. In
the following section, we will explore what options exist to build a recommendation engine, using
the traditional approach based on scoring functions.

Redis Stack as a recommendation engine
Typically, we would retrieve documents based on their data, which means that we would resort to
different indexing methods to perform a search, such as TEXT, TAG, or NUMERIC. However, to provide
realistic recommendations, we can’t just rely on the content or taxonomy of the information stored in
a database – we must also rely on other methods that take into account the popularity and feedback
from users who may have rated that content. This leads to the introduction of another variable: the
relevance of the results. As an example, if a certain item is rated to be top-quality and affordable, our
database should return this item rather than other items that are inferior or more expensive and sort
the results by relevance.

In addition to searches based on the relevance of the documents, another type of recommendation
can be based on the appearance of an item, or other properties that are also intrinsic, such as a textual
description, an audio file, or other kinds of unstructured data.

Redis Stack provides methods to implement such recommendation engines via scores and similarity search.

Redis Stack as a Document Store166

Recommendation using scores

When creating an index, Redis Stack uses a scoring function to evaluate the relevance of the documents
and present them sorted by score. Redis Stack uses a default scoring function (TF-IDF) but also allows
for other functions (TFIDF.DOCNORM, BM25, DISMAX, DOCSCORE, and HAMMING), all based on
the frequency of the terms that are being researched. It is also possible to extend Redis Stack with a
custom scoring function. Let’s review the default scoring mechanism using some book data samples:

JSON.SET book:8845295303 $ '{"author":1, "title":"The Shining",
"synopsis":"A family heads to an isolated hotel for the winter
where a sinister presence influences the father into violence",
"rating":0.83}'
JSON.SET book:8820062909 $ '{"author":1, "title":"It", "synopsis":"In
1960, seven pre-teen outcasts fight an evil demon who poses as a
child-killing clown. Thirty years later, they reunite to stop the
demon", "rating":0.83}'
JSON.SET book:8845294021 $ '{"author":1, "title":"Carrie",
"synopsis":"Carrie White unleashes her telekinetic powers after being
humiliated by her classmates at her senior prom.", "rating":0.8}'
JSON.SET book:8483465698 $ '{"author":2, "title":"Tu rostro mañana",
"synopsis":"Jaime Deza is a bit adrift in London until his old
friend Sir Peter Wheeler recruits him for a new career in British
Intelligence.", "rating":0.87}'
JSON.SET book:8499899714 $ '{"author":2, "title":"Los Enamoramientos",
"synopsis":"A novel of death and love, The Infatuations goes on to
explore the relationship of the narrator with the widow and with the
death of his best friend Miguel", "rating":0.70}'
JSON.SET book:8806216465 $ '{"author":3, "title":"Norwegian wood",
"synopsis":"The mutual passion of Toru and Naoko is marked by the
tragic death of their best friend years before.", "rating":0.92}'

Now, we can create a new index to search the synopsis:

FT.CREATE books_idx ON JSON PREFIX 1 book: SCHEMA $.synopsis AS
synopsis TEXT

If we want to research those authors that have the term “death” in the synopsis, we can execute the
following search command:

FT.SEARCH books_idx death NOCONTENT
1) (integer) 2
2) "book:8499899714"
3) "book:8806216465"

Considering the context of the relevance of results, you may be wondering why book:8499899714
comes before book:8806216465. For the explanation, you can review the algorithm that’s used
by Redis Stack to compute the scores using the EXPLAINSCORE option:

FT.SEARCH books_idx death NOCONTENT WITHSCORES EXPLAINSCORE
1) (integer) 2

Redis Stack as a recommendation engine 167

2) "book:8499899714"
3) 1) "2"
   2) 1) Final TFIDF : words TFIDF 4.00 * document score 1.00 / norm 2
/ slop 1
    2) 1) (TFIDF 4.00 = Weight 1.00 * TF 2 * IDF 2.00)
4) "book:8806216465"
5) 1) "2"
   2) 1) Final TFIDF : words TFIDF 2.00 * document score 1.00 / norm 1
/ slop 1
    2) 1) (TFIDF 2.00 = Weight 1.00 * TF 1 * IDF 2.00)

As the term “death” appears twice for book:8499899714 but only once for book:8806216465,
book:8499899714 has a higher score, so it is returned as the first result. Note how the score is
1.00 – this is a default value because no score was defined by the index. The EXPLAINSCORE
command gives us some insight into the internals so that we can determine the relevance of results;
however, we are not really in the realm of recommendations because this search was only based on
the content of the document. To introduce the “human factor,” the rating index of the books comes
into play. To this purpose, let’s drop and recreate the index as follows:

FT.CREATE books_idx
SCORE_FIELD $.rating
ON JSON
PREFIX 1 book:
SCHEMA $.synopsis AS synopsis TEXT

This new index instructs the scoring function to consider the user ranking indicated by SCORE_FIELD,
which is expressed as an attribute between 0 and 1:

FT.SEARCH books_idx death NOCONTENT
1) (integer) 2
2) "book:8806216465"
3) "book:8499899714"

Having a look at the explanation, we have the following:

FT.SEARCH books_idx death NOCONTENT WITHSCORES EXPLAINSCORE
1) (integer) 2
2) "book:8806216465"
3) 1) "1.8400000333786011"
   2) 1) Final TFIDF : words TFIDF 2.00 * document score 0.92 / norm 1
/ slop 1
    2) 1) (TFIDF 2.00 = Weight 1.00 * TF 1 * IDF 2.00)
4) "book:8499899714"
5) 1) "1.3999999761581421"
   2) 1) Final TFIDF : words TFIDF 4.00 * document score 0.70 / norm 2

Redis Stack as a Document Store168

/ slop 1
    2) 1) (TFIDF 4.00 = Weight 1.00 * TF 2 * IDF 2.00)

This time, the book’s rating is used as the score to estimate the relevance of the documents, and
not just the default value equal to 1.00. If you decide to sort the results by the desired field using the
SORTBY clause, the scoring mechanism won’t be used.

If you would like to rely entirely on the ratings, it is possible to configure the desired scorer, as in this
example, and the frequency of terms will not be considered:

FT.SEARCH books_idx death NOCONTENT WITHSCORES SCORER DOCSCORE
EXPLAINSCORE
1) (integer) 2
2) "book:8806216465"
3) 1) "0.92000001668930054"
   2) Document's score is 0.92
4) "book:8499899714"
5) 1) "0.69999998807907104"
   2) Document's score is 0.70

Finally, when the search includes more than one attribute to estimate the relevance (the title and the
content of a document, for example), it is possible to boost one or more attributes using the desired
weight when the index is defined. This functionality is delivered by the WEIGHT field option.

The next section concludes this chapter with an overview of Redis Stack as a session store, with a walk-
through of the different options to model session data and the pros and cons of the available options.

Redis Stack as a session store
Now that we have seen the principal features of the two main data structures that can be created, indexed,
and searched in Redis Stack, let’s consider a conclusive example to understand what the Hash and JSON data
structures offer to one of the most classical use cases: the session store. In Chapter 2, Developing Modern Use
Cases with Redis Stack, we highlighted the importance of making session data available outside of the application
server for different reasons, such as the scalability of the session store, high availability, load balancing, and, in
the case of a session store that uses Redis as a backend, achieving real-time performance.

Redis offers many options to store and retrieve data efficiently. However, sessions store different types of
data: metadata, lists, geographical locations, and entire objects. Finding the right data structure, using
low-complexity data access patterns, and managing session expiration in a highly concurrent environment
may be challenging. In this section, we will introduce some ideas for a solid session data management strategy:

•	 Redis Data structures for session data

•	 Modeling key-value pairs

•	 Modeling objects

Redis Stack as a session store 169

•	 Modeling collections

•	 Session management for real-time applications

Redis data structures for session data

Let’s approach session data modeling by introducing the typical data structures that help implement
a physical data model with Redis.

String

Session data can be serialized in a String, a compact format that is also easy to manage. This data
structure is often managed using serializable programming language interfaces, which help map software
objects to strings and deserialize strings back to objects. While strings are a compact format, it is
expensive to serialize and deserialize data. In addition, Redis Strings cannot be indexed by Redis Stack:

GET session:f2423g52
"creationTime:1673122876161;lastAccessedTime:1673122876162"

Hash

The Hash data structure is an intuitive and natural choice for session data as it can be indexed and
allows direct access to properties. However, it does not allow you to nest data, and managing objects
requires expensive serialization and deserialization operations:

HGETALL session:f2423g52
1) "creationTime"
2) "1673122876161"
3) "lastAccessedTime"
4) "1673122876162"

JSON

The JSON data structure offers a compact representation of session data – it allows nested data and
satisfies a vast variety of queries:

JSON.GET session:f2423g52
"{\"lastAccessedTime\":1672475765650, \"creationTime\":1672475765649}"

Additional Redis data structures

Session data can also be saved in other data structures:

•	 Lists, Sets, Sorted Sets, Bitmaps, and more to offer unique features for modeling user information

•	 Data types can be operated with low-complexity commands

Redis Stack as a Document Store170

However, the variety of commands to operate with data structures may generate anti-patterns (recurrent
HGETALL on huge Hashes, time-consuming scans (HSCAN), range searches with many results. and
more). Because of this, data must be indexed to achieve real-time performance, and the indexable
data structures are the Hash and the JSON ones.

Modeling key-value pairs

When it comes to adding key-value pairs to the session, both the Hash and the JSON data structures
are a good fit.

Hash

Key-value pairs are stored in the Hash and the entire session can be retrieved using the HGETALL command:

HGETALL session:aaed7f84-555f-4083-b755-6d424e0c15f9
1) "lastAccessedTime"
2) "1673123039784"
3) "creationTime"
4) "1673123039783"

JSON

The JSON.GET command can be used to retrieve the entire session (as in the following example)
or part of it:

JSON.GET session:ee93af76-796f-4649-9a92-66983aa4def5
"{\"lastAccessedTime\":1673300622,\"creationTime\":1673300622}"

The Hash and the JSON data structures both allow the following:

•	 Direct access to in-session key-value pairs

•	 Indexing for cross-session searches

•	 Queries to retrieve the sessions that were created at a point in time or within a certain period

•	 Sessions tagged by a certain label

•	 Full-text searches on text fields

Modeling objects

The Hash and JSON data structures can store objects when they’ve been transformed, but JSON is a natural
choice for storing multiple nested objects. JSON is more flexible when it comes to indexing and searching:

JSON.GET session:ee93af76-796f-4649-9a92-66983aa4def5
"{\"lastAccessedTime\":1673300622,

Redis Stack as a session store 171

\"creationTime\":1673300622,
\"cart\":[  {\"itemId\":\"hp-2341\",
            \"itemCost\":1990.99,
            \"quantity\":3},
            {\"itemId\":\"MacBook\",
            \"itemCost\":2990.99,
            \"quantity\":15}
        ],

\"Marvel\":\"Avengers\",
\"Disney\":\"Frozen\"}"

Redis Stack can index any nested field of an object (also located at multiple paths, using multi-value
indexing) and perform powerful cross-session searches, so we can provide a solution to the following
search problems:

•	 Search for a specific item in all the shopping carts

•	 Find the biggest orders across carts

•	 Retrieve older or newer carts

•	 Find the idle shopping carts

•	 Retrieve the open sessions close to a location

Modeling collections

Collections can be modeled using Lists, Sets, or Sorted Sets but cannot be indexed. The JSON data
structure is a versatile option as it can store collections that can be indexed for cross-session searches.
An example could be the ability to retrieve the user sessions that have visited a certain web page:

JSON.SET session:28og4f8-2643gf862g4
    $ '{"lastAccessedTime":1672475765650,
        "creationTime":1672475765649,
        "visited":["www.redis.com", "www.google.com"]
        }'
JSON.SET session:np9p09n-9f2743fbavs
    $ '{"lastAccessedTime":1672475765645,
        "creationTime":1672475765549,
        "visited":["www.redis.io", "www.microsoft.com"]
        }'

Redis Stack as a Document Store172

Using JSON, a full-text search can be done on arrays of strings or a JSONPath leading to multiple
strings. Indexing and searching are also possible for arrays of numbers or geographic locations:

FT.CREATE session_idx
ON JSON
PREFIX 1 session:
SCHEMA
$.lastAccessedTime AS lastAccessedTime NUMERIC SORTABLE
$.creationTime AS creationTime NUMERIC SORTABLE
$.visited AS visited TEXT
FT.SEARCH session_idx '@visited:("www.redis.com")' RETURN 1 $.visited
1) (integer) 1
2) "session:28og4f8-2643gf862g4"
3) 1) "$.visited"
   2) "[\"www.redis.com\",\"www.google.com\"]"

Session management for real-time applications

When designing the data model of the session stored in a database, a variety of options are available.
The requirements of a session stored in a database are as follows:

•	 Session TTL can be refreshed and session data expires at will

•	 Lazy loading of partial information from a session

•	 Extensibility to new session objects

•	 Searchable (in-session and cross-session)

In addition, data stored in Redis can be modeled as follows:

•	 Key-value pairs (metadata, attributes, and so on)

•	 Objects (including geographic locations)

•	 Collections (textual, numeric, objects, and so on)

High-performance session management must do the following:

•	 Allow indexing of properties, collections, and object properties

•	 Allow in-session and cross-session indexed searches

Redis Stack as a session store 173

The natural choice to satisfy these requirements is to use the JSON data structure for properties,
collections, objects, and geographical locations while making it possible to extend the session with
additional data structures such as HyperLogLog, Lists, Streams, and more:

{
    "lastAccessedTime":1673354843,
    "creationTime":1673354843,
    "cart":[
        {
            "itemId":"hp-2341",
            "itemCost":1990.99,
            "quantity":3
        },
        {
            "itemId":"MacBook",
            "itemCost":2990.99,
            "quantity":15
        }
    ],
    "location":"34.638,31.79",
    ["www.redis.com","www.google.com"]
}

Session lazy loading

Session data can be partially loaded, thus avoiding the need to transfer bulky session data, which
represents an overhead:

JSON.GET session:28og4f8-2643gf862g4  $.visited
"[[\"www.redis.com\",\"www.google.com\"]]"
JSON.GET session:28og4f8-2643gf862g4  $.lastAccessedTime
"[1672475765650]"

We can retrieve multiple values at once:

JSON.GET session:28og4f8-2643gf862g4 $.lastAccessedTime $.visited
"{\"$.lastAccessedTime\":[1672475765650],\"$.visited\":[[\"www.redis.
com\",\"www.google.com\"]]}"

Multi-object sessions

A session, including the principal JSON data structure plus additional data structures such as a List and
HyperLogLog, can be stored in Redis by prefixing the session objects with the same session identifier:

KEYS *3354623a-78fb-45aa-80fb-fc8c7f6afeb5*
1) "session:3354623a-78fb-45aa-80fb-fc8c7f6afeb5:history"

Redis Stack as a Document Store174

2) "session:3354623a-78fb-45aa-80fb-fc8c7f6afeb5:trackvisits"
3) "session:3354623a-78fb-45aa-80fb-fc8c7f6afeb5"

Session expiration

It is important to highlight that every time the user interacts with the session, the session’s Time to
Live (TTL) needs to be refreshed, so the TTL of all the session keys must be updated at once. This
causes processing overhead. As an example, if the user logs out, the session must expire immediately;
if there is user activity, then the session must be extended. Client pipelines can be used to limit this
overhead and transactions can be used to make this operation atomic.

Example of sessions using the JSON data structure

As an example of the potential of a session modeled as JSON and indexed by Redis Stack, let’s consider
this example of two sessions with some user data:

JSON.SET session:a30d0c64-4cad-4088-a9ef-f1889d182df4
$ '{"lastAccessedTime":1672475765650,"creation-
Time":1672475765649,"user":{"name":"John","last":"Doe"},"visit-
ed":["www.redis.com","www.google.com"], "location": "34.638,31.79",
"cart":[{"itemId":"hp-2341","itemCost":1990.99,"quantity":3},{"item-
Id":"MacBook","itemCost":2990.99,"quantity":15}]}'
JSON.SET session:18920ac6-a2f0-4019-8250-e0036d17d015
$ '{"lastAccessedTime":1672475765645,"creation-
Time":1672475765549,"user":{"name":"Jane","last":"Appleseed"},"visit-
ed":["www.redis.io","www.microsoft.com"], "location": "35.178,31.768",
"cart":[{"itemId":"invicta-jolly","itemCost":68.99,"quanti-
ty":1},{"itemId":"MacBook","itemCost":2990.99,"quantity":15}]}'

The index will be created for the following data:

•	 NUMERIC SORTABLE for lastAccessedTime and creationTime

•	 TEXT for the collection of visited URLs

•	 TAG for itemId

•	 GEO for the location of the user

The statement that creates the index is as follows:

FT.CREATE session_idx
ON JSON PREFIX 1 session:
SCHEMA
$.lastAccessedTime AS lastAccessedTime NUMERIC SORTABLE
$.creationTime AS creationTime NUMERIC SORTABLE

Redis Stack as a session store 175

$.visited AS visited TEXT
$.cart[*].itemId AS itemid TAG
$.location AS loc GEO

A search to return all the sessions containing a MacBook in the shopping cart can be written as follows:

FT.SEARCH session_idx '@itemid:{MacBook}' RETURN 0
1) (integer) 2
2) "session:a30d0c64-4cad-4088-a9ef-f1889d182df4"
3) "session:18920ac6-a2f0-4019-8250-e0036d17d015"

A search to get a shopping cart item with that product in a session (unique key per cart) can be
written as follows:

JSON.GET session:a30d0c64-4cad-4088-a9ef-f1889d182df4 '$.cart[?(@.
itemId=="MacBook")]'
"[{\"itemId\":\"MacBook\",\"itemCost\":2990.99,\"quantity\":15}]"

A search to get the sessions close to a given location (within a radius of 40km) can be written as follows:

FT.SEARCH session_idx '@loc:[34.5 31.5 40 km]' return 0
1) (integer) 1
2) "session:a30d0c64-4cad-4088-a9ef-f1889d182df4"

A search to return the last created session can be written as follows:

FT.SEARCH session_idx "@creationTime:[-inf, +inf]" RETURN 1
creationTime LIMIT 0 1 SORTBY creationTime DESC
1) (integer) 2
2) "session:a30d0c64-4cad-4088-a9ef-f1889d182df4"
3) 1) "creationTime"
   2) "1672475765649"

These are just a few examples of the potential of a session managed with Redis while exploiting the
capabilities of Redis Stack. Combining the index types or extending the session data model beyond
the JSON object and using streams, bitmaps, and Hyperloglog, Redis Stack provides the flexibility to
solve any query and search problems while opening the path to complex session data analysis, not to
mention its flexible aggregation capabilities.

In conclusion, the choice concerning the data model to be used for a session stored in Redis is a
function of the requirements to store, fetch, and analyze the data in the session itself, plus additional
needs such as session refresh or expiration on demand, and partial session data loading.

Redis Stack as a Document Store176

Standard sessions are often modeled in Redis using the Hash data structure for the metadata, key-value
pairs, and objects (where objects are serialized using the default or a custom serializer), and for this
purpose, it is possible to configure the most popular framework for the desired language to transparently
enable session management in Redis:

•	 Spring with the Spring Session Data Redis module

•	 Express with the connect-redis npm package

•	 Flask, using the Flask-Session extension

In use cases where a compact session representation for collections, objects, and geographical locations
is required, together with the ability to perform efficient in-session and cross-session queries and
searches, the JSON data type is a flexible alternative for new use cases.

Summary
In this chapter, we dived into the modeling and indexing capabilities of Redis Stack. In particular, we
experimented with the query syntax on some sample databases and learned about the possibilities that
are offered by the search and aggregation features. In addition, we discovered several chances to enrich
our applications using spellcheck, auto-completion, highlighting, summarizing, stemming, and more.

Once you were familiar with modeling, indexing, and searching through a database of Hash or JSON
documents, you discovered how to implement a recommendation system using a scoring approach.
We finished this chapter by modeling a session using Redis Stack’s capabilities, with examples and the
trade-offs of using one data structure rather than another provided. While the many features considered
in this chapter provide a rich application design and development experience, more features will be
added to Redis Stack, such as the ability to index new geometries, or new commands to query JSON
documents. Stick around and check out the new Redis Stack releases to discover all the news.

In Chapter 6, Redis Stack as a Vector Database, you will learn how to store, index, and search vectors
using the vector similarity search feature. You will also understand how to design a textual and visual
recommendation engine using advanced AI/ML data models and other emerging use cases.

6
Redis Stack as a Vector

Database

Vector similarity search (VSS) is a core functionality of Redis Stack, the foundation of a vast variety
of use cases. In this chapter, we will go through the concepts you need to understand to make the
most out of this capability. The main idea behind VSS is that Redis Stack can store, index, and search
vectors, and vectors are an optimal representation of unstructured data (data without a data model
and a structure, which is harder to organize) because vectors can be easily processed by machines
and take advantage of optimized hardware such as GPUs. New techniques have emerged in the areas
of AI and ML to help with the task of modeling, classifying, and understanding unstructured data
such as images, audio files, text, and more. By leveraging this capability, it is possible to build systems
that, while making sense of such data, resolve problems otherwise impossible to solve with traditional
databases. Unstructured data is a relevant portion of the data that enterprises manage nowadays
(estimates suggest that 80% of global data will be unstructured by 2025) and extracting value from
such data is imperative. We’ll introduce VSS in Redis Stack in steps, then present examples to help
you implement a recommendation engine.

We will discuss the following topics:

•	 Vector embeddings for unstructured data modeling

•	 Storing the embeddings

•	 Indexing the embeddings

•	 Performing similarity search

•	 Performing hybrid queries

•	 Performing VSS range queries

•	 Recommendations based on visual search

•	 Integrating Redis with generative AI

Redis Stack as a Vector Database178

Technical requirements
To follow along with the examples in the chapter, you will need to install

Redis Stack Server 7.2 or later in your development environment. Alternatively, you can create a free
Redis Cloud subscription to get a free plan and use a managed Redis Stack database.

Vector embeddings for unstructured data modeling
Vector embeddings are lists of floating-point numbers that are used to describe the semantics of
unstructured data. The principal feature of vector embeddings is that they have fixed sizes and allow a
compact and dense representation of data in fewer bytes, compared to other encoding models. Features
can be, in certain cases, engineered manually or using standard methods. An example of embedding
can be the description of a color, expressed by the three RGB color components. So, using the RGB
representation, we can express any color as an array of numbers:

[34, 93, 232]

While this approach will work perfectly with this and many other data modeling problems, nowadays,
generating vector embeddings from unstructured data involves deep learning techniques. These aim
to produce models that do the following:

1.	 Take the raw unstructured data as input (a bitmap file or a voice recording).

2.	 Capture the relevant and distinguishing features of the data (such as frequency peaks in a voice
recording or sharp edges in a picture).

3.	 Dump the features into a vector embedding.

We won’t dive into the models that perform this transformation from data to embeddings in this
chapter. If you are curious about this topic, you will find a lot of bibliographies about models and
their training methods online. There are many open pre-trained models that you can already use for
free, such as those from PyTorch, Hugging Face, and OpenAI.

Let’s consider an example. We will encode a short sentence into an embedding using the popular
Sentence Transformers Python framework, a collection of models that produces embeddings of
different sizes and specialized for different purposes, such as data clustering or semantic search. Let’s
pick a model from those available at https://huggingface.co/sentence-transformers.
The library can be installed as follows:

pip install -U sentence-transformers

https://huggingface.co/sentence-transformers

Storing the embeddings 179

A snippet of code that calculates the embedding can be coded as follows:

from sentence_transformers import SentenceTransformer

model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-
cos-v1')
embedding = model.encode("This is a technical document, it describes
the SID sound chip of the Commodore 64")

This specific model produces a vector of 384 floating-point numbers. Let’s print the first 10 elements:

print(embedding[:10])
[0.00631137 -0.005189 -0.03774299 -0.09026785 -0.05783698  0.01209931
-0.02595172  0.01094836 -0.06051398  0.0521009]

Note that models are produced and tested with content of limited size. In this example, multi-qa-
MiniLM-L6-cos-v1 supports texts up to 512 words; longer texts are truncated, and the truncated
portion is not considered. Make sure your text length suits the model you are using. If the number
of words exceeds the supported length, an option is to split the content into chunks and generate
multiple vector embeddings for a single document.

Storing the embeddings
Vectors are numerical representations of unstructured data and the transformation is performed using
AI and ML models. Redis Stack can perform VSS on vectors that are locally stored. In this section,
you will learn how to store vectors, a capability that turns Redis Stack into a de facto vector database.

Hashes

Vectors can be stored in Hash data structures or JSON documents as attributes contained in such
document formats. Storing vectors in Hashes is a one-command operation that involves leveraging
the NumPy library for scientific computing and its conversion utility, astype, which casts the vector
to the desired format – in this case, a binary blob. Back to the former embedding generation example,
we can now convert the vector and print a portion as follows:

import numpy as np
blob = embedding.astype(np.float32).tobytes()
print(blob[0 : 50])

This script outputs the following:

b'\x99\xcf\xce;\x87\x08\xaa\xbbe\x98\x1a\xbdZ\xde\xb8\xbdx\xe6l\
xbd2<F<\xb3\x98\xd4\xbc\xbc`3<\x82\xddw\xbd\xc2gU=\xa8^\xbf\xbbM\x14Z\
xbd\x84%'

Redis Stack as a Vector Database180

You are now ready to store this binary blob in the Redis Stack database. Check out the full example:

from sentence_transformers import SentenceTransformer
import numpy as np
import redis

r = redis.Redis(host='127.0.0.1', port=6379)
text = "This is a technical document, it describes the SID sound chip
of the Commodore 64"
model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-
cos-v1')
embedding = model.encode(text)
blob = embedding.astype(np.float32).tobytes()
r.hset('doc:1', mapping = {'embedding': blob,
                           'genre': 'technical',
                           'content': text})

In this example, we have stored the embedding in a Hash, the original content, and a tag, genre.
But you can think of including additional data or metadata in the same Hash so that you can add
additional filters and perform hybrid searches.

JSON

JSON documents can store vectors as well. However, compared to Hashes, vectors are stored as arrays
rather than blobs. We will use the NumPy library to convert the embedding into a Python list and
store it with the content in the related properties in the document:

vector = embedding.tolist()
doc = {
    'embedding': vector,
    'genre': 'technical',
    'content': text
}
r.json().set("doc:1", '$', doc)

Indexing the embeddings
Now that we can generate a vector for the desired type of data using the corresponding ML model,
we would like to index vectors for VSS. Here, we’ll introduce the VECTOR field type which, together
with TEXT, TAG, NUMERIC, and GEO, complete the types of data that can be indexed by Redis Stack.
Using redis-cli to create an index as usual, we can index the embedding as follows:

FT.CREATE doc_idx
ON HASH

Indexing the embeddings 181

PREFIX 1 doc:
SCHEMA content AS content TEXT
genre AS genre TAG
embedding VECTOR HNSW 6 TYPE FLOAT32 DIM 384 DISTANCE_METRIC COSINE

We can index the JSON document in a similar fashion:

FT.CREATE doc_idx
ON JSON
PREFIX 1 doc:
SCHEMA $.content as content TEXT
$.genre AS genre TAG
$.embedding VECTOR HNSW 6 TYPE FLOAT32 DIM 384 DISTANCE_METRIC COSINE

This index includes the content of the document and the embedding and uses the related types: TEXT
and VECTOR. In the next subsections, we will explain the meaning of the arguments for the vector
similarity index.

The algorithms – FLAT and HNSW

When searching for the most similar vectors, we may choose between the FLAT and Hierarchical
Navigable Small World (HNSW) algorithms. FLAT is also referred to as brute-force indexing because,
to compute the most similar vector to the vector under analysis, the distance between the provided
vector and all the vectors in the index must be computed, which can be expensive when this iterative
approach is performed over many embeddings. The HNSW algorithm, on the other hand, is a graph-
based probabilistic approach that scales better over many embeddings and provides fast results, but
at the expense of precision. Some accuracy is sacrificed for the benefit of performance.

In summary, the HNSW algorithm is more complex than the FLAT algorithm in that it’s faster but less
accurate. The FLAT algorithm scales well with more shards (we will discuss multi-shard databases when we
address the open source version of Redis Cluster and Redis Enterprise Cluster). Both the FLAT and HNSW
algorithms are defined by three mandatory parameters: the type, the dimension, and the distance metric.

Type

The type that defines the embedding is either FLOAT32 or FLOAT64 for higher accuracy. Choose
the type accordingly, depending on the embedding generated by the model. In the former example,
the model produced embeddings of 32-bit floating point numbers.

Index dimension

This is just the dimension of the vector embedding: in our example, the chosen model generated
embeddings of 384 numbers. Check what format is produced by the model of choice and configure
this parameter accordingly.

Redis Stack as a Vector Database182

Distance metrics

To look for the most similar vectors (this approach is also referred to as K-nearest neighbors or
KNN), we need to define the distance between vectors. VSS in Redis Stack supports three distances:

•	 L2, the Euclidean distance between vectors: This distance, when applied to two points in the
Cartesian plane, is calculated as the distance of the segment interconnecting the two points
(calculated using the Pythagorean theorem on the horizontal and vertical coordinates of the
points). When dealing with higher vector dimensions, the formula to calculate the distance
does not change. Since u and v are two n-dimensional vectors, the Euclidean distance is
calculated as follows:

​​d​(​​u, v​)​​  =  ​√ 

 ​∑ 
i=1

​ 
n

  ​​​(​​ ​u​ i​​ − ​v​ i​​​)​​​​ 2​​ ​​​

This distance is effective when the vectors describe continuous features, and when the magnitude
of the distance matters (the vector is describing a physical property, such as geographical
coordinates or other multi-dimensional coordinates, where the distance between points in
the related space matter).

•	 COSINE, the cosine distance between vectors: The cosine similarity considers the cosine of the
angle between the vectors (when the angle is 0, the cosine is 1, which represents the maximum
similarity). The cosine similarity does not account for the magnitude of the vectors being
compared. The cosine distance is complementary to cosine similarity (obtained by subtracting
the value of the cosine similarity from 1). This distance is appropriate when the magnitude of
the vectors is not important when describing the unstructured data (for example, when dealing
with a model that generates an embedding for a text, or when the element of the vectors is
scaled by a weight, but the weight itself is irrelevant, as in the case of vector normalization).
This distance is often a good choice when you’re dealing with the similarity of documents or
image comparison. It is also a good option for high-dimensional vector spaces:

​​dist​(​​u, v​)​​  =  1 − ​ 
​∑ i=1​ 

n  ​ ​u​ i​​ × ​v​ i​​​ ______________  
​√ 
_

 ​∑ i=1​ 
n  ​ ​u​ i​ 

2​​  ​ × ​√ 
_

 ​∑ i=1​ 
n  ​ ​v​ i​ 

2​​  ​
 ​​​

•	 IP, the inner product of vectors: This distance looks at both the angle between the vectors
and their magnitude. Note that this distance is equivalent to cosine similarity if vectors are
normalized (vectors are scaled to have a length equal to 1):

​​dist​(​​u, v​)​​  =  1 − ​∑ 
i=1

​ 
n

  ​​u​ i​​ × ​v​ i​​​​​

Rather than using the Euclidean or cosine distances, the inner product can be chosen to emphasize
the importance of considering both the magnitude and the alignment of the vectors when
describing the data. As an example, recommender systems may consider detecting similarities
between arrays of user ratings, where both the preferences (a user favors determined movie
genres) and the magnitude (the rating itself) matter in the comparison.

Performing similarity search 183

Performing similarity search
Now that we have created an index that’s suitable to the vector length and type (FLOAT32 or FLOAT64),
and we have chosen the right distance concerning the data represented by the vector embeddings
(we care about the orientation of the vectors, or we are also interested in their magnitude), we can
perform a comparison. Let’s consider a simple scenario based on the former example. We have three
sentences in our database stored as Hashes, along with their vector embeddings:

•	 doc:1 stores This is a technical document, it describes the SID sound chip of the Commodore 64

•	 doc:2 stores The Little Prince is a short story by Antoine de Saint-Exupéry, the best known of his
literary productions, published on April 6, 1943 in New York

•	 doc:3 stores Pasta alla carbonara is a characteristic dish of Lazio and more particularly of Rome,
prepared with popular ingredients and with an intense flavour.

We will calculate the corresponding embeddings and store them in the database. Then, we will test
this minimalistic database to suggest a recommendation when the user is reading this content:

This post is about 8 bits computers, such as Commodore 64, ZX Spectrum, and other home computers.

The relevant search is performed by this short Python code:

q = Query("*=>[KNN 2 @embedding $vec AS score]")
                   .return_field("score")
                   .dialect(2)
res = r.ft("doc_idx").search(q, query_params={"vec": model.
encode(text).astype(np.float32).tobytes()})
print(res)

In this command, we specify the following:

•	 There’s no filter in the query. This is expressed by the * symbol.

•	 KNN, which is set to 2. This sets the number of closest vectors to the $vec vector, which is
passed in the query we want to retrieve.

•	 The @embedding attribute, which points to the vector embedding in the Hash data structure.

•	 The $vec placeholder. This will be assigned the vector later, at query execution time.

•	 The score alias. While it is not mandatory to retrieve the score, we want to demonstrate
what scores look like and use the alias to sort the results by score (the score is equivalent
to the distance). It is also possible to sort the results by the score. This can be specified by
using the predetermined __<vector_field>_score value. In this example, it would
be __embedded_score.

•	 dialect, which is set to 2 (alternatively, we can set DEFAULT_DIALECT using FT.CONFIG
SET). The requirement to use VSS is to configure this dialect.

Redis Stack as a Vector Database184

Once executed, this command will return a coherent recommendation – that is, the expected document,
doc:1. Here, we are interested in vintage computers:

Result{2 total, docs: [Document {'id': 'doc:1', 'payload': None,
'score': '0.482430696487'}, Document {'id': 'doc:2', 'payload': None,
'score': '0.99235022068'}]}

Let’s try another piece of input text:

The Adventures of Pinocchio is a fantasy novel for children written by Carlo Collodi, pseudonym of the
journalist and writer Carlo Lorenzini, published for the first time in Florence in February 1883.

The recommendation will correctly return a result in the context of literature for kids:

Result{2 total, docs: [Document {'id': 'doc:2', 'payload': None,
'score': '0.76663184166'}, Document {'id': 'doc:3', 'payload': None,
'score': '0.949324011803'}]}

You have learned how to execute vector search operations, and now you will explore how to refine your
search with additional filters. For example, you may restrict the results only to a particular category
of documents. Such operations are possible using hybrid queries.

Performing hybrid queries
Hybrid queries are VSS queries mixed with ordinary search algorithms (numeric, text, tag, and geo).
When running hybrid queries with VSS, it is possible to include business logic in the query to enrich the
search criteria and simplify the client application code. These conventional filters are pre-filters to the
vector search operation and are meant to simplify the similarity search by reducing the computational
effort to retrieve the KNN results. An example based on the previous proof of concept can be written
by replacing * with the desired query. In this case, this is a filter with the genre tag that retrieves
the closest documents in the “technical” category:

q = Query("@genre:{technical}=>[KNN 2 @embedding $vec AS score]")
               .return_field("score")
               .sort_by("score")
               .dialect(2)

Additional options are available to customize the vector search when hybrid queries are adopted, such
as the pre-filter query attributes, to deal with a large set of vectors, and additional algorithm-specific
attributes, to fine-tune the search algorithm for the best trade-off between accuracy and speed. Refer
to the documentation at https://redis.io/docs/interact/search-and-query/
advanced-concepts/vectors/ for more details.

https://redis.io/docs/interact/search-and-query/advanced-concepts/vectors/
https://redis.io/docs/interact/search-and-query/advanced-concepts/vectors/

Performing VSS range queries 185

Performing VSS range queries
To understand what range queries are in the context of VSS, an edge case would be searching for two
element vectors that model the coordinates of points in a bi-dimensional Cartesian plane. Another
example would be geographical locations expressed with longitude and latitude. In these cases, a range
query that uses VSS would find closer points in this bi-dimensional space, so within the desired distance
from the query vector. Thinking of multi-dimensional spaces, we can imagine the most different use
cases. Using VSS range queries, we want to discover relevant content within a predefined similarity
range, instead of looking up the KNN similar vectors.

We can customize the example we’ve considered so far and rewrite the search operation as follows:

q = Query("@embedding:[VECTOR_RANGE $radius $vec]=>{$YIELD_DISTANCE_
AS: score}") \
    .sort_by("score") \
    .return_field("score") \
    .dialect(2)

query_params = {
    "radius": 0.8,
    "vec": model.encode(text).astype(np.float32).tobytes()
}
res = r.ft("doc_idx").search(q, query_params)

This syntax retrieves all the vectors with a distance less than 0.8 from the embedding representing the
description of “Pinocchio.” So, once again, we get the expected result, “The Little Prince:”

Result{1 total, docs: [Document {'id': 'doc:2', 'payload': None,
'score': '0.76663184166'}]}

Recommendations based on visual search
We have seen a basic example of semantic similarity search, but there are other ways of generating
recommendations from the item under consideration. One is by looking at its appearance. Using the
pre-trained models in the PyTorch library, we can extract embeddings from images and associate
them with their Hash or JSON representation in the database. The sample Python excerpt we’ll be
looking at makes use of the Img2Vec wrapper library, which can be installed as follows:

pip install img2vec_pytorch

Redis Stack as a Vector Database186

This script opens a file and produces an embedding of 1,024 numbers using the densenet model. Let’s
prototype a simple application with three items in the database – a glass, a spoon, and a cup:

Figure 6.1 – Training images for VSS

This Python snippet of code will create the index:

index_def = IndexDefinition(prefix=["item:"])
schema = (VectorField("embedding", "HNSW", {"TYPE": "FLOAT32", "DIM":
1024, "DISTANCE_METRIC": "COSINE"}))
r.ft("item_idx").create_index(schema, definition=index_def)

This code will load the Img2Vec library and the image, and then store the image object together with
the embedding. We will repeat this action for all three items:

img2vec = Img2Vec(cuda=False, model='densenet')
img = Image.open('spoon.jpg').convert('RGB')
spoon = img2vec.get_vec(img)
r.hset('item:spoon', mapping = {'embedding': spoon.astype(np.float32).
tobytes()})
img = Image.open('glass.jpg').convert('RGB')
glass = img2vec.get_vec(img)
r.hset('item:glass', mapping = {'embedding': glass.astype(np.float32).
tobytes()})
img = Image.open('cup.jpg').convert('RGB')
cup = img2vec.get_vec(img)
r.hset('item:cup', mapping = {'embedding': cup.astype(np.float32).
tobytes()})

Recommendations based on visual search 187

Now, we can test this prototype with an image sample of a glass:

Figure 6.2 – Test image for VSS

This code sample generates a vector embedding for the test image of a glass and performs VSS. This
compares the test embedding with the stored embeddings and returns the closest vector that’s associated
with the most similar image:

img = Image.open('test.jpg').convert('RGB')
test = img2vec.get_vec(img)
q = Query("*=>[KNN 1 @embedding $vec AS score]").return_
field("score").dialect(2)
res = r.ft("item_idx").search(q, query_params={"vec": test.astype(np.
float32).tobytes()})
print(res)

The expected result will be a glass:

Result{1 total, docs: [Document {'id': 'item:glass', 'payload': None,
'score': '0.235672473907'}]}

In these examples, we stored the embeddings in Hashes. However, note that by opting for a JSON
document, it is possible to store multiple embeddings in the same document using the multi-value
indexing capability, when multiple vectors are returned by a JSONPath expression. You would use this
option when an object is described by several embeddings, and you want them all to be searchable
by the VSS feature.

Redis Stack as a Vector Database188

Integrating Redis with generative AI
The rise of conversational AI took the world by storm in the early months of 2023 thanks to the advent
of powerful large language models (LLMs) such as ChatGPT. ChatGPT versions 3.5 and 4, which were
presented around March 2023, have surprised users with unprecedented quality answers and the ability
to solve complex and structured problems, produce ideas, organize and edit texts, and generate source
code, all by using natural and conversational questions in the desired language. This has impressed
the world in a wide variety of scenarios and use cases. While such a paradigm shift has been driven
by the ChatGPT assistant, which is available for free to the public, the possibility of turning the usual
applications and services into smart assistants has been accelerated by pay-as-you-go service models
by OpenAI and other providers, democratizing the access to such advanced capabilities.

However, training such systems is extremely time-consuming and resource-intensive. For example,
training ChatGPT 4 took over a month and dozens of GPUs, which led to freezing the training set in
time and cutting off forthcoming knowledge. This intrinsic feature of LLMs poses a constraint on several
kinds of applications: working with fresh data is not possible when integrating an LLM technology
into a service. Given this background, new techniques are becoming popular to circumvent such
limitations. LLMs are being enabled to assist users even in the case of recent updates to the corpus of
knowledge and provide answers when the model hasn’t been trained on specific content.

Redis, as a high-performance, in-memory data platform, can play a pivotal role in addressing the
challenges of LLM-based use cases:

•	 Context retrieval for retrieval augmented generation (RAG): Pairing Redis with LLMs enables
these models to access external contextual knowledge. This contextual knowledge is crucial
for providing accurate and context-aware responses, preventing the model from generating
incorrect or “hallucinated” answers. By storing and indexing vectors that model unstructured
data, Redis ensures that the LLM can retrieve relevant information quickly and effectively,
enhancing its response quality.

•	 LLM conversation memory: Redis allows all conversation history (memories) to be persisted
as embeddings in a vector database to improve model quality and personalization. When
a conversational agent interacts with the LLM, it can check for relevant memories to aid
or personalize the LLM’s behavior. This feature enables seamless topic transitions during
conversations and reduces misunderstandings.

•	 Semantic caching: LLM completions can be computationally expensive. Redis helps reduce
the overall costs of ML-powered applications by caching input prompts and evaluating cache
hits based on semantic similarity using VSS. This caching mechanism ensures that frequently
requested information is readily available, optimizing response times and resource utilization.

Summary 189

Introducing such architectures and concepts is outside the scope of this basic introduction to vector
search, but you will find that Redis and its Redis Stack capabilities are backing many frameworks and
services that operate with LLMs. You can refer to the current frameworks and services:

•	 LangChain

•	 LlamaIndex

•	 Azure OpenAI and Microsoft Semantic Kernel

•	 Amazon Bedrock

Now, let’s summarize what we’ve learned.

Summary
In this chapter, we learned how Redis Stack can store and index vectors to perform similarity searches
and recommend similar documents. The power of VSS is that it can be used to find similar matches
from incomplete or uncorrelated data. It can also leverage innovative AI/ML models, different search
algorithms such as FLAT or HNSW, which focus on the precision or speed of the search, and different
distances so that the most suitable option can be configured concerning the entity described by the
vector embedding. VSS has been used for recommendation engines, but there are additional and
relevant use cases that are trending right now, such as question answering, where we take advantage
of generative models and their ability to take a set of prompts and perform text completion from the
results of VSS so that we can provide complete answers out of them.

Data classification is another use case: by pre-training the database with a set of vectors modeling
known objects (labeled by an identifier), it is straightforward to guess what object is under analysis
using VSS. Redis Stack plays a central role in these innovative scenarios when used as a vector database
together with the VSS feature, and shines for online, real-time search operations. Note that there are
many open datasets to experiment with VSS in the area of recommendation engines, so you can test
several models, distances, and algorithms and achieve the best trade-off between precision and speed.

In Chapter 7, Redis Stack as a Time Series Database, you will learn how to store data points in a time
series. Through practical examples, you will learn how to complement data points with metadata
labels and use multiple labels for filtering, searching, querying, and aggregating the samples using
the built-in reducer functions.

7
Redis Stack as a

Time Series Database

Redis Stack, as we learned in Chapter 1, Introducing Redis Stack, is also capable of handling a particular
data type called time-series data points.

Time series are a sequence of data points collected and recorded over time at regular intervals. In a
time series, the data points are typically measured by intervals ranging from hourly to daily, weekly,
monthly, or yearly. Time-series data can represent various types of observations, such as stock prices,
weather data, sales figures, or economic indicators, among others.

Time-series analysis is the process of using statistical techniques to study and forecast trends, patterns,
and correlations within the data. This can help in understanding the underlying structure and behavior
of the data, as well as making predictions about future values.

In this chapter, you will explore various aspects of Redis Stack for time series, including storing and
managing data, understanding the use cases it addresses, enriching data points with labels, utilizing
built-in functions for filtering, querying, and aggregating data, and visualizing aggregations as charts
using RedisInsight. In particular, we will cover the following topics:

•	 Working with time series

•	 Adding labels to data points

•	 Aggregation framework

•	 Compaction rule

To begin, let’s discuss the prerequisites for following this chapter.

Redis Stack as a Time Series Database192

Technical requirements
To follow along with this chapter, you need the following:

•	 Redis Stack server version 7.2 or later up and running. As introduced in Chapter 3, Getting
Started with Redis Stack, the easiest way to set up a fully functional Redis Stack is by using
Redis Cloud.

•	 Additionally, you will need to download and install RedisInsight software on your workstation.
Please refer to Chapter 10, RedisInsight – the Data Management GUI, for instructions on how
to download and install RedisInsight. By following the guidance provided in this chapter, you
will be able to use the software effectively.

Why Redis Stack for Time Series?
Redis Stack, with its high-performance capabilities, can ingest and process large volumes of data
efficiently. As you delve deeper into this chapter, you will learn about various built-in features that
Redis Stack provides for working with time-series data:

•	 High-performance: Redis Stack for Time Series is designed to provide high-speed data ingestion,
querying, and processing, leveraging the in-memory nature of Redis.

•	 Data retention policies: Redis Stack for Time Series allows you to set data retention policies to
automatically expire older data points based on time. This helps to manage storage efficiently,
especially when dealing with large volumes of time-series data.

•	 Downsampling and aggregation: Redis Stack for Time Series provides built-in support for
data aggregation and downsampling, allowing you to reduce the granularity of data and store
aggregated values over time. The available aggregation functions include average, minimum,
maximum, sum, and count.

•	 Time-based querying: Redis Stack for Time Series offers advanced functionality for efficient
data retrieval and querying. It specifically allows users to query and retrieve data points
effectively within specified time ranges, utilizing its sophisticated time-based querying feature
for enhanced performance.

•	 Label-based indexing: Time-series data benefits from the addition of indexed labels, which
significantly enhance data organization and retrieval efficiency. By indexing these labels, querying
based on metadata becomes more precise and streamlined, greatly improving the management
and access of data according to distinct, user-defined attributes and characteristics.

•	 Compression: Redis Stack for Time Series uses a lossless compression algorithm called Gorilla to
store time-series data efficiently, reducing memory usage without compromising data integrity.

Let’s begin working with time series.

Working with time series 193

Working with time series
As mentioned at the beginning of the chapter, a time series is a sequence of data points collected
and recorded over time at regular intervals. Redis Stack provides a rich API to manage data points
collected into a time series.

To start with an example, you will need to create a time series. The simplest method to accomplish this is by
utilizing the TS.CREATE command followed by a key, representing the time series name, as shown here:

TS.CREATE key

However, there are additional parameters that can be employed when creating the time series, as
outlined here:

TS.CREATE key [RETENTION retentionTime] [ENCODING
[UNCOMPRESSED|COMPRESSED]] [CHUNK_SIZE size] [DUPLICATE_POLICY policy]
[LABELS label value..]

Each parameter can be adjusted for performance optimization, reducing memory footprint, or
enhancing querying and aggregation capabilities, as detailed here:

•	 key: This is the key that identifies the time series.

•	 RETENTION: This is the retention period, expressed in milliseconds, after which the sample expires.
The expiration of samples is solely dependent on the time difference between their timestamp and
the timestamps supplied in the subsequent TS.ADD, TS.MADD, TS.INCRBY, and TS.DECRBY
calls linked to the same key. If it’s set to 0, the default value, the sample never expires.

•	 ENCODING: This option sets the encoding format for series samples and offers two options:

	� COMPRESSED, which compresses the samples

	� UNCOMPRESSED, which stores the raw samples in memory

Generally, COMPRESSED is recommended as it reduces memory usage and typically results in
better performance by reducing memory accesses, resulting in up to a 90% reduction in memory.
However, if the timestamps or values are highly irregular and infrequent, UNCOMPRESSED
may be a better choice.

•	 CHUNK_SIZE: This refers to the initial allocation size in bytes for the data segment of each
new chunk in Redis, although be aware that the actual memory consumption may be higher.
Modifying the “chunk size” with TS.ALTER will not impact existing chunks. However, depending
on your use case, consider the following tradeoffs when creating smaller or larger chunks:

	� Insert performance: Smaller chunks result in slower inserts (more chunks need to be created)

	� Query performance: Queries for a small subset when the chunks are very large are slower,
as we need to iterate over the chunk to find the data

Redis Stack as a Time Series Database194

	� Larger chunks may take more memory when you have a very large number of keys and very
few samples per key, or less memory when you have many samples per key

The value must be a multiple of 8 and fall within the range of 48 to 1,048,576. If not specified,
the default value is determined by the global CHUNK_SIZE_BYTES configuration of the
database, which is set to 4,096 (equivalent to one memory page) by default.

•	 DUPLICATE_POLICY: There are several options available for handling the insertion (using
TS.ADD and TS.MADD) of multiple samples with identical timestamps, and the policy can
be chosen from among the following:

	� BLOCK: Disregard the new value and return an error.

	� FIRST: Ignore the new value.

	� LAST: Replace the existing value with the new one.

	� MIN: Update the value only if the new one is lower than the current value.

	� MAX: Update the value only if the new one is higher than the current value.

	� SUM: If a previous sample exists, add the new sample to it, resulting in an updated value
equal to the sum of the previous and new values. If no previous sample exists, set the updated
value to the new value.

If not specified, the policy defaults to the global DUPLICATE_POLICY configuration of the
database, which is set to BLOCK by default.

•	 LABELS: This refers to a collection of label-value pairs that signify the metadata labels associated
with a key, and function as a secondary index.

Commands such as TS.MGET, TS.MRANGE, and TS.MREVRANGE work with multiple time
series based on their respective labels. The TS.QUERYINDEX command retrieves all time-
series keys that match a specific filter, which is determined by their labels.

With a fundamental understanding of how time series operate, let’s create one to monitor the visitor
count for the https://www.mortensi.com/ website, using RedisInsight or redis-cli, as
demonstrated here:

TS.CREATE mortensi.com

The previous command generates a time series identified by mortensi.com. To view its details,
use the TS.INFO command followed by the key, as shown here:

TS.INFO mortensi.com
1) "totalSamples"
2) "0"
3) "memoryUsage"
4) "4184"

https://www.mortensi.com/

Working with time series 195

5) "firstTimestamp"
6) "0"
7) "lastTimestamp"
8) "0"
9) "retentionTime"
10) "0"

The information mentioned in the previous code snippet relates to the cardinality of samples within
the time series, including such details as the timestamps of the first and last inserted sample and the
retention time upon which the sample is based:

11) "chunkCount"
12) "1"
13) "chunkSize"
14) "4096"
15) "chunkType"
16) "compressed"
17) "duplicatePolicy"
18) "null"
19) "labels"
20) (empty list or set)
21) "sourceKey"
22) "null"
23) "rules"
24) (empty list or set)

The final set of information relates to the number of checks available, the utilized size, and the specific
type, which, in this context, is denoted as "compressed". Furthermore, the data reveals details
concerning the duplication policy, attached labels, source key, and a forthcoming exploration into the
compaction rule, which will be delved into later in this chapter.

Currently, our time series is empty, but we can observe its default settings.

To track users visiting the mortensi.com website, we need to add a data point that includes the visit’s
date and time and keeps a count of the visits. In this scenario, our data point will function as a counter.

Let’s proceed by adding our initial data point to the mortensi.com time series, as demonstrated here:

TS.ADD mortensi.com * 1

The asterisk symbol (*) means that the timestamp is provided by the server clock at the time of insertion.

For this specific use case (tracking the number of visitors to a site), the approach mentioned above
may not be optimal, as it would require maintaining a counter on the client side, incrementing it, and
updating the time series with the new value.

Redis Stack as a Time Series Database196

Thankfully, Redis Stack for Time Series offers a built-in TS.INCRBY command that was designed
precisely for such scenarios, by enabling atomic increments.

Let’s experiment by executing the TS.INCRBY command a few times using redis-cli or directly
within RedisInsight:

> TS.INCRBY mortensi.com 1
(integer) 1682433895397
> TS.INCRBY mortensi.com 1
(integer) 1682433896518
> TS.INCRBY mortensi.com 1
(integer) 1682433897428
> TS.INCRBY mortensi.com 1
(integer) 1682433898284

As observed, each time a data point is entered, the server clock insertion timestamp is returned. Redis
Stack for Time Series also includes TS.DECRBY, which is an atomic command for decrementing a
value. The value specified as a parameter in both commands represents the increment or decrement
to be applied to the current value.

To obtain the total number of visitors, you need to execute the TS.GET command followed by the
time-series key:

> TS.GET mortensi.com
1) "1682433898284"
2) "5"

The command will provide the total number of visitors along with the timestamp of the most
recent insertion.

Statistics become more fascinating as the time intervals and data volumes increase, particularly when
visualized as charts. RedisInsight makes it possible to display such time series data in graphical format.

First, we need to generate a larger set of data points. To do this, remove the existing time series and
create a new one using a Python script that populates daily visitor data for the mortensi.com
website from January 1st, 2023, to April 30th, 2023.

The timeseries-mortensi.py file can be retrieved in the following repository: https://
github.com/PacktPublishing/Redis-Stack-for-Application-Modernization.
Download the file, modify the settings to connect to your Redis Stack server, and execute the script
using the following command:

python timeseries-mortensi.py

Upon executing the script, a time series with the key mortensi.com is generated, containing data
points from January 1st, 2023, to April 30th, 2023, with values ranging between 1 and 1000. RedisInsight
offers the ability to visualize query results as charts, which is particularly useful for time series data.

https://github.com/PacktPublishing/Redis-Stack-for-Application-Modernization
https://github.com/PacktPublishing/Redis-Stack-for-Application-Modernization

Adding labels to data points 197

Next, launch the RedisInsight application, navigate to the Workbench section, and enter the
following command:

TS.RANGE mortensi.com - +

Proceed to run the command by clicking on the green play button.

After execution, the query results will be displayed as a chart, as shown here:

Figure 7.1 – RedisInsight representing time-series data points as chart

TS.RANGE retrieves a range of data points from a specific time-series key based on the provided
timestamp range. The command returns an array of data points, where each data point consists of a
timestamp and its corresponding value.

Similar charts can be generated for various aggregation intervals, such as weekly, bi-weekly, or monthly,
depending on the data point timestamp precision and specific use case. It would be intriguing to
compare the statistics of the mortensi.com site with another outstanding site, foogaro.com.

 Up to now, we have covered the process of creating a time series and adding data points to it. While
the primary objective of a time series is to collect data points, metadata plays a fundamental role in
facilitating the searching, querying, and aggregation of these data points for analytical purposes. In
the following section, you will delve into the understanding and application of metadata to achieve
these tasks effectively.

Adding labels to data points
Labels are metadata attached to time series data points to provide additional context or information
about the data. They are key-value pairs that help group, query, filter, or aggregate data. This makes
it easier to manage and analyze large volumes of time-series data. For example, you might use labels

Redis Stack as a Time Series Database198

to indicate the data source, measurement units, or the device or location from which the data was
collected. By using labels, you can perform more granular and focused queries on your time-series
data, making it easier to understand trends, relationships, and patterns.

Let’s apply a few labels to the mortensi.com site. Since its time series already exists, we can add
labels by modifying the current time series as follows:

TS.ALTER mortensi.com LABELS dev python database redis

After applying the labels, the TS.INFO command for the mortensi.com time series will display
them as shown here:

TS.INFO mortensi.com
1) "totalSamples"
2) "120"
3) "memoryUsage"
4) "4242"
5) "firstTimestamp"
6) "1672527600000"
7) "lastTimestamp"
8) "1682805600000"
9) "retentionTime"
10) "0"

As discussed earlier, the initial set of information is concerned with the quantity of data points and their
corresponding timestamps. In the following code section, we will explore further details specifically
related to the labels. Labels are metadata in the form of key-value pairs, assigned to data points for
the purposes of categorization and filtering. They may consist of either string or numeric values and
are typically incorporated into a timeseries during its creation, as shown in the following code:

11) "chunkCount"
12) "1"
13) "chunkSize"
14) "4096"
15) "chunkType"
16) "compressed"
17) "duplicatePolicy"
18) "null"
19) "labels"
20) 1) 1) "dev"
       2) "python"
    2) 1) "database"
       2) "redis"
21) "sourceKey"
22) "null"

Adding labels to data points 199

23) "rules"
24) (empty list or set)

Let’s now download another Python script named timeseries-foogaro.py, which can be
retrieved from the usual repository.

Download the file, modify the settings to connect to your Redis Stack server, and execute it using the
following command:

python timeseries-foogaro.py

Upon executing the script, a time series with a key of foogaro.com is generated, containing data
points from January 1st, 2023, to April 30th, 2023, with values ranging between 1 and 1,000.

It’s now time to compare those two sites and see who has more visitors. Instead of using the TS.RANGE
command, the TS.MRANGE command will be used as it retrieves a range of data points from multiple
time series keys, based on the provided timestamp range and filters. This command is useful when
you want to query data across multiple time series with similar characteristics or labels, which is
exactly our next use case.

Again, launch the RedisInsight application, navigate to the Workbench section, and enter the
following command:

TS.MRANGE - + FILTER database='redis'

After execution, the query results will be displayed as a chart, as depicted here:

Figure 6.2 – RedisInsight example showing two time series

 As observed, labels can serve as markers, enabling the comparison of multiple time series simultaneously
to discern variations. However, this is not the sole purpose of labels. In the following section, we will
explore how labels can be employed in conjunction with built-in aggregation functions to enhance
the analytical capabilities further.

Redis Stack as a Time Series Database200

Aggregation framework
The Redis Stack for Time Series aggregation framework provides functions that enable users to perform
operations such as calculating the average, sum, minimum, maximum, count, or standard deviation of
data points, within a specific time bucket or range. By using these functions, you can derive insights,
detect trends, and analyze patterns in your time-series data more effectively.

The following is a list of aggregation functions:

•	 avg: Calculates the average (mean) value of data points within a specified time bucket or
range. It is useful for analyzing and summarizing time-series data to understand trends and
patterns over time.

•	 sum: Calculates the total (sum) of data points within a specified time bucket or range. It is
useful for aggregating time-series data to understand the cumulative effect or total value of
the data points over time.

•	 min: Calculates the minimum value of data points within a specified time bucket or range. It
is useful for determining the lowest value in a series of data points over a given period.

•	 max: Calculates the maximum value of data points within a specified time bucket or range. It
is useful for determining the highest value in a series of data points over a given period.

•	 range: Calculates the difference between the maximum value and minimum value of data
points within a specified time bucket or range.

•	 count: Calculates the total number of data points within a specified time bucket or range. It
is useful for determining the frequency or count of data points over a given period.

•	 first: Retrieves the first data point within a specified time bucket or range. It is useful for
obtaining the initial value of a series of data points over a given period.

•	 last: Retrieves the last data point within a specified time bucket or range. It is useful for
obtaining the final value of a series of data points over a given period.

•	 std.p: Calculates the population standard deviation of data points within a specified time
bucket or range. It is useful for analyzing the spread or dispersion of a series of data points
over a given period.

•	 std.s: Calculates the sample standard deviation of data points within a specified time bucket or
range. It is useful for analyzing the spread or dispersion of a sample of data points over a given period.

•	 var.p: Calculates the population variance of data points within a specified time bucket or
range. It is useful for analyzing the level of variability or dispersion in a series of data points
over a given period.

•	 var.s: Calculates the sample variance of data points within a specified time bucket or range.
It is useful for analyzing the level of variability or dispersion in a sample of data points over a
given period.

Compaction rules for Time Series 201

•	 twa: Calculates the time-weighted average of data points within a specified time bucket or
range. It is useful for analyzing the average value of a time-series data set, considering the
duration and distribution of the data points over time.

Getting back to our two websites, mortensi.com and foogaro.com, you may want to aggregate
the data points to make meaningful comparisons. In this case, you can use the built-in function to
add up the values of the data points for each website over a given time period.

To use the sum function in RedisInsight, you can execute a query using the TS.MRANGE command,
specifying the time range and the interval of aggregation. The result will be the sum of the data points
for each time bucket within the specified time range.

Figure 6.3 – RedisInsight using the aggregation framework

Up to this point, we have explored the process of creating time series, adding data points, and utilizing
labels to enhance time series analysis, leveraging aggregation functions for relevant insights. However,
it is important to be mindful of the footprint generated by this data, considering both memory
consumption and performance implications during aggregation operations. To address this, Redis Stack
for Time Series offers a set of rules known as the “compaction rule,” which enables dataset reduction.
In the upcoming section, we will delve into the details of the compaction rule and its application.

Compaction rules for Time Series
In Redis Stack for Time Series, a compaction rule is a mechanism used to downsample data points
and reduce data storage requirements over time. As time-series data grows and accumulates, it often
becomes less important to store high-resolution data for older timestamps. Compaction rules help
to maintain a balance between data storage and resolution requirements.

Redis Stack as a Time Series Database202

A compaction rule is a user-defined policy that dictates how the data points should be aggregated over
a given time period (e.g., every minute, hour, or day) and retained in a downsampled series. The rule
can specify the aggregation method, such as average, minimum, maximum, sum, or count, among
the others described in the Aggregation framework section of this chapter.

For example, you can set up a compaction rule to downsample data every 5 minutes using the average
aggregation function. This rule would create a new time series key where each data point represents
the average value of the original data points within a 5-minute interval. By applying compaction rules,
you can store long-term historical data efficiently while retaining the desired level of granularity.

To create a compaction rule in Redis Stack for Time Series, use the TS.CREATERULE command to
define the compaction rule, specifying the source time-series key, the destination time-series key, the
aggregation function, and the time bucket interval.

Note
Aggregation will only be applied to the data points added to the source series following the
establishment of the compaction rule.

Let’s extend our example of tracking the visitors for the mortensi.com website, by relying on our
GitHub repository at the following URL: https://github.com/PacktPublishing/Redis-
Stack-for-Application-Modernization. The Python script that extends our previous
example is called timeseries-mortensi-weekly.py, which implements the following steps:

1.	 Deletes the mortensi.com time series key.

2.	 Creates a new mortensi.com time series key.

3.	 Creates a new mortensi.com:weekly time series key.

4.	 Creates a new compaction rule that retains only the sum of the weekly visitors.

5.	 Loads the new mortensi.com time series with randomly generated new data points.

While the mortensi.com time series is being populated with data points, the compaction rule
comes into play by automatically processing these data points. As the rule is applied, it aggregates
the data according to the specified method and time bucket. In this case, the data is compacted on
a weekly basis. Once the data is processed, it is then added to the mortensi.com:weekly time
series. This process ensures that the weekly time series remains up to date with the compacted data,
providing a more manageable and efficient view of the original dataset.

Upon completion, both time series will have 120 data points and 17 data points, respectively. Let’s
have a look at the browsing section of RedisInsight, as depicted here:

https://github.com/PacktPublishing/Redis-Stack-for-Application-Modernization
https://github.com/PacktPublishing/Redis-Stack-for-Application-Modernization

Summary 203

Figure 6.4 – RedisInsight showing a time series provided by the compaction rule

Redis Stack for Time Series provides a wide range of capabilities that can be leveraged to build
expressive frontends for real-time insights into time-series data. Plotting utilities available in various
programming languages such as Python, R, and JavaScript can be utilized to create visually appealing
charts and graphs that help to identify trends, patterns, and anomalies in time-series data.

In addition to these plotting utilities, various statistical functions such as mean, sum, min, max, and
standard deviation can be employed to analyze and aggregate time-series data points within a given
time range or time bucket. By visualizing these aggregated data points using the plotting utilities, it
becomes easier to identify key insights and optimize metrics for better performance.

These expressive frontends can be used in a variety of industries and use cases, including monitoring
system performance, analyzing user behavior, and tracking business metrics. By identifying trends,
anomalies, and patterns in the data, businesses can quickly identify issues or opportunities for
optimization, make data-driven decisions, and evaluate the success of various strategies or campaigns.

Overall, the ability to build expressive frontends for time-series data is a powerful tool that can be used
to gain valuable insights into any time-series dataset, and Redis Stack for Time Series can transform
time-series data into actionable insights that drive business success.

Summary
In this chapter, you learned about the basics of working with time-series data in Redis. You learned
how to insert data points into Redis Stack for Time Series and how to add labels to those data points
to make them more easily identifiable and searchable.

You also learned about the aggregation framework in Redis for Time Series, which allows you to analyze
and aggregate data points within a specified time range or time bucket using various statistical functions
such as mean, sum, min, max, and standard deviation. By utilizing the aggregation framework, you can
gain deeper insights into your time-series data and identify trends, patterns, and anomalies more easily.

Redis Stack as a Time Series Database204

 Additionally, you discovered how to shrink your dataset while keeping important information. This
is done by choosing a method for combining data (aggregation method) and setting a time period
(time bucket) for organizing the data.

To help visualize these aggregations, you learned how to use RedisInsight, a graphical user interface
for Redis, to create charts and graphs that help to identify trends and anomalies in your time-series
data. You learned how to execute queries using the RedisInsight Workbench and how to visualize the
results using the plotting utility in RedisInsight.

By mastering these concepts, you have gained valuable knowledge about working with time-series
data in Redis and how to utilize the built-in capabilities of Redis for Time Series. Whether you are
working in the field of IoT, finance, or any other industry where time-series data is prevalent, these
skills will prove invaluable in helping you to better understand your data and make more informed
decisions based on that data.

In Chapter 8, Understanding Probabilistic Data Structures, you will learn the fundamentals of the
counting algorithms implemented in the form of probabilistic data structures. These constitute a
category of data structures that offer highly accurate approximations of answers, achieved within a
significantly reduced time frame and minimal memory consumption.

8
Understanding Probabilistic

Data Structures

The probabilistic data structures of Redis Stack are packed into a set of capabilities also known as
Bloom filters. Such structures owe their name to Burton Howard Bloom, a computer scientist who
introduced the concept of a probabilistic data structure in 1970 to resolve the problem of verifying
whether an item belongs to a set. By using hash data representations, it is possible to achieve a sufficient
approximation to the problem under analysis, allowing false positives (the item may belong to the
set), but without false negatives (the item definitely does not belong to the set).

The Bloom filter has since become a widely used data structure in computer science. It is used in various
applications, such as spell-checking, network routing, content filtering, and DNA sequence analysis.

Probabilistic data structures process large volumes of data in real time with minimal memory
requirements. This chapter covers several types of probabilistic data structures and their applications,
such as detecting fraud in credit card transactions, analyzing network traffic patterns, and monitoring
user behavior on a website. Throughout this chapter, you will find that we sometimes refer to these
structures as sketches. Probabilistic data structures are called sketches as they provide an approximate
view of data from the desired perspective, much like a sketch is a simplified representation of a real
object. Probabilistic data structures can enable fast, scalable, and low-memory data processing for
real-time analytics. We will cover the following data structures:

•	 HyperLogLog

•	 Bloom filter

•	 Cuckoo filter

•	 Count-Min sketch

•	 Top-K

•	 t-digest

Understanding Probabilistic Data Structures206

Technical requirements
To follow along with the examples in this chapter, you will need to install Redis Stack Server 7.2 or
later in your development environment. Alternatively, you can create a free Redis Cloud subscription
to get a free plan and use a managed Redis Stack database.

HyperLogLog
HyperLogLog was the first probabilistic data structure available in Redis, theorized and published
in 2003 by Marianne Durand and Philippe Flajolet. HyperLogLog is an efficient solution to count
the number of unique occurrences in a set, which, in practice, is the cardinality of the set. This is
especially useful when accuracy is not required: the count is probabilistic but presents a very low
error. HyperLogLog does not store any information as the items that are added pass through a hashing
function, so it is not possible to remove elements once they are counted.

HyperLogLog is the simplest probabilistic data structure and using it is as easy as adding elements to
it using the PFADD command:

PFADD mortensi.com:1hnsn9n6kb:012023 IGaJ9c5KqYHFUEogCQWc
PFADD mortensi.com:1hnsn9n6kb:012023 XUq9br38-SYFOVpfN-vq
PFADD mortensi.com:1sneb4qq3t:012023 bmGteHMoGpAKbtk4X-9Y
PFADD mortensi.com:1sneb4qq3t:022023 IGaJ9c5KqYHFUEogCQWc

Using the former commands, we can track the monthly unique visitors of individual web pages of the
https://www.mortensi.com website, so we have chosen a key name that is descriptive of the
website, the page identifier, and the month of the year. The unique visitor is anonymously identified
by, for example, the session identifier (IGaJ9c5KqYHFUEogCQWc, for example).

We can count the visited pages with the PFCOUNT command:

PFCOUNT mortensi.com:1hnsn9n6kb:012023
(integer) 2
PFCOUNT mortensi.com:1sneb4qq3t:012023
(integer) 1
PFCOUNT mortensi.com:1sneb4qq3t:022023
(integer) 1

Calculating the number of unique visitors of a certain page across the year is as easy as using the
PFMERGE command, which combines two or more HyperLogLogs into one:

PFMERGE mortensi.com:1sneb4qq3t:2023 mortensi.com:1sneb4qq3t:012023
mortensi.com:1sneb4qq3t:022023
OK
PFCOUNT mortensi.com:1sneb4qq3t:2023
(integer) 2

https://www.mortensi.com

Bloom filter 207

Now that we know how to count unique items in a set using up to 12 KB of memory and with good
approximation (with a standard error of 0.81%), let’s discover how to verify whether an item belongs
to a set. For that, we will use the Bloom filter.

Bloom filter
A Bloom filter is one of the probabilistic data structures supported by Redis Stack and is used to test
whether an item is a member of a set. It is crucial as a data deduplication solution – that is, for removing
duplicated data from a set. It is a memory-efficient and fast data structure that uses a bit array and a
set of hash functions to determine whether an item is in the set or not. Testing for membership to the
filter can return “possibly in the set” or “definitely not in the set,” which means that false positives are
possible, but false negatives are not. Imprecisions (or approximations) are around the corner in every
aspect of life, and digital computing does not make any difference. Think of the lossy compression
algorithms for images (JPEG) or audio files (MP3): we can still enjoy media files and not even realize
there is a loss of quality. A Bloom filter simplifies the management and speed of solutions that require
the existence or membership verification.

The verification is accurate when it discards an item has not been added to the filter yet, so false
negatives are not possible. When accuracy is mandatory in positive cases, the user can double-check
the source of data to discard false positives. The adoption of the filter helps because in this case, it
limits access to the data source and reduces the time to produce an accurate answer. In addition, the
filter suits those datasets that contain sensitive information because the original data is not saved.

Using the Bloom filter is straightforward. Imagine a scenario where a new user will subscribe to your
portal by creating an account. The user will provide an email and a username, and you would like
to verify whether the username is already being used by some other account. You have created and
provisioned the filter for previous accounts using the BF.ADD command (or BF.MADD to add more
items to the filter at once):

BF.ADD service:username mortensi
BF.ADD service:username lfoogaro
BF.ADD service:username bmay
BF.ADD service:username jdeacon

The existence of an item in the filter can be verified using the BF.EXISTS command:

BF.EXISTS service:username mortensi
(integer) 1
BF.EXISTS service:username fmercury
(integer) 0

Understanding Probabilistic Data Structures208

If the username is available, the user can proceed and create the account, and the application server
can add the username to the filter so that subsequent checks will find that this username has been
taken. You can also check multiple elements at once:

BF.MEXISTS service:username mortensi fmercury
1) (integer) 1
2) (integer) 0

You can check the cardinality of a filter (that is, the number of users) with BF.CARD:

BF.CARD service:username
(integer) 4

Note that the probability of collisions can be reduced by specifying the desired error ratio (refer to
the BF.RESERVE command). However, reducing the error increases the memory requirements and
computation time as larger hashes are required.

Some other scenarios where Bloom filters represent an efficient solution are as follows:

•	 Spam filtering: Maintaining a list of malicious URLs or IPs to prevent spam or fraud.

•	 Fraud detection: Checking whether a credit card number belongs to a list of blocked or
suspicious credit cards (stolen or cloned). This is particularly useful because such a filter could
also be shared between financial institutions without the risk of storing the number in clear text.

•	 Suspicious activity: Verifying user activity (geographical location, date and time of activity,
category of a product being purchased, and so on) and preventing authentication or allowing
certain operations until authentication or verification is completed using a stronger method.

•	 Ad placement and recommendations: Using the Bloom filter, you can answer questions such
as “Has the user seen this ad?” and then act accordingly.

•	 Spell-checking: If a word does not belong to a filter, it is misspelled.

Regarding the fraud detection use case, Bloom filters offer a streamlined and effective solution. For
instance, we can employ Bloom filters to add verified user locations and subsequently verify whether
a login attempt originates from a known location. This approach ensures that the user has not
authenticated from a new or suspicious location. Additionally, Bloom filters simplify the process of
monitoring user behavior, allowing us to track their activities during specific time intervals.

Modern fraud detection systems employ algorithms that calculate real-time transaction risk scoring.
These systems analyze various factors such as transaction information, user profiles, behavioral
biometrics, geolocation, IP/device data, and account details using predictive ML models. Redis is
suitable for serving such models when used as an online feature store. However, for smaller solutions,
you can swiftly and effectively utilize Bloom filters to check whether a specific transaction is part of
a collection of recognized fraudulent patterns.

Cuckoo filters 209

The Bloom filter offers a practical solution to numerous scenarios where complex problems can be
simplified with a reliable approximation. Similarly, Cuckoo filters exhibit high efficiency in these
particular use cases, albeit with some subtle distinctions. Let’s delve into their details.

Cuckoo filters
Cuckoo filters are an evolution of Bloom filters that were published in 2014 and address the limitations
of Bloom filters, especially around collision handling. This filter inherits its name from the cuckoo
bird, famous for laying its eggs in the nests of other bird species and leaving them to be raised by
the host bird. In doing so, the cuckoo pushes the other eggs or chicks out of the nest. This behavior
describes the implementation of Cuckoo filters. Differently from Bloom filters, Cuckoo filters use a
fingerprint-based technique that allows for the fast and efficient handling of collisions and reduces
the rate of false positives while maintaining the same space requirements as Bloom filters.

Instead of storing the hashed version of an item as Bloom filters do, Cuckoo filters use multiple
locations, or buckets, to store the fingerprint representation of the item. When a new item is added to
the filter and a collision occurs at a candidate bucket, the existing item is moved to another candidate
bucket. If that bucket is also occupied, the filter keeps searching until a bucket without the fingerprint
is found or the filter reaches the maximum number of attempts to kick out existing items. This approach
reduces the rate of false positives while maintaining the same space requirements as Bloom filters.

The items are stored through their fingerprint, after which it is possible to locate them. It’s also possible
to delete them. Let’s review the usage of this filter.

We can use the CF.ADD command to add elements to the filter:

CF.ADD service:username mortensi
CF.ADD service:username lfoogaro
CF.ADD service:username bmay
CF.ADD service:username jdeacon

Note that thanks to the multi-bucket fingerprint-based implementation, we can also insert the same
item multiple times and count them. If the items are repeated and you want to account for repetitions,
CF.COUNT returns the number of times the item may be in the filter:

CF.ADD service:username mortensi
(integer) 1
CF.COUNT service:username mortensi
(integer) 2

Understanding Probabilistic Data Structures210

CF.DEL removes items from the filter:

CF.DEL service:username mortensi
(integer) 1
CF.COUNT service:username mortensi
(integer) 1

Overall, Cuckoo filters provide an alternative to Bloom filters with similar error rates. Use cases where
the Cuckoo filter is a valid solution are the same as those listed for the Bloom filter, with the difference
that Cuckoo filters also allow elements to be deleted. Now, let’s continue our journey into probabilistic
data structures by introducing the Count-Min sketch structure, which supercharges HyperLogLog
with the frequencies of the different items being counted.

Count-Min sketch
The Count-Min sketch probabilistic data structure, like HyperLogLog, counts the items that have
been added, with the difference that the Count-Min sketch counts the number of times specific items
have been added – that is, their frequency.

When using a Count-Min sketch data structure, any frequency counts below a predetermined threshold
(established by the error rate) should be disregarded. The Count-Min sketch serves as a valuable
tool for counting element frequencies in a data stream, especially when dealing with higher counts.
Nevertheless, very low counts are often perceived as noise and are typically discarded in this context.
To start using the data structure, we have the option to initialize it either based on the probabilities
to be maintained or on the desired dimensions. It is important to note that the dimensions of the
Count-Min sketch play a significant role because to merge two Count-Min sketches, they must have
identical dimensions.

We can initialize it using the CMS.INITBYDIM command while passing the name, the width, and
the depth and indicating the number of counters in the structure and the depth:

CMS.INITBYDIM key width depth

To understand the definition, consider that the Count-Min sketch is implemented as several arrays
of counters – that is, a two-dimensional array with width as the number of counters and depth as
the number of hash functions used. The larger the depth, the smaller the probability of an element
that has a count below the threshold colliding with elements that have a count above the threshold,
resulting in more accuracy but also more overhead to maintain and update the data structure.

We won’t dig into the theory of the Count-Min sketch probabilistic data structure as the algorithm is
in the public domain and detailed information can be found on multiple websites. Instead, let’s look
at an example of counting the items sold in a day in a grocery store. Assuming we would like to count
50 items and we have chosen a depth of 5, we would create the structure as follows:

CMS.INITBYDIM grocery:25042023 50 5

Top-K 211

Now, we can use the Count-Min sketch to introduce the items sold in a day:

CMS.INCRBY grocery:25042023 orange 1
CMS.INCRBY grocery:25042023 orange 5
CMS.INCRBY grocery:25042023 lemon 1
CMS.INCRBY grocery:25042023 apple 3

To test the frequencies, we can query the data structure using the CMS.QUERY command:

CMS.QUERY grocery:25042023 orange
1) (integer) 6
CMS.QUERY grocery:25042023 apple
1) (integer) 3

This probabilistic data structure, invented by Cormode and Muthukrishnan in 2003, answers the
question “How many times did this value appear in the data stream?” so the use cases where it is
helpful to employ such a data structure are those where we must count, out of a high volume of data,
occurrences of an item. The following data structure is not only relevant for counting events but also
optimized to sort them by frequency: let’s introduce the Top-K structure.

Top-K
The Top-K data structure is used to keep track of items with the highest rank, such as the top players
in a leaderboard. The ranking, or score, is often based on the count of how many times an item appears
in the data source (such as a stream), making the data structure ideal for identifying elements with
the highest frequency. Among the most common use cases of this data structure are leaderboards,
trending entities in a system, detecting network anomalies, and DDoS attacks. Here, the Top-K data
structure can help answer questions such as “Which top addresses or IPs have the highest surge in
the flow of requests?”

Let’s dive into an example of using the Top-K data structure and insert a few items into it. First, we
must initialize it using the following command:

TOPK.RESERVE key topk [width depth decay]

In addition to key, which specifies the Top-K name, topk indicates the number of top items we want
to keep track of, and width indicates the number of counters. As seen with other data structures, it is
possible to configure how sensitive the data structure is to collisions by choosing depth and decay.

Similar to Cuckoo filters, Top-K uses buckets to store fingerprints and counters. This method employs
a two-dimensional array characterized by its width and depth:

•	 width represents the number of buckets within each array

•	 depth signifies the number of arrays or hash functions employed

Understanding Probabilistic Data Structures212

Collisions can be avoided using the HeavyKeeper algorithm, which relies on exponential decay.
When a hash collision occurs (two elements compete for the same bucket), the algorithm initiates a
reduction in the counter of the current occupant of the bucket. However, this reduction doesn’t occur
with every collision. Instead, the probability of a decrease is determined by an exponential function
of the counter’s current value.

This means that the more substantial the counter value (indicative of significant flows, often referred
to as “elephant flows”), the greater the likelihood that the element remains in the bucket despite
collisions. Conversely, for smaller counter values (representative of less significant flows, often termed
“mouse flows”), there is a higher probability of the element being displaced from the bucket during
collisions. This approach allows the algorithm to dynamically adapt, prioritizing the retention of
elements with higher counts while efficiently managing collisions and maintaining the integrity of
the Top-K approximation.

Typically, a good initial configuration involves setting the following:

•	 width to topk*log(topk)

•	 depth to log(topk) or a minimum of 5

•	 The decay rate to 0.9

It’s advisable to conduct tests to refine these parameters based on the characteristics of your data.

Let’s proceed with creating and using Top-K to store some players’ scores:

TOPK.RESERVE players 10
TOPK.INCRBY players "john" 5
TOPK.INCRBY players "tod" 10
TOPK.INCRBY players "john" 3
TOPK.INCRBY players "bill" 5

In this example, we initialized the Top-K data structure named players with a capacity of 10
elements. Then, we inserted some players and a score. Now, we can retrieve the top-k players from
the data structure using the following command:

TOPK.LIST players WITHCOUNT
1) tod
2) (integer) 10
3) john
4) (integer) 8
5) bill
6) (integer) 5

This command will return a list of the k most frequent elements stored in the Top-K data structure,
along with their counts.

t-digest 213

Before we look at the next probabilistic data structure, let’s conclude this introduction with a summary
of the principal use cases for Top-K:

•	 Network analysis/DDoS prevention: Locating the Top-K highest rates in network analysis
is crucial. Sudden fluctuations in certain packets may indicate increased traffic going into or
coming out of specific nodes, which can provide insights for mitigating DDoS threats, managing
bandwidth usage, improving system efficiency, and so on.

•	 Leaderboards: Rankings are usually stored as sorted sets. However, when there are vast amounts
of users, memory consumption can be reduced by utilizing Top-K. It helps save space without
compromising functionality.

•	 Trending hashtags (or other resources, such as pages, videos, and so on): Top-K manages
trending hashtags on social media platforms (or any kind of content in the related hosting platform).

Now, let’s conclude our walk-through of probabilistic data structures with the last and most recent
data structure: t-digest.

t-digest
t-digest is a data structure for estimating quantiles from a data stream or a large dataset using a
compact sketch.

The t-digest data structure enables the resolution of various inquiries, such as “What proportion of
values in the data stream is less than a specific value?” and “How many values in the data stream are
below a given threshold?” To better understand t-digest, we need to define quantiles and percentiles.

A quantile is a value or cut point that divides a dataset into intervals with equal proportions or
frequencies of observations. As an example, the median is an example of a quantile as it divides the
dataset in half (that is, 50% of observations below and 50% above).

A percentile represents a specific position within a dataset, where a certain percentage of the data
falls below that position. For example, if a value is at the 75th percentile of a dataset, it means that
75% of the data falls below that value. Percentiles are used to understand the distribution of data and
to compare observations to others within the same dataset.

In short, quantiles are like percentiles, but instead of dividing a dataset into 100 equal parts, they divide
it into a specified number of intervals, each with an approximately equal number of observations.

Having defined these concepts, let’s dig into t-digest using the following commands, where we will
add some data to t-digest using the TDIGEST.CREATE command:

TDIGEST.CREATE temperatures
TDIGEST.ADD temperatures 20
TDIGEST.ADD temperatures 43
TDIGEST.ADD temperatures 38

Understanding Probabilistic Data Structures214

TDIGEST.ADD temperatures 24
TDIGEST.ADD temperatures 41

In this example, we have created a digest named temperatures and added some data points
representing temperatures to the digest using the TDIGEST.ADD command.

Using the TDIGEST.QUANTILE command, we can calculate an estimate for a specific quantile of
the data:

TDIGEST.QUANTILE temperatures 0.5
1) "38"
TDIGEST.QUANTILE temperatures 0.9
1) "43"

In this example, 38 degrees is the threshold item that divides the set of temperatures into two groups,
also called the median. The 0.9 quantile, on the other hand, has 90% of the points to its left.

The output of this command is an estimate of the value at the required quantiles.

t-digest offers the useful TDIGEST.CDF command, which stands for cumulative distribution function,
which helps determine the rank or fraction of observations that are smaller or equal to a given value. This
feature can be highly beneficial in addressing queries such as “What is the percentage of observations
with a value less than or equal to X?” Using the minimal dataset we introduced previously, we can
test the command as follows:

TDIGEST.CDF temperatures 38
1) "0.5"

Similarly, the TDIGEST.RANK command calculates the number of observations rather than
the percentage:

TDIGEST.RANK temperatures 38
1) (integer) 2

In this section, we have just scratched the surface of the t-digest sketch: there are additional commands
you will find useful in many use cases. Overall, t-digest is a valuable data structure in scenarios such
as the following:

•	 Network monitoring: As an example, you can measure the distribution of latencies in a network
(what fraction of the connections has latency above/below a certain value?). This information
can help you troubleshoot eventual slowness and pinpoint root causes.

•	 Online gaming: You might be wondering what threshold or minimum score should be
included in the X% of best players of the game. In this case, you would use t-digest with the
desired percentile.

Summary 215

•	 Prevention of denial of service: Using the t-digest sketch, it is possible to detect whether
the latest received packets (as an example, in the last second) exceed a percentage of already
observed packets in a certain time window.

With that, let’s summarize what we’ve learned.

Summary
In this chapter, we introduced probabilistic data structures, also known as “sketches.” We explained
their strengths in different areas, such as fraud detection, online gaming, network, device analysis,
and social media trends analysis. We also learned how to use the right data structures for the right use
cases and understood that using such solutions is often an acceptable compromise between accuracy,
performance, and the usage of resources, especially when dealing with datasets of exceptional size or
that contain big data. In addition, we discussed how accuracy can be fine-tuned and the guarantees
of outcomes when a certain item is tested against a specific sketch. To learn more about probabilistic
data structures and understand how to achieve acceptable accuracy, refer to the Sizing section in the
documentation at https://redis.io/docs/data-types/probabilistic/.

In Chapter 9, The Programmability of Redis Stack, we will dive into the strengths of Redis Stack as
a data platform and show use cases for subscribing to and managing database events. We will also
introduce the stream processing features and learn how to design powerful data flows.

https://redis.io/docs/data-types/probabilistic/

In addition to the traditional Lua server-side scripts and functions, Redis Stack introduces a JavaScript
serverless engine that enables users to write and execute custom functions directly on data stored in
Redis. This feature supports various use cases, such as write-behind caching to sync Redis changes
with backend databases, and streaming and event processing to respond to events in Redis using its
diverse data structures and capabilities.

Additionally, Redis Stack includes RedisInsight, a graphical desktop manager that connects to Redis
Stack databases. This tool provides visualization tools for various data models stored in Redis.
Traditionally used as an in-memory cache alongside a primary database, Redis Stack extends Redis’s
capabilities, making it suitable as a standalone, multi-model primary database for diverse applications.

The content in this part also covers the transition from a development environment to deploying Redis
at scale, highlighting the effort and maintenance required in monitoring and managing databases.
Redis Enterprise and Redis Cloud offer solutions to these challenges, providing an intuitive UI that
eases the workload for system and database administrators. This simplifies the management of Redis
databases, particularly in larger, scaled environments.

This part contains the following chapters:

•	 Chapter 9, The Programmability of Redis Stack

•	 Chapter 10, RedisInsight – the Data Management GUI

•	 Chapter 11, Using Redis Stack as a Primary Database

•	 Chapter 12, Managing Development and Production Environments

Part 3: From Development
to Production

9
The Programmability of

Redis Stack

In this chapter, we’ll explore Redis Stack’s programmability features and show you how they can be
used in different situations. For quite a while, software engineers and database administrators have
been making the most of stored procedures in relational databases. There are several good reasons
for that: managing SQL procedures all in one place, easily troubleshooting procedure flows, staying
separate from the chosen client library, and, most importantly, getting things done quickly.

Redis started off by allowing users to write Lua scripts and run them locally, giving them a taste of
this capability. But with Redis Stack, server-side programming has been taken to a whole new level.
You can now write intricate business logic in either Lua or JavaScript and execute it as close to your
data as possible. There is no need for back-and-forth trips to a distant server.

In this chapter, we’ll show you how to implement complex behaviors using Lua and JavaScript. We’ll
also dive into the world of asynchronous and distributed programming in a clustered environment.
Additionally, we’ll unveil the power of triggers, which let your application respond to keyspace events
and execute your logic when data is added, updated, or deleted.

Plus, we’ll teach you how to minimize interactions with clients, reducing round-trip times and enabling
you to run fast and efficient operations directly within the database.

In this chapter, we are going to cover the following:

•	 The single-threaded architecture

•	 Programming complex business logic with Redis Stack

•	 Lua scripting

•	 Redis Functions

•	 Triggers and functions

•	 Comparing Lua scripts, Lua functions, and JavaScript functions

The Programmability of Redis Stack220

Technical requirements
To follow along with the examples in the chapter, you will need to do the following:

•	 Install Redis Stack Server 7.2 or later on your development environment. Alternatively, you
can create a free Redis Cloud subscription to get access to a free plan and use a managed Redis
Stack database.

•	 Create a clustered version to test the triggered remote functions using Redis Stack. You can
refer to Chapter 12, Managing Development and Production Environments, to learn how to do it.

•	 You can download and import the World dataset from this book’s repository if you’d like to test the
examples that we propose in this chapter: https://github.com/PacktPublishing/
Redis-Stack-for-Application-Modernization.

The single-threaded architecture
Redis incorporates a single-threaded architecture, which is a distinctive design in the realm of databases
and caches. While “single-threaded” may suggest that only one thread runs within the Redis process,
this assumption is not entirely accurate. A Redis server comprises multiple threads dedicated to specific
tasks, such as key expiration, statistics, and threaded I/O to handle concurrent connections. However,
the primary focus is on the main thread responsible for executing commands and managing data storage
and retrieval. This single-threaded design ensures that commands are processed sequentially, avoiding
complex synchronization issues such as deadlocks and long-running locks. By eliminating interaction
between different clients, this implementation reduces the number of stages data and instructions must
pass through and enables immediate access to data, a crucial aspect for real-time execution.

With the main thread executing commands, a single Redis Stack Server instance does not scale beyond
a single CPU core. To address scalability beyond the single core, the Redis OSS Cluster API and Redis
Enterprise offer solutions that will be discussed in detail in Chapter 12, Managing Development and
Production Environments. Regarding command execution, the serialized approach ensures exclusive
access to the keyspace and allows for the efficient atomic execution of multiple commands using
the WATCH/MULTI/EXEC transactions. However, it also implies that prioritizing low-complexity
commands over lengthy, blocking scans is necessary. While Redis Stack’s secondary indexing features
enhance data retrieval by eliminating the need for time-consuming scans such as HSCAN, ZSCAN,
and others, it’s important to handle scripts or functions carefully to prevent extended blocking of
concurrent clients. Exclusive access to the keyspace requires consideration of the complexity of
commands, especially when implementing complex actions with Redis Stack’s programmability
features, which we’ll discuss next.

Programming complex business logic with Redis Stack
To illustrate the programmability features of Redis Stack, let’s explore scenarios where we can solve
problems through a sequence of actions. As an example, to identify click spam, we can employ various

https://github.com/PacktPublishing/Redis-Stack-for-Application-Modernization
https://github.com/PacktPublishing/Redis-Stack-for-Application-Modernization

Lua scripting 221

methods, such as counting events in a time span using the ZCOUNT method of the sorted set data
structure. Using ZCOUNT, we can find the number of clicks from a user during a defined time window.
If the count received surpasses a certain threshold, we identify it as anomalous and execute a series
of actions, such as throttling user interactions or logging out the user, and maybe sending a warning
notification. Another example where we can leverage Redis Stack’s programmability features is in an
e-commerce application. When an order is placed, we may need to respond to the updated data and
adjust the inventory count accordingly. By incorporating Redis Stack, we can efficiently handle such
updates and ensure accurate inventory management.

These are just a few instances where we can utilize Redis Stack to solve common problems. The
possibilities extend to various use cases, including data manipulation or normalization during insertion,
as well as identifying and handling fraudulent attempts by blocking specific IP addresses or users.
Redis Stack empowers developers to address these challenges seamlessly and efficiently.

In the realm of databases, triggers and stored procedures play a vital role in automating actions
performed on the stored data in response to specific events. Stored procedures offer the advantage of
moving the logic for these actions from the client application to the database itself. This transfer simplifies
code management, including versioning and troubleshooting, while also enhancing performance. By
executing procedures locally within the database, the need for round-trip communication is eliminated,
resulting in faster processing, and the proximity of data reduces additional overhead.

Redis has long supported Lua scripting, which enables the atomic execution of multiple actions
on local data. While Lua scripting is straightforward and intuitive, the advent of Redis functions
represents an evolution of this feature. Redis functions provide several advantages, such as script
persistence (unlike Lua scripts, which are not persisted and must be reloaded upon database restart) and
structured management (enabling the organization of functions into libraries). To further expand on
the programmability features of Redis Stack, triggers and functions come into play, offering complete
control over data events and the ability to react to them using custom functions written in JavaScript.

In summary, Redis Stack offers a powerful set of programmability features. With Lua scripting, Redis
functions, triggers, and JavaScript functions, developers have a range of tools at their disposal to
automate actions, enhance performance, and ensure efficient data event management in Redis. Let’s
start our journey with the first and most well-known Lua programmability features.

Lua scripting
With Redis, developers can write Lua scripts and execute them within Redis. Lua is a lightweight
scripting language known for its simplicity and efficiency, and Redis has leveraged its power to
perform complex operations on stored data since Redis 2.6.0. Lua scripting offers several benefits,
such as allowing the execution of multiple commands atomically, meaning all the commands within
a Lua script will be executed as a single unit of work, ensuring consistency. This is particularly useful
to ensure they are executed without interruption or interference from other clients.

The Programmability of Redis Stack222

By executing Lua scripts, the network round trips between the application and the server are removed,
improving performance. Lua scripts are sent to Redis as an atomic block of instructions and executed
directly on the server, eliminating the need to send multiple commands and receive responses individually.

Redis provides a Lua interpreter with a set of Redis-specific Lua functions that allow you to interact
with Redis data structures, such as strings, lists, sets, and hashes. These functions enable various
operations, including data manipulation, conditional clauses, iterations, and transaction-like behavior.

To use Lua scripting in Redis, you can write Lua code within the EVAL command. Let’s test a few
commands in a Redis Stack instance where the World dataset has been preloaded. A single command
is executed using the following signature:

EVAL <script> <number_of_keys> [<key1> ... <keyn>] [<arg1> ... <argn>]

The EVAL command is fed with the script, the number of keys that’ll be passed to the script, a list
of keys, and a list of arguments, all separated by spaces. In the script, access to the database and the
arguments is possible, considering the following:

•	 Interacting with Redis is possible using the redis object singleton

•	 Scripts are parametrized with keys (accessed with KEYS[id]), arguments (accessed with
ARGV[id]), or both

In the following example, the script receives a key (so the related hash data structure is read) and a
message, used to format the output:

EVAL "local name = redis.call('HGET', KEYS[1], 'Name') return
ARGV[1]..name" 1 'city:123' 'The city you requested is '
"The city you requested is Ezeiza"

It is possible to cache Lua scripts identified by a unique script hash with the SCRIPT LOAD command.
Once the script has been cached, it can be invoked using the hash:

SCRIPT LOAD "local name = redis.call('HGET', KEYS[1], 'Name') return
ARGV[1]..name"
"42740b7c393c61b71ba7a0cd58b707bc3f7a04ca"

The EVALSHA commands take the Lua script hash as an argument along with any required parameters,
and Redis executes the script and returns the result.

For complex business logic, the Lua scripts can be written to a file as follows:

#!lua
local name = redis.call('HGET', KEYS[1], 'Name')
return ARGV[1]..name

Redis functions 223

Then the script can be executed from the redis-cli command-line client as follows:

redis-cli --eval script.lua 'city:123' , 'The city you requested is '
"The city you requested is Ezeiza"

Alternatively, it can be cached as usual, again, from the file:

redis-cli -x script load < script.lua
"60304f8d51782b9f601032be84a0b3011b644295"

You can clean up the cache with SCRIPT FLUSH, kill a long-running script using SCRIPT KILL,
and more. Note that Lua scripts are volatile, so any cached script won’t survive a server restart: Lua
scripts are not part of the server and are always managed by clients. An additional feature of Lua
scripting is support for read-only Lua scripts, enforced by the EVAL_RO command (and the equivalent
EVALSHA_RO for cached scripts):

EVAL_RO "local name = redis.call('HGET', KEYS[1], 'Name') return
ARGV[1]..name" 1 'city:123' 'The city you requested is '
"The city you requested is Ezeiza"

Changing the script used as an example and adding an INCR command, instead, will fail if executed
with EVAL_RO:

EVAL_RO "local name = redis.call('HGET', KEYS[1], 'Name') redis.
call('INCR', 'cnt') return ARGV[1]..name" 1 'city:123' 'The city you
requested is '
(error) ERR Write commands are not allowed from read-only scripts.
script: 08c94c021a86b797dfb361f29cc3f9c9bb3d8d5a, on @user_script:1.

Lua scripting in Redis is a powerful feature that provides flexibility and performance optimizations
when working with Redis data. It allows you to perform complex operations efficiently, reducing
network overhead and ensuring the atomicity of multiple Redis commands. However, maintaining
and organizing scripts across multiple clients is complicated and error-prone and scripts cannot call
other scripts, which makes reusing code impossible. Redis functions, introduced in Redis 7, supersede
Lua scripts and overcome such limitations and many more.

Redis functions
Redis functions are an evolution of ephemeral scripting in Redis. They provide similar functionality
as scripts but are considered first-class software artifacts within the database. Functions are managed
and persisted by Redis, ensuring their availability through data persistence and replication. Unlike
scripts, functions are declared before use and do not need to be loaded during runtime.

The Programmability of Redis Stack224

Here are some advantages of Redis functions over Lua scripts:

•	 Persistence and replication: Redis manages functions as part of the database and stores them
alongside the data itself ensuring their persistence (RDB snapshots and/or append-only files) and
replication along with the data. Functions are considered integral components of the database,
making them readily available without the need for external management.

•	 Simplified development and code sharing: Functions belong to libraries, and libraries can
contain multiple functions. Functions within the same library can call each other, enabling code
sharing and modular development. Libraries are updated as a whole, providing a consistent
and atomic update mechanism.

•	 Atomic execution: Like transactions and Lua scripts, the execution of a function in Redis is
atomic. This means that the effects of a function either have not happened yet or have already
happened. Function execution blocks all server activities during its execution, ensuring atomicity
and consistent behavior across connected clients.

Let’s see an example to load and execute a function. Functions can be loaded as strings:

FUNCTION LOAD "#!lua name=mylib\n redis.register_function('city_fetch_
name', function(keys, args) local name = redis.call('HGET', keys[1],
'Name') return args[1]..name end)"
"mylib"

Functions can also be listed:

FUNCTION LIST
1) 1) "library_name"
   2) "mylib"
   3) "engine"
   4) "LUA"
   5) "functions"
   6) 1) 1) "name"
         2) "city_fetch_name"
         3) "description"
         4) (nil)
         5) "flags"
         6) (empty array)

Differently from the basic Lua scripting feature, Redis functions can be invoked by their name using
the FCALL command:

FCALL city_fetch_name 1 'city:123' 'The city you requested is '
"The city you requested is Ezeiza"

Redis functions 225

The entire library can be deleted using the following command:

FUNCTION DELETE mylib
OK

It is possible to develop a library with multiple functions in a single Lua source code file:

#!lua name=mylib

local function city_fetch_name(keys, args)
    local name = redis.call('HGET', keys[1], 'Name')
    return 'The city is '..name
end

local function city_fetch_district(keys, args)
    local district = redis.call('HGET', keys[1], 'District')
    return 'The district is '..district
end

redis.register_function('city_fetch_name', city_fetch_name)
redis.register_function('city_fetch_district', city_fetch_district)

You can import the library as follows (in this example, see how the library is replaced using the
REPLACE option):

cat mylib.lua | redis-cli -x FUNCTION LOAD REPLACE
"mylib"

Redis functions promote code reuse, so the invocation of functions from other functions within the
same library is supported. This facilitates the sharing of code between functions by utilizing a shared
code base in library-internal methods:

#!lua name=mylib

local function myincr()
    redis.call('INCR', 'cnt')
    return 'OK'
end
local function city_fetch_name(keys, args)
    local name = redis.call('HGET', keys[1], 'Name')
    myincr()
    return 'The city is '..name
end
redis.register_function('city_fetch_name', city_fetch_name)

The Programmability of Redis Stack226

Another useful feature of Redis functions is the ability to set functions as read-only. This can be
achieved by specifying the no-writes flag at function registration time and executing the function
with the FCALL_RO command. By default, functions allow write operations, so attempting to execute
a function with FCALL_RO will fail:

FCALL_RO city_fetch_name 1 city:123
(error) ERR Can not execute a script with write flag using *_ro
command.

The correct function definition is as follows:

#!lua name=mylib

local function city_fetch_name(keys, args)
    local name = redis.call('HGET', keys[1], 'Name')
    return 'The city is '..name
end

redis.register_function{
    function_name='city_fetch_name',
    callback=city_fetch_name,
    flags={ 'no-writes' }
}

Now the execution with the FCALL_RO command is successful:

FCALL_RO city_fetch_name 1 city:123
"The city is Ezeiza"

Flags are supported by Redis functions and Lua scripts. The additional flags supported are as follows:

•	 allow-oom: Allows a script to execute even when the server is out of memory (OOM). By
default, Redis denies the execution of flagged scripts in an OOM state. This flag enables the
script to call any Redis command, including those not allowed in this state.

•	 allow-stale: Enables running flagged scripts against a stale replica when the replica-
serve-stale-data config is set to no. It allows scripts that do not access data to run on
stale Redis replicas but commands accessing stale data will still be restricted.

•	 no-cluster: Causes the script to return an error in Redis Cluster mode, preventing its
execution on cluster nodes.

•	 allow-cross-slot-keys: Allows a script to access keys from multiple slots, breaking
the usual rule of single-command access. However, it is generally discouraged as applications
should access keys from a single slot at a time, especially when using Redis Cluster.

Triggers and functions 227

Overall, Redis functions offer improved management, persistence, atomicity, and flexibility compared
to traditional Lua scripting. They provide a more integrated and reliable approach for extending Redis
functionality with user-provided logic, promoting code reuse.

Triggers and functions
The latest addition to Redis Stack is the capacity to respond to specific events happening in your Redis
database and define business logic that executes the desired actions. These events can be triggered
by changes to the data, such as adding a new key-value pair. When an event occurs, the specified
JavaScript function is automatically executed. However, this is not the only way to execute the desired
functions: Redis Stack supports two types of triggers for execution while supporting manual user
execution. For a summary, see the following:

•	 User functions: Functions can be executed manually, using the TFCALL or TFCAL-
LASYNC command

•	 Keyspace triggers: These triggers are activated when there are changes to the data stored in
Redis, and they execute the desired function

•	 Stream triggers: Whenever new items are added to a Stream, these triggers are activated and
execute the desired function

The advantage of using triggers is that you can keep your business logic within the database itself,
eliminating the need for duplicating the logic across multiple services or applications. These functions
are executed synchronously and without any delay.

For example, in an e-commerce application, when an order is placed, the trigger executes the related
function, which can update the inventory by reacting to the changed data. Similarly, if a database receives
data from different applications, you can use a function to apply the transformation logic and ensure
consistency across different domains. To deploy functions, you need to provide a JavaScript file. While
this is easy for small projects, it becomes more challenging to maintain as projects become larger and
more complex. However, the JavaScript community offers deployment tools such as Webpack, which
can help manage and bundle the code effectively. It’s important to note that when using JavaScript in
a function, you should ensure that the JavaScript libraries you use are compatible with the popular
V8 engine, which is the engine powering this functionality.

Let’s now dive into writing functions. We will start with simple examples that can be executed manually,
and then dive into the core functionality that enables automatic function execution in response to
data events.

The Programmability of Redis Stack228

Anatomy of a function

Users can register functions using the TFUNCTION LOAD command, which can be invoked using
the TFCALL and TFCALLASYNC commands:

TFUNCTION LOAD "#!js api_version=1.0 name=greetings\n redis.
registerFunction('hello_world', ()=>{return 'Hello world!';})"

Let’s examine the syntax of building and loading a function into Redis:

•	 The functions are written in the JavaScript language.

•	 The functions are organized in libraries: a library can contain multiple functions.

•	 A library is introduced by the #!js shebang.

•	 The minimum version of the supported JavaScript API is specified with api_version (refer
to the documentation for the list of supported versions). This is required in order to follow the
life cycle of the JavaScript API and plan maintenance through API deprecation cycles.

•	 The name of the library is specified by name=greetings.

Any function in a library can be executed by specifying the library and the function names separated
by a dot, followed by the number of keys, the list of keys, and the list of arguments:

TFCALL <library_name>.<function_name> <number_of_keys> [<key1> ...
<keyn>] [<arg1> ... <argn>]

Then, the execution of the former function is carried out as follows:

TFCALL greetings.hello_world 0
"Hello world!"

A function can be edited in a file, rather than loading it as a string. We can write the following code
in the greetings.js file:

#!js api_version=1.0 name=greetings

redis.registerFunction('hello_world', function(){
    return 'Hello world!';
});
redis.registerFunction('ciao_mondo', function(){
    return 'Ciao mondo!';
});

Note that attempting to import the library again does not overwrite the former library:

redis-cli -x TFUNCTION LOAD < ./greetings.js
(error) Library greetings already exists.

Triggers and functions 229

When the library needs to be updated, we indicate it using the REPLACE option:

redis-cli -x TFUNCTION LOAD REPLACE < ./greetings.js
OK

This way, we have access to the newly added function:

TFCALL greetings.ciao_mondo 0
"Ciao mondo!

So far, we have explored how to define a function with the proper header and name. Let’s now dive
into accessing the database to implement complex behaviors using the data in the keyspace.

Working with data

Calling Redis commands inside of a JavaScript function is possible with a client object. The
function gets the client object as the first argument, which allows interaction with the database
using the call method. Subsequent parameters are keys and/or arguments. Create and import the
following function:

redis.registerFunction('create_user', function(client, id, name){
    client.call('SET', 'user:' + id, name)
    client.call('INCR', 'users')
    return 'User created'
});

Execute it using the following command:

TFCALL greetings.create_user 0 123 "Dan Brown"
"User created"
GET user:123
"Dan Brown"
GET users
"1"

Here are a couple of other useful commands:

•	 TFUNCTION DELETE <NAME>, which deletes a library

•	 TFUNCTION LIST, which lists the functions loaded in the server and helps you to check
their version at a glance

We have all the pieces to write complex JavaScript functions and work with the data stored in Redis.
In the following sections, we will introduce typical implementations that leverage the power of local
function execution.

The Programmability of Redis Stack230

Batch processing

Now that we have learned how to write, load, and execute functions in a library manually, let’s do
something useful with our functions. Edit the counter.js file and load it into Redis:

#!js api_version=1.0 name=counter

redis.registerFunction('count', function(client){
    var count = 0;
    var cursor = '0';
    do {
        var res = client.call('scan', cursor, 'MATCH', 'city:*');
        cursor = res[0];
        var keys = res[1];
        keys.forEach((key) => {
            count += 1;
        });
    } while(cursor != '0');
    return count;
});

The count example function is designed to perform a scan, using the SCAN command, of the
keyspace and count the keys whose name is prefixed with ‘city:’. This is a problem we could easily
solve by creating an index with FT.CREATE and retrieving its cardinality; however, the example is a
demonstration of the flexibility of the Redis Stack JavaScript programmability feature. Upon execution,
the result is returned correctly:

TFCALL counter.count 0
(integer) 4079

Normally, the SCAN command executed from the redis-cli command-line client, or from any
client library for the desired programming language, is blocked only for the duration of the batch.
This means that to perform a full scan of the keyspace, we would invoke SCAN in multiple batches,
providing the next cursor in each subsequent batch scan. This is the preferred behavior to avoid blocking
the server with the execution of a long-running scan of the entire keyspace. However, executing
scans in the previous do-while loop would block the server’s main thread until the keyspace is
entirely scanned. This is the same behavior as Lua scripts and functions and is the default behavior of
JavaScript functions, but Redis Stack JavaScript functions rely on the native asynchronous nature of
the V8 engine, and support asynchronous execution. Let’s see how this works.

Asynchronous functions

The default behavior of JavaScript functions is synchronous; the execution of a function is atomic and
all the changes that are made to data while a function is running will be seen by other clients when the

Triggers and functions 231

function concludes the execution. This behavior ensures that no changes are made by other clients to
data while the function is running, which may be a desirable behavior, but it causes the main thread
to be locked until the function completes, so other clients can’t be served until it completes.

When the atomicity of a function is not a requirement, it is possible to execute the function asynchronously
in a coroutine. Asynchronous functions will be launched in a separate thread, freeing the main thread,
which, therefore, remains available to other clients. Let’s see this with an example. Add the following
two functions to an existing library:

redis.registerFunction('sync_loop', function(){
    var count = 0;
    do{
        count += 1;
    } while(count != '300000000');
    return 'Very long loop';
});

redis.registerAsyncFunction('async_loop', async function(){
    var count = 0;
    do{
        count += 1;
    } while(count != '300000000');
    return 'Very long async loop';
});

The functions will both execute in a tight loop, but the sync_loop function will run in the main
thread, while the async_loop function will run in a coroutine. You can test the execution of the
first function as usual:

TFCALL counter.sync_loop 0

Note that functions blocking the main thread for too long will be timed out; this is the case for the
sync_loop function:

TFCALL counter.sync_loop 0
(error) Err Execution was terminated due to OOM or timeout

This behavior is configurable using the lock-redis-timeout configuration value, to extend the
maximum amount of time in milliseconds that a library can lock Redis. You can change the value as
follows, just for demonstration purposes:

CONFIG SET redisgears_2.lock-redis-timeout 30000

Use the TFCALLASYNC command to execute an asynchronous function:

TFCALLASYNC counter.async_loop 0

The Programmability of Redis Stack232

When running the asynchronous version of the function, test from another Redis session that it is
possible to execute some arbitrary commands (a GET command, for example). If you launch the same
commands from another session when the synchronous function is executing, you will notice that
the execution is put on hold.

You can pass an optional client argument to the asynchronous function that is distinct from the
client argument accepted by synchronous functions, seen earlier. Unlike the regular client
argument, this client (async_client, in the following example) does not permit the invocation of
Redis commands. Instead, it blocks Redis and enters an atomic section where the atomicity property
is activated once again: whatever is executed within the scope of the block call has exclusive access
to Redis. Proof of this behavior is in the following example. If you execute the following function, you
will notice, once more, that the command blocks other sessions:

redis.registerAsyncFunction('async_block_loop', async function(async_
client){
    return async_client.block(function(redis_client){
        var count = 0;
        do{
            count += 1;
        } while(count != '300000000');
        return 'Very long async and blocking loop';
    });
});

While running an asynchronous function and making it block may seem counter-intuitive, this design
is used to guarantee single-threaded access to the keyspace, the distinctive feature of Redis, and, at
the same time, permit non-blocking atomic batch executions within the server itself. To understand
this concept with an example, let’s rewrite the count function to make it asynchronous:

redis.registerAsyncFunction('async_count', async function(async_
client){
    var count = 0;
    var cursor = '0';
    do {
        async_client.block((client)=>{
            var res = client.call('scan', cursor, 'MATCH', 'city:*');
            cursor = res[0];
            var keys = res[1];
            keys.forEach((key) => {
                count += 1;
            });
        });
    } while(cursor != '0');
    return count;
});

Triggers and functions 233

This function returns the same result as the synchronous version, but it guarantees the following:

•	 The batch scan is executed atomically

•	 Access to the keyspace is exclusive

•	 Other clients can execute commands between batches

This implementation has the same consistency guarantees as the analogous client library version, but
with all the benefits of local execution within the database.

Cluster awareness

Redis Stack JavaScript functions can be used in clustered environments, so it is possible to invoke
remote JavaScript functions from a shard to remote shards in a Redis cluster. For more on this, see
Chapter 12, Managing Development and Production Environments, where the open source Redis Cluster
(sometimes referred to as Redis OSS Cluster to avoid confusion with Redis Enterprise clusters) is
described in detail.

The shard on which the command is run (the originating shard) propagates the command to the
other shards in a cluster using the runOnShards API and collects all their results before returning
a merged response.

Figure 9.1: Remote JavaScript functions execution

The registerClusterFunction API enables remote functions in a library. This API allows
you to declare a remote function that performs actions on all the shards of a cluster. When using
registerClusterFunction, you provide the name of the remote function (which will be
used to call it later) and its code. It’s important to note that the remote function should be written as
a coroutine (an async function) that will be executed in the background on the designated remote
shard. Note also that remote functions can only perform read operations. An attempt to perform a
write operation will result in an error.

The Programmability of Redis Stack234

In the following example, we define the remote stringcounter function to count the number
of strings in the shard, and the originating nstrings function to invoke the remote functions and
aggregate the results:

#!js api_version=1.0 name=clustercounter

redis.registerClusterFunction("stringcounter", async(async_client) =>
{
    var count = 0;
    var cursor = '0';
    do {
        async_client.block((client)=>{
            var res = client.call('SCAN', cursor, 'TYPE', 'string');
            cursor = res[0];
            var keys = res[1];
            keys.forEach((key) => {
                count += 1;
            });
        });
    } while(cursor != '0');
    return count;
});
redis.registerAsyncFunction("nstrings", async(async_client) => {
    let res = await async_client.runOnShards("stringcounter");
    let results = res[0];
    let errors = res[1];
    if (errors.length > 0) {
            return errors;
    }
    let sum = BigInt(0);
    results.forEach((element) => sum+=BigInt(element));
    return sum;
});

In addition to the runOnShards API, the runOnKey API is also available, which runs the remote
function on the shard responsible for a given key.

Keyspace triggers

We have explored the essential characteristics of Redis Stack for developing JavaScript functions. So
far, we have learned how to develop functions and execute them manually. Manual execution proves
valuable for maintenance tasks and even for actions across all the shards of a Redis OSS cluster.
Similarly, clients can utilize JavaScript functions to perform complex actions. While the synchronous
and asynchronous execution capabilities of the V8 engine help in developing business logic that is

Triggers and functions 235

closely tied to the data, the real differentiating factor between JavaScript functions and Lua functions
is their ability to respond to events. This distinctive feature transforms JavaScript functions into
triggered functions.

Besides the manual invocation of functions using the TFCALL command, it is possible to register
event listeners that will trigger a function execution every time a watched key is changed. Simple
examples where a trigger would be a good fit might be the following:

•	 Keeping track of changes and deletions, and storing the names of the affected keys in a list

•	 Listening for all HINCRBY operations on the elements of a hash that have a determined prefix
and synchronously updating a user’s level when the score reaches 1,000

Let’s test the subscription to events with the following example:

•	 We are subscribing to events against the keys prefixed with the user: namespace

•	 We check the command that triggered the event, and if it is a deletion, we act and specify what’s
going to happen next

•	 The triggered actions will be the incrementing of a counter and logging a message into the
server’s log

The following code implements this behavior:

redis.registerKeySpaceTrigger("del_logger", "user:", function(client,
data){
    if (data.event == 'del'){
        client.call("INCR", "removed");
        redis.log(JSON.stringify(data));
        redis.log("A user has been removed");
    }
});

You can test this trigger as follows; creating and deleting a key will trigger the execution of the
del_logger function:

GET removed
(nil)
HSET user:145345 name "Dan" last "Brown"
(integer) 2
DEL user:145345
(integer) 1
GET removed
"1"

The Programmability of Redis Stack236

A quick check of the server’s log verifies that the condition has been met, and the information is logged.
Note that it is not possible to see the data in the key that has been deleted; only the key name is visible:

1:M 05 Jun 2023 13:17:44.847 * <redisgears_2> 'redisgears::compiled_
library_api' {"event":"del","key":"user:145345","key_raw":{}}
1:M 05 Jun 2023 13:17:44.847 * <redisgears_2> 'redisgears::compiled_
library_api' A user has been removed

Using triggers, it is possible to keep track of key evictions and expiration. However, because of the
probabilistic nature of these events, eviction and expiration do not guarantee the trigger will happen
at the exact time the key was set to expire/be evicted.

Trigger guarantees

In MULTI/EXEC transactions or Lua scripts/functions, notifications are fired at the end of atomic
execution. Consequently, all event notifications will see the last value that was written. To illustrate
this, consider the following example, which captures changes on keys prefixed by "captured:".

redis.registerKeySpaceTrigger("trigger_test", "captured:",
function(client, data){
    var value = client.call('GET', data.key);
    redis.log(value);
});

When testing the trigger with two sequential changes, the changes will be reflected normally in the log:

SET captured:123 maria
SET captured:123 john
... 'redisgears::compiled_library_api' maria
... 'redisgears::compiled_library_api' john

However, let’s say we submit the same changes in the context of a Redis transaction:

MULTI
SET captured:123 maria
SET captured:123 john
EXEC

In that case, the trigger will be invoked at EXEC time, resulting in the same value being captured twice:

... 'redisgears::compiled_library_api' john

... 'redisgears::compiled_library_api' john

Triggers and functions 237

To resolve this issue of notifications within the context of transactions or the execution of atomic scripts/
functions, an optional function argument called onTriggerFired is available. This function is
fired immediately after the key change and allows us to read the content of the key. The content is then
added to the data argument, which is passed to the actual trigger function that can process the data:

redis.registerKeySpaceTrigger("trigger_test", "captured:",
function(client, data){
    redis.log(data.value);
},{
    onTriggerFired: (client, data) => {
        data.value = client.call('GET', data.key);
    }
});

By executing the changes in a transaction, all individual events can be captured:

... 'redisgears::compiled_library_api' maria

... 'redisgears::compiled_library_api' john

This section concludes the introduction to the keyspace triggers. In the next section, we will discover
another powerful feature of Redis Stack – stream triggers.

Stream triggers

Redis Stack provides an API that allows registering a stream consumer to a Redis Stream data structure
and removes the need to invoke any additional command to read from the stream. Writing a stream
trigger follows similar syntax rules to those already seen; in detail, you will specify the following:

•	 consumer: Specifies the name of the consumer.

•	 stream: Specifies the prefix of the stream names that will trigger the callback.

•	 callback: Specifies the function to be invoked for each element in the stream. The callback
can be invoked synchronously or asynchronously, following the respective invocation rules on
the shard storing the stream and originating the event.

•	 window: Determines how many elements can be processed simultaneously.

•	 isStreamTrimmed: Specifies whether we want to trim the stream after the data is processed
by the consumer.

The following example shows how to subscribe to events added to a Redis stream:

redis.registerStreamTrigger(
    "consumer",
    "tickets",
    function(client, data) {

The Programmability of Redis Stack238

        redis.log(JSON.stringify(data, (key, value) =>
            typeof value === 'bigint'
                ? value.toString()
                : value
        ));
        client.call("INCR", "ntickets");
    },
    {
        isStreamTrimmed: false,
        window: 3
    }
);

The consumer function subscribes to events added to the stream prefixed by "tickets", and
upon insertion of events in the streams, it logs the received data and increments a counter. Load the
function in the usual way:

redis-cli -x TFUNCTION LOAD REPLACE < ./counter.js

Test it by adding some data to a Redis stream:

XADD tickets * movie "The Godfather" paid "35"
"1685976466162-0"
XADD tickets * movie "Interstellar" paid "7"
"1685976485381-0"

A quick review of the log file will display the received data:

1:M 05 Jun 2023 14:47:46.195 * <redisgears_2> 'redisgears::compiled_
library_api' {"id":["1685976466162","0"],"stream_
name":"tickets","stream_name_raw":{},"record":[["movie","The
Godfather"],["paid","35"]],"record_raw":[[{},{}],[{},{}]]}
1:M 05 Jun 2023 14:48:05.387 * <redisgears_2>
'redisgears::compiled_library_api' {"id":["1685976
485381","0"],"stream_name":"tickets","stream_name_
raw":{},"record":[["movie","Interstellar"],["paid","7"]],"record_
raw":[[{},{}],[{},{}]]}

Trigger guarantees

While the shard storing the stream and originating the event is up and running, the callback is
executed only once per event added to the stream. In case of failure (such as a shard crash), at least
one execution of the callback is guaranteed.

The ability to process data added to Redis streams in real time enables countless applications. For
example, data can be transformed and stored in indexed JSON documents for real-time search and

Summary 239

aggregation, thus transforming Redis into an integrated data platform capable of loading, transforming,
and processing events.

With this section, we have concluded the walk-through of the programmability features of Redis
Stack. Let’s review the differences between all the methods discussed so far.

Comparing Lua scripts, Lua functions, and JavaScript functions

To provide a better understanding of the programmability features in the Lua and JavaScript languages,
we have prepared a concise summary in the following table, highlighting the key differences:

Lua Scripts Lua Functions JavaScript Functions

Persistence No. The application
reloads the scripts on
server restart.

Yes. Yes.

Language Lua. Lua. JavaScript.

Application
awareness

The client controls
the execution.

The client controls
the execution.

Automated execution.
Clients can execute functions.

Execution Sync: blocks the main
Redis thread.

Sync: blocks the
main Redis thread.

Sync and async: can use a
background thread.

Parameters Keys, arguments. Keys, arguments. Keys, arguments, event data.

Atomicity The script is an
atomic action.

The function is an
atomic action.

Atomic action. Not atomic
when working with
cross-shard data.

RDBMS
analogy

Advanced
queries/complex joins.

Stored procedure. Triggers. Stored procedure.

Cluster Only local
shard execution.

Only local
shard execution.

Cross-shard.

Table 9.1 – Key differences between Lua scripts, Lua functions, and JavaScript functions

Let’s summarize the key takeaways from this chapter.

Summary
In this chapter, we have summarized the evolution of the programmability features of Redis, since the
first Lua scripting feature was added in Redis 2.6.0, passing through the introduction of Redis functions
in Redis 7, up to the most recent additions to Redis Stack – the introduction of the V8 engine and the
ability to write JavaScript functions.

The Programmability of Redis Stack240

While Lua scripts and functions (which allow complex actions as close to the data as possible to be
written) are of great value to developers, JavaScript functions and the asynchronous nature of the V8
engine provide an unprecedented capability to offload part of the processing load to coroutines, while
preserving a single-threaded data access model, which is the distinguishing feature of the Redis Server
architecture. In addition, the support for clustered environments with remote functions expands the
manageability of data when working with sharded databases. Finally, the real-time stream processing
capability of Redis Stack elevates Redis to a versatile data platform, capable of ingesting, transforming,
storing, and indexing data for a wide array of purposes.

This chapter serves as a concise introduction to Redis Stack’s programmability. We recommend consulting
the related documentation to gain insights into developing, configuring, and debugging your code;
this will enable you to harness the full potential of local code development on Redis databases. You
can also find several examples to experiment with in your Redis Stack installation.

In Chapter 10, RedisInsight – the Data Management GUI, we present the main features of RedisInsight,
a monitoring and performance analysis tool that offers a range of features for enhanced software
development and troubleshooting. With RedisInsight, users gain access to metrics, including memory
usage, throughput, and latency. These key metrics empower users to identify slow commands and
bottlenecks. RedisInsight is invaluable for monitoring and optimizing software performance, making
it an indispensable tool.

10
RedisInsight – the Data

Management GUI

An essential aspect of the Redis Stack revolves around the developer experience. The developer journey
extends beyond just the availability of libraries and frameworks; it also encompasses the suite of tools
provided to augment the development process.

One of the key tools offered by Redis is RedisInsight, a comprehensive graphical user interface
(GUI). This GUI serves as a gateway to interact with your Redis databases visually.

RedisInsight offers a broad spectrum of features, from visually exploring your data to crafting queries
based on your specific requirements. It serves as an invaluable asset when debugging and troubleshooting,
providing insights into your data like never before.

Chapter 7, Redis as a Time Series Database, thoroughly demonstrated the efficient usage of RedisInsight,
showcasing how you could visualize time series data points graphically. Just as it allows you to visualize
time-series data, RedisInsight also facilitates access to other data types, enabling you to query and
visualize them effectively.

But to harness the power of RedisInsight, we first need to acquire the software. The journey starts
with downloading and installing the software, setting the stage for you to dive into the extensive
capabilities that RedisInsight offers.

RedisInsight – the Data Management GUI242

In this chapter, you will acquire the knowledge to do the following:

•	 Establish a connection with Redis Stack databases

•	 Navigate through your keys

•	 Interact with your data efficiently

•	 Conduct automatic data analysis

•	 Test and diagnose issues in your PubSub channels

To begin, let’s discuss the prerequisites for following this chapter.

Technical requirements
To follow along with this chapter, you need to have RedisInsight installed in your local environment.

To obtain RedisInsight, start by navigating to the official Redis website here: https://redis.
com/redis-enterprise/redis-insight/

Once there, locate and click on the Download RedisInsight Now button, which will direct you to a
form. Fill in all the required details on the form. After you’ve completed the form, click DOWNLOAD.
This action will trigger the download of the RedisInsight software.

As the download progresses, the installation wizard will guide you through the rest of the setup process.
Follow its instructions carefully to ensure smooth installation. Upon the completion of the installation
process, you are free to launch and explore your freshly installed RedisInsight.

As of the time at which this guide was written, the latest available version of RedisInsight is 2.36.0 Be
sure to stay updated and take advantage of the enhancements and fixes that come with each new version.

Connecting to the Redis Stack database
When you first launch RedisInsight, you’ll be greeted by the initial application screen, represented
as follows:

https://redis.com/redis-enterprise/redis-insight/
https://redis.com/redis-enterprise/redis-insight/

Connecting to the Redis Stack database 243

Figure 10.1 – RedisInsight welcome screen

The application first prompts you to establish a connection with a Redis database. Start this process
by clicking on the ADD REDIS DATABASE button.

Connecting to a Redis database can be achieved in multiple ways. You can manually input the
connection parameters, such as the IP address, port number, username, and password. Alternatively,
you can utilize the auto-discovery feature offered by the Sentinel protocol or use the features provided
by Redis Cloud and Redis Enterprise that you will learn about later in this chapter.

Let’s begin with the manual connection approach. You’ll need to enter the following:

•	 Host: The fully qualified domain name (FQDN) of the IP address of your database endpoint

•	 Port: The port to which your database is exposed

•	 Database Alias: The name of your database, a mnemonic identifier that will appear in your
RedisInsight database list

•	 Username and Password: The credentials required for authentication to your Redis Stack database

•	 Timeout (in seconds): The time after which RedisInsight will stop trying to connect to your
Redis Stack database

RedisInsight – the Data Management GUI244

Besides the basic settings, you can also configure more advanced options, such as a logical database,
data decompression, Transport Layer Security (TLS), SSH Tunnel, and others that we’ll delve deeper
into in Chapter 12, Managing Development and Production Environments.

In my case, I’ve established a Redis Stack instance using Redis Cloud. I’ll therefore enter the hostname
and port number as provided by my Redis Cloud account, along with the username and password I
chose during the setup, and the default timeout value.

The following is an example with these settings entered:

Figure 10.2 – Configuring database access in RedisInsight

After inputting your connection parameters, you can verify the setup by clicking on the Test Connection
button located at the bottom left of the user interface. A pop-up banner reading Connection successful
will appear if the test is successful. Alternatively, you can directly add the Redis database by clicking
the Add Redis Database button at the bottom-right corner of the interface.

Once a successful connection is established, RedisInsight will display a banner stating Database has
been added and the newly connected database will appear in the database list, as depicted in the
following screenshot:

Connecting to the Redis Stack database 245

Figure 10.3 – RedisInsight database list

By clicking on the database alias, RedisInsight will connect to the selected database using the credentials
you provided.

It’s now the moment to delve into the contents of your Redis Stack database.

Browsing keys

The moment you select the database, RedisInsight establishes a connection and presents you with
the following view:

Figure 10.4 – RedisInsight browsing keys

RedisInsight – the Data Management GUI246

The user interface displays a list of keys stored in the Redis Stack. Each key is identified by its type
(such as HASH, LIST, SET, etc.) and represented with different colors for easier differentiation.

Atop this list, you’ll find a toolbar that allows you to organize the list based on key patterns, which is
the default setting. You can do this by entering a prefix and clicking on the magnifying glass icon or
simply pressing Enter. The following screenshot provides a visual reference for this feature:

Figure 10.5 – RedisInsight key prefix

Additionally, the toolbar features a button that allows you to exclusively filter and display keys of a
specific type, as shown here:

Figure 10.6 – RedisInsight key types

Interacting with data 247

Alternatively, you can choose to view the list by values. This option, indicated by a search-lens icon,
requires the selection of an index if one is available.

An alternative view to the standard list is the tree representation. In this mode, the key hierarchy
is designated by the key separator. For instance, in the case of the user:1 key, the colon : acts as
the separator:

Figure 10.7 – RedisInsight key tree view

By selecting any key from the list, you can view its corresponding value in relation to its encoding
or type. For instance, the Time Series (TS) data type doesn’t display automatically, but it can be
viewed in the workbench panel. This aspect was covered in detail in Chapter 7, Redis Stack as a Time
Series Database.

Until now, we have viewed data already present within a Redis database, such as that generated in
previous chapters. However, sometimes, for demonstrative or learning purposes, there is a need to
generate and interact with data. RedisInsight provides a section specifically dedicated to this aspect.
So, let’s move on to the next section, regarding data interaction.

Interacting with data
Interacting with your data efficiently is enabled by the workbench feature in RedisInsight. The
workbench section, represented by the second icon on the vertical panel on the left side, refers to a
section of the tool where you can interact with its Redis databases. It allows you to write and execute
Redis commands, query data, view results, and generally interact with your data.

For example, you could run aggregation queries, visualize time-series data as charts, or even zoom in
to specific parts of a chart (to revert to the original view after zooming, simply double-click anywhere
on the chart).

RedisInsight – the Data Management GUI248

A useful interactive feature of this chart allows you to zoom in to any specific section of the data. This
can be achieved by dragging your cursor over the desired section of the chart, demonstrated as follows:

Figure 10.8 – RedisInsight Time Series chart zoom interaction

The chart representation isn’t limited to a single style. You can customize it in various ways. You can
choose to represent the data points with lines or points and decide whether to fill the space between
the lines with color. You can also adjust the scale of the chart between linear and logarithmic and
define labels for the X and Y axes for better data comprehension.

The workbench allows for a high degree of interaction with your data, providing a practical and visual
means of working with the various features and data structures offered by Redis.

The workbench section also includes tutorials and learning materials to assist you in getting more
value from your Redis databases. This could involve guides on handling JSON documents, creating
indexes, or using Redis as a vector database for similarity searches. You can also learn more about
probabilistic data structures, which you will have explored in Chapter 8, Understanding Probabilistic
Data Structures.

Essentially, the workbench is like a playground or laboratory for developers working with Redis
databases. It provides a space where you can experiment, learn, and manage your data in a user-friendly
way, and serves as a fantastic resource to deepen your understanding of these concepts and operations.

Now, let’s shift our attention to the next section of the left-side panel named Analysis Tools, designed
to help you assess your database and offer recommendations.

Analyzing data
The analysis tools provide insights into the kinds of data types in your database and their distribution.
They also monitor performance and flag any slow queries.

Analyzing data 249

First, let’s delve into data distribution. The Database Analysis section offers Data Summary where
you can view the breakdown of your data. To generate this summary, you’ll need to collect all your
data by clicking on the New Report button located in the top-right corner. Following this, your Data
Summary should be visible and may resemble the following:

Figure 10.9 – RedisInsight Data Summary report

Another useful feature is a dedicated section for monitoring memory consumption. This provides
insights into whether your data will be freed due to expiration or eviction policies:

Figure 10.10 – RedisInsight memory consumption forecast

Two additional sections, TOP NAMESPACES and TOP KEYS, provide further granularity. TOP
NAMESPACES gives an overview of your key patterns based on memory usage and the number of keys:

RedisInsight – the Data Management GUI250

Figure 10.11 – RedisInsight TOP NAMESPACES

Meanwhile, TOP KEYS displays the most memory-intensive keys and those that contain the most elements:

Figure 10.12 – RedisInsight TOP KEYS

Equally important is the Slow Log section, which relates to performance. Any requests sent to Redis
Stack taking longer than 10 milliseconds will appear in this log. For illustrative purposes, I’ve adjusted
the slowness threshold to 1 microsecond to capture some entries:

Analyzing data 251

Figure 10.13 – RedisInsight Slow Log

This feature is particularly useful for debugging and troubleshooting, as it provides the exact timestamp
of the query, its execution time, and the query itself.

Another critical feature in RedisInsight for monitoring is the Profiler. Be aware that the Profiler may impact
the performance of your Redis Stack server, so its use is not recommended in a production environment.

To start the Profiler, click on the Start Profiler button, then try issuing a few commands in the CLI.
These commands should appear in the Profiler section as follows:

Figure 10.14 – RedisInsight Profiler with CLI

RedisInsight – the Data Management GUI252

In my case, I can observe that an info command is issued every five seconds. This is a function of my
Redis Cloud usage, which continuously monitors the system’s health.

As we have seen, monitoring is based on the concept of an event, which can be represented by a log
line or a message. Among its many features, Redis Stack offers the ability to publish messages and
receive messages through the PubSub functionality. This allows for the implementation of publish/
subscribe message patterns, a powerful tool for handling data changes and updates. RedisInsight
allows us to test this feature as well, and that is precisely what we will learn about in the next section.

Troubleshooting PubSub channels

Access the PubSub feature by clicking on the fourth icon (signal symbol) in the left-side panel.
This interface allows you to experiment with your PubSub channel for both sending and receiving
messages. As we have covered in earlier chapters, PubSub is Redis’s broadcasting system that enables
your applications to instantly transmit and receive messages.

At first glance, the interface provides the following view:

Figure 10.15 – RedisInsight PubSub channels first view

The upper section of this interface caters to subscribers, meaning it will display all incoming messages.
By clicking on the Subscribe button located in the top-right corner, RedisInsight will subscribe to all
channels, executing the PSUBSCRIBE * command.

Summary 253

The lower section of this interface enables you to publish messages. Here, you can input the name of
the channel through which the message will be published and the content of the message itself. By
clicking the Publish button located in the bottom-right corner, your message will be broadcast, as
depicted in the following screenshot:

Figure 10.16 – RedisInsight PubSub example flow with Profiler enabled

The PubSub interface in RedisInsight provides a practical way to test and explore Redis’s real-time
messaging system, helping you to understand its capabilities and behavior.

The hands-on experience that RedisInsight’s PubSub interface provides is not just beneficial – it’s
invaluable to anyone looking to master the intricacies of real-time messaging in Redis Stack. By actively
using this interface, you have gained practical knowledge on how to publish messages to specific
channels and how to subscribe to those channels to receive updates. This isn’t merely theoretical
understanding; it’s applied learning that equips you with the skills needed to implement effective
messaging workflows in a live Redis environment.

Summary
RedisInsight is a robust GUI designed to make working with Redis databases much simpler and more
intuitive. It allows you to interact with your databases visually, enabling you to more easily access your
data, run queries, and troubleshoot any issues. This is extremely beneficial, as it streamlines many of
the tasks associated with managing a Redis database, ultimately saving you time and effort.

RedisInsight – the Data Management GUI254

Furthermore, RedisInsight isn’t just about ease of use – it also provides powerful features and functionality
that can assist you in optimizing the performance and utilization of your Redis databases.

In this chapter, you have acquired valuable skills with the use of RedisInsight, starting with the process
of downloading and installing the application. Furthermore, you’ve also learned how to establish a
connection with a Redis database, which forms the basis for most operations you’ll perform with
Redis. This is a critical step in managing and manipulating your data effectively using RedisInsight.

Additionally, you’ve also learned how the analysis tools provide essential insights into data type
distribution and database performance, empowering you to make informed decisions to optimize
your Redis setup.

Furthermore, you’ve also been introduced to the Profiler, a crucial tool in RedisInsight that allows
for real-time monitoring of your Redis databases, enhancing your ability to observe and understand
their operational behavior.

Finally, you’ve been acquainted with the PubSub feature in RedisInsight, an invaluable tool that allows
for the testing of publish-subscribe patterns in your Redis databases, thereby bolstering your ability
to ensure reliable message exchange in your applications.

In Chapter 11, Using Redis Stack as a Primary Database, you will delve into the essentials of employing
Redis Stack as the main database for serving multi-model applications. Here, you will explore how to
capitalize on the robust persistence capabilities of Redis Stack, reinforcing your knowledge and skills
in utilizing this versatile database technology.

11
Using Redis Stack as a

Primary Database

In the previous chapters, we have covered most of the topics that concern software architects and
engineers at the time of mapping the business logic of an application to the concrete physical data
model using Redis. As a professional used to working with relational databases or document stores,
you have learned to make the most of Redis using the core data structures and discovered the features
delivered in Redis Stack, such as enhanced searches and queries, and working with JSON documents.
Modeling entities and relationships with the traditional Hashes or the standard JSON format together
with the ability to create indexes on different fields of documents stored in such formats shifts Redis
from the realm of caches to that of database management systems (DBMSs).

Redis has long been used as a cache, and the original design encouraged such use, offering real-time
performance and a predictable footprint, with efficient expiration and eviction algorithms. This means
that Redis has historically been paired with other authoritative data stores. However, we will see that
with the proper understanding of the features and configurations a primary store should have, Redis
guarantees the highest level of reliability among databases without compromising data consistency
and availability.

In this chapter, we will introduce the properties of a primary database and discuss the guarantees
that architects demand from the data layer when designing an architecture. In this chapter, we will
cover the following topics:

•	 What is a primary database?

•	 Redis as a primary database

•	 The BASE and ACID properties

•	 Configuring Redis for durability, consistency, and availability

Provided the consistency and availability properties of Redis Stack are equivalent to those of Redis,
the references to Redis and Redis Stack you will find in this chapter are interchangeable.

Using Redis Stack as a Primary Database256

Technical requirements
To follow along with the examples in the chapter, you will need to install Redis Stack Server 7.2 or
a later version on your development environment. Alternatively, you can create a free Redis Cloud
subscription to achieve a free plan and use a managed Redis Stack database.

What is a primary database?
There is no formal definition of what a primary database is and what requirements it should have;
the interpretation of what features a primary database should support largely depends on the use case
the data store fulfills. However, by looking at how traditional DBMSs are used as primary and often
unique solutions in the data layer, we can sketch a few traits:

•	 A database can be considered primary when it is the authoritative source of data and stores the
most recent copy of data. Secondary databases instead serve read-only workloads, either using
the same technology as the primary database (using proprietary master-replica protocols) or
as in-memory caches (using methods such as change data capture).

•	 A primary database serves mixed online transactional processing (OLTP) workloads, such
as searches or scans and lookups, and may have analytical processing capabilities.

•	 A primary database is reliable and can stand single software or hardware failures, supporting
failovers to redundant copies and recovery from backups in case of massive disasters.

•	 A primary database must scale as the amount of data and/or operations increase.

Redis and Redis Stack both support highly available and scalable deployments by configuring a Sentinel
cluster or configuring Redis as a multi-shard cluster. Redis Enterprise as a multi-tenancy data platform
with Redis Stack capabilities improves the availability and scalability of Redis to a production-grade
DBMS. We will cover the difference between Redis open source and Redis Enterprise in Chapter 12,
Managing Development and Production Environments. In this chapter, we will focus on data consistency
when using Redis as a primary database.

Redis as a primary database
When Redis is deployed in a replicated topology with Sentinel agents or as a Redis cluster, it fulfills
the typical requirements of a DBMS in terms of availability and scalability. Redis supports backups
and recovery to a consistent state in case of major issues. In terms of hardening, Redis provides user
permission management via access-control lists (ACLs), traffic encryption, and additional security
features. Tools for benchmarking, monitoring, and auditing a Redis or Redis Stack database are
available as well, and together with a rich set of client libraries, the Redis ecosystem integrates with
all kinds of software architectures. We’ll discuss the manageability of Redis in scalable and available
scenarios in the next chapter and compare the different flavors: open source, Enterprise, and Cloud.
In this section, we’ll focus on the discussion around using Redis as an authoritative source of data.

The BASE and ACID properties 257

Redis is commonly adopted as a cache to speed up data lookups and alleviate the pressure on
primary data stores. Redis is also used for secondary index searches when replicating data from
an authoritative data source, such as a relational DBMS (RDBMS), and speeding up searches and
queries on documents modeled as Hash or JSON formats. In these contexts, Redis is a secondary
data store that replicates changes from a primary store and offers sub-millisecond latency to lookups,
searches, and queries. However, Redis shines as a primary database if used for many use cases: as a
session store, as an authentication token store, as an online feature store, as a geo-positioning server,
or as a vector database, to give a few examples. In such scenarios, there is no dependency on primary
stores and Redis is the only mission-specific database. And, as such, while it is unfeasible to adapt
the same database technology for several heterogeneous uses, we can certainly state that Redis is a
suitable primary database in multiple scenarios. When using Redis in such use cases, we cannot help
but stop for a moment and ponder the trade-off between data consistency and availability. Architects
and database administrators, aware of the fact that NoSQL databases tend to privilege availability and
partition tolerance (the BASE properties: Basically Available, Soft State, and Eventual Consistency)
over consistency for the benefit of scalability and performance, may wonder how safe it is to use Redis
as an authoritative data store, especially when considering it in the context of the ACID properties.

The BASE and ACID properties
Grouping the properties of Redis is immediate and serves the purpose of understanding where it fits
between the ACID and BASE models. While relational databases usually follow the ACID consistency
model, Redis, as a NoSQL real-time in-memory data store with support for replication and scalability,
and used as a key-value, data structure, document, and vector store, fulfills the BASE properties. The
BASE model does not stand necessarily as a replacement for the ACID model, but suggests the idea
that databases may privilege some properties rather than others or blend them in order to excel in
specific use cases. Let’s introduce the BASE and ACID properties and discover how Redis fulfills them.

The BASE properties

Let’s examine what the BASE properties are and see why Redis complies with them, as most of the
NoSQL databases do. The idea of the BASE properties for distributed systems was presented in 1999
by the computer scientist Eric Brewer in the context of the formulation of the CAP theorem. The
properties are as follows:

•	 Basically Available: Redis is still available in case of failure. Given the support of one or multiple
replicas per master instance, either in a Sentinel deployment, in a Redis Cluster, or deploying
the Enterprise or Cloud flavors, Redis guarantees high availability and resilience in case of the
master instance crash and other failures.

•	 Soft State: Stored data may change even without user interaction. This is the case of delayed
replicas that need to catch up with the replication lag, so their state is updated as replication
progresses. In addition, when Redis is configured as a cache, data eviction and expiration are

Using Redis Stack as a Primary Database258

additional examples of data changes that determine the soft state. In a strongly consistent
distributed system, instead, consistent data is available on all the replicas at any time, so regardless
of user interactions, the guarantee is that the data will not change over time (hard state).

•	 Eventual Consistency: An eventually consistent system may present a temporary lapse of time
during which copies of the data (master and replica) are not consistent. However, the system
guarantees that after user input, the data will be replicated and available in all the replicas,
hence consistent with the master copy of the data. Redis-replicated databases are eventually
consistent. Replication is asynchronous for the benefit of high performance.

NoSQL databases surged as a compromise to the strict ACID model, which enforces data consistency
but poses constraints on the availability of data and limits performance by enforcing a series of
strategies to maximize reliability. That said, we can still consider the degree of compliance of Redis to
the ACID properties; that’ll help set the right expectations when Redis is used as a primary database,
especially in case of errors or failures.

The ACID properties

We have stated that Redis does not privilege the consistency model in the dichotomy of ACID versus
BASE models. However, in this section, we will dive into the definition of ACID to understand more
about the degree of compliance with such properties. We will see that borders are fuzzy and we’ll show
how Redis is a reliable database with some assumptions. While there are several interpretations, we
will stick to the original definition of ACID databases from the famous paper Principles of Transaction-
Oriented Database Recovery, released in 1983 by Andreas Reuter and Theo Härder. Far from educating
you on the properties of ACID transactions, we will recap the original definitions at the beginning of
the following sections to introduce Redis’s features in the context of such properties.

Atomicity

All of the actions included in a transaction must be executed indivisibly: either all actions are properly
reflected in the database or nothing has happened. No changes are reflected in the database, and the user
must, whatever happens, know which state he or she is in.

Redis supports transactions, intended as atomic executions of a series of commands that are either
executed by the database and reflected in changes to data or discarded. Transactions in Redis are
executed with the WATCH, MULTI, EXEC, and DISCARD commands. However, the definition implicitly
requires that the property is fulfilled in all possible circumstances, so different types of failures have
to be considered and analyzed. It is indeed true that if there is no error or failure, Redis transactions
are either entirely executed at EXEC time or they can be purposefully discarded with DISCARD:

127.0.0.1:6379> MULTI
OK
127.0.0.1:6379(TX)> SET greetings hello
QUEUED
127.0.0.1:6379(TX)> DISCARD

The BASE and ACID properties 259

OK
127.0.0.1:6379> GET greetings
(nil)

But if things can go wrong, they will. So, let’s see what happens if Redis encounters a syntax error. If
an error is reported before the EXEC command, the transaction is automatically discarded when one
of the commands presents a syntax error. Commands are getting queued before the execution of the
transaction, and when queuing a command, the syntax is checked:

127.0.0.1:6379> MULTI
OK
127.0.0.1:6379(TX)> SSET greetings hello
(error) ERR unknown command 'SSET', with args beginning with:
'greetings' 'hello'
127.0.0.1:6379(TX)> SET greetings hello
QUEUED
127.0.0.1:6379(TX)> EXEC
(error) EXECABORT Transaction discarded because of previous errors.

Commands may also fail after the EXEC command is called. For example, if a command is invoked
against a non-suitable type, such as a SET command against a List data type, the failure will be reported
at EXEC time. Let’s consider the following example:

127.0.0.1:6379> LPUSH greetings hello hola
(integer) 2
127.0.0.1:6379> MULTI
OK
127.0.0.1:6379(TX)> SET hola mundo
QUEUED
127.0.0.1:6379(TX)> SADD greetings ciao
QUEUED
127.0.0.1:6379(TX)> EXEC
1) OK
2) (error) WRONGTYPE Operation against a key holding the wrong kind of
value

In the previous excerpt, we are trying to add an element to the List using the SADD command, suitable
for Sets. The transaction reports an error at execution time for the second command but the first is
successful. Let’s verify the outcome by having a quick look at the keyspace:

127.0.0.1:6379> GET hola
"mundo"
127.0.0.1:6379> LRANGE greetings 0 -1
1) "hola"
2) "hello

Using Redis Stack as a Primary Database260

The transaction has been partially executed, as reported: Redis does not stop the execution of the
transaction, by design. One may object that checking the semantics of the commands queued to a
transaction would be straightforward. However, such errors must be isolated and fixed at software
implementation and testing time, so that Redis transactions can be lightweight by omitting such
checks that would slow down the execution.

While the errors exposed so far are introduced by developers or administrators, database failures (a
bug in the Redis code base causing a crash of the process) or system failures (an outage or a hardware
failure) are impossible to anticipate and may abruptly interrupt any possible state of the database.
When a failure such as a crash happens in the middle of a transaction (before the execution of EXEC),
the transaction will be fully discarded. However, if the failure happens while the transaction is being
persisted on disk to the append-only file (AOF), partial writes are possible, causing an incomplete
transaction to persist on disk.

If on one side Redis minimizes the chances of hitting such errors by writing the transaction on disk
using a single write(2) syscall, and even in the case of configuring the strictest fsync policy
(appendfsync always), such errors are possible. Redis does not implement a double-write
mechanism for data persistence, so this error cannot be automatically recovered at database restart
when crash recovery is performed (when the AOF file is reloaded in memory). When detecting a
partially written transaction in the AOF, Redis will report an error that can be fixed with the redis-
check-aof tool, which offers the capability to rectify the AOF by removing any partial transactions,
thereby allowing the server to restart correctly and discarding the incomplete transaction.

Let’s test it with an example. Start a Redis or Redis Stack server using the redis.conf configuration
file provided as follows. Note that the default configuration in Redis 7 is to allow servers to restart even
in case of corruption, hence we are setting the value of aof-load-truncated to no:

appendonly yes
appendfsync always
aof-load-truncated no
logfile "/tmp/redis.log"

Execute a transaction:

127.0.0.1:6379> MULTI
OK
127.0.0.1:6379(TX)> SET hello world
QUEUED
127.0.0.1:6379(TX)> SET hola mundo
QUEUED
127.0.0.1:6379(TX)> EXEC
1) OK
2) OK

The BASE and ACID properties 261

Now, shut down the server using the SHUTDOWN command and go have a look at the AOF file
(with Redis 7, you will find it in a file named something like appendonlydir/appendonly.
aof.1.incr.aof). Scroll to the bottom of the file and verify that the transaction has been registered:

MULTI
*3
$3
SET
$5
hello
$5
world
*3
$3
SET
$4
hola
$5
mundo
*1
$4
EXEC

Now simulate a corruption by editing it so you can, for example, remove the last command and the
EXEC command, leaving it as follows:

MULTI
*3
$3
SET
$5
hello
$5
world
*3

In another console, tail the log file with the following:

tail -f /tmp/redis.log

Then restart the server, as done earlier. The server will fail to start, and the report will be as follows:

82974:M 04 Jul 2023 11:58:15.338 # Revert incomplete MULTI/EXEC
transaction in AOF file appendonly.aof.1.incr.aof
82974:M 04 Jul 2023 11:58:15.338 # Unexpected end of file reading

Using Redis Stack as a Primary Database262

the append only file appendonly.aof.1.incr.aof. You can: 1) Make a
backup of your AOF file, then use ./redis-check-aof --fix <filename.
manifest>. 2) Alternatively you can set the 'aof-load-truncated'
configuration option to yes and restart the server.

Following the recommendation of the log, let’s proceed to fix the AOF file:

redis-check-aof --fix appendonlydir/appendonly.aof.manifest

Start checking Multi Part AOF
Start to check BASE AOF (RDB format).
[...]
RDB preamble is OK, proceeding with AOF tail...
AOF analyzed: filename=appendonly.aof.1.base.rdb, size=89, ok_up_
to=89, ok_up_to_line=1, diff=0
BASE AOF appendonly.aof.1.base.rdb is valid
Start to check INCR files.
0x              42: Reached EOF before reading EXEC for MULTI
AOF analyzed: filename=appendonly.aof.1.incr.aof, size=73, ok_up_
to=23, ok_up_to_line=16, diff=50
This will shrink the AOF appendonly.aof.1.incr.aof from 73 bytes, with
50 bytes, to 23 bytes
Continue? [y/N]: y
Successfully truncated AOF appendonly.aof.1.incr.aof
All AOF files and manifest are valid

Now you can open the AOF file, verify what has happened, and restart the server successfully.

As seen in this section, running transactions in Redis is possible. While Redis by design lacks a
transaction manager with automatic rollback and isolation levels, transactional behavior can be
implemented on a standalone Redis server, and also in a clustered Redis or Redis Enterprise, under
the assumption that data changed by the transaction is located in the same data partition or shard.
Redis Cluster and Redis Enterprise Cluster do not support distributed transactions across multiple
shards by design and for the benefit of performance.

Considering transactions in Redis, it is worth pointing out that support for transactions is not the
typical requirement for which one would choose a NoSQL database. It is then important to note that
in Redis, it is possible to execute multiple changes against collections atomically. In the following
example, adding multiple pairs to a Hash dictionary is an atomic operation, and persisted to disk
with a single write system call:

127.0.0.1:6379> HSET document:123 title "Talking about ACIDity"
content "Variadic commands are atomic"
(integer) 2

The BASE and ACID properties 263

An operation that changes multiple properties in a JSON document is atomic, too:

127.0.0.1:6379> JSON.SET document:123 $ '{"title":"Talking about
ACIDity", "content":"JSON operations are atomic"}'
OK

Finally, multi-key commands are atomic too. The following is from the documentation of the MSET
(https://redis.io/commands/mset/) command:

MSET is atomic, so all given keys are set at once. It is not possible for clients to see that some of the keys
were updated while others are unchanged.

MSET, as a multi-key command, sets multiple field-value pairs at once:

MSET {user:123} "John Smith" {user:123}:address "Yigal Alon St 94, Tel
Aviv-Yafo, Israele"

Examples of multi-key commands are BITOP, BLPOP, BRPOP, BRPOPLPUSH, MSETNX, RPOPLPUSH,
SDIFF, SDIFFSTORE, SINTER, SINTERSTORE, SMOVE, SORT, SUNION, ZINTER, ZINTERSTORE,
ZUNION, ZUNIONSTORE, ZDIFF, and ZDIFFSTORE.

To complete this overview of Redis transactions, it is worth highlighting that both Lua scripts and
functions and JavaScript functions exhibit transactional behavior since they are executed atomically,
and the observations made in this section apply to the execution of such functions. You can refer to
Chapter 9, The Programmability of Redis Stack, to learn more about this topic.

Consistency

A transaction reaching its normal end (EOT, end of transaction), thereby committing its results, preserves
the consistency of the database. In other words, each successful transaction by definition commits only
legal results.

The C in ACID is probably the most ambiguous property, as it appears as a restatement of the rest
of the properties. If a transaction is atomic, isolated, and persisted, the transaction is also legal and
recoverable in case of abrupt database termination. However, there is something more to point out.
Sticking to the definition given by Wikipedia:

Consistency ensures that a transaction can only bring the database from one consistent state to another,
preserving database invariants: any data written to the database must be valid according to all defined rules,
including constraints, cascades, triggers, and any combination thereof. This prevents database corruption
by an illegal transaction. Referential integrity guarantees the primary key–foreign key relationship.

From this, we can better see that the original definition is split into two parts:

•	 A transaction will bring the database from one consistent state to another.

•	 Database invariants are preserved.

https://redis.io/commands/mset/

Using Redis Stack as a Primary Database264

While the second statement is self-explanatory in terms of the constraints (referential integrity, not null,
...) available in ACID databases and used as consistency criteria, the first statement brings the client
applications into the picture to understand what a consistent transaction is. Clients are responsible
for initiating transactions, enforcing integrity constraints, and executing operations in a consistent
manner. Translating this to the database means that the database must fulfill the commands executed
by the client in a way that the rules of the application are consistent, and the changes are committed
when the client application decides to complete the transaction. Hence, the definition of consistency
embraces applications as well in the definition of what consistency should look like. The C in ACID
refers to logical consistency and, in short, guarantees that the database can map application business
logic to the database while preserving the database invariants.

Translating the definition to Redis is immediate. Redis doesn’t have such constraints, so it is possible to interpret
the property and state that a Redis database will not be logically corrupted after a transaction is executed.

Isolation

Events within a transaction must be hidden from other transactions running concurrently. If this were
not the case, a transaction could not be reset to its beginning for the reasons sketched earlier.

By design, as a single-threaded architecture database, Redis guarantees that the clients have exclusive
access to the keyspace, either performing a single command or executing a MULTI/EXEC transaction.
As mentioned, Redis does not implement a transaction manager and does not offer full isolation,
and in addition, Redis does not implement locks that guarantee exclusive access to data structures.
This implies that a transaction may commit changes to data that has been modified by a concurrent
transaction. To give an example, a session may execute the following transaction:

127.0.0.1:6379> SET greeting hello
OK
127.0.0.1:6379> MULTI
OK
127.0.0.1:6379(TX)> APPEND greeting " world"
QUEUED
127.0.0.1:6379(TX)> EXEC
1) (integer) 11
127.0.0.1:6379> GET greeting
"hello world"

But we can execute the following lines from a terminal session:

127.0.0.1:6379> SET greeting hello
OK
127.0.0.1:6379> MULTI
OK
127.0.0.1:6379(TX)> APPEND greeting " world"
QUEUED

The BASE and ACID properties 265

Then, from another terminal session, we change the value of the key as follows:

127.0.0.1:6379> SET greeting ciao
OK

Completing the transaction, you can verify that the desired change within the transaction has been
affected by another session:

127.0.0.1:4321(TX)> EXEC
1) (integer) 10
127.0.0.1:4321> GET greeting
"ciao world"

Redis did not lock the greetings key, and the concurrent session has changed the key at will. There
is another way to manage such situations: Redis offers the WATCH command, which allows clients
to monitor specific keys for modifications. WATCH can be used in conjunction with transactions to
implement optimistic locking. Transactions are rejected if the watched keys have been modified by
other sessions before executing a transaction, providing a form of isolation. The previous example
would then be improved as follows:

127.0.0.1:6379> SET greeting hello
OK
127.0.0.1:6379> WATCH greeting
OK
127.0.0.1:6379> MULTI
OK
127.0.0.1:6379(TX)> APPEND greeting " world"
QUEUED
127.0.0.1:6379(TX)> EXEC
(nil)

The transaction has been aborted and no change was completed.

Let’s now consider the durability property and see what options exist to configure Redis as a
durable database.

Durability

Once a transaction has been completed and has committed its results to the database, the system must
guarantee that these results survive any subsequent malfunctions. Since there is no sphere of control
constituting a set of transactions, the database management system (DBMS) has no control beyond
transaction boundaries. Therefore the user must have a guarantee that the things the system says have
happened have actually happened.

Using Redis Stack as a Primary Database266

When working with in-memory caches, durability may not be a strong requirement. If any malfunction
causes a crash of the process or the entire system suffers an outage, the cache can always be restarted
without data and provisioned when the client hits a cache miss (lazy loading). Alternatively, it is possible
to perform a full synchronization from a primary data source. On the other hand, it can be desirable
to minimize cache misses to avoid latency spikes. In this case, a hot cache is required as soon as it is
restarted after a failure. Redis has reliable persistence mechanisms that guarantee durability: the data
can be persisted to a storage device and reloaded in memory at restart.

Let’s dig into the journey of a write operation after it leaves the client, is stored in the primary memory
(the keyspace), and needs to be persisted to disk:

1.	 The database invokes the write(2) syscall. This command is used to write the data to disk,
so the data is transferred to the OS buffer cache first.

2.	 The database invokes the fsync syscall. This command transfers what is in the OS buffer
cache to the cache of the storage device.

3.	 The disk controller persists the data from the cache to the physical device (solid state or rotational
hard disk).

The buffer cache mentioned in steps 1 and 2 can be audited with free, as an example:

free -m
       total  used  free  shared   buff/cache   available
Mem:    7959  1145   692     330         6121        6097
Swap:   2047    14  2033

In Linux, Unix-like systems, and other OSs, the buffer cache serves as a memory cache that is used
to improve the efficiency and performance of disk I/O operations. It is an intermediate layer between
the filesystem and the physical disk managed by the kernel that temporarily stores the data that is read
from or written to the disk. The buffer cache is enabled by default on Linux systems but can be bypassed
by the application using the O_DIRECT or O_SYNC mode. When this happens, every write(2)
operation is performed synchronously, and it doesn’t return until the data has been physically written
to the underlying storage device. Bypassing the buffer cache does not offer any granularity on the
desired durability: every write operation is simply written to disk, which may be simply too slow. In
addition, systems using the buffer cache protect the data against database crashes.

When the data is in the buffer cache, the keyspace is not the only existing copy of the data, and a
subsequent crash of the Redis process, or Redis being killed manually or by the OOM killer, will
not affect the data in the buffer cache, which can be flushed to disk by the OS soon afterward. Linux
usually synchronizes the data in the buffer cache to disk autonomously every 30 seconds. However,
if, between the write and the fsync operations, a system crash (an outage, as an example) occurs,
data will inevitably be lost.

The BASE and ACID properties 267

AOF and RDB

Redis can be configured as a durable data store enabling the AOF persistence with the appendonly
parameter set to yes. Every change occurring in the database is appended to a text file in the same
readable format of the protocol used by Redis (the RESP protocol). While there are several parameters
affecting the behavior of the AOF feature, let’s focus on the desired persistence policy, which can be
configured as follows:

•	 appendfsync no: With this setting, the moment when the changes in the OS buffer
cache are flushed to disk is not decided by Redis, which does not call fsync. Clients get the
acknowledgment that the write operation is successful when the data is transferred to the
buffer cache with write(2). The OS flushes the buffer cache at will, usually every 30 seconds.
Changes that occurred up to 30 seconds before an incident may not have reached the AOF file
on disk and be lost.

•	 appendfsync everysec: Changes in the OS buffer cache are flushed to disk every second
(fast but less safe). Changes that occurred up to one second before an incident may not have
reached the AOF file on disk and be lost.

•	 appendfsync always: Every time changes to data occur in memory, they are appended
to the AOF file. Write commands proceeding from single commands or pipelines from one
or multiple clients enter in the latest event loop iteration, and at the end of the iteration, the
file is flushed to disk. This is the safest option but also the slowest. However, as noted, when
there are multiple parallel writes in the same loop iteration, Redis will attempt to perform a
single fsync operation at the end of the loop, as this policy supports group commit. This
enhancement guarantees that even with this strict durability setting, Redis can sustain hundreds
of concurrent transactions per second and in case of failure, Redis will lose at most the latest
group of commits.

Durability can also be achieved by means of RDB data snapshots, which are point-in-time copies of
the data in memory using the SAVE (synchronous) or BGSAVE (asynchronous) commands. However,
snapshots don’t provide the same level of durability as AOF. Such dumps are collected at regular intervals
and may have non-negligible effects on the performance of the database, so their periodic collection
should be planned to cause minimal impact. Usually, dumps are collected every few minutes or hours. In
this section, we will consider AOF as the mechanism guaranteeing maximum durability to a Redis server.

As said, Redis databases are not fully ACID-compliant because the atomicity of transactions is not
guaranteed in case of a crash (crashes may be caused by the OOM killer, a bug, or a system failure).
It is possible to detect and fix issues deriving from crashes when they cause incomplete transactions
to be persisted using the redis-check-aof tool. An additional safety measure would be using
storage devices with battery-backed RAID caching controllers.

A battery-backed RAID write caching controller plays a crucial role in database durability. It helps
ensure that data modifications made by database transactions are safely stored on disk, even in the event
of unexpected power failures or system crashes. When a database transaction needs to be persisted

Using Redis Stack as a Primary Database268

on disk, the controller first stores the changes in its volatile memory cache instead of immediately
writing them to the disk. This caching technique improves performance by reducing the number of
disk write operations.

However, to maintain durability and prevent data loss, the controller must periodically flush the
cached data from memory to the disk. This is where the fsync command comes into play. The
fsync command is issued by the database server to the storage system, specifically targeting the
files associated with the modified data.

When the fsync command is received, the battery-backed write caching controller ensures that all
the cached data is durably written to the disk before acknowledging the completion of the command to
the server, and finally, to the client. By relying on the battery backup, the controller can safely complete
the flushing process even if there is a power outage or system crash. The backup power source ensures
that the cached data is written to the disk and not lost due to the loss of volatile memory.

In summary, the battery-backed write caching controller, in conjunction with the fsync command,
provides a reliable mechanism to achieve durability in databases. It allows data modifications to be
temporarily cached in volatile memory for performance reasons while ensuring that the changes are
ultimately written to disk in a durable manner.

Guarantees of pipelines

Clients using pipelining sacrifice the ability to receive immediate feedback on the outcome of each
command in exchange for improved speed. This means that before executing the next command,
clients do not wait for a response to the previous command; pipelines are batches of commands, and
Redis will return a batch of results. For these clients, it is not necessary to commit the data and provide
a reply immediately, as they prioritize speed over receiving immediate responses. Nonetheless, even
when using pipelining, data writes and fsyncs (depending on the configuration) always occur when
concluding an iteration of the event loop. Basically, durability guarantees are preserved even when
pipelines are used, and clients trade knowing the immediate outcome of the single command for speed.

We have concluded the discussion on the BASE and ACID properties and discovered how Redis
fulfills such properties. In the next section, we will consider what configuration guarantees the highest
consistency and availability, and expose the trade-offs and compromises with different settings.

Configuring Redis for durability, consistency, and
availability
For those scenarios where reliability matters besides availability, you can consider the
following configurations.

Configuring Redis for durability, consistency, and availability 269

Configuring snapshots

Snapshots (also called Redis database snapshots, or RDBs) provide a consistent binary dump of the
data stored in the keyspace and are used to perform data recovery to a specific point in time. You
should set the following in the configuration file:

save 900 1000
dbfilename "dump.rdb"

These settings enable snapshots every 900 seconds if at least 1,000 keys have changed. This kind of
persistence is good for point-in-time restores and is also considered a backup. So, from time to time,
you should copy the RDB snapshot file to an external storage device on a different, possibly remote
host (invoking a script with cron, as an example) to discard major incidents affecting the local
storage device. This method cannot be considered valid to achieve a good recovery point objective
(RPO); snapshots are expensive operations and are usually collected every few hours. Configuring
AOF persistence is the way to go.

Configuring AOF

As mentioned, the best RPO can be achieved when AOF is configured:

•	 appendfsync everysec: Changes in the OS buffer cache are flushed to disk every second
(fast but less safe)

•	 appendfsync always: Every write is flushed to disk as it occurs (safer but slower)

However, it is a well-known fact that persisting every single write operation to disk is time- and resource-
expensive. You can test yourself with a simple benchmark using the redis-benchmark tool. The
following command executes 100,000 SET commands and uses a randomly generated key out of
10,000 possible keys. By default, the command simulates 50 clients and supports pipelining. Pipelining
groups together multiple commands that are sent as a batch by the client and set to 16 commands:

redis-benchmark -t set -r 10000 -n 100000 -P 16

Running the benchmark with different persistence configurations leads to the following results, tested on
commodity hardware such as a laptop. Note that a meaningful benchmark should be run from a separate
host to understand the maximum throughput. However, in this case, we are interested in the relative
numbers achieved with different configurations, so the benchmark can be executed locally to the database.

When appendfsync is configured to everysec, the benchmark will report the following summary:

Summary:
  throughput summary: 118483.41 requests per second
  latency summary (msec):
    avg       min       p50       p95       p99       max
  6.539     0.904     6.215     8.455    40.511    43.199

Using Redis Stack as a Primary Database270

When appendfsync is configured to always instead, the benchmark will report the following:

Summary:
  throughput summary: 15339.78 requests per second
  latency summary (msec):
    avg       min       p50       p95       p99       max
 51.397    11.080    56.255    62.175    65.151    73.023

Flushing every change to disk causes dramatically negative impacts on the throughput, so it must be
used wisely and benchmarked in advance.

Now run this simple benchmark with increasing iterations and note the pressure on the storage device
in the case of setting AOF to everysec:

iostat -c 100 -w 1
              disk0       cpu    load average
    KB/t  tps  MB/s  us sy id   1m   5m   15m
   49.71  200  9.71  18  6 75  2.90 2.86 3.02
   90.35   51  4.50  19  6 75  2.90 2.86 3.02
   92.54   52  4.68  19  6 75  2.90 2.86 3.02
  134.70   40  5.24  20  6 74  2.90 2.86 3.02
   48.02  167  7.81  24 10 66  2.99 2.88 3.02

Then compare with the system metrics when setting AOF to always and note how the tps increases
and how the rest of the metrics vary:

sh-3.2# iostat -c 100 -w 1
              disk0       cpu    load average
    KB/t  tps  MB/s  us sy id   1m   5m   15m
   75.33  155 11.40  17 14 69  2.58 2.46 2.95
    7.61  653  4.86  16  9 74  2.58 2.46 2.95
   13.54  775 10.25  19 11 70  2.58 2.46 2.95
    7.77  646  4.90  14 11 75  2.58 2.46 2.95
    6.91  632  4.27  14  8 77  2.58 2.46 2.95

The appendfsync always configuration, together with a battery-backed caching controller, is
the safest from the perspective of RPO. When using such a configuration, it is mandatory to make
additional considerations:

•	 What is the relative read/write rate? If using Redis mostly for read operations, a conservative
AOF persistence setting may be acceptable.

•	 Is Redis deployed in a clustered mode (Redis OSS Cluster, or a clustered database in Redis
Enterprise Cluster)? Deploying Redis shards on multiple hosts, hence writing shards’ related
AOF files in parallel to multiple storage devices, increases the I/O bandwidth available.

Configuring Redis for durability, consistency, and availability 271

•	 Can I tolerate losing some data (write operations executed during, at most, a one-second-long
lapse of time)? When Redis is used as a primary database to store sessions or authentication
tokens, losing a limited number of data structures may be acceptable.

Choosing the desired durability is usually a function of other requirements and hardware capabilities.
Redis, as a real-time and in-memory data store, can be configured to not lose any single key, but it
must be kept in mind that trading performance for durability must be evaluated accurately.

Let’s see now how service availability fits into the same picture.

Configuring high availability

We have gone through the principal consistency settings to ensure that data is preserved up to the latest
change and discovered how to increase the throughput by allowing a relaxed persistence configuration.
Consistency is not everything we need to take care of, though, because guaranteeing the availability
of the database is crucial. Redis implements several mechanisms to perform failover to a replica:

•	 Manual failover

•	 Automated failover using Sentinel

•	 Automated failover in a Redis Cluster with replication enabled

•	 Built-in automated failover in Redis Enterprise and Redis Cloud

We will discuss the differences in the next chapter, but regardless of the chosen Redis deployment,
what matters is the consistency of the replica with the master copy of the data, and this does not
depend on the chosen flavor of Redis (OSS or Enterprise) or a specific configuration. Replication is
performed using an asynchronous protocol to maximize the performance. This means the following:

1.	 The client application performs a write operation to the Redis database.

2.	 The master server (or shard, if the database is clustered) executes the commands and eventually
persists it to disk according to the desired RDB or AOF persistence method.

3.	 The client application is acknowledged.

4.	 Only then, the operation enters a buffer of commands that are replicated.

This rough sketch of the replication sequence of events implies that the replica server will run behind
the master, depending on the throughput on the master replica, the network bandwidth, and the host
resources, among other reasons. It is evident that a replica server that is lagging behind the master,
in case of a master crash, may not have the latest changes, and when promoted to be the new master,
will not offer a fully consistent copy of the data that was stored by the master. As discussed, this may
not be an issue in those use cases where data loss is tolerated (if a bunch of authentication tokens is
lost, this will cause those users or APIs to have to authenticate again). Nonetheless, users may want
to preserve consistency in the master as well as in the replica, so failovers are guaranteed to preserve
all the data that was written by application clients.

Using Redis Stack as a Primary Database272

Configuring consistency

Redis offers two settings to maximize the consistency of replicas: WAIT and WAITAOF. WAIT can be
used when we want to make sure that everything written previously has been replicated to the desired
number of replicas. The signature of the command is as follows:

WAIT numreplicas timeout

Consider what is indicated by the documentation:

Note that WAIT does not make Redis a strongly consistent store: while synchronous replication is part
of a replicated state machine, it is not the only thing needed. However, in the context of Sentinel or Redis
Cluster failover, WAIT improves real-world data safety.

WAIT does not guarantee that when it reports a failure, the previous data was not replicated. WAIT
may report false negatives (data is replicated, but WAIT fails because of a connectivity issue between
the master and the replica/s) and in such a case, when WAIT fails, it is up to the application client
to verify what has happened and manage the failure accordingly (check the replica, or re-execute a
command if idempotent, as an example, such as SADD, ZADD, or HSET).

WAITAOF is similar to WAIT, but in addition to the guarantee that data has been replicated, it also
reports when the local copy and/or the replicas have fsynced the change to disk:

WAITAOF numlocal numreplicas timeout

Using the WAITAOF command together with the most conservative AOF policy on both the master
and the replica/s (appendfsync always) is the safest combination of options that users can
configure to achieve consistent replicas and guarantee no data loss, at the price of non-negligible
performance impacts.

Summary
Redis not only can be adopted safely as a primary database in many use cases, but it is also the best
option in many terms. Secondary indexing of Hash and JSON documents together with the ability
to perform complex and hybrid multi-field queries and with basic analytical processing capabilities
makes Redis, Redis Stack, and the commercial Enterprise and Cloud versions full-fledged data
management systems with full support for scalability and availability. While NoSQL databases don’t
generally fulfill the ACID properties but privilege availability over consistency, we have gone through
the assumptions that help maximize the consistency of Redis databases against crashes, either in the
standalone or replicated deployments.

Compromising on data integrity, consistency, and durability may not be an option, and in this chapter,
you have learned to achieve the most durable configuration in Redis with the safest (but much less
performing) AOF persistence policy. You have also discovered that making multiple changes to single
data structures rather than using MULTI/EXEC transactions reduces the risk of incomplete transactions

Summary 273

logged in the AOF (but incomplete transactions can also be rolled back before restarting a crashed
server). Adopting a battery-backed RAID cache controller can offer additional guarantees that data is
persisted even in case of power loss. Finally, you have been introduced to the replication guarantees
when WAIT or WAITAOF are used so that replicas are consistent with master servers.

Even with the most conservative setup, configuration, and usage, Redis does not strictly fulfill the ACID
properties per the standard and official definition (there is no transaction manager with support for
isolation levels and rollbacks, to give an example). Instead, with the right assumptions, it is possible
to maximize consistency and availability while achieving the desired performance.

In summary, we have discovered how Redis can be used as a unique data store, thus removing the
need for both having a primary database and configuring a real-time secondary store as a cache. Redis
as a primary database is a database that doesn’t need a cache.

In Chapter 12, Managing Development and Production Environments, you will see how Redis technology
can be used along the entire software engineering life cycle when traditional requirements such as
availability and scalability are demanded, in addition to learning how to manage development and
production environments in an easy and integrated way. You will learn how to set up Redis Stack for
high availability and scalability, and understand what the benefits are of using the Redis Enterprise
data platform and the managed Redis Enterprise Cloud flavor to forget about managing your data layer
so you can focus on what matters: being successful at implementing and deploying your application
and resting assured that your database will adapt to changing workloads with the maximum degree
of availability.

12
Managing Development and

Production Environments

Until now, you’ve ventured on a comprehensive exploration of Redis Stack. You’ve explored its
capabilities as a document store, understood its potential as a vector database, and delved into its
prowess as a time-series database. You’ve stepped into the fascinating world of probabilistic data
structures and uncovered the deep programmability features of Redis Stack. You’ve been introduced
to RedisInsight, a powerful data management GUI, and weighed the advantages of using Redis Stack
as a primary database.

As you transition to this final chapter, it’s essential to build upon what you’ve learned and dive deeper
into the architectural nuances of Redis Stack. When discussing architecture, you must consider the
target environments, such as production, development, testing, and validation environments. Each
of these has unique needs and characteristics.

The primary distinctions between these environments are the following:

•	 Total cost of ownership (TCO)

•	 High availability (HA)

•	 Scalability

•	 Security

To culminate this journey, a critical step awaits you: migrating from a development environment
with Redis Stack to a more robust production setting. Here, you have choices. You can transition to
either Redis Enterprise or Redis Cloud, to achieve better performance and resilience. Redis Cloud, in
particular, is a fully managed Database as a Service (DBaaS) solution provided by Redis. It offers the
same convenience and reliability as Redis Enterprise but without the need for operational management.
Both paths provide opportunities to elevate your Redis solutions, ensuring they meet the demands
of real-world production scenarios. Let’s dive into how to make the best choice for your needs and
execute a seamless migration.

Managing Development and Production Environments276

In this section of the final chapter, you will zero in on these pivotal aspects:

•	 Redis Stack as a development environment

•	 Preparing for production with Redis Enterprise

•	 Redis Cloud – an enterprise-ready Redis DBaaS

To begin, let’s discuss the prerequisites for following this chapter.

Technical requirements
For the practical demonstrations outlined in this chapter, it is best to have Redis Stack Server 7.2 or
a later version installed on your local development environment. Utilizing Redis Cloud might not be
appropriate for these exercises, the reason being that Redis Cloud, as a fully managed service, abstracts
away many architectural complexities that one would encounter with a local setup. This chapter
specifically addresses the manual configuration of Redis Stack to achieve HA and scalability—features
that are inherently and seamlessly managed in Redis Cloud. Thus, a local installation of Redis Stack
is essential in your local development environment for the purposes of this guide.

Redis Stack as a development environment
When working with Redis Stack, achieving HA, scalability, and security might seem like a steep hill to
climb. There’s a lot to set up and monitor; however, don’t be daunted! Even if you’re just getting your
feet wet, having a roadmap can be invaluable. That’s why I’ve compiled a mini-guide for you. While it
won’t magically turn Redis Stack into an enterprise-grade solution, it will give you a solid foundation
of general guidelines and recommendations to move in the right direction. Consider it your compass
in the sometimes complex world of Redis Stack optimization.

HA

Let’s start with HA. In Redis Stack, HA is achieved by increasing the number of Redis Stack instances
configured as replicas. These replicas listen to and follow a primary instance. To set this up, specify
the IP address and port of the primary instance, and all replicas will receive updates.

Typical configuration parameters within the Redis Stack configuration file include the following:

replicaof <masterip> <masterport>
masterauth <master-password>
masteruser <username>
replica-serve-stale-data yes
replica-read-only yes

Redis Stack as a development environment 277

It’s crucial to note that replicas receive updates asynchronously, which means that the replica instance
can be slightly lagging behind the master instance, depending on the throughput and the network
bandwidth. In addition, in case of issues such as a crash on the master instance, there’s a possibility
of data loss.

However, certain measures can be implemented to mitigate this. For example, you can configure the
master to only return a write acknowledgment to the application after the data has been replicated
on at least n replicas. Moreover, it’s possible to set a timeout, after which the primary instance will
return an error acknowledgment to the application. The configuration parameters to achieve this
behavior are shown here:

min-replicas-to-write 1
min-replicas-max-lag 10

If these two conditions are not met, the application receives an error, and the write is aborted. You will
find more insights in this area in Chapter 11, Using Redis Stack as a Primary Database.

However, this alone doesn’t ensure HA. If the primary shard fails, the replica shards will also find
themselves in an inconsistent state due to the absence of the primary instance. HA mechanisms account
for this by promoting one of the n replicas to become the primary in the event of a primary shard
malfunction. This is precisely the role of Redis Sentinel, which is already integrated into Redis Stack.

So, what does it involve? Essentially, you initiate another Redis Stack process specifying the dedicated
Sentinel configuration file, which includes references to the primary and replica shards.

To start a Redis Stack process as Redis Sentinel, do as follows:

redis-stack-server /path/to/sentinel.conf –sentinel

Alternatively, a specific Redis Sentinel command can be used, as follows:

redis-sentinel /path/to/sentinel.conf

Typical configuration parameters within the Sentinel configuration file include the following:

sentinel monitor mymaster 127.0.0.1 6379 2
sentinel down-after-milliseconds mymaster 60000
sentinel failover-timeout mymaster 180000
sentinel parallel-syncs mymaster 1
sentinel monitor resque 192.168.1.3 6380 4
sentinel down-after-milliseconds resque 10000
sentinel failover-timeout resque 180000
sentinel parallel-syncs resque 5

Managing Development and Production Environments278

Redis Sentinel incorporates a mechanism to elect a replica shard as the primary, often referred to as
the master. To ensure this election can take place, the number of Sentinel instances should be odd,
starting from three. However, this doesn’t mean you need precisely three Redis Stack shards to manage
your data. It’s entirely feasible to have a primary shard and a secondary shard, with HA managed by
Redis Sentinel spread across at least three distinct nodes/processes.

This setup implies that you would be managing at least five Redis Stack processes in total: the primary
shard (data), its replica (synchronized by the primary—data), and the three Sentinel processes
overseeing HA. In this way, if the primary shard malfunctions, Sentinel detects the issue and elects
a new primary shard.

The next diagram provides a representation of an architecture based on Redis Stack with Redis Sentinel:

Figure 12.1 – Redis Stack architecture in HA with Redis Sentinel

Redis Stack as a development environment 279

In this configuration, each Redis Stack process resides on its own server, just as the Redis Sentinel
processes do. This ensures a clear separation between the data and the HA functionality offered
by Sentinel.

Now that we’ve delved into the intricacies of HA with Redis Stack, it’s time to shift our focus to another
critical aspect: scalability. As your system grows, so do its demands, and understanding how to scale
effectively is key.

Scalability

When we talk about scalability in Redis Stack, we’re diving into the concept of clustering, also known
as sharding, a method to distribute a dataset across multiple Redis Stack shards. Imagine having a
dataset: instead of having it on one instance, you can split it, say, between three shards, each managing
roughly 33% of the data.

Inside Redis Stack, data is organized within a grid of 16,384 slots, known as hash slots. If you’re running
a single Redis Stack instance, all of these slots reside within that sole shard. But with three shards? The
first shard takes care of slots ranging from 0 to 5460, the second manages slots from 5461 to 10921,
and the third shard manages slots from 10922 to 16383.

So, how does Redis Stack decide where to place data? Remember—Redis Stack is a key-value store; the
key, used to identify the data, is also fed into a hashing function, CRC16. The result of this function,
when applied to the modulo operation with the total number of slots (16,384), gives a number between
0 and 16,383. Based on this number, Redis Stack determines which shard the data will reside in. It’s
this mechanism that enables scaling Redis architecture across dozens or even hundreds of nodes.

The clustering mechanism is intrinsic to Redis Stack. However, to harness it, you’ll need to enable
specific configuration parameters, as listed next:

•	 cluster-enabled: <yes/no>

•	 cluster-config-file: <filename>

•	 cluster-node-timeout: <milliseconds>

The concept of a node is introduced, mainly because scalability often requires additional resources.
This is achieved by dynamically adding nodes to the cluster. While Redis Stack auto-manages cluster
configurations on default ports and saves them to the file specified by cluster-config-file,
setting up a cluster is a hands-on task. You’ll have to provide a list of IP and port pairs, using the
following command:

redis-cli --cluster create 127.0.0.1:7001 127.0.0.1:7002
127.0.0.1:7003

Managing Development and Production Environments280

From here, a diagram of Redis Stack’s clustered architecture will be showcased:

Figure 12.2 – Redis Stack with cluster enabled

Noticeably, if a node fails, it inevitably results in the loss of the respective range of hash slots and the
associated data.

Nonetheless, just as with Sentinel, Redis Cluster allows for replication, enhancing the cluster’s HA.
To achieve this, you’ll have to double the nodes, maintain identical configurations, and specify the
number of replicas during cluster creation. The command is an extension of the previous one:

redis-cli --cluster create 127.0.0.1:7001 127.0.0.1:7002
127.0.0.1:7003 127.0.0.1:7004 127.0.0.1:7005 127.0.0.1:7006 --cluster-
replicas 1

Redis Stack then decides which nodes will have the primary shards and which ones will host the replica
shards. Using the preceding command, you end up with a cluster comprising three primary instances
and three replicas. An illustrative architecture of a replicated Redis Stack cluster is depicted next:

Redis Stack as a development environment 281

Figure 12.3 – Redis Stack with cluster replication enabled

Lastly, with the redis-cli tool, you can inspect cluster nodes, shards, and the distribution of
hash slots.

Here, we’re inspecting the nodes:

redis-cli -p 7001 CLUSTER NODES
617fa344e767a4da7fad53e4dd2bc9918e54116e 127.0.0.1:7002@17002 master -
0 1692355469644 2 connected 5461-10922
06993fd4dcdba94b58d540fcc227fc10928b4026 127.0.0.1:7003@17003 master -
0 1692355468640 3 connected 10923-16383
9809cc52a20317a39cceae6da394c6fd42d112f8 127.0.0.1:7001@17001
myself,master - 0 1692355467000 1 connected 0-5460

And here, we’re inspecting the shards:

redis-cli -p 7001 CLUSTER SHARDS
1) 1) "slots"
   2) 1) "5461"
      2) "10922"
   3) "nodes"
   4) 1)  1) "id"

Managing Development and Production Environments282

          2) "617fa344e767a4da7fad53e4dd2bc9918e54116e"
          …
2) 1) "slots"
   2) 1) "0"
      2) "5460"
   3) "nodes"
   4) 1)  1) "id"
          2) "9809cc52a20317a39cceae6da394c6fd42d112f8"
          …
3) 1) "slots"
   2) 1) "10923"
      2) "16383"
   3) "nodes"
   4) 1)  1) "id"
          2) "06993fd4dcdba94b58d540fcc227fc10928b4026"
          …

Here, we’re inspecting the distribution of the hash slots:

redis-cli -p 7001 CLUSTER SLOTS
1) 1) (integer) 0
   2) (integer) 5460
   3) 1) "127.0.0.1"
      2) (integer) 7001
      3) "9809cc52a20317a39cceae6da394c6fd42d112f8"
      4) (empty array)
2) 1) (integer) 5461
   2) (integer) 10922
   3) 1) "127.0.0.1"
      2) (integer) 7002
      3) "617fa344e767a4da7fad53e4dd2bc9918e54116e"
      4) (empty array)
3) 1) (integer) 10923
   2) (integer) 16383
   3) 1) "127.0.0.1"
      2) (integer) 7003
      3) "06993fd4dcdba94b58d540fcc227fc10928b4026"
      4) (empty array)

It might also be helpful to determine in advance which hash slot a key will belong to. Run the following
command to ascertain this:

redis-cli -p 7001 CLUSTER KEYSLOT myname
(integer) 12807

Redis Stack as a development environment 283

What we’ve explored so far should give you a clear sense of what’s required to achieve a foundational
level of scalability with a Redis Stack architecture. And now that we’ve delved into the intricacies of
scalability, it’s crucial to shift our focus to another paramount aspect: security.

Security

Another significant topic in Redis Stack is security. For Redis Stack, the concept of security must be
addressed from two fundamental perspectives: architectural and data-centric. These two aspects can
be summarized with two acronyms: TLS and ACL.

In this section of the chapter, we will delve into both themes, starting with architectural security and
then moving on to safeguarding our data.

Transport Layer Security

Transport Layer Security, commonly known as TLS, is a mechanism designed to ensure secure
communications by encrypting information exchanged between two entities. The Internet Engineering
Task Force (IETF) developed TLS as a means to unify internet security protocols.

Beyond its definition, the crucial takeaway is that the TLS protocol facilitates secure, encrypted
transmission. Only the sender and receiver can decipher the message.

Within Redis Stack, there are two types of communication. The first, often termed “external,” is between
the application and Redis Stack. The second, “internal,” takes place among Redis Stack processes, be
they local or remote; for instance, between the primary shard and its replica. It’s paramount to note
that Redis Stack should never be exposed directly. Instead, requests should be mediated through
designated backend services using client libraries supported by Redis Stack. So, when we mention
“application,” we’re referencing the backend application, never the frontend. There’s a configuration
parameter for this in the redis.conf file, appropriately named bind. This should always point to
an internal network interface, avoiding public IPs. The default, as expected, is the loopback interface:

bind 127.0.0.1

Returning to TLS, its mechanism relies on certificates. On one end, these encrypt data, and on the other,
they decrypt it, all the while confirming the data’s integrity—ensuring it hasn’t been altered during
transmission. To enable TLS communication in Redis Stack, the following certificates are essential:

•	 CA certificate

•	 Server certificate and private key

•	 Diffie-Hellman parameters file

These files should be specified in the redis.conf configuration, like so:

tls-cert-file /path/to/redis.crt
tls-key-file /path/to/redis.key

Managing Development and Production Environments284

tls-ca-cert-file /path/to/ca.crt
tls-dh-params-file /path/to/redis.dh

Beyond these, the tls-port parameter defines which port Redis Stack will listen to for TLS
connections. Notably, setting the TLS port doesn’t automatically disable the non-TLS one. To do so,
you need to set it to 0:

port 0
tls-port 6379

The configurations previously described secure Redis Stack concerning external communication.
When it comes to internal communication, things are more straightforward. For both replication (from
primary shard to replica) and HA, as well as scalability, the basic configurations remain consistent
and are therefore inherited.

For replication, in addition, you’ll need the following:

tls-replication yes

For HA, Sentinel will employ the same replication parameter, tls-replication. For scalability,
which implies clustering, the additional necessary parameter is this:

tls-cluster yes

These settings ensure messages are encrypted and decrypted and that their integrity is validated. While
these steps bolster security, be advised that they might slightly affect performance.

Redis Stack also supports so-called mutual certificate authentication (mTLS), which allows an application
to authenticate without using credentials (username and password) but through a certificate. This
mode is automatically activated when TLS directives are enabled and can also be specifically turned
off using the following parameter in the redis.conf configuration file:

tls-auth-clients no

While certificate-based authentication provides a robust and seamless way of ensuring security in
Redis Stack, there are scenarios where you might lean toward more traditional authentication methods.
This brings us to the realm of the access control list (ACL).

ACL

Redis employs an ACL to manage and restrict commands and key access for certain connections.
Clients are required to authenticate by submitting a username and password when connecting. Once
authenticated, the connection is bound to the user’s predefined restrictions. Additionally, Redis can
automatically authenticate new connections using a pre-set “default” user, typically the default setting.
This approach also means that connections not explicitly authenticated are limited to a certain range
of functionalities, as determined by the configuration of the default user.

Redis Stack as a development environment 285

The first step in data protection is to require access credentials. This can be set directly within Redis
Stack’s configuration file, redis.conf, using the following parameter:

requirepass <yourSecretPassword>

After setting the password, Redis Stack can be accessed using this command:

AUTH <yourSecretPassword>

Here, no username is specified, because, for backward-compatibility reasons, the default is default.
However, ACL rules allow you to define users and assign them rules. Let’s start by creating a new user
and assigning them a password:

ACL SETUSER mirko >ortensi on

With this command, we’ve created a user, mirko, with a password, ortensi, and activated it with
the on directive. If you don’t specify the on directive, the user is created but not enabled. To activate
the user, use the following:

ACL SETUSER mirko on

Then, the user can authenticate as previously described using the AUTH command, specifying both
the username and password.

Now, once users are defined, you can dictate how they interact with the data, either broadly or with finer
granularity by allowing or restricting certain commands. We’ll start broadly using command categories:

ACL CAT

The expected output would be this:

 1) "keyspace"
 2) "read"
 3) "write"
 4) "set"
 5) "sortedset"
 6) "list"
 7) "hash"
 8) "string"
 9) "bitmap"
10) "hyperloglog"
11) "geo"
12) "stream"
13) "pubsub"
14) "admin"
15) "fast"

Managing Development and Production Environments286

16) "slow"
17) "blocking"
18) "dangerous"
19) "connection"
20) "transaction"
21) "scripting"

The preceding list categorizes the command groups. For instance, the "stream" category pertains
to all commands accessing data for streams. The "read" category covers all read-only commands,
regardless of the data structure targeted, while "write" covers all write commands.

These categories simplify basic rule-setting. For example, let’s create a second user, luigi, granting
them read-only privileges for all keys, while mirko will get write privileges for all keys:

ACL SETUSER luigi >fugaro on +@read ~*
ACL SETUSER mirko +@write ~*

Now, before testing our ACLs with the respective user credentials, let’s view the ACL rules set so far:

127.0.0.1:6379> ACL LIST

This is the expected output:

1) "user default on nopass sanitize-payload ~* &* +@all"
2) "user luigi on sanitize-payload #hashed_password ~* +@read"
3) "user mirko on sanitize-payload #hashed_password ~* +@write"

As can be observed, there are three rules defined. The first pertains to the default user, who does not
have a password and possesses full access permissions (~* &* +@all, a detailed explanation of which
will follow shortly). The second rule is for the user luigi, who is restricted to read-only commands,
while the third is designated for the user mirko, granting them write-only permissions. To illustrate,
let’s proceed by accessing the system as mirko and entering some sample data, as demonstrated next:

127.0.0.1:6379> AUTH mirko ortensi
OK
127.0.0.1:6379> keys *
(error) NOPERM User mirko has no permissions to run the 'keys' command
127.0.0.1:6379> set name mirko
OK
127.0.0.1:6379> keys *
(error) NOPERM User mirko has no permissions to run the 'keys' command
127.0.0.1:6379> get name
(error) NOPERM User mirko has no permissions to run the 'get' command

Redis Stack as a development environment 287

As we can observe, the user mirko is only permitted to write and execute write commands. The
keys * command is strictly a read-only command; thus, the user cannot view the keys stored in
Redis Stack, let alone those they have written themself.

Now, let’s try authenticating with the user luigi, as follows:

127.0.0.1:6379> AUTH luigi fugaro
OK
127.0.0.1:6379> keys *
1) "name"
127.0.0.1:6379> get name
"mirko"
127.0.0.1:6379> set name luigi
(error) NOPERM User luigi has no permissions to run the 'set' command

Another clearer and more straightforward method to determine what a specific user is allowed to do
involves executing the ACL GETUSER command, as illustrated next:

127.0.0.1:6379> ACL GETUSER mirko

This is the expected output:

 1) "flags"
 2) 1) "on"
    2) "sanitize-payload"
 3) "passwords"
 4) 1)
"96f06e7ea22b73fa289b759b6a8c43f130aade97fa23e388d1a4288afe8607d2"
 5) "commands"
 6) "-@all +@write"
 7) "keys"
 8) "~*"
 9) "channels"
10) ""
11) "selectors"
12) (empty array)

As we have observed, the process of writing rules is indeed straightforward, yet it adheres to a specific
syntax. ACL rules can be applied to commands, categories, keys, and data types. What follows is a
comprehensive list of directives to tailor ACL rules according to specific requirements:

•	 +command: Enables a specific command

•	 -command: Disables a specific command

•	 +@category: Allows all commands under that category

Managing Development and Production Environments288

•	 -@category: Disallows all commands under that category

•	 allcommands: An alias for +@all

•	 nocommands: An alias for -@all

•	 ~keyPrefix: Allows access to keys with a certain prefix

•	 %R~keyPrefix: Read-only access for keys with a prefix

•	 %W~keyPrefix: Write-only access for keys with a prefix

•	 %RW~keyPrefix: Read-write access for keys with a prefix

•	 allkeys: An alias for ~*

From the provided list, certain rules have been excluded, such as the "on" and "off" directives for
enabling and disabling a user account. Additionally, the ">" rule for password creation and the "<"
rule for password removal are not present. For a more comprehensive understanding of ACL rules
and in-depth insights, you can refer to the online documentation on the Redis Stack website at the
following link: https://redis.io/docs/management/security/acl/.

While we’ve touched on the HA, scalability, and security of Redis Stack, it’s worth noting that there are
certain limitations when it comes to automation and additional configurations. These tweaks could
potentially enhance the management experience of a Redis Stack-based solution.

Limitations

As we have observed, achieving HA requires manually configuring additional Redis Stack processes in
Sentinel mode. To ensure these processes function effectively and consistently, it’s crucial to isolate them on
separate servers. This isolation ensures they don’t interfere with the standard operation of Redis Stack and
the provision of data access services. From an infrastructural perspective, this can lead to increased costs.

Continuing on the subject of HA, there is a distinct absence of support for geographically distributed
deployment. This lack of support hinders the implementation of critical scenarios such as disaster
recovery (DR) and business continuity (BC). Such scenarios typically employ well-recognized
patterns, including the Active-Passive and Active-Active models. The ability to deploy across various
geographical locations is essential for ensuring data availability and resilience in the face of potential
regional outages or disasters. Implementing these recognized patterns not only aids in the efficient
recovery of data post-disruption but also guarantees uninterrupted service delivery to the end users. It’s
a fundamental feature expected in modern-day data management and service deployment architectures.

When it comes to scalability, although it is simpler than the Sentinel mode in terms of configuration,
Redis Cluster presents its own challenges. For instance, when adding more nodes, the cluster does not
automatically handle key re-balancing and re-sharding. Manual intervention is necessary. Moreover,
the topology of nodes that make up the cluster must be predefined during the configuration phase.

https://redis.io/docs/management/security/acl/

Preparing for production with Redis Enterprise 289

Given these nuances, organizations face a critical decision. If the priority is HA only, then Sentinel
mode could be the preferred choice. On the other hand, if scalability and increased throughput
are paramount, then the Cluster mode (with managed HA behind the scenes) becomes the more
appropriate selection. Note that the Sentinel configuration is not compatible with the Cluster setup.

From a security standpoint, there is a noticeable absence of support for two prominent user management
protocols: Lightweight Directory Access Protocol (LDAP) and Security Assertion Markup Language
2 (SAML2). Additionally, there lacks a comprehensive solution for user profile management outside
the confines of ACL rules, even though they undoubtedly offer value.

As initially indicated, Redis Stack may be well suited for a development environment. For production
settings, where greater integrations and heightened focus on automation, reliability, and security are
demanded, seeking alternative solutions would be advisable.

The capabilities and features of Redis Stack, together with the well-known ease of use and real-time
performance of Redis, are available in two commercial versions: Redis Enterprise and Redis Cloud.
The former caters to so-called on-premises production environments, while the latter is essentially
Redis Enterprise, but it’s offered as a service through major cloud providers such as Google Cloud
Platform (GCP) and Amazon Web Services (AWS). This offering allows users to leverage the robust
features of Redis Enterprise on these popular cloud platforms. The Redis Cloud alternative is fully
managed by Redis (the company) and is positioned as a DBaaS solution. In contrast, Microsoft Azure
integrates Redis Enterprise directly into its solution catalog, naming it Azure Cache for Redis. Azure
further distinguishes its offering by providing specialized tiers, including Enterprise and Enterprise
Flash, tailored to different usage needs and performance requirements.

Preparing for production with Redis Enterprise
As we’ve observed, Redis Stack is ideal for local development environments. However, when the
application needs to intersect with architectural and infrastructural requirements, it’s prudent to adopt
an enterprise-grade Redis solution—specifically, Redis Enterprise. From an application perspective,
the libraries and frameworks supported by Redis remain consistent. But what are the distinctions
between Redis Stack and Redis Enterprise?

The differences are manifold, some being quite apparent, while others are subtler. They range from
TCO, multitenancy support, HA, scalability, security, and performance to monitoring.

In the following sections, we will delve into these aspects to comprehend the added value that Redis
Enterprise brings to such contexts. Before doing so, let us first explore Redis Enterprise from an
architectural standpoint.

Managing Development and Production Environments290

Redis Enterprise architecture

Redis Enterprise is built on a shared-nothing architecture, a type of distributed computing structure where
each node in a computer cluster—comprising a processor, memory, and storage unit—handles update
requests independently. This design aims to prevent conflicts and contention for resources among nodes.

A Redis Enterprise cluster consists of an odd number of nodes, starting with a minimum of three.
The requirement to have an odd number of nodes is due to the necessity for a quorum, as a master
node is elected for the cluster’s management. This sophisticated management is facilitated by a set of
additional components that are not present in Redis Stack, allowing for a more streamlined and precise
governance of the architecture. These components include the proxy, the cluster manager, the REST
API, the admin console, and the redis-cli tool, collectively referred to as the control plane. The
proxy is also part of the data plane, along with the shards. The proxy is a component responsible for
handling (persistent) connections to the actual Redis shards. It efficiently distributes data requests to
the relevant shards, ensuring data is fetched or stored where it is meant to be.

On the other hand, the cluster manager is a set of components that oversees and maintains the topology of
the cluster nodes and the shards within them. Any change in topology, be it the addition or removal of a
node or shard, is automatically handled by the cluster manager. This means that potential failures of an entire
node, proxy, or even a single shard are automatically addressed and rectified by the cluster manager. It ensures
automatic rebalancing and resharding of the dataset, making sure data remains available and consistent.

Lastly, the REST API serves as an interface to interact with the cluster manager via the HTTP/S
protocol. This facilitates configuration management, especially when looking to automate certain
processes or procedures.

Next, we will provide a graphical representation of a Redis Enterprise cluster:

Figure 12.4 – Redis Enterprise cluster

Another significant distinction when compared to Redis Stack is the support for multi-tenancy.

Preparing for production with Redis Enterprise 291

A multi-tenancy architecture

When initiating a Redis Stack process, what one effectively obtains is a shard, essentially a database to
store data. From the application perspective, meaning from the client’s side, the Redis Stack database
is accessible through an IP address and a port. Upon establishing the connection, data reading and
writing can commence. This implies that multiple applications connected to the same Redis Stack
instance can read from and write to the same dataset, posing the risk of data overwriting or accessing
data that it might not be intended for. This risk arises from the absence of a context or, more accurately,
the lack of a tenant concept.

However, with Redis Enterprise, the concept of a tenant is introduced. In this framework, every Redis
database has its distinct shards. It’s crucial to highlight that a shard equates to an operating system-
level process; hence, having separate processes ensures both data and resource isolation, safeguarding
CPU, memory, and the data itself against potential conflicts.

Multi-tenancy allows a single Redis Enterprise cluster to serve multiple customers, organizations, and
applications by provisioning multiple databases, referred to as tenants. This means that each tenant’s
data and configurations remain isolated and invisible to other tenants, ensuring both data security and
functional independence. For each tenant, a unique network endpoint (fully qualified domain name, or
FQDN) is assigned. In this manner, the application will use this endpoint as the sole connection address
to the Redis database, eliminating the need to connect to a specific node or shard. This streamlined
approach not only enhances the ease of integration but also ensures consistent connection practices
across multiple application instances, ensuring optimal performance and reducing potential points
of failure. The endpoint is delivered through the Proxy component, which, by default, is situated on a
singular node under the single policy. Nonetheless, to enhance performance further and mitigate
the risk of a single point of failure (SPOF), the Proxy component can also be scaled utilizing various
policies, including the following:

•	 single: Only one proxy service will be up and only in one node

•	 all-master-shards: A proxy service will be up in all nodes where there is at least one
primary shard

•	 all-nodes: A proxy service will be up in all nodes

This multi-tenancy capability enhances both operational efficiency and scalability by enabling
diverse applications or user groups to share a common infrastructure without compromising on data
segregation or performance. This not only optimizes resource usage but also simplifies management
and scaling procedures.

Each tenant uniquely identifies a Redis database, which might be represented by a single shard or
multiple shards. This configuration is contingent on whether HA mechanisms have been enabled and
whether data distribution across multiple shards (sharding) is in effect.

Managing Development and Production Environments292

Next is a diagram representing the structure of a Redis Enterprise database:

Figure 12.5 – Redis Enterprise database in its all topologies

Before delving into the detailed scenarios depicted in the diagram, let’s take a systematic approach
and first examine how HA is managed and implemented.

HA

In technical terms, a database, or, more specifically, a “tenant,” can be represented by a single shard,
often referred to as the primary shard.

In Redis Enterprise, HA is activated by setting the replication property to true. When this is
initiated, the cluster manager establishes a replica shard (continually fed by the primary shard). The
main goal of this replica shard is to seamlessly take over operations if, for any reason, the primary
shard becomes unavailable. Strategically, in Redis Enterprise, the replica shard is always located on a
different node from the primary shard, adhering to an anti-affinity placement policy.

This policy can be fine-tuned, allowing for the replica shard node not only to be different but also to
belong to a separate rack or even a distinct physical server (especially relevant if nodes are managed
as virtual machines). While the replica shard placement mechanism can account for individual data
center infrastructures, when extended across multiple data centers or regions, especially in cloud
infrastructure, it can lead to networking challenges. As a result, such a layout can become complex
and is typically not advised.

Preparing for production with Redis Enterprise 293

Does this mean that DR and BC scenarios can’t be implemented? Quite the contrary, but the approach
requires a paradigm shift.

As mentioned in a previous section, it is viable to implement Redis Enterprise deployments by
leveraging two prominent patterns: Active-Passive and Active-Active.

This implementation strategy involves deploying two or more distinct and independent Redis
Enterprise clusters that are federated with each other, facilitating either unidirectional (Active-Passive)
or bidirectional (Active-Active) communication to ensure seamless data synchronization.

The Active-Active pattern allows for data to be read from and written to all databases participating
in this topology. However, it’s crucial that applications always interface with the geographically closer
cluster to minimize latency, ensuring optimal performance.

Conversely, the Active-Passive pattern ensures that all data reads and writes are confined exclusively
to the database designated as Active. The Active counterpart then shoulders the responsibility of
synchronizing data to the database replica labeled as Passive.

Furthermore, there exists an alternative pattern named Active-Read-Replica. This configuration
permits data to be read from both clusters but restricts write operations exclusively to the Active cluster.

For organizations concerned with DR, the Active-Passive and Active-Read-Replica patterns are the
preferred choice. On the other hand, when focusing on BC strategies or geographically distributed
services (retail, real-time inventory, mobile banking, and more), the Active-Active pattern emerges
as the preferred choice.

Moreover, these patterns can be adeptly deployed within cloud infrastructures. This includes utilizing
multi-regional environments within a single cloud provider or even spanning multiple cloud providers.
Notably, with the Redis Cloud service, Redis commits to an impressive service-level agreement (SLA)
of 99.999% uptime and HA.

Let us now delve into how scalability is adeptly managed within the framework of Redis Enterprise.

Horizontal and vertical scalability and dynamic auto-tiering

As observed in Figure 12.5, a Redis database can be configured for HA by activating the replica shard.
Regarding scalability, as previously described in the Cluster mode of Redis Stack, it is achieved by
distributing the dataset across multiple shards. This distribution can be approached in two distinct manners:

•	 Vertical scaling: This involves distributing data across multiple shards within the same original
node or server. This approach clearly necessitates proper sizing of nodes that constitute the
cluster to accommodate multiple shards. The sizing is dictated by the desired throughput,
which impacts the CPU and the volume of data that needs to be managed. A shard within
Redis Enterprise is optimized to such an extent that it requires only a single CPU to guarantee
outstanding performance. From a RAM perspective, the requirements vary based on specific

Managing Development and Production Environments294

application storage needs. Next is a representation of how data can be distributed across multiple
shards utilizing vertical scalability:

Figure 12.6 – Vertical scaling in Redis Enterprise

•	 Horizontal scaling: This involves distributing data across multiple shards located on different
nodes, thereby preventing the exhaustion of resources on any individual node or server. Moreover,
the operational flexibility of the Cluster Manager component of Redis Enterprise allows for
the addition of more nodes if the overall available resources are deemed insufficient. It might
not be obvious, but you can further optimize workload distribution by leveraging both vertical
and horizontal scalability methods, as depicted in the subsequent diagram:

Figure 12.7 – Horizontal and vertical scaling in Redis Enterprise3

Regardless of the scalability type selected, Redis Enterprise takes on the responsibility of automatically
managing not only the placement of shards according to anti-affinity mechanisms (often referred to as
resharding) but also the positioning of keys within the calculated hash slots (known as rebalancing).

Preparing for production with Redis Enterprise 295

Beyond their automatic nature, these mechanisms are entirely transparent to applications, ensuring that
they don’t experience any disconnection errors or service interruptions. In essence, this sophisticated
architecture provides both robustness and seamless scalability, allowing technical teams to focus on
their application logic rather than infrastructure intricacies.

Discussing infrastructure, especially when addressing RAM, costs can become a significant and
sometimes prohibitive factor. As long as the volume of data remains within the magnitude of gigabytes,
the associated infrastructure expenses are manageable. However, when scaling to the realm of tens
or even hundreds of terabytes, these costs can skyrocket. In the interest of cost reduction TCO, Redis
Enterprise offers a solution to extend RAM capacity by leveraging solid-state drives (SSDs) rooted
in flash memory, such as NVMe, through a mechanism called Auto Tiering. With this, data storage is
seamlessly managed by Redis Enterprise, ensuring that some portions of the data reside in RAM while
others are allocated to the flash memory. It’s essential to understand that this flash memory functions
similarly to RAM—it’s volatile and ephemeral. From an administrative perspective, one merely needs to
specify the percentage of data to be managed in RAM versus that on the flash memory. Subsequently,
the Auto Tiering mechanism autonomously handles the allocation process.

Security hardening

Another fundamental distinction between Redis Stack and Redis Enterprise pertains to security. The
concepts elaborated upon in the preceding sections regarding architectural security remain applicable
to the Enterprise version. However, what distinguishes the two is the approach to security management.
Primarily, there’s a web-based console that administrators can access to manage both the cluster and
the databases. More importantly, this console allows for the administration and configuration of user
accounts and user profiles through ACL mechanisms, and integration with Active Directory via the
LDAP protocol. To facilitate user management, Redis Enterprise offers a range of predefined roles
tailored for standard operations, as depicted in the subsequent screenshot:

Figure 12.8 – Redis Enterprise standard roles

Managing Development and Production Environments296

As can be discerned from the preceding screenshot, there are read-only roles intended to inspect the
settings of both the cluster and the databases, as well as write roles that grant permissions to modify
the configurations of these entities.

The web console also facilitates the guided creation of custom ACLs, achieved through an ACL-builder
tool. These ACLs can be designated during the establishment of new roles, enabling user profiling to
be tailored according to specific requirements. Additionally, these very roles and ACLs can be mapped
to users set up via LDAP. This effectively bridges the gap between profiles and roles available in Active
Directory and those defined within Redis Enterprise.

The LDAP configuration is a setting that must be implemented at the cluster level, as with certificates.
The management of certificates has been further enhanced with the introduction of a revocation
mechanism in accordance with the Online Certificate Status Protocol (OCSP). Additionally, recent
versions of Redis Enterprise have introduced the capability to encrypt so-called “internode” traffic;
that is, communication between the various nodes that constitute the cluster. This security precaution
also extends to Active-Active and Active-Passive configurations, ensuring safe synchronization across
multiple regions. This complements the comprehensive TLS support at the control plane and data
plane and for the Redis Enterprise discovery service.

Beyond the web console as an administration tool, Redis Enterprise also provides a command-line
utility named rladmin. This tool allows for the management of the cluster, databases, and their
configurations, as well as fine-tuning settings that further optimize the performance of Redis.

Given the extensive range of commands and configurations that can be set, you can refer to the official
Redis documentation website for in-depth information:

https://docs.redis.com/latest/rs/references/cli-utilities/rladmin/

Another paramount aspect following security is the capability to monitor the performance and health
of the Redis Enterprise architecture, and this is exactly what you will learn in the next section.

Observability and monitoring

In the evolving landscape of modern distributed systems, observability and monitoring are indispensable
components to ensure consistent performance, health, and reliability. Observability encompasses the
capacity to inspect the internal states of a system from its external outputs, serving as a compass for
administrators to navigate through the complex interdependencies of services. Monitoring, a subset
of observability, involves the regular tracking and notification of key metrics and system health
indicators. These components work symbiotically, wherein monitoring provides the ongoing stream
of data, and observability aids in deriving insights from it. The comprehensive integration of both
allows administrators to not only detect anomalies but also diagnose root causes, facilitating proactive
interventions and continuous system optimization.

With Redis Enterprise, monitoring and observability are elevated to a more sophisticated level, tailored for its
high-performance architecture. Redis Enterprise exposes an endpoint that offers metrics in the OpenMetrics

https://docs.redis.com/latest/rs/references/cli-utilities/rladmin/

Preparing for production with Redis Enterprise 297

format, which is widely adopted by tools such as Prometheus. This structured format ensures that metrics
are presented in a standardized manner, enabling easy integration with a plethora of observability platforms.
As a result, administrators can seamlessly integrate Redis Enterprise’s metrics into any monitoring system
that supports the OpenMetrics format, allowing for a comprehensive view of its performance and health.
Additionally, the robustness of Redis Enterprise’s built-in features, coupled with third-party monitoring tools,
ensures that administrators can efficiently track key performance indicators (KPIs), resource utilization,
and any potential anomalies, guaranteeing optimal system health and performance.

In the realm of monitoring solutions, Grafana Cloud stands out due to its direct integration
capabilities with Redis Enterprise. This integration is not just superficial but offers a comprehensive
suite of dashboards tailored to serve specific monitoring needs, be it a general overview, individual
node status, or granular database performance. To harness the power of this integration, one must
deploy the Grafana agent on every node within the Redis Enterprise cluster. Once installed, the agent
is responsible for transmitting metrics specific to each Redis database. The transmission pathway is
established by configuring the Prometheus endpoint, unique to each database. Next is a representative
YAML configuration that illustrates the setup process:

integrations:
  ...
logs:
  ...
metrics:
  configs:
  - name: integrations
    remote_write:
    - basic_auth:
        password: <YOUR_TOKEN>
        username: <YOUR_UID>
      url: https://<GRAFANA_ZONE>.grafana.net/api/prom/push
    scrape_configs:
      - job_name: integrations/redis-enterprise
        metrics_path: /metrics
        scheme: https
        tls_config:
            insecure_skip_verify: true
        static_configs:
          - targets: ['<YOUR_REDIS_DB_ENDPOINT>:8070']
        relabel_configs:
          - source_labels: []
            regex: .*
            target_label: redis_cluster
            replacement: 'redis.foogaro.cloud'
  ...

Managing Development and Production Environments298

Upon successful configuration and data collection, the metrics can be visualized within a Grafana
dashboard. The presentation of these metrics is not just numerical but is depicted in a comprehensive
and intuitive layout, as illustrated in the subsequent dashboard screenshot:

Figure 12.9 – Redis Enterprise monitoring using Grafana integration and dashboards

This dashboard goes beyond merely presenting raw data. Instead, it organizes and visualizes the
information in a structured and intuitive layout. Such an arrangement is particularly conducive to
efficient monitoring, allowing for swift identification of trends, anomalies, or potential areas of concern.

Redis Enterprise emerges as the ideal solution for transitioning from a local development environment
to a production setting. This platform not only provides a robust framework for ensuring seamless
migration but also emphasizes the stability and performance necessary for high-demand production
scenarios. It is noteworthy to mention that Redis Enterprise serves as the foundational technology
behind Redis Cloud, a fully managed Redis service. We will delve deeper into the features and
capabilities of Redis Cloud in the subsequent section.

Redis Cloud – an enterprise-ready Redis DBaaS
Redis Cloud serves as a fully managed cloud service designed to optimize the performance, scalability,
and reliability of Redis deployments, abstracting the complexities of infrastructure management and
ensuring seamless scalability without compromising on speed or integrity.

With built-in HA, data persistence options, and robust security features, Redis Cloud is architected
to meet the demands of mission-critical applications. Its automatic failover guarantees that your
applications remain operational and responsive, even during unforeseen system disruptions.

Redis Cloud – an enterprise-ready Redis DBaaS 299

Furthermore, for those prioritizing infrastructure flexibility, Redis Cloud provides cross-platform support,
allowing enterprises to integrate it within multi-cloud strategies or on-premises environments with ease. This
agility ensures that businesses remain resilient and adaptive in an ever-evolving technological landscape.

Often, before adopting a new technology, organizations prioritize obtaining a cost estimate, commonly
referred to as the TCO.

TCO is a crucial factor for organizations when evaluating technological solutions. Redis Cloud, as a
fully managed cloud service, presents several distinct advantages that contribute to an optimized TCO:

•	 Infrastructure management and maintenance: Redis Cloud assumes the responsibilities of
infrastructure provisioning, maintenance, and updates. This removes the need for internal
teams to handle these tasks, leading to savings in labor costs, infrastructure investments, and
operational overhead.

•	 Scalability and performance: Redis Cloud is designed for seamless scaling, ensuring that
your application can handle growth without needing constant reconfigurations or upgrades.
This scalability reduces future costs associated with system expansions or performance tuning.

•	 HA: The built-in automatic failover and data persistence features minimize the risks and
potential costs of downtime. Whether it’s a minor disruption or a major outage, Redis Cloud’s
resilience ensures that your business processes aren’t adversely impacted.

•	 Security: Robust security features, including end-to-end encryption, advanced access controls,
and compliance certifications, reduce the risk (and thus potential costs) of data breaches or
leaks. Investing in a secure platform such as Redis Cloud can save considerable sums that might
otherwise be spent addressing security incidents.

•	 Cross-platform support: Flexibility in deployment across various cloud providers means that
businesses can select the most cost-effective infrastructure solutions for their specific needs,
rather than being locked into a particular platform or provider.

•	 Dedicated support: The support provided by the Redis team means that issues can be addressed
promptly, reducing the time and resources your enterprise might otherwise spend troubleshooting.

•	 Predictable pricing: With clear and transparent pricing models, budgeting for Redis Cloud
becomes more straightforward, eliminating unexpected costs or overages.

•	 Optimized resource utilization: Redis Cloud ensures that resources are utilized optimally,
ensuring you get the most out of what you pay for. This efficiency means fewer wasted resources
and more value for money.

In sum, the long-term savings in labor, operations, security, and infrastructure lead to a lower TCO for a
managed solution such as Redis Cloud. It’s an investment that pays dividends in terms of performance,
security, and operational simplicity.

As previously highlighted in earlier sections, Redis Cloud is accessible on GCP and AWS. The Azure
cloud provides Redis Enterprise directly integrated into its product catalog solutions.

Managing Development and Production Environments300

On each of these platforms, Redis Enterprise is available as a fully managed service. Additionally,
Redis Cloud is seamlessly integrated into the marketplaces of these cloud providers. Organizations
can leverage the native billing systems of the respective cloud platforms or burn down their existing
cloud commitments, streamlining procurement while optimizing spend.

Having observed the advantages of Redis Cloud’s offerings, let’s delve into the specifics of accessing the
service itself. The initial step involves visiting the https://app.redislabs.com/ website and
proceeding with registration. One can either utilize the authentication systems provided by Google
and GitHub or opt for single sign-on (SSO). Notably, Redis Cloud offers a free 30 MB plan, ideal for
initial exploration without any expense. When you’re ready, you can easily scale up your plan for any
use case and any size, even up to practically unlimited capacity.

Upon successful login, the next imperative action is to establish a subscription. This subscription
serves as your designated environment, which the Redis DevOps team will set up, paving the way
for subsequent database creations. Let’s now explore, step by step, the process of establishing our
environment and availing the benefits of the free tier:

1.	 Navigate to the official Redis Labs website at https://app.redislabs.com/ and initiate
the login process.

2.	 Once on the home page, click on the Create Subscription button to begin your subscription setup.

3.	 To benefit from the complimentary offering, choose the Essentials plan.

4.	 Identify and select your preferred cloud provider, such as Google Cloud, from the available list.

5.	 Opt for the closest geographical region for optimal performance; in my case, I chose
Europe Belgium.

6.	 Proceed by choosing the free tier, which provides a capacity of 30 MB. This option is typically
set as the default.

7.	 If you possess a promotional coupon code, this would be the stage to input it.

8.	 Assign a meaningful name to your subscription. Remember—your subscription acts as your
working environment in Redis, so choose a name that reflects its purpose.

9.	 Finalize by clicking on Create Subscription.

With the subscription in place, you’re now set to establish your inaugural database on Redis Cloud
at no cost:

1.	 To commence, click the New Database button.

2.	 Designate an appropriate name for your database.

3.	 Decide upon and select the type of solution that aligns with your requirements.

4.	 Note that persistence is not available within the free tier.

5.	 Opt for a data eviction policy. If uncertain, you can retain the default setting, which is volatile-
lru.

https://app.redislabs.com/
https://app.redislabs.com/

Redis Cloud – an enterprise-ready Redis DBaaS 301

6.	 Either designate a secure password for database connectivity or make sure to document the
one automatically generated by the system.

7.	 To activate, simply click on the Activate Database button.

Within a matter of seconds, your database will be operational, and the access endpoint will be readily
accessible, as depicted in the subsequent screenshot:

Figure 12.10 – Redis Cloud database

Redis Cloud presents two distinct plans for users. The Essentials plan encompasses all the necessary
features for building and scaling fast applications, offering these services at a fixed monthly rate. On
the other hand, the Pro plan is designed for more demanding applications, offering flexible pricing
with scaling options to accommodate varying needs and usage intensities.

Note
Exciting news awaits you! We are thrilled to present a special $100 promo coupon code for
Redis Cloud. To claim this awesome offer, simply navigate to the Credits section located in
the Billing & Payments panel on the left side of your screen and enter the code STACKBOOK.
Don’t miss out on this fantastic opportunity to enhance your Redis Cloud experience!

Managing Development and Production Environments302

However, it’s essential to note that the Redis Cloud portal isn’t the sole avenue for managing subscriptions
and databases. For those looking for more automated or programmatically driven approaches, Redis
Cloud provides a cloud API. Additionally, integration with Infrastructure as Code (IaC) systems,
such as Terraform and Pulumi, is available, ensuring seamless deployment and management for
developers and system administrators alike.

In essence, Redis Cloud stands as a testament to the commitment of Redis to offer enterprise-level
solutions that empower organizations to harness the full potential of their data, while simplifying
operations and ensuring optimal performance.

Summary
In this last chapter, we delved into Redis Stack, emphasizing its role as a robust development environment.
We explored the pivotal aspects of scalability and HA, which ensure the seamless operation and
adaptability of Redis systems. The topic of security hardening emerged as a cornerstone, introducing
tools such as ACL and TLS to protect data.

Transitioning to Redis Enterprise, we highlighted its proficiency in supporting production environments
with features such as multi-tenancy architecture and dynamic auto-tiering. This section also emphasized
advanced HA mechanisms and further security refinements.

Last, but not least, this chapter introduced Redis Cloud, a fully managed DBaaS solution, touching
upon the crucial concept of TCO. We outlined the numerous benefits of Redis Cloud and its flexible
IaC offerings and concluded with an overview of its three distinct plans. In essence, this chapter
provided you with a holistic understanding of the Redis ecosystem, from development tools to
enterprise-ready solutions.

Index

A
abstraction layer 55
access control list (ACL) 284-288
ACID consistency model 257
aggregation framework 200, 201
aggregations

using, for faceted search 145, 146
Amazon Web Services (AWS) 289
AND (intersection) 136
anti-pattern 57
AOF format 65
API gateway caching pattern 56
API gateway pattern 55, 56
append-only file (AOF) 260, 267

configuring 269-271
asynchronous functions 231-233
asynchronous inter-service

communication 41
atomicity, consistency, isolation, and

durability (ACID) 58, 257, 258
atomicity 258-263
consistency 263, 264
durability 266
isolation 264, 265

autocompletion 156

B
BASE properties 257, 258
batch processing 230
battery-backed RAID write

caching controller 267
binary packages

used, for installing Redis Stack 64-66
Bloom filter 207-209

advantages 208
browsing keys 245-247
business continuity (BC) 288

C
cache 28
cache-aside cache pattern 58
caching

traditional use cases 28, 29
cluster awareness 233, 234
C#/.NET

programming, with NRedisStack 116
Redis OM, using for 120-124

C#/.NET client library
installing 74

command-line interface (CLI) 66
command query responsibility

Index304

segregation (CQRS) 59
command query responsibility

segregation pattern 58, 59
complex business logic

programming, with Redis Stack 220, 221
consistency

configuring 272
content management system (CMS) 149
COSINE 182
cosine similarity 182
Count-Min sketch 210, 211
Cuckoo filters 209
cursor-based requests 143, 144
customer relationship management

(CRM) 149

D
data

analyzing 248-252
interacting with 247, 248
working with 229

data aggregation 142
Database as a Service (DBaaS) 70
database management systems (DBMSs) 255
data deduplication 35, 36
data definition language (DDL) 7
deep learning techniques 178
densenet model 186
Developer eXperience (DX) 63
dialect 131-133
disaster recovery (DR) 288
distributed denial-of-service (DDoS) 32
Docker

Redis Stack, running with 69, 70
domain-driven design pattern 57
durability, achieving 266

with AOF 267

with guarantees of pipelines 268
with RDB 267

E
ephemeral search (retail) 46, 47
Euclidean distance 182
exact query matches 137

F
facet 44
faceted search 44, 45

aggregations, using for 144-146
feature store, for machine learning 52

ML model training 52
predictions, performing 52
Redis, features 53

field modifiers
using 135

FIFO queues 38
FLAT algorithm 181
fsync command 268
FT.ALIAS command

using 147
FT.ALTER command

using 146
FT.* command 149
fully qualified domain name

(FQDN) 243, 291
functions

anatomy 228
and triggers 227
using 10, 11
using, pros and cons 11

fuzzy matching 138

G

Index 305

gaming leaderboards 34, 35
generative AI

Redis integration 188, 189
Geohash encoding system 36
geo-positioning 36, 37
geospatial capabilities 140
geospatial filters 140, 141
geospatial indexes

using 36
Golang client library

installing 74
Golang (Go) 110

information, storing in Redis
Stack with 111, 112

programming, with go-redis 110
Google Cloud Platform (GCP) 289
go-redis

used, for programming in Go 110
Gradle 89
Grafana Cloud 297
graphical user interface (GUI) 67, 241
group commit 267

H
Hash data structure 169
Hashes

autocompletion 156, 157
highlighting 153, 154
phonetic matching 157
spellchecking 155, 156
summarizing 153, 154
synonyms support 154, 155
vector embeddings, storing 179, 180
working with 149-153

health checks
running 74

Hierarchical Navigable Small World
(HNSW) algorithm 181

high availability
configuring 271

horizontal scaling 294
HuggingFace 178
hybrid queries

performing 184
HyperLogLog 173, 206

I
Img2Vec wrapper library 185
indexes

using, pros and cons 13
index, in production

updating, with FT.ALIAS command 147
updating, with FT.ALTER command 146

infix queries 138
information, storing in Redis Stack

using C#/.NET 116, 117
Hashes 119
Lists 117
Sets 118
Sorted Sets 118, 119

information, storing with Go
Hashes 115, 116
Lists 112
Sets 113
Sorted Sets 114

information, storing with Java 91
Hashes, using 94, 95
Lists, using 92
Sets, using 92, 93
Sorted Sets, using 93, 94

information, storing with Python 81
Hash data type, using 83, 84
Lists data structure, using 82

Index306

Set data structure, using 82
Sorted Sets data type, using 82, 83

Infrastructure as Code (IaC) 302
inner product of vectors (IP) 182
Internet Engineering Task Force (IETF) 283
inter-service communication pattern 59, 60

J
Java

programming, with Jedis 89, 90
Redis OM, using for 95-100

Java client library
installing 73

Java Development Kit (JDK) 89
JavaScript

programming, with node-redis 100-102
Redis OM, using for 106-110

JavaScript client library
installing 73

JavaScript functions
versus Lua functions 239

Java Virtual Machine (JVM) 89
Jedis

used, for programming in Java 89, 90
JedisPool 91
JSON

arrays and objects, indexing 162, 163
JSONPath syntax 158-160
multi-value indexing 163, 164
partial data, extracting from documents 165
vector embeddings, storing 180
working with 158

JSON data structure 169
JSON document

indexing 160, 161
JSONPath 158, 165

K
key performance indicators (KPIs) 297
keyspace triggers 227, 234, 235

guarantees 236, 237
key-value pairs, modeling

Hash 170
JSON 170

key value real-time databases
migrating, to multi-model

real-time databases 7
K-nearest neighbors (KNN) 182

L
labels

adding, time series data points 197-199
large language models (LLMs) 188
Lightweight Directory Access

Protocol (LDAP) 289
Linux-native package

Debian/Ubuntu APT repository 68
RedHat/CentOS YUM repository 68, 69
Redis Stack, installing with 68
Windows-native package 69

lists 38
logical data model 130
Lua functions

versus JavaScript functions 239
versus Lua scripts 239

Lua scripting 10, 221-223
Lua scripts

Redis functions, advantages over 226
versus Lua functions 239

M
machine learning (ML) 52

Index 307

macOS-native package
Redis Stack, installing with 67, 68

Maven 89
median 214
message broker 60
message processing and delivery pattern 37

lists 38
Pub/Sub 39, 40
Sorted Sets 38
Streams 40-43

messaging pattern 37
microservice architectures

designing, with Redis Stack 53, 54
microservice architectures, patterns

API gateway 55, 56
API gateway caching 56
command query responsibility

segregation 58, 59
domain-driven design 57
inter-service communication 59, 60
query caching pattern 58

MSET
reference link 263

N
native packages

used, for installing Redis Stack 67
negation 138
negative queries 138
Node Package Manager (npm) 101
node-redis

used, for programming in
JavaScript 100-102

NoSQL databases 257, 258
NRedisStack

used, for programming in C#/.NET 116
numeric filters 139

O
object mapping (OM) framework 78
Online Certificate Status

Protocol (OCSP) 296
online transactional processing (OLTP) 256
OpenAI 178
OpenMetrics 296
open source project 5, 6

P
percentile 213
phonetic matching 157
physical data model 130
pipelining 10

pros and cons 10
pip package manager 79
polyglot persistence 57
prefix queries 138
primary database

Redis as 256, 257
primary key lookup 8, 9
probabilistic data structures

using 50
programming, in Javascript with node-redis

Hashes 105, 106
Lists 103
Sets 103, 104
Sorted Sets 104, 105

Pub/Sub 39, 40
PubSub channels

troubleshooting 252, 253
Pulumi 302
Pydantic library 84
Python

programming, with redis-py 79, 80

Index308

Redis OM, using for 84-88
used, for storing information

in Redis Stack 81
Python client library

installing 73
PyTorch 178

Q
quantile 213
queries

aggregating 141, 142
transforming 141, 142

query caching pattern 58
query language 133-135
query term 133

R
rate limiter 32-34
rate-limiting mechanism 32
RDB format 65
real-time querying 131
real-time searching 131
real-time transaction risk scoring 208
rebalancing 295
recovery point objective (RPO) 269
Redis

as primary database 256, 257
history 4, 5
integrating, with generative AI 188, 189
traditional use cases 28

redis-cli tool 74, 196
Redis Cloud 243, 289, 298, 299

advantages 299
database 301
subscription, enabling 300, 301
using 70, 71

Redis database snapshots (RDBs) 267, 269
Redis Enterprise 243, 289

architecture 290
HA 292, 293
horizontal scaling 294, 295
monitoring 296, 298
multi-tenancy architecture 291, 292
observability 296, 298
production, preparing for 289
security hardening 295, 296
vertical scaling 293

Redis functions 223
advantages, over Lua scripts 224-226

RedisInsight 22, 191, 194, 241
installing 72

Redis OM 78
for C#/.NET 120-124
for Java 95-100
for JavaScript 106-110
for Python 84-88
key features 78

redis-py
used, for programming in Python 79, 80

Redis Sentinel 277
REdis Serialization Protocol (RESP) 72
Redis Source Available License

(RSALv2) 23, 63
Redis Stack 22

capabilities 14
as recommendation engine 165
as session store 168
capabilities 14
client libraries 78
client libraries, installing 72, 73
complex business logic,

programming with 221
data platform 24
data structure server 23

Index 309

deployment types 24
documents, querying 130, 131
documents, storing 130, 131
ephemeral search (retail) 46, 47
faceted search 44, 45
feature store, for machine learning 52
fraud detection 50, 51
installing, with binary packages 64-66
installing, with Linux-native package 68
installing, with macOS-native

package 67, 68
installing, with native packages 67
key-value storage 23
microservice architectures,

designing with 54
monitoring and analysis 49, 50
multi-model database 23
need, for Time Series 192
querying 44
recommendation, implementing

with scores 166-168
research portal 47
running, with Docker 69, 70
similarity search 48
using, for real-time cache 43, 44

Redis Stack, as development
environment 276

ACL 284-288
HA 276-279
limitations 288, 289
scalability 279-283
security 283
Transport Layer Security 283, 284

Redis Stack capabilities 14
probabilistic data structures 19-21
programmability 21, 22
querying, indexing and searching

documents 14-18

time series data modeling 18, 19
Redis Stack client libraries

C#/.NET client library 74
Golang client library 74
go-redis (Go) 78
installing 72
Java client library 73
JavaScript client library 73
Jedis (Java) 78
node-redis (Node.js) 78
NRedisStack (C#/.NET) 78
Python client library 73
redis-py (Python) 78

Redis Stack Client SDK 22
Redis Stack database

browsing keys 245-247
connecting to 242-245

Redis Stack Server 22
Redis Stack structures, as session store

additional data structures 169
collections, modeling 171, 172
key-value pairs, modeling 170
objects, modeling 170, 171
session management, for real-

time applications 172
Redis Stack structures, for session data 169

Hash 169
JSON 169
String 169

relational databases (RDBMSs) 4, 257
research portal 47
resharding 294

S
scoring function (TFIDF) 130, 166
search-related configuration

parameters 131-133

Index310

secondary key lookup 9, 10
Security Assertion Markup

Language 2 (SAML2) 289
Sentence Transformers Python

framework 178
Sentinel 243
Server Side Public License (SSPL) 23, 63
service-level agreement (SLA) 293
session management, for

real-time applications 172
multi-object sessions 173
session examples, JSON data

structure used 174-176
session expiration 174
session lazy loading 173

session management strategies 29
session store 29-32, 168
similarity search 48, 49

performing 183, 184
simple terms

searching 135
single point of failure (SPOF) 291
single sign-on (SSO) 300
single-threaded architecture 220
sketches 205
snapshots

configuring 269
solid-state drives (SSDs) 295
Sorted Sets 38, 39
spellchecking feature 155
Spring Initializr site 89
stemming 154
sticky session 30
stop words 137
stored procedures 221
Streams 40-43
stream triggers 227, 237, 238

guarantees 238

String data structure 169
Structured Query Language (SQL) 130
suffix queries 138
system of record (SOR) 59

T
tag filters 139

advantages 214
t-digest 213, 214
temporary indexes 148
Terraform 302
Time Series 191

compaction rules 201-203
Redis Stack, need for 192
working with 193-197

time series data points
labels, adding 197-199

Top-K data structure 211, 212
use cases 213

Transport Layer Security
(TLS) 244, 283, 284

U
union of results (OR) 136
unstructured data 177
unstructured data modeling

vector embeddings, using 178, 179
user functions 227

V
V8 engine 227
vector embedding 48, 178

for unstructured data modeling 178, 179
indexing 180
storing 179

Index 311

storing, in Hashes 179, 180
storing, in JSON 180

vector similarity index
algorithms 181
dimension 181
distance metrics 182
type 181

vector similarity search (VSS) 48, 177
vertical scaling 293
virtualenv 79
visual search

recommendations 185-187
VSS range queries

performing 185

W
Webpack 227
Well-Known Text (WKT) 140
wildcard matching 138
Windows Package Manager (WinGet) 67
WordPress blog

article, caching 29

Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packtpub.com
http://packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

The MySQL Workshop

Thomas Pettit, Scott Cosentino

ISBN: 9781839214905

•	 Understand the concepts of relational databases and document stores

•	 Use SQL queries, stored procedures, views, functions, and transactions

•	 Connect to and manipulate data using MS Access, MS Excel, and Visual Basic for Applications (VBA)

•	 Read and write data in the CSV or JSON format using MySQL

•	 Manage data while running MySQL Shell in JavaScript mode

•	 Use X DevAPI to access a NoSQL interface for MySQL

•	 Manage user roles, credentials, and privileges to keep data secure

•	 Perform a logical database backup with mysqldump and mysqlpump

https://packt.link/9781839214905

315Other Books You May Enjoy

Mastering PostgreSQL 15 - Fifth Edition

Hans-Jürgen Schönig

ISBN: 9781803248349

•	 Make use of the indexing features in PostgreSQL and fine-tune the performance of your queries

•	 Work with stored procedures and manage backup and recovery

•	 Get the hang of replication and failover techniques

•	 Improve the security of your database server and handle encryption effectively

•	 Troubleshoot your PostgreSQL instance for solutions to common and not-so-common problems

•	 Perform database migration from Oracle to PostgreSQL with ease

https://packt.link/9781803248349

316

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Redis Stack for Application Modernization, we’d love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the Amazon review page for this
book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-837-63818-7

317

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837638185

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781837638185

	Cover
	Title Page
	Copyright
	Dedication
	Contributors
	Table of Contents
	Preface
	Part 1: Introduction to
Redis Stack
	Chapter 1: Introducing Redis Stack
	Technical requirements
	Exploring the history of Redis
	The open source project
	From key-value to multi-model real-time databases
	Primary key lookup
	Secondary key lookup
	Pipelining
	Using functions
	Using indexes
	Redis Stack capabilities
	So, what is Redis Stack?

	Redis Stack deployment types
	Summary

	Chapter 2: Developing Modern Use Cases with Redis Stack
	Technical requirements
	Caching, rate-limiting, geo-positioning, and other Redis traditional use cases
	Caching
	Session store
	Rate limiter
	Leaderboards
	Data deduplication
	Geo-positioning
	Message processing and delivery

	Going beyond the real-time cache with Redis Stack
	Querying, indexing, and search
	Monitoring and analysis
	Fraud detection
	Feature store for machine learning

	Designing microservice architectures with Redis Stack
	API gateway

	Summary

	Chapter 3: Getting Started with Redis Stack
	Installing Redis Stack using binary packages
	Installing Redis Stack using native packages
	macOS-native package
	Linux-native package
	Running Redis Stack using Docker

	Using Redis Cloud
	Installing RedisInsight
	Installing the Redis Stack client libraries
	Java client library
	JavaScript client library
	Python client library
	Golang client library
	C#/.NET client library

	Running health checks
	Summary

	Chapter 4: Setting Up Client Libraries
	Technical requirements
	Redis Stack client libraries
	Programming in Python using redis-py
	Storing information in Redis Stack using Python
	Redis OM for Python

	Programming in Java using Jedis
	Storing information in Redis Stack using Java
	Redis OM for Java

	Programming in JavaScript using node-redis
	Redis OM for JavaScript

	Programming in Go using go-redis
	Storing information in Redis Stack using Go

	Programming in C#/.NET using NRedisStack
	Storing information in Redis Stack using C#/.NET
	Redis OM for C#/.NET

	Summary

	Part 2:
Data Modeling
	Chapter 5: Redis Stack as a Document Store
	Technical requirements
	Storing and querying documents in Redis Stack
	The dialect and other configuration parameters
	The query language
	Simple terms
	Using field modifiers
	Intersection of results (AND)
	Union of results (OR)
	Exact query matches
	Stop words
	Negation and purely negative queries
	Prefix, infix, and suffix queries
	Wildcard matching
	Fuzzy matching
	Numeric filters
	Tag filters
	Geospatial filters
	Aggregation and transformation
	Cursor-based requests
	Faceted search using aggregations
	Updating an index in production
	Temporary indexes
	Additional commands

	Working with Hashes
	Highlighting and summarizing
	Synonyms support
	Spellchecking
	Auto-completion
	Phonetic matching

	Working with JSON
	The JSONPath syntax
	Indexing a JSON document
	Indexing arrays and objects
	Multi-value indexing
	Extracting partial data from JSON documents

	Redis Stack as a recommendation engine
	Recommendation using scores

	Redis Stack as a session store
	Redis data structures for session data
	Additional Redis data structures
	Modeling key-value pairs
	Modeling objects
	Modeling collections
	Session management for real-time applications

	Summary

	Chapter 6: Redis Stack as a Vector Database
	Technical requirements
	Vector embeddings for unstructured data modeling
	Storing the embeddings
	Hashes
	JSON

	Indexing the embeddings
	The algorithms – FLAT and HNSW
	Type
	Index dimension
	Distance metrics

	Performing similarity search
	Performing hybrid queries
	Performing VSS range queries
	Recommendations based on visual search
	Integrating Redis with generative AI
	Summary

	Chapter 7: Redis Stack as a Time Series Database
	Technical requirements
	Why Redis Stack for Time Series?
	Working with time series
	Adding labels to data points
	Aggregation framework
	Compaction rules for Time Series
	Summary

	Chapter 8: Understanding Probabilistic Data Structures
	Technical requirements
	HyperLogLog
	Bloom filter
	Cuckoo filters
	Count-Min sketch
	Top-K
	t-digest
	Summary

	Part 3: From Development to Production
	Chapter 9: The Programmability of
Redis Stack
	Technical requirements
	The single-threaded architecture
	Programming complex business logic with Redis Stack
	Lua scripting
	Redis functions
	Triggers and functions
	Anatomy of a function
	Working with data
	Batch processing
	Asynchronous functions
	Cluster awareness
	Keyspace triggers
	Stream triggers
	Comparing Lua scripts, Lua functions, and JavaScript functions

	Summary

	Chapter 10: RedisInsight – the Data Management GUI
	Technical requirements
	Connecting to the Redis Stack database
	Browsing keys

	Interacting with data
	Analyzing data
	Troubleshooting PubSub channels

	Summary

	Chapter 11: Using Redis Stack as a Primary Database
	Technical requirements
	What is a primary database?
	Redis as a primary database
	The BASE and ACID properties
	The BASE properties
	The ACID properties

	Configuring Redis for durability, consistency, and availability
	Configuring snapshots
	Configuring AOF
	Configuring high availability
	Configuring consistency

	Summary

	Chapter 12: Managing Development and Production Environments
	Technical requirements
	Redis Stack as a development environment
	HA
	Scalability
	Security
	Limitations

	Preparing for production with Redis Enterprise
	Redis Enterprise architecture
	A multi-tenancy architecture
	HA
	Horizontal and vertical scalability and dynamic auto-tiering
	Security hardening
	Observability and monitoring

	Redis Cloud – an enterprise-ready Redis DBaaS
	Summary

	Index
	About PACKT
	Other Books You May Enjoy

