
Professional Azure SQL
Managed Database
Administration
Third Edition

Efficiently manage and modernize data in the cloud
using Azure SQL

Ahmad Osama and Shashikant Shakya

Series Title
Second Edition
Author N

am
e | Author N

am
e

Things you will learn:

• Implement KVM virtualization using
libvirt and oVirt

• Delve into KVM storage
and network

• Understand snapshots, templates,
and live migration features

• Get to grips with managing, scaling,
and optimizing the KVM ecosystem

• Discover how to tune and optimize
KVM virtualization hosts

• Adopt best practices for KVM platform
troubleshooting

Xamarin.Forms is a lightweight cross-platform development toolkit for building apps with a rich
user interface. Improved and updated to cover the latest features of Xamarin.Forms, this second
edition covers CollectionView and Shell, along with interesting concepts such as augmented reality
and machine learning.

Starting with an introduction to Xamarin and how it works, this book shares tips for choosing the
type of development environment you should strive for when planning cross-platform mobile
apps. You’ll build your rst Xamarin.Forms app and learn how to use Shell to implement the
app architecture. The book gradually increases the level of complexity of the projects, guiding
you through creating apps ranging from a location tracker and weather map to an AR game and
face recognition. As you advance, the book will take you through modern mobile development
frameworks such as SQLite, .NET Core Mono, ARKit, and ARCore. You’ll be able to customize your
apps for both Android and iOS platforms to achieve native-like performance and speed. The book
is lled with engaging examples, so you can grasp essential concepts by writing code instead of
reading through endless theory.

By the end of this book, you’ll be ready to develop your own native apps with Xamarin.Forms and
its associated technologies such as .NET Core, Visual Studio 2019, and C#.

Second Edition

Series
Title Name

Ahmad Osama and Shashikant Shakya

Efficiently manage and modernize data in
the cloud using Azure SQL

Professional Azure SQL
Managed Database
Administration – Third Edition

Professional Azure SQL Managed Database Administration –
Third Edition
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in critical
articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Ahmad Osama and Shashikant Shakya

Technical Reviewers: John Martin and Aaditya Pokkunuri

Managing Editors: Aditya Datar and Mamta Yadav

Technical Editor: Neha Pande

Acquisitions Editor: Ben Renow-Clarke

Production Editor: Deepak Chavan

Editorial Board: Vishal Bodwani, Ben Renow-Clarke, Arijit Sarkar, Dominic Shakeshaft,
and Lucy Wan

First Published: July 2018

Second Published: July 2019

Third Published: January 2021

Production Reference: 3220221

ISBN: 978-1-80107-652-4

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

Table of Contents

Preface i

Chapter 1: Introduction to Azure SQL managed databases 1

Who manages what? .. 2

The Azure SQL Database architecture ... 3

The Client Layer ... 5

The Service Layer .. 5

The Platform Layer ... 5

The Infrastructure Layer .. 5

The Azure SQL Database request flow ... 6

Provisioning an Azure SQL Database ... 7

Connecting and querying the SQL Database from the Azure portal 14

Connecting to and querying the SQL Database from
SQL Server Management Studio ... 16

Deleting resources .. 21

Introduction to Azure SQL Managed Instance .. 24

Connecting to Azure SQL Managed Instance .. 25

Virtual cluster connectivity architecture .. 27

Network requirements ... 28

Differences between SQL Database, SQL Managed Instance, and

SQL Server .. 28

Backup and restore ... 29

Recovery model ... 29

SQL Server Agent ... 30

Change Data Capture ... 30

Auditing .. 31

Mirroring .. 31

Table partitioning .. 31

Replication ... 31

Multi-part names ... 32

SQL Server Browser .. 32

FileStream .. 32

Common Language Runtime (SQL CLR) ... 32

Resource Governor ... 32

Global temporary tables .. 33

Log shipping ... 33

SQL Trace and Profiler .. 33

Trace flags .. 33

System stored procedures ... 33

The USE statement .. 34

Exercise: Provisioning an Azure SQL Managed Instance using the Azure portal .. 34

Activity: Provisioning Azure SQL Server and SQL Database using

PowerShell ... 42

Exercise: Provisioning an Azure SQL Managed Instance .. 50

Summary .. 57

Chapter 2: Service tiers 59

The DTU model .. 60

DTU service tiers ... 60

The vCore model ... 64

vCore service tiers .. 64

The General Purpose service tier .. 64

Azure Premium Storage characteristics ... 66

The Business Critical service tier ... 67

The Hyperscale service tier .. 67

vCore hardware generations ... 72

Determining an appropriate performance tier ... 73

DMA SKU recommendation ... 73

Azure SQL Database compute tiers .. 77

Scaling up the Azure SQL Database service tier .. 77

Changing a service tier ... 81

Exercise: Provisioning a Hyperscale SQL database using PowerShell 81

Choosing between vCore and DTU-based purchasing options 83

Licensing ... 83

Flexibility .. 83

Summary .. 85

Chapter 3: Migration 87

Migration methodology ... 88

Determining the migration benefits ... 88

Selecting a service model ... 88

Selecting a service tier .. 89

Selecting the primary region and disaster recovery region 89

Determining compatibility issues ... 89

Selecting a migration tool .. 89

Choosing between Azure SQL Database and SQL Managed Instance 90

Features .. 90

Migration .. 91

Time to develop and market ... 91

Tools for determining compatibility issues ... 92

Data Migration Assistant .. 92

SQL Server Data Tools (SSDT) for Visual Studio ... 92

SQL Server Management Studio (SSMS) ... 92

SQLPackage.exe .. 93

Azure Database Migration Services .. 93

Choosing a migration tool and performing migration 94

Activity: Migrating an on-premises SQL database to Azure SQL Database
using DMA .. 95

Activity: Migrating an SQL Server database on an Azure virtual machine
to an Azure SQL database using Azure DMS ... 106

Activity: Migrating an on-premises SQL Server database to
Azure SQL Database using SSMS .. 117

Activity: Migrating an SQL Server database to an Azure SQL database
using transactional replication ... 125

Activity: Migrating an on-premises SQL Server to Azure SQL Managed
Instance using the native backup and restore method (offline approach) 138

Activity: Migrating an SQL Server on an Azure Virtual Machine to
SQL Managed Instance using Azure DMS (online approach) 141

Summary .. 153

Chapter 4: Backups 155

Automatic backups ... 156

Backup storage ... 157

Backup retention period ... 157

Optimize backup storage costs for Azure SQL Database and

Azure SQL Managed Instance .. 158

Choose the right backup storage type .. 159

Optimize the database backup retention period ... 159

Maximize your free backup storage space ... 163

Configure LTR backups .. 164

Use Azure Policy ... 165

Configure long-term backup retention for Azure SQL Database and
Azure SQL Managed Instance ... 165

Long-term retention configuration on Azure SQL Managed Instance 167

Activity: Configure LTR Backups for Azure SQL Managed Instance

using PowerShell ... 167

Manual Backups for Azure SQL Database ... 173

DACPAC and BACPAC ... 173

Backing up an Azure SQL Database Using SQL Server Management
Studio (SSMS) .. 175

Manual versus Automated Backups .. 178

Activity: Perform Manual Backups Using PowerShell 179

Perform native COPY_ONLY backup on Azure SQL Managed Instance 184

Perform a manual COPY_ONLY backup using T-SQL commands 185

Summary .. 189

Chapter 5: Restoration 191

Restore types ... 192

Point-in-time restore ... 193

Performing a PITR on an Azure SQL Database using the Azure portal 194

Performing a PITR for an SQL Managed Instance using the Azure portal 199

Long-term database restore ... 201

Performing an LTDR on an Azure SQL Database using the Azure portal 202

Performing an LTDR for SQL Managed Instance using PowerShell 205

Restoring deleted databases ... 206

Restoring a deleted database on Azure SQL Database using
the Azure portal ... 207

Restoring a deleted database on SQL Managed Instance using
the Azure portal ... 209

Geo-restoring databases .. 211

Performing a geo-restore on an SQL Database using the Azure portal 212

Performing a geo-restore on an SQL Managed Instance using the Azure portal 216

Importing a database (Azure SQL Database only) .. 217

Activity: Performing a PITR for an Azure SQL Database with PowerShell ... 221

Activity: Performing a geo-restore of an Azure SQL Database with

PowerShell ... 224

Activity: Performing Point-In-Time restore for SQL Managed Instance

with PowerShell .. 227

Part 1: Restoring a database to a point in time using PowerShell
on one managed instance ... 228

Part 2: Performing a cross-instance point-in-time restore from
an existing database .. 231

Activity: Geo-restoring a database hosted on SQL Managed Instance

using the Az PowerShell module .. 236

Activity: Restoring a deleted database on SQL Managed Instance

using PowerShell ... 236

Summary .. 237

Chapter 6: Security 239

Network security .. 240

Firewall rules .. 240

Managing server-level firewall rules using the Azure portal 242

Managing server-level firewall rules using Transact-SQL 245

Managing database-level firewall rules using Transact-SQL 247

Service endpoints ... 249

Configuring service endpoints for SQL Database .. 250

Private endpoint ... 254

Authentication .. 260

SQL authentication .. 260

Azure AD authentication ... 261

Azure AD .. 261

Active Directory - Password .. 262

Using Active Directory - Password to authenticate to a SQL database 264

SQL Database authentication structure ... 269

SQL Database and SQL Managed Instance authentication considerations 270

Authorization ... 270

Server-level administrative roles ... 271

Non-administrative users ... 271

Creating contained database users for Azure AD authentication 273

Groups and roles .. 277

Row-level security .. 277

Dynamic data masking .. 279

Data Discovery & Classification .. 280

Exercise: Configuring Data Discovery & Classification for SQL Database 281

Auditing ... 285

Exercise: Configuring SQL Database auditing .. 286

Exercise: Configuring auditing for SQL Managed Instance 293

Activity: Audit COPY_ONLY backup events on SQL Managed Instance

using audit logs ... 298

Steps to configure an audit for backup and restore events 299

Transparent Data Encryption .. 302

Azure Defender for SQL ... 302

Securing data traffic .. 305

Enforcing a minimal TLS version for SQL Database and
SQL Managed Instance .. 305

Activity: Setting a minimum TLS version using the Azure portal and

PowerShell for SQL Managed Instance .. 305

Using the Azure portal ... 306

Using PowerShell .. 307

Configuring and securing public endpoints in SQL Managed Instance 309

Securing SQL Managed Instance public endpoints .. 315

Locking traffic flow down using NSG or firewall rules .. 316

Activity: Implementing RLS .. 317

Activity: Implementing DDM ... 322

Activity: Implementing Azure Defender for SQL to detect

SQL injection and brute-force attacks ... 325

Summary .. 335

Chapter 7: Scalability 337

Vertical scaling .. 338

Scale-up or scale-down service tiers .. 338

Vertical partitioning ... 342

Activity: Creating alerts .. 343

Horizontal scaling ... 364

Shard map manager .. 367

Sharding data models .. 369

Activity: Creating shards ... 371

Activity: Splitting data between shards ... 389

Activity: Using elastic database queries .. 400

Scaling a managed instance .. 403

Duration of scale-up/down operations ... 404

Activity: Scaling up SQL Managed Instance using the Azure portal 406

Activity: Scaling a managed instance using the Az.sql PowerShell module 408

Alternate ways of scaling SQL Managed Instance .. 410

Activity: Connecting to the SQL Managed Instance internal read replica
using SSMS .. 411

Summary .. 413

Chapter 8: Elastic and instance pools 415

Introducing elastic database pools in SQL Database 416

When should you consider elastic database pools? .. 417

Sizing an elastic database pool .. 419

Creating an elastic database pool and adding toystore shards to
the elastic database pool .. 421

Geo-replication considerations for elastic database pools 426

Auto-failover group considerations for elastic database pools 426

Activity: Exploring elastic database pools ... 426

Elastic database jobs .. 434

Elastic job agent ... 435

Job database ... 435

Target group ... 435

Jobs ... 435

Use cases ... 436

Exercise: Configuring an elastic database job using T-SQL 436

Introducing instance pools in SQL Managed Instance 444

Key differences between an instance pool and a single managed instance 445

Architecture differences between an instance pool and a single
SQL managed instance .. 446

Resource limits ... 447

Public preview limitations ... 447

Performance and security considerations for instance pools 448

Deploying an instance pool using PowerShell commands 448

Activity: Deploying and managing a managed instance in an instance pool 452

Summary .. 457

Chapter 9: High availability and disaster recovery 459

High availability ... 460

The basic, standard, and general-purpose service tier locally redundant
availability model ... 460

General-purpose service tier zone-redundant configuration 462

The premium/business-critical tier locally redundant availability model 464

The premium/business critical service tier zone-redundant configuration 465

Accelerated database recovery (ADR) .. 467

The standard database recovery process ... 467

The ADR process ... 469

Activity: Evaluating ADR .. 471

Disaster recovery .. 475

Active geo-replication .. 475

Auto-failover groups .. 477

Activity: Configuring active geo-replication and performing manual
failover using the Azure portal ... 481

Activity: Configuring an Azure SQL Database auto-failover group
using Azure portal .. 491

Activity: Configuring active geo-replication for Azure SQL Database
using PowerShell .. 495

Activity: Configuring auto-failover groups for Azure SQL Database
using PowerShell .. 504

Activity: Configuring an auto-failover group for SQL Managed Instance 514

Summary .. 527

Chapter 10: Monitoring and tuning 529

Monitoring an Azure SQL Database and SQL Managed Instance

using the Azure portal .. 530

Monitoring database metrics ... 532

Alert rules, database size, and diagnostic settings .. 536

Diagnostic settings and logs ... 543

Intelligent Performance .. 548

Query Performance Insight .. 549

Analyzing diagnostic logs using Azure SQL Analytics 550

Creating a Log Analytics workspace .. 550

Creating an Azure SQL Analytics solution ... 556

Generating a workload and reviewing insights .. 557

Activity: Monitoring Azure SQL Database with Log Analytics and

Power BI ... 567

Monitoring queries using the Query Performance Insight pane 578

Monitoring an Azure SQL Database and SQL Managed Instance

using DMVs ... 584

Monitoring database metrics ... 584

Monitoring connections .. 586

Monitoring query performance .. 588

Monitoring blocking ... 589

Extended events ... 591

Examining queries using extended events ... 592

Tuning an Azure SQL database ... 597

Automatic tuning ... 597

In-memory technologies ... 599

In-memory OLTP .. 599

Memory-optimized tables ... 599

Natively compiled procedures ... 600

Columnstore indexes ... 601

Monitoring cost .. 606

Activity: Exploring the in-memory OLTP feature .. 607

Monitoring and tuning an Azure SQL Managed Instance 610

General Purpose instance I/O characteristics .. 611

Monitoring the first run with the default file configuration of
the TPC-C database .. 618

Summary .. 621

Chapter 11: Database features 623

Azure SQL Data Sync .. 624

Activity: Configuring Data Sync between two Azure SQL databases using
PowerShell .. 627

Online and resumable DDL operations ... 635

SQL Graph queries and improvements .. 637

Graph database integrity using edge constraints .. 640

Machine Learning Services .. 643

Differences between Machine Learning Services in SQL Server and
Azure SQL Managed Instance ... 644

Activity: Run basic Python scripts .. 645

Activity: Using Machine Learning Services in Azure SQL Managed Instance
to forecast monthly sales for the toystore database .. 647

Distributed transactions in Azure SQL Managed Instance 653

Server Trust Group ... 654

Activity: Creating a Server Trust Group using the Azure portal 655

Activity: Running distributed transactions using T-SQL .. 657

Summary .. 660

Chapter 12: App modernization 663

Migrating an SQL Server workload to SQL Managed Instance 665

Backup and restore .. 666

SQL installation and patches .. 666

Scaling .. 667

High availability and disaster recovery ... 667

Newly introduced features ... 668

Support for hosting SSRS catalog databases .. 668

Azure Machine Learning ... 669

Distributed transaction support .. 670

SQL Database serverless .. 671

Serverless use cases .. 671

Creating a serverless database ... 672

Auto-scaling in serverless ... 675

Cache Reclamation .. 676

Auto-pausing in serverless .. 676

Auto-resuming in serverless ... 676

SQL Database serverless billing ... 677

Demonstration of auto-scaling and compute billing in serverless 679

Serverless vs. provisioned compute .. 682

Scaling to the Hyperscale service tier .. 683

Considering moving to the Hyperscale service tier ... 683

Activity: Updating an existing SQL database to the Hyperscale service tier
using the Azure portal ... 684

Activity: Updating an existing SQL database to the Hyperscale service tier
using PowerShell commands .. 686

Read scale-out an SQL Hyperscale database .. 688

Summary .. 688

Index 691

About

This section briefly introduces the authors and reviewers, what this book covers, the technical
skills you'll need to get started, and the hardware and software requirements needed to
complete all of the activities and exercises.

Preface

>

ii | Preface

About Professional Azure SQL Managed Database
Administration, Third Edition
Despite being the cloud version of SQL Server, Azure SQL Database and Azure SQL
Managed Instance stands out in various aspects when it comes to management,
maintenance, and administration. Updated with the latest Azure features, Professional
Azure SQL Managed Database Administration continues to be a comprehensive guide
for becoming proficient in data management.

The book begins by introducing you to the Azure SQL managed databases (Azure
SQL Database and Azure SQL Managed Instance), explaining their architecture, and
how they differ from an on-premises SQL server. You will then learn how to perform
common tasks, such as migrating, backing up, and restoring a SQL Server database to
an Azure database.

As you progress, you will study how you can save costs and manage and scale multiple
SQL databases using elastic pools. You will also implement a disaster recovery solution
using standard and active geo-replication. Finally, you will explore the monitoring
and tuning of databases, the key features of databases, and the phenomenon of app
modernization.

By the end of this book, you will have mastered the key aspects of an Azure SQL
database and Azure SQL managed instance, including migration, backup restorations,
performance optimization, high availability, and disaster recovery.

About the authors
Ahmad Osama works for Pitney Bowes Pvt. Ltd. as a technical architect and is a former
Microsoft Data Platform MVP. In his day job, he works on developing and maintaining
high performant, on-premises and cloud SQL Server OLTP environments as well as
deployment and automating tasks using PowerShell. When not working, Ahmad blogs at
DataPlatformLabs and can be found glued to his Xbox.

Shashikant Shakya is a passionate technologist with decades of experience in the
sphere of databases. He works for Microsoft as a senior support engineer. In his day job,
he works on Azure SQL Database, Azure Database for MySQL, and PostgreSQL. Apart
from his work, he is a regular speaker at the SQLBangalore community group.

About Professional Azure SQL Managed Database Administration, Third Edition | iii

About the reviewers
Aaditya Pokkunuri is an experienced senior database engineer with a history of
working in the information technology and services industry. He has a total of 11
years' experience. He is skilled in performance tuning, MS SQL Database server
administration, SSIS, SSRS, Power BI, and SQL development.

He possesses an in-depth knowledge of replication, clustering, SQL Server high
availability options, and ITIL processes, as well as expertise in Windows administration
tasks, Active Directory, and Microsoft Azure technologies.

He also has expertise in AWS Cloud and is an AWS solution architect associate. Aaditya
is a strong information technology professional with a Bachelor of Technology degree
focused on computer science and engineering from Sastra University, Tamil Nadu.

John Martin is an experienced data platform professional and Microsoft Data Platform
MVP, having spent over a decade working with the Microsoft data and cloud platform
technologies. In this time, John has learned how to get the most out of these platforms
as well as the key pitfalls that should be avoided.

Learning objectives
• Understanding Azure SQL database configuration and pricing options

• Provisioning a new SQL database or migrating an existing on-premises SQL
Server database to an Azure SQL database

• Backing up and restoring an Azure SQL database

• Securing and scaling an Azure SQL database

• Monitoring and tuning an Azure SQL database

• Implementing high availability and disaster recovery with an Azure SQL database

• Managing, maintaining, and securing managed instances

Audience
This book is designed to benefit database administrators, database developers, or
application developers who are interested in developing new applications or migrating
existing ones with Azure SQL Database.

Prior experience of working with an on-premises SQL server or Azure SQL database,
along with a basic understanding of PowerShell scripts and C# code, is necessary to
grasp the concepts covered in this book.

iv | Preface

Approach
Professional Azure SQL Managed Database Administration is a perfect blend of deep
theoretical knowledge and detailed descriptions of implementation techniques and
numerous tips that are essential for making its readers ready for real-world challenges.

Hardware and software requirements
Hardware requirements

For the optimal learning experience, we recommend the following hardware
configuration:

• Windows 10/Mac/Linux

• Processor: Pentium 4, 1.8 GHz or higher (or equivalent)

• Memory: 4 GB RAM

• Hard disk: 10 GB free space

• An internet connection

Software requirements

We also recommend that you have the following software configuration in advance:

• PowerShell 7: https://github.com/PowerShell/powershell/releases

• RML Utilities: https://www.microsoft.com/download/details.aspx?id=4511

• SQL Server Management Studio: https://docs.microsoft.com/sql/ssms/
download-sql-server-management-studio-ssms?view=sql-server-ver15

• Power BI Desktop (optional): https://powerbi.microsoft.com/downloads/

• Azure Data Studio: https://docs.microsoft.com/sql/azure-data-studio/
download-azure-data-studio?view=sql-server-ver15

• Azure Az PowerShell module: https://docs.microsoft.com/powershell/azure/
new-azureps-module-az?view=azps-5.2.0

https://github.com/PowerShell/powershell/releases
https://www.microsoft.com/download/details.aspx?id=4511
https://docs.microsoft.com/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://powerbi.microsoft.com/downloads/
https://docs.microsoft.com/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/powershell/azure/new-azureps-module-az?view=azps-5.2.0
https://docs.microsoft.com/powershell/azure/new-azureps-module-az?view=azps-5.2.0

About Professional Azure SQL Managed Database Administration, Third Edition | v

Conventions
Code words in the text, database names, folder names, filenames, and file extensions
are shown as follows.

"The query gets the details for the cpu_percent, physical_data_read_percent, log_
write_percent, workers_percent, and sessions_percent metrics."

Here's a sample block of code:

AzureMetrics

| where ResourceProvider=="MICROSOFT.SQL" | where ResourceId contains "/
SERVERS/"

| where ResourceId contains "/DATABASES/" and MetricName in ('cpu_ percent',
'physical_data_read_percent', 'log_write_percent', 'workers_ percent',
'sessions_percent')

Downloading resources
The code bundle for this book is also hosted on GitHub at https://github.com/
PacktPublishing/Professional-Azure-SQL-Database-Administration-Third-Edition.
Here, you can find the YAML and other files used in this book, which are referred to as
relevant instances.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Professional-Azure-SQL-Database-Administration-Third-Edition
https://github.com/PacktPublishing/Professional-Azure-SQL-Database-Administration-Third-Edition
https://github.com/PacktPublishing/

Acknowledgement

We are grateful to Microsoft and their team of SMEs for reviewing the book and
providing suggestions that enhanced this edition. Acknowledging their contribution,

we have listed down the names of the experts who contributed to this book.

Anna Hoffman | Shreya Verma | Borko Novakovic | Denzil Ribeiro
Venkata Raj Pochiraju | Morgan Oslake | Mladen Andzic | Andreas Wolter

Mirek Sztajno | Joachim Hammer | David Trigano | Srini Acharya
Uros Milanovic | Emily Lisa | Joe Sack | Mara-Florina Steiu | Davide Mauri

For successful completion of this edition of
Professional Azure SQL Managed Database Administration,

special thanks our authors, Ahmad Osama for his contribution on
Azure SQL Database and Shashikant Shakya for his contribution on

Azure SQL Managed Instance.

There are very few relational database systems as established and widely used as
Microsoft's SQL Server. SQL Server on Microsoft Azure comes in three different flavors
(commonly known as the Azure SQL family): SQL Server on Azure Virtual Machines
(VM) (infrastructure as a service, or IaaS), Azure SQL Database (platform as a service,
or PaaS), and Azure SQL Managed Instance (PaaS).

Each of these products has specific use cases, which makes it easy for us to move to
Azure SQL whether we're starting up with a new application or migrating an existing
workload to Azure.

The IaaS offering, SQL Server on Azure VM, is similar to an on-premises service where
Microsoft manages the hardware, virtualization, and infrastructure, and database
administrators (DBAs) manage every aspect of SQL Server.

The PaaS offerings, Azure SQL Database and Azure SQL Managed Instance, allow DBAs
to focus more on monitoring, capacity planning, and tuning, while Microsoft takes care
of areas such as backup, high availability, and more.

Introduction to
Azure SQL managed

databases

1

2 | Introduction to Azure SQL managed databases

This chapter introduces the Azure SQL Database architecture, the Azure SQL Managed
Instance connectivity architecture, and the differences between the SQL Database, SQL
Managed Instance, and SQL Server (on-premises or using Azure VM) offerings.

In this chapter, we will be covering the following topics:

• Describing the architecture of SQL Database

• Identifying the differences between an on-premises SQL Server, SQL Database,
and SQL Managed Instance

• The connectivity architecture of SQL Managed Instance

• Provisioning an Azure SQL Database and Azure SQL Managed Instance using the
Azure portal and Windows PowerShell

Who manages what?
Figure 1.1 lists the tasks that you (the DBA) and Microsoft manage for Azure SQL PaaS:

Figure 1.1: Who manages what?

Note

Fixing outages here refers to application outages that arise due to blockages,
deadlocks, and broken releases, rather than infrastructure outages.

You Microsoft

Capacity planning Hardware, datacenter, virtualization

Migration Operating system

Monitoring

Performance tuning Backup and restore

High availability and disaster recovery

Database maintenance Security

Fixing outages Scaling

Database design Auditing

Automation

Cost optimization

The Azure SQL Database architecture | 3

In an Azure SQL PaaS environment, the DBA works closely with application developers
to understand the application and database design, help with the migration (when
moving from on-premises to Azure), choose the right performance tier to start with,
and then continuously monitor performance for cost optimization.

The DBA also has to work closely with DevOps and often get into DevOps' shoes
to automate the release and deployment process and provision the database
infrastructure.

This requires learning a new set of skills, such as familiarity with different Azure
services, DevOps, and monitoring and management tools.

This chapter introduces the two Azure SQL PaaS offerings, SQL Database and SQL
Managed Instance. We'll learn about the SQL Database and SQL Managed Instance
architectures, provision SQL Database and SQL Managed Instance, and identify the
key differences between SQL Database, SQL Managed Instance, and on-premises SQL
Server.

Throughout this book, you will also learn more about the different aspects of managing
and administrating SQL Database and SQL Managed Instance, such as provisioning,
migration, backup, restore, security, monitoring, and performance.

Note

Azure SQL Database is also commonly referred to as SQL Azure or SQL Database
instances.

The Azure SQL Database architecture
Azure SQL Database is a highly scalable, multi-tenant, and highly available Platform-as-
a-Service (PaaS) or Database-as-a-Service (DBaaS) offering from Microsoft.

Azure SQL Database, first released on February 1, 2010, is a cloud database service that
is based on Microsoft SQL Server.

It is compatible with most SQL Server database-level features and is optimized for
Software-as-a-Service (SaaS) applications.

As organizations are adopting cloud computing and moving their applications into the
cloud, Azure SQL Database offers everything that DBaaS can offer. Azure SQL Database
is a DBaaS option for any organization with applications built on SQL Server databases.

4 | Introduction to Azure SQL managed databases

SQL Database uses familiar Transact-SQL programming and a user interface that is
well known and easy to adopt. As companies move their workloads to the cloud, it is
important for SQL Server DBAs and developers to learn how to use Azure SQL Database
for a smooth transition from SQL Server (on-premises or on Azure VM) to SQL
Database.

Note

Microsoft takes care of the operating system (OS), storage, networking,
virtualization, servers, installation, upgrades, infrastructure management, and
maintenance.

Azure SQL Database has the following deployment options:

• Single database

• Elastic pool

Azure SQL Database allows users to focus only on managing data and is divided into
four layers that work together to provide users with relational database functionality, as
shown in Figure 1.2:

Figure 1.2: The four layers of Azure SQL Database

Note

If you were to compare SQL Database's architecture to the on-premises SQL Server
architecture, other than the service layer, the architecture is pretty similar.

The Azure SQL Database architecture | 5

The Client Layer
The client layer acts as an interface for applications to access an SQL Database. It can
be either on-premises or on Microsoft Azure. The Tabular Data Stream (TDS) is used
to transfer data between an SQL Database and applications. SQL Server also uses TDS
to communicate with applications. This allows applications such as .NET, ODBC, ADO.
NET, Python, and Java applications to easily connect to Azure SQL Database without
any additional requirements.

The Service Layer
The service layer acts as a gateway between the client and platform layers. It is
responsible for provisioning an SQL Database, user authentication, SQL Database
validation, enforcing security (including firewall rules and denial-of-service attacks),
billing and metering for SQL Databases, and routing connections from the client layer
to the physical server hosting the SQL Database in the platform layer.

The Platform Layer
The platform layer consists of physical servers hosting SQL Databases in datacenters.
Each SQL database is stored on one physical server and is replicated across two
different physical servers to provide high availability.

As shown in Figure 1.2, the platform layer has two other components: Azure Service
Fabric and Management Service. Azure Service Fabric is responsible for load balancing,
automatic failover, and the automatic replication of SQL Databases between physical
servers. Management Service takes care of an individual server's health monitoring and
patch updates.

The Infrastructure Layer
This layer is responsible for the administration of the physical hardware and the OS.

6 | Introduction to Azure SQL managed databases

The Azure SQL Database request flow
Figure 1.3 shows the platform layer:

Figure 1.3: Platform layer – nodes

The application sends a TDS request (login, DML, or DDL queries) to the SQL Database.
The TDS request is not directly sent to the platform layer. The request is first validated
by the SQL Gateway Service at the service layer.

The Gateway Service validates the login and firewall rules and checks for denial-of-
service attacks. It then dynamically determines the physical server on which the SQL
Database is hosted and routes the request to that physical server in the platform layer.
Dynamic routing allows the SQL Database to be moved across physical servers or SQL
instances in the event of hardware failures.

Note

Here, a node is a physical server. A single database is replicated across three
physical servers internally by Microsoft to help the system recover from physical
server failures. The Azure SQL Server user connects to just a logical name.

Dynamic routing refers to routing the database request to the physical server that hosts
an Azure SQL Database. This routing is done internally and is transparent to the user. If
one physical server hosting the database fails, dynamic routing will route the requests
to the next available physical server hosting the Azure SQL Database.

Provisioning an Azure SQL Database | 7

The internals of dynamic routing are out of the scope of this book.

As shown in Figure 1.3, the platform layer has three nodes: Node 1, Node 2, and Node
3. Each node has a primary replica of an SQL Database and two secondary replicas of
two different SQL Databases from two different physical servers. The SQL Database
can fail over to the secondary replicas if the primary replica fails. This ensures the high
availability of the SQL Database.

Provisioning an Azure SQL Database
Provisioning an Azure SQL Database refers to creating a new and blank Azure SQL
Database.

In this section, we'll create a new SQL Database in Azure using the Azure portal:

1. Open a browser and log in to the Azure portal using your Azure credentials:
https://portal.azure.com.

2. In the left-hand navigation pane, select Create a resource:

Figure 1.4: Azure pane

https://portal.azure.com

8 | Introduction to Azure SQL managed databases

3. On the New page, under Databases, select SQL Database:

Figure 1.5: Azure panel

4. On the SQL Database page, under the Project details heading, provide the
Subscription and Resource group details. Click the Create new link under the
Resource group textbox. In the pop-up box, set the Resource group name as
toystore.

Note

A resource group is a logical container that is used to group the Azure resources
required to run an application.

For example, the toystore retail web application uses different Azure resources,
such as Azure SQL Database, Azure VMs, and Azure Storage. All of these resources
can be grouped into a single resource group, say, toystore.

Provisioning an Azure SQL Database | 9

The SQL Database name should be unique across Microsoft Azure and should follow
the following naming rules and conventions: https://docs.microsoft.com/azure/
cloud-adoption-framework/ready/azure-best-practices/naming-and-tagging:

Figure 1.6: SQL Database panel

https://docs.microsoft.com/azure/cloud-adoption-framework/ready/azure-best-practices/naming-and-tagging
https://docs.microsoft.com/azure/cloud-adoption-framework/ready/azure-best-practices/naming-and-tagging

10 | Introduction to Azure SQL managed databases

5. Under the Database details heading, enter the database name and server.

6. To create a new server, click on Create new under the Server textbox.

On the New server page, provide the following details and click Select at the
bottom of the page: Server name, Server admin login, Password, Confirm
password, and Location.

The server name should be unique across Microsoft Azure and should follow the
following naming rules and conventions: https://docs.microsoft.com/azure/cloud-
adoption-framework/ready/azure-best-practices/naming-and-tagging:

Figure 1.7: Server pane

7. Under the Want to use SQL elastic pool? option, select No.

8. In Compute + storage, click Configure database and then select Standard:

Figure 1.8: The Configure window

https://docs.microsoft.com/azure/cloud-adoption-framework/ready/azure-best-practices/naming-and-tagging
https://docs.microsoft.com/azure/cloud-adoption-framework/ready/azure-best-practices/naming-and-tagging

Provisioning an Azure SQL Database | 11

Note that you will have to click the Looking for basic, standard, premium? link for
the standard option to be available:

Figure 1.9: The Configure pane

9. Skip the options under Networking and Additional settings.

10. Click Review + create to continue:

Figure 1.10: SQL pane provisioning panel

12 | Introduction to Azure SQL managed databases

11. On the TERMS page, read through the terms and conditions and the configuration
settings made so far:

Figure 1.11: The TERMS page

Provisioning an Azure SQL Database | 13

12. Click Create to provision the SQL Database.

Provisioning may take 2-5 minutes. Once the resources are provisioned, you'll get a
notification, as shown in Figure 1.12:

Figure 1.12: Notification after provision completion

13. You can click Go to resource to go to the newly created SQL Database.

You have now provisioned your first Azure SQL Database.

14 | Introduction to Azure SQL managed databases

Connecting and querying the SQL Database from the Azure portal
In this section, we'll learn how to connect and query the SQL Database from the Azure
portal:

1. From the toystore pane, select Query editor (preview):

Figure 1.13: toystore pane

2. In the Query editor (preview) pane, select Login, and under SQL server
authentication, provide the username and password:

Figure 1.14: The Query Editor (preview) pane

Select OK to authenticate and return to the Query editor (preview) pane:

Provisioning an Azure SQL Database | 15

3. Open C:\Code\Chapter01\sqlquery.sql in Notepad. Copy and paste the query from
Notepad into the Query 1 window in the Query editor in the Azure portal.

The query creates a new table (orders), populates it with sample data, and returns
the top 10 rows from the orders table:

-- create a new orders table CREATE TABLE orders
(
orderid INT IDENTITY(1, 1) PRIMARY KEY,
quantity INT, sales MONEY
);
--populate Orders table with sample data
;
WITH t1
AS (SELECT 1 AS a UNION ALL

SELECT 1),
t2
AS (SELECT 1 AS a FROM t1
CROSS JOIN t1 AS b),
t3
AS (SELECT 1 AS a FROM t2
CROSS JOIN t2 AS b),
t4
AS (SELECT 1 AS a FROM t3
CROSS JOIN t3 AS b),
t5
AS (SELECT 1 AS a FROM t4
CROSS JOIN t4 AS b),
nums
AS (SELECT Row_number()
OVER (
ORDER BY (SELECT NULL)) AS n
FROM t5)
INSERT INTO orders SELECT n,
n * 10
FROM nums;
GO
SELECT TOP 10 * from orders;

16 | Introduction to Azure SQL managed databases

4. Select Run to execute the query. You should get the following output:

Figure 1.15: Expected output

The query editor allows us to connect and query from the Azure portal; however, it's
not as strong in features as clients such as SQL Server Management Studio and Azure
Data Studio.

Connecting to and querying the SQL Database from SQL Server
Management Studio
In this section, we'll connect to and query an Azure SQL Database from SQL Server
Management Studio (SSMS):

1. Open SSMS. In the Connect to Server dialog box, set the Server type as Database
Engine, if not already selected.

2. Under Server name, provide the Azure SQL Server name. You can find the Azure
SQL Server name in the Overview section of the Azure SQL Database pane in the
Azure portal:

Figure 1.16: Overview pane of the toystore database

3. Select SQL Server Authentication as the authentication type.

Provisioning an Azure SQL Database | 17

4. Provide the login and password for Azure SQL Server and select Connect:

Figure 1.17: Login panel of SQL Server

You'll get an error saying Your client IP address does not have access to the
server. To connect to Azure SQL Server, you must add the IP of the system you
want to connect from under the firewall rule of Azure SQL Server. You can also
provide a range of IP addresses to connect from:

Figure 1.18: New Firewall Rule pane

18 | Introduction to Azure SQL managed databases

Note

You can also sign in and add a client IP to the Azure SQL Server firewall by using
the Sign In button shown in Figure 1.18 and following the instructions.

To add your machine's IP to the Azure SQL Server firewall rule, switch to the Azure
portal.

Open the toystore SQL Database Overview pane, if it's not already open. From the
Overview pane, select Set server firewall:

Figure 1.19: Setting the server firewall in the Overview pane

5. In the Firewall settings pane, select Add client IP:

Figure 1.20: The Add client IP option in the Firewall settings pane

6. The Azure portal will automatically detect the machine's IP and add it to the firewall
rule.

If you wish to rename the rule, you can do so by providing a meaningful name in the
RULE NAME column.

All machines with IPs between START IP and END IP are allowed to access all of the
databases on the toyfactory server:

Note

A virtual network can be used to add an SQL Database in Azure to a given network.
A detailed explanation of virtual networks is out of the scope of this book.

Provisioning an Azure SQL Database | 19

Figure 1.21: The Firewall settings pane

Click Save to save the firewall rule.

7. Switch back to SSMS and click Connect. You should now be able to connect to
Azure SQL Server. Press F8 to open Object Explorer, if it's not already open:

Figure 1.22: Object Explorer pane

20 | Introduction to Azure SQL managed databases

8. You can view and modify the firewall settings using T-SQL in the master database.
Press Ctrl + N to open a new query window. Make sure that the database is set to
master.

Note

To open a new query window in the master database context, in Object Explorer,
expand Databases, then expand System Databases. Right-click the master
database and select New Query.

9. Enter the following query to view the existing firewall rules:

SELECT * FROM sys.firewall_rules

You should get the following output:

Figure 1.23: Existing firewall rules

The AllowAllWindowsAzureIps firewall is the default firewall, which allows resources
within Microsoft to access Azure SQL Server.

The rest are user-defined firewall rules. The firewall rules for you will be different
from what is shown here.

You can use sp_set_firewall_rule to add a new firewall rule and sp_delete_
firewall_rule to delete an existing firewall rule.

10. To query the toystore SQL Database, change the database context of the SSMS
query window to toystore. You can do this by selecting the toystore database from
the database dropdown in the menu:

Figure 1.24: Dropdown to select the toystore database

Provisioning an Azure SQL Database | 21

11. Copy and paste the following query into the query window:

SELECT COUNT(*) AS OrderCount FROM orders;

The query will return the total number of orders from the orders table. You should
get the following output:

Figure 1.25: Total number of orders in the orders table

We can connect to and query Azure SQL Server from SSMS as we do for an
on-premises SQL Server. However, SSMS doesn't have all of the features or options that
are available in Azure SQL Database.

Deleting resources
To delete an Azure SQL Database, an Azure SQL Server instance, and Azure resource
groups, perform the following steps:

Note

All resources must be deleted to successfully complete the activity at the end of
this chapter.

1. Switch to the Azure portal and select All resources from the left-hand navigation
pane.

22 | Introduction to Azure SQL managed databases

2. From the All resources pane, select the checkbox next to the toyfactory Azure SQL
Server instance and then select Delete from the top menu:

Figure 1.26: Deleting the toyfactory SQL Server

3. In the Delete Resources window, type yes in the confirmation box and click the
Delete button to delete the Azure SQL Server instance and the Azure SQL Database:

Figure 1.27: Confirming the deletion of the selected resources

Note

To only delete an Azure SQL Database, check the Azure SQL Database checkbox.

Provisioning an Azure SQL Database | 23

4. To delete the Azure resource group, select Resource groups from the left-hand
navigation pane:

Figure 1.28: Resource groups

5. In the Resource groups pane, click the three dots next to the toystore resource
group, and then select Delete resource group from the context menu:

Figure 1.29: Delete resource group option

6. In the delete confirmation pane, type the resource under the TYPE THE
RESOURCE GROUP NAME section, and then click Delete.

We can easily delete resources using the Azure portal. However, note that we may not
be able to recover the deleted resource.

24 | Introduction to Azure SQL managed databases

Introduction to Azure SQL Managed Instance
Azure SQL Managed Instance is a fully managed SQL Server instance offering
announced in May 2017 and made generally available on October 1, 2018.

Azure SQL Managed Instance provides nearly 100% surface area compatibility with the
latest SQL Server (Enterprise Edition) database engine, providing all the PaaS benefits
available with Azure SQL Database, such as automatic patching and version updates,
automatic backups, high availability, and so on.

Note that Azure SQL Managed Instance is its own product within the Azure SQL family,
rather than being just a deployment option for Azure SQL Database, with near 100%
compatibility with on-premises SQL Server instances.

Azure SQL Managed Instance supports most of the instance-scoped features of
traditional SQL Server deployment, which were previously not available in Azure
SQL Database, since Azure SQL Database is scoped at the database-level. Azure
SQL Managed Instance, therefore, provides easy lift-and-shift migration from an
on-premises environment to the cloud.

When you migrate to an Azure SQL Managed Instance on Azure, you don't only migrate
databases, you can also migrate licenses too.

Note

You can save up to 82% on Azure SQL Managed Instance when migrating from SQL
Server Enterprise or Standard edition with software assurance. For more details,
please visit https://azure.microsoft.com/pricing/hybrid-benefit/ or contact Azure.

Some of the important features supported by Azure SQL Managed Instance that are not
available in Azure SQL Database are as follows:

• Native backup and restore

• Global temporary tables

• Cross-database queries and transactions

• Linked servers

• CLR modules

• SQL agent

• Database mail

https://azure.microsoft.com/pricing/hybrid-benefit/

Connecting to Azure SQL Managed Instance | 25

Here are some recently added features:

• Distributed transactions

• Instance pools

• Instance-level Azure Active Directory server principals (logins)

• Transactional replication

• Threat detection

• Long-term backup retention

• Machine learning services (R and Python)

These and other features of Azure SQL Managed Instance make it almost 100%
compatible with SQL Server.

Connecting to Azure SQL Managed Instance
Azure SQL Managed Instance is a set of services hosted on one or more isolated virtual
machines inside a virtual network subnet.

When we provision an Azure SQL Managed Instance, a virtual cluster is created.
A virtual cluster can have one or more SQL Managed Instances.

Applications connect to databases via an endpoint,
<mi_name>.<dns_zone>.database. windows.net, and should be inside a virtual network,
a peered virtual network, or an on-premises network connected via VPN or Azure
ExpressRoute.

Unlike Azure SQL Database, Azure SQL Managed Instance supports Azure Virtual
Network (VNet). An Azure VNet is a logical boundary or isolation that groups resources
within a specified Azure region and enables secure communication between resources,
the internet, and on-premises networks:

26 | Introduction to Azure SQL managed databases

Figure 1.30: High-level connectivity architecture for SQL Managed Instances

Figure 1.30 shows a high-level connectivity architecture for SQL Managed Instances.
Let's go through it:

• SQL Managed Instances are part of a virtual cluster and are in an SQL Managed
Instance subnet in a virtual network in the East US region.

• Web and other applications in the same virtual network connect to
the managed instance using a TDS private IP endpoint, for example,
sqlinstance.dnszone.database.windows.net.

• Applications in the West US virtual network connect using the same endpoint;
however, the two virtual networks are peered using global virtual network
peering to allow connectivity between them. The same regional virtual network
can be peered with SQL Managed Instance.

Note

Global virtual network peering support for SQL Managed Instance is new to SQL
Managed Instance.

On-premises
applicationsEast us VNet

Application
subnet

Web app IaaS app

West us VNet

SQL Managed Instance subnet

SQL
Management

SQL
Instance

Virtual cluster

App subnet

Web app Container app

Gateway subnet

Global
Peered
network

Private TDS
endpoint

VPN/Express Route

SQL
Management

(Public endpoint)

Connecting to Azure SQL Managed Instance | 27

• On-premises applications connect using the same endpoint via VPN or an
ExpressRoute gateway.

• To improve the overall experience and availability, Azure applies a network intent
policy on virtual network infrastructure elements. The policy plays a major role
in preventing network misconfiguration and ensures normal SQL Managed
Instance operations.

Virtual cluster connectivity architecture
In the previous example, we saw connectivity to SQL Managed Instance from different
networks. Here, we are going to learn about virtual cluster internal communication:

Figure 1.31: High-level architecture of virtual cluster connectivity

In Figure 1.31, applications/client connects to SQL Managed Instance using a fully
qualified domain name (FQDN), sqlmi_name.<dns_zone>.database.windows.net.
This hostname can only be resolved within a private network. The dnz_zone ID is
automatically created when the virtual cluster is deployed. The private IP belongs to the
internal load balancer (ILB) of SQL Managed Instance, and the load balancer forwards
traffic to the SQL Managed Instance gateway (GW) service. Since multiple instances
run inside the virtual cluster, the GW service redirects SQL traffic to the correct
instance based on the instance name.

Management and deployment services connect to SQL Managed Instance using a load
balancer (LB) that uses a public IP address. A built-in firewall only allows traffic from
Microsoft IP addresses on specified management ports. All the communication inside
the virtual cluster is encrypted using TLS protocols.

Virtual cluster

SQL
Management

Agent

SQL
Engine

Node

NodeNode

ILB

LB

GW

GW

GW

Private TDS
endpoint

Public SQL
Management

endpoint

sqlmi_name.<dns_zone>.database.windows.net

28 | Introduction to Azure SQL managed databases

Network requirements
SQL Managed Instance needs to be deployed in a dedicated subnet in a virtual network.
The subnet must have these characteristics:

• Dedicated subnet: The SQL Managed Instance subnet must be reserved only for
managed instances. The subnet can't contain any other Azure services except
SQL Managed Instance.

• Sufficient IP addresses: The SQL Managed Instance subnet must have at least
16 IP addresses and a minimum of 32 IP addresses for deployment. These IP
addresses are reserved for virtual cluster resources and may vary depending
on the hardware generation and SQL Managed Instance service tier. Visit
https://docs.microsoft.com/azure/azure-sql/managed-instance/vnet-subnet-
determine-size to determine the SQL Managed Instance subnet size.

• Subnet delegation: The SQL Managed Instance subnet needs to be delegated to
the Microsoft.Sql/managedInstances resource provider.

• Network security group (NSG): SQL Managed Instance requires port 1433 for
TDS traffic and ports in the range 11000-11999 for redirection connection. An
NSG must be associated with the SQL Managed Instance subnet.

• A user-defined route (UDR) table: A prerequisite is to create a route table that
will allow SQL Managed Instance to communicate with the Azure Management
Service.

These conditions are mandatory for SQL Managed Instance creation and management
operations.

Note

A detailed explanation of the networking requirements can be found by visiting
https://docs.microsoft.com/azure/azure-sql/database/connectivity-architecture.

Differences between SQL Database, SQL Managed Instance,
and SQL Server
SQL Database and SQL Managed Instance are PaaS offerings from the Azure SQL family
and therefore some of their features differ from the on-premises SQL Server. Some of
the important features that differ are as follows:

https://docs.microsoft.com/azure/azure-sql/managed-instance/vnet-subnet-determine-size
https://docs.microsoft.com/azure/azure-sql/managed-instance/vnet-subnet-determine-size
https://docs.microsoft.com/azure/azure-sql/database/connectivity-architecture

Differences between SQL Database, SQL Managed Instance, and SQL Server | 29

Backup and restore
SQL Database

Conventional database backup and restore statements aren't supported on SQL
Database. Backups are automatically scheduled and start within a few minutes of the
database being provisioned. Backups are consistent, transaction-wise, which means
that you can do a point-in-time restore.

There is no additional cost for backup storage until the amount stored goes beyond
100% of the database's size.

You can reduce the backup retention period to manage backup storage costs. You can
also use the long-term retention period feature to store backups in a separate Azure
blob container for a much lower cost for up to 10 years.

Apart from automatic backups, you can also export the Azure SQL Database bacpac or
dacpac file to Azure Storage.

SQL Managed Instance

SQL Managed Instance automatically creates database backups that are kept for the
duration of a specified retention period. Native COPY_ONLY backups on Azure blob
containers are allowed on SQL Managed Instance.

Backup storage is free as an equal amount of storage is reserved for SQL Managed
Instance, regardless of the backup retention period.

The long-term retention period for SQL Managed Instance is a limited preview feature
currently (and will be in public preview soon) and is only available for EA and CSP
subscriptions.

Recovery model
The default recovery model for SQL Database and SQL Managed Instance is FULL, and it
can't be modified to any other recovery model as in on-premises recovery models.

The recovery model is set when the master database is created, meaning when an
Azure SQL Server is provisioned, the recovery model can't be modified because the
master database is read-only.

To view the recovery model of an Azure SQL Database, execute the following query:

SELECT name, recovery_model_desc FROM sys.databases;

Note

You can use either of the two methods discussed earlier in the chapter to run the
query – the Azure portal or SSMS.

30 | Introduction to Azure SQL managed databases

You should get the following output:

Figure 1.32: Recovery model of an SQL database

SQL Server Agent
SQL Database doesn't have SQL Server Agent, which is used to schedule jobs and send
success/failure notifications. However, you can use the following workarounds:

• Create an SQL Agent job on an on-premises SQL server or on an Azure VM to
connect and run on the SQL Database.

• Azure Automation allows users to schedule jobs in Microsoft Azure to automate
manual tasks. This topic is covered in detail later in the book.

• Elastic Jobs is an Azure service that allows the scheduled execution of ad hoc
tasks. This topic is covered in detail later in the book.

• Use PowerShell to automate a task and schedule PowerShell script execution
with Windows Scheduler, on-premises, or Azure VM.

Azure SQL Managed Instance has SQL Server Agent and can be used to schedule jobs
just like with on-premises SQL Server. However, some of the actions are not allowed,
such as enabling and disabling SQL Server Agent, and the SQL Server Agent process is
always in the running state.

For more information, please visit https://docs.microsoft.com/azure/azure-sql/
managed-instance/transact-sql-tsql-differences-sql-server#sql-server-agent.

Change Data Capture
Change Data Capture (CDC) allows you to capture data modifications to CDC-enabled
databases and tables. The CDC feature is important in incremental load scenarios,
such as incrementally inserting changed data to a data warehouse from an online
transaction processing (OLTP) environment. CDC requires SQL Server Agent and
therefore isn't available in SQL Database. However, you can use the temporal table, SQL
Server Integration Services (SSIS), or Azure Data Factory to implement CDC. CDC is
supported in SQL Managed Instance.

https://docs.microsoft.com/azure/azure-sql/managed-instance/transact-sql-tsql-differences-sql-server#sql-server-agent
https://docs.microsoft.com/azure/azure-sql/managed-instance/transact-sql-tsql-differences-sql-server#sql-server-agent

Differences between SQL Database, SQL Managed Instance, and SQL Server | 31

Auditing
Audit logs are available for both SQL Database and SQL Managed Instance but with a
few differences from on-premises SQL Server. In PaaS, file system-level access is not
granted, hence audit logs need to be captured on Azure Blob Storage.

Mirroring
You can't enable mirroring between two SQL Databases, and the same goes for SQL
Managed Instance databases. You can set up a readable secondary for an SQL Database
and a failover group for SQL Managed Instance, which is better than mirroring.

Table partitioning
Table partitioning using a partition scheme and partition functions is allowed in SQL
Database; however, because of the PaaS nature of the SQL Database, all partitions
should be created on a primary filegroup. You won't get a performance improvement
by having partitions on different disks (spindles); however, you will get a performance
improvement with partition elimination.

In SQL Managed Instance, partitions can be created with different filegroups and files
for each partition, meaning better performance by having multiple files per database.

Replication
Conventional replication techniques, such as snapshot, transactional, and merge
replication, can't be done between two Azure SQL Databases. However, an SQL
Database can be a subscriber to an on-premises or Azure VM SQL Server instance.

However, this too has limitations. It supports one-way transactional replication, not
peer-to-peer or bi-directional replication; it supports only push subscription.

Note that you should have SQL Server 2012 or above when on-premises. Replication
and distribution agents can't be configured on SQL Database.

SQL Managed Instance supports snapshot, transactional, and bi-directional
transactional replication. Merge replication, peer-to-peer replication, and updatable
subscriptions are not supported.

The publisher and distributor need to be configured on both SQL Managed Instance
and on-premises SQL Server.

32 | Introduction to Azure SQL managed databases

Multi-part names
Multi-part names and cross-database queries are supported on SQL Managed Instance.

For SQL Database, three-part names (databasename.schemaname.tablename) are only
limited to tempdb, wherein you access a temp table as tempdb.dbo.#temp. For example, if
there is a temporary table, say, #temp1, then you can run the following query to select all
the values from #temp1:

SELECT * FROM tempdb.dbo.#temp1

You can't access the tables in different SQL Databases in Azure on the same
Azure SQL Server using three-part names. Four-part names
(ServerName.DatabaseName.SchemaName.TableName) aren't allowed at all.

You can use an elastic query to access tables from different databases from an
Azure SQL Server. Elastic queries are covered in detail later in the book. You can
access objects in different schemas in the same Azure SQL Database using two-part
(Schemaname.Tablename) names.

To explore other T-SQL differences, visit https://docs.microsoft.com/azure/
sql-database/sql-database-transact-sql-information.

SQL Server Browser
SQL Server Browser is a Windows service that provides instance and post information
to incoming connection requests. This isn't required because SQL Database and SQL
Managed Instance listen to port 1433 only.

FileStream
SQL Database and SQL Managed Instance don't support FileStream or FileTable, just
because of the PaaS nature of the service. There is a workaround to use Azure Storage;
however, that would require a re-working of the application and the database.

Common Language Runtime (SQL CLR)
SQL CLR is supported on SQL Managed Instance with a few differences. SQL CLR allows
users to write programmable database objects such as stored procedures, functions,
and triggers in managed code. This provides a significant performance improvement in
some scenarios. This feature is not available in SQL Database.

Resource Governor
Resource Governor is supported on SQL Managed Instance. Resource Governor allows
you to throttle/limit resources (CPU, memory, and I/O) for different SQL Server
workloads. This feature is not available in SQL Database.

https://docs.microsoft.com/azure/sql-database/sql-database-transact-sql-information
https://docs.microsoft.com/azure/sql-database/sql-database-transact-sql-information

Differences between SQL Database, SQL Managed Instance, and SQL Server | 33

SQL Database comes with different service tiers, each suitable for different workloads.
You should evaluate the performance tier your application workload will fit into and
accordingly provision the database for that performance tier.

Global temporary tables
Local and global instance-scoped temporary tables are supported on SQL Managed
Instance.

Global temporary tables are defined by ## and are accessible across all sessions. These
are not supported in SQL Database.

Local temporary tables are allowed. Global temporary tables created with ## are
accessible across all sessions for a particular database. For example, a global temporary
table created in database DB1 will be accessible to all sessions connecting to database
DB1 only.

Log shipping
Log shipping is the process of taking log backups on a primary server and copying
and restoring them on a secondary server. Log shipping is commonly used as a high-
availability or disaster-recovery solution, or to migrate a database from one SQL
instance to another. SQL Database and SQL Managed Instance have built-in high
availability and configurable business continuity features. Log shipping isn't supported
by SQL Database and SQL Managed Instance.

SQL Trace and Profiler
SQL Profiler is supported on SQL Managed Instance. SQL Trace and Profiler can't be
used to trace events on SQL Database. Currently, there isn't a direct alternative other
than using dynamic management views (DMVs), monitoring using the Azure portal,
and extended events.

Trace flags
Only a limited set of global traces is supported on SQL Managed Instance. Trace flags
are special switches used to enable or disable a particular SQL Server functionality.
These are not available in SQL Server.

System stored procedures
SQL Managed Instance supports nearly all system stored procedures. SQL Database
doesn't support all the system stored procedures supported in an on-premises SQL
Server. System stored procedures such as sp_addmessage, sp_helpuser, and sp_configure
aren't supported. In a nutshell, procedures related to features unsupported in SQL
Database aren't supported.

34 | Introduction to Azure SQL managed databases

The USE statement
The USE statement is used to switch from one database context to another. This isn't
supported in SQL Database, but SQL Managed Instance supports the USE statement.

Exercise: Provisioning an Azure SQL Managed Instance using the
Azure portal
In this exercise, we'll provision and connect to an SQL Managed Instance. We'll also
learn about virtual network support in SQL Managed Instance.

To provision an SQL Managed Instance, perform the following steps:

1. Log in to https://portal.azure.com using your Azure credentials.

2. Click on +Create a resource:

Figure 1.33: Creating a new resource

https://portal.azure.com

Differences between SQL Database, SQL Managed Instance, and SQL Server | 35

3. Search for Azure SQL in Azure Marketplace:

Figure 1.34: Searching for Azure SQL in Marketplace

4. Select the Create option; you can see more details by clicking on the Show details
option:

Figure 1.35: Selecting an SQL deployment option

36 | Introduction to Azure SQL managed databases

5. In the Basic tab, provide the information shown in Figure 1.36:

Figure 1.36: Information required to add the SQL Managed Instance

Differences between SQL Database, SQL Managed Instance, and SQL Server | 37

In the Subscription box, provide your Azure subscription type. SQL Managed
Instances currently support the following subscription types: Enterprise
Agreement (EA), Pay-As-You-Go, Cloud Service Provider (CSP), Enterprise Dev/
Test, Pay-As-You-Go Dev/Test, and subscriptions with monthly Azure credit for
Visual Studio subscribers.

If you have a different subscription, you won't be able to create an SQL Managed
Instance.

In the Resource Group box, choose to create a new or use an existing resource
group for the SQL Managed Instance. A resource group is a logical container for all
the resources in Azure.

The Managed instance name box is for the name of the managed instance you plan
to create. It can be any valid name, in accordance with the naming rules at https://
docs.microsoft.com/azure/architecture/best-practices/naming-conventions.

For the Region box, select the desired Azure region for the SQL Managed Instance
deployment. In general, apps and managed instances should be deployed in the
same Azure region to avoid network latency.

The Managed instance admin login box is for any login name, as long as it fits the
naming conventions at https://docs.microsoft.com/azure/architecture/best-
practices/naming-conventions.

The password can be any password that follows these rules:

Figure 1.37: Password requirements

https://docs.microsoft.com/azure/architecture/best-practices/naming-conventions
https://docs.microsoft.com/azure/architecture/best-practices/naming-conventions
https://docs.microsoft.com/azure/architecture/best-practices/naming-conventions
https://docs.microsoft.com/azure/architecture/best-practices/naming-conventions

38 | Introduction to Azure SQL managed databases

6. Select Configure Managed Instance to choose compute and storage resources. Use
sliders to choose the vCore and storage size.

Select Azure Hybrid Benefits if you already have SQL Server licenses with software
assurance. In general, this can be used while migrating from an on-premises SQL
Server to SQL Managed Instance.

Select the Backup Storage type; Geo, Zone, and Locally-redundant backup storage
options are available. Choose this based on the desired recovery plan as it can't
be changed after instance deployment. Read more about backup storage types
at https://docs.microsoft.com/azure/azure-sql/database/automated-backups-
overview?tabs=single-database.

When you are finished, select Apply to save changes:

Figure 1.38: Compute + storage

https://docs.microsoft.com/azure/azure-sql/database/automated-backups-overview?tabs=single-database
https://docs.microsoft.com/azure/azure-sql/database/automated-backups-overview?tabs=single-database

Differences between SQL Database, SQL Managed Instance, and SQL Server | 39

7. After the instance resources configuration selection, move to the Networking tab
to configure Virtual network / subnet for the SQL Managed Instance:

Figure 1.39: Moving to the Network tab to set Virtual network / subnet

The Virtual network / subnet box is for setting the virtual network/subnet that
the managed instance will be part of. If no network is provided, a new virtual
network/subnet is created.

40 | Introduction to Azure SQL managed databases

For the Connection type box, SQL Managed Instances support two connection
types: Redirect and Proxy. Redirect is the recommended connection type because
the client directly connects to the node hosting the database, and therefore it offers
low latency and high throughput.

For the Proxy connection type, requests to the database are proxied through the
SQL Database gateways.

Enable Public endpoint to allow SQL Managed Instance connectivity over the
internet. By default, it's disabled until explicitly enabled.

Choose Minimal TLS Version to enforce a TLS version for the managed instance's
inbound connection.

8. Fill out all the details in the Additional settings tab:

Figure 1.40: The Additional settings tab

Differences between SQL Database, SQL Managed Instance, and SQL Server | 41

Collation is the SQL Server collation that the managed instance will be in.

The Time zone box denotes the time zone of the managed instance. The preferred
time zone is UTC; however, this will differ from business to business.

Select Geo-Replication to use this managed instance as a secondary instance in a
failover group.

9. In the Review + create tab, review your selection before you create the managed
instance:

Figure 1.41: The Review + create tab

10. Click Create to validate and provision the SQL Managed Instance.

To monitor the progress, click the Notifications (bell) icon in the top-left corner:

Figure 1.42: Notifications icon in the instance window

42 | Introduction to Azure SQL managed databases

As we can see, the deployment is in progress:

Figure 1.43: The Notifications pane

After the deployment is complete, a deployment complete notification will come up in
the notification window:

Figure 1.44: Deployment complete notification

Activity: Provisioning Azure SQL Server and SQL Database
using PowerShell
This section discusses provisioning Azure SQL Server and SQL Database using
PowerShell. To understand the process, let's take the example of Mike, who is the
newest member of the data administration team at ToyStore Ltd., a company that
manufactures toys for children. ToyStore has an e-commerce web portal that allows
customers to purchase toys online. ToyStore has migrated the online e-commerce
portal to Microsoft Azure and is therefore moving to Azure SQL Database from an
on-premises SQL Server. Mike is asked to provision the Azure SQL Database and other
required resources as his initial assignment. This can be achieved by following these
steps:

Activity: Provisioning Azure SQL Server and SQL Database using PowerShell | 43

Note

If you are short of time, you can refer to the C:\Code\Chapter01\Provision-
AzureSQLDatabase.ps1 file. You can run this file in the PowerShell console instead
of typing the code as instructed in the following steps. Open a PowerShell console
and enter the full path to execute the PowerShell script. You'll have to change the
Azure resource group name, the Azure SQL Server, and the Azure SQL Database
name in the script before executing it.

1. Save the Azure profile details into a file for future reference. Press Windows + R to
open the Run command window.

2. In the Run command window, type powershell and then press Enter. This will open
a new PowerShell console window:

Figure 1.45: Opening up PowerShell

3. In the PowerShell console, run the following command:

Add-AzAccount

You'll have to enter your Azure credentials into the pop-up dialog box. After a
successful login, the control will return to the PowerShell window.

44 | Introduction to Azure SQL managed databases

4. Run the following command to save the profile details to a file:

Save-AzProfile -Path C:\Code\MyAzureProfile.json

The Azure subscription details will be saved in the MyAzureProfile.json file in JSON
format. If you wish to explore the JSON file, you can open it in any editor to review
its content:

Figure 1.46: Saving the Azure credentials

Note

Saving the profile in a file allows you to use the file to log in to your Azure account
from PowerShell instead of providing your credentials every time in the Azure
authentication window.

Press Windows + R to open the Run command window. Type PowerShell_ISE.exe
in the Run command window and press Enter. This will open a new PowerShell ISE
editor window. This is where you'll write the PowerShell commands:

Figure 1.47: Run command window

Activity: Provisioning Azure SQL Server and SQL Database using PowerShell | 45

5. In the PowerShell ISE, select File from the top menu, and then click Save.
Alternatively, you can press Ctrl + S to save the file. In the Save As dialog box,
browse to the C:\Code\Chapter01\ directory. In the File name textbox, type
Provision-AzureSQLDatabase.ps1, and then click Save to save the file:

Figure 1.48: Saving the PowerShell ISE file

6. Copy and paste the following lines in the Provision-AzureSQLDatabase.ps1 file one
after another. The code explanation, wherever required, is given in the comments
within the code snippet.

7. Copy and paste the following code to define the parameters:

param (
[parameter(Mandatory=$true)] [String] $ResourceGroup,
[parameter(Mandatory=$true)] [String] $Location,
[parameter(Mandatory=$true)] [String] $SQLServer,
[parameter(Mandatory=$true)] [String] $UserName,
[parameter(Mandatory=$true)] [String] $Password,

[parameter(Mandatory=$true)] [String] $SQLDatabase,
[parameter(Mandatory=$true)] [String] $Edition="Basic",
[parameter(Mandatory=$false)] [String] $AzureProfileFilePath
)

46 | Introduction to Azure SQL managed databases

The preceding code defines the parameters required by the scripts:

ResourceGroup: The resource group that will host the logical Azure SQL Server and
Azure SQL Database.

Location: The resource group location. The default is East US 2.

SQLServer: The logical Azure SQL Server name that will host the Azure SQL
Database.

UserName: The Azure SQL Server admin username. The default username is
sqladmin. Don't change the username; keep it as the default.

Password: The Azure SQL Server admin password. The default password is Packt@
pub2. Don't change the password; keep it as the default.

SQLDatabase: The Azure SQL Database to create.

Edition: The Azure SQL Database edition. This is discussed in detail in Chapter 3,
Migration.

AzureProfileFilePath: The full path of the file that contains your Azure profile
details. You created this earlier in the activity.

8. Copy and paste the following code to log in to your Azure account from PowerShell:

Start-Transcript -Path .\log\ProvisionAzureSQLDatabase.txt -Append
if([string]::IsNullOrEmpty($AzureProfileFilePath))
{
$AzureProfileFilePath="..\..\MyAzureProfile.json"
}
if((Test-Path -Path $AzureProfileFilePath))
{
$profile = Import-AzContext-Path $AzureProfileFilePath
$SubscriptionID = $profile.Context.Subscription.SubscriptionId
}
else
{

Write-Host "File Not Found $AzureProfileFilePath"
-ForegroundColor Red
$profile = Login-AzAccount
$SubscriptionID = $profile.Context.Subscription.
SubscriptionId
}
Set-AzContext -SubscriptionId $SubscriptionID | Out-Null

Activity: Provisioning Azure SQL Server and SQL Database using PowerShell | 47

The preceding code first checks for the profile details in the Azure profile file. If
found, it retrieves the subscription ID of the profile; otherwise, it uses the Login-
AzAccount command to pop up the Azure login dialog box. You have to provide your
Azure credentials in the login dialog box. After a successful login, it retrieves and
stores the subscription ID of the profile in the $SubscriptionID variable.

It then sets the current Azure subscription to yours for the PowerShell cmdlets to
use in the current session.

9. Copy and paste the following code to create the resource group if it doesn't already
exist:

Check if resource group exists
An error is returned and stored in the notexists variable if the
resource group exists
Get-AzResourceGroup -Name $ResourceGroup -Location $Location
-ErrorVariable notexists -ErrorAction SilentlyContinue

#Provision Azure Resource Group
if($notexists)
{

Write-Host "Provisioning Azure Resource Group $ResourceGroup"
-ForegroundColor Green
$_ResourceGroup = @{ Name = $ResourceGroup; Location = $Location;

}
New-AzResourceGroup @_ResourceGroup;
}
else
{

Write-Host $notexists -ForegroundColor Yellow
}

The Get-AzResourceGroup cmdlet fetches the given resource group. If the given
resource group doesn't exist, an error is returned. The error returned is stored in
the notexists variable.

The New-AzResourceGroup cmdlet provisions the new resource group if the notexists
variable isn't empty.

48 | Introduction to Azure SQL managed databases

10. Copy and paste the following code to create a new Azure SQL Server if one doesn't
exist:

Get-AzSqlServer -ServerName $SQLServer -ResourceGroupName
$ResourceGroup -ErrorVariable notexists -ErrorAction SilentlyContinue
if($notexists)
{
Write-Host "Provisioning Azure SQL Server $SQLServer"
-ForegroundColor Green
$credentials = New-Object -TypeName System.Management.Automation.
PSCredential -ArgumentList $UserName, $(ConvertTo-SecureString
-String $Password -AsPlainText -Force)
$_SqlServer = @{
ResourceGroupName = $ResourceGroup; ServerName = $SQLServer; Location =
$Location; SqlAdministratorCredentials = $credentials; ServerVersion =
'12.0';
}

New-AzSqlServer @_SqlServer;
}
else
{
Write-Host $notexists -ForegroundColor Yellow
}

The Get-AzSqlServer cmdlet gets the given Azure SQL Server. If the given Azure
SQL Server doesn't exist, an error is returned. The error returned is stored in the
notexists variable.

The New-AzSqlServer cmdlet provisions the new Azure SQL Server if the notexists
variable isn't empty.

11. Copy and paste the following code to create the Azure SQL Database if it doesn't
already exist:

Check if Azure SQL Database Exists
An error is returned and stored in the notexists variable if the
resource group exists
Get-AzSqlDatabase -DatabaseName $SQLDatabase -ServerName
$SQLServer -ResourceGroupName $ResourceGroup -ErrorVariable notexits
-ErrorAction SilentlyContinue
if($notexists)
{
Provision Azure SQL Database

Activity: Provisioning Azure SQL Server and SQL Database using PowerShell | 49

Write-Host "Provisioning Azure SQL Database $SQLDatabase"
-ForegroundColor Green
$_SqlDatabase = @{
ResourceGroupName = $ResourceGroup; ServerName = $SQLServer; DatabaseName
= $SQLDatabase; Edition = $Edition;
};
New-AzSqlDatabase @_SqlDatabase;
}
else
{
Write-Host $notexists -ForegroundColor Yellow
}

Get-AzSqlDatabase gets the given Azure SQL Database. If the given Azure SQL
Database doesn't exist, an error is returned. The error returned is stored in the
notexists variable.

New-AzSqlDatabase provisions the new Azure SQL database if the notexists variable
isn't empty.

12. Copy and paste the following code to add the system's public IP address to the
Azure SQL Server firewall rule:

$startip = (Invoke-WebRequest http://myexternalip.com/ raw
--UseBasicParsing -ErrorVariable err -ErrorAction SilentlyContinue).
Content.trim()
$endip=$startip
Write-host "Creating firewall rule for $azuresqlservername with StartIP:
$startip and EndIP: $endip " -ForegroundColor Green
$NewFirewallRule = @{ ResourceGroupName = $ResourceGroup; ServerName =
$SQLServer; FirewallRuleName = 'PacktPub'; StartIpAddress = $startip;
EndIpAddress=$endip;
};
New-AzSqlServerFirewallRule @NewFirewallRule;

The preceding code first gets the public IP of the system (running this PowerShell
script) by calling the http://myexternalip.com/raw website using the Invoke-
WebRequest command. The link returns the public IP in text format, which is stored
in the $startip variable.

The IP is then used to create the firewall rule by the name of PacktPub using the
New-AzSqlServerFirewallRule cmdlet.

http://myexternalip.com/raw

50 | Introduction to Azure SQL managed databases

13. To run the PowerShell script, perform the following steps: Press Windows + R to
open the Run command window. Type PowerShell and hit Enter to open a new
PowerShell console window.

14. Change the directory to the folder that has the shard-toystore.ps1 script. For
example, if the script is in the C:\Code\Chapter01\ directory, then run the following
command to switch to this directory:

cd C:\Code\Chapter01

15. In the following command, change the parameter values. Copy the command to the
PowerShell console and hit Enter:

.\ProvisionAzureSQLDatabase.ps1 -ResourceGroup toystore -SQLServer
toyfactory -UserName sqladmin -Password Packt@pub2 -SQLDatabase toystore
-AzureProfileFilePath C:\Code\MyAzureProfile.json

The preceding command will create the toystore resource group, the toyfactory
Azure SQL Server, and the toystore Azure SQL Database. It'll also create a firewall
rule by the name of PacktPub with the machine's public IP address.

Exercise: Provisioning an Azure SQL Managed Instance
To provision a managed instance using a PowerShell script, perform the following steps:

1. Create a file called ProvisionSQLMI.ps1 and add the following code:

<#
If you are using Pay-as-you-go subscription, do check the managed instance
cost
#>
param(
[string]$ResourceGroup="Packt-1",
[string]$Location="WestUS",
[string]$vNet="PackvNet-$(Get-Random)",
[string]$misubnet="PackSubnet-$(Get-Random)",
[string]$miname="Packt-$(Get-Random)",
[string]$miadmin="miadmin",
[string]$miadminpassword="CreateYourAdminPassword1",
[string]$miedition="General Purpose",
[string]$mivcores=4,
[string]$mistorage=32,
[string]$migeneration = "Gen5",
[string]$milicense="LicenseIncluded",
[string]$subscriptionid="6ee856b5-yy6d-4bc1-a901-byg5569842e1"
)

Activity: Provisioning Azure SQL Server and SQL Database using PowerShell | 51

2. Add the following code for subnet delegation:

Powershell module for subnet delegation
$AznetworkModels = "Microsoft.Azure.Commands.Network.Models"
$Azcollections = "System.Collections.Generic"

3. Add the following code to log in to the Azure account:

login to azure

$Account = Connect-AzAccount

if([string]::IsNullOrEmpty($subscriptionid))
{
 $subscriptionid=$Account.Context.Subscription.Id
}
Set-AzContext $subscriptionid

4. Add the following code snippet to verify that the resource group exists:

Check if resource group exists
An error is returned and stored in notexists variable if resource group
exists
Get-AzResourceGroup -Name $ResourceGroup -Location $location
-ErrorVariable notexists -ErrorAction SilentlyContinue

5. Provision a resource group:

#Provision Azure Resource Group
if(![string]::IsNullOrEmpty($notexists))
{

Write-Host "Provisioning Azure Resource Group $ResourceGroup"
-ForegroundColor Green
$_ResourceGroup = @{
 Name = $ResourceGroup;
 Location = $Location;
 }
New-AzResourceGroup @_ResourceGroup;
}
else
{

Write-Host $notexists -ForegroundColor Yellow
}

52 | Introduction to Azure SQL managed databases

6. Add the following code to add a virtual network, subnet, network security group,
and route table:

Write-Host "Provisioning Azure Virtual Network $vNet" -ForegroundColor
Green
$obvnet = New-AzVirtualNetwork -Name $vNet -ResourceGroupName
$ResourceGroup -Location $Location -AddressPrefix "10.0.0.0/16"

Write-Host "Provisioning Managed instance subnet $misubnet"
-ForegroundColor Green

$obmisubnet = Add-AzVirtualNetworkSubnetConfig -Name $misubnet
-VirtualNetwork $obvnet -AddressPrefix "10.0.0.0/24"

$_nsg = "mi-nsg"
$_rt = "mi-rt"

Write-Host "Provisioning Network Security Group $_nsg" -ForegroundColor
Green
$nsg = New-AzNetworkSecurityGroup -Name $_nsg -ResourceGroupName
$ResourceGroup -Location $Location -Force

<#
Routing table is required for a managed instance to connect with Azure
Management Service.
#>
Write-Host "Provisioning Routing table $_rt" -ForegroundColor Green
$routetable = New-AzRouteTable -Name $_rt -ResourceGroupName
$ResourceGroup -Location $Location -Force

7. Assign a network security group to the managed instance subnet:

#Assign network security group to managed instance subnet
Set-AzVirtualNetworkSubnetConfig '
-VirtualNetwork $obvnet -Name $misubnet '
-AddressPrefix "10.0.0.0/24" -NetworkSecurityGroup $nsg '
-RouteTable $routetable | Set-AzVirtualNetwork

$obvnet = Get-AzVirtualNetwork -Name $vNet -ResourceGroupName
$ResourceGroup
$obmisubnet= $obvnet.Subnets[0]

Activity: Provisioning Azure SQL Server and SQL Database using PowerShell | 53

8. Create a subnet delegation for Microsoft.Sql/managedInstances:

Create a delegation
Write-Host "Create a subnet delegation" -ForegroundColor Green
$obmisubnet.Delegations = New-Object "$Azcollections.
List''1[$AznetworkModels.PSDelegation]"
$delegationName = "dlManagedInstance" + (Get-Random -Maximum 1000)
$delegation = New-AzDelegation -Name $delegationName -ServiceName
"Microsoft.Sql/managedInstances"
$obmisubnet.Delegations.Add($delegation)

Set-AzVirtualNetwork -VirtualNetwork $obvnet
$misubnetid = $obmisubnet.Id
$allowParameters = @{
 Access = 'Allow'
 Protocol = 'Tcp'
 Direction= 'Inbound'
 SourcePortRange = '*'
 SourceAddressPrefix = 'VirtualNetwork'
 DestinationAddressPrefix = '*'
}
$denyInParameters = @{
 Access = 'Deny'
 Protocol = '*'
 Direction = 'Inbound'
 SourcePortRange = '*'
 SourceAddressPrefix = '*'
 DestinationPortRange = '*'
 DestinationAddressPrefix = '*'
}
$denyOutParameters = @{
 Access = 'Deny'
 Protocol = '*'
 Direction = 'Outbound'
 SourcePortRange = '*'
 SourceAddressPrefix = '*'
 DestinationPortRange = '*'
 DestinationAddressPrefix = '*'
}

54 | Introduction to Azure SQL managed databases

9. Configure the network rules in the network security group by adding the following
code:

Write-Host "Configure network rules in network security group"
-ForegroundColor Green

Get-AzNetworkSecurityGroup '
 -ResourceGroupName $ResourceGroup '
 -Name $_nsg |
 Add-AzNetworkSecurityRuleConfig '
 @allowParameters '
 -Priority 1000 '
 -Name "allow_tds_inbound" '
 -DestinationPortRange 1433 |
 Add-AzNetworkSecurityRuleConfig '
 @allowParameters '
 -Priority 1100 '
 -Name "allow_redirect_inbound" '
 -DestinationPortRange 11000-11999 |
 Add-AzNetworkSecurityRuleConfig '
 @denyInParameters '
 -Priority 4096 '
 -Name "deny_all_inbound" |
 Add-AzNetworkSecurityRuleConfig '
 @denyOutParameters '
 -Priority 4096 '
 -Name "deny_all_outbound" |
 Set-AzNetworkSecurityGroup

10. Add the following code to create the credential:

Creating credential
Write-Host "Creating credential" -ForegroundColor Green
 $creds = New-Object -TypeName System.Management.Automation.PSCredential
-ArgumentList $miadmin, (ConvertTo-SecureString -String $miadminpassword
-AsPlainText -Force)

Activity: Provisioning Azure SQL Server and SQL Database using PowerShell | 55

11. Add the following code to provision an SQL Managed Instance:

Provision managed instance
Write-Host "Provisioning SQL managed instance $miname" -ForegroundColor
Green
New-AzSqlInstance -Name $miname -ResourceGroupName $ResourceGroup
-Location $Location -SubnetId $misubnetid '
 -AdministratorCredential $creds '
 -StorageSizeInGB $mistorage -VCore $mivcores
-Edition $miedition '
 -ComputeGeneration $migeneration -LicenseType
$milicense

<#
Clean-Up : Remove managed instance
Remove-AzSqlInstance -Name $miadmin -ResourceGroupName $ResourceGroup
-Force

#>

Note

The PowerShell script is self-explanatory. Review the comments in the script to
understand what each command is used for.

12. Open a new PowerShell console window. Set the directory to the one containing
the ProvisionSQLMI.ps1 file.

56 | Introduction to Azure SQL managed databases

13. Copy and paste the following command in the PowerShell window:

.\ProvisionSQLMI.ps1 -subscriptionid 6ee856b5-yy6d-4bc1-a901-byg5569842e1
-ResourceGroup Packt1 -Location westus2 -vNet mi-vnet -misubnet mi-subnet
-miname packtmi -miadmin miadmin -miadminpassword CreateYourAdminPassword1
-miedition "General Purpose" -mivcores 4 -mistorage 32 -migeneration Gen5
-milicense LicenseIncluded

You may change the parameter values if you wish to.

Note

If you have more than one subscription, specify the subscription ID in the
preceding command for the parameter subscription ID.

This will create a new SQL managed instance with all the required network
specifications.

Note

The first instance in an empty subnet takes 4 hours to finish 90% of the operations.
To learn more about deployment durations for managed instances, please visit
https://docs.microsoft.com/azure/azure-sql/managed-instance/management-
operations-overview#duration.

14. Once you are done with the managed instance, execute the following command to
delete it:

Remove-AzSqlInstance -Name $miadmin -ResourceGroupName $ResourceGroup
-Force

This command expects the managed instance name and the resource group to
delete that managed instance.

In this exercise, we deployed Azure SQL Managed Instance using PowerShell. We
deployed a new virtual network and added a network security group and a route table.
We also added subnet delegation for management operations. This approach makes
deployment much simpler and can be used to deploy multiple instances in a production
environment.

https://docs.microsoft.com/azure/azure-sql/managed-instance/management-operations-overview#duration
https://docs.microsoft.com/azure/azure-sql/managed-instance/management-operations-overview#duration

Summary | 57

Summary
This chapter was an introduction to the SQL PaaS offering from Microsoft. We learned
about the Azure SQL architecture and the different layers that make up the Azure SQL
infrastructure.

We also learned about the request flow through the different layers when a user
connects to and queries an Azure SQL Database. We learned how to connect to and
query a database from SQL Server Management Studio and the Azure portal.

We learned about the Azure SQL Managed Instance connectivity architecture and
learned how to provision a managed instance using PowerShell.

Most importantly, the chapter covered the differences between Azure SQL Server,
Azure SQL Database, and Azure SQL Managed Instance.

In the next chapter, we will discuss how to migrate data from an on-premises system to
an Azure SQL Database and Azure SQL Managed Instance.

Azure provides multiple service (performance) tiers for Azure SQL Database and SQL
Managed Instance. There are two purchasing options, the Database Transaction Unit
(DTU) model and the vCore model. Each purchasing option has multiple service tiers.
The purchasing option and service tier define the performance and cost of an SQL
managed database. In this chapter, we'll look at the different purchasing options and
service tiers and learn how to choose an appropriate starting performance tier when
migrating to an SQL managed database.

We will learn about:

• DTUs and the vCore purchasing model

• Different service tier options for SQL Database and SQL Managed Instance

• Using Data Migration Assistant (DMA) to get service tier recommendations
when migrating an on-premises SQL Server workload to SQL Database and SQL
Managed Instance

Let's get started with understanding the DTU model.

Service tiers

2

60 | Service tiers

The DTU model
In the DTU purchasing option, the amount of resources (CPUs, I/O, RAM, and storage)
to be assigned to an SQL database in a particular service tier is calculated in DTUs.

DTUs guarantee that an SQL database will always have a certain amount of resources
and a certain level of performance (offered under a particular DTU model) at any given
point in time, independent of other SQL databases on the same SQL server or across
Microsoft Azure.

The ratio for the aforementioned resources was calculated by Microsoft by running
an Online Transaction Processing (OLTP) benchmark. One DTU roughly equates to 1
transaction/sec as per the benchmark.

The DTU purchasing model measures performance in DTUs instead of CPU and
memory. Each DTU level and service tier provides predictable performance. The higher
the DTU, the better the performance.

Note

The DTU purchasing model is not available with SQL Managed Instance.

In the DTU purchasing model, the compute and storage are bundled and priced
together. For example, the 10 DTU standard service tier has a fixed storage capacity of
250 GB included within the DTU cost. Any additional storage is charged separately.

DTU service tiers
There are three service tiers available in the DTU-based purchasing option:

• Basic service tier: The Basic tier is the lowest tier available and applies to small,
infrequently used applications, usually supporting one single active transaction
at any given point in time.

The Basic tier has a size limit of 2 GB, a performance limit of 5 DTUs, and costs $5/
month:

DTU service tiers | 61

Figure 2.1: Performance statistics for the Basic service tier

• Standard service tier: This is the most used service tier and is best for web
applications or workgroups with low to medium I/O performance requirements.
Unlike the Basic service tier, it has nine different performance levels: S0, S1, S2,
S3, S4, S6, S7, S9, and S12. Each performance level offers the same size (250 GB);
however, they differ in terms of DTUs and cost. S0, S1, S2, S3, S4, S6, S7, S9, and
S12 offer 10, 20, 50, 100, 200, 400, 800, 1,600, and 3,000 DTUs and cost $15, $30,
$75, $150, $300, $600, $1,200, $2400, and $4,500 per month, respectively:

Compute size Basic

Max DTUs 5

Included storage (GB) 2

Max storage (GB) 2

Max in-memory OLTP storage (GB) N/A

Max concurrent workers (requests) 30

Max concurrent sessions 300

Basic service tier

62 | Service tiers

Figure 2.2: Performance statistics for the Standard service tier

Figure 2.3: Performance statistics for the Standard service tier (continued)

Note

The Basic and Standard S0, S1, and S2 tiers have less than one vCore (CPU). For
CPU-intensive workloads, S3 or higher is recommended.

Compute size S0 S1 S2 S3

Max DTUs 10 20 50 100

Included storage (GB)1 250 250 250 250

Max storage (GB) 250 250 250 1024

Max in-memory OLTP storage (GB) N/A N/A N/A N/A

Max concurrent workers (requests) 60 90 120 200

Max concurrent sessions 600 900 1200 2400

Standard service tier

Compute size S4 S6 S7 S9 S12

Max DTUs 200 400 800 1600 3000

Included storage (GB)1 250 250 250 250 250

Max storage (GB) 1024 1024 1024 1024 1024

Max in-memory OLTP storage (GB) N/A N/A N/A N/A N/A

Max concurrent workers (requests) 400 800 1600 3200 6000

Max concurrent sessions 4800 9600 19200 30000 30000

Standard service tier (continued)

DTU service tiers | 63

• Premium service tier: The Premium service tier is used for mission-critical,
high-transaction-volume applications. It supports a large number of concurrent
users and has high I/O performance compared to the Basic and Standard service
tiers. It provides 25 IOPS per DTU.

It has six different performance levels: P1, P2, P4, P6, P11, and P15. Each
performance level offers different sizes and DTUs. P1, P2, P4, P6, P11, and P15 are
priced at $465, $930, $1,860, $3,720, $7,001, and $16,003 per month, respectively:

Figure 2.4: Performance statistics for the Premium service tier

Note

The prices listed here are for a single database and not for an elastic database
pool.

The Premium service tier supports read scale-out and zone redundancy.

Read scale-out, when enabled, routes read queries to a read-only secondary replica.
The read-only secondary is of the same compute and storage capacity as the primary
replica.

An Availability Zone in an Azure region is an isolated datacenter building. There can
be more than one Availability Zone in an Azure region. When opting for the Premium
service tier, you can choose for SQL Database to be zone-redundant. This will ensure
that a copy of the database is available in another zone within the same region to
facilitate high availability.

Compute size P1 P2 P4 P6 P11 P15

Max DTUs 125 250 500 1000 1750 4000

Included storage (GB)1 500 500 500 500 40962 40962

Max storage (GB) 1024 1024 1024 1024 40962 40962

Max in-memory OLTP storage (GB) 1 2 4 8 14 32

Max concurrent workers (requests) 200 400 800 1600 2800 6400

Max concurrent sessions 30000 30000 30000 30000 30000 30000

Premium service tier

64 | Service tiers

The zone redundancy feature is available for databases up to 1 TB in size.

The vCore model
The vCore purchasing model decouples compute and storage. The compute is
measured in terms of vCore. vCore characteristics such as physical/hyper-threading
are defined by hardware generations.

Memory and I/O are defined per vCore and depend on the hardware generation and
the service tier. vCore and storage are to be selected separately and are therefore
priced separately. The vCore purchasing model also allows the use of existing SQL
Server licenses at discounted rates for SQL managed databases under Azure Hybrid
Benefit.

When configuring a vCore-based service tier, there are two license types available,
BasePrice and LicenseIncluded.

BasePrice offers discounted rates for existing on-premises SQL Server licenses. You
only pay for the underlying Azure infrastructure. This is the best option when migrating
an on-premises database to SQL Database. LicenseIncluded includes the cost of the
SQL Server license and Azure infrastructure.

For more details on Azure Hybrid Benefit, please visit https://docs.microsoft.com/
azure/azure-sql/azure-hybrid-benefit?tabs=azure-powershell.

vCore service tiers
There are three service tiers available with the vCore pricing model: General Purpose,
Business Critical, and Hyperscale. The Hyperscale service tier is only available with SQL
Database, whereas General Purpose and Business Critical are available with both SQL
Database and Managed Instance.

The General Purpose service tier
The General Purpose service tier provides balanced compute and memory options and
is suitable for most business workloads. It separates compute and storage, and the data
and log files are stored in Azure Blob Storage whereas tempdb is stored in a local SSD.

https://docs.microsoft.com/azure/azure-sql/azure-hybrid-benefit?tabs=azure-powershell
https://docs.microsoft.com/azure/azure-sql/azure-hybrid-benefit?tabs=azure-powershell

vCore service tiers | 65

Figure 2.5 shows the architecture model of a General Purpose service tier:

Figure 2.5: General Purpose service tier architecture model

In Figure 2.5, these four active compute nodes and two redundant compute nodes are
just for illustration—the actual number of redundant nodes is determined by Azure
Service Fabric to always deliver 99.99% availability. The active compute nodes have SQL
Server installed. They contain transient data, such as the plan cache, buffer pool, and
columnstore pool). The compute nodes write to data and log files stored in Blob Storage
(premium performance type). The built-in availability and redundancy of Blob Storage
make sure that no data loss happens in the event of an SQL Server or compute node
crash. Blob Storage provides storage latency of between 5 and 10 milliseconds.

If any of the active compute nodes fail or are being patched, the node fails over to an
available redundant node. The data and log files are attached to the new active node,
thereby providing 99.99% availability. The failover behavior is similar to what we have in
a failover cluster instance configuration.

66 | Service tiers

Azure Premium Storage characteristics
In the SQL Managed Instance General Purpose service tier, every database file gets
dedicated IOPS and throughput based on the database file size. Larger files get more
IOPS and throughput. Refer to the following table for file I/O characteristics:

Table 2.1: Premium storage characteristics

If you are noticing slow performance and high I/O latency in SQL Managed Instance,
then increasing individual files might improve performance. In the General Purpose
tier, you can only have 280 database files per instance. If you are hitting this limit,
you might need to consider reducing the number of database files or moving to the
Business Critical tier. Though all database files are placed on Azure Premium Storage,
tempdb database files are stored on a local SSD for a faster response.

The following are some of the workload-related guidelines and best practices for SQL
Managed Instance running on the General Purpose tier:

• Short transactions: Azure SQL Managed Instance runs on a cloud environment
and there could be chances of transient network errors or failover, so you need
to be prepared for that. It's best to always run short transactions as they will be
quicker to recover.

• Batch updates: Always try to run updates in batches rather than running
individual updates.

• Table/index partitioning: Use table partitioning for better I/O throughput and
index partitioning to avoid long-running index maintenance. Partitioning may or
may not benefit all workloads and therefore should be tested and then used.

• Compression/columnstore: In the General Purpose tier, there is latency
between the compute and storage layer. Latency can be reduced by using a
compression or columnstore.

The General Purpose service tier is suitable for generic workloads that require a 99.99%
uptime SLA and storage latency between 5 and 10 milliseconds.

File size >=0 and
<=128 GiB

>128 and
<= 512 GiB

>0.5 and
<=1 TiB

>1 and
<=2 TiB

>2 and
<=4 TiB

>4 and
<=8 TiB

500 2,300 5,000 7,500 7,500 12,500

100 MiB/s 150 MiB/s 200 MiB/s 250 MiB/s 250 MiB/s 480 MiB/s

vCore service tiers | 67

The Business Critical service tier
The Business Critical service tier has integrated compute and storage. Figure 2.6 shows
a Business Critical service tier architecture:

Figure 2.6: Business Critical service tier architecture model

It consists of four replicas in an Always On availability group. There is one primary
replica and three secondary replicas. Each replica has local SSD storage to host data
files, log files, and tempdb. This provides one to two milliseconds of storage latency.

There are two endpoints—the primary endpoint, which is used for read and write, and
a secondary read-only endpoint. The read-only endpoint can be used to offload read-
only queries to the secondary replica. The read-only endpoint is provided free of cost.

If the primary replica fails, one of the secondary replicas is promoted to the primary
replica. Failover is faster than in the General Purpose service tier. When the primary
replica recovers, it connects as a new secondary replica.

The Business Critical service tier with a zone-redundant configuration provides
99.995% uptime. It is suitable for workloads that require low I/O latency (one to two
milliseconds) and highly available and highly resilient applications (faster failover).

The Hyperscale service tier
The Hyperscale service tier decouples the compute, storage, and log into microservices
to provide a highly scalable and highly available service tier.

Note

The Hyperscale service tier isn't available in SQL Managed Instance.

Always on availability group

Super
fast
SSD

Secondary replica Primary replica

Secondary replica Secondary replica

Primary endpoint
(read-write)

Secondary endpoint
(read-only)

68 | Service tiers

A traditional database server, as shown in Figure 2.7, consists of compute (CPU and
memory) and storage (data files and log files):

Figure 2.7: Database server architecture

An SQL Server engine is run by three main components: the query processor, the
storage engine, and the SQL operating system:

• The query processor does query parsing, optimization, and execution.

• The storage engine serves the data required by the queries and manages the data
and log files.

• The SQL operating system is an abstraction over the Windows/Linux operating
system that is mainly responsible for task scheduling and memory management.

The Hyperscale service tier takes out the storage engine from the database server and
splits it into independent scale-out sets of components, page servers, and a log service,
as shown in Figure 2.8.

Comparing it with the traditional database server, observe that the data and log files are
no longer part of the database server:

Figure 2.8: Architecture of the Hyperscale service tier

Database server

Compute = CPU + Memory

SQL Server Query Processing

Storage = Data And Log Files

SQL Server Storage Engine

Database server (primary)

Compute = CPU + Memory

SQL Server Query Processing

Database server (secondary)

Compute = CPU + Memory

SQL Server Query Processing

Compute Storage

Log service

Page
server

Page
server

Page
server

vCore service tiers | 69

A detailed architecture diagram for the Hyperscale service tier is shown here:

Figure 2.9: Detailed architecture of the Hyperscale service tier

RBPEX
Data Cache

SqlServr.exe

Primary
computer

RBPEX
Data Cache

SqlServr.exe

Secondary
computer

RBPEX
Data Cache

SqlServr.exe

Secondary
computer

Compute Nodes

Long term log storage for PITR
(Azure Standard Storage)

Landing zone
(Azure Premium Storage)

Log Cache

Log service

Log service

RBPEX
Data Cache

Page server

RBPEX
Data Cache

Page server

RBPEX
Data Cache

Page server

Page servers

Data file

snapshots

Data file

snapshots

Data file

snapshots

Azure Standard Storage

RBPEX

Local SSD cache

Resilient Buffer Pool Extension

Data pathway

Log pathway

70 | Service tiers

The different Hyperscale service tier components are explained here:

• Compute nodes: A compute node is an SQL Server without the data files and
the log files. Compute nodes are similar to the SQL Server query processor,
responsible for query parsing, optimization, and execution. Users and
applications connect and interact with the compute nodes.

Each compute node has a local data cache, a non-covering data cache—the
Resilient Buffer Pool Extension (RBPEX).

Note

The RBPEX is an SQL Server feature that allows SSDs to be used as an extension
of the buffer pool (server memory or RAM). With an RBPEX, data can be
cached to extended buffers (SSDs), thereby decreasing physical disk reads and
increasing I/O throughput.

The primary compute node takes user and application transactions and writes
them to the log service landing zone. If the data requested by a query isn't
available in the primary node's buffer pool or its local RBPEX cache, it reads or
requests the missing data from the page servers.

The secondary compute nodes are used to offload reads from the primary
compute node. The Hyperscale tier offers four secondary replicas for read
scale-out, high availability, and disaster recovery. Each replica has the same
vCore model as the primary replica and is charged separately. You connect to a
secondary replica by specifying ApplicationIntent as ReadOnly in the connection
string.

Each secondary replica, similar to the case with the primary node, has a local
cache (RBPEX). When a read request is received by a secondary replica, it first
checks for the data in the buffer pool, then the local RBPEX cache, and then the
page servers.

When the primary compute node goes down, failover happens to a secondary
node, and one of the secondary nodes promotes itself to a primary node and
starts accepting read-write transactions. A replacement secondary node is
provisioned and warms up.

No action needs to be taken at the storage level as the compute nodes are
separate from the storage. This is contrary to regular SQL Server architecture,
where a database hosts the SQL Server engine and the storage, as explained
earlier in this section. If the database server goes down, the storage (that is, the
data files and the log files) also goes down.

vCore service tiers | 71

• Page server node: The page server node is where the database data files are.
Each page server node manages 1 TB of data and represents one data file. The
data from each page server node is persisted on a standard storage account. This
makes it possible to rebuild a page server from the data in a standard storage
account in the event of a failure. Therefore, there's no loss of data.

The page servers get the data modifications from the log service and apply them
to the data files. Each page server node has its own local cache (RPBEX). The data
is fully cached in the page server local cache to avoid any data requests being
forwarded to the standard storage account. A database can have one or more
pages of server nodes depending on its size. As the database grows in size, a new
page server is automatically added if the existing page server is 80% full. The
Hyperscale service tier, for now, supports databases up to 100 TB in size.

• Log service node: The log service node is the new transaction log and is again
separated from the compute nodes. The log service node gets the log records
from the primary node, in the landing zone, which is an Azure Premium Storage
account. An Azure Premium Storage account has built-in high availability, which
prevents the loss of any log records. It persists log records from the landing zone
to a durable log cache.

It also forwards log records to the secondary compute nodes and the page
server nodes. It writes the log records to long-term log storage, which is an
Azure Standard Storage account. The long-term log storage is used for point-in-
time recovery. When the log records are written to long-term storage, they are
deleted from the landing zone to free up space.

The log records are kept in long-term log storage for the duration of the backup
retention period that has been configured for the database. No transaction log
backups are needed.

There's no hot standby for a log service node because it's not required. The log
records are persisted first in an Azure Premium Storage account, which has its
own high-availability provision, and then in an Azure Standard Storage account.

72 | Service tiers

The Hyperscale service tier, with this improved architecture, offers the following
benefits:

• Nearly instantaneous backups. A backup is taken by taking a snapshot of the file
in an Azure Standard Storage account. The snapshot process is fast and takes
less than 10 minutes to back up a 50 TB database.

• Similar to database backups, database restores are also based on file snapshots
and are a lot faster than in any other performance tier.

• Higher log throughput and faster transaction commits, regardless of data
volumes:

 - The primary replica does not need to wait for an acknowledgment-of-
transaction commit from the secondary replica. This is because the transaction
log is managed by a log service.

 - Supports up to 100 TB database size.

 - Rapid read scale-out by creating read replicas.

Note

For details on resource limits for different service tiers, please visit https://docs.
microsoft.com/azure/azure-sql/database/service-tiers-vcore?tabs=azure-portal.

The Hyperscale service tier is suitable for applications with large databases (over 4 TB
in size and up to 100 TB), 1- to 10-millisecond storage latency, and instant backup and
restore requirements, as well as for applications with a smaller database size requiring
faster, and vertical and horizontal, compute scaling.

vCore hardware generations
Hardware generations apply only to the vCore purchasing option and define the
compute and memory resources. There are three hardware generations for different
types of workloads:

• Gen5 offers up to 80 logical CPUs, based on Intel E5-2573 v4 (Broadwell) and
2.3 GHz processors, with 5.1 GB per core and fast eNVM SSD. Gen5 offers more
compute scalability with 80 logical CPUs.

• Fsv2-series is for high-compute workloads and provides a faster CPU with a
clock speed of 3.4 GHz to 3.7 GHz. The maximum memory is limited to 136 GB
with 1.9 GB of memory per vCore.

• M-series is for high-memory workloads with a max memory of 3.7 TB and 29 GB of
memory per vCore. M-series is available only in the Business Critical service tier.

https://docs.microsoft.com/azure/azure-sql/database/service-tiers-vcore?tabs=azure-portal
https://docs.microsoft.com/azure/azure-sql/database/service-tiers-vcore?tabs=azure-portal

Determining an appropriate performance tier | 73

For details on compute and memory specifications, please visit https://docs.microsoft.
com/azure/azure-sql/database/service-tiers-vcore?tabs=azure-portal.

Note

SQL Managed Instance only supports Gen5 hardware generation at the time of
writing this book.

An SQL workload can be categorized as a balanced, compute, or memory-optimized
workload. Hardware generation makes it easier to map an on-premises workload to
Azure SQL Database during migration. We can find out which category the on-premises
workload belongs in and then choose the relevant hardware generation in Azure SQL.

Determining an appropriate performance tier
As an SQL Server DBA, when migrating to Azure SQL Database, you will need to have
an initial estimate of DTUs so as to assign an appropriate service tier to Azure SQL
Database. An appropriate service tier will ensure that you meet most of your application
performance goals. Estimating a lower or a higher service tier will result in decreased
performance or increased cost, respectively.

This section teaches you how to use DMA to make an appropriate initial estimate of
the service tier. You can, at any time, change your service tier by monitoring SQL
Database's performance once it's up and running.

DMA SKU recommendation
DMA is a free tool from Microsoft to facilitate migration from SQL Server (on-premises
or IaaS) to SQL Database. It can assess the source database to list out the compatibility
issues between SQL Server and SQL Database. Once you fix the compatibility issues,
you can use it to migrate the schema and data to SQL Database.

It also helps with recommendations to select a starting service tier and SKU. To get
recommendations, we first need to run a PowerShell script to collect the required
performance counters. It's advised to run the script for at least two hours at different
times and ensure we collect counters at peak business hours.

The activity requires DMA to be installed on your machine. You can download it here:
https://www.microsoft.com/download/details.aspx?id=53595.

https://docs.microsoft.com/azure/azure-sql/database/service-tiers-vcore?tabs=azure-portal
https://docs.microsoft.com/azure/azure-sql/database/service-tiers-vcore?tabs=azure-portal
https://www.microsoft.com/download/details.aspx?id=53595

74 | Service tiers

To get recommendations using DMA for the toystore database, perform the following
steps:

1. Open ~/Chapter02/DMA/RunWorkload.bat in Notepad. You should see the following
code:

CD "C:\Program Files\Microsoft Corporation\RMLUtils"
ostress -SXENA\sql2016 -E -dtoystore -Q"Execute usp_Workload" -n10
-r100000 -q
@echo off
Pause

Modify the RMLUtils directory location if required. Change the ostress parameter to
point to the toystore database in your local environment.

Save and close the file.

Double-click on the file to run the workload.

2. Open ~/Chapter02/DMA/RunSKURecommendation.bat. You should see the following
code:

cd "C:\Program Files\Microsoft Data Migration Assistant\"
powershell.exe -File .\SkuRecommendationDataCollectionScript.
ps1 -ComputerName XENA -OutputFilePath "C:\Professional-Azure-
SQL-Database-Administration-Third-Edition\Chapter02\DMA\Counter.
csv" -CollectionTimeInSeconds 7200 -DbConnectionString "Server=XENA\
SQL2016;Initial Catalog=master;Integrated Security=SSPI;"

The preceding command runs the DMA SkuRecommendationDataColletionScript.ps1
PowerShell script to collect the required counters. The script is available at the
DMA installation location.

Modify the parameter values to point the script to your SQL Server environment.

Save and close the file.

Double-click RunSKURecommendation.batch to run the sku counter collection script.

The script will run for the time specified by the CollectionTimeInSeconds parameter
and will write the counter values to the file specified by the OutputFilePath
parameter.

Determining an appropriate performance tier | 75

To get more appropriate recommendations, it's advised you collect counters for
at least two hours. You can also collect counters at different times of the day and
generate recommendations to get the best results.

When the sku collection script completes successfully, a file named counter.csv is
generated at the ~/chapter02/DMA location.

3. Open ~/Chapter02/DMA/GetSKURecommendation.batch. You should see the following
code:

cd "C:\Program Files\Microsoft Data Migration Assistant"
.\DmaCmd.exe /Action=SkuRecommendation /
SkuRecommendationInputDataFilePath="C:\Professional-Azure-SQL-
Database-Administration-Third-Edition\Chapter02\DMA\Counter.
csv" /SkuRecommendationOutputResultsFilePath="C:\Professional-
Azure-SQL-Database-Administration-Third-Edition\Chapter02\DMA\
SKURecommedation.html" /SkuRecommendationPreventPriceRefresh=true /
SkuRecommendationTsvOutputResultsFilePath=C:\Professional-Azure-SQL-
Database-Administration-Third-Edition\Chapter02\DMA\SKURecommedation.tsv"
@echo off
Pause

The preceding command uses the DMA CLI command to generate recommendations.
Provide the path to counter.csv in step 2 to the SKURecommendationInputDataFilePath
parameter.

Copy and save the results.

When run, the command will generate an html and tsv recommendation output file.

Double-click the GetSKURecommendation.batch file to generate the recommendations.

The recommendation script will generate skurecommendation_SQL_DB html and tsv
files with recommendations for Azure SQL Database. It also generates similar files
for SQL Managed Instance.

76 | Service tiers

Figure 2.10 is a snapshot of the skurecommendation_sql_db.html file:

Figure 2.10: DMA SKU recommendations for SQL Managed Instance

Observe that it recommends using the General Purpose pricing tier with 8 vCores.
You can select the pricing tier from the Pricing Tier drop-down menu.

4. The tsv file contains the reasons for considering or not considering a particular
performance tier:

Figure 2.11: DMA SKU recommendation—tsv file

The DMA makes it easy to choose a starting service tier when migrating an existing
on-premises SQL Server workload to an SQL managed database. Once we migrate
the database to the selected service tier, we need to further test the application
performance against the service tier and scale up or scale down as per the required
performance.

Determining an appropriate performance tier | 77

Azure SQL Database compute tiers
There are two compute tiers, provisioned and serverless.

In the provisioned compute tier, the resources (vCores) are pre-allocated and can
be changed by manually scaling to a different service tier as and when required. The
provisioned compute tier cost is calculated per hour based on the number of vCores
configured. The provisioned compute tier is suitable for scenarios with consistent and
regular workloads.

In the serverless compute tier, compute resources for databases are automatically
scaled based on workload demand and are billed based on the amount of compute
used per second. The serverless compute tier also provides an option to automatically
pause the database during inactive usage periods, when only storage is billed, and then
automatically resume databases when activity returns. The serverless compute tier is
price performance-optimized for single databases with intermittent, unpredictable
usage patterns that can afford some delay in compute warm-up after low or idle usage
periods.

Scaling up the Azure SQL Database service tier
In this section, we'll learn how to scale up the SQL Database service tier for better
performance. Let's go back to our example of Mike, who observes that there is an
increase in the load on the SQL database. To overcome this problem, he plans to change
the service tier for the database so that it can handle the overload. This can be achieved
via the following steps:

1. Open a new PowerShell console. In the PowerShell console, execute the following
command to create a new SQL database from a bacpac file:

C:\Code\Chapter02\ImportAzureSQLDB.ps1

2. Provide the SQL server name, SQL database name, SQL Server administrator user
and password, bacpac file path, and sqlpackage.exe path, as shown in Figure 2.12:

Figure 2.12: The Windows PowerShell window

78 | Service tiers

The script will use sqlpackage.exe to import the bacpac file as a new SQL database
on the given SQL server. The database is created in the Basic service tier, as
specified in the PowerShell script.

It may take 10 to 15 minutes to import the SQL database.

3. Open C:\Code\Chapter02\ExecuteQuery.bat in Notepad. It contains the following
commands:

ostress -Sazuresqlservername.database.windows.net -Uuser
-Ppassword -dazuresqldatabase -Q"SELECT * FROM Warehouse.StockItems si
join Warehouse.StockItemholdings sh on si.StockItemId=sh.StockItemID join
Sales.OrderLines ol on ol.StockItemID = si.StockItemID" –n25 –r20 -1

4. Replace azuresqlservername, user, password, and azuresqldatabase with the
appropriate values. For example, if you are running the preceding command
against SQL Database with toystore hosted on the toyfactory SQL server with the
username sqladmin and the password Packt@pub2, then the command will be as
follows:

ostress -Stoyfactory.database.windows.net -Usqladmin -PPackt@pub2
-dtoystore -Q"SELECT * FROM Warehouse.StockItems si join Warehouse.
StockItemholdings sh on si.StockItemId=sh.StockItemID join Sales.
OrderLines ol on ol.StockItemID = si.StockItemID" -n25
-r20 -q

The command will run 25 (specified by the -n25 parameter) concurrent sessions,
and each session will execute the query (specified by the -Q parameter) 20 times.

5. Open the RML command prompt, enter the following command, and press Enter:

C:\Code\Chapter02\ExecuteQuery.bat

This will run the OSTRESS command. Wait for the command to finish executing.
Record the execution time:

Determining an appropriate performance tier | 79

Figure 2.13: RML command prompt

As you can see, it took around 1 minute and 52 seconds to run 25 concurrent
connections against the Basic service tier.

6. The next step is to scale up the service tier from Basic to Standard S3. In the
PowerShell console, execute the following command:

C:\Code\Chapter02\ScaleUpAzureSQLDB.ps1

Provide the parameters as shown in Figure 2.14:

Figure 2.14: Scaling up the service tier

80 | Service tiers

Observe that the database edition has been changed to standard.

7. Open a new RML command prompt and run the same OSTRESS command as in
step 5. You should see a faster query execution time in the Standard S3 tier than in
the Basic tier.

Here's the output from the ExecuteQuery.bat command:

Figure 2.15: Output from the ExecuteQuery.bat command

It took around 42 seconds to run 25 concurrent connections against the Standard S3
service tier. This is almost 60% faster than the Basic tier. You get the performance
improvement just by scaling up the service tier, without any query or database
optimization.

Exercise: Provisioning a Hyperscale SQL database using PowerShell | 81

Changing a service tier
You can scale up or scale down SQL Database at any point in time. This gives the
flexibility to save money by scaling down to a lower service tier in off-peak hours and
scaling up to a higher service tier for better performance in peak hours.

You can change a service tier either manually or automatically. Service tier change
is performed by creating a replica of the original database at the new service tier
performance level. The time taken to change the service tier depends on the size as
well as the service tier of the database before and after the change.

Once the replica is ready, the connections are switched over to the replica. This
ensures that the original database is available for applications during the service tier
change. This also causes all in-flight transactions to be rolled back during the brief
period when the switch to the replica is made. The average switchover time is four
seconds, and it may increase if there are a large number of in-flight transactions.

You may have to add retry logic in the application to manage connection disconnect
issues when changing a service tier.

Exercise: Provisioning a Hyperscale SQL database using
PowerShell
In this section, we'll provision a Hyperscale SQL database using PowerShell:

1. Open a new PowerShell console window and change the working directory to C:\
Code\Chapter02. Enter and execute the following PowerShell command:

.\ProvisionAzureSQLDatabase.ps1 -ResourceGroup RGPackt -Location "East US
2" -SQLServer sshsserver -SQLDatabase toystore -Edition Hyperscale

The preceding command calls the ProvisionAzureSQLDatabase.ps1 script to
provision a new Hyperscale SQL database, toystore.

Note

Change the SQLServer and SQLDatabase parameter values to avoid getting a
Server/Database already exists error.

2. Once the script completes, log in to the Azure portal and click All resources in the
left navigation pane.

82 | Service tiers

3. Click toystore to open the details window:

Figure 2.16: The All resources panel

The pricing tier is Hyperscale, Gen4, 1 vCore:

Figure 2.17: The Configure pane for the toystore SQL database

In this exercise, we provisioned an SQL database with the Hyperscale service tier. The
Hyperscale service tier is costly and it's advised to delete the database if it's created as
part of the exercise.

Choosing between vCore and DTU-based purchasing options | 83

Choosing between vCore and DTU-based purchasing options
When choosing between vCore and DTU-based pricing tiers, consider the following:

Licensing
The vCore pricing model provides up to 30% cost savings by using existing on-premises
SQL Server Standard or Enterprise licenses with software assurance. Therefore, if you
are migrating an existing on-premises SQL Server infrastructure, consider opting for
the vCore pricing model.

Flexibility
The DTU-based model bundles the compute, IOPs, and storage under DTUs and
provides a pre-configured range of varying DTU amounts for different types of
workloads. It's therefore best suited for when you need a simple pre-configured option.

The vCore model provides flexibility when selecting compute and storage options and
is therefore best when you want more transparency and control over the compute and
storage options.

Consider a scenario where you have a database with high compute requirements and
low storage requirements; say, 125 DTUs with a database size of 200 GB. You'll have to
opt for the Premium service tier and pay for the unused storage (300 GB):

Figure 2.18: Azure portal pricing feature

Figure 2.18 is from the Azure portal and shows the pricing options for a Premium
DTU-based tier. Observe that the pricing is calculated per DTU. The storage cost is
inclusive of the DTUs. Therefore, in this instance, you will pay for all 500 GB of storage,
even if it's not used.

84 | Service tiers

In a vCore model, the compute and storage costs are calculated independently.
Therefore, you only pay for the storage you use, which is 200 GB, and the vCores used:

Note

The Premium service tier includes 500 GB of free storage. An additional cost of
approximately $0.16 is applied to additional storage (beyond 500 GB) up to 1 TB.

Figure 2.19: General Purpose vCore pricing model

Figure 2.19 is from the Azure portal and shows the pricing options for the General
Purpose vCore pricing model. Observe that the pricing is calculated per vCore and per
GB of storage used. Therefore, you pay for the storage you use. You can, however, scale
the storage up or down at any time, as per your requirements.

Consider another scenario, where a team is just starting up with a product and is
looking for an SQL database pricing tier; a Standard S2 or S3 tier with 50 to 100 DTUs
and a maximum of 250 GB would be a good option to go for. As the product matures
and the scalability requirements become clear, the team can scale up accordingly.

Note

Once you move to the Hyperscale service tier, you can't move to any other service
tier.

You can scale between vCore-based and DTU-based service tiers. When scaling from
DTU- to vCore-based pricing tiers, consider the following rule of thumb for choosing
the correct compute size: 100 Standard tier DTUs = 1 vCore in the General Purpose
tier and 125 Premium tier DTUs = 1 vCore in the Business Critical tier

Summary | 85

Summary
Azure SQL Database and SQL Managed Instance have different purchasing options
and service tiers to support varying workloads. SQL Database has two purchase
options, DTU and vCore, while SQL Managed Instance is only available with the vCore
model. The DTU purchasing option measures performance in DTUs. A DTU hides the
complexity of measuring performance in terms of CPU and memory and provides a
simple way of measuring performance. It's good for teams that don't have specialized
DBAs and for new databases/applications where we don't have historical performance
metrics for the database.

The vCore model is more similar to an on-premises SQL Server wherein we get to
choose compute (vCore) and storage separately. It's best for teams with specialized
DBAs and for migrating on-premises workloads to Azure (where we have historical
performance metrics for the database).

We also looked at different service tiers for each purchasing model and underlaying
architecture model differences and use cases.

We learned how to use DMA to get SKU recommendations when migrating an
on-premises SQL workload to SQL Database or SQL Managed Instance.

In the next chapter, we'll learn about techniques and considerations to migrate an
on-premises SQL Server database to Azure SQL managed database offerings.

Migrating existing on-premises SQL Server databases is an important task to be carried
out by DBAs when moving applications to Azure. DBAs need to work closely with the
application team to understand the requirements and prepare a migration path. A
migration path can be used to migrate all of the application databases or to split the
application into multiple individual microservices and migrate data relevant to the
modules.

Irrespective of the migration path, you'll have to choose between Azure SQL Database
and Azure SQL Managed Instance, along with an appropriate performance tier. You
need to know about the tools and options to copy data and schema from on-premises
to Azure.

In this chapter, you'll learn how to find and fix compatibility issues, determine an
appropriate service tier, figure out a migration strategy and tool, and migrate to the
cloud.

Migration

3

88 | Migration

By the end of this chapter, you will be able to:

• Choose between Azure SQL Database and SQL Managed Instance

• Select a service tier for your migrated Azure SQL Database based on your needs

• Database Transaction Units (DTUs) and vCore purchasing models

• Identify and fix SQL Server to Azure SQL Database compatibility issues

• Migrate from an on-premises database to Azure SQL Database using different
tools

Migration methodology
Migrating an on-premises SQL Server database is an important task and should be
planned to perfection. An ideal migration methodology should be like the one shown in
Figure 3.1:

Figure 3.1: Migration methodology

We will discuss each of these steps now.

Determining the migration benefits
You should first identify and analyze the benefits of migrating an on-premises SQL
database to Azure SQL Database. Migration involves a lot of time, effort, and cost, and it
shouldn't be done just for the sake of having a cloud database.

Selecting a service model
The next step is to decide whether the database will be deployed individually, in an
elastic pool, or as an SQL Managed Instance. This is important as the service model will
affect the overall pricing, service tier, performance, and management of the database.

Migration methodology | 89

Selecting a service tier
The next step is to find an appropriate service tier and performance level for Azure SQL
Database. This is important as it will directly affect the performance of an Azure SQL
Database. A too-low service tier will result in bad performance, and a too-high service
tier will result in unnecessary cost.

In Chapter 2, Service tiers, we learned about different service tiers available with
Azure SQL Database. We also learned how to use Data Migration Assistant to
get recommendations for an appropriate starting tier to use when migrating an
on-premises workload to Azure SQL Database.

Selecting the primary region and disaster recovery region
The next step is to find the primary region and the disaster recovery region for your
Azure SQL database. It's advisable to have the database in a region that will provide fast
connectivity to your users.

Determining compatibility issues
The next step is to find out about any compatibility issues that may stop you from
migrating to Azure SQL Database. In Chapter 1, Introduction to Azure SQL managed
databases, we learned about the differences between SQL Server (on-premises and
SQL Server on Azure Virtual Machines) and the features not supported in Azure SQL
Database and SQL Managed Instance. It is important to find out the compatibility issues
and re-write the application if required. For example, if your application has cross-
database queries, which aren't supported in Azure SQL Database, you'll need to rewrite
the application to use a workaround in order to move to Azure SQL Database, or choose
SQL Managed Instance as the target, which supports cross-database queries.

Selecting a migration tool
Microsoft provides various tools to automate database migration. You can also write
PowerShell or C# scripts to automate the database migration process. The best tool to
choose largely depends on the database's size and the downtime SLA.

Before we perform any migration, however, we ought to consider whether we want to
migrate to Azure SQL Database or SQL Managed Instance.

90 | Migration

Choosing between Azure SQL Database and SQL
Managed Instance
Azure SQL Database and SQL Managed Instance both offer the benefits of the
Platform-as-a-Service (PaaS) model, in which the user doesn't manage the underlying
hardware, software upgrades, and operating system configuration. The user therefore
saves on the administrative cost of managing the platform.

These two deployments (SQL Database and SQL Managed Instance) provide additional
services such as automated backups, Query Performance Insight (not available in SQL
Managed Instance), Azure Defender for SQL, high availability, and disaster recovery.
Each of the two deployments, therefore, provides a ready-to-use database for new or
existing applications.

The two deployment options have common performance tiers, with Azure SQL
Database now supporting the vCore pricing tiers.

With the two options each having similar sets of features, you should consider the
following aspects when choosing between Azure SQL Database and Azure Managed
Instance:

• Features

• Migration constraints

• Time to develop and market

Let's go over all of them now in detail.

Features
As mentioned in Chapter 1, Introduction to Azure SQL managed databases, in the
Introduction to Managed Instance section, managed instances provide near 100%
surface area compatibility and support almost all of the on-premises SQL Server
features.

On the other hand, Azure SQL Database doesn't support some of the important
on-premises features, such as Common Language Runtime (SQL CLR), global
temporary tables, SQL Server Agent, cross-database queries, and log shipping (for a
complete list, see the Unsupported Features section in Chapter 1, Introduction to Azure
SQL managed databases).

Therefore, if you are looking to use any of the features not supported in Azure SQL
Database, you should opt for SQL Managed Instance.

Choosing between Azure SQL Database and SQL Managed Instance | 91

An especially important feature to consider is cross-database queries. If you have an
application with two or more databases that performs cross-database queries, it's
better to opt for SQL Managed Instance.

Note

For a list of features not supported by SQL Managed Instance, please visit https://
docs.microsoft.com/azure/azure-sql/database/features-comparison.

Migration
An SQL Managed Instance provides speedy migration with little to no downtime, as it's
almost 100% compatible with on-premises SQL Server features.

As you prepare to migrate and determine database compatibility issues, with SQL
Managed Instance there will be zero or minimal migration constraints compared to
those associated with Azure SQL Database.

Time to develop and market
Azure SQL Database provides fast database deployment for a team with limited
database expertise and development and deployment time constraints. With DTU-
or vCore-based pricing, a team can easily provision an Azure SQL Database and
start the application development. As the application takes shape and the database
and scalability requirements become clearer, the Azure SQL Database can easily be
scaled to a higher DTU-based pricing tier or vCore pricing tier. Azure SQL Database's
Serverless compute tier makes it easy to provision a test and development database
without worrying about the cost. The Azure SQL Server database pauses automatically
if there's no activity for the duration as specified by auto-pause delay. This makes Azure
SQL Database serverless a good choice for a development database.

On the other hand, if a team migrates an existing application from an on-premises SQL
Server, SQL Managed Instance provides fast and easy cloud migration with minimal
application changes being required.

When opting for SQL Managed Instance for new applications, you need to choose
the compute and storage resources in the vCore pricing tier. If a team doesn't have
database expertise or clear compute and storage requirements, a DTU-based pricing
model proves to be the best fit.

https://docs.microsoft.com/azure/azure-sql/database/features-comparison
https://docs.microsoft.com/azure/azure-sql/database/features-comparison

92 | Migration

Tools for determining compatibility issues
Once you have chosen which deployment to use and determined the starting service
tier, the next step is to migrate both schema and data from the on-premises SQL
database to the Azure SQL Database. As we learned in Chapter 1, Introduction to Azure
SQL managed databases, not all features are the same or supported on Azure SQL
Server. Therefore, you will first have to do a compatibility test or assessment to find
and fix the compatibility issues.

The following are the available tools for detecting compatibility issues. Although these
tools can be used to migrate the database, in this section, we'll specifically talk about
using them to assess compatibility.

Data Migration Assistant
Data Migration Assistant (DMA) is a standalone tool for detecting compatibility issues
and migrating on-premises SQL Server databases to Azure SQL databases. It provides
a wizard-like easy-to-use graphical user interface for compatibility assessment and
migration. DMA detects and highlights compatibility issues. Once all compatibility
issues are identified and fixed, you can migrate the database.

SQL Server Data Tools (SSDT) for Visual Studio
SSDT is the best tool for Azure SQL Database (V12) to find and fix incompatibility issues;
it has the most recent compatibility rules. The compatibility issues can be fixed from
SSDT itself, after which we can migrate the database.

SQL Server Management Studio (SSMS)
SSMS has two options to detect and migrate:

• Export Data Tier Application: This exports the data and schema in a bacpac file
and, while doing so, lists out any of the incompatibilities found.

• Deploy Database to Microsoft Azure SQL Database: This deploys the database
to Azure SQL Database, by first exporting the database in a bacpac file and then
importing the bacpac file into Azure SQL Database. It lists incompatibilities when
generating the bacpac file.

Tools for determining compatibility issues | 93

SQLPackage.exe
This is a command-line tool that helps to automate database development tasks such
as importing, exporting, and extracting bacpac or dacpac files. Its actual use is to help
automate database life cycle management; however, it can be used to detect and get a
report of the incompatibilities found.

It is included in SSDT. You can download a different version of SSDT from here: https://
docs.microsoft.com/sql/ssdt/download-sql-server-data-tools-ssdt?view=sql- server-
2017.

Azure Database Migration Services
Azure Database Migration Services, or DMS, is a fully managed Azure service that
enables seamless migrations from multiple data sources to Azure databases. We will be
using Azure DMS in various activities throughout this chapter.

Here are some examples of migrations that DMS can do:

• Migrate an on-premises SQL Server to Azure SQL Database or SQL Managed
Instance. Supports both online (zero downtime) and offline migrations

• Migrate Azure SQL Database to SQL Managed Instance

• Migrate an AWS SQL Server RDS instance to Azure SQL Database or SQL
Managed Instance

• Migrate MySQL to Azure Database for MySQL

• Migrate PostgreSQL to Azure Database for PostgreSQL

• Migrate MongoDB to Azure Cosmos DB Mongo API

• Migrate an Oracle database to Azure Database for PostgreSQL

https://docs.microsoft.com/sql/ssdt/download-sql-server-data-tools-ssdt?view=sql- server-2017
https://docs.microsoft.com/sql/ssdt/download-sql-server-data-tools-ssdt?view=sql- server-2017
https://docs.microsoft.com/sql/ssdt/download-sql-server-data-tools-ssdt?view=sql- server-2017

94 | Migration

Choosing a migration tool and performing migration
Once you have found and fixed compatibility issues, the next step is to select a
migration tool or method and perform the actual migration. There are different
methods available for various scenarios. The selection largely depends on downtime,
database size, and network speed/quality.

Here's a comparison of various migration methods to help you correctly choose a
migration method:

Table 3.1: Determining the migration method

Migration
Method Description Downtime Recommendations

SQL Server
Management
Studio -
deploy
database to
Azure SQL
Database

Wizard-based GUI for exporting
an on-premises database to
bacpac and importing the bacpac
into Azure SQL Database.
This only applies to Azure SQL
Database.

Yes

Best to quickly
deploy test/
development
databases to Azure
SQL Database.

SQLPackage.
exe

Command-line utility for exporting
an on-premises database to
bacpac and importing the bacpac
to Azure SQL Database. It can
be used to migrate a database
to Azure SQL Database and
Managed Instance.

Yes

Uses parallel bcp
when importing data
into an Azure SQL
Database. Suitable
for production and
development/test
database migration.

Data
Migration
Assistant

Free wizard-based GUI tool
from Microsoft. Detects and lists
compatibility issues. Uses T-SQL
scripts for schema migration
and bcp to copy data. Option
to choose database objects
to migrate. It can be used to
migrate a database to Azure SQL
Database and Managed Instance.

Yes

Recommended
for production,
development, and
test database
migration.

Transactional
replication

Azure SQL Database as a
subscriber to an on-premises
(SQL Server 2012 onward)
SQL Server Publisher. Use the

feature to migrate selective
data. It can be used to migrate a
database to Azure SQL Database
and Managed Instance.

Near-zero downtime. In-
process transactions may

the application connection
from on-premises to Azure
SQL Database. However,
this can be managed using
retry logic in the application.

Recommended
for zero-downtime
production
migration.

Azure
Database
Migration
Service

Fully managed service to
migrate schema and data.
Incurs additional cost. Supports
migration from heterogeneous
databases. It can be used to
migrate a database to Azure SQL
Database and Managed Instance.

Near-zero downtime. In-
process transactions may

an application connection
from on-premises to Azure
SQL Database. However,
this can be managed using
retry logic in the application.

Recommended
for zero-downtime
production
migration.

Choosing a migration tool and performing migration | 95

Now for some activities that will show you how to perform migrations using a variety of
the tools we have just discussed. In the following activities, we will:

• Migrate an on-premises SQL database to Azure SQL Database using DMA

• Migrate an SQL Server database on an Azure Virtual Machine to an Azure SQL
database using Azure DMS

• Migrate an on-premises SQL Server database to Azure SQL Database using SSMS

• Migrate an SQL Server database to an Azure SQL database using transactional
replication

• Migrate an on-premises SQL Server to SQL Managed Instance using the native
backup and restore method (offline approach)

• Migrate an SQL Server on an Azure Virtual Machine to an SQL Managed Instance
using Azure DMS (online approach)

Let's get started.

Activity: Migrating an on-premises SQL database to Azure SQL Database
using DMA
This section describes how to migrate an SQL Server database, such as the toystore
database, to an Azure SQL database using DMA:

1. Open Data Migration Assistant on your computer. From the left ribbon, click the
+ sign, as shown in Figure 3.2:

Figure 3.2: Data Migration Assistant

96 | Migration

2. In the resulting window, you will need to set these fields:

For Project type, select Assessment.

For Project name, type toystore.

For Source server type, select SQL Server.

For Target server type, select Azure SQL Database.

Click Create to create a new assessment project:

Figure 3.3: Creating a new Assessment project

3. In the resulting Select report type window, select the Check database
compatibility and Check feature parity checkboxes. Click Next to continue:

Figure 3.4: Checking feature parity

Choosing a migration tool and performing migration | 97

4. In the Connect to a server window, do the following:

For Server name, provide the SQL server name.

For Authentication type, select Windows Authentication. Click Connect to
continue:

Figure 3.5: Connecting the server

5. In the Add sources window, select the database. You can also provide the extended
events or the SQL Profile trace files for assessment. This is useful for assessing
queries from the application using ORM tools (such as Entity Framework):

Figure 3.6: Add sources

98 | Migration

Click Add to continue.

DMA connects to the database and fetches the compatibility and database size:

Figure 3.7: Running the assessment for the selected sources

Note

You can also assess queries from applications such as .NET. This is useful when
the application uses ad hoc queries to query the database instead of stored
procedures.

Click Start Assessment to find compatibility issues.

6. DMA will apply the compatibility rules to find and list the compatibility issues.
It tells you the features that aren't supported in the SQL Server feature parity
section:

Figure 3.8: SQL Server feature parity section

Choosing a migration tool and performing migration | 99

According to DMA, you have one cross-database reference and one service broker
instance, which aren't supported in Azure SQL Database.

7. Under Options, select the Compatibility issues radio button:

Figure 3.9: Selecting compatibility issues

DMA lists the stored procedures that failed the compatibility test. To fix the errors,
open C:\code\Chapter03\FixCompatibilityIssues.sql in SSMS and execute it against
the toystore database.

8. In the top-right corner, click Restart Assessment:

Figure 3.10: Restart Assessment

100 | Migration

DMA will re-assess and notify you that there are no compatibility issues:

Figure 3.11: DMA ascertains that there are no compatibility issues

9. To migrate the database, in the left-hand navigation bar, click the + sign.

In the resulting window, do the following:

For Project type, select Migration.

For Project name, type toystoreMigration.

For Source server type, select SQL Server.

For Target server type, select Azure SQL Server.

For Migration scope, select Schema and Data.

Click Create to create a new assessment project:

Figure 3.12: Creating a new assessment project

Choosing a migration tool and performing migration | 101

10. In the Connect to source server window, do the following:

For Server name, provide the SQL Server name.

For Authentication type, select Windows Authentication.

Click Connect to continue:

Figure 3.13: Connecting to the source server

11. Select toystore from the list of available databases and click Next:

Figure 3.14: Selecting the toystore database

102 | Migration

12. In the Connect to target server window, do the following:

For Server name, provide the Azure SQL Server name.

For Authentication type, select SQL Server Authentication.

For Username, provide the Azure SQL Server admin user.

For Password, provide the password.

Clear the Encrypt connection checkbox.

Click Connect to continue:

Figure 3.15: Connect to the target server

Choosing a migration tool and performing migration | 103

13. In the resulting window, select the toystore database, and then click Next to
continue:

Figure 3.16: Selecting the toystore database

14. In the resulting Select objects window, you can select which objects to move to
Azure SQL Database. Select all and click Generate SQL Scripts at the bottom of the
window to continue:

Figure 3.17: Generate the SQL scripts

104 | Migration

DMA will generate a T-SQL script to deploy the database schema. If you wish to save the
T-SQL script, you can do so by clicking on the Save option in the Generated script section:

Figure 3.18: Generating a T-SQL script to deploy the database schema

15. In the Script & Deploy schema window, click the Deploy schema button to deploy
the schema to the Azure server. DMA will execute the T-SQL script against the
Azure SQL database to create the selected database objects.

Once schema migration is successful, click Migrate data:

Figure 3.19: Creating database objects

Choosing a migration tool and performing migration | 105

16. In the resulting Selected tables window, you can choose what table data to migrate.
Leave it as default, for this example, selecting all tables, and then click Start data
migration:

Figure 3.20: Starting data migration

This migrates data from the selected tables in parallel and therefore can be used for
large to very large databases:

Figure 3.21: Migrating the data from selected tables

In this activity, we learned how to use Data Migration Assistant to find compatibility
issues and migrate an SQL Server database to an Azure SQL database.

106 | Migration

Activity: Migrating an SQL Server database on an Azure virtual machine
to an Azure SQL database using Azure DMS
In this activity, we'll use Azure Database Migration Services (DMS) to migrate a
database from an SQL Server database on a virtual machine to an Azure SQL database.

Note

In the exercise, the source database is on an SQL server on an Azure Virtual
Machine. To migrate an on-premises database, site-to-site connectivity is required
via VPN or Azure ExpressRoute. To find out more about this, please visit the
following sites: https://docs.microsoft.com/azure/expressroute/expressroute-
introduction

https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpngateways

The rest of the steps for the migration are similar to those in the exercise.

Follow these steps to migrate an SQL Server database on Azure VM to Azure SQL
Database:

1. Use Database Migration Assistant to find the compatibility issues in the source
database and migrate the source schema to an Azure SQL Database. Before
migrating the schema, make sure you have a blank Azure SQL database already
provisioned.

The steps to assess and migrate schema are given in Activity: Migrating an
on-premises SQL Database to Azure SQL Database using DMA.

2. The next step is to register the Microsoft.DataMigration resource provider. To do
this, type Subscriptions in the search box and then select Subscriptions:

Figure 3.22: Registering the Microsoft.DataMigration resource provider

3. In the Subscriptions window, select the subscription in which you wish to create
the Azure DMS instance:

https://docs.microsoft.com/azure/expressroute/expressroute-introduction
https://docs.microsoft.com/azure/expressroute/expressroute-introduction
https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpngateways

Choosing a migration tool and performing migration | 107

Figure 3.23: Subscriptions window

4. In the selected Subscription window, type Resource Providers in the search box:

Figure 3.24: Resource providers

108 | Migration

5. Click Resource providers to open the Resource providers window. Click Register
against Microsoft.DataMigration if it's not already registered:

Figure 3.25: Registering Microsoft.DataMigration

6. Log in to the Azure portal and type Azure Database Migration Services in the
search box:

Figure 3.26: Searching for Azure Database Migration Services

Click the Azure Database Migration Services option link under Services. In the
Azure Database Migration Services window, click Add.

Choosing a migration tool and performing migration | 109

7. In the Create Migration Service window's Basics tab, provide the Subscription,
Resource group, Migration service name, Location, Service mode, and Pricing tier
values as shown in Figure 3.27:

Figure 3.27: Create Migration Service—Basics tab

Other than the name, subscription, location, and resource group, DMS requires
Service mode and Pricing tier information.

110 | Migration

There are two service modes, Azure and Hybrid (in preview at the time of writing
this book). In Azure mode, the Azure migration service instance (also known as
the Azure worker) is hosted in Microsoft Azure; however, in Hybrid mode, the
Azure migration instance (the Azure worker) is hosted on-premises. Hybrid DMS
is also preferred when there's no site-to-site connectivity between Azure and
on-premises.

DMS has two pricing tiers, Standard and Premium. The Standard tier is free and is
for one-time or offline migrations. The Standard tier comes with 1, 2, or 4 vCores.

The Premium tier can be used for offline and online migrations. The Premium tier
comes with 4 vCores:

Figure 3.28: Pricing tiers

Click Next: Networking to move to the next step.

Choosing a migration tool and performing migration | 111

8. In the Networking tab, provide an existing virtual network or create a new virtual
network. A virtual network allows DMS to connect to the target and source. For
example, if your source is an on-premises SQL Server database, the DMS virtual
network should be connected to the on-premises network either through a VPN or
Azure ExpressRoute:

Figure 3.29: Azure Data Migration Services—Networking tab

Virtual networks in the selected location and resource group are listed as shown in
Figure 3.29.

For the sake of the demonstration, the source is an SQL Server database on an
Azure VM. The Azure VM and DMS are on the same virtual network in order to
facilitate connectivity between them.

Click Review + create and then Create to provision the Azure Database Migration
Service.

112 | Migration

9. The next step is to create a new database migration project. To do that, open the
AzDMS resource and click New Migration Project:

Figure 3.30: New Migration Project

In the New Migration Project window, fill in Project name, select SQL Server as
the Source server type, and select Azure SQL Database as the Target server type.

Click Create and run activity to continue:

Figure 3.31: Creating a new migration project

Choosing a migration tool and performing migration | 113

10. In the next step, provide the source server details. The Source SQL Server instance
name is the name or the IP of the source SQL server. The source server here is an
Azure VM. The private IP of the virtual machine is therefore used to connect to it:

Figure 3.32: Source server details

Click Next: Select target to go to the Select target tab.

The wizard will validate the connection information and will error out if it's unable
to connect to the SQL Server on Azure VM. The wizard will go to the Select target
tab after a successful validation.

114 | Migration

11. In the Select target tab, provide the Azure SQL Server name and connection
information:

Figure 3.33: Migration Wizard—Select target tab

The Database Migration Service connects to Azure SQL Database using a private
IP address. To make sure that the DMS can successfully connect to Azure SQL
Database, enable a service endpoint or private endpoint as explained in Chapter 6,
Security.

Click Next: Map to target databases to go to the next step. The wizard will validate
the connection information and will error out if it's unable to connect to the
database. Otherwise, it'll move to the next tab.

Choosing a migration tool and performing migration | 115

12. In Map to target database, select the source and target databases. Optionally,
you can set source database read-only to facilitate faster migration. As we are
performing offline migration, this can help to stop any data changes during the
migration and therefore help complete the migration faster:

Figure 3.34: Migration Wizard—Map to target database tab

Click the Next: Configure migration settings button to move to the next step.

116 | Migration

13. Configure migration settings lists the tables from the source database. If a source
table is not available in the target database, a Target table does not exist message is
displayed against that table:

Figure 3.35: Migration wizard—Configure migration settings

Select the tables to migrate and then select Next: Summary to move to the next
step.

In the Summary tab, provide the activity name, review the configuration, and then
click the Start migration button.

A new page, toystoremigrationactivity, opens, displaying the migration status. You
should get the following status when the migration completes:

Choosing a migration tool and performing migration | 117

Figure 3.36: Migration activity status

The migration wizard copied the data for 32 tables and took 25 seconds. The duration
varies depending on the database size.

Once the data is migrated, you can point the application to the Azure SQL Database and
run validation tests to make sure that the application is working as expected. After a
successful functional validation, you can go live by pointing the application to connect
to the Azure SQL Database.

Activity: Migrating an on-premises SQL Server database to Azure SQL
Database using SSMS
Let's consider our example of Toystore Ltd. from the previous chapter. Mike has
performed all the steps that he has to complete before he can migrate the SQL Server
database to Azure. Now all he has to do is perform the migration using the tool of
his choice. He selects SSMS. In this section, we'll see how to use SSMS to migrate a
database to Azure:

1. Open SSMS. Press F8 to open Object Explorer. Connect to your SQL instance.

Note

A backup of toystore is available at C:\Code\Chapter03\toystore.bak.

118 | Migration

2. In Object Explorer, right-click the toystore database and go to Tasks | Deploy
Database to Microsoft Azure SQL Database:

Figure 3.37: Deploying a database to Microsoft Azure SQL Database

3. In the Deploy Database wizard, click Next to continue:

Figure 3.38: Deploy Database wizard

Choosing a migration tool and performing migration | 119

4. In the Connect to Server dialog box, provide your Azure SQL Server name,
administrator login name, and password. Click Connect to connect to the Azure
SQL server:

Figure 3.39: Connecting to the Azure SQL server

5. In the Deployment Settings window, under New database name, provide the
name of the Azure SQL Database to which you wish to migrate your on-premises
database. The Azure SQL Database edition and the Service Objective are
automatically detected by SSMS.

120 | Migration

6. Under Other settings, under Temporary file name, SSMS displays the path of the
exported bacpac file. You can change it if you wish to, or you can leave it as the
default. Click Next to continue:

Figure 3.40: The Deployment Settings window

Choosing a migration tool and performing migration | 121

7. In the Verify Specified Settings window, review the Source and Target settings,
and then click Finish to start the migration process:

Figure 3.41: Verifying specified settings

SSMS checks for compatibility issues and the migration process terminates because
there are compatibility issues. Click Error, next to Exporting database, to view the
error's details:

Figure 3.42: Viewing error details

122 | Migration

Here is the output showing a detailed description of the error:

Figure 3.43: Description of the error

8. In the Error Details window, we can see that the migration was terminated because
of unsupported objects found in the bacpac package. Click OK to close the Error
Details window. The next step is to fix the errors.

9. Open C:\code\Chapter03\FixCompatibilityIssues.sql in SSMS. The script fixes the
compatibility issues by commenting/correcting out the unsupported code within
the stored procedures:

USE [toystore]
GO
ALTER proc [dbo].[BackUpDatabase] As
-- Backup command isn't supported on Azure SQL Database
--backup database toystore to disk = 'C:\toystore.bak'
--with init, stats=10
GO

Choosing a migration tool and performing migration | 123

ALTER proc [dbo].[EmailProc] As
-- Database mail isn't supported on Azure SQL Database
--EXEC msdb.dbo.sp_send_dbmail
--	 @profile_name	=	'toystore	Administrator',
-- @recipients = 'yourfriend@toystore.com',
@body	=	'The	stored	procedure	finished	successfully.',
-- @subject = 'Automated Success Message' ; select * from city

10. Press F5 to execute the script. Repeat steps 1-10 to successfully migrate the
database:

Figure 3.44: Migrating the database

124 | Migration

11. To verify the migration, connect to Azure SQL Database using SSMS and run the
following query:

SELECT TOP (1000) [OrderID]
,[CustomerID]
,[SalespersonPersonID]
,[PickedByPersonID]
,[ContactPersonID]
,[BackorderOrderID]
,[OrderDate]
,[ExpectedDeliveryDate]
,[CustomerPurchaseOrderNumber]
,[IsUndersupplyBackordered]
,[Comments]
,[DeliveryInstructions]
,[InternalComments]
,[PickingCompletedWhen]
,[LastEditedBy]
,[LastEditedWhen]
FROM [toystore].[Sales].[Orders]

Figure 3.45 shows the output of the preceding code:

Figure 3.45: Verifying the migration

Congratulations! You have successfully migrated your SQL Server database to an Azure
SQL database.

Choosing a migration tool and performing migration | 125

Activity: Migrating an SQL Server database to an Azure SQL database
using transactional replication
In this section, we will make use of the toy manufacturing company introduced in an
earlier chapter as an example to understand how to migrate an SQL Server database to
an Azure SQL Database using transactional replication:

1. Open SSMS. Press F7 to open Object Explorer. In Object Explorer, click Connect to
connect to your SQL server.

2. In Object Explorer, expand the Replication node, right-click on Local Publications,
and click on New Publication…:

Figure 3.46: Creating a new publication

3. In the New Publication Wizard welcome screen, click Next to continue.

4. In the Publication Database window, select toystore as the database to be
published. Click Next to continue:

Figure 3.47: Selecting toystore as the database

126 | Migration

5. In the Publication Type window, select Transactional publication. There are only
two publication types allowed with Azure SQL Database as a subscriber. Click Next
to continue:

Figure 3.48: Publication and transactional window

Choosing a migration tool and performing migration | 127

6. In the Articles window, select all the objects to publish. Click Next to continue. If
required, you can filter out objects that you don't want to migrate to an Azure SQL
database here:

Figure 3.49: Selecting all the objects in the Articles page

7. The Article Issues window tells you that you should migrate all tables that
are referenced by views, stored procedures, functions, and triggers. As we are
migrating all the tables, we don't have anything to do here. Click Next to continue:

Figure 3.50: Articles Issues page

128 | Migration

8. Filter Table Rows lets you filter unwanted rows that you don't want to publish. As
you are publishing all rows, leave it as the default and click Next to continue:

Figure 3.51: Filter Table Rows window

9. In the Snapshot Agent window, select the Create a snapshot immediately and keep
the snapshot available to initialize subscriptions option. You can also schedule the
Snapshot Agent to run at specific times:

Figure 3.52: Snapshot Agent window

Choosing a migration tool and performing migration | 129

10. In the Agent Security window, select the Security Settings… button:

Figure 3.53: Agent Security page

11. In the Snapshot Agent Security window, specify the account for the Snapshot
Agent to run on. You can either give the domain account that has permission to
access the SQL Server instance and the database, or you can have it run under the
SQL Server agent service account, which isn't the recommended option.

Under the Connect to the publisher section, select By impersonating the process
account. The process account must have read and write access to the publisher
database:

Figure 3.54: Snapshot Agent Security window

130 | Migration

12. Click OK to continue. You'll be taken back to the Agent Security window. Check
the Use the security settings from the Snapshot Agent box, under the Log Reader
Agent text box. Log Reader Agent will run under the same account as the Snapshot
Agent. You can choose different security settings for the Log Reader Agent if you
wish to:

Figure 3.55: Agent Security window

Click Finish to continue.

13. In the Complete the Wizard window, under Publication name, provide a name
for your publication. You can review the objects that are being published in this
window.

Click Finish to create the publication:

Figure 3.56: Completing the wizard

Choosing a migration tool and performing migration | 131

14. The New Publication Wizard will now create the publication. Add the selected
articles to the publication and it will start the Snapshot Agent:

Figure 3.57: New Publication Wizard window

Click Close to close the New Publication Wizard.

In Object Explorer, expand the Replication node, and then expand Local
Publications; the toystorepub publication has been added to the publication list:

Figure 3.58: Check that toystore has been added to the publication list

15. The next step is to create a subscription for the Azure SQL database. Open Object
Explorer, expand the Replication node, and right-click the Local Subscription
option. Select New Subscriptions to continue. Azure SQL Databases only support
push subscriptions:

Figure 3.59: Creating a subscription for the Azure SQL Database

132 | Migration

16. In New Subscription Wizard, select Next to continue:

Figure 3.60: New Subscription Wizard

17. In the Publication window, select the publication for which you wish to create the
subscription. The toystorepub publication is listed under the toystore database. If
it's the only publication, it'll be selected by default. Click Next to continue:

Figure 3.61: Selecting the toystore publication

Choosing a migration tool and performing migration | 133

18. In the Distribution Agent Location window, select Run all agents at the
Distributor, which in our case is the push subscription. Pull subscriptions aren't
allowed with Azure SQL Database as a subscriber. Click Next to continue:

Figure 3.62: Distribution Agent Location

19. In the Subscribers window, click the Add Subscriber button at the bottom of the
window and select Add SQL Server Subscriber:

Figure 3.63: Creating a subscription for the Azure SQL database

134 | Migration

In the Connect to Server dialog box, provide the Azure SQL Server name and SQL
authentication login credentials to connect to the Azure SQL server. Click Connect
to continue:

Figure 3.64: Connecting to the server

The Subscribers window will now list the Azure SQL server in the Subscriber
column and the toystore database in the Subscription Database column. Select the
Azure SQL server if it's not already selected and click Next to continue.

20. In the Distribution Agent Security window, click … (for the options menu) to set
the security option:

Figure 3.65: Distribution Agent Security

The distribution agent can run under the context of the domain account or the SQL
Server Agent Service account (not recommended) for the agent. Provide a domain
account that has appropriate access to the distribution server, which in our case is
the same as the publication server.

Choosing a migration tool and performing migration | 135

In the Connect to the Distributor section, select the default option (by
impersonating the process account). You can also use an SQL Server login if you
wish to.

In the Connect to the Subscriber section, provide the Azure SQL server, SQL Server
login, and password.

Click OK to go back to the Distribution Agent Security window. It'll now show the
selected security options:

Figure 3.66: Connecting to the server

Click Next to continue.

21. In the Synchronization Schedule window, in the Agent Schedule section, select
Run Continuously and click Next to continue:

Figure 3.67: Synchronization schedule

136 | Migration

22. In the Initialize Subscriptions window, under the Initialize When option, select
Immediately, and then click Next to continue:

Figure 3.68: Initializing subscriptions

23. In the Wizard Actions window, select the Create the subscription(s) option and
click Next to continue:

Figure 3.69: Wizard Actions

Choosing a migration tool and performing migration | 137

24. In the Complete the Wizard window, review the subscription settings and click
Finish to create the subscription. The wizard will create the subscription and will
initiate the Snapshot Agent to apply the initial snapshot on the subscriber.

Once the initial snapshot is applied, all of the transactions on the publisher will be
sent to the subscriber.

Click Close to end the wizard.

To verify the replication, in Object Explorer, right-click the Replication node and
select Launch Replication Monitor:

Figure 3.70: Launch Replication Monitor

In the replication monitor, expand the My Publishers node, then expand the SQL
Server instance name node. The toystorepub publication will be listed there. Select
the toystorepub publication to check the synchronization health:

Figure 3.71: Replication Monitor

It may take time to generate and apply the initial snapshot depending on the
database's size.

To further verify that the objects are migrated to Azure SQL Database, switch to
SSMS and open Object Explorer if it's not already open.

Connect to your Azure SQL Database and expand the Tables node. Observe that all
of the tables are listed under the Tables node:

138 | Migration

Figure 3.72: Observing the Tables node

In this activity, we configured transactional replication from an SQL Server
(on-premises or SQL on Azure VM) to Azure SQL Database. Once configured, the
schema and data modifications were copied to Azure SQL Database in near real time.
We can test our application against the Azure SQL Database and modify the application
to point to the Azure SQL Database after a successful application validation.

Activity: Migrating an on-premises SQL Server to Azure SQL Managed
Instance using the native backup and restore method (offline
approach)
Azure SQL Managed Instance supports the restore from URL option, a key capability
that makes this offline migration easier.

The following is a high-level backup and restore process diagram:

Figure 3.73: Native backup and restore process

1 2Backup to URL or upload
backup to URL

Restore from URL
Azure Blob Storage

Choosing a migration tool and performing migration | 139

Prior to SQL Server 2012 SP1 CU2, there was no option to take a backup directly from a
URL, so you needed to upload the backup directly to Azure Blob Storage.

Please refer to Table 3.2 to understand your backup options:

Table 3.2: Backup options

In this activity, for our SQL Server, we are going to perform a backup to URL followed
by a restore from URL. Here, we are using the open-source Azure Data Studio tool from
Microsoft in order to connect our SQL Server and SQL Managed Instance:

1. Open the SQLServer_backup_notebook.ipynb notebook from the source code in
Azure Data Studio and attach to the on-premises SQL Server connection:

Figure 3.74: Azure Data Studio—BACKUP TO URL notebook

Step SQL Server version Backup/Restore method

Create a backup to Azure Storage

Prior to SQL Server
2012 SP1 CU2

Upload a .bak
Storage

SQL Server 2012 SP1
CU2—2016

Direct backup using the deprecated
WITH CREDENTIAL syntax

SQL Server 2016 and
above

Direct backup using the WITH
SAS token

Restore from Azure Blob Storage
to an SQL Managed Instance

Latest version of
SQL Server RESTORE FROM URL with an SAS token

140 | Migration

2. Run the first SQL statement, CREATE CREDENTIAL:

CREATE CREDENTIAL [https://packtsqlmistorage.blob.core.windows.net/backup]
WITH IDENTITY = 'SHARED ACCESS SIGNATURE'
, SECRET = 'sv=2019-12-12&ss=bfqt&srt=sco&sp=rwdlacupx&se=2020-10-
31T02:50:18Z&st=2020-10-30T18:50:18Z&spr=https&sig=yQP3QsvHFCmYZd8R5vy62f
yYWQLNjNFyo9BF9IGniOY%3D'

3. Initiate a BACKUP TO URL command:

BACKUP DATABASE [toystore] TO URL = 'https://packtsqlmistorage.blob.core.
windows.net/backup/toystore.bak' WITH COMPRESSION, STATS=10

4. Open the SQLMI_restore_notebook.ipynb notebook from source code and connect to
Azure SQL Managed Instance to run statements:

Figure 3.75: Azure Data Studio—RESTORE FROM URL notebook

5. Create a credential to grant access on Azure Blob Storage to Azure SQL Managed
Instance:

CREATE CREDENTIAL [https://packtsqlmistorage.blob.core.windows.net/backup]
WITH IDENTITY = 'SHARED ACCESS SIGNATURE'
, SECRET = 'sv=2019-12-12&ss=bfqt&srt=sco&sp=rwdlacupx&se=2020-10-
31T02:50:18Z&st=2020-10-30T18:50:18Z&spr=https&sig=yQP3QsvHFCmYZd8R5vy62f
yYWQLNjNFyo9BF9IGniOY%3D'

Choosing a migration tool and performing migration | 141

6. Execute the RESTORE FROM URL command:

RESTORE DATABASE [toystore] FROM URL = 'https://packtsqlmistorage.blob.
core.windows.net/backup/toystore.bak'
GO

7. Verify the restored database:

SELECT NAME, CREATE_DATE, STATE_DESC FROM SYS.DATABASES WHERE
NAME='toystore'
GO

In this activity, we have learned how to migrate an SQL Server database to SQL
Managed Instance using the native BACKUP TO URL and RESTORE FROM URL commands and
the Azure Data Studio notebook. You can execute these commands using any of your
preferred tools.

Activity: Migrating an SQL Server on an Azure Virtual Machine to SQL
Managed Instance using Azure DMS (online approach)
The backup and restore method is an offline, manual approach for migrating an SQL
Server instance to an Azure SQL Managed Instance and it is useful for applications
that can afford downtime. However, there are times when you will need to migrate
databases that are critical to business and can't afford longer downtime or times when
you have a very large database and a backup and restore approach is not feasible.

The Azure Database Migration service is helpful for migrating an SQL Server instance to
Azure SQL Managed Instance with nearly zero downtime. Azure DMS offers offline and
online automatic approaches to migrating an on-premises SQL Server instance to the
cloud.

With the offline approach, downtime starts with the start of migration activity, but with
the online approach, activity downtime is only limited to the time taken by cutover
at the end of the migration. Azure DMS offers Standard and Premium service tiers,
and only the Premium service tier can be used for online migration. The Standard
service tier offers offline migration and it's free to use. The Premium service tier with
4 vCores is free for 6 months (180 days). You are only allowed two DMS instances per
subscription. Azure DMS supports SQL Server 2005 to 2019 as sources while migrating
from an on-premises SQL Server.

142 | Migration

If you have network constraints and can't have site-to-site connectivity between your
on-premises network and Azure, then a DMS hybrid instance can be useful. Visit this
link for more information on DMS hybrid instances:

https://docs.microsoft.com/azure/dms/quickstart-create-data-migration-service-
hybrid-portal

Note

The creation and deployment of a DMS instance is beyond the scope of this book.
Please refer to the following link to find a list of pre-requisites for Azure DMS:

https://docs.microsoft.com/azure/dms/tutorial-sql-server-managed-instance-
online#prerequisites

In this activity, we will learn about the online migration approach for migrating our
toystore database from an Azure Virtual Machine to SQL Managed Instance with an
easy Azure portal experience:

1. Go to the Azure portal at https://portal.azure.com and search for Azure Database
Migration Services:

Figure 3.76: Azure portal search for DMS

https://docs.microsoft.com/azure/dms/quickstart-create-data-migration-service-hybrid-portal
https://docs.microsoft.com/azure/dms/quickstart-create-data-migration-service-hybrid-portal
https://docs.microsoft.com/azure/dms/tutorial-sql-server-managed-instance-online#prerequisites
https://docs.microsoft.com/azure/dms/tutorial-sql-server-managed-instance-online#prerequisites
https://portal.azure.com

Choosing a migration tool and performing migration | 143

2. Click on the deployed Azure DMS service instance:

Figure 3.77: Azure DMS page

3. Click New Migration Project in the Azure DMS Overview tab:

Figure 3.78: Azure DMS overview page

144 | Migration

4. Create a New Migration Project specifying the source as SQL Server and target as
Azure SQL Database Managed Instance with an Online data migration activity.
Click on Create and run activity:

Figure 3.79: Azure DMS new migration project

Choosing a migration tool and performing migration | 145

5. Create a New Online Activity using the toystore-to-sqlmi migration project:

Figure 3.80: Migration project overview tab

6. Select the source server. Here we are connecting to the Azure SQL Server virtual
machine using Windows authentication in the same subnet where Azure DMS is
deployed:

Figure 3.81: Migration activity source details

146 | Migration

7. Select the target Azure SQL Managed Instance. An application ID with a contributor
role on subscription and Key is needed for Azure DMS online migration. To learn
more about this, please visit https://docs.microsoft.com/azure/active-directory/
develop/howto-create-service-principal-portal:

Figure 3.82: Selecting the target details

8. Select a database for migration:

Figure 3.83: Selecting a database for migration

https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal

Choosing a migration tool and performing migration | 147

9. Set Network share location as the source for Azure DMS to read the backup, and
Storage account that the Azure DMS service will use to upload the backup from the
network location:

Figure 3.84: Configuring a backup share path

148 | Migration

10. Enter the activity name and click Start migration:

Figure 3.85: Summary page for the activity

11. The activity is now created, and you will be auto-redirected to the migration
activity page after the completion of the activity creation wizard, or you can
navigate to Azure DMS and select the migration project and then select the newly
added activity. Here you can monitor the Activity status and see more details about
the sync by clicking on the database name.

Azure DMS uses log shipping in the back-end to transfer database backups from
the network share to Azure Blob Storage. You need to take care of generating
database backups. This can be done by scheduling an SQL Server Agent backup job
on on-premises SQL Server, which will create database backups with a CHECKSUM
option for the network share path. Azure DMS will read backups from the shared
location and upload them to the storage account and start restoring in sequence:

Choosing a migration tool and performing migration | 149

Figure 3.86: Activity status page

12. Check the restoration progress by clicking on the database name. As per the status
in the preceding figure, log shipping is in progress. Log shipping takes a transaction
log backup of the on-premises SQL Server and restores the transaction log backup
to the SQL Managed Instance database. We can further check the transaction log
backup restored by log shipping by getting the log shipping status:

Figure 3.87: Log shipping status

150 | Migration

13. At the same time, if you connect to the Azure SQL Managed Instance, you will see
that the toystore database is in a restoring state:

Figure 3.88: SSMS toystore restoring status

Performing a cutover

Stop the application workload, take the last log backup, and wait for it to apply to
the managed instance. Once the last log backup is applied to the SQL Managed
Instance, in parallel, you can work on changing your application connection strings
point to SQL Managed Instance. Click on the Start Cutover button to change the
toystore database from restoring to online on SQL Managed Instance:

Figure 3.89: Start cutover page

Choosing a migration tool and performing migration | 151

14. Once you click on Apply, Azure DMS will take another few minutes to complete the
cutover and change the database status from restoring to online on SQL Managed
Instance:

Figure 3.90: Complete cutover page

152 | Migration

15. At the same time, if you check the database status using SSMS, it will be online on
SQL Managed Instance:

Figure 3.91: Database status showing the database is online

16. After cutover, the Azure DMS migration activity will show the status as completed:

Figure 3.92: Azure DMS activity completion

In this activity, we have seen how to migrate an SQL Server instance to an SQL
Managed Instance using Azure DMS. We learned how to create an online activity and
how log shipping works behind the scenes. We also learned how to perform a cutover
to end the migration activity.

Summary | 153

Summary
Migrating to an Azure SQL Database or SQL Managed Instance is an important task
and should be planned to perfection. This chapter talked about the migration strategy
that you should follow when migrating from an on-premises database to an Azure SQL
Database or SQL Managed Instance. A good database migration strategy includes the
following steps: determining the migration benefits, selecting the right destination by
choosing the correct pricing model and service tier, choosing primary and disaster
recovery regions to deploy resources to, determining compatibility issues, and selecting
a migration tool based on the migration approach.

In this chapter, we talked about assessment tools. We saw various ways to perform
online/offline database migration to Azure SQL Database and SQL Managed Instance.
We also covered different migration tools to migrate the data and the schema from
an on-premises SQL Server database to an Azure SQL Database and SQL Managed
Instance.

In the next chapter, we will learn how to perform manual and automatic backups for
Azure SQL Databases and Managed Instances.

Database backups are among the most important tasks a database administrator must
perform. A good database backup strategy can help recovery from system outages,
unwanted deletions or updates, database corruption issues, and other related issues.

This chapter will help you back up an Azure SQL Database and an Azure SQL Managed
Instance. You'll learn about automated and manual backups, explore automated backup
features, and perform the manual backup of an Azure SQL Managed Instance.

Backups

4

156 | Backups

This chapter explores different backup and restore options, such as automated
backups, transactional consistent backups, and manual backups. We will be covering
the following topics:

• Automatic backups

• Optimizing backup storage cost

• Configuring long-term backup retention for Azure SQL Database and Azure SQL
Managed Instance

• Exporting an Azure SQL database using the Azure portal

• Exporting an Azure SQL database using PowerShell

• Performing a manual COPY_ONLY backup for Azure SQL Managed Instance

Automatic backups
Microsoft provides automated backups for Azure SQL Database and Azure SQL
Managed Instance databases. Automatic backups consist of full, differential, and log
backups. The first automatic full backup is performed immediately after the database
is provisioned. Differential backups are scheduled to occur every 12-24 hours, and
transaction log backups are scheduled for every 5-10 minutes. The frequency of
transaction log backups is based on the compute size and the amount of database
activity. A full backup is scheduled for once a week:

Figure 4.1: Automatic backups

Note

Differential and transaction log backups can run in parallel.

Azure SQL
Database and

Managed Instance
database provisioned

First full backup
(weekly thereafter)

Differential
backups every

12-24 hours

Log backups
every 5-10 minutes

Automatic backups | 157

Backup storage
Azure SQL Database and SQL Managed Instance keep database backups in
geo-redundant storage blobs by default, which are replicated to a paired region. This
helps to recover the database in a different region if there is a regional outage in
the primary region. You can choose between locally-redundant, zone-redundant,
and geo-redundant backup storage redundancy for Azure SQL Database and Azure
SQL Managed Instance. For Azure SQL Database, backup storage redundancy can be
configured at the time of database creation and can also be updated for an existing
database. For Azure SQL Managed Instance, this option is only available at the time of
instance creation.

Backup storage redundancy impacts backup costs in the following way:

• Locally redundant storage price = x

• Zone-redundant storage price = 1.25x

• Geo-redundant storage price = 2x

Backup retention period
The backup retention period for all new, restored, and copied databases is, by default,
7 days for Azure SQL Database and Azure SQL Managed Instance. The point-in-time
retention period for Azure SQL Database and Azure SQL Managed Instance can be
changed to between 1 and 35 days. For Azure SQL Managed Instance, it is possible to
set the Point-in-time restore (PITR) backup retention period once a database has been
deleted to the 0-35 day range. You can extend the retention period through the LTR
feature, which stores the backup in Azure Blob Storage for as long as 10 years. At the
time of writing this book, Long-term backup retention (LTR) for Azure SQL Managed
Instance is in preview and only available for limited subscription types.

Note

If you delete Azure SQL Database or Managed Instance, all the databases on Azure
SQL Database or Managed Instance are also deleted and cannot be recovered.

However, if you have configured LTR for an Azure SQL Database or Azure SQL
Managed Instance database, those backups can be restored on a different Azure
SQL Database or managed instance in the same subscription.

158 | Backups

Optimize backup storage costs for Azure SQL Database and
Azure SQL Managed Instance
Backup storage costs depend on the provisioned database pricing tier and type. For the
DTU model, the Azure SQL Database backup storage cost is included in the pricing tier.
With the vCore model, Microsoft gives you free backup storage, which is equal to the
size of your maximum provisioned database storage or reserved maximum storage for
Azure SQL Managed Instance. For example, if you have a 100 GB standard Azure SQL
database, you get 100 GB of free backup storage, and the same applies to the reserved
total space for Azure SQL Managed Instance. You can control the free backup storage
size by limiting the retention period of backups.

For single databases, this equation is used to calculate the total billable backup storage
usage:

Total billable backup storage size = (size of full backups + size of differential backups + size
of log backups) - maximum data storage

For pooled databases, the total billable backup storage size is aggregated at the pool
level and is calculated as follows:

Total billable backup storage size = (total size of all full backups + total size of all
differential backups + total size of all log backups) - maximum pool data storage

For Azure SQL Managed Instance, the total billable backup storage size is aggregated at
the instance level and is calculated as follows:

Total billable backup storage size = (total size of full backups + total size of differential
backups + total size of log backups) - maximum instance data storage

To reduce the billing charges for excess usage of the backup storage space beyond the
free backup storage space provided, you can control backup consumption using these
general approaches:

• Choosing the right backup storage type

• Optimizing the database backup retention period

• Maximizing your free backup storage space

• Configuring LTR backups

• Using Azure Policy

Let's go over each of these in detail.

Optimize backup storage costs for Azure SQL Database and Azure SQL Managed Instance | 159

Choose the right backup storage type
Azure SQL Database and Azure SQL Managed Instance give the flexibility to choose
between different backup storage redundancy options. Choose less expensive options,
if applicable, to reduce the overall backup cost:

Table 4.1: Choosing the right backup storage type

Optimize the database backup retention period
You can change the default 7-day retention period to short-term retention of 1-35 days
for all the active databases on Azure SQL Database and Azure SQL Managed Instance.
You can also set deleted database retention to anything within the 0-35-day range, but
only on Azure SQL Managed Instance.

Backup
storage type Option Cost versus protection Notes

Geo-
redundant
storage

Default
option

The most expensive: Allows a
geo-restore of backups in another
region, even if your primary region
is down. Provides maximum
protection of 3 backup copies
in your primary and 1 additional
backup copy in a secondary region.

Best suited to applications
relying on geo-restore as
their disaster recovery
solution and for globally
scaled applications
requiring the most
protection.

Zone-
redundant
storage

Available

Less expensive: Provides
redundancy protection of
3 backup copies across availability
zones in your primary region.
Geo-restore is not available with
this option.

It can be used for
data-residency compliance
in cases of strict
restrictions on data exiting
the primary region.

Locally
redundant
storage

Available

The cheapest option: Provides a
single backup copy in your primary
region. Geo-restore is not available
with this option.

It can be used for
data-residency compliance
in cases of strict
restrictions on data exiting
a single datacenter.

160 | Backups

Change backup retention for Azure SQL Database using the Azure portal

Using the Azure portal, navigate to the Manage Backups blade and click on Configure
retention. The Azure portal only supports selecting the values provided in the drop-
down menu. However, you can change the retention to any value between 1 and 35 days
using the REST API or PowerShell, as shown in Figure 4.2:

Figure 4.2: Changing backup retention for Azure SQL Database

Change backup retention for Azure SQL Managed Instance active databases using the
Azure portal

Using the Azure portal, navigate to the Managed database page and click on Configure
backup retention. You can select between 1 and 35 days, as shown in Figure 4.3:

Figure 4.3: Changing backup retention for Azure SQL Managed Instance

Optimize backup storage costs for Azure SQL Database and Azure SQL Managed Instance | 161

Using PowerShell commands to change PITR retention for deleted databases on
Azure SQL Managed Instance

The Azure portal does not allow modifying backup retention for deleted databases on
Azure SQL Managed Instance—it's only available using a PowerShell module. Keeping
track of deleted databases' backup retention is important and can help save backup
storage costs if you use it correctly.

Following are the steps to change backup retention for a deleted database on Azure
SQL Managed Instance:

1. Open Azure Cloud Shell from the Azure portal:

Figure 4.4: Cloud Shell

2. Run the following set of commands to set variables:

#setting up variable as per our environment
$MisubId = "6ee856b5-yy6d-4bc1-xxxx-byg5569842e1"
$instance = "packtsqlmi"
$resourceGroup = "Packt"
$database = "toystore"
$days =0

3. Log in to your Azure account using the following command:

#Login to Azure Account
Connect-AzAccount
Select-AzSubscription -SubscriptionId $MisubId

4. Run the following command to get PITR retention for a deleted database:

GET PITR backup retention for an individual deleted database
Get-AzSqlDeletedInstanceDatabaseBackup -ResourceGroupName
$resourceGroup -InstanceName $instance -DatabaseName $database |
Get-AzSqlInstanceDatabaseBackupShortTermRetentionPolicy

Figure 4.5 shows the retention period:

Figure 4.5: Get deleted database retention

162 | Backups

5. Run the following commands to set backup retention to 0 days for a deleted
database:

Note

Valid backup retention must be between 0 (no retention) and 35 days. A valid
retention rate can only be lower than the length of the retention period when the
database was active, or the remaining backup days of a deleted database.

SET new PITR backup retention on an individual deleted database
Get-AzSqlDeletedInstanceDatabaseBackup -ResourceGroupName
$resourceGroup -InstanceName $instance -DatabaseName $database |
Set-AzSqlInstanceDatabaseBackupShortTermRetentionPolicy -RetentionDays
$days

Figure 4.6 shows that the retention has been set to 0 days:

Figure 4.6: Set deleted database retention

Note

Once you decrease backup retention for a deleted database on Azure SQL
Managed Instance, it is no longer possible to increase it.

In this activity, we have used Cloud Shell to run Az.sql module commands to set backup
retention for a deleted database on Azure SQL Managed Instance. Deleted database
backups can cause higher backup storage billing, hence it is necessary to keep track of
deleted database backup retention.

Optimize backup storage costs for Azure SQL Database and Azure SQL Managed Instance | 163

Maximize your free backup storage space
You can increase the maximum storage size and reserved instance size on Azure SQL
Database and Azure SQL Managed Instance to reduce overall backup storage costs.

The following are quick steps to increase the maximum storage size for Azure SQL
Database and Azure SQL Managed Instance.

Increase the maximum storage size for Azure SQL Database using the Azure portal

Go to Azure SQL Server and select a database for increasing the maximum storage. Use
the Configure blade to increase the maximum storage size, as shown in Figure 4.7:

Figure 4.7: Increasing the max storage for Azure SQL Database

164 | Backups

Increase the max storage size for Azure SQL Managed Instance using the
Azure portal

Go to Azure SQL Managed Instance and select the Compute + storage blade to increase
the max storage capacity, as shown in Figure 4.8:

Figure 4.8: Increasing the max storage for Azure SQL Managed Instance

Configure LTR backups
Choose less expensive LTR backups over PITR retention for databases that are not
restored frequently for Azure SQL Database and Azure SQL Managed Instance. LTR
backups are in limited preview for Azure SQL Managed Instance. This topic is covered
in detail later in this chapter.

Optimize backup storage costs for Azure SQL Database and Azure SQL Managed Instance | 165

Use Azure Policy
Use Azure Policy to block the deployment of Azure SQL Database and Azure SQL
Managed Instance with default geo-redundant backup storage.

Visit the following link for the built-in definition of Azure Policy for Azure SQL Database
and Azure SQL Managed Instance: https://docs.microsoft.com/azure/azure-sql/
database/policy-reference.

Note

Azure policies are not enforced for T-SQL database creation. When you create
a database using the T-SQL command, use the LOCAL or ZONE keywords for the
BACKUP_STORAGE_REDUNDANCY parameter in the CREATE DATABASE statement.

Configure long-term backup retention for Azure SQL Database and
Azure SQL Managed Instance
Consider the toystore SQL database created in Chapter 3, Migration. Mike has now
been tasked with securing and backing up the data at ToyStore Ltd. In this section, we'll
learn how to create and configure LTR for the toystore database:

1. Log in to the Azure portal and find and open the Azure SQL Server resource that
the toystore SQL database is part of.

2. In the SQL Server detail window, find and select Manage Backups and then select
the toystore database:

Figure 4.9: Manage Backups

https://docs.microsoft.com/azure/azure-sql/database/policy-reference
https://docs.microsoft.com/azure/azure-sql/database/policy-reference

166 | Backups

3. Select the Configure retention option in the top menu:

Figure 4.10: Select the database on which to configure LTR

4. In the Configure policies window, you can specify the retention period for the
weekly, monthly, and yearly backups:

Figure 4.11: Configure the LTR policies

Activity: Configure LTR Backups for Azure SQL Managed Instance using PowerShell | 167

The configuration in Figure 4.11 states the following:

• Weekly LTR Backups: Every backup will be retained for 10 years.

• Monthly LTR Backups: The first backup of each month will be retained for 10

• years.

• Yearly LTR Backups: The Week 1 backup is retained for 10 years.

5. Click Apply to save the LTR configuration.

Note

Azure SQL Database long-term backups are copied and saved to Azure Blob
Storage. It may take up to 7 days for the long-term backups to be available and
visible for restore.

Long-term retention configuration on Azure SQL Managed Instance
LTR has recently been introduced for Azure SQL Managed Instance, but this feature is
currently in preview and only available for limited EA and CSP subscriptions. LTR allows
you to automatically retain database backups in separate Azure Blob Storage containers
for up to 10 years. There is currently no Azure portal support for this feature, and it's
only configurable using PowerShell.

Activity: Configure LTR Backups for Azure SQL Managed
Instance using PowerShell
Let's get back to our example of ToyStore Ltd. Mike has been tasked with ensuring
that a LTR policy is configured for the newly deployed toystore database on Azure SQL
Managed Instance. Since this feature is new and only available using PowerShell, let's
see various commands to manage LTR on Azure SQL Managed Instance.

In this activity, Mike first decides to create an LTR policy for 6 weeks of full backup
retention. Then he will be changing it to 12 weeks and will retain the Week 16 backup
for 5 years using LTR. Later, he needs to ensure that the newly configured LTR policy
and backup retention is properly configured. At last, he will make sure that restoring
from LTR backups is working.

168 | Backups

Perform the following steps to complete the activity:

1. Let's start with creating an LTR policy.

Create an LTR policy, setting up variables as per our environment and subscription:

Get the SQL Managed Instance for your subscription
$MisubId = "6ee856b5-yy6d-4bc1-xxx-byg5569842e1"
$SQLinstanceName = "packtsqlmi"
$ResourceGroup = "Packt"
$InstancedbName = "toystore"
$TargetInstancedbName = "toystore_restore"

2. Connect to your Azure account and get SQL Managed Instance details:

#Login to Azure Account

Connect-AzAccount
Select-AzSubscription -SubscriptionId $MisubId

$instance = Get-AzSqlInstance -Name $SQLinstanceName -ResourceGroupName
$ResourceGroup

3. Create an LTR policy for keeping every weekly full backup to 6 weeks retention
using the following PowerShell code:

create LTR policy with WeeklyRetention = 6 weeks. MonthlyRetention and
YearlyRetention = 0 by default.

Set-AzSqlInstanceDatabaseBackupLongTermRetentionPolicy -InstanceName
$SQLinstanceName '
 -DatabaseName $InstancedbName -ResourceGroupName $ResourceGroup
-WeeklyRetention P6W

ResourceGroupName : Packt
ManagedInstanceName : packtsqlmi
DatabaseName : toystore
WeeklyRetention : P6W
MonthlyRetention : PT0S
YearlyRetention : PT0S
WeekOfYear : 0
Location :

Activity: Configure LTR Backups for Azure SQL Managed Instance using PowerShell | 169

4. Now let's modify this policy, changing weekly backup retention from 6 to 12 weeks.
Now each weekly full backup will be kept for 12 weeks. We are also setting up yearly
retention for 5 years for a backup that was taken in the 16th week of the year:

create LTR policy with WeeklyRetention = 6 weeks, YearlyRetention = 5
years and WeekOfYear = 16 (week of April 15). MonthlyRetention = 0 by
default.
Set-AzSqlInstanceDatabaseBackupLongTermRetentionPolicy -InstanceName
$SQLinstanceName '
 -DatabaseName $InstancedbName -ResourceGroupName $ResourceGroup
-WeeklyRetention P6W -YearlyRetention P5Y -WeekOfYear 16

ResourceGroupName : Packt
ManagedInstanceName : packtsqlmi
DatabaseName : toystore
WeeklyRetention : P6W
MonthlyRetention : PT0S
YearlyRetention : P5Y
WeekOfYear : 16
Location :

5. Now that the LTR policy is configured, let's run a command to view it:

<#View LTR Policies
Gets the current version of LTR policy for a database#>

Get-AzSqlInstanceDatabaseBackupLongTermRetentionPolicy -InstanceName
$SQLinstanceName '
 -DatabaseName $InstancedbName -ResourceGroupName $ResourceGroup

ResourceGroupName : Packt
ManagedInstanceName : packtsqlmi
DatabaseName : toystore
WeeklyRetention : P6W
MonthlyRetention : PT0S
YearlyRetention : P5Y
WeekOfYear : 16
Location :

170 | Backups

6. View the LTR backups.

Let's run a command to list the backups. These backups will not be visible for newly
created policies; it may take up to 7 days before the first LTR backup shows up on
the list:

#View LTR backups
Get the list of LTR backups from the Azure region under the given
managed instance

Get-AzSqlInstanceDatabaseLongTermRetentionBackup -Location $instance.
Location -InstanceName $SQLinstanceName

ResourceId : /subscriptions/6ee856b5-XXXX-4bc1-XXXX-
byg5569842e1/resourceGroups/Packt/providers/Microsoft.Sql/locations/
eastus/longTermRetentionManaged
 Instances/packtsqlmi/longTermRetentionDatabases/
toystore/longTermRetentionManagedInstanceBackups/1de6d240-d800-4f7f-913b-
67133b445d3f;1324759
 23660000000
BackupExpirationTime : 1/11/2021 2:46:06 PM
BackupName : 1de6d240-d800-4f7f-913b-
67133b445d3f;132475923660000000
BackupTime : 10/19/2020 2:46:06 PM
DatabaseName : toystore
DatabaseDeletionTime :
Location : eastus
ManagedInstanceName : packtsqlmi
InstanceCreateTime : 3/30/2020 10:56:54 AM
ResourceGroupName : Packt

Activity: Configure LTR Backups for Azure SQL Managed Instance using PowerShell | 171

7. Delete an LTR backup.

Let's try to delete an LTR backup. Once the following command is submitted, it will
ask for confirmation to remove the database backup:

#Delete LTR Backups
remove the earliest backup

$ltrBackups = Get-AzSqlInstanceDatabaseLongTermRetentionBackup -Location
$instance.Location -InstanceName $SQLinstanceName -DatabaseName
$InstancedbName -OnlyLatestPerDatabase
$ltrBackup = $ltrBackups[0]
Remove-AzSqlInstanceDatabaseLongTermRetentionBackup -ResourceId
$ltrBackup.ResourceId

Are you sure you want to remove the Long Term Retention backup '1de6d240-
d800-4f7f-913b-67133b445d3f;132475923660000000' on database 'toystore' on
instance
'packtsqlmi' in location 'eastus'?
Permanantly removing the Long Term Retention backup '1de6d240-d800-4f7f-
913b-67133b445d3f;132475923660000000' on database 'toystore' on instance
'packtsqlmi' in
location 'eastus'?
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"): Y

8. Perform a restore from LTR backups on the same instance.

Now let's see commands to perform a restore from LTR backup:

<##Restore from latest LTR backups#>
#Get latest LTR Backup

$ltrBackups = Get-AzSqlInstanceDatabaseLongTermRetentionBackup -Location
$instance.Location -InstanceName $SQLinstanceName -DatabaseName
$InstancedbName -OnlyLatestPerDatabase

#Initiate Restore

Restore-AzSqlInstanceDatabase -FromLongTermRetentionBackup -ResourceId
$ltrBackup.ResourceId '
 -TargetInstanceName $SQLinstanceName -TargetResourceGroupName
$ResourceGroup -TargetInstanceDatabaseName $TargetInstancedbName

172 | Backups

9. Remove LTR policy.

Run a PowerShell command to remove the LTR policy of a database:

#Remove LTR Policy

Set-AzSqlInstanceDatabaseBackupLongTermRetentionPolicy -InstanceName
$SQLinstanceName -DatabaseName $InstancedbName -ResourceGroupName
$ResourceGroup -RemovePolicy

ResourceGroupName : Packt
ManagedInstanceName : packtsqlmi
DatabaseName : toystore
WeeklyRetention : PT0S
MonthlyRetention : PT0S
YearlyRetention : PT0S
WeekOfYear : 0
Location :

Note

Any modification to an LTR policy applies to future backups. If weekly backup
retention (W), monthly backup retention (M), or yearly backup retention (Y) is
changed, the new retention setting will only apply to new backups. The retention of
existing backups will not be modified.

In this activity, we have used multiple PowerShell commands to manage LTR policies
and backups on Azure SQL Managed Instance. We learned about creating, removing,
listing, and updating existing LTR policies. We have also seen commands for managing
LTR backups, such as listing backups for an individual database or instance level and
deleting backups that are not required.

Manual Backups for Azure SQL Database | 173

Manual Backups for Azure SQL Database
Conventional database backup statements don't work in Azure SQL Database. A manual
backup consists of exporting the database as a DACPAC (schema) or BACPAC (schema +
data) and bcp (bulk copy program utility) out the data into CSV files.

Manual backups can be performed in the following ways:

• Exporting a BACPAC to your Azure storage account using the Azure portal

• Exporting a BACPAC to your Azure storage account using PowerShell

• Exporting a BACPAC using SQL Server Management Studio (SSMS)

• Exporting a BACPAC or a DACPAC to an on-premises system using sqlpackage.exe

DACPAC and BACPAC
DACPAC stands for Data-Tier Application Package and contains the database schema
in .xml format. A BACPAC is a DACPAC with data.

DAC is a database life cycle management tool that simplifies the development,
deployment, and management of data tier elements supporting an application.

A BACPAC is generally used to move a database from one server to another or for
migrating a database, as shown in Chapter 3, Migration.

Note

To find out more about DACPACs and BACPACs, visit https://docs.microsoft.com/
sql/relational-databases/data-tier-applications/data-tier-applications?view=sql-
server-2017.

A BACPAC's or a DACPAC's contents can be viewed by changing the file extension to
.zip and extracting the ZIP folder.

Navigate to the C:\Code\Chapter04 folder (or to the folder to which you exported the
BACPAC in the previous section) and change the extension of the toystore.bacpac file to
.zip.

https://docs.microsoft.com/sql/relational-databases/data-tier-applications/data-tier-applications?view=sql-server-2017
https://docs.microsoft.com/sql/relational-databases/data-tier-applications/data-tier-applications?view=sql-server-2017
https://docs.microsoft.com/sql/relational-databases/data-tier-applications/data-tier-applications?view=sql-server-2017

174 | Backups

Extract the toystore.zip file to the toystore folder:

Figure 4.12: Details of the toystore ZIP file

Observe that it has the following files:

• model.xml: This contains the database objects in .xml format.

• Origin.xml: This contains the count of each database object, database size,
export start date, and other statistics about the BACPAC and the database.

• DacMetadata.xml: This contains the DAC version and the database name.

• Data: This folder contains a subfolder for each of the tables in the database.
These subfolders contain the table data in BCP format:

Figure 4.13: Table data in BCP format

To take a manual backup using SSMS, follow the upcoming steps.

Manual Backups for Azure SQL Database | 175

Backing up an Azure SQL Database Using SQL Server Management
Studio (SSMS)

Note

We can also export the database in BACPAC format using the Export option on the
Azure SQL Database page in the Azure portal.

In this section, we will back up the Azure SQL toystore database using SSMS:

1. Open SSMS and press F8 to open Object Explorer if it's not already open.

2. From Object Explorer, connect to Azure SQL Server. Once done, this is what you
will see:

Figure 4.14: The toystore database in the Object Explorer pane

176 | Backups

3. Right-click the toystore database, select Tasks, then select Export Data-tier
Application. In the Export Data-tier Application introduction window, click Next
to continue.

Upgrade Data-tier Application is used to upgrade an existing database to a new
DAC version. For example, upgrading the database schema of the production
environment to that of a staging environment is commonly used in continuous
integration and deployment scenarios:

Figure 4.15: The Export Data-tier Application window

Note

The Register Data-tier Application and Upgrade Data-tier Application
options aren't relevant to this chapter and are used for database deployment. To
find out more about them, follow these links:

Register Data-tier Application: https://docs.microsoft.com/sql/relational-
databases/data-tier-applications/register-a-database-as-a-dac.

Upgrade Data-tier Application: https://docs.microsoft.com/sql/relational-
databases/data-tier-applications/upgrade-a-data-tier-application.

https://docs.microsoft.com/sql/relational-databases/data-tier-applications/register-a-database-as-a-dac
https://docs.microsoft.com/sql/relational-databases/data-tier-applications/register-a-database-as-a-dac
https://docs.microsoft.com/sql/relational-databases/data-tier-applications/upgrade-a-data-tier-application
https://docs.microsoft.com/sql/relational-databases/data-tier-applications/upgrade-a-data-tier-application

Manual Backups for Azure SQL Database | 177

4. In the Export Settings window, on the Settings tab, select Save to local disk and
provide a local path to save the BACPAC file. Alternatively, you can also save the
BACPAC file on Azure Storage. Saving a BACPAC file on Azure Storage can be useful
when the intent of the export is to move the export (restore the database) as an
Azure SQL Database. You need an existing storage account to export the file to
Azure Storage.

Click Next to continue:

Figure 4.16: Export Settings window

5. In the Summary window, verify the Source and Target settings and click Finish to
continue:

Figure 4.17: Export Data-tier Application toystore summary

178 | Backups

6. SSMS first extracts the schema and then the data into a BACPAC package:

Figure 4.18: Checking the results

7. Click Close to close the wizard.

The BACPAC isn't transactionally consistent data. The BACPAC exports the table
individually, and data may change in the time between the first and last table export.
A workaround for this is to create a transactionally consistent database copy and then
export it as a BACPAC.

Manual versus Automated Backups
Here is a comparison between manual and automated backups based on usability
factors:

Table 4.2: Features of manual versus built-in automated backups

Backup
Type

Designed
for Disaster
Recovery

Point-
In-Time
Restore

Operational
Overhead

Transactionally
Consistent

Additional
Cost

On-
Premises
Restore

Manual
(Export) No No

Yes, Export
needs to be

manually

No (Create a database
copy and export it

for a Transactionally
Consistent backup)

Storage &
additional
DB cost

Yes

Built-In
Automated
Backups

Yes Yes No Yes No No

Activity: Perform Manual Backups Using PowerShell | 179

Activity: Perform Manual Backups Using PowerShell
Let's get back to our example of ToyStore Ltd. Mike has been tasked with ensuring that
all the data of ToyStore Ltd. is backed up for crises such as system outages, unwanted
deletions or updates, database corruption issues, and other related issues. In order to
automate this process, he wants to make use of PowerShell scripts. In this activity, we'll
learn how to back up an Azure SQL Database using PowerShell scripts:

Note

You need an Azure storage account to carry out the activity. If you don't have an
existing storage account, you can create one by running the following command:

New-AzStorageAccount -ResourceGroupName myresourcegroup '

-Name mystorageaccountname '

-SkuName Standard_LRS '

-Location 'East US' '

-Kind StorageV2 '

-AccessTier Hot

It's advised to create the storage account at the same location as the Azure SQL
Database. This minimizes the network delay while copying the data to and from the
storage account:

1. Press Windows + R to open the Run dialog box. In the Run dialog box, type
powershell ise to open a new PowerShell editor window.

2. In the PowerShell ISE, click File in the top menu and then select New to create a
new PowerShell script file:

Figure 4.19: Creating a new PowerShell script file

Note

If you are running short of time, modify and run the
BackupAzureSQLDBToAzureStorage.ps1 PowerShell script, which is kept at C:\
Code\Chapter04.

180 | Backups

3. In the new PowerShell script file, copy the code as instructed in the following steps.

4. Define the PowerShell script parameters. The parameters are self-explanatory:

param(
[string]$storageaccountname,
[string]$resourcegroupname,
[string]$sqlserver,
[string]$container,
[string]$database,
[string]$sqluser,
[string]$sqlpassword
)

5. Copy the following code. This will open a login window for a user to enter Azure
credentials:

#Login to Azure account
Login-AzAccount

6. Copy the following code to validate the parameters. The PowerShell script will
terminate with an error message if the user doesn't provide an Azure storage
account name ($storageaccountname) or a valid Azure resource group:

#($resourcegroupname), and Azure Storage container ($container):

if([string]::IsNullOrEmpty($storageaccountname) -eq $true)
{
 Write-Host "Provide a valid Storage Account Name"
-ForegroundColor Red
 return
}
if([string]::IsNullOrEmpty($resourcegroupname) -eq $true)
{
 Write-Host "Provide a valid resource group" -ForegroundColor Red
 return
}
if([string]::IsNullOrEmpty($container) -eq $true)
{
 Write-Host "Provide a valid Storage Container Name"
-ForegroundColor Red
 return
}

Activity: Perform Manual Backups Using PowerShell | 181

7. Copy the following code to initialize the BACPAC filename. The BACPAC file is created
as the database name plus the current timestamp:

create bacpac file name

$bacpacFilename = $database + "_"+(Get-Date). ToString("ddMMyyyymm") +
".bacpac"

8. Copy the following code to get the storage account key and set the default storage
account for the PowerShell script. The BACPAC file will be created in a container
in the default Azure storage account. The storage account key is later used in the
export cmdlet:

set the current storage account

$storageaccountkey = Get-AzStorageAccountKey
-ResourceGroupName $resourcegroupname -Name $storageaccountname

set the default storage account
Set-AzCurrentStorageAccount -StorageAccountName
$storageaccountname -ResourceGroupName $resourcegroupname | Out-Null

9. Copy the following code to set the storage URL. A storage URL defines the full path
of the BACPAC file on the Azure storage account:

set the bacpac location

$bloblocation = "https://$storageaccountname.blob.core.windows.
net/$container/$bacpacFilename"

10. Copy the following code to create a credential object. This allows you to pass the
password in an encrypted format when calling the export cmdlet:

#set the credential

$securesqlpassword = ConvertTo-SecureString -String $sqlpassword
-AsPlainText -Force
$credentials = New-Object -TypeName System.Management.Automation.
PSCredential -ArgumentList $sqluser, $securesqlpassword

182 | Backups

11. Copy the following code to export the BACPAC file to the given storage location.
The New-AzSqlDatabaseExport cmdlet takes the specified parameters and exports a
BACPAC file to the storage account:

Write-Host "Exporting $database to $bloblocation" -ForegroundColor Green

$export = New-AzSqlDatabaseExport -ResourceGroupName
$resourcegroupname -ServerName $sqlserver.Split('.')[0] -DatabaseName
$database -StorageUri $bloblocation -AdministratorLogin $credentials.
UserName -AdministratorLoginPassword $credentials.Password -StorageKeyType
StorageAccessKey -StorageKey $storageaccountkey.Value[0].Tostring()

Note

For the command to work, the Allow Azure services and resources to
access this server option in the Azure SQL Server firewall should be enabled.

12. Copy the following code to check and output the export progress:

While(1 -eq 1)
 {
 $exportstatus = Get-AzSqlDatabaseImportExportStatus
-OperationStatusLink $export.OperationStatusLink
 if($exportstatus.Status -eq "Succeeded")
 {
 Write-Host $exportstatus.StatusMessage -ForegroundColor
Green
 return
 }
 If($exportstatus.Status -eq "InProgress")
 {
 Write-Host $exportstatus.StatusMessage -ForegroundColor
Green
 Start-Sleep -Seconds 5
 }
 }

Save the file as ManualExport.ps1 to C:\Code\Chapter04, or to a location of your
choice.

Activity: Perform Manual Backups Using PowerShell | 183

13. Open a PowerShell console and change the default directory to C:\Code\Chapter04,
or to the directory where you have saved the PowerShell script.

Type the following code and press Enter to start the export. You may have to
change the parameter values as per your Azure environment:

.\ManualExport.ps1 –storageaccountname "toyfactorystorage" –
resourcegroupname "toystore" –container "backups" – sqlserver toyfactory
–database "toystore" –sqluser "sqladmin" –sqlpassword "Packt@pub2"

14. The PowerShell script will ask you to log in to your Azure account through a login
pop-up window. Once you log in, the export will start. You should get a similar
output to this:

Figure 4.20: Export in progress

15. To verify the export, log in to the Azure portal with your credentials.

16. Open the storage account provided in the preceding script. You should see the
BACPAC file in the specified container:

Figure 4.21: The backup bacpac file of the toystore database

184 | Backups

Manual export can be required when moving databases in between developer, QA, or
staging environments. PowerShell makes it easy to manually export databases.

Perform native COPY_ONLY backup on Azure SQL Managed Instance
A COPY_ONLY backup is a SQL Server backup that is independent of the conventional
SQL Server backups. Usually, taking ad hoc full backups can break the point-in-time
restore chain of an SQL Server database. But there could be scenarios in which you
are required to take database backups (like moving the latest snapshot of a database to
a development SQL Server instance). That's where you can use the COPY_ONLY backup
option while taking a backup.

Azure SQL Managed Instance has automatic backups that are stored on Azure storage,
fully encrypted and keeping you compliant. These backups can be used to perform a
point-in-time restore, cross-instance restore, or geo-restore.

Microsoft's recommendation is to rely on these built-in automatic backups. Azure SQL
Managed Instance also supports native SQL Server COPY_ONLY backups that are useful in
scenarios such as keeping backups for longer periods on Azure Blob Storage.

All newly created databases on Azure SQL Database and Azure SQL Managed Instance
are encrypted by default with service-managed transparent data encryption (TDE).
You cannot initiate a manual COPY_ONLY backup for TDE protected databases that use
service-managed encryption in Azure SQL Managed Instance.

Following is the message you will see when you try to run a BACKUP DATABASE command
with the COPY_ONLY option for a service-managed TDE protected database:

--Backup database to URL

 BACKUP DATABASE toystore

 TO URL = 'https://packtsqlmistorage.blob.core.windows.net/backup/toystore.
bak'

WITH COPY_ONLY

Msg 41922, Level 16, State 1, Line 8

The backup operation for a database with service-managed transparent data
encryption is not supported on SQL Database Managed Instance.

Msg 3013, Level 16, State 1, Line 8

BACKUP DATABASE is terminating abnormally.

Activity: Perform Manual Backups Using PowerShell | 185

This functionality is designed to keep the data protected. For a seamless COPY_ONLY
backup experience, you can configure customer-managed transparent data encryption
for Azure SQL Managed Instance. For more information on CMK encryption, please visit
this link: https://docs.microsoft.com/azure/azure-sql/database/transparent-data-
encryption-byok-overview.

Perform a manual COPY_ONLY backup using T-SQL commands
Azure SQL Managed Instance allows COPY_ONLY backups but you are not allowed access
to the underlying storage layer of the Azure SQL Managed Instance host due to the
nature of the PaaS application. We need to use the BACKUP TO URL command to perform
a backup. Before taking a backup, Azure SQL Managed Instance needs to have access to
Blob Storage to create a backup file.

In this activity we will be going through all these steps:

1. First, let's create the credentials to access Azure Blob Storage. We need a shared
access signature (SAS) before creating the credentials and access to the storage
account firewall.

Generate a SAS token using the Azure portal. To generate a SAS token, go to the
storage account settings and select the Shared access signature blade. Select
Services and specify the start and expiry token dates, then click on Generate SAS
and connection string button:

Figure 4.22: Generate a SAS token using the portal

https://docs.microsoft.com/azure/azure-sql/database/transparent-data-encryption-byok-overview
https://docs.microsoft.com/azure/azure-sql/database/transparent-data-encryption-byok-overview

186 | Backups

Once the token is generated, you will see it listed in the boxes below the Generate
SAS and connection string button, as shown here:

Figure 4.23: Copy the SAS token

2. For additional security, add the Azure SQL Managed Instance subnet to the storage
account firewall for private access:

Figure 4.24: Storage account firewall

Activity: Perform Manual Backups Using PowerShell | 187

3. Now that we have a SAS token, run CREATE CREDENTIAL to allow Azure SQL Managed
Instance access to Blob Storage. Remove the ? symbol from SAS key before using it:

--Create credential to access blob storage.
CREATE CREDENTIAL [https://packtsqlmistorage.blob.core.windows.net/backup]
WITH IDENTITY='SHARED ACCESS SIGNATURE'
, SECRET = 'sv=2019-12-12&ss=bfqt&srt=c&sp=rwdlacupx&se=2020-10-
31T06:52:48Z&st=2020-10-01T22:52:48Z&spr=https&sig=7IXxTFEiCJOEAFMeE52HQu
MOZOVwXJgaP3%2FZLxrA8fg%3D';

4. Run the Backup command.

Execute the following backup statement to take a COPY_ONLY backup for a small
database. Here, we are taking a backup with a checksum and the COPY_ONLY option.
Using a checksum is best practice. CHECKSUM ensures that the backup operation
verifies each page for checksum and torn page, if enabled and available, and
generates a checksum for the entire backup. Using backup checksums may affect
the workload and backup throughput:

--Backup database to URL
 BACKUP DATABASE toystore
 TO URL = 'https://packtsqlmistorage.blob.core.windows.net/backup/
toystore.bak'
WITH COPY_ONLY,CHECKSUM

5. If your database is large enough and the backup file size is >200 GB, then you need
to split your database backup into multiple files. You can also use a compression
option to reduce the backup size. 200 GB is the maximum file size for block blob
storage:

--Stripping backups if backup size is >200GB
BACKUP DATABASE toystore
 TO URL = 'https://packtsqlmistorage.blob.core.windows.net/backup/
toystore-4-1.bak',
 URL = 'https://packtsqlmistorage.blob.core.windows.net/backup/
toystore-4-2.bak',
 URL = 'https://packtsqlmistorage.blob.core.windows.net/backup/
toystore-4-3.bak',
 URL = 'https://packtsqlmistorage.blob.core.windows.net/backup/
toystore-4-4.bak' WITH COPY_ONLY,COMPRESSION,FORMAT

188 | Backups

6. Specify MAXTRANSFERSIZE as 4194304 to use larger block sizes, specifically 4 MB
blocks:

--Backup database with MAXTRANSFERSIZE
 BACKUP DATABASE toystore
 TO URL = 'https://packtsqlmistorage.blob.core.windows.net/backup/
toystore-4-1.bak',
URL = 'https://packtsqlmistorage.blob.core.windows.net/backup/
toystore-4-2.bak',
URL = 'https://packtsqlmistorage.blob.core.windows.net/backup/
toystore-4-3.bak',
URL = 'https://packtsqlmistorage.blob.core.windows.net/backup/
toystore-4-4.bak'
WITH COPY_ONLY, MAXTRANSFERSIZE = 4194304,COMPRESSION,FORMAT

Note

To learn more about backing up VLDB to Azure Blob Storage, please visit this link:
https://docs.microsoft.com/archive/blogs/sqlcat/backing-up-a-vldb-to-azure-blob-
storage.

In this activity, we have used the native backup command to initiate a COPY_ONLY backup
to Azure Blob Storage. We have also learned how to generate a SAS key using the Azure
portal and best practices for taking backups for large databases. These backups can be
useful for moving a database copy to an on-premises SQL server or a different Azure
SQL Managed Instance in another region or on another subscription.

https://docs.microsoft.com/archive/blogs/sqlcat/backing-up-a-vldb-to-azure-blob-storage
https://docs.microsoft.com/archive/blogs/sqlcat/backing-up-a-vldb-to-azure-blob-storage

Summary | 189

Summary
Azure SQL Database backups are different from on-premises database backups. The
regular backup database command isn't supported in Azure SQL Database. In this
chapter, we have learned about the automatic backups that are unique to Azure SQL
Database and Azure SQL Managed Instance and that aren't available in an on-premises
database.

We also learned about automatic backup frequency and backup storage, as well as
multiple options for optimizing backup storage costs for Azure SQL Database and Azure
SQL Managed Instance.

We also learned how to configure LTR backups for Azure SQL Database and Azure
SQL Managed Instance, and discussed how to take manual backups of an Azure SQL
database using SSMS and PowerShell, and native manual COPY_ONLY backups using
T-SQL for Azure SQL Managed Instance.

In the next chapter, we will look at the restore options available for Azure SQL Database
and Azure SQL Managed Instance.

In the previous chapter, we talked about performing database backups for Azure SQL
Database and Azure SQL Managed Instance. Similar to a database backup, a restore
is another housekeeping activity that a DBA performs, whether to move or copy a
database from one server to another or to recover from an outage or an accidental
update/delete operation. In this chapter, we'll look at different ways to restore an Azure
SQL Database and an SQL Managed Instance database.

Azure SQL Database and SQL Managed Instance have the following restore options:

• Point-in-time restore

• Restore from long-term backup

• Restore a deleted database

• Geo-restore a database

• Import a BACPAC – only for Azure SQL Database

Restoration

5

192 | Restoration

Figure 5.1 shows the types of backup available with Azure SQL Database, the different
restore options, and the ways to restore a database:

Figure 5.1: Types of database restore

A restore can be performed using the Azure portal, PowerShell, the Azure CLI, or the
Azure SDK. This chapter teaches you the differences between the restore types and
how to perform a restore. It also explores different restore options, such as point-in-
time restores, restoring a deleted database, and geo-restoring a database. You'll also
learn how to automate the restore task using PowerShell.

By the end of this chapter, you will be able to:

• Use point-in-time restore to recover from unexpected data modifications

• Restore a deleted database using the Azure portal

• Use geo-restore on a database

• Restore a database from a long-term retention backup

• Restore an Azure SQL Database by importing BACPAC

So, let's begin by deep-diving into the various restore options mentioned here.

Restore types
This section discusses the different types of restore available in Azure SQL Database
and SQL Managed Instance.

Automated
backup

/BACPAC
/DACPAC Azure

storage/
On-premises

1. Point-in-time
 restore
2. Deleted database
 restore
3. Geo-restore
4. Manual restore

1. Azure Web
 Portal
2. PowerShell
3. Azure CLI
4. Azure SDK

Azure SQL server

Azure
SQL DB

Azure
SQL DB

Azure
SQL DB

Azure
SQL DB

Restore types | 193

Point-in-time restore
Point-in-time restore (PITR) isn't new in the world of SQL Server. On-premises SQL
servers allow you to restore a database to a particular point in time by specifying the
point-in-time option when restoring the database using the restore command.

Azure SQL Database and SQL Managed Instance backups are managed by the automatic
backups feature of the PaaS offering. Point-in-time restores can only be performed
using the Azure portal, PowerShell, the Azure CLI, or the Azure SDK. PITR uses the
automatic Full, Differential, and Log backups.

For all new, restored, and copied databases on Azure SQL Database and SQL Managed
Instance, the default retention period is 7 days. The retention period can be adjusted
for existing or deleted databases (the latter is only available on SQL Managed Instance):

• For active databases on Azure SQL Database and SQL Managed Instance, you can
change backup retention to any period between 1–35 days.

• Azure SQL Database Hyperscale only supports 7 days of backup retention; it
cannot be adjusted.

• For deleted databases, you can change the backup retention period to any period
between 0 and 35 days (only available on SQL Managed Instance).

To learn how to change the default retention period, please refer to the Backup
retention period section of Chapter 4, Backups.

An Azure SQL Database can only be restored on the same Azure SQL Server as the
original database with a different name, but on SQL Managed Instance, you can
perform a restore on the same database or a restore on a different instance in the same
region and subscription. If you are restoring a database using PITR to recover from a
corruption issue and wish to use the restored database as the production database, you
have to rename the database accordingly, after the restore completes.

PITR is useful for recovering from unexpected data modifications, corrupted databases,
or for getting a database state from a previous state for application testing or
debugging an issue.

Note

PITR always creates a new database, so you must drop an existing database or
rename it later to keep the same database name.

Cross-instance database restores are only allowed within the same region and
subscription. Cross-region and cross-subscription PITR are not yet supported.

194 | Restoration

Performing a PITR on an Azure SQL Database using the Azure portal
To perform a PITR on an Azure SQL Database using the Azure portal, perform the
following steps:

1. Open SQL Server Management Studio (SSMS) and connect to the Azure SQL
server hosting the Azure SQL database you wish to perform a PITR on.

2. Open the C:\Code\Chapter05\InsertNewColor.sql file in SSMS. Make sure that the
database's context is set to the toystore database.

3. Press F5 or click Execute in the top menu to run the query. The query adds a new
row in the Warehouse.Color table with ColorID=37:

-- Insert a new color
INSERT INTO [Warehouse].[Colors]
SELECT
 37 AS ColorID
 ,'Dark Yellow' AS ColorName
 ,1 AS LastEditedBy
 ,GETUTCDATE() AS ValidFrom
 ,'9999-12-31 23:59:59.9999999' As Validto
GO
-- Verify the insert
SELECT [ColorID]
 ,[ColorName]
 ,[LastEditedBy]
 ,[ValidFrom]
 ,[ValidTo]
 FROM [Warehouse].[Colors]
 WHERE ColorID=37

You should get an output similar to Figure 5.2:

Figure 5.2: A new row added in the Warehouse.Color table

Restore types | 195

4. Log in to the Azure portal with your Azure credentials. From the left-hand
navigation pane, select All Resources and click on the Azure SQL database you wish
to perform a PITR on:

Figure 5.3: Selecting an Azure SQL database to perform a PITR

5. From the toystore SQL database overview section, click Restore:

Figure 5.4: Restoring the database

196 | Restoration

6. You will now see the Restore pane:

Figure 5.5: PITR restore

Restore types | 197

Observe the oldest restore point available—this might be different in your case.

Under Restore point, specify the date when you want to perform the PITR. Observe
that the Database Name value changes as you change the restore time.

The database name is toystore_PITRDate. For example, if we were restoring
the database to 11 November 2020, 1:00 PM, then the database name would be
toystore_2020-11-11T13-00Z.

You can change the database name if you want to. However, having the point in
time in the database name is a good way of remembering the reason why and the
time to which the database is being restored.

Observe that the Azure SQL Server (Target server) option is disabled. Therefore,
the PITR can be only done on the same server as the original database.

Click Review + Create and then Create to start the database restore. The restore
time depends on the size of the database being restored.

Wait for the restore to finish. You can look at the Notifications section on the Azure
portal to see the progress of the restore:

Figure 5.6: Notifications

198 | Restoration

7. Once the restore is complete, open the All Resources pane and verify that the
database is listed there:

Figure 5.7: Verifying the completed restore

8. Since the database has been restored and has the same data and schema as it had
on 11 November 2020, this database shouldn't contain ColorID 37, which we added
in step 3.

Switch to SSMS and open C:\Code\Chapter05\InsertNewColor.sql, if it's not already
open.

Change the database context to toystore_2020-11-11T13-00Z. This will be different
in your case.

9. Select and execute the following query in SSMS:

-- Verify the insert
SELECT [ColorID]
 ,[ColorName]
 ,[LastEditedBy]
 ,[ValidFrom]
 ,[ValidTo]
 FROM [Warehouse].[Colors]
 WHERE ColorID=37

Restore types | 199

You should get an output similar to Figure 5.8:

Figure 5.8: Output of the SELECT query

Observe that none of the rows contain ColorID 37 in the Warehouse.Colors table.

The point-in-time (PITR) restore can easily be done for an Azure SQL Database and
provides a way to recover from an accidental delete/update or an outage. Now let's
look at how to do the same thing for an Azure SQL Managed Instance.

Performing a PITR for an SQL Managed Instance using the Azure portal
To initiate a PITR using the Azure portal for SQL Managed Instance, please follow these
steps:

1. Sign in to the Azure portal at https://portal.azure.com.

2. Go to SQL Managed Instance and select the database you wish to restore.

3. Click on the Restore option on the database page:

Figure 5.9: Selecting the Restore option from the database page

https://portal.azure.com

200 | Restoration

4. On the Restore page, enter a new database name, choose a restore point, and click
on the OK button to initiate the restoration:

Figure 5.10: Restore details

Restore types | 201

5. Check the deployment status and click on Go to resource to see the newly restored
database:

Figure 5.11: PITR deployment completion

As mentioned in the introduction, it is possible to perform all the different types of
restoration we cover in this chapter (except for importing a BACPAC) with both Azure
SQL Database and SQL Managed Instance. We have demonstrated how to do a PITR for
both of them just now using the Azure portal, but for brevity, we won't always cover the
restore process for both in the following sections.

Long-term database restore
A Long-term database restore (LTDR) allows you to restore a database configured for
long-term retention backups. The backups are kept in Azure Blob Storage for a longer
period of time.

An LTDR uses the same technique as a PITR to restore a database; however, here you
can restore a database from the last 10 years.

Note

LTDR is currently in public preview for Azure SQL Managed Instance and is only
available for limited subscription types, such as the EA and CSP subscriptions.

202 | Restoration

Performing an LTDR on an Azure SQL Database using the Azure portal
To perform a restore from long-term retention backup on an Azure SQL Database using
the Azure portal, do the following:

1. Log in to the Azure portal with your Azure credentials. From the left-hand
navigation pane, select All Resources and click on the Azure SQL Database you wish
to perform an LTDR on:

Figure 5.12: Selecting the Azure SQL database to perform an LTDR

2. From the toystore SQL database overview section, click Restore:

Figure 5.13: Restoring the database

Restore types | 203

3. In the Restore pane, from the Select source drop-down menu, select Long-term
backup retention:

Figure 5.14: Selecting Long-term backup retention

Click Select a backup under the Long-term backup retention setting.

This setting will list all the backups from the vault. Choose a backup date from the
resulting pane and click Select.

Observe that the Target server option is locked and can't be set to any server other
than the original database server.

Change the database name to toystore_2019-06-20T16-31Z. Click OK to start the
restoration process.

Click Review + Create and then Create to start the restore process

204 | Restoration

4. The restore time depends on the size of the database being restored. Wait for the
restore to finish. You can look at the Notifications section on the Azure portal to
see the progress of the restore:

Figure 5.15: Checking restore notifications

Observe that the notification says that long-term retention is in progress.

5. Once the restore is complete, open the All Resources pane and verify that the
database is listed there:

Figure 5.16: Verifying the completed restore

Restore types | 205

To verify the restore, follow steps 8-9 under the Point-in-time restore section. The
database shouldn't have a ColorID 37 row in the Warehouse.Colors table.

Now let's do the same thing for SQL Managed Instance but using PowerShell
commands.

Performing an LTDR for SQL Managed Instance using PowerShell
A long-term database restore allows us to restore a database from a long-term backup.
This is particularly useful for reconciliation or for when data analysis needs to be
performed on data that's older than a year or so.

In the preview period, there is no Azure portal support to perform a restore operation
from LTDR backups on SQL Managed Instance. Here, we will instead see quick steps to
perform a restore of a managed database from LTDR backups using PowerShell cmdlets.

Please follow these steps to complete this activity:

1. Open Cloud Shell from the Azure portal:

Figure 5.17: Cloud Shell

2. Run the following set of commands to set the variables:

Set the environment variables
$subId = "0000000-xxxx-000000-xxxx-000xxx00"
$instanceName = "packtsqlmi"
$resourceGroup = "packt"
$sourceDbName = "toystore"
$targetDbname = 'toystore_restore'

3. Log in to your Azure account using following command:

Login to Azure account and select subscription
Connect-AzAccount
Select-AzSubscription -SubscriptionId $subId

4. Run the following command to get SQL Managed Instance details:

Get the instance details
$instance = Get-AzSqlInstance -Name $instanceName -ResourceGroupName
$resourceGroup

206 | Restoration

5. Run the following command to get the latest LTDR backup for the toystore
database:

get the latest LTR backup for a specific database from the Azure region
under the given managed instance
$ltrBackup = Get-AzSqlInstanceDatabaseLongTermRetentionBackup -Location
$instance.Location -InstanceName $instanceName -DatabaseName $sourceDbName
-OnlyLatestPerDatabase

6. Run the following command to initiate a restore operation from the LTDR backup:

restore a the LTR backup
Restore-AzSqlInstanceDatabase -FromLongTermRetentionBackup
-ResourceId $ltrBackup.ResourceId -TargetInstanceName $instanceName
-TargetResourceGroupName $resourceGroup -TargetInstanceDatabaseName
$targetDbname

Figure 5.18: LTDR PowerShell output

In this activity, we have learned to perform a restore operation from LTDR backups on
SQL Managed Instance using PowerShell commands.

Restoring deleted databases
Azure allows you to restore a deleted database to the time it was deleted, or to any time
within the retention period. You can select the deleted database you wish to restore
from the pool of deleted databases. You are able to restore a deleted database because
the automatic backups are saved for a given retention period that depends on the
service tier.

Restoring deleted databases | 207

Restoring a deleted database on Azure SQL Database using the
Azure portal
Let's restore a deleted database using the Azure portal:

1. Log in to the Azure portal using your Azure credentials. Open All resources from
the left-hand navigation pane.

2. From the All resources pane, open the Azure SQL server that hosts the deleted
database you wish to restore.

3. In the Azure SQL Server pane, from the Settings section, select Deleted databases:

Figure 5.19: Navigating to deleted databases

208 | Restoration

4. The Deleted databases pane lists the databases and their deletion times. Select the
toystore database for any deletion date you want to restore it to (if, for instance,
you'd deleted and restored the database more than once in the past):

Figure 5.20: List of deleted databases

5. In the Restore pane, provide the database name.

Observe that the Target server option is locked. Therefore, the deleted database
can only be restored to the same server as that of the original database.

Observe that the Restore point option is set to the deletion date that you opted to
restore the database to.

Click OK to restore the database:

Figure 5.21: Providing a database name for the restore

Monitor the database's restoration progress in the Notification pane, as mentioned
in the previous section.

Restoring deleted databases | 209

6. Once the database is restored, navigate to the All resources section from the
left-hand navigation pane. Observe that the database is now listed here:

Figure 5.22: Verifying the restored database

You can use steps 8-9 of the Point-in-time restore section to verify the restored
database. The database shouldn't have a ColorID 37 row in the Warehouse.Colors
table.

Restoring a deleted database on SQL Managed Instance using the
Azure portal
To recover a deleted database using the Azure portal, please follow these steps:

1. Navigate to SQL Managed Instance and select the Deleted Databases pane in the
Azure portal.

2. Select the deleted database.

3. Enter the database name and select a timestamp.

210 | Restoration

4. Click on OK to initiate the restore:

Figure 5.23: Restoring a deleted SQL Managed Instance database using the Azure portal

5. Monitor the notification bell icon to see progress:

Figure 5.24: The restore operation is in progress

6. After the restore operation is complete, you will see a successful restore
notification:

Figure 5.25: Successful restore notification

Geo-restoring databases | 211

Restoring deleted databases allows us to recover from the accidental deletion
of a database and can be easily done using the Azure portal, as shown in these
demonstrations.

Geo-restoring databases
A geo-restore allows you to restore a database from a geo-redundant backup to any
available Azure SQL servers and SQL Managed Instance, irrespective of the region.

The automatic backups of Azure SQL Database and SQL Managed Instance are
geo-redundant by default, and are copied to a paired Azure region as and when they
are taken. There is a maximum delay of one hour when copying a database to a paired
geographical location. Therefore, in the case of a disaster, there can be up to an hour of
data loss:

Figure 5.26: Geo-replication to a different geographical location

212 | Restoration

Geo-restore can be used to recover a database if an entire region is unavailable because
of a disaster:

Figure 5.27: Use of geo-restore in the case of unavailability of an entire region

The most recent full and differential backups are used to perform a geo-restore.

Geo-restore doesn't support PITR. It is the most basic disaster recovery solution with
the longest recovery time, which can be up to 12 hours. This may be a reasonable
recovery solution for dev/test environments or applications that can take some
downtime. For mission-critical applications that need to be up and running at all times,
active geo-replication is highly recommended.

Performing a geo-restore on an SQL Database using the Azure portal
Let's perform a geo-restore of the toystore database on a new server in another region
using the Azure portal:

1. Log in to the Azure portal using your Azure credentials. In the top search box, type
SQL servers and then select SQL servers from the search options:

Figure 5.28: Selecting SQL servers

Geo-restoring databases | 213

On the SQL servers page, click Add from the top menu to create a new SQL server.

2. On the Create SQL Database Server page, provide the subscription, resource
group, server name, location, and the server administrator's username and
password as shown in Figure 5.29:

Figure 5.29: Creating a new SQL server for geo-restore

The new server location should be different from that of the existing database.

Click Review + create and then Create to provision the new SQL server.

Wait for the SQL server to be created.

214 | Restoration

3. Open the new SQL server's page and select Create database:

Figure 5.30: Creating a database using the new SQL server

4. On the Create SQL Database page, under the Basic tab, provide the database name
and change the Compute + Storage setting to Basic (this is to save costs for the
demonstration. In a production environment, this setting should be the same as
that of the primary database):

Figure 5.31: Creating an SQL database—Basics tab

Geo-restoring databases | 215

5. Select the Additional settings tab. In the Data source section, select Backup as the
Use existing data option. The Select a backup dropdown lists all of the available
SQL database backups. Select the toystore database:

Figure 5.32: Restoring a database from an existing backup

Observe that the toystore database is in the toyfactory1234 SQL server in East US.
The new database we are restoring is in West US.

Click Review + create and then Create to restore the database.

A geo-restore helps us to restore SQL Databases across regions in order to recover
from regional failures. However, to geo-restore an SQL Database, the backup storage
redundancy of the source Azure SQL Database (or Managed Instance database) should
be set to geo-redundant. The default backup storage redundancy is geo-redundant and
can be changed using the Set-AzSQLDatabase PowerShell cmdlet by specifying the value
(Local, Zone, or Geo) for the BackupStorageRedundancy option.

216 | Restoration

Performing a geo-restore on an SQL Managed Instance using the
Azure portal
Geo-restore allows you to recover a database to a different region, and this can be
used as a disaster recovery solution, but the recovery time depends on the database's
size. Geo-backups are only available when SQL Managed Instance is configured with
geo-redundant backup storage.

Let's quickly go through the steps for performing a geo-restore for SQL Managed
Instance using the Azure portal:

1. Go to the Azure portal and navigate to the SQL Managed Instance Overview tab,
where you need to initiate a geo-restore.

2. Select New database.

3. Type the desired database name.

4. Under Use existing data, select Backup.

5. Select a backup from the list of available geo-restore backups.

6. Click OK to initiate the restore operation:

Figure 5.33: Creating a new database with geo-backup

Importing a database (Azure SQL Database only) | 217

7. Monitor the notification bell icon for a success notification:

Figure 5.34: Successful geo-restore notification

This will create a new toystore_restore database from a geo-backup of toystore
database hosted on SQL Managed Instance. This concludes the activity here.

The restore options we've talked about so far—point-in-time, delete, and geo-restore—
were from managed backups. We didn't have access to the database backups, but we
did get an option to restore the database. However, there are scenarios where we need
to restore a database from a manual export (BACPAC). Let's see how we can import a
database using an existing BACPAC file.

Importing a database (Azure SQL Database only)
You can import a database into an Azure SQL server from a BACPAC or DACPAC file kept
in Azure Storage. The import operation will create a new Azure SQL database from the
BACPAC file.

The BACPAC file can be imported to any of the available Azure SQL servers in any given
region. This can be useful for quickly creating new test environments.

The import can be done through the Azure portal, PowerShell, the Azure CLI, or
the Azure SDK. Let's learn how to import a database from a BACPAC file kept in Azure
Storage. Open the Azure portal, go to https://portal.azure.com, and log in with your
Azure credentials:

1. From the left-hand navigation pane, open the All resources section. Select the
Azure SQL server you wish to import the database to.

https://portal.azure.com/

218 | Restoration

2. In the Azure SQL Server Overview pane, select Import database:

Figure 5.35: Selecting the Import database option

3. In the Import database pane, under Subscription, select your Azure subscription:

Figure 5.36: The Import database pane

Importing a database (Azure SQL Database only) | 219

Select Storage. In the Storage accounts pane, select the storage account where
your file is located:

Figure 5.37: Selecting the container

Select the container, and then select the BACPAC file you wish to import by clicking
on Select:

Figure 5.38: Selecting the BACPAC file for import

Under the Pricing tier option, choose your pricing tier.

Under the Database Name option, provide the database name.

Leave the Collation option as default.

Provide the username and password for the Azure SQL server.

220 | Restoration

4. Select OK to import the database:

Figure 5.39: Importing the database

Importing a database using the Import option from a BACPAC file is useful when moving a
database from on-premises to Azure SQL, or from one Azure SQL server to another.

We'll now move to the activities and learn how to perform different restores using
PowerShell.

Activity: Performing a PITR for an Azure SQL Database with PowerShell | 221

Activity: Performing a PITR for an Azure SQL Database with
PowerShell
Consider the following scenario: Mike is a new DBA, so his trainer is aware that there
might be some misses at his end. Therefore, his trainer wants to configure PITR on
the databases that Mike is working on. In this section, we will perform a PITR using
PowerShell by following these steps:

1. Press Windows key + R to open the Run dialog box. In the Run dialog box, type
powershell ise to open a new PowerShell editor window.

2. In PowerShell, click File from the top menu and then select New to create a new
PowerShell script file:

Figure 5.40: Creating a new PowerShell script

3. In the new PowerShell script file, copy and paste in the code from the following
step.

4. Define the PowerShell script parameters. The parameters are self-explanatory:

param(
 [Parameter(Mandatory=$true)]
 [string]$sqlserver,
 [Parameter(Mandatory=$true)]
 [string]$database,
 [Parameter(Mandatory=$true)]
 [string]$sqluser,
 [Parameter(Mandatory=$true)]
 [string]$sqlpassword,
 [Parameter(Mandatory=$true)]
 [string]$resourcegroupname,
 [string]$newdatabasename
)

222 | Restoration

5. Copy the following code to let the users log in to their Azure subscription by
providing Azure credentials in a login window:

#Login to Azure account
Login-AzAccount
Select-AzSubscription -SubscriptionId $subscriptionId

6. Copy the following code to output the earliest restore point available and let the
users provide a point in time to restore the database to:

While (1)
 {
 #Retrieve the distinct restore points from which a SQL
Database can be restored
 $restoredetails = Get-AzSqlDatabaseRestorePoints
-ServerName $sqlserver -DatabaseName $database -ResourceGroupName
$resourcegroupname
 #get the earliest restore date
 $erd=$restoredetails.EarliestRestoreDate.ToString();
 #ask for the point in time the database is to be restored
 $restoretime = Read-Host "The earliest restore time is $erd.'n
Enter a restore time between Earliest restore time and current time."
 #convert the input to datatime data type
 $restoretime = $restoretime -as [DateTime]
 #if restore time isn't a valid data, prompt for a valid
date
 if(!$restoretime)
 {
 Write-Host "Enter a valid date" -ForegroundColor Red
 }else
 {
 #end the while loop if restore date is a valid date
 break;
 }
 }
}

You can read through the comments to understand what the code does.

Activity: Performing a PITR for an Azure SQL Database with PowerShell | 223

7. Copy the following code to set the new database name if it hasn't already been
provided by the user, and perform the PITR:

#set the new database name
 if([string]::IsNullOrEmpty($newdatabasename))
 {
 $newdatabasename = $database + (Get-Date).
ToString("MMddyyyymm")
 }

 # get the original database object
 $db = Get-AzSqlDatabase -DatabaseName $database -ServerName
$sqlserver -ResourceGroupName $resourcegroupname
 Write-Host "Restoring Database $database as of
$newdatabasename to the time $restoretime"

 #restore the database to point in time
 $restore = Restore-AzSqlDatabase -FromPointInTimeBackup
-PointInTime $restoretime -ResourceId $db.ResourceId -ServerName $db.
ServerName -TargetDatabaseName $newdatabasename -Edition $db.Edition
-ServiceObjectiveName $db.CurrentServiceObjectiveName -ResourceGroupName
$db.ResourceGroupName

 # restore deleted database

 if($rerror -ne $null)
 {
 Write-Host $rerror -ForegroundColor red;
 }
 if($restore -ne $null)
 {
 Write-Host "Database $newdatabasename restored
Successfully";
 }

You can read through the comments to understand what the code does.

8. Save the file as PITRAzureSQLDB.ps1 to C:\Code\Chapter05 or a location of your
choice.

9. Open a PowerShell console and change the default directory to C:\Code\Chapter05
or the directory where you have saved the PowerShell script.

224 | Restoration

10. Copy the following code and press Enter to start the export. You may have to
change the parameter values to match your Azure environment:

.\PITRAzureSQLDB.ps1 -sqlserver toyfactory -database toystore
-sqluser sqladmin -sqlpassword Packt@pub2 -resourcegroupname toystore
-newdatabasename toystorepitr

The preceding command will restore the toystore database to a specified point in time
on the toyfactory SQL server in the toystore resource group. The database will be
restored as toystorepitr.

Once the script finishes, you should get an output similar to Figure 5.41:

Figure 5.41: A successful PITR on the toystorepitr database

You can also verify whether or not the available restore is visible in the Azure portal.

Activity: Performing a geo-restore of an Azure SQL Database
with PowerShell
Let's once again consider our example of ToyStore Ltd. Mike is aware that, although
on the cloud, his data is still physically stored on servers. Hence, there is a possibility
of data loss due to natural disasters. In these instances, he would have to perform a
geo-restore operation. This section makes use of PowerShell to perform a geo-restore:

1. Press Windows key + R to open the Run dialog box. In the Run dialog box, type
powershell ise to open a new PowerShell editor window.

2. In PowerShell, click File from the top menu, and then select New to create a new
PowerShell script file:

Figure 5.42: Creating a new PowerShell script

Activity: Performing a geo-restore of an Azure SQL Database with PowerShell | 225

3. In the new PowerShell script file, copy the code as instructed in the following steps.

Define the PowerShell script parameters. The parameters are self-explanatory:

param(
 [Parameter(Mandatory=$true)]
 [string]$sqlserver,
 [Parameter(Mandatory=$true)]
 [string]$database,
 [Parameter(Mandatory=$true)]
 [string]$sqluser,
 [Parameter(Mandatory=$true)]
 [string]$sqlpassword,
 [Parameter(Mandatory=$true)]
 [string]$resourcegroupname,
 [string]$newdatabasename
)

Copy the following code to open a login dialog box to log in to Azure:

#Login to Azure subscription
Login-AzAccount
Select-AzSubscription -SubscriptionId $subscriptionId

Copy the following code to get the details of the database that is to be geo-restored
in a PowerShell object and display the details on the console:

get the geo database backup to restore

$geodb = Get-AzSqlDatabaseGeoBackup -ServerName
$sqlserver -DatabaseName $database -ResourceGroupName
$resourcegroupname

#Display Geo-Database properties
$geodb | Out-Host

Copy the following code to retrieve the name of the database that is to be restored:

#get the database name from the geodb object
$geodtabasename = $geodb.DatabaseName.ToString()

Copy the following code to set the new database name if it hasn't already been
provided by the user:

#set the new database name
if([string]::IsNullOrEmpty($newdatabasename))
{

226 | Restoration

 $newdatabasename = $database + (Get-Date).ToString("MMddyyyymm")
}

Copy the following code to perform the geo-restore:

Write-Host "Restoring database $geodtabasename from geo backup"
-ForegroundColor Green

perform the geo restore
$restore = Restore-AzSqlDatabase -FromGeoBackup
-ResourceId $geodb.ResourceID -ServerName $sqlserver
-TargetDatabaseName $newdatabasename -Edition $geodb.Edition
-ResourceGroupName $resourcegroupname -ServiceObjectiveName
$serviceobjectivename

if($rerror -ne $null)
{
Write-Host $rerror -ForegroundColor red;
}

if($restore -ne $null)
{
$restoredb = $restore.DatabaseName.ToString()
Write-Host "Database $database restored from Geo Backup as database
$restoredb" -ForegroundColor Green
}

The new database has the same edition and performance level as the original
database. You can change this by specifying different values in the Restore-
AzSqlDatabase cmdlet.

4. Save the file as GeoRestoreAzureSQLDB.ps1 to C:\Code\Chapter05 or a location of your
choice.

5. Open a PowerShell console and change the default directory to C:\Code\Chapter05
or to the directory where you have saved the PowerShell script.

6. Copy the following code and press Enter to start the export. You may have to
change the parameter values as per your Azure environment:

.\GeoRestoreAzureSQLDB.ps1 -sqlserver toyfactory -database toystore
-sqluser sqladmin -sqlpassword Packt@pub2
-resourcegroupname toystore -newdatabasename toystoregeorestore

Activity: Performing Point-In-Time restore for SQL Managed Instance with PowerShell | 227

The preceding command will restore the toystore database to a specified point in
time on the toyfactory SQL server in the toystore resource group. The database
will be restored as toystoregeorestore.

Once the script finishes, you should get an output similar to what is shown in Figure
5.43:

Figure 5.43: Successful completion of geo-restore

Your toystore database has been successfully restored.

Activity: Performing Point-In-Time restore for SQL Managed
Instance with PowerShell
In this two-part activity, we will be performing a point-in-time restore of a database
in SQL Managed Instance using PowerShell and then a cross-instance restore of a
database (from one SQL Managed Instance to another SQL Managed Instance).

228 | Restoration

Part 1: Restoring a database to a point in time using PowerShell on one
managed instance
To perform a point-in-time restore operation on the same SQL Managed Instance using
PowerShell commands, please follow these steps:

1. Press Windows key + R to open the Run dialog box. In the Run dialog box, type
powershell ise to open a new PowerShell editor window.

2. In PowerShell, click File from the top menu and then select New to create a new
PowerShell script file:

Figure 5.44: Creating a new PowerShell script

3. In the new PowerShell script file, copy in the code from the following step.

4. Define the PowerShell script parameters. The parameters are self-explanatory:

param(
[Parameter(Mandatory=$true)]
[string]$resourcegroupname,
[Parameter(Mandatory=$true)]
[string]$subscriptionId,
[Parameter(Mandatory=$true)]
[string]$managedInstanceName,
[Parameter(Mandatory=$true)]
[string]$databaseName,
[Parameter(Mandatory=$true)]
[string]$newdatabasename
)

Activity: Performing Point-In-Time restore for SQL Managed Instance with PowerShell | 229

5. Copy the following code to let the users log in to their Azure subscription by
providing Azure credentials in a login window:

Login to Azure subscription
Login-AzAccount
Select-AzSubscription -SubscriptionId $subscriptionId

6. Copy the following code to output the earliest restore point available and let the
users provide a point in time to restore the database to:

list the earliest restore point
Ask user for the point in time the database is to be restored

While (1)
{
 #Retrieve the distinct restore points from which a Database
can be restored
$restoredetails = Get-AzSqlInstanceDatabase -InstanceName
$managedInstanceName -Name $databaseName -ResourceGroupName
$resourcegroupname

#get the earliest restore point
 $erd=$restoredetails.EarliestRestorePoint.ToString();

#ask for the point in time the database is to be restored
 $restoretime = Read-Host "The earliest restore time is
$erd.'n Enter a restore time between Earlist restore time and current
time."

#convert the input to datetime date type
 $restoretime = $restoretime -as [DateTime]

#if restore time isn't a valid data, prompt for a valid date
 if(!$restoretime)
 {
 Write-Host "Enter a valid date" -ForegroundColor Red
 }else
 {
 #end the while loop if restore date is a valid date
 break;
 }
 }

230 | Restoration

You can read through the comments to understand what the code does.

7. Copy the following code to set the new database name if it hasn't already been
provided by the user, and perform the PITR:

#set the new database name
 if([string]::IsNullOrEmpty($newdatabasename))
 {
 $newdatabasename = $databaseName + (Get-Date).
ToString("MMddyyyymm")
 }

Write-Host "Restoring Database $databaseName as of $newdatabasename to
the time $restoretime"

 #restore the database to point in time
$restore = Restore-AzSqlInstanceDatabase -FromPointInTimeBackup
-ResourceGroupName $resourcegroupname -InstanceName $managedInstanceName
-Name $databaseName -PointInTime $restoretime -TargetInstanceDatabaseName
$newdatabasename

if($rerror -ne $null)
 {
 Write-Host $rerror -ForegroundColor red;
 }
 if($restore -ne $null)
 {
Write-Host "Database $newdatabasename restored Successfully"
-ForegroundColor Green;
 }

You can read through the comments to understand what the code does.

8. Save the file as SQLMI_PITROnSameInstance.ps1 to C:\Code\Chapter05, or a location of
your choice.

9. Open a PowerShell console and change the default directory to C:\Code\Chapter05
or to the directory where you have saved the PowerShell script.

10. Copy the following code and press Enter to start the export. You may have to
change the parameter values to match your Azure environment:

.\SQLMI_PITROnSameInstance.ps1 -resourcegroupname Packt -subscriptionId
6ee856b5-yy6d-4bc1-a901-by00000002e1 -managedInstanceName packtsqlmi
-databaseName toystore -newdatabasename toystorepitr

Activity: Performing Point-In-Time restore for SQL Managed Instance with PowerShell | 231

The preceding command will restore the toystore database to a specified point in
time on the packtsqlmi Azure SQL Managed Instance in the Packt resource group.
The database will be restored as toystorepitr.

Once the script finishes, you should get a similar output to Figure 5.45:

Figure 5.45: A successful PITR of the toystorepitr database

You can also verify this using the Azure portal:

Figure 5.46: A newly added toystorepitr database

Part 2: Performing a cross-instance point-in-time restore from an
existing database
Cross-instance PITRs are useful for scenarios such as moving/migrating a database
from one instance to another. You could alternatively use the COPY_ONLY backup/restore
method, but this is a much easier approach than backup/restore.

Cross-instance PITR is limited to the same Azure region and subscription. You cannot
initiate cross-instance PITR and perform it on another instance located in a different
subscription or region. If you have a cross-region or subscription instance, then you
can use the Copy method to copy a database.

Note

Cross-instance PITR is only supported using the PowerShell method.

232 | Restoration

Follow these steps to perform a cross-instance PITR:

1. Press Windows key + R to open the Run dialog box. In the Run dialog box, type
powershell ise to open a new PowerShell editor window.

2. In PowerShell ISE, click File from the top menu and then select New to create a new
PowerShell script file:

Figure 5.47: Creating a new PowerShell script

3. In the new PowerShell script file, copy the code from the following step.

4. Define the PowerShell script parameters. The parameters are self-explanatory:

param(
 [Parameter(Mandatory=$true)]
 [string]$resourcegroupname,
 [Parameter(Mandatory=$true)]
 [string]$subscriptionId,
 [Parameter(Mandatory=$true)]
 [string]$managedInstanceName,
 [Parameter(Mandatory=$true)]
 [string]$databaseName,
 [Parameter(Mandatory=$true)]
 [string]$targetResourceGroupName,
 [Parameter(Mandatory=$true)]
 [string]$targetManagedInstanceName,
 [Parameter(Mandatory=$true)]
 [string]$targetDatabaseName
)

5. Copy the following code to let the users log in to their Azure subscription by
providing Azure credentials in a login window:

Login to Azure subscription
Login-AzAccount
Select-AzSubscription -SubscriptionId $subscriptionId

Activity: Performing Point-In-Time restore for SQL Managed Instance with PowerShell | 233

6. Copy the following code to output the earliest restore point available and let the
users provide a point in time to restore the database to:

list the earliest restore point
Ask user for the point in time the database is to be restored

While (1)
 {
 #Retrieve the distinct restore points from which a Database
can be restored
 $restoredetails = Get-AzSqlInstanceDatabase -InstanceName
$managedInstanceName -Name $databaseName -ResourceGroupName
$resourcegroupname
 #get the earliest restore point
 $erd=$restoredetails.EarliestRestorePoint.ToString();
 #ask for the point in time the database is to be restored
 $restoretime = Read-Host "The earliest restore time is $erd.'n
Enter a restore time between Earlist restore time and current time."
 #convert the input to datatime data type
 $restoretime = $restoretime -as [DateTime]
 #if restore time isn't a valid data, prompt for a valid
date
 if(!$restoretime)
 {
 Write-Host "Enter a valid date" -ForegroundColor Red
 }else
 {
 #end the while loop if restore date is a valid date
 break;
 }
 }

You can read through the comments to understand what the code does.

234 | Restoration

7. Copy the following code to set the new database name if it hasn't already been
provided by the user, and perform the PITR:

#set the new database name
 if([string]::IsNullOrEmpty($targetDatabaseName))
 {
 $targetDatabaseName = $databaseName + (Get-Date).
ToString("MMddyyyymm")
 }

 Write-Host "Restoring Database $databaseName as
$targetDatabaseName on $targetManagedInstanceName to the time
$restoretime"

 #restore the database to point in time
 $restore = Restore-AzSqlInstanceDatabase -FromPointInTimeBackup
-ResourceGroupName $resourcegroupname -InstanceName $managedInstanceName
-Name $databaseName -PointInTime $restoretime -TargetInstanceDatabaseName
$targetDatabaseName -TargetResourceGroupName $targetResourceGroupName
-TargetInstanceName $targetManagedInstanceName
if($rerror -ne $null)
{
Write-Host $rerror -ForegroundColor red;
}
if($restore -ne $null)
{
Write-Host "Database $targetDatabaseName restored Successfully on SQL
Managed Instance $targetManagedInstanceName" -ForegroundColor Green;
}

You can read through the comments to understand what the code does.

8. Save the file as SQLMI_PITROnCrossInstance.ps1 to C:\Code\Chapter05 or a location of
your choice.

9. Open a PowerShell console and change the default directory to C:\Code\Chapter05
or the directory where you have saved the PowerShell script.

Activity: Performing Point-In-Time restore for SQL Managed Instance with PowerShell | 235

10. Copy the following code and press Enter to start the export. You may have to
change the parameter values to match your Azure environment:

.\SQLMI_PITROnCrossInstance.ps1 -resourcegroupname Packt -subscriptionId
6ee856b5-yy6d-4bc1-a901-by0000000e1 -managedInstanceName
packtsqlmi -databaseName toystore -targetDatabaseName toystorepitr
-targetResourceGroupName Packt -targetManagedInstanceName packtsqlmi1

The preceding command will restore the toystore database to a specified point in
time on the packtsqlmi1 Azure SQL Managed Instance in the Packt resource group.
The database will be restored as toystorepitr.

Once the script finishes, you should get a similar output to Figure 5.48:

Figure 5.48: A successful cross-instance PITR of the toystorepitr database

You can also verify this using the Azure portal:

Figure 5.49: A newly added toystorepitr database

In this activity, we have learned about restoring an existing database of SQL Managed
Instance to a previous point in time on the same instance using PowerShell. We also
performed a cross-instance restore using PowerShell commands. Now let's look at how
to do a geo-restore on SQL Managed Instance.

236 | Restoration

Activity: Geo-restoring a database hosted on SQL Managed
Instance using the Az PowerShell module
Geo-restoring allows you to recover a database to a different region. This can be
used as a database recovery solution, but the recovery time depends on the database
size. Geo-backups are only available when SQL Managed Instance is configured with
geo-redundant backup storage.

Let's quickly go through how to perform a geo-restore using PowerShell.

This activity is similar to the previous point-in-time restore we did using the Az
PowerShell module, so all the steps are not covered here. We are only covering changes
in the script.

SQLMI_GeoRestore.ps1 is available in the source code and most of the code is similar to
the point-in-time restore activity.

In our geo-restore PowerShell script, we are using the same Restore-
AzSqlInstanceDatabase command, but instead of using the -FromPointInTimeBackup
parameter, we are using the -FromGeoBackup parameter.

The following is a code snippet from the PowerShell script:

$restore = Restore-AzSqlInstanceDatabase -FromGeoBackup -ResourceGroupName
$resourcegroupname -InstanceName $managedInstanceName -Name $databaseName
-TargetInstanceDatabaseName $targetDatabaseName -TargetResourceGroupName
$targetResourceGroupName -TargetInstanceName $targetManagedInstanceName

In the next activity, we will learn to perform restore of a deleted database on Azure SQL
Managed Instance using PowerShell module.

Activity: Restoring a deleted database on SQL Managed
Instance using PowerShell
Restoring a deleted database on a managed instance can be done using the Azure
portal, as we saw in the demonstrations earlier, and PowerShell. Cross-instance
restoration for deleted databases can only be done using PowerShell.

Like active database point-in-time restore, cross-instance restore for deleted databases
is only available in the same region and same subscription.

Summary | 237

To restore deleted databases using PowerShell, you can use the following PowerShell
scripts; these scripts are similar to the point-in-time restore and geo-restore scripts.

• SQLMI_DeletedDatabaseOnSameInstancePITR.ps1

• SQLMI_DeletedDatabaseOnCrossInstancePITR.ps1

This concludes the chapter. As we have seen, Azure SQL Managed Instance supports
restoration for all possible scenarios. Use these PaaS capabilities to easily restore your
managed databases to the same instance or across instances in the same region and
subscription.

Summary
Restoring an Azure SQL database and Azure SQL Managed Instance is different from
restoring an on-premises SQL Server database. In this chapter, you learned about the
following restore options:

• Point-in-time restore

• Restoring a deleted database

• Geo-restoring a database

• Restoring a database from a long-term backup

• Importing a BACPAC file

Each of these options can be leveraged in different scenarios. For example, a PITR will
help you recover from a corrupt database or accidental deletion in Azure SQL Database
and SQL Managed Instance, whereas importing a BACPAC file in Azure SQL Database
helps you set up a development environment with the same schema and data across
development, testing, and integration.

In the next chapter, we will look at the security mechanisms available to secure an
Azure SQL database and SQL Managed Instance.

Security is a major concern for organizations when migrating to the cloud, making
them hesitant to actually do so. The major security concerns with the cloud include
ones about physical server security, data security at rest and in motion, and data
infiltration. Microsoft provides strong security protection at the physical, logical,
and data layers of Azure services. Microsoft datacenters are among the most secure
datacenters in the world.

Azure SQL Database and SQL Managed Instance provide multiple layers of security to
control access to databases using SQL Server or Active Directory (AD) authentication
as well as firewall rules, which limit access to data through role-based permissions and
row-level security.

SQL Database and SQL Managed Instance provide proactive security using Advanced
Threat Protection, granular access control, and strong authentication. In addition to
this, dynamic data masking and row-level security can be used to secure data.

Security

6

240 | Security

Transparent data encryption for encrypting data at rest is also provided, as well as
Always Encrypted to encrypt data at rest or in motion.

This chapter covers all of these security mechanisms and how to implement them to
secure a SQL database or managed instance.

By the end of this chapter, you will be able to:

• Configure firewall settings for SQL Server and SQL Database.

• Configure service endpoints and private endpoints for SQL Server.

• Enforce a minimal TLS version for SQL Managed Instance.

• Configure and secure public endpoints for SQL Managed Instance.

• Implement audits and threat detection.

• Implement audits and track unwanted backup events for SQL Managed Instance.

• Implement encryption.

• Implement dynamic data masking and row-level security.

• Implement AD authentication for a SQL database.

Network security
SQL Database limits access to databases through firewall rules, which are
authentication techniques that require users to log in to a database with a valid
username and password. Firewall rules are not valid for SQL Managed Instance, so
you need to configure network security group (NSG) inbound and outbound security
rules. SQL Database and SQL Managed Instance further control access to underlying
data through role-based permissions and row-level security. We'll now look at different
access control methods in detail.

Firewall rules
SQL Database uses firewall rules to limit access to authorized IPs and block access to
unauthorized IPs. This is the first level of access control provided by SQL Database.
Firewall rules can be created at the server level and the database level.

When a SQL database is provisioned, it's inaccessible to everyone. To make it
accessible, you first need to add a server-level firewall rule. A firewall allows an IP or
a range of IP addresses to connect to a SQL database. You can then create database
firewall rules to enable certain clients to access individual secure databases.

Network security | 241

Connection requests to a SQL database are first validated against the firewall rules and
the computers with the IPs specified in the firewall rules are allowed to connect to the
database:

Figure 6.1: Firewall rules

If a computer attempts to connect to an Azure SQL database over the internet, then:

The computer's IP address is validated against the database-level firewall rules. If the
IP address is in the IP range specified in the database firewall rules, the connection is
made.

If the computer's IP address doesn't fall within the database-level firewall rules, then
server-level firewall rules are checked. If the computer's IP address is in the server-
level firewall rules, the connection is made.

If the computer's IP address doesn't fall within the database-level or server-level
firewall rules, the connection is terminated with an error.

Note

To create a server-level firewall rule, you should be a subscription owner or
subscription contributor. The subscription used here is a Microsoft Azure
subscription, which you get when you sign up for a Microsoft Azure account.

242 | Security

To allow Azure applications to connect to a SQL database, you need to add the IP
0.0.0.0 as the start and end IP address to the server-level firewall rules.

The following table highlights the differences between server-level and database-level
firewall rules:

Table 6.1: Firewall rule comparison

Next, let's find out more about how to manage server-level firewall rules.

Managing server-level firewall rules using the Azure portal
In this section, you will learn how to create, delete, and update server-level firewall
rules from the Azure portal, by performing the following steps:

1. Log in to the Azure portal (https://portal.azure.com) using your Azure credentials.

2. Find and open the toyfactorytemp Azure SQL server to manage the firewall for it.

3. From the Azure SQL server Overview page, select the Set server firewall option:

Figure 6.2: Setting the firewall

Allows clients to access all SQL databases
in given logical SQL Server.

Allows clients to access particular SQL databases within
the logical SQL Server.

Rules are stored in the master database. Rules are stored within individual SQL databases.

PowerShell, and T-SQL.

https://portal.azure.com

Managing server-level firewall rules using the Azure portal | 243

4. On the Firewall settings page, notice that no firewall rules have been configured:

Figure 6.3: The Firewall settings page

Also, notice that it automatically detects and displays the public IP address of the
computer from which the portal has been opened.

5. To add the client IP address, select Add client IP from the top menu:

Figure 6.4: Adding the client IP address

244 | Security

A firewall rule with the same start and end IP as the client IP address is added. You
can change the rule name if you wish to. Click Save in the top menu to save the
firewall rule.

You can provide access to all systems within a specified IP range by specifying the
start and end IP accordingly.

6. You can update a firewall rule by clicking anywhere on the firewall rule row you
wish to update.

7. To delete a firewall rule, click on the three dots to the right of the firewall rule row
and select Delete. Click Save to save the changes:

Figure 6.5: Deleting a firewall

If you don't wish to delete a firewall rule and have accidentally clicked Delete
instead of clicking Save in the top menu, click Discard to undo the changes.

8. To make an Azure SQL database accessible to Azure applications, toggle Allow
access to Azure services to ON and click Save to save the configuration:

Figure 6.6: Firewall settings page

That's it for the Azure portal—now we'll learn how to do the same thing using
Transact-SQL.

Managing server-level firewall rules using the Azure portal | 245

Managing server-level firewall rules using Transact-SQL
You can also make use of Transact-SQL instead of the Azure portal to manage server-
level firewall rules. In this section, you will learn how to create, delete, and update
server-level firewall rules using Transact-SQL:

1. Open SQL Server Management Studio (SSMS) and connect to your Azure SQL
server. You should be able to connect now, since you have added a server-level
firewall rule.

2. In the master database context, run the following query to list all of the existing
server-level firewall rules:

Select * from sys.firewall_rules

The IP address will be different in your case. You should get an output like the one
shown in Figure 6.7:

Figure 6.7: Listing the server-level firewall rules

3. Execute the following command to add a new server-level firewall rule:

Execute sp_set_firewall_rule @name = N'Work',
@start_ip_address = '115.118.1.0',
@end_ip_address = '115.118.16.255'

Notice the N before 'Work' in the preceding query. The query will fail if you don't
add N. This is because the firewall rule is of the NVARCHAR data type, and N specifies
that the string following it is a Unicode or NVARCHAR data type.

A new firewall rule, Work, is used when the start IP, 115.118.0.0, and the end IP,
115.118.16.255, are added to the firewall.

246 | Security

4. Execute the following command to verify whether or not the rule has been added:

Select * from sys.firewall_rules

You should get an output like the one shown in Figure 6.8:

Figure 6.8: Verifying the added firewall

5. Firewall rule names are unique. If you wish to update a firewall rule, call the sp_
set_firewall_rule procedure with the rule name you wish to update, as well as the
updated IP addresses.

The following query updates the Work firewall rule with new IP addresses:

Execute sp_set_firewall_rule @name = N'Work',
@start_ip_address = '115.118.10.0',
@end_ip_address = '115.118.16.255'

6. Execute the following command to verify that the rule has been added:

Select * from sys.firewall_rules

You should get an output like the one shown in Figure 6.9:

Figure 6.9: Verifying the added rule

Notice that the IP address for the Work firewall rule has been updated.

7. To delete a firewall rule, run the following query:

Execute sp_delete_firewall_rule @name= N'Work'

Managing server-level firewall rules using the Azure portal | 247

8. Execute the following command to verify that the rule has been deleted:

Select * from sys.firewall_rules

You should get an output like the one shown in Figure 6.10:

Figure 6.10: Verifying the firewall rule has been deleted

The Work firewall rule has been deleted from the firewall.

Managing database-level firewall rules using Transact-SQL
Like server-level firewall rules, database-level firewall rules can also be managed
with Transact-SQL. In this section, you will learn how to create, delete, and update a
database-level firewall rule with Transact-SQL:

1. Execute the following query to list the current database-level firewall rules:

Note

You can do this within the master database context or any user SQL database
context.

SELECT * FROM sys.database_firewall_rules

Figure 6.11: Listing the current firewall rules

Notice that no database-level firewall rules exist.

2. Execute the following query to create a new database-level firewall rule:

Exec sp_set_database_firewall_rule @name=N'MasterDB',
@start_ip_address='115.118.10.0',
@end_ip_address='115.118.16.255'

248 | Security

3. Execute the following command to verify that the rule has been added:

Select * from sys.database_firewall_rules

You should get an output like the one shown in Figure 6.12:

Figure 6.12: Verifying the added firewall rule

A new database-level firewall rule, MasterDB, has been added to the firewall.

4. To update a firewall rule, call the sp_set_database_firewall_rule procedure with
the firewall rule you wish to update and the new start and end IP addresses.
Execute the following query to update the MasterDB firewall rule created in the
previous step:

Exec sp_set_database_firewall_rule @name=N'MasterDB',
@start_ip_address='115.118.1.0',
@end_ip_address='115.118.16.255'

5. Execute the following command to verify that the rule has been updated:

Select * from sys.database_firewall_rules

You should get an output like the one shown in Figure 6.13:

Figure 6.13: Verifying the updated firewall rule

Notice that the firewall rule has been updated.

6. To delete an existing database-level firewall rule, execute the following query:

Exec sp_delete_database_firewall_rule @name=N'MasterDB'

Managing server-level firewall rules using the Azure portal | 249

Execute the following command to verify whether or not the rule has been deleted:

Select * from sys.database_firewall_rules

You should get an output like the one shown in Figure 6.14:

Figure 6.14: Deleting the firewall rule

The database-level firewall rule has been successfully deleted.

Note

Login details and server-level firewall rules are cached in each SQL database.
The cache is periodically refreshed; however, you can run DBCC FLUSHAUTHCACHE
to manually flush the authentication cache. This statement does not apply to
the logical master database, because the master database contains the physical
storage for the information about logins and firewall rules. The user executing the
statement and other currently connected users remain connected.

As seen, we can allow listed IPs or a range of IPs in firewall rules to access a SQL
database. However, this requires additional management for managing the allowed IPs.
Service endpoints allow us to allow virtual networks instead of IPs. All virtual machines
within a virtual machine or peered virtual machine can access a SQL database. Let's see
how this is done in the next section.

Service endpoints
Service endpoints allow us to allow an Azure virtual network so as to allow connections
from all virtual machines (VMs) in the given virtual network. With this, we don't need
to allow IPs or IP ranges for VMs or Azure services in the virtual network.

The communication between a VM and a SQL database takes place over an Azure
backbone network; however, instead of a VM's public IP, the Azure SQL database sees
its private IP address. This makes management easy by not listing each and every
allowed IP/IP range.

250 | Security

Configuring service endpoints for SQL Database
In this section, we'll allow a virtual network so as to allow connection from VMs or
services within the virtual network to a SQL database. To do this, follow these steps:

Note:

You need an existing virtual network and VM to follow along.

1. In the Azure portal, navigate to SQL Server (toyfactory). In the SQL Server pane,
find and open Firewall and virtual networks.

Allow the VM public IP address in the SQL Server firewall and save the
configuration:

Figure 6.15: Allowing the VM public IP in the SQL Server firewall

The IP in our case is 40.117.57.15. It'll be different for your VM.

Managing server-level firewall rules using the Azure portal | 251

2. Connect to SQL Database from the VM and execute the following query:

SELECT
 DB_NAME() AS [Database],
 client_net_address
FROM sys.dm_exec_connections
WHERE session_id=@@SPID

Figure 6.16: Verifying the VM IP

Observe that the connection is from the public IP address of the VM.

We'll now configure the service endpoint and allow the VM virtual network and
then verify the IP in SQL Database.

3. We'll first enable the service endpoint for the VM subnet. To do that, open the
virtual network in the Azure portal:

Note:

In this case, the virtual network is packtvnet and the subnet is appnet. You'll have
a different virtual network and subnet name.

252 | Security

Figure 6.17: Virtual network pane

On the virtual network page, select Subnets. In the Subnets pane, click the subnet
for which we want to enable the service endpoint. In the subnet pane, under the
SERVICE ENDPOINTS heading, search and select Microsoft.Sql:

Figure 6.18: Enabling the service endpoint for a subnet

Click OK to save the configuration.

Managing server-level firewall rules using the Azure portal | 253

4. Switch to SQL Server and go to the Firewall and Virtual Network pane. In the
Virtual networks section, click Add existing virtual network. In the Create/
Update pane, provide the virtual network rule name, subscription, virtual network,
and the subnet for which we enabled the service endpoint in step 3:

Figure 6.19: Allowing the virtual network

Click OK to save the configuration. It usually takes a minute for the configuration to
be modified:

Figure 6.20: Virtual network rule added to SQL Database

254 | Security

5. Let's switch to the VM and run the query in step 2 to verify the IP address:

SELECT
 DB_NAME() AS [Database],
 client_net_address
FROM sys.dm_exec_connections
WHERE session_id=@@SPID

Figure 6.21: Verifying the VM IP address

Observe that after the service endpoint configuration, the VM connects to the Azure
SQL database through the private IP address instead of the public IP address.

Any VM in the configured subnet can connect to SQL Database without having to allow
the public IP address.

Service endpoints allow us to allow virtual networks, and connections to SQL Database
are made using the VM private IP instead of a public IP. However, connections are still
made to the SQL Database public endpoint. Let's understand how we can further secure
SQL Database by using a private endpoint.

Private endpoint
When we provision an Azure VM, public and private IPs are assigned to it. To connect
to a SQL server from an Azure VM, we can allow the public IP in the SQL Server firewall.
This method has a drawback of having to manage IPs and IP ranges for every Azure VM
that requires connectivity to SQL Server, and it's less secure as the connection is made
over a public IP address.

If our security policy doesn't allow a public IP to be assigned to an Azure VM, we can
enable Allow Azure services and resources to access this server on the Firewall
settings page. This method opens up access to any Azure service in the subscription
and so is not recommended.

Managing server-level firewall rules using the Azure portal | 255

Additionally, we can add network security group rules on Azure VM so as to only allow
outbound connections to SQL Server in a specific region. This can be done by adding an
outbound rule to the Microsoft.Sql service tag to the network security group as shown
here:

Figure 6.22: Restricting access to SQL Server from an Azure VM

In the preceding figure, the AllowSQLEastUSConnection rule makes sure that the Azure
VM with the public IP 52.150.11.236 can only make outbound connections on port 1433
and 11000-11999 to any Azure SQL database in the East US region.

Note:

The preceding method is a restriction on the Azure VM side and it doesn't change
any configuration on the SQL Server side. We still need to allow the Azure VM
public IP for SQL Server.

Service endpoints allow us to allow a virtual network in SQL Database, which in turn
allows us to connect to SQL Database from an Azure VM private IP instead of a public
IP, as explained previously. However, we still need the AllowSQLEastUSConnection rule
so as to limit access to SQL databases in East US. The source for the rule changes to an
Azure VM private IP instead of a public one, as mentioned earlier.

256 | Security

In order to allow connections to only a particular SQL database, we need to change
the destination in the AllowSQLEastUSConnection rule to a particular IP. This is what a
private endpoint does. A private endpoint assigns a private IP to a SQL database from a
virtual network. The connection from the Azure VM to SQL Database now takes place
over a private IP; we can say it never leaves the virtual network.

If we do nslookup on a SQL Server endpoint, we'll get the following output:

Figure 6.23: SQL Server—nslookup

As seen in the preceding figure, the connections to SQL Server are made to the public
IP 40.121.158.30.

We'll now configure the private endpoint and again check the output of nslookup.

To configure a private endpoint from the Azure portal, follow these steps:

1. In the Azure portal, find and open the toyfactory SQL server page. Search and open
Private endpoint connections under the Security section. On the Private endpoint
connections page, click Private endpoint:

Figure 6.24: Adding a private endpoint

2. On the Create a private endpoint page, under the Basics tab, provide details for
Subscription, Resource group, instance Name, and Region. The private endpoint
should be in the same region as the virtual network:

Managing server-level firewall rules using the Azure portal | 257

Figure 6.25: Private endpoint—Basics tab

Click Next: Resource > to continue.

3. In the Resource tab, set Connection method as Connect to an Azure resource in
my directory.

Select your subscription, set the resource type as Microsoft.Sql/servers, and enter
toyfactory as follows:

Figure 6.26: Private endpoint—Resource tab

258 | Security

4. In the Configuration tab, provide the virtual network for the private endpoint and
the subnet. This is usually the subnet of the Azure VM you would like to connect to
SQL Database.

The private DNS integration creates a private DNS zone, privatelink.database.
windows.net, to make sure that the connection is always made on a private endpoint.
Think of it as a mapping between the SQL Database public endpoint and the private
endpoint.

Select Yes for Integrate with private DNS zone if not already selected:

Figure 6.27: Private endpoint—Configuration tab

Click Review + create and then click Create to provision the private endpoint.

5. Navigate to the SQL Server Private Endpoint Connection page. You should see the
new private endpoint, sqlprivateendpoint:

Figure 6.28: Viewing the private endpoint

Managing server-level firewall rules using the Azure portal | 259

Click the private endpoint name to view its configuration:

Figure 6.29: Viewing the endpoint configuration

Observe that the FQDN, toyfactory.database.windows.net, has a private IP,
10.0.1.5, assigned to it.

Executing nslookup on toyfactory.database.windows.net now returns the private IP
instead of the public IP:

Figure 6.30: nslookup with the private endpoint

260 | Security

6. Navigate to the SQL Server Firewalls and virtual networks page. Select Yes for
Deny public network access and click Save:

Figure 6.31: Denying public network access

SQL Server is not exposed to the public internet and this provides enhanced security.
Services or Azure VMs in other virtual networks can access SQL Server through virtual
network peering. On-premises services or VMs can access SQL Database through an
express route or VPN connecting to the VPN gateway.

There are three ways we can restrict access to connect to a SQL database: the firewall,
virtual networks (service endpoints), and private endpoints.

Let's now look at the authentication types available with SQL Database.

Authentication
Authentication refers to how a user identifies themselves when connecting
to a database. There are two types of authentication mechanisms: SQL Server
authentication and Azure AD authentication.

SQL authentication
This is similar to what we have in on-premises SQL servers; that is, it requires a
username and password. When provisioning a SQL database, you have to provide a
server admin login with a username and password. The server admin user has admin
access to the SQL server and it's mapped to the dbo user in each user database and
therefore has dbowner access on all databases in a particular SQL server.

There can be only one server admin account in a SQL database.

Authentication | 261

Azure AD authentication
Azure AD authentication allows users to connect to a SQL database and managed
instance by using the identities stored in Azure AD.

Azure AD
When you create an Azure account, it creates a default directory for your account.
This is where you can add users and give them permissions to access different Azure
services as needed. To learn more about Azure AD, refer to the following link: https://
docs.microsoft.com/azure/active-directory/fundamentals/active-directory-whatis.

You can add custom domains to the default directory, or you can create directories
from here.

You can also integrate your on-premises Windows AD with Azure AD using Azure AD
Connect.

To learn more about Azure AD Connect, refer to the following link: https://aadguide.
azurewebsites.net/dirsync/aadconnect/.

There are three different ways to authenticate: Active Directory - Universal with MFA
support, Active Directory - Password, and Active Directory - Integrated, as shown in
Figure 6.32:

Figure 6.32: Authentication options

https://docs.microsoft.com/azure/active-directory/fundamentals/active-directory-whatis
https://docs.microsoft.com/azure/active-directory/fundamentals/active-directory-whatis
https://aadguide.azurewebsites.net/dirsync/aadconnect/
https://aadguide.azurewebsites.net/dirsync/aadconnect/

262 | Security

Active Directory - Password
This is the easiest way to get started with Azure AD authentication. It works with Azure
AD managed domains and federated domains.

A user authenticating to a SQL database has to provide an Azure AD identity and
password for successful authentication:

Figure 6.33: Active Directory - Password option

Active Directory - Integrated

This is similar to conventional Windows authentication in on-premises SQL servers.
To authenticate using this method, a user has to provide the domain account that has
access to a SQL database. The user doesn't have to provide the password—it's validated
against Azure AD.

To get this method working, the on-premises AD should be integrated into Azure AD.
This can be done using the free tool Azure AD Connect.

When using SSMS to authenticate using the Active Directory - Integrated method, it
automatically takes the username as the logged-in username, similar to on-premises
Windows authentication:

Authentication | 263

Figure 6.34: Active Directory - Integrated option

Active Directory - Universal with MFA support

MFA stands for multi-factor authentication. MFA allows you to provide a code received
by a call, SMS, or by any other means. MFA requires conditional access with an Azure
AD Premium P1 or P2 license.

To learn more about Azure MFA, refer to the following link: https://docs.microsoft.
com/azure/active-directory/fundamentals/concept-fundamentals-mfa-get-started.

This further secures the authentication process, as the code received is only accessible
by the person who has initiated the authentication process:

Figure 6.35: MFA

https://docs.microsoft.com/azure/active-directory/fundamentals/concept-fundamentals-mfa-get-started
https://docs.microsoft.com/azure/active-directory/fundamentals/concept-fundamentals-mfa-get-started

264 | Security

MFA requires you to provide a username, which is pre-populated after you configure
MFA.

Note

Azure AD authentication isn't supported when connecting to a SQL database from
a SQL server on an Azure VM; you should use a domain AD account.

Using Active Directory - Password to authenticate to a SQL database
This section covers how to authenticate to a SQL database using Active Directory -
Password. Let's consider the toy manufacturing company introduced previously. Mike
needs to ensure that, if any of his networking workplaces expect access to a database,
he gives them access by utilizing Active Directory - Password to authenticate to a SQL
database. He can achieve this by following these steps:

1. Log in to the Azure portal (https://portal.azure.com). From the left-hand navigation
pane, find and open Azure AD.

2. From the Overview pane, find and click New user (in the Quick tasks section):

Figure 6.36: Quick tasks section

3. In the Users pane, provide a name and a username (the email is the username in
this case). The email should belong to an existing verified domain in Azure AD.

Note

You can use the default domain when providing a user email. For example, if
your Microsoft account email ID is ahmad.osama1984@gmail.com, then the default
directory would be ahmadosama1984.onmicrosoft.com. Therefore, you can provide
the username chris@ahmadosama1984.onmicrosoft.com. You can also create a
guest user with a different email address. A notification is sent out to each user to
accept the invitation.

https://portal.azure.com

Authentication | 265

4. You can find your default domain in the top-right corner of the Azure portal:

Figure 6.37: Creating a user

Check the Show Password checkbox and copy the password. You are not allowed to
change the password.

Leave all the other options as the default values and click Create to create the user.

Note

Log out of the Azure portal and log in again using the new user credentials. You'll
be asked to change the password. Once your password is changed, log out and log
in with your Azure admin credentials.

266 | Security

5. Once you have created a user, the next step is to make the user a SQL Server
AD admin. In the Azure portal, find and click the toyfactorytemp SQL server. In
toyfactorytemp, find and select the Active Directory admin option in the Settings
section:

Figure 6.38: The toyfactorytemp SQL server

Authentication | 267

6. In the Active Directory admin pane, select Set admin from the top menu:

Figure 6.39: Active Directory admin pane

7. In the Add admin pane, type the username in the Select field and select the user
you created in step 3 as the AD admin:

Figure 6.40: Add admin pane

268 | Security

You'll be taken back to the Add admin pane. Click Save to set the selected user as
the AD admin:

Figure 6.41: Active Directory admin pane

8. You now have an AD admin defined for the toyfactorytemp SQL server. The AD
admin has dbowner access to all of the databases on the toyfactory server.

In the next step, you'll connect to the toyfactory server with the AD admin account
using SSMS.

9. Open SSMS, and in the Connect to Server dialog box:

Under Server Type, select Database Engine.

Under Server name, enter the toyfactorytemp server name.

Under Authentication, select Active Directory - Password.

Under Username, enter the username (email) of the user created in step 3.

Under Password, enter the user's password. Click Connect.

If you get the following error, you will have to change the password by logging in to
the Azure portal as this user:

Figure 6.42: Connection error

You'll be asked to update the password on the login screen. Change the password
and then try to connect to the SQL server from SSMS.

Authentication | 269

Notice that Object Explorer displays the username as testuser@dpl.com:

Figure 6.43: Object Explorer

Figure 6.43 indicates that the authentication was successful using AD authentication.

SQL Database authentication structure
SQL Database and SQL Managed Instance will always have two different administrators
if Azure AD authentication is used: the original SQL Server administrator (SQL
authentication) and the Azure AD admin. The Azure AD administrator login can be a
System-Managed Identity (SMI), User-Managed Identity (UMI), an Azure application,
a user, or a group. All users in the Azure AD admin group will have administrative access
to a SQL server:

Figure 6.44: SQL Database and Managed Instance authentication structure

Note

An Azure administrator can either be a single user or a group. Only one Azure AD
admin is allowed.

270 | Security

SQL Database and SQL Managed Instance authentication
considerations
You must consider the following factors for SQL Database and SQL Managed Instance
authentication:

• Create a dedicated Azure AD group as the SQL Server administrator instead of
creating an individual user administrator.

• You can configure either an Azure AD group or a user as a SQL Server admin.

• You can create Azure AD logins in the master database in SQL Managed Instance.
Currently, it's not supported for SQL Database.

• bcp.exe can't connect to a SQL database using Azure AD authentication, as it
uses an old ODBC driver.

• SQLCMD versions 13.1 and above support Azure AD authentication.

• To use Azure AD authentication with SSMS, you need to have .NET Framework
4.6 or above installed on your system.

Note

For the automated creation of Azure AD objects, an Azure application should be
considered instead of regular Azure AD users. For more information, please visit
https://techcommunity.microsoft.com/t5/azure-sql-database/support-for-azure-ad-
user-creation-on-behalf-of-azure-nad/ba-p/1491121.

Authentication allows us to connect to a SQL database using the authentication types
discussed previously. We can further control access to database objects (such as tables
and stored procedures) with proper authorization. Let's take a look at different server-
level and database-level roles available with SQL Database.

Authorization
Authorization refers to any sort of access control mechanism. In the context of SQL
Server, it starts at the server scope or database scope for contained users. For example,
a user may have access to read one set of tables and to read-write another set of tables.

The authorization is done by adding the user to the relevant server-level or database-
level roles.

Roles have a set of permissions applied to them; for example, the db_datareader
database-level role allows users to read tables from a database.

Let's look at server-level administrative roles available with SQL Database.

https://techcommunity.microsoft.com/t5/azure-sql-database/support-for-azure-ad-user-creation-on-behalf-of-azure-nad/ba-p/1491121
https://techcommunity.microsoft.com/t5/azure-sql-database/support-for-azure-ad-user-creation-on-behalf-of-azure-nad/ba-p/1491121

Authorization | 271

Server-level administrative roles
There are two server-level administrative roles that reside in the master database:
dbcreators and loginmanagers for SQL Database. Server roles are not supported for
Azure AD admin or Azure AD users at the time of writing this book.

dbcreators

Members of database creators (dbmanager) are allowed to create new SQL databases. To
create a new user with the database creator role:

1. Log in to SSMS with either an Azure AD admin or SQL Server admin.

2. Create a new login in the master database using the following query:

CREATE LOGIN John WITH PASSWORD = 'Very$Stro9gPa$$w0rd';

3. Create a new user in the master database mapped to the John login using the
following query:

CREATE USER John FROM LOGIN John

4. Add the user John to the dbmanager role using the following query:

ALTER ROLE dbmanager ADD MEMBER John;

5. Open a new query window in SSMS and log in as John.

6. Execute the following query to create a new SQL database:

CREATE DATABASE JohnsDB

John will have db_owner access to all the databases he creates.

loginmanagers

Members of this role can create new logins in the master database. To create a new
user with the loginmanager role, follow the preceding steps to create a user and add
them to the loginmanager role instead.

Non-administrative users
Non-administrative users don't have access to the master database and have limited
access to the required databases and objects.

An example of a non-administrative user is an application user. An application user
is one that is used by an application to connect to a database and perform data
manipulation language (DML) operations.

A non-administrative user can either be an Azure AD user or a SQL Server
authentication user.

272 | Security

Non-administrative users can be created by using the following two methods.

Creating a login

In this method, we first create a login in the master database. Then, we create users in
each database to which the user requires access. When connecting to the database, we
provide the username and the login password. Given here is the SQL query to create
users using this method:

--Create login in the master database.

CREATE LOGIN Mike

 WITH PASSWORD = 'secure@Pass1234'

--Create the user in the user database using the login

CREATE USER Mike

FOR LOGIN Mike

WITH DEFAULT_SCHEMA = dbo

GO

-- Add user to the database reader fixed database role

EXEC sp_addrolemember N'db_datareader', N'Mike'

GO

The preceding code first creates a Mike login in the master database. It then creates a
Mike user in the user database and adds the user to the db_datareader fixed database
role. This role allows users to read data from all the database tables.

The following built-in database roles exist in a SQL database or managed instance:
db_accessadmin, db_backupoperator, db_datareader, db_ddladmin, db_denydatareader,
db_denydatawriter, db_owner, db_securityadmin, and public. You can also create custom
database roles.

Similarly, we can add Mike to any other database within the server. Observe that the
user password is the same for all the databases.

This method is good to use when a user needs access to more than one database in the
server as we can use one password to connect to the databases the user has access to.
However, this is tedious in geo-replication as the login is to be created in the secondary
server so as to access the secondary server.

Authorization | 273

Contained database users

In this method, the user is created within the user database instead of the master
database. The authentication information is therefore stored in the user database.
Given here is the SQL query to create a contained database user:

--run in user database

CREATE USER [containeduser]

WITH PASSWORD = 'secure@Pass1234' ,

DEFAULT_SCHEMA = dbo;

-- add user to role(s) in db

ALTER ROLE db_datareader ADD MEMBER [containeduser];

The preceding script creates a user containeduser with a password (instead of a login,
as in the previous Creating a login method).

The user is added to the db_datareader role, giving the user read access to database
tables.

Let's see how we can add a contained database user for Azure AD authentication.

Creating contained database users for Azure AD authentication
In this section, you will learn how to create contained database users for Azure AD
authentication for firms such as ToyStore Ltd., where there are many roles that require
access to the database:

1. Open SSMS. From the top menu, select File, select New, and then select Database
Engine Query to open a new query window:

Figure 6.45: SSMS

274 | Security

2. Connect to Azure SQL Server with Active Directory - Password authentication.

3. Execute the following query to create a contained database user (SQL
authentication) and add it to the db_owner role:

--Create a contained database user (SQL Authentication) CREATE USER Mike
WITH PASSWORD='John@pwd'
GO
-- Make Mike toystore database owner ALTER ROLE db_owner ADD MEMBER Mike

4. Execute the following query to create a contained database user (Azure AD
authentication) and add it to the db_datareader role:

--Create a contained database user (Azure AD Authentication)
CREATE USER [John@dpl.com] FROM EXTERNAL PROVIDER
-- Give read access to John on all tables
ALTER ROLE db_datareader ADD Member [John@dpl.com]

Note

You need to create an Azure AD user before you add them to the SQL database.
You can use the steps in the previous section to create a new Azure AD user.

5. Press F8 to open Object Explorer. In Object Explorer, connect to your SQL server if
you're not already connected.

Expand the Databases node. In the Databases node, expand the toystore database
node. In the toystore database, expand the Security node and then expand the
Users node.

You should see the user John@dpl.com listed in the Users section:

mailto:CREATE USER [John@dpl.com]
mailto:ALTER ROLE db_datareader ADD Member [John@dpl.com]

Authorization | 275

Figure 6.46: Users section

Notice that John@dpl.com is not mapped to a server login. This is because he is a
contained database user.

6. Press Ctrl + N to open a new query window. Click the change connection icon in the
top menu, next to the database drop-down list:

Figure 6.47: The change connection icon

276 | Security

7. In the Connect to Server dialog box:

Under Server name, provide the SQL server name.

Under Authentication, select Active Directory - Password.

Enter the username as john@dpl.com.

Enter the password for the aforementioned user.

Click Connect:

Figure 6.48: Connect to Server dialog box

You will get an error like the one shown in Figure 6.48. This is because SSMS tries
to connect to the default database, which, in this case, is the master database. The
master database doesn't contain the john@dpl.com user and so the connection fails.

mailto:john@dpl.com

Authorization | 277

8. Click OK in the error dialog box. In the Connect to Database Engine dialog box,
select Options from the lower-left corner of the dialog box window.

Under Options, select the Connection Properties tab, and in the Connect to
database setting, set the database to toystore.

Click Connect to continue:

Figure 6.49: Setting the database to toystore

You should now be able to connect to the toystore database.

You can add users to different roles and test out the security. For example, you can
add a user in the db_dbwriter role and then log in using the user and verify that they're
only able to write to tables and can't do any other database operations, such as creating
tables, databases, and so on.

Groups and roles
Additionally, you can group users with similar sets of permissions in an Azure AD group
or a SQL database role. You can then assign the permissions to the group and add users
to it. Users with similar access requirements are added to the group.

Row-level security
Authorization controls whether or not a user can read or write one or more tables.
SQL permissions are limited to the column level and cannot be applied to the row level.
row-level security (RLS) controls permissions at the row level by controlling what data
in a table the user has access to:

278 | Security

Figure 6.50: Row-level security

Let's say you have a Customers table in a database and you want users to access only
those rows in a table that belong to them; for example, in a company, employees are
restricted to viewing only their end customers' data. Employee 1 should only have
access to rows with customer ID 1, and employee 2 should only access rows with
customer ID 2, and so on and so forth.

RLS allows you to enable this at the database level and not the application level. This is
a programmatic feature and would not help if users have direct access to the database.
Prior to RLS, such security was only possible by implementing access logic at the
application level.

RLS is implemented by writing the row access logic or the security predicate in an
inline table-valued function and then creating a security policy on top of the security
predicate.

The security predicate defines the criteria to determine whether or not a user has read
or write access to a given set of rows in a particular table.

RLS supports two types of security predicates:

• Filter predicates: Filter predicates apply to SELECT, UPDATE, and DELETE, and
silently filter out unqualified rows.

• Block predicates: Block predicates apply to AFTER INSERT, AFTER UPDATE, BEFORE
UPDATE, and BEFORE DELETE, and block unqualified rows being written to the table.

Employee ID Name Email

1 … …

2 … …

3 … …

Row-Level Security Filter Based on SESSION_CONTEXT

Employee 1

Employee 2

Employee 3

Authorization | 279

Dynamic data masking
Dynamic data masking or DDM works on top of RLS and further restricts the exposure
of sensitive data by masking it to non-privileged users:

Figure 6.51: DDM

For example, say users John and Chris can read and write data that belongs to
Customers. RLS ensures that they can only read and write data for customer 1 in
the customer table. However, DDM will ensure that John can see the Social Security
number of the customer and Chris can't, as he's not authorized to. Chris will see
masked data in the Social Security number column, though he will be able to see data in
the rest of the columns.

DDM is implemented by defining masks and applying them to columns as and when
required. There aren't any changes required at the application level or the query level,
as the masks are applied at the column level.

DDM can be used for full, partial, or random masking. For example, call-support
workers need the last four characters of a user's password to identify them. This can be
done by masking all characters except the last four.

DDM has the following four types of masks to obfuscate data:

• Default: Implements full masking depending on the data type of the column
being masked.

• Email: Partial masking, which masks all characters except the first letter and the
.com suffix of an email address. For example, john1984@dataplatformlabs.com
would be masked as jxxx@xxxx.com.

• Random: Masks a column with a numeric data type with a random value within a
specified range.

• Custom String: Partial masking, which masks all characters with a custom string,
excluding the first and last letters.

280 | Security

DDM has the following limitations:

• Encrypted columns, filestreams, column sets, and sparse columns that are part
of a column set can't be masked.

• Computed columns can't be masked; however, if a computed column depends on
a masked column, the computed column will return masked values.

• A masked column can't be used as a full-text index key.

• A mask can't be applied to a column with dependencies. For example, if an index
depends on a column, it can only be masked by dropping the index, applying the
mask, and then creating the index.

• Unprivileged users with read access to a database can use inference or brute-
force techniques to guess the underlying data and infer actual values.

DDM is helpful in masking sensitive information to non-privileged users, thereby
making sure that information such as credit card details and social security numbers is
protected and can be accessed only by users with correct permissions.

Data Discovery & Classification
The Data Discovery & Classification feature (in preview) can be used to discover,
classify, label, and protect sensitive data in a SQL database. Data Discovery &
Classification can help you achieve data privacy and regulatory compliance
requirements, control and secure databases with highly sensitive data such as credit
card numbers and confidential financial or other business information, and monitor and
alert you to unusual access to sensitive data.

Data Discovery & Classification consists of the following:

Discovery and recommendations

The classification engine scans and identifies the column with a sensitive name in a SQL
database. It also provides possible resolutions and ways to apply the resolutions.

Labeling

This allows the tagging of columns with sensitive data using the new classification
metadata attributes available in the SQL engine.

There are two attributes used to classify the sensitivity of data—a label, which specifies
the level of the data sensitivity in a given column, and information types, which provide
additional details on the type of data stored in the column.

The classification details are available on a dashboard on the Azure portal and can also
be downloaded for offline analysis.

Authorization | 281

Exercise: Configuring Data Discovery & Classification for SQL Database
To configure Data Discovery & Classification, follow these steps:

1. Navigate to the SQL Database page and then select the Data Discovery &
Classification option from the Security section:

Figure 6.52: Selecting Data Discovery & Classification

2. Data Discovery & Classification provides auto-recommendations based on the
tables in the database. We can also manually classify columns:

Figure 6.53: Data Discovery & Classification overview

Notice that there are 62 columns with classification recommendations; however,
none of the columns are classified yet.

282 | Security

3. Click the Configure option to manage the sensitivity labels. A label defines the level
of data sensitivity:

Figure 6.54: Managing information types

You can add, delete, and prioritize labels by moving them up or down the hierarchy.
You can also import/export the information protection file to offline usage/
management.

4. Click Manage information types in Figure 6.54 to add or delete information types:

Figure 6.55: Deleting information types

Authorization | 283

An information type details the type of data in a column; for example, the Contact
Info information type is for the name, phone number, and address details of a
person or business.

Each information type is associated with a label. This can be changed as per the
business standard. For example, if Contact Info is allowed to be shared for a
particular business, the label can be changed to Public from Confidential.

5. Let's now return to the Data Discovery & Classification page and look at
the recommendations. To do this, click the We have found 62 columns with
classification recommendations link:

Figure 6.56: Classification recommendations

All of the classifications are listed under the Classification tab on the Data
Discovery & Classification page.

You can filter the recommendations based on schema, table, column, information
type, and label.

6. Let's look at the recommendations for the Application.People table:

Figure 6.57: Recommendations for the Application.People table

284 | Security

Notice that the information type and sensitivity labels are correctly applied to the
four columns.

7. Click Accept selected recommendations to apply the data classification:

Figure 6.58: Applying data classification

8. Click Save and then select the Overview tab:

Figure 6.59: Overview tab

Authorization | 285

The Overview tab now shows a summary of the label and information type distribution
and lists the data classifications.

Any access to the classified columns is captured in the audit logs when SQL database
auditing is on. An example of an audit report is shown in the next section, Auditing.

Auditing
Auditing tracks and records database events to an audit log and can help you to:

• Maintain regulatory compliance.

• Understand database activity.

• Catch discrepancies or anomalies indicating security violations.

Auditing allows you to:

• Define what database actions are to be audited.

• Find unusual activities or trends by using preconfigured reports and dashboards.

• Understand and analyze the audit log.

Auditing can be configured on SQL Database and SQL Managed Instance at both the
server level and database level, but on SQL Managed Instance, it can be configured
using Transact-SQL. If auditing is configured at the server level, it will automatically
apply to all the databases in the server. Auditing configured at the database level will
only apply to a particular database.

It's recommended to audit the server instead of auditing individual databases.

286 | Security

Exercise: Configuring SQL Database auditing
To configure SQL database auditing using the Azure portal, follow these steps:

1. Open the toystore database overview page and search for Auditing in the search
box:

Figure 6.60: The toystore database auditing auditing

Click Auditing to open the toystore Auditing page.

2. On the Auditing page, click the Auditing toggle button to switch on auditing.

There are three options to save the audit log: Storage, Log Analytics (Preview), and
Event Hub (Preview).

The storage account allows you to save the audit logs; however, it provides no
native ways to perform analytics on saved logs.

Log Analytics saves the log data in the Log Analytics workspace and uses Azure
Monitor to provide analysis and actions on the logged data.

Azure Event Hubs is a big data streaming and event ingestion service. Audit logs
are streamed to an event hub as events. Events from an event hub can be used to
perform real-time analysis and can be saved into another database (CSV, Cosmos
DB, or another SQL database) for further analytics.

Authorization | 287

3. Check the Storage and Log Analytics options and configure them as follows.

Configuring storage: To configure storage, click Storage settings. You can either
select an existing storage account or create a new storage account:

Figure 6.61: Storage settings page

To create a new storage account, click Create new and fill out the details as shown
in Figure 6.61.

Note

You can opt for premium storage for faster performance if required. Standard blob
storage is preferred for demo purposes.

Click the OK button to create and link the storage account to SQL database
auditing.

288 | Security

4. Configuring log analytics: To configure log analytics, click Log Analytics. You can
use an existing Log Analytics workspace or create a new one:

Figure 6.62: Log Analytics workspace page

To create a new workspace, click on the Create New option and fill out the details
as shown in Figure 6.62.

There's only one pricing tier, Per GB (2018), currently available with Log Analytics.
Click OK to create and link the Log Analytics account with SQL database auditing.

After the storage account and Log Analytics workspace have been configured, click
Save to save the configuration:

Authorization | 289

Figure 6.63: Creating a new workspace

This completes the auditing configuration. To view the audit logs, click on View
audit logs in toystoretemp - Auditing:

Figure 6.64: Viewing audit logs

5. Let's execute queries against the toystore database and monitor the audit logs.

Note

To execute a query, you can connect to the toystore database from SSMS or you
can use the query editor provided in the Azure portal.

To execute the query from SSMS, make sure the IP address of your machine has
been added to the SQL database firewall rule. For more on how to connect and
execute a query against an SQL database, refer to Chapter 1, Introduction to Azure
SQL managed databases:

SELECT
EmailAddress, PhoneNumber
FROM Application.People WHERE Fullname LIKE '%Edg%' GO
SELECT
*
FROM Purchasing.Suppliers
WHERE BankAccountName LIKE '%a%'

290 | Security

Here's what you should get when running queries from SSMS:

Figure 6.65: Running queries from SSMS

6. Let's switch to the Azure portal and open the toystore - Auditing page. On the
toystore - Auditing page, click on View audit logs.

The Audit records page lists the stored audit logs. Click Run in Query Editor to
query the log files using a Transact-SQL query:

Authorization | 291

Figure 6.66: Query log files by clicking on Run in Query Editor

292 | Security

7. Log in to the query editor using SQL authentication, as shown in Figure 6.67:

Figure 6.67: The Login page of the query editor

A new query window opens up with the audit query. Replace the audit query with
the following one:

SELECT TOP 100 event_time, server_instance_name, database_name, server_
principal_name, client_ip, statement, succeeded, action_id, class_type,
additional_information
FROM sys.fn_get_audit_file('https://toyfactorystoragetemp.blob.core.
windows.net/sqldbauditlogs/toyfactorytemp/toystore/SqlDbAuditing_Audit_
NoRetention/2019-06-20/18_57_50_932_0.xel', default, default)
WHERE (event_time <= '2019-06-20T19:03:22.910Z')
/* additional WHERE clause conditions/filters can be added here */ ORDER
BY event_time DESC

Note

You can execute the preceding query either in the query editor on the Azure portal
or in SSMS.

The query uses the sys.fn_get_audit_file function to read the audit log file stored
in Azure Storage. You'll have to replace the path of the audit log file with the one
you got in the query editor in the previous step.

Authorization | 293

Here's the output from the query:

Figure 6.68: Output of the previous query

Notice that the output has the label and the information type we assigned when
configuring Data Discovery & Classification.

This information can be used to find out how often confidential information is accessed.

Exercise: Configuring auditing for SQL Managed Instance
To configure auditing for SQL Managed Instance, please follow these steps:

1. Go to the Azure portal using https://portal.azure.com.

2. Create a blob container for storing audit logs.

Go to the storage account where you would like to store audit logs.

Select the Containers option from the Overview tab:

Figure 6.69: Containers option

Click on the Container option on the top menu:

Figure 6.70: Container option

https://portal.azure.com

294 | Security

Input a container name, set the public access level to Private, and click on the
Create button:

Figure 6.71: Creating a new container

Now the container is set up, so let's configure the target for auditing. This can be
done using Transact-SQL or the SSMS GUI.

3. Set up a blob container for audit logs using the Transact-SQL command line.

In the storage account, go to the newly created container and click on Properties
to copy the container URL:

Figure 6.72: Container properties

Now, let's generate a SAS token to grant the managed instance access to the storage
account.

Go to the same storage account setting and click on Shared access signature to
generate the SAS key. Configure it as shown in Figure 6.73. Select the blob service,
grant permissions, and choose the start and expiry dates. Click on Generate SAS
and connection string to generate the SAS token.

Authorization | 295

Figure 6.73: Shared access signature tab

Copy the SAS token to proceed further:

Figure 6.74: SAS token string

Note

Remove the question mark symbol (?) from the beginning of the token.

296 | Security

Connect to the managed instance using SSMS and run the following Transact-SQL
command to create the credential:

CREATE CREDENTIAL [https://packtsqlmistorage.blob.core.windows.net/
sqlmiaudit]
WITH IDENTITY='SHARED ACCESS SIGNATURE',
SECRET = '<SAS TOEKN>'
GO

Once the credential is created, run the following command to create a new server
audit.

CREATE SERVER AUDIT [auditlog]
TO URL (PATH ='https://packtsqlmistorage.blob.core.windows.net/
sqlmiaudit' , RETENTION_DAYS = 30)
GO

4. Set up a blob container for the audit logs using SSMS.

Connect to the managed instance using the SSMS UI.

Expand the root node of Object Explorer.

Expand the Security node, right-click on the Audits node, and click on New Audit...

Figure 6.75: Creating a new audit using SSMS

Authorization | 297

In the General tab, select URL for Audit destination and click on Browse:

Figure 6.76: Create Audit- General tab

Log in to your Azure account using the Sign In… button:

Figure: 6.77: Browse window

Select your storage account and blob container from here and once you're finished,
click OK. Make sure that your client has access to the storage account; if not, add
your client IP to the storage account firewall:

Figure: 6.78: Sign-in page

Finally, click OK to create the audit page.

298 | Security

5. Now that we have configured a blob container as the target for audit logs, let's
create and enable a server audit or database audit specification like SQL Server:

Server audit specification: https://docs.microsoft.com/sql/t-sql/statements/
create-server-audit-specification-transact-sql?view=sql-server-ver15.

Database audit specification: https://docs.microsoft.com/sql/t-sql/statements/
create-database-audit-specification-transact-sql?view=sql-server-ver15.

6. Enable the server audit that you created in step 4:

ALTER SERVER AUDIT [auditlog]
WITH (STATE=ON);
GO

7. Verify the server audit status using the following command:

select name,status,status_desc from sys.dm_server_audit_status where
name='Audit-SQLMI';

You should get the following output:

Figure 6.79: Server audit status

In this activity, we have seen the steps to create a server audit for a managed instance
using an Azure Blob Storage container. We have also learned how to enable and verify
the server audit status using Transact-SQL commands.

Activity: Audit COPY_ONLY backup events on SQL Managed
Instance using audit logs
In the previous activity, we saw the steps to enable a server audit for SQL Managed
Instance. In this activity, we will use the server audit to track user-initiated COPY_ONLY
database backups.

SQL Managed Instance has the ability to take database backups with the COPY_ONLY
option on Azure Blob Storage. By default, all the databases are protected using a
service-managed Transparent Data Encryption (TDE) key and COPY_ONLY backups are
not allowed.

But there could be scenarios where a user who has higher access on an instance can
disable service-managed TDE and take a COPY_ONLY backup of a database. You can track
these events using audit logs.

https://docs.microsoft.com/sql/t-sql/statements/create-server-audit-specification-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/sql/t-sql/statements/create-server-audit-specification-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/sql/t-sql/statements/create-database-audit-specification-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/sql/t-sql/statements/create-database-audit-specification-transact-sql?view=sql-server-ver15

Activity: Audit COPY_ONLY backup events on SQL Managed Instance using audit logs | 299

Steps to configure an audit for backup and restore events
We have already seen how to configure a storage container for audit logs in a previous
demo. Here we will create a server audit specification to track backup events.

You can skip the following steps if you have already configured a container for audit
logs in the previous demo:

1. Create credentials to grant the managed instance access to the storage container:

CREATE CREDENTIAL [https://packtsqlmistorage.blob.core.windows.net/
sqlmiaudit]
WITH IDENTITY='SHARED ACCESS SIGNATURE',
SECRET = '<SAS TOEKN>'
GO

2. Create an audit specification for BACKUP_RESTORE_GROUP and AUDIT_CHANGE_GROUP:

-- Create server audit
CREATE SERVER AUDIT [BackupRestoreAudit]
TO URL (PATH = 'https://packtsqlmistorage.blob.core.windows.net/
sqlmiaudit',RETENTION_DAYS = 30);
GO

-- Define events to audit
CREATE SERVER AUDIT SPECIFICATION BackupRestoreAuditSpec
FOR SERVER AUDIT [BackupRestoreAudit]
ADD (BACKUP_RESTORE_GROUP),
ADD (AUDIT_CHANGE_GROUP)
WITH (STATE=ON);

--Enable audit
ALTER SERVER AUDIT [BackupRestoreAudit]
WITH (STATE=ON);

3. This audit event will start capturing backup/restore information and it will also log
events for audit configuration changes.

4. You can access these logs from the Transact-SQL command line.

To view audit logs using Transact-SQL, first get the audit file path:

--Get audit file path
select name, audit_file_path
from sys.dm_server_audit_status
where name = 'BackupRestoreAudit' and audit_file_path is not null

300 | Security

Figure 6.80: Audit file path

Run the following Transact-SQL query to view audit logs:

--Check backup logs from audit file
SELECT event_time, succeeded, statement, server_instance_name,
server_principal_name, client_ip, application_name, duration_milliseconds
FROM sys.fn_get_audit_file
('https://packtsqlmistorage.blob.core.windows.net/sqlmiaudit/packtsqlmi/
master/BackupRestoreAudit/2020-10-26/10_56_51_753_0.xel', default,
default);

Figure 6.81: Audit logs output using Transact-SQL

5. View the audit logs using the SSMS GUI.

Connect to SQL Managed Instance using SSMS.

Expand Security and Audit to see the configured audit name. Right-click and select
the View Audit Logs option:

Figure 6.82: Audit logs output using T-SQL

Activity: Audit COPY_ONLY backup events on SQL Managed Instance using audit logs | 301

You should get the following screen:

Figure 6.83: Log file viewer displaying the audit logs

6. Clean up the server audit.

If you have configured this for testing purposes, then the following commands will
clean up this audit configuration:

--Clean up
-- Drop server audit specification
ALTER SERVER AUDIT SPECIFICATION BackupRestoreAuditSpec
WITH (STATE=OFF);
DROP SERVER AUDIT SPECIFICATION BackupRestoreAuditSpec

-- Drop server audit
ALTER SERVER AUDIT [BackupRestoreAudit]
WITH (STATE=OFF);
DROP SERVER AUDIT [BackupRestoreAudit]

--Verify cleanup, empty results means server audit is stopped.

select name,status,status_desc from sys.dm_server_audit_status
where name='BackupRestoreAudit';

302 | Security

In this activity, we have seen steps to configure a server audit specification for backup
and restore operations. This can help to track unwanted backups triggered by users
who have privileges to disable service-managed transparent database encryption.

Transparent Data Encryption
Transparent Data Encryption (TDE) encrypts the user data at rest and therefore
protects the database from offline malicious activity. TDE is enabled by default in
newly deployed SQL databases and managed instances. TDE encrypts/decrypts the
database, transaction log, and database backups in real time without any change in the
application.

TDE works by encrypting each page before writing it to disk and decrypting each page
when reading it from the disk. The encryption is done using a symmetric key known as
a database encryption key (DEK). The DEK is protected by a TDE protector, which is
either a service-managed certificate or a customer-managed asymmetric key stored in
a key vault.

For more details on TDE, refer to https://docs.microsoft.com/azure/azure-sql/
database/transparent-data-encryption-tde-overview.

Azure Defender for SQL
Azure Defender for SQL groups together the advanced SQL security capabilities,
vulnerability assessment and Advanced Threat Protection. Azure Defender for SQL is
priced at ~$15/per server/month and has a one-month free trial.

To enable Azure Defender for SQL from the Azure portal, navigate to the SQL Server
page and then select Security Center from the Security section.

Enable Azure Defender for SQL by clicking on the toggle button. Provide an Azure
storage account for the vulnerability assessment and an email address to send alerts.
You can choose to run periodic recurring vulnerability scans by enabling the Periodic
recurring scans option:

https://docs.microsoft.com/azure/azure-sql/database/transparent-data-encryption-tde-overview
https://docs.microsoft.com/azure/azure-sql/database/transparent-data-encryption-tde-overview

Azure Defender for SQL | 303

Figure 6.84: Enabling Azure Defender for SQL

We can enable the Auditing feature for better threat investigation. We can choose to
enable specific, or all, ADVANCED THREAT PROTECTION features.

304 | Security

The two security features under Azure Defender for SQL are as follows:

• Vulnerability assessment: A vulnerability assessment, as the name suggests,
checks a SQL database for any possible security vulnerabilities, database
misconfigurations, extra permissions, unsecured data, firewall rules, and server-
level permissions. A vulnerability assessment can help to meet data compliance
and data privacy requirements.

• Advanced Threat Protection: Threat detection detects and alerts users about
potential threats and suspicious activity. Alerts are integrated with Azure
Security Center, which provides details about and possible solutions to alerts.
Advanced Threat Protection alerts against the following threats:

• SQL injection: An alert is triggered when a SQL injection attack happens or if
there's bad code that could result in a SQL injection attack.

• Access from an unusual location: An alert is triggered when a user logs in to a
SQL database from a location that is different than the user's usual location.

• Access from an unusual Azure datacenter: An alert is triggered when someone
logs into a SQL database from a datacenter other than the usual or the regular
datacenter used to log in.

• Access from an unfamiliar principal: An alert is triggered when someone logs
into a SQL database using an unfamiliar or unusual SQL login.

• Access from a potentially harmful application: An alert is triggered when a
connection is made from a potentially harmful application; for example, common
attack tools.

• Brute-force SQL credentials: An alert is triggered when there's an abnormally
high number of failed logins attempted with different credentials.

• Data exfiltration: Data exfiltration is when an authorized user, say, a database
administrator, can extract and move data from a SQL database to another
location.

Securing data traffic | 305

Securing data traffic
SQL Database and SQL Managed instance data traffic is always encrypted if the
client driver supports SSL/TLS encryption. Data between a managed instance, a SQL
database, and an Azure VM or any Azure service never leaves the Azure backbone
network. All the communication within Azure happens using this Azure backbone. For
on-premises connections, Microsoft recommends setting up Azure ExpressRoute,
which helps to avoid sending data over the internet. For public endpoint access,
Microsoft peering configuration is required for an ExpressRoute circuit for public
communication.

Let's look at how to enforce a minimum Transport Layer Security (TLS) version for
SQL Database or SQL Managed Instance.

Enforcing a minimal TLS version for SQL Database and SQL Managed
Instance
A minimum TLS version allows users to control the version of TLS used by SQL
Database and SQL Managed Instance.

Currently, SQL Database and SQL Managed Instance support TLS 1.0, 1.1, and 1.2. When
you enforce a minimum TLS version, only higher and equal versions of TLS connection
can communicate with a managed instance. For instance, if you have enforced a
minimum TLS version of 1.1, then it means only connections with TLS versions 1.1 and
1.2 can communicate with SQL Database and SQL Managed Instance, and TLS 1.0 is
rejected.

Microsoft recommends using TLS version 1.2, since it has all the fixes for previously
reported vulnerabilities.

Activity: Setting a minimum TLS version using the Azure portal
and PowerShell for SQL Managed Instance
The process of setting up a minimal TLS version for SQL Database and SQL Managed
Instance using the Azure portal is almost the same. In this activity, we are using the SQL
Managed Instance Networking tab to enforce a minimum TLS version for SQL Managed
Instance, but the same can be done for SQL Database using the Firewalls and Virtual
Networks tab.

306 | Security

Using the Azure portal
A minimum TLS version can be easily set using the Azure portal, but we should test
application compatibility before enabling it in production:

1. Log in to the Azure portal: https://portal.azure.com.

2. Navigate to SQL Managed Instance and under Security, click on Networking:

Figure 6.85: Networking tab

3. Select a minimum TLS version and click on Save to apply.

https://portal.azure.com

Activity: Setting a minimum TLS version using the Azure portal and PowerShell for SQL Managed Instance | 307

Using PowerShell
Use can use these PowerShell commands to set the minimum TLS version:

#setting up variable as per our environment

$MisubId = "6ee856b5-yy6d-4bc1-xxxx-byg5569842e1"

$InstanceName = "packtsqlmi"

$ResourceGroup = "Packt"

#Login to Azure Account

Connect-AzAccount

Use your subscription ID in place of subscription-id below

Select-AzSubscription -SubscriptionId $MisubId

#Get the Minimal TLS Version property

(Get-AzSqlInstance -Name $InstanceName -ResourceGroupName $ResourceGroup).
MinimalTlsVersion

Figure 6.86: Using PowerShell to set the minimum TLS version

308 | Security

Update Minimal TLS Version Property

Set-AzSqlInstance -Name $InstanceName -ResourceGroupName $ResourceGroup
-MinimalTlsVersion "1.2"

Figure 6.87: Using PowerShell to set the minimum TLS version

In this activity, we have seen the steps needed to enforce the minimum TLS version of
SQL Managed Instance using both the Azure portal and PowerShell. The TLS protocol
ensures an end-to-end secure communication channel and it is highly recommended
to use TLS 1.2 or higher.

Configuring and securing public endpoints in SQL Managed Instance | 309

Configuring and securing public endpoints in SQL Managed
Instance
A managed instance can be deployed to an Azure virtual network for the secure access
of data within a private network. A public endpoint on a managed instance allows
access to data from outside the virtual network. Using a public endpoint, you can
access a managed instance from an on-premises network, a multi-tenant Azure service
such as a web app, or Power BI.

In this activity, you will learn how to:

• Configure/manage a public endpoint on a managed instance using the Azure
portal.

• Configure/manage a public endpoint on a managed instance using PowerShell.

• Secure public endpoint connections.

Let's look at the following steps to configure a public endpoint on SQL Managed
Instance using the Azure portal and PowerShell cmdlets.

This is a two-step process, where you need to enable the public endpoint access and
allow public endpoint TCP port 3342 in the managed instance NSG inbound rule. TCP
port 3342 is the default for public endpoints, just like 1433 is for private endpoints, and it
cannot be changed.

Enabling a public endpoint for a managed instance using the Azure portal

1. Go to the Azure portal at https://portal.azure.com/.

2. Search for managed instances using the search bar and select the managed instance
that you want to configure the public endpoint on.

3. Under Security, select the Networking pane.

https://portal.azure.com/

310 | Security

4. In the Networking pane, select Enable for the Public endpoint (data) option and
then click the Save icon to update the configuration:

Figure 6.88: Networking tab

Configuring and securing public endpoints in SQL Managed Instance | 311

Enabling a public endpoint for a managed instance using PowerShell

You can run the following PowerShell commands to enable a public endpoint. Replace
your environment variable before running these commands:

#setting up variable as per our environment

$MisubId = "6ee856b5-yy6d-4bc1-xxxx-byg5569842e1"

$instance = "packtsqlmi"

$resourceGroup = "Packt"

#Login to Azure Account

Connect-AzAccount

Use your subscription ID in place of subscription-id below

Select-AzSubscription -SubscriptionId $MisubId

Get the instance information using resource group and instance name.

$mi = Get-AzSqlInstance -ResourceGroupName $resourceGroup -Name $instance

Set public endpoint access to true.

$mi = $mi | Set-AzSqlInstance -PublicDataEndpointEnabled $true -force

#Disable public endpoint access

$mi = $mi | Set-AzSqlInstance -PublicDataEndpointEnabled $false -force

312 | Security

Allowing public endpoint data traffic on a managed instance network security group

Here we are adding an inbound NSG rule for the managed instance to allow traffic on
port 3342. This is a network component change and is usually done by a network admin:

1. Navigate to the SQL Managed Instance Overview tab and click on the Virtual
network / subnet hyperlink; this will take you to the virtual network Overview
page:

Figure 6.89: SQL Managed Instance - Overview tab

Configuring and securing public endpoints in SQL Managed Instance | 313

2. Select Subnets under Settings and make a note of the managed instance NSG
name:

Figure 6.90: Subnets page for the virtual network

3. You can search for the nsg name using the main search bar or navigate to the
resource group to find this network security group:

Figure 6.91: Search for network security group

314 | Security

4. Select the Inbound security rules tab under Settings and add an inbound rule for
port 3342, which should have higher priority than deny_all_inbound rule:

Figure 6.92: Inbound security rules tab

After adding the rule, it will be visible as shown here:

Figure 6.93: Newly added rule for the public endpoint

Configuring and securing public endpoints in SQL Managed Instance | 315

5. Now you can connect to the managed instance using SSMS from an on-premises
network without having a VPN connection.

Note that the public endpoint hostname comes in the <mi_name>.public.<dns_
zone>.database.windows.net format and that the port used for the connection is
3342:

Figure 6.94: SSMS connection string for the public endpoint

In this activity, we have seen steps to enable public endpoint access to SQL Managed
Instance using the Azure portal and PowerShell cmdlets. We have also learned how to
add inbound rules for a public endpoint in an SQL Managed Instance subnet network
security group.

Securing SQL Managed Instance public endpoints
Up to now, we have learned how to configure a public endpoint on a managed instance;
now we are going to learn about how to make it secure for data access.

Here are some quick insights about where to use a public endpoint connection.

SQL Managed Instance provides a private endpoint to allow connectivity within a
virtual network. This default option provides maximum isolation and security. However,
there could be use cases where you need public endpoint connections:

• You need to integrate the managed instance with a multi-tenant-only Platform
as a service (PaaS) offering.

• You might require higher throughput for data exchange.

• There may be network restrictions from company policies that prohibit having a
PaaS offering inside a corporate network.

In the following sections, we will look at ways to secure public endpoint connections.

316 | Security

Locking traffic flow down using NSG or firewall rules
SQL Managed Instance has a dedicated private endpoint IP address and port that you
can use to configure NSG outbound rules for a client within an Azure network and
firewall rules for on-premises applications.

Also, you can lock down inbound traffic by configuring a correct set of inbound security
rules in the managed instance NSG in a similar way to what we did in the previous
activity.

The following is a traffic flow diagram within Azure and the on-premises network using
public endpoint access:

Figure 6.95: Securing public endpoint using NSG/firewall rules

In the next section, we will implement RLS for the toystore database.

Activity: Implementing RLS | 317

Activity: Implementing RLS
In this section, we will look at how to implement RLS using our example of ToyStore
Ltd. Mike has been asked to implement RLS so that every customer is able to view and
edit only their records. The CustomerAdmin user, however, should be allowed to view and
edit all customer records. Follow these steps to complete the activity:

1. Execute the following query to create the dpl.Customers table and populate it with
sample records:

CREATE TABLE Customers (
CustomerID int identity, Name sysname, CreditCardNumber varchar(100),
Phone varchar(100), Email varchar(100)
)
Go
INSERT INTO Customers VALUES('Mike',0987654312345678,9876543210,'mike@
outlook.com'), ('Mike',0987654356784567,9876549870,'mike1@outlook.
com'), ('Mike',0984567431234567,9876567210,'mike2@outlook.com'), (' john@
dpl.com ',0987654312345678,9876246210,'john@outlook.com'),
('john@dpl.com ',0987654123784567,9876656870,' john2@outlook.com'),
('john@dpl.com ',09856787431234567,9876467210, 'john3@outlook.com'),
('CustomerAdmin',0987654312235578,9873456210,'john@outlook. com'),
('CustomerAdmin',0984564123784567,9872436870,'mike2@outlook. com'),
('CustomerAdmin',0945677874312367,9872427210,'chris3@outlook. com')

2. Execute the following query to create a new user, CustomerAdmin:

CREATE USER CustomerAdmin WITHOUT LOGIN
CREATE USER Mike WITHOUT LOGIN
CREATE USER John@aadityarama26gmail.com.onmicrosoft.com WITHOUT LOGIN

3. Execute the following query to grant read access to Mike, John, and CustomerAdmin
on the dpl.Customers table:

GRANT SELECT ON dpl.CustomersTO Mike
GO
GRANT SELECT ON dpl.CustomersTO [john@dpl.com]
GO
GRANT SELECT ON dpl.CustomersTO CustomerAdmin

318 | Security

4. Create a security predicate to filter out the rows based on the logged-in username:

CREATE SCHEMA Security;
GO
CREATE FUNCTION Security.fn_securitypredicate(@Customer AS sysname)
RETURNS TABLE WITH SCHEMABINDING AS
RETURN
 SELECT 1 AS predicateresult
 WHERE @Customer = USER_NAME() OR
 USER_NAME() = 'CustomerAdmin';

The preceding query first creates a schema, Security. It then creates an inline
table-valued function, fn_securitypredicate, which will return 1 (true) when the
logged-in username is equal to the @Customer parameter or when the logged-in user
is CustomerAdmin.

Note

The credit card numbers mentioned in plain text in the database are purely for
demonstration purposes. Such information should be encrypted at all times.

5. Create a security policy for the preceding security predicate:

CREATE SECURITY POLICY CustomerFilter
ADD FILTER PREDICATE Security.fn_securitypredicate(Name)
ON dbo.Customers,
ADD BLOCK PREDICATE Security.fn_securitypredicate(Name) ON dpl.Customers
AFTER INSERT WITH (STATE = ON);

The preceding query adds the filter predicate created in step 4 to the security policy
and sets the status to ON.

The policy also implements an AFTER INSERT block predicate. Afterward, the INSERT
predicate will stop inserts that don't comply with the security policy and will show
an error message for them.

The inline table-valued functions will take the customer name (the Name column)
as the parameter and will return true if the passed parameter value is equal to the
value returned by the USER_NAME() function.

Activity: Implementing RLS | 319

6. Let's test the policy by executing the following query to switch the user context to
Mike and return all the data from the dpl.Customers table:

EXECUTE AS USER='Mike'
GO
SELECT USER_NAME()
GO
SELECT * FROM dbo.Customers

You should get the following output:

Figure 6.96: Output of the preceding code

The query returns the records where the customer name is Mike. This is because
the query is executed in the context of Mike.

320 | Security

7. Execute the following query to update John's record from Mike's security context:

EXECUTE AS USER='Mike' GO SELECT USER_NAME()
GO
-- CustomerID 11 belongs to John
UPDATE dpl.Customers SET Email='MikeBlue@outlook.com' WHERE CustomerID=11
GO

-- Switch User context to John
EXECUTE AS USER='john@dpl.com '

GO
SELECT USER_NAME()

GO
-- Verify if email is updated or not

SELECT * FROM dpl.Customers WHERE CustomerID=11

Mike can't update CustomerID 11 as it belongs to John. You won't get an error;
however, the value won't be updated.

You should get the following output:

Figure 6.97: Updating John's record from Mike's security context

Activity: Implementing RLS | 321

8. Execute the following query under Mike's security context to insert a record with a
customer name of john@dpl.com:

EXECUTE AS USER='Mike'
GO
SELECT USER_NAME()
GO
INSERT INTO dpl.Customers VALUES('john@dpl.com'
,9876543445345678,65412396852,'Mike@dataplatformlabs.com')

The AFTER INSERT BLOCK predicate will block the insert, as defined by the security
policy, and will show the following error:

Figure 6.98: Inserting a record in Mike's security context

9. Execute the following query in the CustomerAdmin security context to return all of
the rows from the dpl.Customers table:

REVERT;
GO
EXECUTE AS USER='CustomerAdmin'
GO
SELECT USER_NAME()
GO
SELECT * FROM dbo.Customers

322 | Security

You'll get all of the rows defined in the security predicate:

Figure 6.99: Adding a query in the security context to return rows from the dpl.Customers table

10. Execute the following query to switch off the security policy:

ALTER SECURITY POLICY CustomerFilter WITH (STATE = OFF);

In the activity, we learned how to configure RLS to make sure that a user only has
access to their own data and isn't able to view or modify another user's data.

Activity: Implementing DDM
With RLS implemented in the previous activity, Mike has ensured that the customer can
only view their own data; however, to take data security to the next level, he wants to
mask some of the sensitive data that is shared by the customer. In order to do this, he
has to implement DDM. In this activity, we'll implement DDM to mask the credit card
number, phone number, and email ID of a customer:

1. Execute the following query to create a new user and grant select access to the
user on the dpl.Customers table:

CREATE USER TestUser WITHOUT LOGIN; GO
GRANT SELECT ON dpl.Customers TO TestUser

Activity: Implementing DDM | 323

2. Execute the following query to mask the CreditCardNumber, Phone, and Email
columns using different masking functions:

ALTER TABLE dpl.Customers ALTER COLUMN Phone VARCHAR(100) MASKED WITH
(FUNCTION = 'default()')
GO
ALTER TABLE dpl.Customers ALTER COLUMN Email VARCHAR(100) MASKED WITH
(FUNCTION = 'email()')
GO
ALTER TABLE dpl.Customers ALTER COLUMN CreditCardNumber VARCHAR(100)
MASKED WITH (FUNCTION = 'partial(0,"XXX-XX-",4)')

The preceding query masks the phone number using the default masking function,
the email with the email masking function, and CreditCardNumber with the partial
masking function, which masks all characters excluding the last four.

3. Execute the following query in the context of TestUser to return all of the rows from
the dpl.Customers table:

EXECUTE AS USER='TestUser'
GO
SELECT * FROM dbo.Customers;

Notice that the phone number, email, and credit card number columns are masked:

Figure 6.100: Execute a query in TestUser to return rows from the dpl.Customers table

324 | Security

4. Execute the following query to list the masked columns and the functions for the
Customers table:

REVERT;
GO
SELECT mc.name, t.name as table_name,mc.masking_function FROM sys.masked_
columns AS mc
JOIN sys.tables AS t
ON mc.[object_id] = t.[object_id]
WHERE is_masked = 1 and t.name='Customers'

The sys.masked_columns table stores the masked columns metadata. The is_masked
column tells you whether a column is masked or not.

You should get the following output:

Figure 6.101: List of masked columns and functions for the Customers table

5. Execute the following query to allow TestUser to see the masked data:

GRANT UNMASK TO TestUser;
GO
EXECUTE AS USER='TestUser'
GO
SELECT * FROM dbo.Customers;
GO

The UNMASK permission allows TestUser to see the masked data.

Activity: Implementing Azure Defender for SQL to detect SQL injection and brute-force attacks | 325

You should get the following output:

Figure 6.102: Allowing TestUser to see the masked data

6. To mask the data again, run the following query:

REVERT;
REVOKE UNMASK TO TestUSER

The preceding query will mask the data again and the users will see the output as
shown in step 3.

Activity: Implementing Azure Defender for SQL to detect SQL
injection and brute-force attacks
Earlier in the chapter, we learned that Advanced Threat Protection automatically
detects and alerts you about security issues such as SQL injection, brute-force attacks,
and anonymous access.

326 | Security

In this two-part activity, we'll simulate SQL injection and a brute-force attack and study
the email alerts raised by Advanced Threat Protection:

1. To configure email alerts for Advanced Threat Protection, open the Azure portal
and then open the SQL server you want to configure alerts for.

Under the Security section, select Security Center. Provide the email address
that will receive the notifications, under the ADVANCED THREAT PROTECTION
SETTINGS heading, as shown here:

Figure 6.103: Security Center page

2. Click Save to save the settings.

Activity: Implementing Azure Defender for SQL to detect SQL injection and brute-force attacks | 327

Part 1: Simulating SQL injection

To simulate an SQL injection attack, perform the following steps:

1. Connect to the toystore database in SSMS and execute the following query:

CREATE TABLE users (userid INT, username VARCHAR(100),usersecret
VARCHAR(100))
GO
INSERT INTO users VALUES(1,'Ahmad','MyPassword'),(2,'John','Doe')

2. Navigate to C:\Code\Chapter06\AdvancedThreatProtection\SQLInjection and open
the SQLInjection.exe.config file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<startup>
<supportedRuntime version="v4.0" sku=".
NETFramework,Version=v4.5.2" />
</startup>
<appSettings>
<add key="server" value="packtdbserver"/>
<add key="user" value="dbadmin"/>
<add key="database" value="toystore"/>
<add key="password" value="Awesome@1234"/>
</appSettings>
</configuration>

Under appSettings, replace the values for server (SQL server), user (SQL user),
database (SQL database), and password (SQL user password) with yours and save the
file.

3. Double-click SQLInjection.exe in the C:\Code\Chapter06\AdvancedThreatProtection\
SQLInjection folder to run it:

Figure 6.104: Running SQLInjection.exe

328 | Security

SQLInjection.exe is a simple Windows form application. It accepts a username
and password as input and if the input matches the username and password in the
database, the result is shown in the grid.

Enter the details as shown in Figure 6.104 and then click the Search button. The
result is shown in the grid.

Let's now try hacking the database using SQL injection.

4. Enter the following in the User Name text box and click the Search button:

' OR 1=1 union all select 1,name,name from sys.objects --'

Figure 6.105: Searching for the username in the text box

Notice that we are able to hack in and get a list of all the objects in the database.

Activity: Implementing Azure Defender for SQL to detect SQL injection and brute-force attacks | 329

5. Let's now insert a new user in the users table. Enter the following in the User Name
text box and click the Search button:

' OR 1=1 insert into users values(100,'hacked','hacked') --'

The preceding query inserts a new row in the users table:

Figure 6.106: Adding a new row in the users table

Though we get the list of users, the insert query worked. Let's search for the hacked
user that we inserted:

Figure 6.107: Searching for the inserted user

The hacked user was successfully inserted into the users table.

330 | Security

Part 2: Simulating and detecting brute-force attacks

In a brute-force attack, an attacker tries to connect with SQL Server by providing
random values for a password, hoping that one of the random passwords will work and
a connection to SQL Server will be made.

In this section, we'll simulate a brute-force attack by connecting to SQL Server using
a random password. We'll then look at the Azure portal to see whether the attack was
successfully identified or not, as well as seeing whether the SQL injection from the first
part of the activity was detected.

To simulate a brute-force attack, follow these steps:

1. Navigate to C:\Code\Chapter06\AdvancedThreatProtection\BruteForceAttack and
open BruteForceAttack.exe.config in Notepad:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<startup>
<supportedRuntime version="v4.0" sku=".
NETFramework,Version=v4.5.2" />
</startup>

<appSettings>
<add key="Server" value="packtdbserver"/>
<add key="database" value="toystore"/>

</appSettings>
</configuration>

Under appSettings, change Server to the name of your SQL server and change
database to your SQL database's name.

Save the file.

2. In the C:\Code\Chapter06\AdvancedThreatProtection\BruteForceAttack folder,
double-click BruteForceAttack.exe to start the attack. BruteForceAttack.exe is
a Windows console application. It attempts to connect to the SQL server with a
random username and password.

Activity: Implementing Azure Defender for SQL to detect SQL injection and brute-force attacks | 331

You should get the following output:

Figure 6.108: Executing BruteForceAttack.exe

Notice the username and password in each call. The connection attempt is made
using a different username and password.

Double-click four or five times to run at least five instances of the BruteForceAttack
application.

3. Let's now check the Azure portal for alerts, if any, about the SQL injection and
brute-force attack simulations.

4. Log in to the Azure portal and open the toystore SQL database page. Search for and
open the Advanced Data Security page:

Figure 6.109: Advanced Data Security page

332 | Security

5. Notice that Advanced Threat Protection lists the security alerts for the SQL
injection and brute-force attempts. Click on the Potential SQL Injection alert:

Figure 6.110: Potential SQL Injection alert

There are three SQL injection and four brute-force attempt alerts from Advanced
Threat Protection.

6. Click on Potential SQL Injection to get their details:

Figure 6.111: Potential SQL Injection details

The alert page gives details of the attached resource, count, time, environment, and
severity.

Activity: Implementing Azure Defender for SQL to detect SQL injection and brute-force attacks | 333

7. Click on one of the High severity alerts to get its details:

Figure 6.112: Details of the high-level security alert

The alert details are quite comprehensive and even display the query used as part of
the SQL injection attack.

As a database administrator, you can pass on the details to the development team
and have them fix the query.

334 | Security

8. Close the SQL injection alert page. To find details on the brute-force attempt alert,
click on the Potential SQL Brute Force attempt alert on the toystore - Advanced
Data Security > Security alerts page:

Figure 6.113: Potential SQL Brute Force attempt alerts

There are four high-severity brute force attempt alerts. Click on any one of them to
get its details:

Figure 6.114: Details of brute-force alerts

Summary | 335

Notice that the details page has the client IP address used for the brute-force
attempt. To resolve the issue, make sure the mentioned IP address is blocked at the
server firewall level.

Summary
Security is one of the deciding factors for an organization when opting to put their data
in the cloud.

To connect to a SQL database and a managed instance, the machine's IP address
or the client IP address should exist in the firewall settings or NSG rules. If not, the
connection request will be denied.

Access to SQL Database can be restricted to one or more virtual networks using service
endpoints. Private endpoints for SQL Database further strengthen security by assigning
a private IP address to a SQL database from the customer's virtual network.

SQL Managed Instance can be deployed in a virtual network and offers strong security
isolation, but SQL Database and SQL Managed Instance support similar secure
connection options. SQL Managed Instance also gives an option to opt for a public
endpoint connection, which can be secured by using NSG and firewall rules.

SQL Database and SQL Managed Instance allow SQL and Azure AD authentication.
An organization can sync their domain with Azure, thereby allowing users to connect
from Azure AD accounts instead of SQL logins. Organizations can also create Azure
AD groups and give access to a group instead of giving access to individual Azure AD
user accounts. In addition to this, you can use RLS and DDM to further secure data by
allowing users to only see the data they need to do their work. SQL Database and SQL
Managed Instance also provide proactive monitoring to detect threats such as SQL
injection as and when they happen.

In the next chapter, we will learn about scaling out a SQL database or a managed
instance based on the needs of the application.

You can easily scale up or scale down an SQL database or managed instance, either
automatically or manually. There are two types of scaling: vertical and horizontal.

Vertical scaling refers to switching to a higher or lower service tier or vertically
partitioning data, which is done to store different schemas on different databases.

Horizontal scaling refers to dividing data from a single table into different individual
databases.

This chapter will teach you how to autoscale SQL databases and shard a database. The
chapter also talks about how to run cross-database queries.

By the end of this chapter, you will be able to:

• Perform vertical and horizontal scaling.

• Create and maintain SQL database shards.

• Run cross-database elastic queries.

• Scale a managed instance.

This chapter covers how to vertically and horizontally scale your system to optimize the
performance of your application.

Scalability

7

338 | Scalability

Vertical scaling
Vertical scaling refers to increasing or decreasing the resources of an SQL database or
managed instance. The resources here refer to DTUs for DTU-based purchasing models
and vCores for vCore-based purchasing models.

Vertical scaling can be of two types: scale-up or scale-down service tiers, or vertical
partitions.

Scale-up or scale-down service tiers
Scaling up a service tier refers to switching to a higher service tier; for example,
switching from General Purpose to Business Critical or switching from General Purpose
GP_Gen5_2 to General Purpose GP_Gen5_4.

Scaling down a service tier refers to switching to a lower service tier; for example,
switching from General Purpose GP_Gen5_4 to General Purpose GP_Gen5_2, or
switching from Business Critical to General Purpose.

Scaling up a service tier allows you to maintain or improve database performance
during peak business hours and scaling down a service tier allows you to save costs
during off-peak business hours.

Service tiers can be changed on the fly with near-zero downtime. When a service tier
change request is sent to Azure SQL Database, it first creates a copy of the database in
the requested service tier and switches to the database in the new service tier once the
copy is ready.

Note

Although there's no downtime in modifying service tiers, the in-process or in-flight
transactions are cancelled when the switch from the old to the new service tier is
done. This can be easily handled by adding retry logic in the application.

You are charged for the new service tier once the service tier is changed, and not from
the time the service tier change request is received.

The SQL Database service tier can be changed from the Azure portal, using a T-SQL
script, Azure PowerShell, or by putting the database in an elastic database pool. Except
for the Azure portal, these methods allow you to automatically change the service tier.

Note

An elastic database pool is a group or pool of more than one Azure SQL database
with varying usage. This is covered in detail in Chapter 8, Elastic and instance pools.

Vertical scaling | 339

One of the most common vertical scaling use cases is to automatically scale up or scale
down a service tier based on the CPU usage:

Figure 7.1: Scaling vCores in the General Purpose service tier

For example, you can put a script in place that will automatically scale to a higher vCore
if the CPU usage increases past a specified threshold, such as switching to GP_Gen5_4
if the CPU usage is greater than 70% (of the GP_Gen5_2 service objective), and scale to
a lower service tier if the CPU usage percentage is lower than the specified threshold,
such as switching to the GP_Gen5_2 if the CPU usage is less than 30% (of the GP_
Gen5_4 service objective).

Another use case is to schedule scaling up and scaling down based on peak and
off-peak business hours. For example, if a business expects higher traffic between 1:00
PM and 3:00 PM, it could scale up to the Business Critical service tier during that time
and scale down to the General Purpose service tier for the rest of the day.

Using T-SQL to change the SQL Database service tier

Let's consider a scenario where Mike faces higher traffic than usual between 1:00 PM
and 3:00 PM on the toystore database; he can use T-SQL to change the service tier as
follows:

Note

Refer to C:\Code\Chapter07\ChangeDBServiceTier-TSQL.sql for the queries
provided in the section.

340 | Scalability

1. Open SQL Server Management Studio (SSMS) on your local machine and connect
to the toystore SQL database.

Note

You can refer to Chapter 1, Introduction to Azure SQL managed databases, for
detailed steps to connect to SQL Database from SSMS.

2. Copy and paste the following query to get the current service tier of the toystore
database:

-- Get the current database service tier
-- Run this in the toystore or your database context (and not master
database context)

SELECT * FROM sys.database_service_objectives

You should get the following output from this query:

Figure 7.2: Current service tier of the toystore database

The sys.database_service_objectives DMV returns the current SQL Database
edition and the service objective or the performance level.

Note

You need the dbowner permission on the toystore database to run the query if
you are not using the SQL Server administrator user.

Vertical scaling | 341

3. Copy and paste the following code snippet in a new query window in SSMS to
modify the toystore service objective from GP_Gen5_2 to GP_Gen5_4. This will
increase the number of vCores from two to four for the toystore database:

-- Query 1: Modify the service tier to GP_Gen5_4
ALTER DATABASE ToyStore MODIFY (Edition='GeneralPurpose', Service_
objective='GP_Gen5_4')
GO
-- Query 2: Verify the status of the change
While NOT EXISTS(SELECT 1 FROM sys.database_service_objectives where
service_objective='GP_Gen5_4')
BEGIN
wait for delay '00:00:01'
END
SELECT
 *
FROM sys.database_service_objectives

Note

T-SQL is not supported to vertically scale a managed instance. The other ways to
do it are via the Azure portal, PowerShell, and the Azure CLI.

The preceding T-SQL snippet consists of two queries:

• Query 1: This runs an ALTER DATABASE command to change the SQL Database
service objective to GP_Gen5_4.

• Query 2: This is to verify the status of the MODIFY command.

Select Query 1 and Query 2 and press F5 to execute them. You should get the
following output:

Figure 7.3: Output of the queries

342 | Scalability

We can easily scale up or scale down by modifying an SQL Database service tier. The
preceding queries consider scaling up the General Purpose service tier; however, we
can similarly scale the DTU service tier (by specifying the DTU-based service tier as the
service objective). We can also switch between the DTU and vCore purchasing modes
by specifying the required service objective in the ALTER DATABASE command.

Vertical partitioning
In vertical partitioning, data is partitioned in such a way that different sets of tables
reside in different individual databases:

Figure 7.4: Vertical partitioning

For example, if there are four different schemas in a database, say, Finance, HR, CRM,
and Inventory, then each one of them is stored in one independent database, as shown
in Figure 7.4.

Vertical partitioning requires cross-database queries in order to generate reports,
which require data from different tables in different databases.

SQL Database doesn't currently support three- or four-part object names, such as
databaseName.SchemaName.TableName (excluding tempdb). Therefore, cross-database
queries are made using elastic database queries. We'll learn how to implement elastic
database queries in the Activity: Using elastic database queries section. For now, let's get
started on learning how to create an alert.

CRM Inventory

HRFinance

T-
SQ

L
Q

ue
ry

T-SQ
L Q

uery

T-SQL Query

T-SQL Query

T-SQL Query

Activity: Creating alerts | 343

Activity: Creating alerts
In this section, you'll learn how to create an SQL database alert. Consider the following
scenario, involving ToyStore Ltd. Mike has an SQL database on the Basic service tier
and has been asked to configure autoscaling to change the service objective to GP_
Gen5_4 when the CPU percentage metric is greater than 70%. For this purpose, he
needs to first create an SQL database alert that is triggered when the CPU percentage
is greater than 70%. Let's see how this can be done.

Creating an Azure Automation account and configuring a runbook

Azure Automation is an Azure service that allows you to automate Azure management
tasks through runbooks.

A runbook is a job that accepts PowerShell or Python code and executes it as and when
scheduled, or when invoked from an external program through a webhook:

1. Open the Azure portal, https://portal.azure.com, and log in with your Azure
credentials.

2. In the left-hand navigation menu, select All services. In the More services pane's
search box, type Automation. Select the Automation Accounts option that appears
as a search result:

Figure 7.5: Searching for Automation Accounts

3. In the Automation Accounts pane, click Create Automation Accounts:

Figure 7.6: Automation Accounts pane

https://portal.azure.com

344 | Scalability

4. In the Add Automation Account pane, provide the following values:

 - Set the name of the automation account as toystorejobs.

 - Select your Azure subscription type.

 - Set Resource group as toystore.

 - Set Location as East US 2.

 - Set Create Azure Run As account to Yes (the default value).

5. Click Create to provision the automation account:

Figure 7.7: Automation account details

Activity: Creating alerts | 345

6. Navigate to the Overview pane of the newly created toystorejobs Automation
Account. Locate and select Runbooks in the Process Automation section:

Figure 7.8: Runbooks pane under Process Automation

7. In the Runbooks pane, select Import a runbook from the top menu:

Figure 7.9: The Runbooks pane displaying the available runbooks and different options to manage
runbooks

346 | Scalability

8. In the Import a runbook pane, under Runbook file, navigate to C:\Code\Chapter07\
VerticalScaling and select the Set-AzureSqldatabaseEdition.ps1 file. Provide a
description (this is optional). Click Create to import the PowerShell runbook:

Figure 7.10: Importing a runbook

Once the runbook is imported, the Edit PowerShell Workflow Runbook pane will
be opened for the Set-AzureSqlDatabaseEdition runbook:

Figure 7.11: The Edit PowerShell Workflow Runbook page

Activity: Creating alerts | 347

This pane has the option to further modify the workflow if required. The PowerShell
script is wrapped in a workflow tag specifying that it's a PowerShell Runbook
workflow. The left-hand side of the window has three options:

• CMDLETS has all the PowerShell commands you can use to write a PowerShell
runbook workflow.

• RUNBOOKS lists all existing PowerShell runbooks.

• ASSETS are the variables, connections, credentials, and certificates that are
required by a runbook to run.

The PowerShell script is self-explanatory. It takes five parameters:

 - SqlServerName: This is the logical server that hosts the SQL database.

 - databaseName: This is the SQL database name whose service tier is to be
modified.

 - Edition: This is the desired SQL Database edition. The SQL database will be on
this edition after script execution.

 - PerfLevel: This is the desired service objective (S0, S1, and so on).

 - Credential: This is the name of the runbook credential asset that contains the
username and password to connect to the SQL database.

The PowerShell script connects to the given SQL database and uses the
Set-AzureSqldatabase command to change the database edition.

Once you are familiar with the script, select Publish in the top menu to publish the
runbook.

348 | Scalability

9. The next step is to create the credential asset to be used by the script to connect to
the SQL database. Close the Set-AzureSqldatabaseEdition runbook pane. Navigate
to the toystorejobs - Runbooks pane and find and select Credentials in the Shared
Resources section:

Figure 7.12: The Shared Resources section in the Runbooks pane

Select Add a credential from the top menu:

Figure 7.13: Adding a credential

10. In the New Credential pane, provide the following:

 - The credential name in the Name section

 - A description in the Description section—this is optional

 - Your SQL Server username

 - Your SQL Server password

Activity: Creating alerts | 349

11. Click Create to create the credential:

Figure 7.14: Creating a new credential

Credentials are shared assets and can be used in multiple runbooks.

12. The next step is to create the webhook for this runbook. On the toystorejobs -
Runbooks page, select the Set-AzureSqlDatabaseEdition runbook:

Figure 7.15: toystorejobs - Runbooks page

Click on the Set-AzureSqlDatabaseEdition runbook to open it.

350 | Scalability

13. On the Set-AzureSqlDatabaseEdition runbook page, click Add webhook. This will
open the Add Webhook page:

Figure 7.16: Adding a webhook

14. In the Add Webhook pane, select Create new webhook:

Figure 7.17: Creating a new webhook

In the Create a new webhook pane, enter the webhook name. The Enabled toggle is
set to Yes by default—leave it as it is. The Expires data is set to one year—leave it as
it is. Copy the webhook URL by clicking on the copy icon next to the URL text box.

Note

It's important to copy and paste the URL before you click OK as the URL is
inaccessible once the webhook has been created.

Click OK to create the webhook:

Activity: Creating alerts | 351

Figure 7.18: Adding details

The webhook will be created. The next step is to provide the PowerShell
runbook parameters to the webhook. These parameters will be used to run the
Set-AzureSqldatabaseEdition PowerShell runbook.

Note

The parameters mentioned here are the ones defined in the PowerShell script
discussed in Step 7.

352 | Scalability

15. In the Add Webhook pane, select Configure parameters and run settings. In
the Parameters pane, provide values for SQLSERVERNAME, DATABASENAME,
EDITION, PERFLEVEL, and CREDENTIAL. The credential used here is the one
created in Step 9:

Figure 7.19: Adding parameters in the Add Webhook pane

Activity: Creating alerts | 353

16. Click OK to continue. In the Add Webhook pane, select Create to create the
webhook and set the parameter values:

Figure 7.20: Adding a webhook

Now you have created and configured a PowerShell runbook, which runs a PowerShell
command when triggered by a webhook.

Creating an SQL database alert

The next step is to create an SQL database alert that is triggered when the CPU
percentage is greater than 70%. The alert, when triggered, will call the webhook we just
created:

1. On the Azure portal, navigate to the toystore SQL database. In the Overview pane,
find and click on Alerts, then select New alert rule:

Figure 7.21: Adding a new alert rule

354 | Scalability

This opens the Create alert rule page. The Create alert rule page has three
sections: Scope, Condition, and Actions. RESOURCE is the Azure resource on
which the rule is to be created. This is automatically set to the toystore database.
Condition is the alert condition that defines the metrics on which the alert is to be
configured and the trigger logic. Actions defines the actions to be taken when an
alert is triggered:

Figure 7.22: The Create alert rule page

Activity: Creating alerts | 355

2. Click Select condition under the Condition heading to add an alert condition.
There can be more than one alert condition. On the Configure signal logic page,
select CPU percentage:

Figure 7.23: The Configure signal logic page

This opens the page to configure the alert's logic. Scroll down to locate the Alert
logic section.

356 | Scalability

3. Select the Static threshold, set Operator to Greater than, set Aggregation type
to Maximum, and set Threshold value to 70. Leave the rest of the values as the
defaults:

Figure 7.24: Selecting the Threshold value

Click Done to save the configuration. The next step is to define the action.

Activity: Creating alerts | 357

4. On the Create alert rule page, click the Select action group button under Actions:

Figure 7.25: Selecting an action group

5. On the Select an action group to attach to this alert rule page, select Create
action group:

Figure 7.26: Creating an action rule

358 | Scalability

6. On the Create action group page, under the Basics tab, provide details for
Subscription, Resource group, Action group name, and Display name:

Figure 7.27: Create action group—Basics tab

Click the Actions tab at the top to configure the action.

Note

You can additionally configure email notifications in the Notifications tab to send
an email notification when the alert is triggered.

Activity: Creating alerts | 359

7. In the Actions tab, set Name as ScaleSqlAction and select Webhook from the Action
type drop-down menu. Provide the webhook URI in the Webhook popup:

Figure 7.28: Webhook page

Click OK to save the webhook URI. The Create action group page should be similar
to what is shown in Figure 7.29:

Figure 7.29: Create action group—Actions tab

Click Review + create and then Create to configure the alert action.

8. You'll then be taken to the Create alert rule page. Scroll to the Alert Details
section. Set the alert rule name to High CPU Alert and set the severity to sev 1.
Click Create alert rule to create the rule.

360 | Scalability

This completes the autoscale setup. The next step is to run the workload and see
autoscaling in action.

Running and reviewing the workload

In this section, we'll run the workload and see how autoscaling works:

1. Open a new PowerShell window and change the directory to ~\Chapter07\
VerticalScaling. Execute the following PowerShell command to start the workload:

.\Start-Workload.ps1 -sqlserver toyfactory -database toystore -sqluser
sqladmin -sqlpassword Packt@Pub2 -ostresspath "C:\Program Files\Microsoft
Corporation\RMLUtils\ostress.exe" -workloadsql .\workload.sql

The script parameters are as follows:

 - Sqlserver: The logical server name

 - database: The SQL database name for which you created an alert earlier in this
activity

 - Sqluser: The SQL Server admin username

 - Sqlpassword: The SQL Server admin password

Note

The script parameter values may be different in your case.

Figure 7.30: Starting the workload

The scripts start an instance of the ostress utility. The ostress utility runs 25
threads in parallel, executing the workload.sql file 30 times in each thread.

Activity: Creating alerts | 361

2. While the workload is running, monitor the CPU percentage on the toystore
overview page in the Azure portal:

Figure 7.31: Monitoring the CPU percentage

3. To monitor the alert status, navigate to the Alerts section of the toystore database.
We can see that one alert has been triggered:

Figure 7.32: Triggered alerts in the Alerts section

362 | Scalability

4. Click on the Total alerts tile:

Figure 7.33: Total alerts tile

We can see that High DTU Alert has been triggered.

Note

It's advisable to open the toystore database's overview pane in one browser tab
and the Set-AzureSqldatabaseEdition runbook pane in another tab for easy
monitoring.

Once the alert is active, navigate to the Set-AzureSqldatabaseEdition runbook pane
on the Azure portal. Select Jobs in the Resources section. You should see the job
status as shown here:

Figure 7.34: Job statuses in the runbook pane

Activity: Creating alerts | 363

Click Completed to check the job status:

Figure 7.35: Checking job status details

You can verify the parameters passed to the job by clicking on Input and review the
output from the PowerShell script by clicking on Output. The status indicates that
the job has run successfully, and the database service tier has been updated.

Switch to the toystore database's Overview page and notice that the database
service objective is now GP_Gen5_4.

This completes the activity.

Vertical scaling increases or decreases the performance of an SQL database as and
when required. This directly affects the SQL database cost. As we scale up, we increase
the cost and as we scale down, we decrease the cost. We can therefore save on costs by
scaling down to a lower service tier in off-peak hours.

Note

The SQL Database serverless service tier provides autoscaling. However, it's only
available with the vCore purchasing model and for the Gen5 hardware generation.

Horizontal scaling increases performance by dividing data into multiple SQL databases.
Let's take a look at what it is and how it's done.

364 | Scalability

Horizontal scaling
Horizontal scaling, or sharding, refers to partitioning the data from one single big
table in a database across multiple independent databases based on a sharding
or partitioning key. For example, a customer table is partitioned across multiple
independent databases on CustomerID. Each independent database stores data for one
or more customers.

Note

Sharding is only available in SQL Database and it's not available for SQL Managed
Instance.

Horizontal scaling can be helpful in the following situations:

• The data is too big to fit into one single database.

• The data is to be distributed to different locations for improved performance
or for compliance. For example, European customers will get improved
performance if their data is in a European datacenter rather than an Asian
datacenter.

• Isolating tenants or customers to a database of their own for better management
and performance. If all of the customer data is in a single database and there is
blocking in the database because of a transaction made for a customer, say, X,
then all of the other customer queries will have to wait for the blocking to get
resolved, causing a bad performance experience for the rest of the customers.

• A single database requires a Business Critical service tier to manage one big
table. Dividing customer data across multiple independent General Purpose
service tier databases will reduce the cost.

• All (or most) of the queries are made to the database filter on the sharding key.

Sharding is supported natively in SQL Database, so we don't have to implement the
sharding mechanism from scratch. However, we do need to create and manage shards.
This can be done easily using elastic database tools. Figure 7.36 represents a generic
sharded environment:

Horizontal scaling | 365

Figure 7.36: Horizontal partitioning

The customer table is horizontally partitioned across three shards: Shard 1, Shard 2,
and Shard 3. Let's examine each of these components in detail:

• Shard: A shard is an individual database that stores a subset of rows of a sharded
table. Shard 1, Shard 2, and Shard 3 are the shards, each storing different rows of
the customer table as defined by the mappings.

• Shard set: A group of shards that contains data for one single partitioned table is
called a shard set. Shard 1, Shard 2, and Shard 3 together are called a shard set.

• Sharding key: A sharding key is the column name based on which the data is
partitioned between the shards. In our example, CustomerID is the sharding
key. Each shard stores data for a different customer ID. You can also define a
composite sharding key.

• Shard map manager: A special database that stores global mapping information
about all available shards in a shard set. The application uses the mapping
information to connect to the correct shard based on the sharding key.

• Shard maps: Shard maps define the data distribution between different shards
based on the sharding key. There are two types of shard map:

Shard 2

Shard Map
Manager

Shard 1 Shard 3

LSM - Shardlets

Sales Customer

CustomerID RegionID

1 1

2 2

3 3

4 4

Key Value

1 - 99 Shard1

100 - 199 Shard2

200 - 299 Shard3

300 - 399 Shard4

Shard Set

Application
Cache

Global Shard Map

366 | Scalability

• List shard map: This is a key-value pair with a one-to-one mapping between
the sharding key and the shard. The key is the sharding key and the value is the
shard (SQL database):

Table 7.1: Key-value pairs between key and shard

This list shard map defines that Shard 1 will store the data for CustomerID 1 and
CustomerID 4, Shard 2 will store the data for CustomerID 2, and Shard 3 will store
the data for CustomerID 3.

• Range shard map: This is a key-value pair where the key (a sharding key) is a
range of values defined as (low value to high value):

Table 7.2: Range shard map

This range shard map defines that Shard 1 will store the data for customer IDs 1–99
and 300–399, Shard 2 will store the data for customer IDs 100–199, and Shard 3 will
store the data for customer IDs 200–299.

• Global Shard Maps (GSMs): GSMs are stored in a shard map manager database
and record all the shard maps globally. This information is stored and managed
by special tables and stored procedures created automatically under the _
ShardManagement schema in the shard map manager database.

• Local Shard Maps (LSMs): Also referred to as shardlets, these are the shard maps
that track the local shard data within individual shards. The LSMs or shardlets
are stored in individual shards and not in the shard map manager database. This
information is stored and managed by special tables and stored procedures
created automatically under the _ShardManagement schema.

Key
(Sharding Key–CustomerID)

Value
(Shard/database)

1 Shard 1

2 Shard 2

3 Shard 3

4 Shard 1

Key range
(Sharding Key–CustomerID)

Value
(Shard/database)

1–99 Shard 1

100–199 Shard 2

200–299 Shard 3

300–399 Shard 1

Horizontal scaling | 367

• Reference tables: These are tables that aren't sharded and are available in all
shards. These can also be stored in another database, say, a reference database,
instead of storing the same data in individual shards; for example, a table with a
list of countries or cities that contains master data common to all shards.

• Application cache: Applications accessing the shard map manager cache the
mappings in a local in-memory application cache. Applications use the cached
mappings to route requests to the correct shards, instead of accessing the shard
map manager for every request.

Let's now look into the shard map manager in detail.

Shard map manager
As discussed earlier, the shard map manager is a special database that maintains the
global mapping information of a shard set. The mappings are maintained in tables that
are automatically created under the _ShardManagement schema:

Figure 7.37: Shard map manager

Shard Map
Manager

Shardmap_global

Smid Name

1 RangeShardMap

shard_global

Sid Smid Datasource DatabaseName

1 1 ServerName Shard1

2 1 ServerName Shard2

shard_mappings_global

Mid Smid Min Max Sid

1 1 1 100 1

2 1 100 200 2

368 | Scalability

The global shard maps are maintained in three tables, as shown in Figure 7.37:

• Shardmap_global: This table stores the type of shard map, which could be
ListShardMap or RangeShardMap. In our example, we have RangeShardMap.

• shard_global: This table maps the shards (SQL databases) to the shard maps
defined in the Shardmaps_global table. In our example, RangeShardMap has two
shards, Shard 1 and Shard 2. The table also stores the server name the shard
belongs to. This information is used when connecting to the shards.

• shard_mappings_global: This is the global shard map that stores the sharding key
to shard mapping. In our example, customer IDs 1–99 are mapped to Shard 1 and
100–199 are mapped to Shard 2.

The information in the shard map manager is used by the client application to redirect
requests to the correct SQL database based on the sharding key.

Let's now look at how the requests are directed to the correct shard using data-
dependent routing.

Data-dependent routing

Data-dependent routing refers to routing a query to the correct database (shard) based
on the sharding key specified in the query. This is the fundamental way of querying
a sharded environment. The application doesn't maintain connection strings to the
different shards. The application doesn't even implement the logic of selecting the
shards based on the sharding key. This is done natively by using the functions provided
in the elastic database client library.

The application defines a single connection using the OpenConnectionForKey method
defined in the elastic database client library. The syntax for OpenConnectionForKey is
given in the following snippet:

public SqlConnection OpenConnectionForKey<TKey>(TKey key,
string connectionString, ConnectionOptions options
)

Horizontal scaling | 369

It accepts three parameters, which are as follows:

• TKey: This is the sharding key used to determine which shard (or SQL database in
a shard set) the query is to be made on.

• connectionString: The connection string only contains the SQL Server
credentials. The database and the server name are taken from the shard map
manager system tables, based on the sharding key.

• ConnectionOptions: A connection option can be either none or validate. When
it's set to validate, it queries the LSM or shardlet to validate that the shard key
exists in the databases specified in the cached maps (in the application). This
is important in an environment where shard maps change frequently. If the
validation fails, then the shard map manager queries the global shard maps for
the correct values and updates the application cache.

If the parameters specified are correct, OpenConnectionForKey returns a database
connection that can be used to query the correct shard.

When implementing sharding, there are two data models: single-tenant and multi-
tenant. Let's look into these in detail.

Sharding data models
Sharding data models refer to how the tenants are placed in a sharded environment.
There are two distinct models for placing tenants: database per tenant (single-tenant
model) and a shared database—sharded (multi-tenant model):

Figure 7.38: Multi-tenant and single-tenant data models

Tenant ID
1–10

Tenant ID
11–20

Tenant ID
21–30

Tenant ID
31–40

Multi–Tenant Model: List and Range Mappings

Tenant ID
1

Tenant ID
2

Tenant ID
3

Tenant ID
4

Single–Tenant Model: List Mappings

370 | Scalability

Single-tenant (database per tenant)

As the name suggests, each tenant gets its own database. The tenant-specific data is
limited to the tenant's database and isolated from other tenants and their data.

Shared database—sharded

As the name suggests, a single shard or database is shared among multiple tenants.
The tenants can either be mapped to shards or databases by using either range or list
mappings, as discussed earlier.

Choosing between the two models depends on the following factors:

• Isolation: The single-tenant, or database-per-tenant, model offers a higher
degree of isolation than the shared database—sharded model.

• Maintenance: The single-tenant model will have as many databases as the
tenants, which could be customers or employees. For example, 100 customers
would mean 100 databases in the single-tenancy model, but in the shared
database—sharded model, you can have 5 databases with 20 tenants each.
Maintaining 5 databases would be easier than maintaining 100 databases.

• Cost: The cost depends on the amount of resource sharing between tenants.
The more resource sharing there is (resource here refers to a shard, an SQL
database), the lower the cost. The single-tenant model is good if all tenants have
predictable workloads. This allows you to select an appropriate service tier for
each tenant or shard. However, if the workload isn't predictable, which is often
the case, databases can be either oversized or undersized. On the other hand,
the shared database—sharded model, with a higher degree of resource sharing,
offers a more cost-effective solution.

• DevOps: DevOps refers to the deployment of new changes to databases to
resolve issues or when new features are added to an application. With the
single-tenant model, it costs more to deploy and maintain an application, as
each change has to be applied to all of the single-tenant databases. For example,
if an application adds a new feature that allows customers to generate sales
reports, and there are 100 customers, then this change has to be deployed on 100
databases. However, it'll take less time and cost to roll out the same feature in
the shared database—sharded model because of the smaller number of databases.

• Business model: An application's business model is an important factor when
choosing between the two multi-tenant models. If the application's per-tenant
revenue is small, then the shared database—sharded model makes sense. A
shared database model will offer less isolation, but it'll have lower deployment
and resource costs. On the other hand, if the per-tenant revenue is high, then
it'll make sense to use the single-tenant model.

Horizontal scaling | 371

Now let's have a go at creating shards for the toystore database.

Activity: Creating shards
In this activity, we'll discuss how to shard our toystore database. Consider the following
scenario: you have been asked to implement sharding to improve the application
performance of the toystore database. For this purpose, you can shard the Sales.
Customers and Sales.Orders tables into two shards, toystore_Shard_1_100 (with values
of customerid from 1–99) and toystore_Shard_200 (with values from 100–199). The
following steps describe how this can be done:

Note

The Application.Countries table will be the reference, or the common table
present in all shards. You can, however, extend the scripts used in this activity to
shard other tables.

1. Download the elastic database tool scripts.

2. Provision the toystore_SMM shard map manager database.

3. Rename the toystore database toystore_Shard_1_100.

4. Provision the toystore_Shard_200 SQL database.

5. Promote toystore_SMM to the shard map manager. This will create the shard
management tables and procedures in the toystore_SMM database.

6. Create the range shard map in the shard map manager database.

7. Add shards to the shard map.

8. Add the sharded table and reference table schema to the shard map manager
database.

9. Verify the sharding by reviewing the shard map manager tables.

Let's start with downloading elastic database tool scripts.

372 | Scalability

Downloading the elastic database tool scripts

The elastic database tool scripts are a set of PowerShell modules and scripts provided
by Microsoft to easily create and manage SQL database shards. They use the functions
exposed by the elastic database client library to provide helper PowerShell cmdlets to
easily create and manage shards.

Note

The elastic database tool scripts are available at C:\Code\Chapter07\Elastic DB
tool scripts. You can download the latest version from here: https://gallery.
technet.microsoft.com/scriptcenter/Azure-SQL-DB-Elastic-731883db

Navigate to C:\Code\Chapter07\Elastic DB tool scripts\ShardManagement and open
the ShardManagement.psm1 script. ShardManagement.psm1 contains functions such as
New-ShardMapManager, Get- ShardMapManager, New-RangeShardMap, and Add-Shard. Each
function has a synopsis section, which briefly describes the function's purpose.

Note

We won't use all of the functions listed in ShardManagement.psm1. However, you
are free to explore them once you have completed the activity. When you first
import the ShardManagement module, it checks for the elastic database client
libraries' DLLs (in the folder from where the PowerShell script is executed) and
downloads and registers them if not found.

Let's move on to the next step to save the Azure profile details to a file.

Saving the Azure profile details to a file

Saving your Azure profile details to a file enables you to log in to your Azure account
from PowerShell using the saved profile information. Otherwise, you would have to
provide your Azure credentials in the Authentication dialog box every time you wanted
to run an Azure command from PowerShell.

To save Azure profile details to a file, follow these steps:

Note

This isn't part of sharding; however, it'll save you time by not having to type your
Azure credentials into PowerShell every time you run an Azure command in
PowerShell.

https://gallery.technet.microsoft.com/scriptcenter/Azure-SQL-DB-Elastic-731883db
https://gallery.technet.microsoft.com/scriptcenter/Azure-SQL-DB-Elastic-731883db

Horizontal scaling | 373

1. Press Windows + R to open the Run command window. In the Run command
window, type powershell and hit Enter. This will open a new PowerShell console
window:

Figure 7.39: Opening a PowerShell console window

2. In the PowerShell console, execute the following command:

Add-AzAccount

You'll have to enter your Azure credentials in the pop-up dialog box. After a
successful login, control will return to the PowerShell window.

Run the following command to save the profile details to a file:

Save-AzProfile -Path C:\code\MyAzureProfile.json

3. The Azure subscription details will be saved in the MyAzureProfile.json file in JSON
format. If you wish to explore the profile.json file, you can open it in any editor to
review its contents.

Note

The C:\Code path is where all of the book's code is kept.

The PowerShell scripts later in the book use relative paths. If you have extracted
the code to some other directory, say, E:\Code, then save the profile.json file in
E:\Code to avoid invalid path errors.

Also, the SQL Server PowerShell module can be installed from here: https://docs.
microsoft.com/sql/powershell/download-sql-server-ps-module?view=sql-server-
ver15&viewFallbackFrom=sql-serverver15

https://docs.microsoft.com/sql/powershell/download-sql-server-ps-module?view=sql-server-ver15&viewFallbackFrom=sql-serverver15
https://docs.microsoft.com/sql/powershell/download-sql-server-ps-module?view=sql-server-ver15&viewFallbackFrom=sql-serverver15
https://docs.microsoft.com/sql/powershell/download-sql-server-ps-module?view=sql-server-ver15&viewFallbackFrom=sql-serverver15

374 | Scalability

Sharding the toystore database

We'll now learn how to write PowerShell commands using the elastic database tool
scripts to shard the existing toystore database:

Note

If you are short of time, you can execute the C:\Code\Chapter07\Sharding\
Sharding.ps1 file, providing appropriate parameters.

1. Press the Windows key + R to open the Run command window. Type PowerShell_
ISE.exe in the Run command window and hit Enter. This will open a new
PowerShell ISE editor window. This is where you'll write the PowerShell commands:

Figure 7.40: Opening the PowerShell ISE editor window

In the PowerShell ISE, select File from the top menu and click Save. Alternatively,
you can press Ctrl + S to save the file. In the Save As dialog box, browse to the C:\
Code\Chapter07\Sharding directory. In the File name text box, type Shard-toystore.
ps1 and click on Save to save the file:

Horizontal scaling | 375

Figure 7.41: Saving the PowerShell file

2. Copy and paste all code into the shard-toystore.ps1 file to implement sharding. The
code explanation, wherever required, is given in the following code snippet and in
the comments within the code snippet.

3. Copy and paste the following code to define the script parameters:

param (
[parameter(Mandatory=$true)] [String] $ResourceGroup,
[parameter(Mandatory=$true)] [String] $SqlServer,
[parameter(Mandatory=$true)] [String] $UserName,
[parameter(Mandatory=$true)] [String] $Password,
[parameter(Mandatory=$true)] [String] $ShardMapManagerdatabase,
[parameter(Mandatory=$true)] [String] $databaseToShard,
[parameter(Mandatory=$false)] [String] $AzureProfileFilePath
,
[parameter(Mandatory=$true)]
[String] $Basedirectory="C:\Professional-Azure-SQL-Database-
Administration-Third-Edition",
[parameter(Mandatory=$true)]
[String] $Elasticdbtoolscriptpath="C:\Professional-Azure-SQL-Database-
Administration-Third-Edition\Chapter06\Elastic DB tool scripts"
)

376 | Scalability

The script accepts nine parameters:

 - ResourceGroup: This is the Azure resource group that contains the SQL server
and the database. This should be the same as the one you provided when
creating the toystore database in Chapter 1, Introduction to Azure SQL managed
databases.

 - SqlServer: This is the logical server name that hosts the toystore database.

 - UserName and Password: This is the SQL Server admin username and password.

 - ShardMapManagerdatabase: This is the name of the shard map manager database.
Prefix _SMM to the toystore database name to name the shard map manager
database.

 - databaseToShard: The database you wish to shard—toystore in our case.

 - AzureProfileFilePath: The path of the JSON file that contains your Azure
profile details. If it's not yet created, follow the steps in the Saving the Azure
profile details to a file section to create one.

 - Basedirectory: The path of the base directory that contains the chapters.

 - Elasticdbtoolscriptpath: The path of the elastic database tool script folder
downloaded in the Downloading the elastic database tool scripts section.

4. Copy and paste the following code to set the Azure context to your Azure profile:

log the execution of the script
Start-Transcript -Path ".\Log\Shard-toystore.txt" -Append
…
…
}

#Login to Azure Account
if((Test-Path -Path $AzureProfileFilePath))
{
$profile = Select-AzProfile -Path $AzureProfileFilePath
$SubscriptionID = $profile.Context.Subscription.SubscriptionId
…
Provide your Azure Credentials in the login dialog box
$profile = Login-AzAccount
$SubscriptionID = $profile.Context.Subscription.
SubscriptionId
…
…
#Set the Azure Context

Horizontal scaling | 377

Set-AzContext -SubscriptionId $SubscriptionID | Out-Null

This script does the following things:

 - Logs the script execution in the Sharding.txt file in the C:\Code\Chapter07\
Sharding\Log folder.

 - Sets the AzureProfileFilePath parameter to the Azure profile JSON file if the
path isn't provided as the parameter.

 - Logs in to the Azure account using the Azure profile JSON file. If the JSON path
provided isn't valid, then it uses the Login-AzAccount command. In this case,
you will have to provide your Azure subscription username and password in the
pop-up window.

 - Sets the default Azure profile to your profile using Set- AzContext cmdlet. This
tells PowerShell to create and manage objects in your Azure profile.

Press Ctrl + S to save your work before moving on.

5. Copy and paste the following code to import the shardmanagement module. This will
allow us to use the functions in shardmanagement.psm1 in our PowerShell script:

Import the ShardManagement module
$ShardManagementPath = $Elasticdbtoolscriptpath + "\ShardManagement\
ShardManagement.psm1"
Import-Module $ShardManagementPath

6. Copy and paste the following script to set the SQLServerFQDN variable:

$SQLServerFQDN = "$SqlServer.database.windows.net"

The SQLServerFQDN variable has a fully qualified logical Azure SQL server name.

This is required later in the script.

7. Copy and paste the following code to provision a new SQL database to act as the
shard map manager:

Provision a new Azure SQL database
call ProvisionAzureSQLdatabase.ps1 created in Chapter 1 to create a new
Azure SQL database to act as Shard Map Manager

$path = $Basedirectory + "\Chapter01"
$command = $path + "\Provision-AzureSQLDatabase.ps1 -ResourceGroup
$ResourceGroup -SQLServer $SqlServer -UserName $UserName -Password
$Password -SQLDatabase $ShardMapManagerDatabase -Edition GeneralPurpose
-AzureProfileFilePath $AzureProfileFilePath"
Invoke-Expression -Command $command

378 | Scalability

The command variable specifies the Provision-AzureSQLdatabase.ps1 file and the
required parameters. You can check Chapter 1, Introduction to Azure SQL managed
databases, to find out how to run the Provision-AzureSQLdatabase.ps1 PowerShell
script.

The Invoke-Expression cmdlet runs the command specified in the command variable.

8. Copy and paste the following code to set up the individual shards:

Setup the shards
Rename existing toystore database to toystore_shard1
$Shard1 = $databaseToShard + "_Shard_1_100"
$Shard2 = $databaseToShard + "_Shard_200"

#Rename the existing database as _shard1
Set-AzSqlDatabase -ServerName $SqlServer -ResourceGroupName $ResourceGroup
-DatabaseName $DatabaseToShard -NewName $shard1

create shard2 Azure SQL Database
$command1 = "$path\Provision-AzureSQLDatabase.ps1 -ResourceGroup
$ResourceGroup -SQLServer $SqlServer -UserName $UserName
-Password $Password -SQLDatabase $shard2 -Edition GeneralPurpose
-AzureProfileFilePath $AzureProfileFilePath"
Invoke-Expression -Command $command1

Create tables to be sharded in Shard2
$scriptpath = $Basedirectory + "\Chapter06\Sharding\TableScripts\"
$files = Get-ChildItem -Path $scriptpath
ForEach($file in $files)
{
Write-Host "Creating table $file in $shard2" -ForegroundColor Green
Invoke-Sqlcmd -ServerInstance $SQLServerFQDN -Username
$UserName -Password $Password -database $shard2 -InputFile $file. FullName
| out-null
}

Horizontal scaling | 379

The preceding code does the following things:

 - Declares two variables, Shard1 and Shard2. If the value of the databaseToShard
variable is toystore, then Shard1 = toystore_ Shard_1_100 and Shard2 =
toystore_ Shard_200.

 - Renames the existing toystore database to Shard1; that is, toystore_
Shard_1_100. The Set-AzureSqldatabase cmdlet is used to rename the database.

 - Provisions the Shard2 database, toystore_Shard_200. It uses
ProvisionAzureSQLdatabase.ps1 as described previously to provision a new
database.

 - Creates the required tables, Sales.Customer, Sales.Orders, and Application.
Countries, in the newly provisioned shard2 database.

 - The create scripts for the tables are kept in C:\Code\Chapter07\Sharding\
TableScripts.

 - The Get-ChildItem cmdlet gets all of the files present in the TableScripts
directory.

 - The Invoke-Sqlcmd cmdlet executes the scripts file on the Shard2 database.

9. Copy and paste the following code to register the database created in the previous
step as the shard map manager:

Register the database created previously as the Shard Map Manager

Write-host "Configuring database $ShardMapManagerdatabase as Shard Map
Manager" -ForegroundColor Green
$ShardMapManager = New-ShardMapManager -UserName $UserName
-Password $Password -SqlServerName $SQLServerFQDN
-SqldatabaseName $ShardMapManagerdatabase -ReplaceExisting $true

This code uses the New-ShardMapManager cmdlet from the ShardManagement.
psm1 module to register the newly created database (specified by the
$ShardMapManagerdatabase parameter) in the previous steps as the shard map
manager.

This creates the database objects required for shard management in the shard map
manager database under the ShardManagement schema.

380 | Scalability

10. Copy and paste the following code to create a new shard map in the shard map
manager database:

Create Shard Map for Range Mapping
$ShardMapName = "toystorerangemap"
$ShardMap = New-RangeShardMap -KeyType $([int]) -ShardMapManager
$ShardMapManager -RangeShardMapName $ShardMapName

This code uses the New-RangeShardMap function from the ShardManagement module to
create a new range shard map in the shard map manager database.

The keytype parameter defines the data type of the sharding key. In our case, the
sharding key is customerid, which is of the integer data type.

ShardMapManager is the shard map manager object assigned to the $ShardMapManager
variable in the preceding code snippet. This tells the function to create the shard
map in this particular shard map manager.

The RangeShardMapName variable is the name of the shard map, toystorerangemap.

11. Copy and paste the following code to add the shards to the shard map created
previously:

Add shards (databases) to shard maps
Write-host "Adding $Shard1 and $Shard2 to the Shard Map
$ShardMapName" -ForegroundColor Green
$Shards = "$Shard1","$shard2" foreach ($Shard in $Shards)
{
Add-Shard -ShardMap $ShardMap -SqlServerName $SQLServerFQDN
-SqldatabaseName $Shard
}

This code uses the Add-Shard function from the ShardManagement module and
adds the individual shards, Shard1 (toystore_Shard_1_100) and Shard2 (toystore_
Shard_200), to the toystorerangemap object created previously.

ShardMap is the shard map object assigned to the $ShardMap variable in the previous
steps. This tells the function the shard map to which the shards are to be added.

SqlServerName and SqldatabaseName are the logical server name and the database
name of the shards to be added to the shard map.

This step will create the local shard management objects in the individual shards
under the ShardManagement database.

Horizontal scaling | 381

12. Copy and paste the following code to add the low and high range key mappings on
Shard1 (toystore_Shard_1_100):

Add Range Key Mapping on the first Shard
Mapping is only required on the first shard; currently it has all the
data.

$LowKey = 0
$HighKey = 200
Write-host "Add range keys to $Shard1 (Shard1)" -ForegroundColor

Green
Add-RangeMapping -KeyType $([int]) -RangeShardMap $ShardMap
-RangeLow $LowKey -RangeHigh $HighKey -SqlServerName
$SQLServerFQDN -SqldatabaseName $Shard1

This code uses the Add-RangeMapping function from the ShardManagement module to
specify the key range for the first shard only. It takes the following parameters:

 - Keytype: The data type of the sharding key column. It is an integer in our case.

 - RangeShardMap: The range shard map object. This is assigned to the $ShardMap
variable created previously.

 - RangeLow: The lower boundary of the range mapping, which is 0 in our case.

 - RangeHigh: The higher boundary of the range mapping, which is 200 in our case.

 - SqlServerName: The logical server name that hosts the shards.

 - SqldatabaseName: The name of the shard.

Mappings are added only to the first shard because it has all of the customer records
(200 customers) at the moment.

In the next activity, you'll split the records between the shards using the split-merge
utility.

382 | Scalability

13. Copy and paste the following code to add the sharded and reference table schemas
to the shard map manager database:

Add Schema Mappings to the $shardMap
This is where you define the sharded and the reference tables Write-
host "Adding schema mappings to the Shard Map Manager database"
-ForegroundColor Green
$ShardingKey = "Customerid"
$ShardedTableName = "Customers","Orders"
$ReferenceTableName = "Countries"
…
…
Get the schema info collection for the shard map manager
$SchemaInfoCollection = $ShardMapManager GetSchemaInfoCollection()

Add the SchemaInfo for this Shard Map to the Schema Info Collection if
($($SchemaInfoCollection | Where Key -eq $ShardMapName) -eq $null)
{
$SchemaInfoCollection.Add($ShardMapName, $SchemaInfo)
}
else
{
$SchemaInfoCollection.Replace($ShardMapName, $SchemaInfo)
}

Write-host "$databaseToShard is now Sharded." -ForegroundColor Green

This code adds the schema information of the sharded and reference tables to the
shard map manager database. The schema information includes the schema name,
table name, and key column. This is done by initializing a schema info object of the
Microsoft.Azure.Sqldatabase.ElasticScale.ShardManagement.Schema.SchemaInfo
type, and then adding the table details to this object using the Add function. The
Schemainfo.Add function takes three arguments: schema name, table name, and
key column name. The SchemaInfoCollection variable gets the shard map manager
schema info collection object. The schema is then added to the shard map manager
by a SchemaInfoCollection.Add function call that takes two arguments: the shard
map to add the schema details to and the schema details as defined in the schema
info object.

Horizontal scaling | 383

14. This completes the script. Press Ctrl + S to save the script. Before you run the
script, make sure you have configured the file paths correctly wherever required.

If you don't have a toystore database ready, you can restore it using the bacpac file
provided with the code files, C:\Code\0_databaseBackup\toystore.bacpac.

This completes the Shard-toystore.ps1 script. Let's now run the Shard-toystore.ps1
script to shard the toystore database.

Executing the PowerShell script

To execute the shard-toystore.ps1 script, follow these steps:

1. Press the Windows key + R to open the Run command window. Type PowerShell and
hit Enter to open a new PowerShell console window.

2. Change the directory to the folder that has the shard-toystore.ps1 script. For
example, if the script is in the C:\Code\Chapter07\Sharding directory, then run the
following command to switch to this directory:

cd C:\Code\Chapter07\Sharding

3. In the following command, change the parameter values as per your environment.
You can also copy the command from the C:\Code\Chapter07\Executions.txt file:

.\shard-toystore.ps1 -ResourceGroup toystore -SqlServer toyfactory
-UserName sqladmin -Password Packt@pub2
-ShardMapManagerdatabase toystore_SMM -databaseToShard toystore
-AzureProfileFilePath C:\Code\MyAzureProfile.json

Note

You may get the following warning during script execution. Ignore such warnings:

WARNING: Could not obtain SQL Server Service information. An attempt
to connect to WMI on 'Microsoft.WindowsAzure.Commands. Sqldatabase.
dll' failed with the following error: The RPC server is unavailable.
(Exception from HRESULT: 0x800706BA)

Refer to the Sharding the toystore database section for parameter details.

384 | Scalability

Once you have changed the parameter values, hit Enter to run the command. This
command will do the following:

 - Create a Shard-toystore.txt file in the Log folder and use this file for
troubleshooting script errors.

 - Create a shard map manager database, toystore_SMM.

 - Rename the toystore database as toystore_Shard_1_100 (shard1).

 - Create a new database, toystore_Shard_200 (shard2).

 - Create shard management objects in the toystore_SMM database under the
ShardManagement schema.

 - Create a new range shard map, toystorerangemap.

 - Add toystore_Shard_1_100 (shard1) and toystore_Shard_200 (shard2) to the
range shard map.

 - Add the key range mappings in toystore_Shard_1_100 (shard1).

 - Add the table schema for Sales.Customers, Sales.Orders, and Application.
Countries in the shard map manager database.

You should get the following output after successful execution of the script:

Configuring database toystore_SMM as Shard Map Manager
Adding toystore_Shard_1_100 to the Shard Map toystorerangemap Adding
toystore_Shard_200 to the Shard Map toystorerangemap Add range keys to
toystore_Shard_1_100 (Shard1)
Adding schema mappings to the Shard Map Manager database toystore is now
Sharded.

Let's now review the shards created by executing the shard-toystore.ps1 script.

Horizontal scaling | 385

Reviewing the shard configuration

You'll now review the shard configuration the PowerShell script created:

1. Open SQL Server Management Studio on your local machine and connect to the
toyfactory server.

2. Connect to Object Explorer (if Object Explorer isn't open, press F8 to connect to it).
You should see the following databases:

Figure 7.42: Connecting to the toystore server

toystore_Shard_1_100 is the renamed toystore database. toystore_Shard_200 is the
new Shard 2 database. toystore_SMM is the shard map manager database.

3. In Object Explorer, right-click toystore_SMM and select New Query from the
context menu.

4. Execute the following query in a new query window:

SELECT
st.Name As ShardTables
FROM sys.tables st JOIN sys.schemas ss on st.schema_id=ss.schema_id WHERE
ss.Name=' ShardManagement'

You should get the following output:

Figure 7.43: Selecting ShardTables

386 | Scalability

5. Six tables have been added to the toystore_SMM database.

6. Execute the following query to view the data for the ShardMapsGlobal table:

SELECT * FROM ShardManagement.ShardMapsGlobal

You should see the following output:

Figure 7.44: ShardMapsGlobal table

The ShardMapsGlobal table will have one row for each shard map you created. Notice
that it contains toystorerangemap, which was created by the Shard- toystore.ps1
script. Each shard map is assigned a unique ShardMapId.

7. Execute the following query to view the data for the ShardsGlobal table:

SELECT ShardId,ShardMapId,ServerName,databaseName FROM ShardManagement.
ShardsGlobal

You should get the following output:

Figure 7.45: ShardsGlobal table

The ShardsGlobal table contains one row for each shard in the sharded
environment. It has two rows, one for each shard, toystore_ shard_1_100 and
toystore_Shard_200.

The ShardMapId column is used to map a shard with its corresponding shard map in
the ShardsMapGlobal table.

Horizontal scaling | 387

The table also stores the ServerName for each of the shards (databases). This table is
used to route the requests to the correct shard based on the sharding key when a
request is received from an application.

Execute the following query to view data for the ShardMappingsGlobal table:

SELECT MappingId,ShardId,ShardMapId,MinValue,MaxValue FROM
ShardManagement.ShardMappingsGlobal

You should get the following output:

Figure 7.46: ShardMappingsGlobal table

ShardMappingsGlobal stores the low and high key-value mappings for each shard in
the ShardsGlobal table.

The ShardId and ShardMapId columns map the rows with their corresponding shards
and shard map in the ShardsGlobal and ShardMapsGlobal tables respectively.

8. Execute the following query to view the data for the
ShardeddatabaseSchemaInfosGlobal table:

select * from ShardManagement.ShardeddatabaseSchemaInfosGlobal

You should get the following output:

Figure 7.47: ShardeddatabaseSchemaInfosGlobal table

The ShardeddatabaseSchemaInfosGlobal table stores the schema info for each shard
map defined in the ShardsMapGlobal table.

These are the same schema details as were provided in the Sharding the toystore
database section in the shard-toystore.ps1 script.

388 | Scalability

In the results pane in SSMS, click the XML under the Schemainfo column. You should
see the following XML:

<Schema xmlns:i="http://www.w3.org/2001/XMLSchema-instance">
<ReferenceTableSet i:type="ArrayOfReferenceTableInfo">
<ReferenceTableInfo>
<SchemaName>Application</SchemaName>
<TableName>Countries</TableName>
</ReferenceTableInfo>
</ReferenceTableSet>
<ShardedTableSet i:type="ArrayOfShardedTableInfo">
<ShardedTableInfo>
<SchemaName>Sales</SchemaName>
<TableName>Customers</TableName>
<KeyColumnName>Customerid</KeyColumnName>
</ShardedTableInfo>
<ShardedTableInfo>
<SchemaName>Sales</SchemaName>
<TableName>Orders</TableName>
<KeyColumnName>Customerid</KeyColumnName>
</ShardedTableInfo>

Observe that it contains the schema, table, and sharding key column values for the
Sales.Customer, Sales.Orders, and Application.Countries tables.

9. In Object Explorer, expand toystore_Shard_1_100 and then expand Tables:

Figure 7.48: Tables in the toystore_Shard_1_100 database

We can see that, since toystore_SMM has global shard management tables,
toystore_Shard_1_100 has local shard map management tables. toystore_
shard_200 will also have local shard management tables.

The local shard management tables store shard metadata specific to the particular
shard. You can query the tables to review the data if you want to know more. This
completes the activity.

Horizontal scaling | 389

Activity: Splitting data between shards
In the previous activity, you created two shards, toystore_Shard_1_100 and toystore_
Shard_200. However, all of the data is available in the toystore_ Shard_1_100 database,
and you have been asked to split the data between toystore_Shard_1_100 and toystore_
Shard_200. Therefore, you can use the split-merge service to split the data.

In this activity, you'll use the split-merge service to split the data between toystore_
Shard_1_100 and toystore_Shard_200.

Deploying the split-merge cloud service

The split-merge tool is an Azure web service deployed to your Azure environment.
Once deployed, you can either invoke the web service from the web service URL or
from PowerShell.

Note

A web service is any service that is available over the internet or intranet. It has
a certain set of functions that can be either invoked from the web service's web
interface or using any of the programming languages supporting web service calls.

To deploy the split-merge cloud service in your Azure environment and then call the
cloud service function to split the data, first follow these steps to deploy the split-
merge cloud service:

1. Open a browser and navigate to the following URL: https://docs.microsoft.com/
azure/azure-sql/database/elastic-scale-configure-deploy-split-and-merge.

Follow the instructions listed at this URL to deploy the split-merge service.

In addition to the steps mentioned at the URL, make the following additional
changes before deploying the web service. In the ServiceConfiguration.cscfg file,
set the value of the following settings to false:

<Setting name="SetupWebAppForClientCertificates" value="false" />
<Setting name="SetupWebserverForClientCertificates" value="false"
/>

Note

The ServiceConfiguration.cscfg location is provided in the URL in Step 1.

Deploy the cloud service in a production environment, not staging, as mentioned at
the URL.

https://docs.microsoft.com/azure/azure-sql/database/elastic-scale-configure-deploy-split-and-merge
https://docs.microsoft.com/azure/azure-sql/database/elastic-scale-configure-deploy-split-and-merge

390 | Scalability

2. If you get an error when deploying the web service, refer to the C:\Code\Chapter07\
Splitting folder for the sample files:

 - Serviceconfigurtion.cscfg:
C:\Code\Chapter07\Splitting\SplitMergeLibraries\Microsoft.Azure.
Sqldatabase.ElasticScale.Service.SplitMerge.1.2.0\content\splitmerge\
service

 - SplitMergeService.cspkg:
C:\Code\Chapter07\Splitting\SplitMergeLibraries\Microsoft.Azure.
Sqldatabase.ElasticScale.Service.SplitMerge.1.2.0\content\splitmerge\
service

 - Self-signed certificates:
C:\Code\Chapter07\Splitting\Certificate

Note

Alternatively, you can create your own certificates by following the steps
here: https://docs.microsoft.com/powershell/module/pkiclient/new-
selfsignedcertificate?view=win10-ps.

Right-click on the toyfactory.cer certificate at the location specified by the self-
signed certificates and select Install to install the certificate on your local machine.
Upload the toyfactory.pfx file to the Azure cloud as per the instructions at the
URL given previously. Make sure you have enabled the toyfactory server firewall
to allow connections from services within Azure. You can do this by switching the
Allow access to Azure services toggle button to ON in the Firewall section of the
toyfactory server:

Figure 7.49: The Firewall section of the toyfactory server

Once your web service is deployed, you should see this output in the Azure portal's
Cloud service|Overview section:

https://docs.microsoft.com/powershell/module/pkiclient/new-selfsignedcertificate?view=win10-ps
https://docs.microsoft.com/powershell/module/pkiclient/new-selfsignedcertificate?view=win10-ps

Horizontal scaling | 391

Figure 7.50: Azure portal Cloud service Overview section

3. Copy the web service URL, https://splitmerge.cloudapp.net, change http to https,
and open the URL in a browser. If the web service is deployed successfully, you
should see the following page:

Figure 7.51: Successful deployment of the web service

https://splitmerge.cloudapp.net

392 | Scalability

You can split the data by either filling out the web form or by calling the web service
using PowerShell.

Follow these steps to call the split-merge cloud service using PowerShell:

Note

If you are short of time, you can execute the C:\Code\Chapter07\Splitting\
SplitToyStoreShard.ps1 file, providing appropriate parameters.

A. Press the Windows key + R to open the Run command window. Type
PowerShell_ISE.exe in the Run command window and hit Enter. This will open
a new PowerShell ISE editor window. This is where you'll write the PowerShell
commands:

Figure 7.52: Opening a PowerShell editor window

B. In the PowerShell ISE, select File from the top menu and click Save.
Alternatively, you can press Ctrl + S to save the file. In the Save As dialog box,
browse to the C:\Code\Chapter07\Splitting directory. In the File name text
box, type Split-toystore- shard.ps1 and click Save to save the file:

Horizontal scaling | 393

Figure 7.53: Saving the Split-toystore-shard.ps1 file

4. Copy and paste each code snippet in the following steps into the Split-toystore-
shard.ps1 file to implement the split operation. The code explanation, wherever
required, is given in the following code snippet and in the comments within the
code snippet.

5. Copy and paste the following code to define the parameters:

param (
[parameter(Mandatory=$true)] [String] $ResourceGroup,
[parameter(Mandatory=$true)] [String] $SqlServer,
[parameter(Mandatory=$true)] [String] $UserName,
[parameter(Mandatory=$true)] [String] $Password,
[parameter(Mandatory=$true)] [String] $SplitMergeDatabase,
[String] $AzureProfileFilePath,
[parameter(Mandatory=$true)] [String] $SplitMergeServiceEndpoint,
[parameter(Mandatory=$true)]
[String] $ShardMapManagerDatabaseName, [parameter(Mandatory=$true)]
[String] $Shard2, [parameter(Mandatory=$true)] [String]
$ShardMapName, [parameter(Mandatory=$true)] [String] $SplitRangeLow,
[parameter(Mandatory=$true)] [String] $SplitRangeHigh,
[parameter(Mandatory=$true)] [String] $SplitValue,
[bool] $CreateSplitMergeDatabase = $false
)

394 | Scalability

Most of the parameters were described in the previous activity. Here are the
descriptions of the additional parameters:

• SplitMergedatabase: This is the split-merge database we created as part of the
split-merge cloud service deployment.

• SplitMergeServiceEndpoint: This is the split-merge cloud service URL copied in
the previous section.

• ShardMapManagerdatabaseName: This is the shard map manager database we
created in the Activity: Creating alerts section.

• Shard2: This is the shard2 database (toystore_Shard_200) we created in the
Activity: Creating alerts section.

• ShardMapName: This is the name of the shard map (toystorerangemap) we created in
the Activity: Creating alerts section.

• SplitRangeLow: This is the lower value for the range mapping. This is 0 in our
case.

• SplitRangeHigh: This is the higher value for the range mapping. This is 200 in our
case.

• SplitValue: This is the value at which the split will take place. This is 100 in our
case.

• CreateSplitMergedatabase: This is a Boolean value that, when set to true, will
provision a new database to be used as the split-merge database. You can use
this to provision the database if you haven't created it yet.

6. Copy and paste the following code to set the login to the Azure subscription:

Start-Transcript -Path "$ScriptPath\Log\SplitToyStoreShard.txt" -Append
$CertificateThumbprint = $null
Get the parent directory of the script.
$ScriptPath = split-path -parent $MyInvocation.MyCommand.
Definition
set the AzureProfileFilePath
$AzureProfileFilePath = "..\..\MyAzureProfile.json"
#Login to Azure Account
if((Test-Path -Path $AzureProfileFilePath))
{
$profile = Select-AzProfile -Path $AzureProfileFilePath
$SubscriptionID = $profile.Context.Subscription.SubscriptionId
}
#Set the Azure Context

Horizontal scaling | 395

Set-AzContext -SubscriptionId $SubscriptionID | Out-Null

create the split-merge database.
if you have already deployed the web service this step isn't required.
if($CreateSplitMergeDatabase)
{
#Create a database to store split merge status
$command = "..\..\Chapter01\ProvisionAzureSQLdatabase.ps1
-ResourceGroup $ResourceGroup -SQLServer $SqlServer -UserName
$UserName -Password $Password -SQLdatabase $SplitMergedatabase
-Edition Basic"
Invoke-Expression -Command $command Exit;

}

This code calls the ProvisionAzureSQLdatabase.ps1 PowerShell script to create a
new SQL database to store the split-merge cloud service status. The database is
created only if CreateSplitMergedatabase is set to true.

7. Copy and paste the following code to import the split-merge PowerShell module:

Import SplitMerge module
$ScriptDir = Split-Path -parent $MyInvocation.MyCommand.Path Import-Module
$ScriptDir\SplitMerge -Force

The split-merge PowerShell module has helper functions to call the split-merge
cloud service.

8. Copy and paste the following code to submit a split request:

Write-Output 'Sending split request'
$splitOperationId = Submit-SplitRequest '
-SplitMergeServiceEndpoint $SplitMergeServiceEndpoint '
-ShardMapManagerServerName "$SqlServer.database.windows.net" '
-ShardMapManagerdatabaseName $ShardMapManagerdatabaseName '
-TargetServerName "$SqlServer.database.windows.net" '
-TargetdatabaseName $Shard2 '
-UserName $UserName '
-Password $Password '
-ShardMapName $ShardMapName '
-ShardKeyType 'Int32' '
-SplitRangeLowKey $SplitRangeLow '
-SplitValue $SplitValue '
-SplitRangeHighKey $SplitRangeHigh '
-CertificateThumbprint $CertificateThumbprint

396 | Scalability

This code calls the Submit-SplitRequest function defined in the SplitMerge module.
The Submit-SplitRequest function submits the split request by specifying the
different parameter values.

The SplitMerge module contains helper functions for merge requests as well. The
merge operation refers to merging two range mappings into a single shard.

Submit-SplitRequest returns the operation ID value. The operation ID is assigned to
the $splitOperationId variable and is used to get the split request status.

9. Copy and paste the following code to wait on the split request until it completes:

Get split request output
Wait-SplitMergeRequest -SplitMergeServiceEndpoint
$SplitMergeServiceEndpoint -OperationId $splitOperationId
-CertificateThumbprint $CertificateThumbprint

This code calls the Wait-SplitMergeRequest helper function defined in the Split-
Merge PowerShell module. The function checks for the split operation status of
$splitOperationId and writes the status to the console.

Executing the PowerShell script

Follow these steps to execute the PowerShell script:

1. Press the Windows key + R to open the Run command window. Type PowerShell and
hit Enter to open a new PowerShell console window.

2. Change directory to the folder that has the shard-toystore.ps1 script. For example,
if the script is in the C:\Code\Chapter07\Sharding directory, then run the following
command to switch to this directory:

cd C:\Code\Chapter07\Splitting

3. In the following command, change the parameter values as per your environment.
You can also copy the command from the C:\Code\Chapter07\Executions.txt file:

.\Split-toystore-shard.ps1 -ResourceGroup toystore
-SqlServer toyfactory -UserName sqladmin -Password Packt@pub2
-SplitMergedatabase toystore_splitmerge -SplitMergeServiceEndpoint
"https://splitmerge.cloudapp.net/" -ShardMapManagerdatabaseName toystore_
SMM -Shard2 toystore_Shard_200 -ShardMapName toystorerangemap
-SplitRangeLow 0 -SplitRangeHigh 200 -SplitValue
100 -AzureProfileFilePath C:\Code\MyAzureProfile.json

Once you have changed the parameter values, copy and paste the command in the
PowerShell console window opened in Step 1 and hit Enter.

Horizontal scaling | 397

If the script executes successfully, you should get the following output:

Sending split request
Polling request status. Press Ctrl-C to end
Progress: 0% | Status: Queued | Details: [Informational] Operation has
been queued.
Progress: 5% | Status: Starting | Details: [Informational] Starting Split-
Merge state machine for request.
Progress: 5% | Status: Starting | Details: [Informational] Performing data
consistency checks on target shards.
Progress: 20% | Status: CopyingReferenceTables | Details: [Informational]
Successfully copied reference table [Application].[Countries].
…
…
Progress: 80% | Status: CopyingShardedTables | Details: [Informational]
Successfully copied key range [190:200) for sharded table [Sales].
[Orders].

Progress: 90% | Status: Completing | Details: [Informational]
Deleting any temp tables that were created while processing the request.
Progress: 100% | Status: Succeeded | Details: [Informational] Successfully
processed request.

4. If you get an error in this command and your split-merge service is deployed
correctly, then you can troubleshoot it by checking the RequestStatus table in the
split-merge database.

The RequestStatus table has one row for each split-merge request. The Details
column contains the XML with the error details if the request fails.

Verifying the split operation

Follow these steps to ensure that the split request has correctly moved the data:

1. Open SQL Server Management Studio on your local machine and connect to the
toyfactory server.

2. In Object Explorer, right-click on the toystore_Shard_1_100 database and select
New Query from the context menu.

3. In the New Query window, execute the following query:

SELECT DB_NAME() AS databaseName, COUNT(*) AS TotalRows FROM Sales.
Customers

398 | Scalability

You should get the following output:

Figure 7.54: Output of the select query

4. In Object Explorer, right-click on the toystore_Shard_200 database and select
New Query from the context menu.

5. In the New Query window, execute the following query:

SELECT DB_NAME() AS databaseName, COUNT(*) AS TotalRows FROM Sales.
Customers

You should get the following output:

Figure 7.55: Output of the select query

This validates that the split-merge operation has successfully split 200 rows
between the two shards, toystore_Shard_1_100 (100 rows) and toystore_Shard_200
(100 rows).

Horizontal scaling | 399

6. In Object Explorer, right-click on the toystore_SMM database and select New
Query from the context menu. Execute the following query in the new query
window:

SELECT
sg.databaseName AS ShardName
,sg.ServerName AS ServerName
,smg.Name AS ShardMapName
,smg.KeyType
,CAST(MinValue AS SMALLINT) AS RangeLowKey
,CAST(MaxValue AS SMALLINT) AS RangeHighKey
FROM [ShardManagement]. [ShardMapsGlobal] smg
JOIN [ShardManagement].[ShardsGlobal] sg ON sg.ShardMapID = smg.
ShardMapId
JOIN [ShardManagement].[ShardMappingsGlobal] smng ON smg.
ShardMapID=smng.ShardMapID
AND sg.ShardId=smng.ShardId

You should get the following output:

Figure 7.56: Output of the select query

The MinValue and MaxValue columns are varbinary columns and are therefore
converted to SmallInt.

If you remember the first activity in this chapter, the ShardMappingsGlobal table had
only one mapping, which was added as part of the sharding configuration.

However, it now has two rows, and the second row for the toystore_ Shard_200
shard is added as part of the split operation. This completes the activity.

Let's now look at using elastic database queries to run queries against multiple shards
created in the preceding activity.

400 | Scalability

Activity: Using elastic database queries
In this activity, we will use elastic database, or cross-database, queries to query the
sharded tables (created in previous activities) across the shards as a single table.

To query multiple shards as a single table using elastic database queries, follow these
steps:

1. Open SQL Server Management Studio on your local machine and connect to the
toyfactory server.

2. In Object Explorer, right-click on the Master database and select New Query from
the context menu. In the new query window, execute the following query to create
the toystorereporting database:

CREATE DATABASE toystorereporting; GO

3. Once the database is provisioned, navigate to Object Explorer, right-click on the
toystorereporting database, and select New Query from the context menu.

Note

You can also refer to the C:\Code\Chapter07\ElasticQueries.sql file for the
queries in this activity.

4. Execute the following query to create a master key:

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Packt@pub2'; GO

You may get the following error if a master key already exists in the database:

Msg 15578, Level 16, State 1, Line 3
There is already a master key in the database. Please drop it before
performing this statement.

Ignore the error and proceed to the next step.

5. Execute the following query to create a database-scoped credential:

CREATE DATABASE SCOPED CREDENTIAL toystore_creds WITH IDENTITY =
'sqladmin', SECRET = 'Packt@pub2' GO

The identity and secret should be the same as your SQL Server administrator
username and password.

Horizontal scaling | 401

6. Execute the following query to create the external data source. The external data
source is essentially the connection details or the connection string of the external
data source. In our case, the external data source is the shard map manager
database:

CREATE EXTERNAL DATA SOURCE toystore_dsrc WITH (TYPE=SHARD_MAP_MANAGER,
LOCATION='toyfactory.database.windows.net', DATABASE_NAME='toystore_SMM',
CREDENTIAL= toystore_creds, SHARD_MAP_NAME='toystorerangemap'
);

This query creates an external data source, toystore_dsrc, of type Shard_Map_
Manager, which connects to the shard map manager database toystore_SMM using the
toystore_creds database-scoped credentials created in the previous step.

The shard map name in the external data source will help resolve the individual
shards to get the data from.

We didn't specify individual shards as the external data source, database_Name,
because it'll return the data of individual shards. However, our goal is to get data for
the table from all shards.

Note

The external data source type can be Hadoop, RDBMS, or Blob Storage. For more
details on external data sources, refer to this link: https://docs.microsoft.com/
sql/t-sql/statements/create-external-data-source-transact-sql?view=sql-server-
2017&tabs=dedicated.

https://docs.microsoft.com/sql/t-sql/statements/create-external-data-source-transact-sql?view=sql-server-2017&tabs=dedicated
https://docs.microsoft.com/sql/t-sql/statements/create-external-data-source-transact-sql?view=sql-server-2017&tabs=dedicated
https://docs.microsoft.com/sql/t-sql/statements/create-external-data-source-transact-sql?view=sql-server-2017&tabs=dedicated

402 | Scalability

7. Execute the following query to create the Customers table in the toystorereporting
database. The table is created with the EXTERNAL keyword and on the external data
source, toystore_dsrc, created in Step 6:

CREATE EXTERNAL TABLE [dbo].[Customers](
[CustomerID] [int] NOT NULL, [CustomerName] [nvarchar](100) NOT NULL,
[BillToCustomerID] [int] NOT NULL, [CustomerCategoryID] [int] NOT NULL,
[BuyingGroupID] [int] NULL, [PrimaryContactPersonID] [int] NOT NULL,
[AlternateContactPersonID] [int] NULL, [DeliveryMethodID] [int] NOT NULL,
[DeliveryCityID] [int] NOT NULL,
[PostalCityID] [int] NOT NULL, [CreditLimit] [decimal](18, 2) NULL,
[AccountOpenedDate] [date] NOT NULL,
[StandardDiscountPercentage] [decimal](18, 3) NOT NULL, [IsStatementSent]
[bit] NOT NULL,
[IsOnCreditHold] [bit] NOT NULL, [PaymentDays] [int] NOT NULL,
[PhoneNumber] [nvarchar](20) NOT NULL, [FaxNumber] [nvarchar](20) NOT
NULL, [DeliveryRun] [nvarchar](5) NULL, [RunPosition] [nvarchar](5) NULL,
[WebsiteURL] [nvarchar](256) NOT NULL,
[DeliveryAddressLine1] [nvarchar](60) NOT NULL, [DeliveryAddressLine2]
[nvarchar](60) NULL, [DeliveryPostalCode] [nvarchar](10) NOT NULL,
[DeliveryLocation] [varchar](1) NOT NULL, [PostalAddressLine1]
[nvarchar](60) NOT NULL, [PostalAddressLine2] [nvarchar](60) NULL,
[PostalPostalCode] [nvarchar](10) NOT NULL, [LastEditedBy] [int] NOT NULL,
[ValidFrom] [datetime2](7) NOT NULL, [ValidTo] [datetime2](7) NOT NULL
) WITH (
DATA_SOURCE = toystore_dsrc, SCHEMA_NAME = 'Sales',
OBJECT_NAME = 'Customers', DISTRIBUTION=SHARDED(customerid)
);

dbo.Customers is an external table that gets its data from the toystore_dsrc external
data source, the Sales.Customers table.

The distribution parameter specifies how the data is distributed for this table.

In our case, the table is horizontally partitioned, hence the distribution used is
sharded with customerid (the sharding key). The other available distributions are as
follows:

• Replicated: This means that each database has identical copies of the table.

• Round-robin: This means that the table is horizontally partitioned, with partition
logic specified in the application tier and the sharding method we discussed.

Scaling a managed instance | 403

8. Execute the following query to return all the rows from the customer table:

SELECT * FROM dbo.Customers

You should get all 200 rows.

The database engine uses the information specified in the toystore_dsrc external
data source to connect to and return data from all the shards.

9. Execute the following queries to get the existing external data source and external
tables:

-- Get Existing External Data sources SELECT * FROM sys.external_data_
sources;
-- Get Existing External Tables SELECT * FROM sys.external_tables

This completes the activity.

In the preceding activities, we have learned how to create shards and split existing data
into multiple shards using the split-merge service. We also learned how to use elastic
database queries to run queries across multiple shards.

Let's now look at scaling a managed instance.

Scaling a managed instance
SQL Managed Instance gives us the flexibility to dynamically scale up or down instance
resources as and when required. You can scale up instance resources whenever there
is peak demand and scale down the resources whenever the demand ends. This can
help in effectively managing costs for SQL Managed Instance. In previous chapters, we
learned about different purchasing options and service tiers for SQL Managed Instance
and we also saw how single managed instances are hosted inside a virtual cluster.

SQL Managed Instance provides management operations, and they can be used to
deploy a new managed instance, updating existing instance properties and deleting
the instance when it's not required. Here, we will be learning about SQL Managed
Instance scaling management operations and how they impact the virtual cluster.
The duration of these scale-up/down requests depends on virtual cluster operations.
Adding additional virtual machines to a virtual cluster can add overhead that needs to
be considered before making changes to existing managed instances.

404 | Scalability

Figure 7.57: Scaling SQL Managed Instance

The duration of scaling management operations depends on internal virtual cluster
operations and these operations' duration may vary with respect to scale-up/down
activities. Let's take a look at the duration of scaling management operations.

Duration of scale-up/down operations
The duration of management operations may vary according to the SQL Managed
Instance service tier, database size, and scaling operation. Microsoft stores all the
service-related telemetry data and the following are the estimated times for scaling
operations based on telemetry.

• Virtual cluster resizing operation: During a scaling operation, the expansion/
shrinking of a virtual cluster may take longer than usual to complete. Based on
service telemetry data, 90% of the time this operation finished in 2.5 hours.

• Database seeding/attach operation: Attaching database files during storage
scaling or Always On seeding may also impact the duration of the scaling
operation.

Scaling a managed instance | 405

Please refer to Table 7.3 to see the estimation for each operation.

Table 7.3: Estimation of each operation

Note

Scaling management operations take longer to complete due to virtual cluster
resizing but during these operations, SQL Managed Instance is available for the
application workload. At the end of the scaling operation, you may notice a short
downtime of 10 seconds during the failover of the instance from one node to
another.

Activity Operation Estimated duration

Scaling up/down General
Purpose instance storage

Scaling up/down Business
Critical instance storage

Virtual cluster resizing

+ time to seed all databases (220 GB/hour).Always On availability
group seeding

Scaling up/down General
Purpose instance vCore

Virtual cluster resizing

Scaling up/down Business
Critical instance vCore

Virtual cluster resizing

+ time to seed all databases (220 GB/hour).Always On availability
group seeding

Changing Instance service tier
from GP -> BC or BC -> GP

Virtual cluster resizing

+ time to seed all databases (220 GB/hour).Always On availability
group seeding

406 | Scalability

Activity: Scaling up SQL Managed Instance using the Azure portal
You can dynamically scale up SQL Managed Instance resources using the Azure portal.
In this activity, we are scaling up vCore and storage capacity for General Purpose SQL
Managed Instance. You can also scale vCore and instance storage sizes independently.
Since these management operations for a single managed instance take longer to
complete due to virtual cluster re-sizing operations, SQL Managed Instance also gives
the option to cancel these operations in case they're triggered by mistake. In the last
part of this activity, we will also see the steps to cancel scaling management operations.

Follow the steps given here to perform a scale-up operation:

1. Go to https://portal.azure.com.

2. Select your managed instance and under Settings, select the Compute + Storage
pane.

3. Choose your desired service tier, vCore, and storage configuration and click Apply
to save the changes:

Figure 7.58: Scaling a managed instance using the Azure portal

https://portal.azure.com

Scaling a managed instance | 407

4. Monitor the notifications to see the progress and wait for the operation to
complete; 90% of the time this operation is finished in under 2 hours 30 minutes:

Figure 7.59: Scaling in progress notification

Follow Steps 5 and 6 if you need to cancel this ongoing scaling management
operation.

5. If this scaling operation needs to be canceled, then go to the Overview pane of SQL
Managed Instance and under Notifications, you will notice an ongoing operation.
Click on the Cancel this operation button to end the scaling:

Figure 7.60: Canceling the scaling operation

408 | Scalability

6. After submitting the cancel operation, you will notice a successful submission
notification:

Figure 7.61: Notification for submission of the cancel operation

Note

The cancellation of a General Purpose instance storage scaling up/down operation
is not allowed.

In this activity, we have learned how to initiate a scale operation using the Azure portal
for a managed instance. We have also seen steps to cancel ongoing scaling operations
using the Azure portal. Now let's see the steps to scale up a managed instance using
PowerShell commands.

Activity: Scaling a managed instance using the Az.sql PowerShell
module
Earlier, we saw the steps needed to perform scaling operations using the Azure portal.
In this activity, we will learn how to initiate a scaling management operation using
PowerShell commands.

Follow the steps given here to initiate an instance scale-up operation using PowerShell:

1. Open Cloud Shell from the Azure portal by clicking on the Cloud Shell icon:

Figure 7.62: Cloud Shell icon

2. Switch to the PowerShell terminal to run PowerShell code:

Figure 7.63: Switching to the PowerShell terminal

Scaling a managed instance | 409

3. Set the variables according to your environment:

#setting up variable as per your environment
$subscription = "6ff855b5-xxxx-4bc2-xxxx-xxxxxxxxx"
$managedInstance = "packtsqlmi"
$resourceGroup = "Packt"

Figure 7.64: Initializing variables

4. Select the managed instance subscription:

#Select the managed instance subscription
Select-AzSubscription -SubscriptionId $subscription

5. Update the Instance properties using this PowerShell command:

#Updating license type, storage size and moving instance to business
critical server tier.
Set-AzSqlInstance -Name $manangedInstance -ResourceGroupName
$resourceGroup -LicenseType LicenseIncluded -StorageSizeInGB 1024 -VCore
16 -Edition BusinessCritical

Figure 7.65: Updating the managed instance properties using PowerShell

In this activity, we have learned about scaling SQL Managed Instance using PowerShell
commands. We have updated the instance service tier, license type, vCore, and storage
size.

410 | Scalability

Alternate ways of scaling SQL Managed Instance
We have seen the steps for scaling up SQL Managed Instance resources with
management operations. Here, we will be learning more about alternate ways to scale a
managed instance.

The Business Critical service tier of SQL Managed Instance comes with an in-built
read replica and that can be used as a read-only source for your analytics application.
An internal read replica in Business Critical SQL Managed Instance runs with the
same compute and storage resources similar to its primary node and it can help in
off-loading a read-only workload without paying more for extra resources. The internal
read-replica server is not visible on the Azure portal and hence needs to be accessed
using the ApplicationIntent=ReadOnly flag.

The following is the high-level architecture for offloading a read-only workload to the
internal read replica in the Business Critical service tier:

Figure 7.66: Read scale-out architecture for the Business Critical service tier

Note: Read scale-out is also available with the Business Critical and Hyperscale service
tiers in SQL Database.

Always on Availability Group

Super
fast
SSD

Secondary replica Primary replica

Secondary replica Secondary replica

Gateway ring

Primary endpoint
(read-write)

Secondary endpoint
(read-only)

Azure region

ApplicationIntent=ReadWrite

ApplicationIntent=ReadOnly

Analytics App

OLTP App

Alternate ways of scaling SQL Managed Instance | 411

In Figure 7.68, OLTP App is making a connection to SQL Managed Instance using
the ApplicationIntent=ReadWrite option in the connection string. The gateway
service is redirecting the same connection to the Primary replica read-write
endpoint. Similarly, Analytics App is also connecting to SQL Managed Instance using
ApplicationIntent=ReadOnly and the gateway service is redirecting the connection to
the secondary replica read-only endpoint.

Here, we have seen how Analytics App connects to the read replica. You can also
connect to the internal read replica using the SSMS application.

Activity: Connecting to the SQL Managed Instance internal read replica
using SSMS
In this activity, we will look at the steps needed to connect to the Business Critical SQL
Managed Instance internal replica. This can be helpful when you need to troubleshoot
any performance or blocking issues while running a read-only workload on an internal
replica server, since the internal read-replica server is not visible on the Azure portal
and you do not have any direct server name or instance name to connect to the read
replica.

You can connect to the internal read replication by specifying the
ApplicationIntent=ReadOnly flag while connecting from SSMS using the primary
managed instance name.

Follow the steps given here to perform this activity:

1. Open SSMS and connect to Database Engine and click on Options:

Figure 7.67: SSMS—Connect to SQL Managed Instance

412 | Scalability

2. Specify the ApplicationIntent=ReadOnly flag and connect to the managed instance:

Figure 7.68: SSMS using an additional connection parameter in SSMS

3. Open a new query window and run the following T-SQL command to verify the
read-only endpoint connection:

SELECT DATABASEPROPERTYEX(DB_NAME(), 'Updateability')

Figure 7.69: Verifying the read-only connection

In Figure 7.71, we are fetching an Updateability database property. This property
indicates whether data can be modified for the current database. The READ_ONLY output
shows that this database supports only read operations and does not support write
operations.

In this activity, we have seen steps for connecting to the built-in read replica for a
Business Critical managed instance using SSMS, and we also ran a T-SQL query to verify
the read-only connection.

Summary | 413

Summary
In this chapter, we've seen how easy it is to scale up or scale down an SQL database
both automatically and manually. We've looked at both vertical and horizontal scaling.
We've also learned how to autoscale SQL databases and shard a database, as well as
how to create and maintain SQL database shards.

We have also learned about SQL Managed Instance scaling management operations and
durations and we have seen alternate ways of scaling using internal read-replicas for
Business Critical SQL Managed Instance. In the next chapter, we will learn how to scale
SQL databases using elastic database pools and we will also learn about instance pools
in SQL Managed Instance.

Azure SQL Database has two deployment options, a single database and an elastic pool.
A single SQL database is an isolated, standalone database with dedicated resources
(DTU or vCore). In all of our previous chapters, we have talked about Azure SQL
Database single-database deployments.

An SQL elastic database pool is a group of two or more SQL databases with shared
resources (eDTU and vCore) at a specific price.

In a multi-tenant scenario where there's one database for each customer, each
database has a varying access pattern with different peak times and low average
utilization. We'll see later in the chapter how grouping different customer databases in
an SQL Database elastic pool saves costs without affecting performance.

This chapter will teach you how to manage and scale multiple SQL databases by using
elastic database pools. You'll also learn how to implement elastic database jobs to
manage and maintain databases in an elastic database pool.

Elastic and instance
pools

8

416 | Elastic and instance pools

We will also look at the new SQL Managed Instance deployment option for instance
pools. We will discuss the architecture of instance pools and look at the key differences
between instance pools and a single SQL Managed Instance deployment. You will learn
how to deploy and manage instance pools using PowerShell commands.

By the end of this chapter, you will be able to:

• Explain the purpose of elastic database pools and identify when to use them.

• Select the size of an elastic database pool.

• Configure elastic database jobs.

• Explain the purpose of instance pools and how they differ from single instances.

• Deploy an SQL Managed Instance pool.

Introducing elastic database pools in SQL Database
The SQL Database elastic pool is a cost-effective solution for managing and scaling
a group or a pool of SQL databases, with a utilization pattern characterized by low
average utilization and infrequent spikes.

All databases in an elastic database pool:

• Belong to one Azure SQL server.

• Share a set amount of compute resources indexed by eDTUs (Elastic DTUs) in
the DTU purchasing model and vCores in the vCore purchasing model.

• Share a set amount of elastic database pool storage.

• Have a price based on the amount of elastic database pool resources and not
individual databases.

• Can scale up to the given maximum amount of eDTUs or vCores.

• Optionally, have a guaranteed minimum number of eDTUs or vCores.

Let's look at a scenario that highlights when we should think about using an SQL
Database elastic pool.

Introducing elastic database pools in SQL Database | 417

When should you consider elastic database pools?
In Chapter 7, Scalability, we worked on sharding the toystore database into four
individual shards. Each shard had 50 pieces of a customer's/tenant's data. Let's say that
each individual database is sized to a Standard S3 service tier—for example, 100 DTUs—
and has the DTU utilization levels shown in Figure 8.1:

Figure 8.1: DTU utilization by time and database for toystore_shard1

The preceding graph shows the DTU utilization by time for the toystore_shard1
database. It is evident from the graph that toystore_shard1 has an average DTU
utilization of around 30 DTUs and a spike of 80 DTUs around 11:00 AM. Let's say that
the other three shards have similar graphs; however, they peak at different times, as
shown in Figure 8.2:

Figure 8.2: DTU utilization graph of multiple shards

The preceding graph shows the four shards in a combined graph. The average
utilization is under 40 DTUs and the peak utilization is 90 DTUs. The database peaks at
different points in time.

418 | Elastic and instance pools

At this point, you might argue that you should use the Standard S2 service tier, which
offers 50 DTUs and costs less than S3. This would suffice for most of the database's
workload, which is below 50 DTUs. However, this would result in performance
degradation for peak hours when the utilization is 90 DTUs, which is much greater than
50 DTUs.

You have two options here:

• Over-provision (Standard S3) to provide optimum performance for peak hours at
a higher cost.

• Under-provision (Standard S2) to save costs at the expense of lower performance
and bad customer experience during peak hours.

Elastic database pools provide you with a third option, which provides optimum
performance at a lower cost.

The four shards are grouped together in an elastic database pool with an eDTU count of
100, as shown in Figure 8.3:

Figure 8.3: Grouping of shards in an elastic database pool

This means that a database:

• In peak hours, can consume a maximum of 100 eDTUs to meet the performance
demand.

• In off-peak hours (under light loads), can consume fewer eDTUs.

• Under no load, consumes 0 (zero) eDTUs.

This not only solves the problem of over- and under-provisioning but also saves costs,
as you only have to pay for eDTUs and not individual databases' DTUs.

Introducing elastic database pools in SQL Database | 419

A Standard S3 service tier that has a DTU provision of 100 is priced at $147/month. Four
such databases would cost $588/month.

An elastic database pool that has an eDTU provision of 100 is priced at $221/month,
which means that you save $367/month (a 62% cost reduction) if you have the database
in an elastic database pool.

Let's say that as the number of customers increases, you plan to further shard the
databases into eight shards. This means that you would have eight databases in an
elastic database pool. This would result in an 85% monthly cost reduction.

This is where elastic database pools are very beneficial.

Sizing an elastic database pool
Elastic database pools have great benefits, but only if they are sized properly.
Otherwise, you might end up spending more than expected if they're oversized or risk a
poor performance experience if they're undersized.

The ideal utilization pattern of a database to be considered for an elastic database pool
should be low average utilization and short, infrequent high utilization. This utilization
pattern is best for sharing eDTUs. If a database has high average utilization, then it will
take most of the eDTUs. This means that the other databases won't get the required
eDTUs and will have lower performance.

To estimate whether or not an elastic database pool would be more cost-effective than
having individual databases, these steps can be followed:

1. Find the estimated eDTU provision using the following formula:

MAX(<Total number of DBs X Average DTU utilization per DB>, Number of
concurrently peaking DBs X Peak DTU utilization per DB)

Note:

For a vCore-based purchasing model instead, the formula is:

MAX(<Total number of DBs X average vCore utilization per DB>, <Number of
concurrently peaking DBs X Peak vCore utilization per DB>)

2. Find the estimated elastic database pool storage provision by adding the individual
database storage. Find the eDTU that provides the estimated necessary storage
using this link: https://azure.microsoft.com/pricing/details/sql-database/
managed/.

3. Using the link given in step 2, find the smallest eDTU that is greater than the largest
eDTU from steps 1 and 2.

https://azure.microsoft.com/pricing/details/sql-database/managed/
https://azure.microsoft.com/pricing/details/sql-database/managed/

420 | Elastic and instance pools

4. Compare the costs of the elastic database pool and the individual databases to
evaluate the pricing benefits.

Let's apply the preceding method to our toystore example:

5. Estimated eDTU as per step 1:

Total Number of DBs= 4
Average DTU utilization per DB = 30
Number of concurrently peaking DBs = 1
Peak utilization per DB = 90
Estimated eDTUs as per Step 1 = MAX (4 * 30,1*90) => MAX (120, 90) =120

The estimated eDTU as per step 1 is 120.

6. Estimate eDTU as per step 2.

Let's say that each shard has a maximum storage of 100 GB. This means that the
maximum storage for all four shards would be 4 * 100 = 400 GB.

As per the pricing details link, the 100 eDTUs per elastic database pool satisfies the
preceding storage need:

Figure 8.4: Elastic database pool pricing for the Standard service tier

Therefore, the estimated eDTU as per step 2 is 100.

The eDTU as per step 1 is 120 and as per step 2 is 100. Therefore, we can choose an
eDTU of 100 because an eDTU of 120 is closer to an eDTU of 100 than the next available
eDTU of 200.

Having four databases in an elastic database pool of 100 eDTU saves 62% on costs
compared to having four individual SQL databases.

Introducing elastic database pools in SQL Database | 421

Creating an elastic database pool and adding toystore shards to the
elastic database pool
In this section, we will create an elastic database pool and add toystore SQL Database
shards to it. Let's go back to our example of ToyStore Ltd. Mike analyzes the report of
DTUs and thinks of switching to the Standard service tier 3. Switching all four shards to
the Standard service tier S3 will increase the database cost. Therefore, he plans to use
an elastic database pool. He must create an elastic database pool and add the toystore
shards to it by performing the following steps:

1. Open a browser and log in to the Azure portal (https://portal.azure.com/) using
your Microsoft Azure credentials.

2. From the left-hand navigation menu, select All resources. Under All Resources,
click the toyfactory SQL server to open the toyfactory Overview pane.

3. In the toyfactory Overview pane, select New elastic pool from the top menu:

Figure 8.5: Creating a new elastic pool

https://portal.azure.com/

422 | Elastic and instance pools

4. In the Create SQL Elastic pool pane, provide the elastic database pool name in the
Elastic pool details section and set the pricing tier as Standard:

Figure 8.6: Providing details for creating the SQL Elastic pool

Introducing elastic database pools in SQL Database | 423

5. Click Review + create and then click Create to create the elastic database pool. It'll
take 2-5 minutes for the elastic database pool to be provisioned.

When the elastic database pool is provisioned, navigate to the All resources page in
the Azure portal and type toyfactorypool in the search box. Click toyfactorypool to
configure it:

Figure 8.7: Selecting toyfactorypool

6. On the toyfactorypool page, select Configure:

Figure 8.8: Configuring toyfactorypool

The Configure pool page allows you to configure pool settings, add or remove
databases, and configure per-database settings.

424 | Elastic and instance pools

7. To add databases to toyfactorypool, select the Databases tab on the Configure
page.

On the Databases tab, click Add databases:

Figure 8.9: Adding databases to toyfactorypool

Introducing elastic database pools in SQL Database | 425

8. On the Add databases page, select toystore_shard_1_50, toystore_50_100,
toystore_100_150, and toystore_150_200:

Figure 8.10: Adding databases

Click Apply to select the databases and go back to the Configure tab.

9. On the Configure tab, click Save to add the databases:

Figure 8.11: Saving the added databases

426 | Elastic and instance pools

In this exercise, we created an elastic database pool, toyfactorypool, and added SQL
databases to the elastic database pool.

Before starting the next activity, we're briefly going to discuss some geo-replication
and auto-failover group considerations for elastic database pools. Readers should refer
to the next chapter, Chapter 9, High availability and disaster recovery, for an in-depth
introduction to geo-replication and auto-failover groups.

Geo-replication considerations for elastic database pools
In active geo-replication, a secondary replica may or may not be a part of an elastic
database pool. It's not mandatory for a secondary database to be in an elastic database
pool if the primary database is part of an elastic database pool. Multiple secondary
databases across different regions cannot be in the same elastic database pool, as an
elastic database pool is limited to a single region.

Auto-failover group considerations for elastic database pools
In an auto-failover group, unlike geo-replication, the secondary replica inherits the
elastic database pool settings from the primary replica. If a primary database is in an
elastic database pool, the secondary database is created in an elastic database pool with
the same name. We can add all or selected databases from an elastic database pool in
the primary replica to an auto-failover group.

Now, let's explore elastic database pools a little further.

Activity: Exploring elastic database pools
Let's go back to our example of ToyStore Ltd. Mike finds out that the toystore sharded
databases can be put into an elastic database pool to save costs and get the benefits
of vertical stability. In order to do a proof of concept, he uses PowerShell to create an
elastic database pool and add databases to that elastic database pool. He also writes a
PowerShell script to delete the elastic database pool after he is done with the proof of
concept.

In this activity, we will create a new elastic database pool, add databases to the elastic
database pool, and delete the elastic database pool using PowerShell using the following
steps:

Note

If you are short of time, you can execute the C:\Code\Chapter08\ElasticPool\
Manage-ElasticPool.ps1 file, providing the appropriate parameters.

Activity: Exploring elastic database pools | 427

1. Press Windows + R to open the Run command window. Type PowerShell_ISE.exe
in the Run command window and hit Enter. This will open a new PowerShell ISE
editor window. This is where you'll write the PowerShell commands:

Figure 8.12: Executing PowerShell_ISE.exe

In the PowerShell ISE, select File from the top menu and click Save. Alternatively,
you can press Ctrl + S to save the file. In the Save As dialog box, browse to the
C:\ Code\Chapter08 directory. In the File name textbox, type Manage-ElasticPool
and click Save to save the file:

Figure 8.13: Saving the PowerShell file

2. Copy and paste the following code snippets (from step 2 to step 6) into the Manage-
ElasticPool.ps1 file, one after another. The code's explanation, wherever required,
is given in the steps and in the comments within the code snippet.

428 | Elastic and instance pools

Copy and paste the following code to define the script parameters:
param
(
[parameter(Mandatory=$true)] [String] $ResourceGroup,
[parameter(Mandatory=$true)] [String] $SqlServer,
[parameter(Mandatory=$true)] [String] $UserName,
[parameter(Mandatory=$true)] [String] $Password,
[parameter(Mandatory=$true)] [String] $ElasticPoolName,
[parameter(Mandatory=$false)] [String] $ElasticPoolEdition,
[parameter(Mandatory=$false)] [int] $eDTU,
[parameter(Mandatory=$false)] [int] $MaxeDTU,
[parameter(Mandatory=$false)] [int] $MineDTU=0,
[parameter(Mandatory=$false)]
[String] $AzureProfileFilePath,
[parameter(Mandatory=$false)]
Create/Remove an elastic Pool [String] $Operation = "Create",
Comma delimited list of databases to be added to the pool
[parameter(Mandatory=$false)]
[String] $DatabasesToAdd
)

The parameter descriptions are as follows:

• ResourceGroup: The name of the resource group in which the elastic database
pool will be created. It should be the same as that of the SQL server.

• SqlServer: The SQL server name in which the elastic database pool has to be
created.

• UserName: The SQL Server database admin username.
• Password: The SQL Server database admin password.
• ElasticPoolName: The name of the elastic database pool to be created or

deleted.
• eDTU: The elastic database pool eDTU.
• MaxeDTU: The maximum eDTUs available per database in the pool.
• MineDTU: The minimum eDTUs available per database in the pool.
• AzureProfileFilePath: The full path of the JSON file that has your Azure

profile information.
• Operation: The operation to be performed. Accepts two values: Create and

Remove.
• DatabasesToAdd: A comma-delimited list of the databases to be added to the

elastic database pool.

Activity: Exploring elastic database pools | 429

3. Copy and paste the following code to log in to Microsoft Azure and set the Azure
context to your subscription:

log the execution of the script
Start-Transcript -Path ".\Log\Manage-ElasticPool.txt" -Append

Set AzureProfileFilePath relative to the script directory if it's not
provided as parameter

if([string]::IsNullOrEmpty($AzureProfileFilePath))
{
$AzureProfileFilePath="..\..\MyAzureProfile.json"
}

#Login to Azure Account

if((Test-Path -Path $AzureProfileFilePath))
{
$profile = Select-AzProfile -Path $AzureProfileFilePath
$SubscriptionID = $profile.Context.Subscription.SubscriptionId
}
else
{
Write-Host "File Not Found $AzureProfileFilePath"
-ForegroundColor Red
Provide your Azure Credentials in the login dialog box
$profile = Login-AzAccount
$SubscriptionID =
 $profile.Context.Subscription.SubscriptionId
}

#Set the Azure Context
Set-AzContext -SubscriptionId $SubscriptionID | Out-Null

The preceding code starts by logging in to the Manage-ElasticPool.txt file created
in the Log directory within the parent directory of the Manage-ElasticPool.ps1
script.

It then checks for the profile information in the json file provided by the
AzureProfileFilePath variable. If found, then it sets the PowerShell context to
the subscription ID, as specified in the profile file. Otherwise, it asks the user to
manually log in to the Azure account to set the context.

430 | Elastic and instance pools

4. Create the elastic database pool using the following script, if it doesn't already exist:

#Check if the pool exists
Get-AzSqlElasticPool -ElasticPoolName $ElasticPoolName
-ServerName $SqlServer -ResourceGroupName $ResourceGroup
-ErrorVariable notexists -ErrorAction SilentlyContinue

if($Operation -eq "Create")
{
if([string]::IsNullOrEmpty($ElasticPoolEdition))
{
Write-Host "Please provide a valid value for Elastic Pool Edition (Basic/
Standard/Premium)" -ForegroundColor yellow
Write-Host "Exiting...." -ForegroundColor Yellow break;
}

Write-Host "Creating elastic pool $ElasticPoolName "
-ForegroundColor Green
Create elastic pool if it doesn't exists if($notexists)
{
$CreateElasticPool = @{
ElasticPoolName = $ElasticPoolName; Edition = $ElasticPoolEdition; Dtu =
$eDTU; DatabaseDtuMin = $MineDTU; DatabaseDtuMax = $MaxeDTU; ServerName =
$SqlServer;
ResourceGroupName = $ResourceGroup;
};
New-AzSqlElasticPool @CreateElasticPool;

}
else
{
Write-Host "Elastic pool $ElasticPoolName already exists!!!"
-ForegroundColor Green
}
if([string]::IsNullOrEmpty($DatabasesToAdd) -and $Operation -eq "Create")
{
Write-Host "Please provide a valid value for DatabasesToAdd parameter"
-ForegroundColor yellow
Write-Host "Exiting...." -ForegroundColor Yellow break;
}}

Activity: Exploring elastic database pools | 431

The preceding code uses the Get-AzSqlElasticPool cmdlet to get the details of the
given elastic database pool name. If the elastic database pool with the specified
name is found in the given resource group, it succeeds; otherwise, it returns an
error: "Get-AzSqlElasticPool ResourceNotFound: The Resource 'Microsoft.Sql/
servers/ toyfactory/elasticpools/adasdas' under resource group 'toystore' was
not found".

The error is recorded in the notexists variable specified in the ErrorVariable
parameter.

The code then uses New-AzSqlElasticPool to create the elastic database pool if the
specified operation is Create (the $operation parameter) and the $notexists variable
isn't empty.

5. Copy and paste the following code to add the databases to the elastic database pool:

Add databases to the pool if([string]::IsNullOrEmpty($DatabasesToAdd)
-and $Operation -eq "Create")
{
Write-Host "Please provide a valid value for DatabasesToAdd parameter"
-ForegroundColor yellow
Write-Host "Exiting...." -ForegroundColor Yellow break;
}
$Databases = $DatabasesToAdd.Split(',');
foreach($db in $Databases)
{
Write-Host "Adding database $db to elastic pool $ElasticPoolName "
-ForegroundColor Green
Set-AzSqlDatabase -ResourceGroupName $ResourceGroup
-ServerName $SqlServer -DatabaseName $db -ElasticPoolName
$ElasticPoolName
}
}

The preceding code splits the comma-delimited values, as specified in
$DatabasesToAdd. It adds the separate string values (database names) into an array
variable database. It then iterates through each of the databases in the array and
sets the elastic database pool using the Set-AzSqlDatabase cmdlet.

432 | Elastic and instance pools

6. Copy and paste the following code to remove or delete an existing elastic database
pool:

#remove an elastic pool

if($Operation -eq "Remove")
{
#Get all databases in the elastic pool
$epdbs = Get-AzSqlElasticPoolDatabase -ElasticPoolName
$ElasticPoolName -ServerName $SqlServer -ResourceGroupName
$ResourceGroup

iterate through the databases and take them out of the pool.
foreach($item in $epdbs)
{
$db = $item.DatabaseName;

#Take database out of pool
Write-Host "Taking database $db out of elastic pool $ElasticPoolName "
-ForegroundColor Green
$RemoveDbsFromPool = @{ ResourceGroupName = $ResourceGroup; ServerName =
$SqlServer; DatabaseName = $db;
Edition = 'Basic'; RequestedServiceObjectiveName = 'Basic';
};
Set-AzSqlDatabase @RemoveDbsFromPool;
}

#Remove elastic pool
Write-Host "Removing Elastic Pool $ElasticPoolName "
-ForegroundColor Green
$RemovePool = @{
ResourceGroupName = $ResourceGroup; ServerName = $SqlServer;
ElasticPoolName = $ElasticPoolName;
};

Remove-AzSqlElasticPool @RemovePool -Force;

}

The preceding code only works when the $operation parameter is set to Remove.
An elastic database pool can't be removed or deleted if it has databases assigned
to it. First, the code gets all the databases in an elastic database pool using the
Get-AzSqlElasticPoolDatabase cmdlet.

Activity: Exploring elastic database pools | 433

It then iterates through each database and takes them out of the elastic database
pool using Set-AzSqlDatabase. It then removes the elastic database pool using the
Remove-AzSqlElasticPool cmdlet.

This completes the script. Click Save from the File menu or press Ctrl + S to save the
script. We'll now look at executing the PowerShell script we've just created:

1. Press the Windows + R keys to open the Run command window. Type PowerShell
and hit Enter to open a new PowerShell console window.

Change the directory to the folder that has the Manage-ElasticPool.ps1 script in
it. For example, if the script is in the C:\Code\Chapter08 directory, then run the
following command to switch to this directory:

cd C:\Code\Chapter08

2. To delete an existing elastic database pool, execute the following command. You
will have to change the parameter values as per your environment:

.\Manage-ElasticPool.ps1 -ResourceGroup toystore
-SqlServer toyfactory -UserName sqladmin -Password Packt@
pub2 -ElasticPoolName toyfactorypool -Operation Remove
-AzureProfileFilePath C:\Code\MyAzureProfile. Json

Note

If you created toyfactorypool earlier in the chapter, then run this command to
delete the elastic database pool. If you don't have an existing elastic database pool,
then proceed to the next step, which is creating an elastic database pool. If you
have an existing pool and you don't want to remove it, then you will have to create
an elastic database pool and a separate set of databases for it.

3. To create a new elastic database pool and add databases to it, execute the following
command. You will have to change the parameter values as per your environment:

.\Manage-ElasticPool.ps1 -ResourceGroup toystore -SqlServer toyfactory
-UserName sqladmin -Password Packt@pub2
-ElasticPoolName toyfactorypool -ElasticPoolEdition Standard
-eDTU 100 -MaxeDTU 100 -MineDTU 10 -AzureProfileFilePath C:\Code\
MyAzureProfile.json -Operation Create -DatabasesToAdd "toystore_
Shard_1_50,toystore_Shard_50_100,toystore_Shard_100_150,toystore_
Shard_150_200"

The preceding command will create toyfactoryelasticpool with 100 eDTUs and the
databases specified by the DatabasesToAdd parameter.

434 | Elastic and instance pools

In this activity, we created and executed a PowerShell script to create an elastic
database pool and add databases to the elastic database pool. As an elastic database
pool consists of multiple databases, there may be a scenario or a requirement to
execute T-SQL scripts across all databases in an elastic database pool. This is done
using elastic database jobs. Let's now learn about and implement elastic database jobs
in the next section.

Elastic database jobs
Elastic database jobs or Azure-hosted elastic database jobs can be used to schedule
a T-SQL task such as index maintenance against an SQL database, a group of SQL
Database elastic database pools or an SQL Database shard, all databases in an elastic
database pool, a shard map, or a server across different Azure subscriptions.

An elastic database job can span multiple databases in the same subscription or in
different subscriptions.

Figure 8.14 illustrates the different components of an elastic database job:

Figure 8.14: Different components of an elastic database job

Let's discuss some of the components in the diagram.

Elastic job agent

Azure SQL logical server

Get job
details

Write
job
output

Update
job status

Run jobs
on targets

Target groups

Azure SQL logical server 1

Azure SQL logical server 1 (shards)

Azure SQL logical server 1
(single database - subscription A)

(elastic database pool)

Job database

Output database

Elastic database jobs | 435

Elastic job agent
An elastic job agent is an Azure resource that's responsible for creating, executing, and
managing jobs.

Job database
An existing clean (blank) SQL database of the Standard (S0) or a higher-performance
tier is used to store the job definitions, job status, elastic job agent metadata, and
stored procedures to create and manage elastic database jobs using T-SQL.

The database job performance tier can be increased based on the number of jobs
scheduled and the frequency of the job scheduler; however, a minimum of the General
Purpose or S1 pricing tier is recommended.

Target group
A target group defines one or more SQL databases that a job is executed on. A target
group can be:

• A single SQL database.

• An Azure SQL logical server. All databases in the server at the time of job
creation are considered for job execution.

• An elastic database pool. All databases in an elastic database pool at the time of
job creation are considered for job execution.

• A shardmap. All databases in a shardmap.

Note

Particular databases can be included or excluded individually when defining an
SQL logical server or an elastic database pool as the target group.

Jobs
A job is a task that can either be scheduled or executed on demand against one or more
target groups. A job can have one or more job steps. A job step requires a T-SQL script
to be executed and the credentials to connect to the database(s) defined by the target
group. The job output can optionally be stored in a specified output database (an SQL
Database) in detail.

The job database stores the job execution history in detail. The job history is purged
every 45 days by a system clean-up job. The job history can be manually purged using
the sp_purge_history stored procedure against the job database. The elastic database
jobs preview is limited to 100 concurrent jobs at any given time.

436 | Elastic and instance pools

Use cases
Elastic database jobs are commonly used for:

• Database management and maintenance: Elastic database jobs can be used
for deploying schema changes across multiple shards by running database
maintenance jobs, such as index rebuilds, collecting database performance data,
and updating reference data in a shard set.

• Reporting: Elastic database jobs can be used to aggregate data from a shard set
and into a single reporting table. The reporting table can then be fed to Power BI,
SSRS, or any of the reporting or visualization tools for creating reports.

Normally, you would have to connect to each shard in a shard set to run the report
query and insert the data into a single reporting table. Elastic database jobs make it
easier to do this, wherein you only have to schedule the T-SQL and it is automatically
executed on the shards.

Exercise: Configuring an elastic database job using T-SQL
In this exercise, we'll talk about configuring an elastic database job using T-SQL. An
elastic database job can also be configured using PowerShell. When configuring elastic
database jobs using T-SQL, the elastic database job agent needs to be provisioned
either using PowerShell or the Azure portal.

Follow these steps to create an elastic database job:

1. Provision a blank SQL database to be used as the job database by executing the
following script in a PowerShell console window:

C:\Code\Chapter01\Provision-AzureSQLDatabase.ps1 -ResourceGroup Packt
-Location "East US 2" -SQLServer packtdbserver
-SQLDatabase jobdatabase -Edition Standard -UserName dbadmin -Password
Awesome@1234 -ServiceObjective S0

The preceding command creates a Standard S0 blank SQL database, jobdatabase, to
be used for the elastic database job.

You may have to change the database name as you may get an error if jobdatabase
already exists in Microsoft Azure.

2. We now need to create an Elastic Job agent.

Log in to the Azure portal and search for Elastic job agent:

Figure 8.15: Creating an Elastic Job agent

Elastic database jobs | 437

On the Elastic Job agents page, click Add:

Figure 8.16: Adding a new Elastic Job agent

In the Elastic Job agent window, provide the elastic job agent name, accept the
preview terms, and select the jobdatabase instance provisioned in step 1 as the
elastic job agent database.

3. Click the Create button to provision the elastic job agent:

Figure 8.17: Provisioning the Elastic Job agent

438 | Elastic and instance pools

4. Once an elastic job agent is provisioned, it'll be listed on the Elastic Job agents
page:

Figure 8.18: The Elastic Job agents page

Note

As the feature is still in preview, you may not see the elastic job agent listed here.
For details, please visit https://social.msdn.microsoft.com/Forums/69043053-
5de3-40da-8e81-cbfa0ac8363a/elastic-job-agent-exists-but-not- showing-in-azure-
portal?forum=ssdsgetstarted.

5. The next step is to create the credentials for the job to connect to the target
database and execute the T-SQL queries. To create credentials for the job, follow
these steps.

Create a database-scoped credential in jobdatabase to connect to the target master
database:

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Very$trongpass123';
GO
CREATE DATABASE SCOPED CREDENTIAL jobmastercred
WITH IDENTITY = 'masteruser' , SECRET = 'myPassword@123'

Create a database-scoped credential for jobdatabase to connect to the individual
target database in a given target group:

CREATE DATABASE SCOPED CREDENTIAL jobusercred
WITH IDENTITY = 'jobuser', SECRET = 'myPassword@123'

Create a login in the target master database with the same identity and password as
that of the jobmastercred credential in the job database:

CREATE LOGIN masteruser WITH PASSWORD='myPassword@123'

Create a user in the target master database for the masteruser login created
previously:

CREATE USER masteruser FROM LOGIN masteruser

https://social.msdn.microsoft.com/Forums/69043053-5de3-40da-8e81-cbfa0ac8363a/elastic-job-agent-exists-but-not- showing-in-azure-portal?forum=ssdsgetstarted
https://social.msdn.microsoft.com/Forums/69043053-5de3-40da-8e81-cbfa0ac8363a/elastic-job-agent-exists-but-not- showing-in-azure-portal?forum=ssdsgetstarted
https://social.msdn.microsoft.com/Forums/69043053-5de3-40da-8e81-cbfa0ac8363a/elastic-job-agent-exists-but-not- showing-in-azure-portal?forum=ssdsgetstarted

Elastic database jobs | 439

Create a login in the target master database with the same identity as the
jobusercred credentials in the job database:

CREATE LOGIN jobuser WITH PASSWORD='myPassword@123'

Create a user in the target user database for the jobcred login. Grant the user
relevant permission to run the T-SQL script, which is to be run as part of the elastic
database job:

--Execute against toystore (or user) database.
CREATE USER jobuser FROM LOGIN jobuser
GO
GRANT ALTER ON SCHEMA::dbo to jobuser
GO
GRANT CREATE TABLE TO jobuser

The preceding scripts create a jobuser user for the jobuser login and grant the user
permission to create tables against the toystore database.

6. The next step is to add the target group. To add an SQL logical server as a target
group, execute the following scripts in jobdatabase (the elastic job agent database).

Add a target group:
EXEC jobs.sp_add_target_group 'packtdbserver'
GO

Add a server target member:
EXEC jobs.sp_add_target_group_member 'packtdbserver'
,@target_type = 'SqlServer'
,@refresh_credential_name = 'jobmastercred'
,@server_name = 'packtdbserver.database.windows.net'

referesh_credential_name is the name of the credential created in jobdatabase to
connect to the target group master database to refresh the list of databases in the
target group SQL logical server.

packtdbserver also contains jobdatabase. However, we would not like the job to run
against jobdatabase. To exclude jobdatabase from the target group, execute the
following:

EXEC [jobs].sp_add_target_group_member @target_group_name =
N'packtdbserver'
,@membership_type = N'Exclude'
,@target_type = N'SqlDatabase'
,@server_name = N'packtdbserver.database.windows.net'
,@database_name = N'jobdatabase'
GO

440 | Elastic and instance pools

The membership_type value Exclude tells the job that the given database is to be
excluded from the job execution.

To see the existing target group and target group members, run the following
query:

SELECT *
FROM jobs.target_groups
WHERE target_group_name = 'packtdbserver';

SELECT target_group_name,membership_type,target_type,refresh_credential_
name,server_name,database_name
FROM jobs.target_group_members
WHERE target_group_name = 'packtdbserver';

You should get an output similar to this:

Figure 8.19: Existing target group and target group members

The jobdatabase SQL database is excluded from the target group members.

7. The next step is to create an elastic database job that creates a customer table on
the target members.

To create a job, execute the following:

EXEC jobs.sp_add_job @job_name = 'CreateCustomerTable'
,@description = 'Create new customer table'
--The query creates a job name, CreateCustomerTable. Let's now add a
---job step to create the customer table.
EXEC jobs.sp_add_jobstep @job_name = 'CreateCustomerTable'
,@step_name = 'CreateTable'
,@command = N'IF OBJECT_ID(''Customer'') IS NULL
CREATE TABLE [dbo].[Customer] (ID int identity(1,1),FirstName
NVARCHAR(100),LastName NVARCHAR(100))'
,@credential_name = 'jobusercred'
,@target_group_name = 'packtdbserver'

Elastic database jobs | 441

The query adds a CreateTable job step to the CreateCustomerTable job. The
command parameter specifies the T-SQL to create the customer table. The T-SQL
first checks that a customer table exists; if not, it creates a new one. The T-SQL
query will therefore not error out if a customer table already exists in any of the
user databases in the target group.

Observe that the jobusercred credential, mapped to jobuser, is used to run the job.

8. The next step is to execute and schedule the job. Run the following query to
execute the job on demand:

Note

Step 8 and step 9 should be executed as a single code block.

DECLARE @jeid UNIQUEIDENTIFIER
,@lifecycle VARCHAR(100) = 'Created'
-- start job execution
EXEC jobs.sp_start_job 'CreateCustomerTable'
,@job_execution_id = @jeid OUTPUT

SELECT @jeid

9. Get the job execution status:

SELECT *
FROM jobs.job_executions
WHERE job_execution_id = @jeid

/*
Make sure Allow access to Azure services firewall rule is On
*/
WHILE (@lifecycle != 'Succeeded') BEGIN
SELECT *
FROM jobs.job_executions
WHERE job_execution_id = @jeid
-- check job status until it succeeds SELECT @lifecycle = lifecycle
FROM jobs.job_executions
WHERE job_execution_id = @jeid ORDER BY start_time DESC

WAITFOR DELAY '00:00:02'
END

The jobs.sp_start_job procedure is used to start an ad hoc run of a job. When a job
starts, a unique job execution ID is assigned for that particular job run.

442 | Elastic and instance pools

The job status is saved in the jobs.job_execution table. The while loop gets the job
status until it succeeds. You should get the following output:

Figure 8.20: Job execution status

Figure 8.20 shows the job status at different stages of the job execution. The next
step is to schedule the job.

10. Schedule the job by executing the following query:

EXEC jobs.sp_update_job @job_name = 'CreateCustomerTable'
,@enabled = 1
,@schedule_interval_type = 'Minutes'
,@schedule_interval_count = 15

11. The query uses the sp_update_job stored procedure to schedule the job to run every
15 minutes. To get the job details, execute the following queries.

Get the job and job step details:

SELECT job_name,enabled,schedule_interval_type,schedule_interval_count
FROM jobs.jobs
WHERE job_name = 'CreateCustomerTable';
GO
SELECT js.job_name,js.step_name,js.command_type,js.command,js.credential_
name,js.target_group_name FROM jobs.jobsteps js
JOIN jobs.jobs j ON j.job_id = js.job_id
AND j.job_version = js.job_version
GO

Elastic database jobs | 443

Figure 8.21: Job and job step details

You can also monitor the jobs from the Azure portal. Log in to the portal and open
the elasticjobagent page:

Figure 8.22: Monitoring latest 100 job executions

The Overview section lists the last 100 job executions. You can also check the
Credentials, Target groups, and Jobs sections. However, the Azure portal doesn't allow
the editing of any of the job objects.

Elastic database jobs provide similar functionality for SQL Database as SQL Server
Agent does for the on-premises SQL Server.

Elastic database jobs are optimized and designed for SQL databases. Elastic databases,
therefore, support the running of T-SQL queries against databases in the specified
target group.

444 | Elastic and instance pools

The other job types supported by SQL Server Agent, such as PowerShell, WMI, batch
file, Integration Services, and Analysis Services, are not supported by elastic database
jobs. This goes along with the PaaS model of SQL Database, wherein customers don't
manage the underlying infrastructure.

SQL Server Agent, on the other hand, is designed to run on-premises and can therefore
be used for job types other than T-SQL. An example is to schedule a PowerShell script
to automate database backups of the on-premises databases. This, however, isn't
required in SQL Database as the backups are automated.

SQL Server Agent doesn't support a target group. An SQL Server Agent job step can
be run against only one database. The T-SQL script scheduled can, however, access
other databases in the instance. Elastic database jobs can dynamically enumerate
through databases in a server or a pool at runtime and run scripts against them. This
particularly helps SaaS customers where databases are added/deleted at various times.
Elastic jobs can span databases or pools across servers and subscriptions.

Elastic database jobs make it easy to schedule jobs such as schema deployment
or database maintenance. For example, to run index maintenance on two or more
databases, schedule an elastic database job with the index maintenance T-SQL script
to run against the target group. The elastic database job runs the job asynchronously
against the specified target databases. However, when scheduling the index
maintenance job with SQL Server Agent, the database iteration logic is to be written as
part of the script itself. SQL Server Agent doesn't support the target group concept.

Introducing instance pools in SQL Managed Instance
Instance pools in SQL Managed Instance is a new deployment option and it's currently
in the public preview phase. Instance pools allow you to run small compute managed
instances in a pre-provisioned compute pool. This is a more cost-effective and
convenient way of migrating small SQL Server instances to a managed instance.

Instance pools allow you to provision 2 vCore instances inside a pre-provisioned pool.
If you have provisioned an 8 vCore instance pool, you can deploy four 2 vCore SQL
managed instances in that pool. Prior to instance pools being available, smaller instance
databases needed to be consolidated during migration to the cloud, which required
careful capacity planning, resource governance, and security considerations.

Figure 8.23 shows a high-level overview of an instance pool and a managed instance
deployed within a virtual network subnet:

Introducing instance pools in SQL Managed Instance | 445

Figure 8.23: High-level overview of an instance pool

Figure 8.23 shows a 16 vCore pre-provisioned instance pool that comprises four 2 vCore
instances and two 4 vCore instances that are deployed in the same virtual machine,
subnet, and virtual cluster.

Key differences between an instance pool and a single managed
instance
Instance pools provide a lot of flexibility in deploying managed instances. Instances can
be deployed with independent compute and storage layers.

The following are some of the key differences between an instance pool and a single
SQL managed instance:

Table 8.1: Differences between an instance pool and a single SQL managed instance

Instance Pool Single SQL Managed Instance

Only the General Purpose service tier is
supported.

The General Purpose and Business Critical
service tiers are supported.

Allows you to create a minimum of 2 vCore SQL
managed instances. A minimum of 4 vCore instances can be deployed.

The initial creation of an instance pool takes
longer but SQL Managed Instance management
operations are very quick.

Initial deployment and management operations
take longer to complete.

The same node is shared to deploy all instances. Separate nodes for each instance deployment.

Minimal IP address allocation due to sharing of a
virtual machine for all instance deployment.

Require additional IP addresses for each instance
deployment.

Azure AD authentication is not supported. Azure AD authentication is supported.

446 | Elastic and instance pools

As we saw in Table 8.1, all the managed instances are deployed in the same virtual
machine node. This node was pre-provisioned with a specified vCore capacity during
instance pool creation. After the initial pool deployment, management operations
(instance creation and vCore scaling) on instances are much faster than a single SQL
managed instance. Since all the instances are deployed in the same virtual machine, an
instance pool requires less IP address allocation compared to a single instance.

Architecture differences between an instance pool and a single SQL
managed instance
Instance pool architecture is similar to that of a single SQL managed instance. The main
difference between the two deployment models is that an instance pool allows you
to create multiple instances on the same virtual machine node, which are resources
governed by Windows job objects. Job objects allow groups of multiple processes to
be managed as a unit, while single managed instances always run in a separate virtual
machine node:

Figure 8.24: Architecture of instance pools versus a single instance

Introducing instance pools in SQL Managed Instance | 447

Resource limits
Instance pools have the following resource limitations:

• Instance pools support 8, 16, 24, 32, 40, 64, and 80 vCores.

• Managed instances inside pools support 2, 4, 8, 16, 24, 32, 40, 64, and 80 vCores.

• Managed instances inside pools support storage sizes between 32 GB and 8 TB,
except:

• 2 vCore instances support sizes between 32 GB and 640 GB.

• 4 vCore instances support sizes between 32 GB and 2 TB.

• All instances in instance pools follow all the limitations that apply to a single SQL
managed instance.

• You can have up to 500 user databases per instance pool. However, this limit
depends on the pool vCore value:

• 8 vCore pool supports up to 200 databases

• 16 vCore pool supports up to 400 databases

• 24 vCore pool and larger supports up to 500 databases

• Managed instances inside pools have a limit of up to 100 user databases per
instance, except 2 vCore instances, which support up to 50 user databases per
instance.

• The total storage for instance pools can be increased to up to 8 TB.

Public preview limitations
Instance pools are a newly added deployment option for SQL Managed Instance in the
SQL family and have the following limitations during the preview period:

• Instance pools are only available in the General Purpose service tier.

• You cannot resize instance pools, so be careful when selecting the vCore
capacity.

• You cannot move a single managed instance into a pool and you cannot move
instances out of a pool.

• Instance pools have limited Azure portal support and most operations are
managed by PowerShell commands.

• Azure AD authentication is not supported.

Microsoft might remove some of the limitations once they announce the instance pools
offering for General Availability.

448 | Elastic and instance pools

Performance and security considerations for instance pools
Managed instances are deployed in the same virtual machine inside an instance pool,
and you need to consider the following performance and security considerations:

• Instances are deployed with dedicated vCPU and RAM, but all instances have a
shared local disk for the tempdb database and network resources, so there could
be a chance of facing a noisy neighbor situation.

• You might have to consider disabling certain features that might have higher
security risks such as CLR, native backup/restore, and database mail.

In the event of performance challenges with instance pools, consider deploying the
instances to a bigger pool, or move to a single managed instance.

Deploying an instance pool using PowerShell commands
In this activity, we will learn how to deploy an instance pool for ToyStore Ltd. This
instance pool deployment is used to manage low-compute managed instances. Since
there is no Azure portal support for instance pools during the public preview phase, we
will deploy these resources using PowerShell cmdlets.

You will learn how to deploy an instance pool with 8 vCore capacity with a new virtual
network and subnet configuration. Follow these steps to perform this activity.

Before deploying an instance pool, first, we need to prepare a virtual network and
subnet. If you are deploying an instance pool in an existing SQL Managed Instance
subnet, then this step can be skipped:

1. Prepare a virtual network for the instance pool.

To set up a new virtual network, you might need help from network admins in your
organization. Alternatively, you can use an in-built ARM template to create a virtual
network resource with all the pre-requisites needed to deploy a managed instance
or instance pool. Please visit the following link to read more about ARM template
deployment and see the steps to create a virtual network using an ARM template:
https://docs.microsoft.com/azure/azure-sql/managed-instance/virtual-network-
subnet-create-arm-template.

Direct Template link: https://portal.azure.com#createMicrosoft.
Templateurihttps%3A%2F%2Fraw.githubusercontent.com%2FAzure%2Fazure-
quickstart-templates%2Fmaster%2F101-sql-managed-instance-azure-
environment%2Fazuredeploy.json

https://docs.microsoft.com/azure/azure-sql/managed-instance/virtual-network-subnet-create-arm-template
https://docs.microsoft.com/azure/azure-sql/managed-instance/virtual-network-subnet-create-arm-template
https://portal.azure.com#createMicrosoft.Templateurihttps%3A%2F%2Fraw.githubusercontent.com%2FAzure%2Fazure-quickstart-templates%2Fmaster%2F101-sql-managed-instance-azure-environment%2Fazuredeploy.json
https://portal.azure.com#createMicrosoft.Templateurihttps%3A%2F%2Fraw.githubusercontent.com%2FAzure%2Fazure-quickstart-templates%2Fmaster%2F101-sql-managed-instance-azure-environment%2Fazuredeploy.json
https://portal.azure.com#createMicrosoft.Templateurihttps%3A%2F%2Fraw.githubusercontent.com%2FAzure%2Fazure-quickstart-templates%2Fmaster%2F101-sql-managed-instance-azure-environment%2Fazuredeploy.json
https://portal.azure.com#createMicrosoft.Templateurihttps%3A%2F%2Fraw.githubusercontent.com%2FAzure%2Fazure-quickstart-templates%2Fmaster%2F101-sql-managed-instance-azure-environment%2Fazuredeploy.json

Deploying an instance pool using PowerShell commands | 449

When you visit the preceding link, it will redirect you to the Azure portal and you
will see the following template deployment screen:

Figure 8.25: Creating a new virtual network using an ARM template

450 | Elastic and instance pools

In Figure 8.25, most of the details are pre-populated and you need to just select the
subscription and enter the resource group name. These details can be modified as
per your environment. Click Review + create after completing the form.

This ARM template will deploy a virtual network with two subnets. One subnet,
called ManagedInstances, is reserved for managed instance and instance pool
deployment and has a pre-configured route table and network security group. The
other subnet, with the name Default, is used to deploy other resources (such as a
virtual machine).

2. With the virtual network ready, let's deploy the instance pool using PowerShell
commands. Open SQLMI_InstancePoolDeployment.ps1 from the Chapter08 source
code and read through the PowerShell statements.

3. Set up the script parameters by running the following PowerShell commands:

##Instance pool deployment script
##Setting up parameters

param(

 [Parameter(Mandatory=$true)]
 [string]$resourceGroup,
 [Parameter(Mandatory=$true)]
 [string]$subscription,
 [Parameter(Mandatory=$true)]
 [string]$instancePoolName,
 [Parameter(Mandatory=$true)]
 [string]$vnetName,
 [Parameter(Mandatory=$true)]
 [string]$subnetName,
 [Parameter(Mandatory=$true)]
 [string]$LicenseType,
 [Parameter(Mandatory=$true)]
 [string]$Edition,
 [Parameter(Mandatory=$true)]
 [string]$ComputeGeneration,
 [Parameter(Mandatory=$true)]
 [string]$Location

)

Deploying an instance pool using PowerShell commands | 451

4. Log in to your Azure account:

Write-Host "Login to Azure account" -ForegroundColor Green

##Login to Azure
#Set Azure subscription for deployment
Login-AzAccount
Select-AzSubscription -SubscriptionId $subscription

5. Get the subnet resource ID for instance pool deployment:

Write-Host "Get virtual network and subnet configuration" -ForegroundColor
Green
###Get virtual network and subnet configuration
$virtualNetwork = Get-AzVirtualNetwork -Name $vnetName -ResourceGroupName
$resourceGroup
$subnet = Get-AzVirtualNetworkSubnetConfig -Name $subnetName
-VirtualNetwork $virtualNetwork

6. Use the New-AzSqlInstancePool cmdlet to deploy the instance pool with the
specified vCore capacity:

Write-Host "Deploying instance pool " $instancePoolName -ForegroundColor
Green
#Creating new instance pool with 8-vCore
$instancePool = New-AzSqlInstancePool -ResourceGroupName $resourceGroup
-Name $instancePoolName -SubnetId $subnet.Id -LicenseType $LicenseType
-VCore 8 -Edition $Edition -ComputeGeneration $ComputeGeneration -Location
$Location

7. Run the SQLMI_InstancePoolDeployment.ps1 file from any client of your choice:

.\SQLMI_InstancePoolDeployment.ps1 -resourceGroup Packt -subscription
xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx -instancePoolName mi-toyfactory-
pool -vnetName MyNewVNet -subnetName ManagedInstances -LicenseType
LicenseIncluded -Edition GeneralPurpose -ComputeGeneration Gen5 -Location
eastus

Figure 8.26: PowerShell commands output

452 | Elastic and instance pools

Note

The creation of an instance pool is a long-running operation and generally needs
4.5 hours.

8. Let's check the Azure portal after deployment. The Azure portal shows the empty
instance pool with its used capacity:

Figure 8.27: An empty instance pool in the Azure portal

In this activity, we created a virtual network using ARM templates to deploy an instance
pool. Finally, we checked the pool utilization statistics through the Azure portal.

Activity: Deploying and managing a managed instance in an
instance pool
In the previous activity, we deployed an empty instance pool with an 8 vCore capacity.
Here, we will see how to provision a managed instance in that pool. We will be
deploying a 2 vCore instance and later will scale up to 8 vCores, taking note of how
much time it takes to deploy and scale up a new instance in a pre-provisioned pool.

We will be using PowerShell commands since there is no Azure portal support during
preview. Let's look at the steps.

Deploying an instance pool using PowerShell commands | 453

Follow these steps to create a managed instance inside an instance pool and scale up
instance resources using PowerShell cmdlets:

1. Open Azure Cloud Shell from the Azure portal by clicking the Cloud Shell icon:

Figure 8.28: Cloud Shell icon

2. Switch to the PowerShell terminal to run PowerShell code:

Figure 8.29: Switching to the PowerShell terminal

3. Run the following commands to create a managed instance with a 2 vCore capacity
in an instance pool and monitor the deployment time:

##Deploying new SQL Managed Instance in pool.
##Get the instance pool properties.
$instancePool = Get-AzSqlInstancePool -ResourceGroupName Packt -Name
mi-toyfactory-pool

#Using measure-command cmdlet to calculate time for new instance
deployment in pool.
Measure-Command {$toystoreInstance = $instancePool | New-AzSqlInstance
-Name mi-toystore-1 -AdministratorCredential (Get-Credential)
-StorageSizeInGB 32 -VCore 2}

Figure 8.30: New instance deployment in an instance pool

454 | Elastic and instance pools

In Figure 8.30, we see that the new instance deployment only took 2 minutes and
37 seconds.

4. Let's look at the Azure portal and see what the new instance pool looks like after
the managed instance deployment. Go to the Azure portal, and in the Overview tab
of the instance pool, click on the managed instance to see its properties:

Figure 8.31: Instance pool-Overview

In Figure 8.31, you can see that the mi-toystore-1 managed instance with a 2 vCore
capacity is deployed in the instance pool mi-toyfactory-pool.

5. Once you click on the managed instance (mi-toystore-1), it will redirect you to
the managed instance Overview tab, which displays the host, admin account, and
instance pool information. Also, you can use the New database option to create a
managed database using the Azure portal:

Deploying an instance pool using PowerShell commands | 455

Figure 8.32: Managed instance Overview

6. After adding/migrating multiple databases on the same instance, you might hit the
resource limits or face performance challenges. You can scale up instance resources
if you have available capacity in the instance pool. Scaling pooled managed instance
resources takes only a few minutes.

456 | Elastic and instance pools

Run the following command using the same Cloud Shell session:

#Scaling SQL Managed Instance resources
Measure-Command {$toystoreInstance | Set-AzSqlInstance -VCore 8
-StorageSizeInGB 512 -InstancePoolName "mi-toyfactory-pool"}

Figure 8.33: Scaling a managed instance in a pool

As we can see, the scaling operation took 6 minutes and 11 seconds to complete.
This is much faster than single managed instance scaling, which takes hours.

7. Let's check the instance pool resource usage after the scaling operation using the
Azure portal:

Figure 8.34: Instance pool resource usage after scaling

Summary | 457

After the scaling operation, we have exhausted the CPU capacity, but storage and
database capacity is still available. If more CPU is required, then the instance needs
to be migrated to a bigger instance pool. For the migration of databases from one
pooled instance to another pooled instance, the cross-instance point-in-time
restore method can be used, which we discussed in Chapter 5, Restoration. This
method is only supported for the same region and subscription.

In this activity, we learned about the creation of a managed instance in an instance
pool. We up-scaled the instance resources within the pool and noted the completion
times for deployment and scaling operations in the pre-provisioned pool.

An instance pool gives you the flexibility to manage resources in an easier way, since
management operations such as creation and scaling only require a couple of minutes.
Scaling a single managed instance takes longer since it must resize the virtual cluster
for new capacity, and here, we had already provisioned resources in advance at the time
of instance pool creation.

Summary
In this chapter, we learned a simple and cost-effective way of managing multiple
SQL databases using an elastic database pool and also learned a convenient way of
consolidating low-compute managed instances inside an instance pool. We discussed
when and how to use an elastic database pool and an instance pool to be cost-effective
without affecting database performance. We also learned how to use elastic database
jobs to manage and maintain the databases in an elastic database pool.

In the next chapter, we will be discussing high availability and business continuity
solutions for SQL Database and SQL Managed Instance. You will learn how to
implement standard geo-replication, active geo-recovery, and failover groups for
disaster recovery solutions.

High availability and disaster recovery planning is essential to any database service or
application deployment. In an on-premises SQL Server, database administrators have
multiple options to configure high availability and disaster recovery solutions.

In this chapter, we will talk about high availability and disaster recovery options
available for Azure SQL Database and SQL Managed Instance. Azure SQL Database
and SQL Managed Instance come with built-in high availability and easily configurable
disaster recovery solutions.

High availability and
disaster recovery

9

460 | High availability and disaster recovery

By the end of this chapter, you will be able to do the following:

• Describe the built-in high availability features in Azure SQL Database and Azure
SQL Managed Instance

• Implement standard and active geo-recovery for Disaster Recovery (DR)
solutions

• Implement standard and active geo-replication

• Implement the Accelerated Database Recovery feature

• Implement a failover group for Azure SQL Database and SQL Managed Instance

This chapter will teach you about the built-in high availability features in Azure SQL
Database and SQL Managed Instance. It'll also teach you how to implement a DR
solution using geo-replication and failover groups.

High availability
High availability refers to providing service availability in case of any hardware,
software, or network failure. Azure SQL guarantees up to 99.995% availability of
service. Although Azure SQL Database and SQL Managed Instance are resilient to
transitive infrastructure failures, such events might impact application connectivity.
Applications can handle these failures by employing retry logic in code.

Azure SQL Database and SQL Managed Instance can quickly recover in the most critical
situations, ensuring that your data is always available.

The availability of SQL Database and SQL Managed Instance depends on the service tier
and underlying architecture model. Let's take a look at the high availability architecture
models based on service tier configuration.

The basic, standard, and general-purpose service tier locally redundant
availability model
This architecture is based on the separation of the compute and storage layers
to ensure data availability; it is similar to failover cluster instances (FCIs). The
architecture depends on Azure premium storage high availability and reliability.

Note

This is similar to an SQL Server (on-premises or SQL on Azure Virtual Machine)
failover cluster installation.

High availability | 461

Let's look at the high-level architecture diagram:

Figure 9.1: High availability architecture for the basic, standard, and general-purpose service tiers

In Figure 9.1, there are two layers:

• A stateless compute layer, which runs the sqlserver.exe process. Compute nodes
have a local SSD that hosts the tempdb, a model system database. The primary
node can perform failover to another stateless compute node with sufficient free
capacity if necessary.

• A stateful data layer with the database files (.mdf/.ldf); these files are stored
in Azure Storage and copied synchronously three times within a single physical
location in the Azure region. This guarantees no data loss even when the
sqlserver.exe process crashes.

This architecture model is applicable to a provisioned and serverless compute tier.

462 | High availability and disaster recovery

General-purpose service tier zone-redundant configuration
The general-purpose service tier zone-redundant configuration uses Azure Availability
Zones to replicate a database across multiple physical locations within the same Azure
region. Each Availability Zone in a region is physically separate, and made up of one or
more datacenters equipped with independent power, cooling, and networking. This
architecture model can tolerate zone-level failures.

This architecture model is like the previous architecture model, with a separation of the
compute and data layers. Here, the difference is in the storage layer, where database
files (.mdf/.ldf) are now stored in zone-redundant Azure Storage instead of locally
redundant storage. Utilizing zone-redundant storage ensure that the data will be
copied synchronously three times across three Availability Zones in the same region.

Additionally, nodes with spare capacity are readily available in other Availability
Zones for failover. This allows the compute node to automatically failover to another
Availability Zone in the case of a zone-level outage.

The zone-redundant configuration is currently not available in SQL Managed Instance.

The zone-redundant architecture model for the general-purpose tier is illustrated in
Figure 9.2:

Figure 9.2: Zone-redundant high availability architecture for the general-purpose service tier

High availability | 463

The zone-redundant configuration can be enabled for both new and existing general-
purpose databases and elastic pools. Once the zone-redundant option is enabled, Azure
SQL Database will automatically reconfigure the database or pool. You can configure
this setting by using the Azure portal, the Azure CLI, PowerShell, or the ARM API.
Figure 9.3 illustrates how to use the Azure portal to configure an existing general-
purpose elastic pool to be zone redundant:

Figure 9.3: Using the Azure portal to enable zone-redundant high availability architecture for the
general-purpose service tier

464 | High availability and disaster recovery

The premium/business-critical tier locally redundant availability model
This high availability architecture model is dependent on clusters of nodes replicating
both compute and storage. The cluster has a primary replica that constantly pushes
changes to the secondary nodes and ensures that the data is synchronized to at least
one secondary replica before committing each transaction. This guarantees that there
is always a quorum of available database nodes for automatic failover. This architecture
model relies on the Always On availability group setup:

Figure 9.4: High availability architecture for the premium/business-critical service tier

In Figure 9.4, there is a cluster of four replicas with high availability implemented using
technology similar to SQL Server Always On availability groups. Each replica has a local
attached SSD for higher I/O throughput.

This architecture model is designed for mission-critical applications. It also provides
access to one internal secondary replica to offload the read workload.

High availability | 465

The premium/business critical service tier zone-redundant
configuration
This architecture model ensures the highest uptime percentage SLA that Azure SQL
offers. The premium/business-critical service tier with zone-redundant configuration
offers 99.995% SLA availability:

Figure 9.5: Zone-redundant high availability architecture for the Premium/Business-Critical service tier

466 | High availability and disaster recovery

This architecture model is like the previous architecture model, except the replicas are
placed across different Availability Zones within the same region. This allows a replica
to automatically fail over to another Availability Zone in the case of a zone-level outage.
The zone-redundant configuration can be enabled for both new and existing Business-
Critical and Premium databases and elastic pools. Once the zone-redundant option is
enabled, Azure SQL Database will automatically reconfigure the database or pool. You
can configure this setting by using the Azure portal, the Azure CLI, PowerShell, or the
ARM API. The following figure illustrates how to use the Azure portal to configure a new
business-critical single database to be zone redundant:

Figure 9.6: Using the Azure portal to enable zone-redundant high availability architecture for the
Business-Critical service tier

Because zone-redundant databases have replicas in different datacenters with some
distance between them, the increased network latency may increase the commit time
and thus impact the performance of some OLTP workloads. You can always return to
the single-zone configuration by disabling the zone redundancy setting.

Built-in high availability

Azure SQL Database and SQL Managed Instance have built-in high availability solutions
that are deeply integrated with Azure infrastructure. They depend on a service
fabric layer for fault detection and recovery and Azure Storage for data protection.
Azure Availability Zones can be used for higher fault tolerance (only applies to Azure
SQL Database). You would have to configure, manage, and maintain Always On in an
on-premises environment. In SQL Database and SQL Managed Instance, it's configured,
managed, and maintained by Microsoft.

Accelerated database recovery (ADR) | 467

Up to now, we have discussed multiple built-in high availability options for SQL
Database and SQL Managed Instance. In the next section, we will discuss the
Accelerated Database Recovery feature, which helps Azure SQL Databases and Managed
Instances recover more quickly.

Accelerated database recovery (ADR)
Accelerated database recovery, or ADR, is a new database recovery process that greatly
increases availability and decreases database recovery time in scenarios such as crash
recovery (database recovery in the event of a server/database crash) and long-running
transaction rollback (for example, a large bulk insert or an index rebuild rollback).

An SQL database consists of data and a transaction log file. A data file contains the
table data. A transaction log file keeps track of all the changes made to the data and the
schema; for example, if there is an insert in a table, the transaction log file contains the
insert statement and whether the insert statement was committed or not.

The standard database recovery process
To better understand ADR, let's first get an understanding of the standard database
recovery process:

Figure 9.7: The recovery phase without ADR

Note

Image taken from https://docs.microsoft.com/azure/sql-database/sql-database-
accelerated-database-recovery.

https://docs.microsoft.com/azure/sql-database/sql-database-accelerated-database-recovery
https://docs.microsoft.com/azure/sql-database/sql-database-accelerated-database-recovery

468 | High availability and disaster recovery

As shown in the preceding figure, the standard recovery process consists of three
phases: Analysis, Redo, and Undo. Let's look at what happens in each of these phases.

Analysis

In the analysis phase, a forward scan of the transaction log is performed from the last
checkpoint or the oldest dirty page's log sequence number (LSN).

Note

A dirty page is a page in memory with data modifications. A checkpoint is the
process of writing dirty pages from the memory to the physical disk. A checkpoint
is therefore a point at which a database is in a consistent state.

An LSN is a number assigned to each entry made on the transaction log.

The output of the analysis phase is a list of transactions:

• These are written to the log and committed but are not written to the physical
database file.

• They are in the log file, but they don't have a commit or rollback, or they are
already in the rollback state (active transactions).

Note

The transaction log is scanned from the last successful checkpoint, because all the
dirty pages before the checkpoint will have already been written to the physical
data file.

Redo

In this phase, the log is read forward from the oldest uncommitted transaction, and
the transactions that were committed to the log but not to the database are redone.
In other words, you flush or harden all the dirty pages to disk, from the oldest
uncommitted transaction to the end of the log, to restore the system to the state it was
in at the time of the crash.

Undo

In this phase, the log is read backward from the end of the log to the oldest
uncommitted transaction and all the active transactions at the time of the crash are
rolled back or undone.

This process is good for recovering a database to a consistent state after a crash;
however, it takes a long time and is proportional to the longest-running transaction.

Accelerated database recovery (ADR) | 469

The older the longest uncommitted transaction, the more log records there are to be
scanned, thereby increasing the recovery time.

Moreover, the recovery time also depends on the amount of work the longest-running
transaction has performed. The more work it performs, the more time it takes to roll
back and recover the database.

The ADR process
ADR improves database availability from the standard database recovery process and
provides faster database recovery.

ADR has the following new components, which are used to redesign the standard
recovery process:

• Persistent Version Store (PVS): Whenever a data row is modified, the previous
version of the row is kept in PVS.

PVS is similar to the version store used in the Snapshot and Read committed
isolation levels; however, PVS is stored in the user database instead of tempdb.

• Logical revert: Logical revert is an asynchronous process to perform undo/
rollback operations using PVS.

In the standard database recovery process, if a transaction aborts or rolls back,
all other transactions have to wait for the first transaction to roll back to access
the rows. However, in ADR, logical revert allows the other transactions to
access the previous version of the rows from PVS instead of waiting for the first
transaction to roll back.

• sLog: sLog is a low-volume, in-memory log stream to store log records for
non-versioned operations such as lock acquisitions and Data Definition
Language (DDL) commands. In other words, it stores the operations that don't
go into PVS.

sLog is written to disk during the checkpoint operation and is kept low-volume
by periodically removing entries for committed transactions.

• Cleaner: This is an asynchronous process that cleans obsolete row versions from
PVS. The cleaner process runs every minute and can also be run manually using
the sys.sp_persistent_version_cleanup system stored procedure.

470 | High availability and disaster recovery

The database recovery process with ADR is shown in Figure 9.8:

Figure 9.8: The recovery phase with ADR

Note

Image taken from https://docs.microsoft.com/azure/sql-database/sql-database-
accelerated-database-recovery.

The ADR process consists of the same three phases as the standard recovery process;
however, the work performed by each phase differs from the standard recovery
process.

Analysis

The log is read forward from the last checkpoint to the end of the log.

sLog is rebuilt (read from disk into memory) and the log records for non-versioned
operations are written into sLog from the transaction log.

Redo

The redo is done in two phases:

• Phase 1: The sLog is read from the oldest uncommitted transaction to the last
checkpoint and non-versioned log records are redone.

• Phase 2: The transaction is redone in the transaction log from the last
checkpoint to the end of the log.

https://docs.microsoft.com/azure/sql-database/sql-database-accelerated-database-recovery
https://docs.microsoft.com/azure/sql-database/sql-database-accelerated-database-recovery

Accelerated database recovery (ADR) | 471

Undo

The undo phase consists of the following:

• Undoing all of the non-versioned operations from sLog by reading it backward
from the end of the log to the oldest uncommitted transaction

• Using logical revert to perform a row-level, version-based undo, as explained
earlier, in the Logical revert section

ADR is fast as it doesn't depend on the work or the duration of the oldest active
transaction. The transaction log is scanned only from the last checkpoint to the end of
the log.

Active transactions at the time of the crash are marked as aborted and the row versions
for aborted transactions are ignored during the recovery process.

Other than fast database recovery, with ADR, the transaction log can be truncated
aggressively during checkpoint and backup. This is because the log records for the
oldest uncommitted transactions are not required for the database recovery.

ADR is enabled by default for Azure SQL Database and SQL Managed Instance. Disabling
ADR is not supported for either.

Activity: Evaluating ADR
In this activity, we'll evaluate the ADR performance of a transaction rollback.

It's advised to perform this activity on SQL Server 2019 Developer Edition since ADR
was introduced in the SQL Server 2019 release.

Note

If you would like to perform the activity on Azure SQL Database, write an email to
adr@microsoft.com to disable ADR on Azure SQL Server.

The toystore_ADR database used in the activity is similar to toystore, but toystore has
ADR turned off. Perform the following steps to complete the activity:

1. Connect to a database with SSMS and execute the following query to verify that
ADR is off:

SELECT
[Name], is_accelerated_database_recovery_on
FROM sys.databases WHERE [Name]='toystore'

mailto:adr@microsoft.com

472 | High availability and disaster recovery

You should get an output similar to the following:

Figure 9.9: The result of the query denoting that ADR is turned off

Note

The database name may differ in your case.

The value 0 for is_accelerated_database_recovery_on confirms that ADR is turned
off.

2. Execute the following query to simulate a long-running transaction:

CREATE TABLE Orders (
OrderId INT IDENTITY,
Quantity INT, Amount MONEY, OrderDate DATETIME2
)
GO
BEGIN TRANSACTION DECLARE @i INT=1

WHILE (@i <= 10000000) BEGIN
INSERT INTO Orders VALUES(@i*2,@i*0.5,DATEADD(MINUTE,@i,getdate())) Set
@i = @i + 1
END

The query creates an Orders table and inserts sample records into the Orders table
in an explicit transaction. Observe that BEGIN TRANSACTION has no corresponding
rollback or commit transaction.

Note the session ID of the query. The session ID of the query is in the bottom-right
corner of the query window:

Figure 9.10: The session ID of the query

Let the query run for around five minutes or so.

Accelerated database recovery (ADR) | 473

3. While the query is running, open a new query window and execute the following
query to start the query rollback:

KILL 112
GO
KILL 112 with statusonly
GO
SELECT session_id,status from sys.dm_exec_requests where session_id=112

Note

The session ID will be different in your case.

In the Results tab, observe that the query status is rollback:

Figure 9.11: The Results tab denoting that the query status is set to rollback

In the Messages tab, observe the estimated time remaining to roll back the
transaction. In this example, the estimated time was approximately 30 seconds:

Figure 9.12: The Messages tab denoting the estimated time of the query

Note

The estimated time remaining may be different in your case.

Let's perform the preceding steps against a database with ADR turned on and
measure the time taken for transaction rollback.

4. Open a new query window and connect to the toystore_ADR database:

Note

If you are performing the activity on SQL Server 2019, you can run the following
command to enable ADR on an existing database:

ALTER DATABASE Toystore_ADR SET ACCELERATED_DATABASE_RECOVERY = ON;

474 | High availability and disaster recovery

5. Execute the following query to verify whether ADR is turned on or not:

SELECT
[Name], is_accelerated_database_recovery_on
FROM sys.databases
WHERE [Name]='toystore_ADR'

Figure 9.13: The result of the query denoting that ADR is turned on

The is_accelerated_database_recovery_on bit is 1, which means that ADR is
turned on.

6. Execute the following query to simulate a long-running transaction:

CREATE TABLE Orders (
OrderId INT IDENTITY,
Quantity INT, Amount MONEY, OrderDate DATETIME2
)
GO
BEGIN TRANSACTION DECLARE @i INT=1

WHILE (@i <= 10000000) BEGIN
INSERT INTO Orders VALUES(@i*2,@i*0.5,DATEADD(MINUTE,@i,getdate())) Set
@i = @i + 1
END

The query creates an Orders table and inserts sample records into the Orders table
in an explicit transaction. Observe that BEGIN TRANSACTION has no corresponding
rollback or commit transaction.

Note the session ID of the query. The session ID of the query is in the bottom-right
corner of the query window:

Figure 9.14: The session ID of the query is 131

The query session ID or the SPID is 131.

Let the query run for around five minutes.

Disaster recovery | 475

7. While the query is running, open a new query window and execute the following
query to start the query rollback:

KILL 131
GO
KILL 131 with statusonly
GO
SELECT session_id,status from sys.dm_exec_requests where session_id=131

In the Results tab, notice that the query status is rollback:

Figure 9.15: The Results tab denoting that the query status is set as rollback

In the Messages tab, notice that the estimated time remaining to roll back the
transaction is 0 seconds:

Figure 9.16: The Messages tab denoting the estimated time of the query (0 seconds)

ADR provides an instant rollback, compared to non-ADR, where the estimated time
remaining to roll back was 30 seconds.

Disaster recovery
Disaster recovery (DR) refers to having business continuity during and after events that
impact an Azure region, such as a natural disaster or hacking incident that terminates
an entire Azure region.

DR for Azure SQL Database can be implemented through active geo-replication. An
auto-failover group can be configured for Azure SQL Database and SQL Managed
Instance as a business continuity solution. A failover group is designed to ease out the
deployment and management of geo-replication databases at scale.

Active geo-replication
Active geo-replication uses Always On technology to asynchronously replicate data to
a maximum of four readable secondaries in the same or any other Azure region. Active
geo-replication is available across all performance tiers except Hyperscale. A typical
active geo-replication environment is shown in Figure 9.17:

476 | High availability and disaster recovery

Figure 9.17: A typical active geo-replication environment

The DB 1 database is primarily stored in the South-Central US region, with two readable
secondaries in the US West and US East regions.

When you fail over to the secondary database, the endpoint or the connection string is
changed and you will have to make changes to the application so that you can connect
to the new primary.

Once the failover is complete, all secondary databases will automatically point to
the new primary. In addition to manual failover, active geo-replication also supports
automatic failover using auto-failover groups.

The default replication type in active geo-replication is asynchronous. However, if
the application needs to have synchronous replication, then you can do so by calling
sp_wait_for_database_copy_sync immediately after committing a transaction. This will
block the calling thread until all of the committed transactions have been replicated to
the secondary.

The procedure can add significant delay to the calling thread if the size of the
transaction log is being replicated is large. It's advised to use this procedure to prevent
the loss of critical data only, not all data.

Auto-failover groups represent another high availability and DR option available with
Azure SQL Database. Let's take a look at them now.

Disaster recovery | 477

Auto-failover groups
Auto-failover groups allow you to automatically recover one or more groups of SQL
databases or all the databases in an SQL Managed Instance in the event of a region
failure. All databases in an auto-failover group should belong to a single server, and they
will fail over to a single server as well.

Auto-failover group terms

• Failover group: A group of databases or all the instance databases between
the primary server and the secondary server that are to be recovered as a unit
if there is an outage in the primary region. A failover group in SQL Managed
Instance replicates all user databases in the instance and therefore only one
failover group can be configured on an SQL Managed Instance.

Note

The primary server is the one that hosts the primary database. The application
can read and write on the primary database. The secondary server is the one that
hosts the secondary database. The application can only read from the secondary
databases. The data is asynchronously replicated from the primary database to the
secondary databases. Primary and secondary servers can't be in the same region.

• Adding single and elastic databases to a failover group: When a database within
a server or an elastic pool is added to the failover group, a secondary database
with a performance level similar to that of the primary database is automatically
created on the secondary server (see Figure 9.18). If the primary database is in an
elastic pool, then an elastic pool with the same name is automatically created on
the secondary server.

When adding a database that already exists in the secondary database server,
however, it's not part of the failover group, and so a new secondary database is
created in the secondary server.

• Read-write listener: This is a DNS CNAME record that points to the primary
server URL. It allows the application to transparently connect to the available
primary server in the event of a failover. This is similar to an availability group
listener in an on-premises Always On configuration. The application doesn't
connect to the primary or the secondary server URL. Instead, it connects to
the read-write listener. In the event of a failover, the read-write listener will
automatically point to the new primary (secondary) server. Therefore, unlike
manual failover, the user doesn't have to change the application connection
string in the event of a failover.

478 | High availability and disaster recovery

• Read-only listener: This is a DNS CNAME record that points to the secondary
server. It allows the application to transparently connect to the secondary
server for read-only queries. However, the read workload should be tolerant of a
certain staleness of data. This is because the replication is asynchronous, and the
secondary database will be some data behind the primary database.

• Failover group initial seeding: When the failover group is configured for single,
elastic, or instance databases, there is an initial seeding (streaming existing data
from the primary database to the secondary database using the failover group
endpoint) that takes place before the data replication starts. Initial seeding is
the longest and most expensive operation. The seeding speed depends on the
size of your database, the number of databases, and the speed of the network
link between failover group entities. For SQL Managed Instance, now you can
take advantage of a low-latency, high-bandwidth, global virtual network peering
setup.

• DNS zone: A unique DNS zone ID is automatically created when SQL Managed
Instance is deployed. A secondary instance in the failover group should share the
same DNS zone ID. A DNS zone is not required for Azure SQL databases.

• Failover policy: The default failover policy is set to automatic; however, this can
be turned off if the failover process is controlled by the application.

Manual failover is required if automatic failover is turned off and the failover
process isn't controlled by the application.

Manual failover can also be initiated at any time it is required, independent of the
automatic failover policy. An example of manual failover is switching back to the
primary region once the region recovers from the outage and is available to host
resources.

• Planned failover: Users can initiate a planned failover to perform DR drills,
moving databases to different regions, or return (fail back) to the primary region
after an outage. There is no data loss during a planned failover. A planned failover
performs a full synchronization between the primary and secondary databases
before switching the roles.

Disaster recovery | 479

• Unplanned failover: Unplanned failover or forced failover needs to be a trigger
during an outage when the primary server is not accessible. There is no data
synchronization between the primary and secondary servers during the
switching of the roles, hence it results in data loss. When the original primary
server comes up, it automatically reconnects with the new primary server
without synchronization and becomes the secondary server.

• Manual failover: You can initiate a manual failover at any point as per your
requirements. You can initiate a friendly failover (with full data synchronization)
or a forced failover with data loss. Manual failover is required to recover the
databases when an auto-failover policy is not configured.

• Grace period with data loss hours: This setting controls the duration the system
fails for before initiating an automatic failover. For example, if the grace period
with data loss hours is set to 2 hours, then in the event of an outage in the
primary region, failover will take place after 2 hours. However, if the outage is
resolved before the grace period expires, failover isn't performed.

• Upgrading the primary database service tier: The service tier and performance
level of the primary database can be modified as and when required. The
performance level within the same service tier can be modified without
disconnecting the secondary database. In other words, you can upgrade the
primary database from Standard S0 to Standard S1 without disconnecting the
corresponding secondary database connection.

However, if you are switching between service tiers, then it's recommended (and
enforced) to first upgrade the secondary database and then the primary database to
avoid the termination of the secondary database connection.

If the secondary database is part of an auto-failover group, then it's advised not
to downgrade the secondary database service tier. This is to avoid performance
degradation in the event of a failover.

480 | High availability and disaster recovery

A high-level overview of an auto-failover group in Azure SQL Database

An auto-failover group must be configured with servers in different regions. You can
include all or some of the databases of a server in a failover group.

Figure 9.18 illustrates a typical configuration of a geo-redundant cloud application using
multiple databases in an auto-failover group:

Figure 9.18: Failover group data traffic flow for Azure SQL Database

In Figure 9.18, you can see that there are two logical Azure SQL Servers configured in
an auto-failover group with a geo-redundant application. This application accesses
multiple databases within Azure SQL Server.

A high-level overview of an auto-failover group in Azure SQL Managed Instance

In SQL Managed Instance, a failover group must be configured with a primary instance
that connects to a secondary instance in a different Azure region. The failover group
replicates all user databases to the secondary instance. Figure 9.19 shows a typical
overview of failover group data traffic:

Disaster recovery | 481

Figure 9.19: Failover group data traffic flow for SQL Managed Instance

In Figure 9.19, you can see two SQL managed instances configured in the auto- failover
group with the same DNS zone. These instances are accessed by a geo-redundant
application. This application uses read-write and read-only listeners to connect to
databases.

Activity: Configuring active geo-replication and performing manual
failover using the Azure portal
Consider a scenario: Mike needs to ensure that the data of Toystore Ltd. is shielded
from disaster or the failure of an entire region. To do this, Mike can configure
active geo-replication using the Azure portal to recover data and maintain business
continuity. He can also take precautions by performing manual failover from the
primary server to the secondary server. This activity has the following aims:

• To configure active geo-replication using the Azure portal for the toyfactory
database

• To perform manual failover from the primary server to the secondary server

482 | High availability and disaster recovery

Configuring active geo-replication

The following section explains how to configure active geo-replication for a standalone
Azure SQL Database:

1. Open the Azure portal in a web browser (https://portal.azure.com) and navigate to
the toyfactory database Overview pane.

2. Under the SETTINGS menu, find and select the Geo-Replication option:

Figure 9.20: The Geo-Replication option in the SETTINGS menu

https://portal.azure.com/

Disaster recovery | 483

In the Geo-Replication pane, you will see a list of target Azure regions:

Figure 9.21: The Geo-Replication pane displaying the target regions

The Primary regions for the database is East US and there aren't any secondary
replicas for the database.

3. Select the region name from the target region list to create a secondary replica:

Region: This shows you the region you selected to create the secondary server.

Database name: The name of the database that is to be replicated.

Secondary type: The type of the secondary database—readable or offline.

Elastic database pool: The elastic pool the database is part of. It displays none if the
database is not part of an elastic pool.

Pricing tier: The secondary database pricing tier. This is inherited from the primary
database.

Note

The lock icon in front of an option indicates that the option is locked and can't be
configured.

484 | High availability and disaster recovery

4. Click the Target server option to create a new target server in the secondary
region.

In the New server pane, provide Server name, Server admin login, and Password
details, as shown in Figure 9.22:

Note

The server admin name and password should be the same as those of the primary
server. This is to prevent login issues resulting from orphaned users.

Figure 9.22: Creating a new target server

Click the Select button to continue.

Disaster recovery | 485

5. You'll be taken back to the Create secondary pane:

Figure 9.23: The Create secondary pane

Click OK to create the secondary server and start the geo-replication.

As the geo-replication is being configured, you'll see the status on the
Geo-Replication pane:

Figure 9.24: The Geo-Replication pane displaying the status of the replication—Initializing…

486 | High availability and disaster recovery

The Initializing… status means that the secondary server is being provisioned and
the replication link is being established:

Figure 9.25: The Geo-Replication pane displaying the status of the replication—Seeding

The seeding process copies the existing data to the secondary server and it is the
most time-consuming and costly process. The seeding time depends on the size of
the database.

When the seeding is done, the data is replicated to the secondary database as and
when it arrives at the primary database:

Figure 9.26: The Geo-Replication pane displaying the completion of the replication

6. To verify this, open SQL Server Management Studio (SSMS) and sign in to the new
secondary server.

Note

When connecting to the secondary server, you'll have to add the firewall rule. It is
therefore advised to use the database-level firewall on the primary server.

This makes sure that the firewall rules are also copied to the secondary database
during the active geo-replication setup so that you can log in easily.

It's also advised to use contained users so that you don't have to move server
logins to the secondary server. Chapter 6, Security, covers firewall rules and
contained users in detail.

Disaster recovery | 487

7. In the Object Explorer window, expand the server, and then expand Databases. You
should see the toystore database. Expand the toystore database. You should see all
the objects in the toystore database:

Figure 9.27: The Object Explorer pane of SSMS

8. Press Ctrl + N to open a new query window. Execute the following query in the new
query window:

SELECT COUNT(*) FROM Sales.Customers GO INSERT INTO Warehouse.Colors
VALUES(100,'Light Green',1,getdate(),getdate()+10);

The select query will return as a success; however, the insert query will fail with the
following error:

Figure 9.28: The error displayed while inserting values

This is because the secondary database is read-only in an active geo-replication
configuration. The secondary database is therefore only available for read
transactions and now write transactions.

488 | High availability and disaster recovery

9. In the same SSMS session, connect to the primary server and execute the following
query against the toystore database in the primary server. Do not close the
secondary server query window:

INSERT INTO Warehouse.Colors
VALUES(100,'Magenta',1,getdate(),getdate()+10);

One row will be inserted into the Colors table.

Switch over to the query window with the secondary database connection. Execute
the following query to verify whether the newly inserted value has been properly
replicated to the secondary database or not:

SELECT @@ServerName As SecondaryServerName,* FROM Warehouse.Colors WHERE
ColorName='Magenta'

You should get the following output:

Figure 9.29: Confirming whether the inserted data is replicated in the secondary database

The data has indeed been correctly replicated to the secondary database. Now for the
second part of the activity, performing a manual failover.

Disaster recovery | 489

Performing a manual failover

To perform a manual failover, the following steps need to be taken:

1. In the toystore Geo-Replication pane, scroll down and locate the PRIMARY and
SECONDARIES databases:

Figure 9.30: The toystore Geo-Replication pane denoting the primary and the secondary databases

2. Select the three dots (highlighted in the red rectangle) as shown in Figure 9.30. In
the context menu, select Forced Failover:

Figure 9.31: The Forced Failover option in the context menu

3. Click Yes on the Failover message pop-up window to start the failover:

Figure 9.32: The Failover message pop-up window

The failover request will be submitted, and the failover will be initiated.

490 | High availability and disaster recovery

4. The failover status is displayed as shown in the following figure. The primary status
changes to Pending and the secondary replica status changes to Failover…:

Figure 9.33: The Geo-Replication pane denoting that the failover is in progress

Once the failover is complete, observe that the primary and secondary replica roles
have been reversed:

Figure 9.34: The Geo-Replication pane denoting that the failover is complete

Observe that the region color has also been reversed. The blue hexagon now
denotes that the primary region is the Central US region, and the green hexagon
denotes that the secondary region is now East US.

This completes the activity. In this activity, we configured active geo-replication and
performed a manual failover from a primary Azure SQL Server to a secondary Azure
SQL Server.

Disaster recovery | 491

Activity: Configuring an Azure SQL Database auto-failover group using
Azure portal
This activity covers the configuration of auto-failover groups for a standalone Azure
SQL Database. Consider the following scenario, again involving ToyStore Ltd..

Mike wants to ensure that whenever there is a disaster or an entire region fails, there
is no effect on the business of ToyStore Ltd., so he configures auto-failover groups that
allow him to automatically recover one or more groups of SQL databases. To configure
an auto-failover group for a standalone Azure SQL Database, the following steps need
to be taken.

1. Log in to the Azure portal (https://portal.azure.com) and open the packtdbserver
Azure SQL Server overview page. In the overview page, select Failover groups in
the Settings section and then select + Add group:

Figure 9.35: The toystore_Shard_1_50 Geo-Replication pane

https://portal.azure.com/

492 | High availability and disaster recovery

2. In the Failover group pane, configure the following settings:

Secondary Server: The Azure SQL server on another region that will host the
secondary databases. You'll have to create a new server if you don't have one
already.

Failover group name: The name of the failover group.

Read/Write failover policy: The default value is Automatic. Leave it as it is.

Read/Write grace period (hours): The default value is 1 hours. Leave it as it is.

Database within the group: Select the databases to add to the group:

Figure 9.36: The Failover group pane

Disaster recovery | 493

To add databases, click on Database within the group and then select the databases
from the Databases page as shown in Figure 9.37:

Figure 9.37: The Database page

Click Select to choose the selected databases and go back to the Failover groups
page as shown in Figure 9.38.

Click Create to provision the secondary server and the failover group. The failover
group shows the failover group details as shown in Figure 9.38:

Figure 9.38: Failover group page with the failover group name

494 | High availability and disaster recovery

Click on the failover group name to check the failover group progress:

Figure 9.39: Failover group detail

Figure 9.39 shows that the failover group has been created. The primary Azure SQL
Server packtdbserver is in East US 2 (shown in blue) and the secondary Azure SQL
Server toystore-centralus is in Central US.

The solid line from blue to green means that the failover group is created, and a dotted
line means that the failover group is being created.

You can also add/remove Azure SQL Databases, edit/remove failover groups, and
perform a forced failover from the failover group detailed view as shown in the
preceding figure.

Once created, you can follow the steps from the previous section to fail over and verify
the replication.

Creating an auto-failover group is as simple as shown here. The time it takes to
provision and replicate the database to a secondary Azure SQL Server depends on the
number of databases in the failover group and the size of the databases.

Disaster recovery | 495

Activity: Configuring active geo-replication for Azure SQL Database
using PowerShell
Mike ensures that the data of the Toystore Ltd. is shielded from the disaster. In
the case of a disaster or an entire region failure, he can recover or maintain his
business continuity by configuring the active geo-replication toystore database using
PowerShell.

Note

If you are short of time, you can execute the C:\Code\Chapter09\
ActiveGeoReplication\Manage-ActiveGeoReplication.ps1 file, providing the
appropriate parameters.

To configure active geo-replication for the toystore database using PowerShell,
perform the following steps:

1. Press the Windows + R keys to open the Run command window. Type PowerShell_
ISE.exe in the Run command window and hit Enter. This will open a new
PowerShell ISE editor window, where you'll write the PowerShell commands:

Figure 9.40: Opening PowerShell

496 | High availability and disaster recovery

2. In the PowerShell ISE window, select File from the top menu and click Save.
Alternatively, you can press Ctrl + S to save the file. In the Save As dialog
box, browse to C:\Code\Chapter09\. In the File name textbox, type Manage-
ActiveGeoReplication and click Save to save the file:

Figure 9.41: Creating the Manage-ActiveGeoReplication.ps1 file

3. Copy and paste the following code into Manage-ActiveGeoReplication.ps1 to define
script parameters:

param

(

[parameter(Mandatory=$true)] [String] $ResourceGroup,
[parameter(Mandatory=$true)] [String] $PrimarySqlServer,
[parameter(Mandatory=$true)] [String] $UserName,
[parameter(Mandatory=$true)] [String] $Password,
[parameter(Mandatory=$true)] [String] $SecondarySqlServer,
[parameter(Mandatory=$true)] [String] $SecondaryServerLocation,
[parameter(Mandatory=$false)] [bool] $Failover = $false,
[parameter(Mandatory=$false)] [String] $DatabasesToReplicate,

Disaster recovery | 497

[parameter(Mandatory=$false)]

Add/Remove database to/from secondary server [String] $Operation = "none",
[parameter(Mandatory=$false)]

[String] $AzureProfileFilePath

)

The parameter descriptions are as follows:

ResourceGroup: The resource group that hosts the primary Azure SQL server and
databases.

PrimarySqlServer: The name of the primary Azure SQL server.

UserName: The primary and secondary Azure SQL server admin username.

Password: The primary and secondary Azure SQL server admin password.

SecondarySqlServer: The secondary Azure SQL server name.

SecondaryServerLocation: The secondary Azure SQL server location.

Failover: A Boolean value set to false by default. When true, the script does the
failover from the primary Azure SQL server to the secondary SQL server.

DatabasesToReplicate: A comma-delimited list of Azure SQL Databases to be
replicated.

Operation: Accepts two values: Add and Remove; it is none by default. When set to Add,
the active geo-replication link is established for the databases. When set to Remove,
the active geo-replication link is removed for the databases.

AzureProfileFilePath: The full path of the Azure profile JSON file used for logging in
to an Azure subscription.

498 | High availability and disaster recovery

4. Copy and paste the following code to log in to Microsoft Azure, and set the Azure
context to your subscription:

log the execution of the script
Start-Transcript -Path ".\Log\Manage-ActiveGeoReplication.txt" -Append

Set AzureProfileFilePath relative to the script directory if it's not
provided as parameter

if([string]::IsNullOrEmpty($AzureProfileFilePath))
{
$AzureProfileFilePath="..\..\MyAzureProfile.json"
}

#Login to Azure Account

if((Test-Path -Path $AzureProfileFilePath))
{
$profile = Select-AzProfile -Path $AzureProfileFilePath
$SubscriptionID = $profile.Context.Subscription.SubscriptionId
}
else
{
Write-Host "File Not Found $AzureProfileFilePath" -ForegroundColor
Red

Provide your Azure Credentials in the login dialog box
$profile = Login-AzAccount
$SubscriptionID = $profile.Context.Subscription.SubscriptionId
}

#Set the Azure Context
Set-AzContext -SubscriptionId $SubscriptionID | Out-Null

The preceding code starts by logging in to the Manage-ActiveGeoReplication.txt
file created under the log directory within the parent directory of the Manage-
ActiveGeoReplication.ps1 script.

It then checks for the profile information in the JSON file provided by the
AzureProfileFilePath variable. If found, it then sets the PowerShell context to
the subscription ID, as specified in the profile file; otherwise, it asks the user to
annually log in to the Azure account to set the context.

Disaster recovery | 499

5. Copy and paste the following code to provision the secondary Azure SQL server if it
doesn't already exist:

if($Operation -eq "Add")
{
Check if Azure SQL Server Exists
An error is returned and stored in notexists variable if resource group
exists
Get-AzSqlServer -ServerName $SecondarySqlServer
-ResourceGroupName $ResourceGroup -ErrorVariable notexists
-ErrorAction SilentlyContinue
provision the secondary server if it doesn't exist
if($notexists)
{
Write-Host "Provisioning Azure SQL Server
$SecondarySqlServer" -ForegroundColor Green
$credentials = New-Object -TypeName System.Management.
Automation.PSCredential -ArgumentList $UserName, $(ConvertTo- SecureString
-String $Password -AsPlainText -Force)
$_SecondarySqlServer = @{ ResourceGroupName = $ResourceGroup; ServerName =
$SecondarySqlServer; Location = $SecondaryServerLocation;
SqlAdministratorCredentials = $credentials; ServerVersion = '12.0';
}
New-AzSqlServer @_SecondarySqlServer;
}

}
else
{
Write-Host $notexists -ForegroundColor Yellow
}

The preceding code will provision a new secondary Azure SQL server if the
$Operation parameter is set to Add. The SQL server creation code is similar to what
was used in Chapter 1, Introduction to Azure SQL managed databases.

500 | High availability and disaster recovery

6. Copy and paste the following code to configure active geo-replication for the
individual databases:

Configure Active Geo-Replication for individual databases
if(![string]::IsNullOrEmpty($DatabasesToReplicate.Replace(',',''))
-and $Operation -eq "Add")
{
$dbname = $DatabasesToReplicate.Split(',');
foreach($db in $dbname)
{
Write-Host "Replicating database $db to
$SecondarySqlServer " -ForegroundColor Green
#Get the database object for the given database name
$database = Get-AzSqlDatabase -DatabaseName $db
-ResourceGroupName $ResourceGroup -ServerName $PrimarySqlServer #pipe the
database object to New-
AzSqlDatabaseSecondary cmdlet
$database | New-AzSqlDatabaseSecondary
-PartnerResourceGroupName $ResourceGroup -PartnerServerName
$SecondarySqlServer -AllowConnections "No"
}
}

The preceding code first checks whether the $DatabaseToReplicate parameter is
empty. If it's not and the $operation parameter is set to Add, it splits the comma-
delimited list of the databases and configures active geo-replication for each one of
them using the New-AzSqlDatabaseSecondary cmdlet.

New-AzSqlDatabaseSecondary takes three parameters:

 - PartnerResourceGroupName: The resource group name that contains the
secondary SQL Server. The primary and secondary resource groups are
assumed to be the same in this script.

 - PartnerServerName: The name of the secondary Azure SQL server.

 - AllowConnections: This specifies the read intent of the secondary database. It's
set to No.

Disaster recovery | 501

7. Copy and paste the following code to remove active geo-replication for the
individual Azure SQL Databases:

if($Operation -eq "Remove")
{
$dbname = $DatabasesToReplicate.Split(','); foreach($db in $dbname)
{

Write-Host "Removing replication for database $db "
-ForegroundColor Green
$database = Get-AzSqlDatabase -DatabaseName $db
-ResourceGroupName $ResourceGroup -ServerName $PrimarySqlServer
$database | Remove-AzSqlDatabaseSecondary
-PartnerResourceGroupName $ResourceGroup -ServerName
$PrimarySqlServer -PartnerServerName $SecondarySqlServer
}
}

The preceding code runs when $Operation is set to Remove. It first splits the comma-
separated database list in the $DatabaseToReplicate parameter. It then removes the
replication link for each database using the Remove- AzSqlDatabaseSecondary cmdlet.

Remove-AzSqlDatabaseSecondary accepts three parameters:

 - PartnerResourceGroupName: The resource group of the secondary SQL server.
The script assumes that it's the same as the primary SQL server.

 - ServerName: The primary SQL server's name.

 - PartnerServerName: The secondary SQL server's name.

This only stops the replication between the primary and the secondary databases;
it doesn't delete the secondary databases. The database and server can be removed
separately if required.

502 | High availability and disaster recovery

8. Copy and paste the following code to fail over individual databases to the secondary
SQL server:

failover individual databases from primary to secondary
if($Failover -eq
$true)
{
$dbname = $DatabasesToReplicate.Split(','); foreach($db in $dbname)
{
Write-Host "Failover $db to $SecondarySqlServer..."
-ForegroundColor Green
$database = Get-AzSqlDatabase -DatabaseName $db
-ResourceGroupName $ResourceGroup -ServerName $SecondarySqlServer
$database | Set-AzSqlDatabaseSecondary
-PartnerResourceGroupName $ResourceGroup -Failover
}
}

The preceding code executes if the $Failover parameter is set to true. It first
splits the comma-delimited list of the databases in $DatabaseToReplicate and then
performs manual failover from the primary server to the secondary server using
Set-AzSqlDatabaseSecondary.

Set-AzSqlDatabaseSecondary accepts two parameters:

 - PartnerResourceGroupName: The resource group of the secondary SQL server.
The script assumes that it's the same as the primary SQL server.

 - Failover: Initiates the failover.

The database to fail over is piped to the Set-AzSqlDatabaseSecondary cmdlet. This
completes the script. Press Ctrl + S to save the file.

Disaster recovery | 503

Executing the PowerShell script

1. Press Windows + R to open the Run command window. Type PowerShell and hit
Enter to open a new PowerShell console window.

2. Change the directory to the folder that has the Manage-ActiveGeoReplication.
ps1 script inside of it. For example, if the script is in the C:\Code\Chapter09\
ActiveGeoReplication directory, then run the following command to switch to that
directory:

cd C:\Code\Chapter09\ActiveGeoReplication

3. In the PowerShell console, execute the following command to establish active
geo-replication for the toystore_Shard_1_50 and toystore_ Shard_50_100 databases:

.\Manage-ActiveGeoReplication.ps1 -ResourceGroup toystore
-PrimarySqlServer toyfactory -UserName sqladmin -Password Packt@pub2
-SecondarySqlServer toyfactory-centralus
-SecondaryServerLocation "Central US" -DatabasesToReplicate "toystore_
Shard_1_50,toystore_Shard_50_100" -Operation "Add"
-AzureProfileFilePath C:\Code\MyAzureProfile.json

The preceding command will call Manage-ActiveGeoReplication.ps1 to start active
geo-replication for the toystore_Shard_1_50 and toystore_Shard_50_100 databases
on the toyfactory primary server to the toyfactory-centralus secondary Azure SQL
server.

4. You will have to modify the command to provide the relevant parameter values.
In the PowerShell console window, run the following command to fail over the
databases to the secondary SQL server:

.\Manage-ActiveGeoReplication.ps1 -ResourceGroup toystore
-PrimarySqlServer toyfactory -UserName sqladmin -Password Packt@pub2
-SecondarySqlServer toyfactory-centralus
-SecondaryServerLocation "Central US" -DatabasesToReplicate "toystore_
Shard_1_50,toystore_Shard_50_100" -failover $true
-AzureProfileFilePath C:\Code\MyAzureProfile.json

The preceding command will fail over the databases from the primary server to
the secondary server. In other words, the primary becomes the secondary and vice
versa.

504 | High availability and disaster recovery

5. In the PowerShell console window, execute the following command to remove
active geo-replication:

.\Manage-ActiveGeoReplication.ps1 -ResourceGroup toystore
-PrimarySqlServer toyfactory -UserName sqladmin -Password Packt@pub2
-SecondarySqlServer toyfactory-centralus
-SecondaryServerLocation "Central US" -DatabasesToReplicate "toystore_
Shard_1_50,toystore_Shard_50_100" -Operation "Remove"
-AzureProfileFilePath C:\Code\MyAzureProfile.json

The preceding command will remove the replication link between the primary
and the secondary servers, though please note that the secondary server and the
databases will not be removed.

In this activity, we used PowerShell commands to create a secondary Azure SQL Server,
create active geo-replication between primary and secondary Azure SQL Servers, add/
remove databases to active geo-replication, and remove active geo-replication.

Activity: Configuring auto-failover groups for Azure SQL Database using
PowerShell
In this activity, we will configure auto-failover groups using PowerShell for ToyStore
Ltd.:

Note

If you are short of time, you can execute the C:\Code\Chapter09\
ActiveGeoReplication\Manage-FailoverGroup.ps1 file, providing the
appropriate parameters.

1. Press Windows + R to open the Run command window. Type PowerShell_ ISE.exe
in the Run command window and hit Enter. This will open a new PowerShell ISE
editor window. This is where you'll write the PowerShell commands:

Figure 9.42: Opening PowerShell

Disaster recovery | 505

In the PowerShell ISE, select File from the top menu and click Save. Alternatively,
you can press Ctrl + S to save the file. In the Save as dialog box, browse to the C:\
Code\Chapter09\ directory. In the File name textbox, type Manage-FailoverGroup.ps1
and click Save to save the file:

Figure 9.43: Creating the Manage-FailoverGroup.ps1 file

2. In the Manage-FailoverGroup.ps1 file, copy and paste the following code to define
the script parameters:

param (
[parameter(Mandatory=$true)] [String] $ResourceGroup,
[parameter(Mandatory=$true)] [String] $PrimarySqlServer,
[parameter(Mandatory=$false)] [String] $UserName,
[parameter(Mandatory=$false)] [String] $Password,
[parameter(Mandatory=$true)] [String] $SecondarySqlServer,
[parameter(Mandatory=$false)]
[String] $SecondaryServerLocation, [parameter(Mandatory=$false)] [bool]
$Failover = $false, [parameter(Mandatory=$false)] [String]
$DatabasesToReplicate, [parameter(Mandatory=$true)] [String]
$FailoverGroupName, [parameter(Mandatory=$false)] [String] $Operation =
"none", [parameter(Mandatory=$false)] [String] $AzureProfileFilePath

)

Most of the parameters are similar to what was explained in the previous activity,
except FailoverGroupName. This is the name of the failover group that is going to be
created.

506 | High availability and disaster recovery

3. Copy and paste the following code to log in to Microsoft Azure and set the Azure
context to your subscription:

log the execution of the script
Start-Transcript -Path ".\Log\Manage-FailoverGroup.txt" -Append # Set
AzureProfileFilePath relative to the script directory if it's not provided
as parameter if([string]::IsNullOrEmpty($AzureProfileFilePath))
{
$AzureProfileFilePath="..\..\MyAzureProfile.json"
}

#Login to Azure Account

if((Test-Path -Path $AzureProfileFilePath))
{
$profile = Import-AzContext -Path $AzureProfileFilePath
$SubscriptionID = $profile.Context.Subscription.SubscriptionId
}
else
{
Write-Host "File Not Found $AzureProfileFilePath" -ForegroundColor
Red

Provide your Azure Credentials in the login dialog box
$profile = Login-AzAccount
$SubscriptionID = $profile.Context.Subscription.SubscriptionId
}

#Set the Azure Context
Set-AzContext -SubscriptionId $SubscriptionID | Out-Null

The preceding code starts by logging in to the Manage-FailoverGroup.txt
file, created in the log directory within the parent directory of the Manage-
FailoverGroup.ps1 script.

It then checks for the profile information in the JSON file provided by the
AzureProfileFilePath variable. If found, it sets the PowerShell context to the
subscription ID, as specified in the profile file; otherwise, it asks the user to
manually log in to the Azure account to set the context.

Disaster recovery | 507

4. Copy and paste the following code to provision a new secondary SQL server, if one
doesn't already exist:

IF($Operation -eq "Create")
{
An error is returned and stored in notexists variable if resource group
exists
Get-AzSqlServer -ServerName $SecondarySqlServer
-ResourceGroupName $ResourceGroup -ErrorVariable notexists
-ErrorAction SilentlyContinue
provision the secondary server if it doesn't exist if($notexists)
{
Write-Host "Provisioning Azure SQL Server $SecondarySqlServer"
-ForegroundColor Green
$credentials = New-Object -TypeName System.Management.Automation.
PSCredential -ArgumentList $UserName, $(ConvertTo-SecureString -String
$Password -AsPlainText -Force)
$_SecondarySqlServer = @{ ResourceGroupName = $ResourceGroup; ServerName
= $SecondarySqlServer; Location = $SecondaryServerLocation;
SqlAdministratorCredentials = $credentials; ServerVersion = '12.0';
}
New-AzSqlServer @_SecondarySqlServer;
}

else
{
Write-Host $notexists -ForegroundColor Yellow
}

The preceding code is the same as what was explained in Chapter 1, Introduction
to Azure SQL managed databases, to provision a new SQL server. The new server is
provisioned only when $Operation is set to Create.

508 | High availability and disaster recovery

5. Copy and paste the following code to create the failover group:

Create the failover group
Write-Host "Creating the failover group $FailoverGroupName "
-ForegroundColor Green
$failovergroup = New-AzSqlDatabaseFailoverGroup '
–ResourceGroupName $ResourceGroup '
-ServerName $PrimarySqlServer '
-PartnerServerName $SecondarySqlServer '
–FailoverGroupName $FailoverGroupName '
–FailoverPolicy Automatic '
-GracePeriodWithDataLossHours 1
}

The preceding code creates a new failover group if the $Operation parameter is
set to Create. The New-AzSqlDatabaseFailoverGroup cmdlet accepts the following
parameters:

 - ResourceGroupName: The name of the resource group that contains the primary
SQL server

 - ServerName: The primary SQL server name

 - PartnerServerName: The secondary SQL server name FailoverGroupName: The
name of the failover group to be created

 - FailoverPolicy: The failover policy, Automatic or Manual

 - GracePeriodWithDataLossHours: The value for the duration the automatic
failover should wait after a region outage, in hours

The failover group is created at the primary server location.

Disaster recovery | 509

6. Copy and paste the following code to add the databases to the failover group:

Add databases to the failover group
if(![string]::IsNullOrEmpty($DatabasesToReplicate.Replace(',',''))
-and $Failover -eq $false -and $Operation -eq "Create")
{
$dbname = $DatabasesToReplicate.Split(','); foreach($db in $dbname)
{
Write-Host "Adding database $db to failover group
$FailoverGroupName " -ForegroundColor Green
$database = Get-AzSqlDatabase -DatabaseName $db
-ResourceGroupName $ResourceGroup -ServerName $PrimarySqlServer
Add-AzSqlDatabaseToFailoverGroup -ResourceGroupName
$ResourceGroup -ServerName $PrimarySqlServer -FailoverGroupName
$FailoverGroupName -Database $database
}

}

The preceding code splits the comma-delimited database names in the
$DatabasesToReplicate parameter and adds them to the group.

The Add-AzSqlDatabaseToFailoverGroup cmdlet adds the databases to the group and
accepts the following parameter values:

 - ResourceGroupName: The name of the primary SQL Server resource group.

 - ServerName: The primary SQL server's name.

 - FailoverGroupName: The name of the failover group the databases are to be
added to.

 - Database: The database object of the database to be added. This is set by calling
the Get-AzSqlDatabase cmdlet.

The databases are added to the failover group and replication sync is started.

510 | High availability and disaster recovery

7. Copy and paste the following code to manually fail over all the failover groups to the
secondary server:

failover to secondary
if($Failover)
{
Write-Host "Failover to secondary server $SecondarySqlServer "
-ForegroundColor Green
Switch-AzSqlDatabaseFailoverGroup -ResourceGroupName
$ResourceGroup -ServerName $SecondarySqlServer -FailoverGroupName
$FailoverGroupName
}

The Switch-AzSqlDatabaseFailoverGroup cmdlet does the manual failover. It accepts
the following parameters:

 - ResourceGroupName: The failover group that includes the SQL Server resource
group name

 - ServerName: The primary SQL server name

 - FailoverGroupName: The failover group name

Disaster recovery | 511

8. Copy and paste the following code to remove the failover group and stop active
geo-replication between the primary and secondary servers:

if($Operation -eq "Remove")
{
Write-Host "Deleting the failover group $FailoverGroupName "
-ForegroundColor Green
Remove-AzSqlDatabaseFailoverGroup -ResourceGroupName
$ResourceGroup -ServerName $PrimarySqlServer -FailoverGroupName
$FailoverGroupName

remove the replication link
$dbname = $DatabasesToReplicate.Split(','); foreach($db in $dbname)
{
Write-Host "Removing replication for database $db "
-ForegroundColor Green
$database = Get-AzSqlDatabase -DatabaseName $db
-ResourceGroupName $ResourceGroup -ServerName $PrimarySqlServer
$database | Remove-AzSqlDatabaseSecondary
-PartnerResourceGroupName $ResourceGroup -ServerName
$PrimarySqlServer -PartnerServerName $SecondarySqlServer
}
}

The preceding code is executed when the $Operation parameter is set to Remove.
Now, Remove-AzSqlDatabaseFailoverGroup deletes the failover group. It accepts the
following parameters:

 - ResourceGroupName: The failover group resource group name

 - ServerName: The primary SQL server name

 - FailoverGroupName: The name of the failover group that is to be deleted.
Removing the failover group doesn't stop replication sync.

The databases are still being replicated and are not part of a failover group. The
databases can still fail to the secondary server individually, as shown in the previous
activity.

Remove-AzSqlDatabaseSecondary removes or stops the replication, as explained in the
previous activity.

This completes the script. Press Ctrl + S to save the script.

512 | High availability and disaster recovery

Executing the PowerShell script

To execute the PowerShell script, perform the following steps:

1. Press Windows + R to open the Run command window. Type PowerShell and hit
Enter to open a new PowerShell console window.

2. Change the directory to the folder that has the Manage- FailoverGroup.ps1 script in
it. For example, if the script is in the C:\Code\Chapter09\ directory, run the following
command to switch to that directory:

cd C:\Code\Chapter09

3. In the PowerShell console window, execute the following command to create a new
failover group and add databases to it:

.\Manage-FailoverGroup.ps1 -ResourceGroup toystore
-PrimarySqlServer toyfactory -UserName sqladmin -Password Packt@pub2
-SecondarySqlServer toyfactory-centralus
-SecondaryServerLocation "Central US" -DatabasesToReplicate "toystore_
Shard_100_150,toystore_Shard_150_200" -Operation "Create"
-FailoverGroupName toyfactoryfailovergroup
-AzureProfileFilePath c:\Code\MyAzureProfile.json

The preceding command will create a new failover group, toyfactoryfailovergroup,
and add the toystore_Shard_100_150 and toystore_150_200 databases to the newly
created failover group.

The failover group name is the new endpoint to be used by the application
to connect to the failover group. In other words, the application connects to
toyfactoryfailovergroup.database.windows.net and not individual primary or
secondary database endpoints.

Note

The toystore_Shard_100_150 and toystore_150_200 databases were created in
Chapter 7, Scalability.

This is similar to the availability group listener in an Always On configuration.

The Azure SQL server that the failover group points to is transparent to the user. In
the case of a failover, the failover group endpoint points to the new primary.

Therefore, unlike active geo-replication, you don't need to manage the database
connection string (endpoint) within the application when the failover occurs.

Disaster recovery | 513

4. In the PowerShell console window, execute the following code to perform the
manual failover:

.\Manage-FailoverGroup.ps1 -PrimarySqlServer toyfactory -ResourceGroup
toystore
-SecondarySqlServer toyfactory-centralus -FailoverGroupName
toyfactoryfailovergroup -Failover $true -AzureProfileFilePath c:\Code\
MyAzureProfile.json

The preceding command will fail over all the databases in the
toyfactoryfailovergroup failover group to the secondary server and make it the
new primary server.

You can verify this from the Azure portal.

5. Copy and paste the following command to remove the failover group and stop the
replication between the primary and secondary servers:

delete failover group and stop the replication
.\Manage-FailoverGroup.ps1 -ResourceGroup toystore
-PrimarySqlServer toyfactory-centralus -UserName sqladmin -Password Packt@
pub2 -SecondarySqlServer toyfactory -SecondaryServerLocation "Central US"
-DatabasesToReplicate "toystore_Shard_100_150,toystore_Shard_150_200"
-Operation "Remove" -FailoverGroupName toyfactoryfailovergroup
-AzureProfileFilePath c:\Code\MyAzureProfile.json

The preceding command will remove the toyfactoryfailovergroup failover group
and break the replication link between the primary and secondary databases.

However, the secondary server and the databases won't be deleted.

Notice that the PrimarySqlServer parameter value is toyfactory-centralus and that
the SecondarySqlServer parameter value is toyfactory, which is the reverse of what
we provided in Step 2 of Executing the PowerShell script when creating the failover
group. This is because, when we did a manual failover, the primary and secondary
server roles were reversed. As mentioned earlier, the failover group is maintained
by the primary database, so, to delete the failover group, the primary is now the
secondary and the secondary is the new primary.

Up to now, we have seen steps to configure an auto-failover group for Azure SQL
Database. Now let's see the steps for configuring an auto-failover group in SQL
Managed Instance.

514 | High availability and disaster recovery

Activity: Configuring an auto-failover group for SQL Managed Instance
In this activity, we will learn to set up a failover group between SQL managed instances.

We will cover the following:

• Deploying a secondary virtual network

• Deploying secondary SQL managed instances for failover group setup

• Setting up global virtual network peering between a primary and secondary
virtual network

• Creating and testing a failover group

You need to have a primary SQL managed instance before deploying the secondary SQL
managed instance. We are using the same SQL managed instance as the primary one
that we deployed in Chapter 1, Introduction to Azure SQL managed databases.

Deploying a secondary virtual network

You need to manually prepare a virtual network before deploying a secondary SQL
managed instance using the Azure portal. This step is essential since it is a requirement
of having different IP ranges for the SQL Managed Instance subnet.

To verify the primary virtual network subnet IP ranges, follow these steps:

1. Go to the Azure portal and navigate to SQL Managed Instance resource group and
select the primary virtual network.

2. Select Subnets under Settings and keep a note of IP ranges for the SQL Managed
Instance subnet:

Figure 9.44: Primary SQL Managed Instance subnet range

Disaster recovery | 515

To create a secondary virtual network, follow these steps:

1. Go to the Azure portal and select Create a resource:

Figure 9.45: Creating a resource

2. Search for Virtual Network:

Figure 9.46: Searching for Virtual Network

516 | High availability and disaster recovery

3. Click on Create to deploy the virtual network resource:

Figure 9.47: Creating a virtual network resource

4. Fill the required details on the form, including the Subscription, Resource group,
Name, and Region fields, then move to the IP Addresses tab:

Figure 9.48: The Basics tab

Disaster recovery | 517

5. Make sure that you choose different IP ranges for the SQL Managed Instance
subnet than for the primary instance and click on the Review + create button to
deploy this virtual network. To read more about virtual networks and CIDR, please
visit https://devblogs.microsoft.com/premier-developer/understanding-cidr-
notation-when-designing-azure-virtual-networks-and-subnets/:

Figure 9.49: Virtual network IP Addresses tab

Deploying a secondary SQL managed instance

Deployment steps for secondary SQL managed instance deployment are mostly the
same as those we followed in Chapter 1, Introduction to Azure SQL managed databases,
for deploying an SQL managed instance. We will quickly recap some steps and look at
the steps that are essential to set up a secondary instance with a primary instance DNS
zone.

https://devblogs.microsoft.com/premier-developer/understanding-cidr-notation-when-designing-azure-virtual-networks-and-subnets/
https://devblogs.microsoft.com/premier-developer/understanding-cidr-notation-when-designing-azure-virtual-networks-and-subnets/

518 | High availability and disaster recovery

Follow these steps to create a secondary SQL managed instance:

1. Go to the Azure portal and select the single SQL Managed Instance deployment
option and fill the necessary details in the Basics form, then move to the
Networking tab:

Figure 9.50: SQL Managed Instance Basics tab

Disaster recovery | 519

2. Select the virtual network and subnet that we created in the previous virtual
network activity and move to the Additional settings tab:

Figure 9.51: SQL Managed Instance Networking tab

520 | High availability and disaster recovery

3. Select the geo-replication settings, such as deploying this instance as a failover
secondary and specifying the primary DNS zone, and make sure that the collation
and time zone settings match the primary instance. Finally, click on Review + create
to deploy the secondary SQL managed instance:

Figure 9.52: SQL Managed Instance Additional settings tab

Disaster recovery | 521

Configuring global virtual network peering between primary and secondary virtual
networks

This step is required to allow traffic between two SQL managed instances to transfer
data. You can use ExpressRoute or a virtual network–to–virtual network VPN tunnel to
set up this traffic, but here we are using an easy, low-latency, high-bandwidth global
VNet peering setup.

Please follow these steps to configure global VNet peering between cross-region virtual
networks:

1. Go to the Azure portal, navigate to the primary instance resource group, and select
the virtual network.

2. Select the Peerings option under Settings and click on Add:

Figure 9.53: The Peerings pane

522 | High availability and disaster recovery

3. Input the primary and secondary link names, choose the remote virtual network for
the secondary server, and click on Add:

Figure 9.54: The Add peering form

Disaster recovery | 523

4. You can monitor the notification bell icon for an indication of the successful
deployment of peering connections:

Figure 9.55: Notification for peering connections

Creating and testing the failover group

So far, we have deployed a secondary SQL managed instance and set up the data traffic
between the primary and secondary virtual network using global virtual network
peering. Now let's create a failover group to start the geo-replication. The secondary
instance should be empty before adding it to the failover group.

To create and test the failover group, follow these steps:

1. Go to the Azure portal, navigate to the primary SQL managed instance and select
Failover groups under Data management. Click on Add group:

Figure 9.56: Failover groups pane

524 | High availability and disaster recovery

2. Fill in Failover group name and select the secondary SQL managed instance. Click
on Create to deploy:

Figure 9.57: Instance Failover Group pane

Disaster recovery | 525

3. After successful deployment, you will see the status of the failover group using the
Failover groups pane in SQL Managed Instance:

Figure 9.58: Failover groups pane after deployment

Testing the failover

In this step, you will fail your failover group over to the secondary server, and then fail
back using the Azure portal:

1. Go to the Azure portal and navigate to your secondary SQL managed instance.
Select Failover groups under Data management.

526 | High availability and disaster recovery

2. Review which SQL managed instance is the primary, and which instance is the
secondary:

Figure 9.59: Secondary SQL Managed Instance failover group

3. Select Failover and then select Yes on the warning about TDS sessions being
disconnected:

Figure 9.60: TDS warning notification

Summary | 527

4. Review the failover group state; the two SQL managed instances should have
switched roles:

Figure 9.61: Verifying the role change after failover

5. Go to the new secondary SQL managed instance and select Failover once again to
failback to the primary instance.

In this activity, we have learned to create a failover group for an SQL Managed Instance
for a business continuity solution. We have seen steps to deploy a secondary SQL
managed instance and global virtual network peering. At the end of the activity, we
created and tested the failover group.

Summary
In this chapter, you learned about the high availability and DR features of Azure SQL
Database and SQL Managed Instance. High availability is built into Azure SQL Database
and SQL Managed Instance and is managed by Microsoft, whereas DR can be achieved
by configuring active geo-replication and failover groups as and when required.

You also learned about ADR, a new feature introduced with Azure SQL Database, SQL
Managed Instance, and SQL Server 2019, which provides instant database recovery,
transaction rollbacks, and aggressive log truncation.

Furthermore, you saw how zone-redundant configuration provides additional high
availability by replicating the database in multiple Availability Zones within the same
region.

In the next chapter, you will learn about how to monitor an Azure SQL Database and
SQL Managed Instance using the Azure portal, dynamic management views, and
extended events to help improve the performance of your application.

This chapter covers different techniques to monitor and tune a SQL database and a
managed instance. You will learn how to monitor Azure SQL Databases and managed
instances using the Azure portal, dynamic management views (DMVs), and extended
events. You will learn how to tune an Azure SQL Database using automatic tuning and
Query Performance Insight. You will also learn how to implement in-memory features
to improve workload performance.

Monitoring and
tuning

10

530 | Monitoring and tuning

By the end of this chapter, you will be able to:

• Monitor and tune an Azure SQL Database or SQL Managed Instance from the
Azure portal

• Monitor an Azure SQL Database or SQL Managed Instance using DMVs

• Monitor an Azure SQL Database using extended events

• Implement in-memory technologies to improve database performance

• Monitor an Azure SQL Database and SQL Managed Instance using Azure SQL
Analytics

• Monitor and tune an Azure SQL Managed Instance using HammerDB and the QPI
library

The following section demonstrates how to monitor an Azure SQL Database or SQL
Managed Instance through the Azure portal.

Monitoring an Azure SQL Database and SQL Managed
Instance using the Azure portal
Firstly, it is easy to monitor Azure SQL Database and SQL Managed Instance storage
utilization using the Azure portal. The Database data storage option in the Azure SQL
Database Overview section provides a chart of used space, allocated space, and the
maximum storage size:

Figure 10.1: Database data storage chart

Monitoring an Azure SQL Database and SQL Managed Instance using the Azure portal | 531

Similarly, the Storage utilization section in the SQL Managed Instance Overview tab
can give you a quick overview of the used storage and maximum storage of a managed
instance:

Figure 10.2: Storage utilization overview chart

Beyond storage, the Azure portal provides some other more sophisticated monitoring
options, which are available in the Monitoring section for Azure SQL Database and SQL
Managed Instance.

The Monitoring section for Azure SQL Database and SQL Managed Instance in the
Azure portal has the following options:

Figure 10.3: The Monitoring section for Azure SQL Database and SQL Managed Instance

532 | Monitoring and tuning

There is an additional functionality for Azure SQL Database in the Azure portal called
Intelligent Performance, which we will discuss in a later section.

Let's look at each of these options in detail.

Monitoring database metrics
Database metrics such as CPU percentage, DTU percentage, and data I/O can be
monitored in the Overview section of Azure SQL Database. For SQL Managed Instance,
you can monitor the average CPU percentage metric and storage usage for an instance
using the Overview tab.

The Overview section of Azure SQL Database displays the CPU percentage for the past
hour, the last 24 hours, or the last 7 days, in the form of a line chart:

Figure 10.4: Compute utilization metrics

Monitoring an Azure SQL Database and SQL Managed Instance using the Azure portal | 533

The Overview section of SQL Managed Instance displays the average CPU percentage
for the past hour, the last 24 hours, or the last 7 days, in the form of a line chart:

Figure 10.5: CPU utilization for the specified duration

You can even pin the chart to your Azure portal dashboard by clicking on the pin icon in
the upper-right corner of the chart.

This way, you can monitor your database DTU percentage or instance CPU usage as and
when required.

Note

In order to see the graph working, a workload needs to be running. You can
achieve this by executing the Start-Workload.sql file in the C:\Code\Chapter10
folder.

534 | Monitoring and tuning

To view the metrics by running the workload, open a new PowerShell session and run
the following command:

SQL Database

.\Start-Workload.ps1 -sqlserver toyfactory -database toystore -sqluser
sqladmin -sqlpassword Packt@pub2 -workloadsql .\workload.sql

SQL Managed Instance

.\Start-Workload.ps1 -sqlserver 'packtsqlmi.<dnszone>.database.windows.net'
-database toystore -sqluser miadmin -sqlpassword 'Password' -workloadsql .\
workload.sql

The preceding command will use the ostress.exe RML utility (in the Start-Workload.
ps1 file) to execute the queries specified in the workload.sql file against the toystore
database in the toyfactory Azure SQL server.

For a more detailed analysis and to monitor other metrics, click the line chart and
it will redirect you to the Metrics section of Azure SQL Database or SQL Managed
Instance. The following DTU percentage chart is displayed under the Metrics section of
a database:

Figure 10.6: Avg DTU utilization for the toystore database

Monitoring an Azure SQL Database and SQL Managed Instance using the Azure portal | 535

The average CPU percentage chart shown in Figure 10.7 is for SQL Managed Instance:

Figure 10.7: Avg DTU utilization for the packtsqlmi managed instance

The Metrics pane gives you further insight into the workload by allowing you to
monitor other metrics, such as CPU percentage, data I/O percentage, and database
size percentage for Azure SQL Database. For SQL Managed Instance, the average CPU
percentage, I/O bytes read/written, and storage space reserved/used metrics can
be monitored using the Metrics pane. Hover the mouse over the line chart, and the
metrics at that point in time will be displayed at the bottom.

The Metrics pane also allows you to view metrics in multiple ranges, such as the past
hour, the past 24 hours, the past week, and even a custom time range.

Select the metrics you want to monitor, name the chart, and pin it to the Azure portal
dashboard for future monitoring.

Note

To name the chart, select the pen icon next to Compute utilization. The default
chart name is Compute utilization for Azure SQL Database.

You can select one or more metrics and analyze the type of workload. For example, in
the preceding chart for Azure SQL Database, the workload is CPU-intensive because
the DTU percentage is equal to the CPU percentage, and because a data I/O percentage
hasn't been recorded during the time period for Azure SQL Database.

536 | Monitoring and tuning

You can add an alert for the proactive monitoring of a particular metric. For example,
you can add an alert to send email notifications whenever the Azure SQL Database DTU
percentage or SQL Managed Instance average CPU percentage crosses a threshold,
such as 80%, or if the database size gets bigger than a certain threshold. In the next
section, we'll talk about setting up alert rules.

You can even take preventative action automatically by using runbooks, similar to what
was explained in Chapter 7, Scalability.

Alert rules, database size, and diagnostic settings
In this section, we will discuss how to create alerts for Azure SQL Database and SQL
Managed Instance using the Azure portal, view the database size, and capture data
using diagnostic settings. This section remains the same for Azure SQL Database
and SQL Managed Instance, since both offerings use the Azure monitoring service to
configure and manage metrics-based alerts.

Alert Rules

As stated earlier, you can create email alerts on the metrics you wish to monitor.

To create an alert using the Azure portal, follow these steps:

1. From the database Overview pane, select Alerts in the Monitoring section.

Figure 10.8: The Monitoring section

2. On the Alerts page, select New alert rule and fill out the alert details to create and
set up the alert:

Figure 10.9: Creating a new alert rule

Monitoring an Azure SQL Database and SQL Managed Instance using the Azure portal | 537

3. On the Create alert rule page, you'll have to specify the alert Condition (when
it is to be triggered) and the alert Actions (what is to be done when the alert is
triggered):

Figure 10.10: Specifying the alert condition

538 | Monitoring and tuning

4. To add a condition, click the Select condition button under the Condition heading.
On the Configure signal logic page, select CPU percentage as the alert condition:

Figure 10.11: Configuring signal logic for the Azure SQL database

Monitoring an Azure SQL Database and SQL Managed Instance using the Azure portal | 539

Figure 10.12 shows the Configure signal logic page for SQL Managed Instance:

Figure 10.12: Configuring signal logic for the SQL managed instance

The new page displays a line chart for the last hour for the selected signal, CPU
percentage. Scroll to the bottom and locate the Alert logic section.

The Alert logic section defines the threshold. There are two types of threshold,
Static and Dynamic:

540 | Monitoring and tuning

Figure 10.13: Using Static threshold for the alert logic

A Static threshold defines a threshold value, say, 70%. Therefore, whenever, the
average (as defined by Aggregation type) CPU percentage is greater than 70% (as
defined by Operator), the alert is triggered.

A Dynamic threshold uses advanced machine learning to automatically determine
the threshold value using the metric's historical values:

Figure 10.14: Using Dynamic threshold for the alert logic

Monitoring an Azure SQL Database and SQL Managed Instance using the Azure portal | 541

The Dynamic threshold doesn't have a static threshold value. The Threshold
Sensitivity setting defines the amount of deviation of the metric from the threshold
that triggers an alert.

A high Threshold Sensitivity setting triggers an alert if there's the slightest
deviation from the metric series pattern. A medium Threshold Sensitivity setting
is less stringent and more balanced than a high threshold. A low Threshold
Sensitivity setting triggers an alert when there's a large deviation from the metric
series pattern. There are no defined values for deviation with high, medium, or low
threshold sensitivities.

The Dynamic setting also allows us to configure the number of violations
required during a certain time period to trigger an alert. This setting is found in
the Advanced settings. The default is at least 4 violations in the last 20 minutes.
This means that if, in the past 20 minutes, the CPU utilization has gone above the
threshold of, say, 70% four times, then an alert is triggered.

The Dynamic threshold can also ignore data before a given time. When this is
specified, the Dynamic threshold calculation is done after the date specified in the
Ignore data before setting.

The Dynamic threshold setting helps us to configure alerts for different metrics
when there are no defined alert threshold values.

5. Click Done to save the settings and return to the Create alert rule page. On the
Create alert rule page, we can see that the CPU percentage alert condition has
been added.

The Actions section defines the action or the steps to be performed when an alert
is triggered. The action could be an email to the concerned person, or automated
steps defined by webhooks, runbooks, or functions.

Scroll down to Alert rule details and provide Alert rule name, Description
(optional), and Severity values:

542 | Monitoring and tuning

Figure 10.15: Alert rule details

6. Click Create alert rule to create the alert.

You can also add a webhook to the alert to take preventative action automatically
when the alert threshold is reached. For example, let's say you create an alert that
sends out an email whenever the database size crosses the 80% threshold.

The administrator sees the email alert and increases the database size so that the
customers aren't affected. However, you can automate this in the following ways:

• By creating an Azure Automation job that runs a PowerShell script to increase
the database's size

• By creating a webhook for the Azure Automation job

• By specifying the webhook in the alert definition

The next time the database size percentage is greater than 80%, the alert will send out
an email notification to the administrator and will trigger the webhook. This will start
the Azure Automation job, and the database size will be increased.

Monitoring an Azure SQL Database and SQL Managed Instance using the Azure portal | 543

Diagnostic settings and logs
Like alerts, this feature is also the same for both Azure SQL Database and SQL Managed
Instance, since it's inherited from the Azure Monitor service.

Diagnostic settings allow you to collect data such as database wait statistics, timeouts,
errors, and database blocks to troubleshoot performance issues or audit an Azure SQL
database.

The following data can be captured using diagnostic settings:

Figure 10.16: Data captured using diagnostic settings for Azure SQL Database

For SQL Managed Instance, using diagnostic settings, you can collect resource usage
stats, DevOps operations audit events and SQL security audit events at the instance
level, and SQL Intelligent Insights and SQL Server Query Store runtime stats/wait stats
at the database level.

544 | Monitoring and tuning

The following data can be captured for SQL Managed Instance at the instance level:

Figure 10.17: Adding a diagnostic setting for capturing data at the instance level

The following data can be captured for SQL Managed Instance at the database level:

Figure 10.18: Adding a diagnostic setting for capturing data at the database level

The method for enabling the diagnostic logs is the same for both Azure SQL Database
and SQL Managed Instance, and the following is an example of enabling diagnostic
settings for Azure SQL Database.

To enable diagnostic settings, on the toystore database page, search for diagnostic, and
click to open the Diagnostic settings page:

Monitoring an Azure SQL Database and SQL Managed Instance using the Azure portal | 545

Figure 10.19: Diagnostic settings

On the Diagnostics settings pane, follow these steps:

1. Click Add diagnostic setting to add a new diagnostic setting.

2. Provide a name for this setting. For example, if you plan to collect wait stats, you
can name it toystore wait stats.

3. Select Archive to a storage account and then select the storage account where the
diagnostic data will be saved.

You can also stream the data to an event hub for real-time monitoring or send it to
Log Analytics.

546 | Monitoring and tuning

4. Check DatabaseWaitStatistics and set Retention to 0. The retention only applies to
the Archive to a storage account option.

The Archive to a storage account option lets you save the diagnostic data to an
Azure Storage container. The log files can therefore be used for troubleshooting as
and when required:

Figure 10.20: The Diagnostics settings pane

Monitoring an Azure SQL Database and SQL Managed Instance using the Azure portal | 547

5. Click Save to start collecting data.

The logs will be captured and archived to the given storage account:

Figure 10.21: Logs captured to the storage account

The logs are saved in JSON format as shown in the following code:

{
"records": [

{
"LogicalServerName": "toyfactory", "SubscriptionId": "bf64f3c6-6e64-48c5-
a7cc-
6c35b4f9aebf", "ResourceGroup": "toystore",
"time": "2018-01-30T02:42:27.2000000Z", "resourceId": "/SUBSCRIPTIONS/
BF64F3C6-6E64-48C5-
A7CC-6C35B4F9AEBF/RESOURCEGROUPS/TOYSTORE/PROVIDERS/MICROSOFT.SQL/
SERVERS/TOYFACTORY/DATABASES/TOYSTORE",
"category": "DatabaseWaitStatistics", "operationName":
"DatabaseWaitStatistcsEvent", "properties":
{"ElasticPoolName":"","DatabaseName":"toystore","start_utc_date":"2018-01-
30T02:42:27.2000000Z","end_utc_date":"2018-01-30T02:47:27.1530000Z","wait_
type":"SOS_SCHEDULER_
YIELD","delta_max_wait_time_ms":0,"delta_signal_wait_time_
ms":3267,"delta_wait_time_ms":3266,"delta_waiting_tasks_count":51}
...
...
]
}

You can analyze the JSON in your favorite JSON editor.

548 | Monitoring and tuning

6. To delete a diagnostics setting, navigate to the Diagnostics settings pane and click
Edit setting next to the diagnostics setting you wish to delete:

Figure 10.22: Editing a diagnostic setting

On the resulting pane, select Delete to delete the setting:

Figure 10.23: Deleting a diagnostic setting

In this section, we talked about configuring database alerts to monitor an Azure SQL
Database and enable diagnostic logs for the detailed monitoring of an Azure SQL
Database. In the next section, we'll look at some of the built-in monitoring capabilities
of Azure SQL Database, such as performance recommendations, Query Performance
Insight, and automatic tuning to analyze and tune the database.

Intelligent Performance
The Intelligent Performance section for an Azure SQL Database on the Azure portal
has the following options:

Figure 10.24: Intelligent Performance section options

Monitoring an Azure SQL Database and SQL Managed Instance using the Azure portal | 549

We will discuss the Query Performance Insight option in particular.

Query Performance Insight
Query Performance Insight works on top of the Query Store and requires that Query
Store is enabled on the Azure SQL Database.

Query Store, introduced in SQL Server 2016, records queries, plans, and runtime
statistics for detailed query performance analysis.

In an on-premises SQL Server instance, as well as in Azure SQL, Query Store provides
a graphical interface, which lists queries by time window. This helps with analyzing
database usage patterns and query plan changes.

It provides an easy way to identify and force the best query plan out of multiple query
plans for the same query.

Note

To read more about Query Store for on-premises SQL servers, visit https://docs.
microsoft.com/sql/relational-databases/performance/monitoring-performance-by-
using-the-query-store.

Query Performance Insight analyses the data collected in the Query Store and does the
following for Azure SQL Database:

• Shows the percentage usage of CPU, data I/O, and log I/O database metrics,
which constitute DTUs.

• Lists the top queries by CPU, data I/O, log I/O, duration, and execution count.
It also provides further details on individual queries such as execution count,
duration, CPU, data I/O, and log I/O percentage utilization.

• Lists performance recommendations for creating an index, dropping an index,
fixing schema issues, and parameterized queries.

In this section, we learned how to save diagnostic data using Diagnostics settings.
The diagnostic logs can be saved to an Azure Storage account, saved to a Log Analytics
workspace, or streamed to an event hub. In order to read the diagnostic logs from an
Azure Storage account or event hub, you'll have to write a custom solution. However,
we can use the Kusto query language (KQL) to read and parse diagnostic logs in a Log
Analytics workspace. We'll learn how this is done in the next section.

To learn more about KQL, visit https://docs.microsoft.com/azure/data-explorer/
kusto/query/tutorial?pivots=azuremonitor.

https://docs.microsoft.com/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/azure/data-explorer/kusto/query/tutorial?pivots=azuremonitor
https://docs.microsoft.com/azure/data-explorer/kusto/query/tutorial?pivots=azuremonitor

550 | Monitoring and tuning

Analyzing diagnostic logs using Azure SQL Analytics
Azure SQL Analytics (which is in preview at the time of writing this book) is a cloud
monitoring solution that can be used to monitor one or more Azure SQL Databases,
SQL Managed Instances, or elastic database pools. This solution shares the same
method of configuration for both SQL Database and SQL Managed Instance, so all the
activities will be concerned with Azure SQL Database only.

Azure SQL Analytics analyses diagnostics data that was logged by enabling the
diagnostic settings (as discussed previously in the Diagnostic Settings and Logs section)
to provide insights into things such as blocks, resource limits, deadlocks, wait stats, and
timeouts. Moreover, custom monitoring rules and alerts can also be set up to enhance
existing monitoring capabilities.

Azure SQL Analytics uses diagnostic logs for Azure SQL Database. Therefore, the first
step is to enable diagnostic logs to send the logs to the Log Analytics workspace.

The Log Analytics workspace acts as a container for the Azure SQL Database diagnostic
logs. The Log Analytics workspace is the input for Azure SQL Analytics.

Creating a Log Analytics workspace
To create a Log Analytics workspace, follow these steps:

1. In the Azure portal search box, type Log Analytics and select Log Analytics
workspaces from the search results:

Figure 10.25: Navigating to Log Analytics workspaces in the Azure portal

2. On the Log Analytics workspaces page, click Add to create a new Log Analytics
workspace:

Figure 10.26: Creating a new Log Analytics workspace

Analyzing diagnostic logs using Azure SQL Analytics | 551

3. On the Create Log Analytics workspace page, provide the values shown in Figure
10.27:

Figure 10.27: Log Analytics workspace details

Note

Choose a different name for your Log Analytics workspace.

552 | Monitoring and tuning

4. Click Next: Pricing tier to continue. There's only one pricing option available at the
time of writing this book:

Figure 10.28: Log Analytics workspace - Pricing tier

5. Click Review + Create and then Create to create the new Log Analytics workspace.
We can skip the Tags tab.

6. The next step is to send the diagnostic data to the Log Analytics workspace created
in the previous steps. To do that, navigate to the toystore database page.

In the search box, type diagnostic:

Figure 10.29: Diagnostic settings

Note

You can do this for all of the shards created in Chapter 7, Scalability.

Analyzing diagnostic logs using Azure SQL Analytics | 553

7. Select Diagnostic settings to open the Diagnostic settings page.

If you already have a diagnostic setting, then click Edit setting. Otherwise, select
Add diagnostic setting to create a new one.

As we already have an existing diagnostic setting from the previous exercise, we'll
edit the existing one:

Figure 10.30: Editing an existing diagnostic setting

8. On the Diagnostics settings page, check the Send to Log Analytics checkbox and
then select the Log Analytics workspace created in the last step.

Under the Log section, select all the values.

554 | Monitoring and tuning

9. Click Save to save the settings:

Figure 10.31: Selecting all Log values

Analyzing diagnostic logs using Azure SQL Analytics | 555

We now have a Log Analytics workspace that's connected to the toystore diagnostic
settings log. Do this for all the existing toystore shards (databases).

We don't need to access the Log Analytics workspace to query the diagnostic logs.
We can analyze the logs from the Azure portal's Monitoring | Logs section. The Logs
section provides a UI KQL editor to write KQL queries to analyze logs:

Figure 10.32: Querying for the Avg CPU usage

The preceding figure shows the Logs section. When you click on Logs, you are
presented with ready-to-use queries such as Avg CPU usage, Loading Data, Wait stats,
and Performance troubleshooting. You can get more KQL queries from the Community
Git repo link at the top-right corner of the window.

Click on the Run button for the Avg CPU usage query. The query is copied to a new
query window and is executed as shown here:

Figure 10.33: Analyzing the average CPU statistics

556 | Monitoring and tuning

The preceding figure doesn't show any data as there are no logs available. However,
if you run this after running the scripts in the Generating a workload and reviewing
insights section under Creating an Azure SQL Analytics solution, you will see the
statistics from the preceding query.

As KQL is a new language and it may take time to learn it, we can use Azure SQL
Analytics to analyze the diagnostics logs visually using graphs. Let's see how this is done
in the next section.

Creating an Azure SQL Analytics solution
The next step is to create an Azure SQL Analytics solution.

1. Type Azure SQL Analytics in the search box and select Azure SQL Analytics
(Preview) from the search results:

Figure 10.34: Navigating to Azure SQL Analytics (Preview)

2. On the Azure SQL Analytics page, select the Log Analytics workspace created in
the previous step, and click Create to create the Azure SQL Analytics solution:

Figure 10.35: The previously created Log Analytics workspace

Once the Azure SQL Analytics solution is provisioned, it'll be available under All
resources in the Azure portal, as shown here:

Analyzing diagnostic logs using Azure SQL Analytics | 557

Figure 10.36: All resources page in the Azure portal

As we don't have any workload or activity on the databases, we won't be able to see any
analytics as such. Let's generate some activity and then review the insights from the
Azure SQL Analytics solution.

Generating a workload and reviewing insights
To generate a workload, execute each of the following PowerShell scripts in its own
PowerShell console window. There should be five different PowerShell console
windows, one for each of the scripts.

Note

The PowerShell scripts are in the ~\IntelligentInsights\Chapter10 folder in the
code bundle.

The Blocking1.ps1, Blocking2.ps1, and Blocking3.ps1 scripts simulate a blocking scenario:

.\Blocking1.ps1 -server packtdbserver.database.windows.net -database toystore
-user dbadmin -password Awesome@1234

.\Blocking2.ps1 -server packtdbserver.database.windows.net -database toystore
-user dbadmin -password Awesome@1234

.\Blocking3.ps1 -server packtdbserver.database.windows.net -database toystore
-user dbadmin -password Awesome@1234

The HighIO_Timeouts.ps1 script simulates a timeout scenario:

.\HighIO_Timeouts.ps1 -server packtdbserver.database.windows.net -database
toystore -user dbadmin -password Awesome@1234

The HighIO1.ps1 script simulates a high log I/O scenario:

.\HighIO1.ps1 -server packtdbserver.database.windows.net -database toystore
-user dbadmin -password Awesome@1234

558 | Monitoring and tuning

You will have to change the server, database, user, and password parameter values
before you run the scripts.

Let the scripts run for an hour or so, and the analytics should show in another hour or
two. We can view the analytics by following these steps:

1. To view the analytics, navigate to the All resources page in the Azure portal and
locate and open the Azure SQL Analytics solution created in the previous section. If
you are unable to locate this, go to General and then Workspace Summary. In the
Azure SQL Analytics (Preview) tile, click View Summary:

Figure 10.37: Azure SQL Analytics summary

Analyzing diagnostic logs using Azure SQL Analytics | 559

2. The summary shows two Azure SQL databases for which Azure SQL Analytics
was enabled. You can, however, monitor managed instances, managed instance
databases, and elastic database pools through one single monitoring interface:

Figure 10.38: Azure SQL Analytics—Summary

3. Click Azure SQL Databases. There's a lot of information being displayed. Let's look
at the graphs one by one:

Figure 10.39: The TOP METRIC UTILIZATION PER DATABASE analytic

The TOP METRIC UTILIZATION PER DATABASE analytic displays the top basic
metrics (CPU/I/O/memory) for each monitored database.

The top metric is LOG IO. This is because of the workload we ran in the previous
step.

You can browse Azure SQL Analytics for things such as blocks, wait statistics, and
resource limits. However, let's see how Intelligent Insights helps to sum up the
issues for a database.

560 | Monitoring and tuning

4. Click on the packtdbserver.toystore database in Figure 10.39 to open the insights
for the database:

Figure 10.40: The packtdbserver.toystore database insights

We can see the two problems that we simulated with the workload we ran previously.
The Intelligent Insights summary highlights the following:

• The database is hitting its log limits, and the average log consumption has
reached 100%.

• The blocking provides the query hash for the head blocker. Clicking on the lead
blocker query hash will give you the lead blocker query.

Moreover, to get into details of the blocks, click on the blocking graph on the Azure SQL
Analytics overview page.

The right side of the Intelligent Insights page displays the top queries by duration. To
get the details of a query, click the query row. For example, to find out the query text
for the longest-running query, sort the query by maximum duration (MAX (S)) and click
on the top row:

Analyzing diagnostic logs using Azure SQL Analytics | 561

Figure 10.41: The Query page

Along with the query text, duration, waits duration, CPU, data I/O, log I/O, CPU, and
the number of query executions with timestamps are also displayed. The preceding
snapshot is cropped for the sake of brevity.

Creating alerts

Enabling diagnostic settings to send logs to the Log Analytics workspace allows us to
create alerts for incidents such as blocking, resource limits, and deadlocks:

1. To create alerts from the Azure portal, select the Log Analytics workspace created
earlier:

Figure 10.42: The previously created Log Analytics workspace

2. Click on the Log Analytics workspace, named ToystoreSQLWorkspace (the name may
be different in your case).

562 | Monitoring and tuning

3. On the Log Analytics workspace page, search for Alert and click to open the Alerts
page. Click New alert rule to define a new alert:

Figure 10.43: Creating a new alert rule

The Create alert rule page is where we define the alert condition and the action to
be taken (if any) when the alert is raised.

4. Click the Select condition button under the Condition heading to define the alert
condition:

Figure 10.44: Defining the alert condition

Analyzing diagnostic logs using Azure SQL Analytics | 563

5. On the Configure signal logic page, click on Custom log search. Signals are
pre-saved queries that can be used to set up alerts. However, as we are defining a
custom alert, we'll choose Custom log search:

Figure 10.45: The Custom log search logic

6. Custom log search sets up the alert on a user-defined log query. On the Custom log
search page, copy and paste the following query into the Search query text box:

let time_range = 1h;
let block_threshold = 1; AzureDiagnostics
| where ResourceProvider=="MICROSOFT.SQL"
| where ResourceId contains "/SERVERS/"
| where ResourceId contains "/DATABASES/"
| where (Category == "Blocks")
| summarize block_count = count() by DatabaseName_s, bin(TimeGenerated,
time_range)
| where block_count > block_threshold

This query returns the number of blocks grouped by databases in the past hour if
the number of blocks is greater than 1.

7. In the Alert logic section, in the Based on drop-down menu, select Number of
results, and in the Operator drop-down menu, select Greater than, and type in 0 as
the threshold value.

The alert is raised whenever there have been 1 or more blocking sessions in the
past hour.

564 | Monitoring and tuning

8. In the Evaluated based on section, set Period to 30 minutes and Frequency to 5
minutes.

The query will run every 5 minutes on the data collected over the previous 30
minutes. If the blocking count is greater than or equal to 1 in any of the 5-minute
runs, the alert will be raised:

Figure 10.46: Setting a time interval for evaluation

Analyzing diagnostic logs using Azure SQL Analytics | 565

9. Click Done to save the alert configuration:

Figure 10.47: Saving the alert configuration

The alert condition has been added and will cost $1.50 per month.

10. Scroll down to set Alert rule name and Severity, and check Enable rule upon
creation:

Figure 10.48: Specifying the alert details

11. Click Create alert rule to create the new alert rule.

566 | Monitoring and tuning

12. To test the alert, create a blocking scenario as explained in the previous steps.
Navigate to the Log Analytics workspace page on the Azure portal, and we can see
that the alert has been fired:

Figure 10.49: Fired alerts

There are two new Sev0 errors. Click on Sev0 to view the alert details:

Figure 10.50: Changing the state of the alert to either Acknowledged or Closed

On the All Alerts page, we can change the state of the alert to either Acknowledged or
Closed.

Activity: Monitoring Azure SQL Database with Log Analytics and Power BI | 567

Activity: Monitoring Azure SQL Database with Log Analytics
and Power BI
In this activity, we'll learn how to import Log Analytics workspace data into Power BI,
and we'll create a report in Power BI.

Note

The purpose of the activity is not to create a performance monitoring dashboard.
The purpose is to explain how to get Log Analytics workspace data into Power BI,
which can then be used to create a dashboard as and when required.

Follow these steps to complete the activity:

1. Log in to the Azure portal. Search for and open the previously created Log Analytics
workspace:

Figure 10.51: Navigating to the created Log Analytics workspace

2. On the Log Analytics workspace page, find and open Logs:

Figure 10.52: The Log Analytics workspace

568 | Monitoring and tuning

3. On the New Query 1 page, copy and paste the following query:

AzureMetrics
| where ResourceProvider=="MICROSOFT.SQL" | where ResourceId contains "/
SERVERS/"
| where ResourceId contains "/DATABASES/" and MetricName in ('cpu_
percent', 'physical_data_read_percent', 'log_write_percent', 'workers_
percent', 'sessions_percent')

The query gets the details for the cpu_percent, physical_data_read_percent, log_
write_percent, workers_percent, and sessions_percent metrics.

4. Click Run to execute the query. From the top-right menu, select Export and then
select Export to Power BI (M Query):

Note

Power Query Formula language or M Query is used in Power BI during data import
to transform and clean up data.

Figure 10.53: Exporting the query to Power BI (M Query)

Activity: Monitoring Azure SQL Database with Log Analytics and Power BI | 569

In the resulting dialog box, choose to open the file with Notepad and click OK:

Figure 10.54: Opening the M Query with Notepad (default)

A new TXT file with the M Query will open. Save the query.

The next step is to use the M Query to create a Power BI report. To do this, open
Power BI Desktop.

570 | Monitoring and tuning

5. In Power BI Desktop, on the Home tab, click Get Data and then click Blank Query:

Figure 10.55: Creating a Power BI report

Activity: Monitoring Azure SQL Database with Log Analytics and Power BI | 571

6. In Power Query Editor, right-click on Query1 and select Advanced Editor from the
context menu:

Figure 10.56: Opening Advanced Editor

572 | Monitoring and tuning

7. In Advanced Editor for Query1, copy and paste the M Query from step 4 and click
Done:

Figure 10.57: Copying and pasting the M Query into Advanced Editor

8. The next step is to provide the credentials to Power BI to connect to the Log
Analytics workspace. To do this, click on Edit Credentials:

Figure 10.58: Edit Credentials

Activity: Monitoring Azure SQL Database with Log Analytics and Power BI | 573

9. In the Access Web content window, select Organizational account and provide the
username and password you use to log in to the Azure portal:

Figure 10.59: The Access Web content window

10. Click the Connect button to connect and fetch the query results from the Log
Analytics workspace.

Power Query Editor will display a preview of the output from the query:

Figure 10.60: Preview of the query output

574 | Monitoring and tuning

11. In the data preview, right-click on the ResourceId column, select Split Column, and
then select By Delimiter...:

Figure 10.61: Splitting the column with a delimiter

12. In the Split Column by Delimiter window, choose Right-most delimiter and then
click on OK:

Figure 10.62: Splitting at the right-most delimiter

This will create a new column called ResourceId.2 with the database name by
splitting the ResourceId column.

Activity: Monitoring Azure SQL Database with Log Analytics and Power BI | 575

13. Double-click the new column and rename it Database:

Figure 10.63: The new Database column

We are now ready to save the query and create a visualization for the imported
data. To save the query, click on the Close & Apply button in the top left:

Figure 10.64: Saving the query

576 | Monitoring and tuning

The next step is to create a line chart visualization to display the metrics' trends
over time.

14. In the VISUALIZATIONS tab, select the line chart visualization:

Figure 10.65: The VISUALIZATIONS tab

Click on the line chart to make it active.

15. From the Fields list, drag TimeGenerated to the Axis section of the visualization,
Average to the Values section of the visualization, MetricName to the Legend
section of the visualization, and Database to Visual level filters, and select the
toystore database.

Activity: Monitoring Azure SQL Database with Log Analytics and Power BI | 577

The VISUALIZATIONS section should be as shown in Figure 10.66:

Figure 10.66: The VISUALIZATIONS section

578 | Monitoring and tuning

You should now get a line chart, as shown in Figure 10.67:

Figure 10.67: Line chart representation of averaged metrics

The line chart plots the different metric values against time for the toystore database.
Each metric is identified by a different color. This completes the activity.

Monitoring queries using the Query Performance Insight pane
In this section, we will learn how to monitor queries using the Query Performance
Insight pane for Azure SQL Database. Consider a scenario where Mike plans to keep
track of Query Performance Insight and monitor queries of Toystore Ltd.. He runs
through a workload to generate some database activity and then observes the Query
Performance Insight pane for the queries. He can follow these steps in order to achieve
this:

1. To start the workload, open a new PowerShell console window and execute the
following command:

powershell.exe "C:\Code\Chapter10\Start-Workload.ps1 -sqlserver toyfactory
-database toystore -sqluser sqladmin -sqlpassword Packt@pub2 -workloadsql
"C:\Code\Chapter10\workload.sql"
-numberofexecutions 10"

Note

You may get the following warning—ignore it:

"WARNING: Could not obtain SQL Server Service information. An attempt to
connect to WMI on 'Microsoft.WindowsAzure. Commands.SqlDatabase.Types.
ps1xml' failed with the following error: The RPC server is unavailable. (Exception
from HRESULT: 0x800706BA)"

Monitoring queries using the Query Performance Insight pane | 579

The preceding command will execute the queries specified in the workload.sql file
10 times, as specified by the numberofexecutions variable. This will generate some
database activity for you to analyze.

You will have to wait for another 5-10 minutes for the details to show on the Azure
portal.

2. Navigate to the toystore database on the Azure portal (https://portal.azure.
com). On the Overview pane, select Query Performance Insight in the Support +
Troubleshooting section. You will then see the following:

Figure 10.68: The Resource consuming queries chart

https://portal.azure.com
https://portal.azure.com

580 | Monitoring and tuning

Query Performance Insight displays a line chart showing CPU consumption for the
past 24 hours by the top queries. CPU consumption is selected by default; however,
you can see all five queries by data I/O and log I/O as well. The default aggregation
applied is SUM, which is customizable, and the top five queries' details include
CPU%, data I/O%, log I/O%, duration, and execution count:

Figure 10.69: Statistics of the top five queries

3. Click on ID 472 to get the query's details. The query ID will be different in your case.
The Query details pane shows the following:

• Query text:

Figure 10.70: The Query details pane showing the query text

• Overall CPU, data I/O, and log I/O

• CPU, data I/O, log I/O, duration, and execution count for a one-hour interval:

Figure 10.71: Query statistics at hourly intervals

Monitoring queries using the Query Performance Insight pane | 581

You can select an area on the timeline from the line chart to see insights for that
time duration. To do that, click and hold the mouse at the starting point on the line
chart and drag it to the time interval you wish to see the insight for:

Figure 10.72: Analyzing line chart insights for the required time interval

The second graph shows the insights for the time period from 8:10 AM to 11:34 AM
instead of 24 hours, which is shown in Figure 10.73:

Figure 10.73: Analyzing line chart insights for the specified time interval

You can also click on the zoom-in and zoom-out icons in the upper-right corner of
the chart to change the time interval.

582 | Monitoring and tuning

4. Close the Query details pane to return to the Query Performance Insight pane.
Select the Long running queries tab:

Figure 10.74: Long running queries chart

The Long running queries tab displays the top five long-running queries from the
past 24 hours:

Figure 10.75: The top five long-running queries for the past 24 hours

The interval can be changed by clicking on either the Custom tab or the Customize
further button, as shown in Figure 10.74. Click on a QUERY ID to get the query
details.

Monitoring queries using the Query Performance Insight pane | 583

5. Select the Custom tab on the Query Performance Insight pane. The Custom tab
provides options to further filter the insights on Time period, Number of queries,
Metric type, and Aggregation type:

Figure 10.76: Customizing the bar chart

6. Change the Metric type to Duration, set Time period to Last 6 hrs, and set
Aggregation type to max. Then click Go > to filter the insights:

Figure 10.77: The top five queries for the six hours

This filters out the top five queries with a maximum duration of six hours. You can
get further query details, as explained earlier in this section. This completes the
section.

584 | Monitoring and tuning

Monitoring an Azure SQL Database and SQL Managed
Instance using DMVs
DMVs return diagnostic data that can be used to monitor a database's health and
performance. We'll cover monitoring data metrics, connection statistics, blocking
status, and query performance in the following sections.

Monitoring database metrics
The Azure SQL Database metrics available on the Azure portal can also be monitored
using the sys.resource_stats DMV. This DMV returns the historical analysis for all the
databases in an Azure SQL server. For SQL Managed Instance, you can use the sys.
server_resource_stats DMV to monitor SQL Managed Instance CPU storage usage. The
data for this DMV is collected and aggregated every 5 minutes and is retained for 14
days.

The following query returns the resource utilization from the last six hours for the
Azure SQL Database:

-- Execute in master database

-- Get utilization in last 6 hours for the toystore database

Declare @StartTime DATETIME = DATEADD(HH,-6,GetUTCDate()),

@EndTime DATETIME = GetUTCDate()

SELECT

database_name, start_time, end_time, avg_cpu_percent, avg_data_io_percent,
avg_log_write_percent, (SELECT Max(v) FROM (VALUES (avg_cpu_percent), (avg_
data_io_percent), (avg_log_write_percent)) AS

value(v)) AS [avg_DTU_percent] FROM sys.resource_stats

WHERE database_name = 'toystore' AND start_time BETWEEN @StartTime AND @
EndTime ORDER BY avg_cpu_percent desc

Note

You can also copy the queries from the C:\Code\Chapter10\MonitoringDMVs.sql file.
The file location may change depending on where you have unzipped the code
files.

Monitoring an Azure SQL Database and SQL Managed Instance using DMVs | 585

The following query returns the resource utilization from the last six hours for the
Azure SQL Managed Instance:

-- Get utilization in last 6 hours for the SQL Managed Instance

Declare @StartTime DATETIME = DATEADD(HH,-6,GetUTCDate()), @EndTime DATETIME
= GetUTCDate()

SELECT start_time,resource_name, avg_cpu_percent,storage_space_used_
mb,reserved_storage_mb,io_requests

FROM sys.server_resource_stats

WHERE start_time BETWEEN @StartTime AND @EndTime

ORDER BY start_time desc

The following query returns the average CPU utilization across databases for Azure SQL
Database. This helps us find the most used databases:

-- Execute in master database
SELECT database_name,

AVG(avg_cpu_percent) AS avg_cpu_percent FROM sys.resource_stats GROUP BY
database_name

ORDER BY avg_cpu_percent DESC

The following query returns the average CPU utilization for SQL Managed Instance.
This helps us find out about CPU overconsumption for an instance:

-- Get the CPU usage>80%

select start_time,

 [cpu usage %] = avg_cpu_percent

from sys.server_resource_stats where avg_cpu_percent>80

order by start_time desc

You can further modify the preceding query to return databases exceeding a certain
threshold value—say, databases with a CPU utilization greater than 80%.

The sys.dm_db_resource_stats DMV records data for individual Azure SQL databases
every 15 seconds, and this is retained for an hour. This allows you to drill down for
deeper insights into individual database utilization.

586 | Monitoring and tuning

The following query returns the average CPU, data I/O, log I/O, and memory utilization
for the toystore database:

-- Get Average CPU, Data IO, Log IO and Memory utilization

-- Execute in toystore database

SELECT AVG(avg_cpu_percent) AS avg_cpu_percent, AVG(avg_data_io_percent) AS
avg_data_io_percent, AVG(avg_log_write_percent) AS avg_log_write_percent,
AVG(avg_memory_usage_percent) AS avg_memory_usage_percent

FROM sys.dm_db_resource_stats;

The following query returns the average DTU utilization for the toystore database over
the past hour. avg_DTU_percent only applies to DTU-based service tiers.

-- Get the Average DTU utilization for toystore database

-- Execute in toystore database

SELECT end_time, (SELECT Max(v)

FROM (VALUES (avg_cpu_percent), (avg_data_io_percent), (avg_log_write_
percent)) AS

value(v)) AS [avg_DTU_percent] FROM sys.dm_db_resource_stats ORDER BY end_
time DESC

Monitoring connections
The DMVs used to monitor connections are the same as the ones used to monitor
connections in an SQL Server (on-premises or SQL on Azure VM), which are sys.dm_
exec_connections, sys. dm_exec_sessions, and sys.dm_exec_requests.

The following query returns all sessions for the sqladmin login:

-- Get all sessions for user sqladmin

SELECT session_id, program_name, status, reads, writes, logical_reads from
sys.dm_exec_sessions WHERE login_name='sqladmin'

Note

The login name may be different in your case.

Monitoring an Azure SQL Database and SQL Managed Instance using DMVs | 587

The following query returns all requests for the sqladmin login:

-- Get all the requests for the login sqladmin

SELECT s.session_id,

s.status AS session_status, r.status AS request_status, r.cpu_time, r.total_
elapsed_time, r.writes,

r.logical_reads,

t.Text AS query_batch_text,

SUBSTRING(t.text, (r.statement_start_offset/2)+1, ((CASE r.statement_end_
offset

WHEN -1 THEN DATALENGTH(t.text)

ELSE r.statement_end_offset

END - r.statement_start_offset)/2) + 1) AS running_query_text FROM sys.dm_
exec_sessions s join sys.dm_exec_requests r

ON r.session_id=s.session_id

CROSS APPLY sys.dm_exec_sql_text(r.sql_handle) AS t WHERE s.login_
name='sqladmin'

The Dynamic Management Functions (DMF), sys.dm_exec_sql_text, returns the query
text for the given sql_handle.

The query_batch_text column returns all the queries being sent as a request in one
batch. If you run the workload as mentioned earlier, you will find that the query_batch_
text column contains all the queries specified in the workload.sql file.

The running_query_text column returns the query that is currently being executed.
It is calculated using the statement offset start and end values from the sys.dm_exec_
requests DMV.

588 | Monitoring and tuning

Monitoring query performance
The following DMVs can be used to monitor query and procedure performance.

Note

The DMVs mentioned here are not specific to Azure SQL Database. They can be
used on on-premises SQL Server as well. These are not the only DMVs used to
monitor performance. You can get a complete list of DMVs for Azure SQL Database
from https://docs.microsoft.com/sql/relational-databases/system-dynamic-
management-views/system-dynamic-management-views?view=sql-server-2017.

You can also visit the following link to find more details about DMV queries to
monitor Azure SQL Database and SQL Managed Instance: https://docs.microsoft.
com/azure/azure-sql/database/monitoring-with-dmvs.

You can also refer to the following article for troubleshooting performance
problems: http://download.microsoft.com/download/D/B/D/DBDE7972-1EB9-
470A-BA18-58849DB3EB3B/TShootPerfProbs2008.docx.

This article is for Microsoft SQL Server 2008; however, it also applies to Azure SQL
Database and SQL Managed Instance and other later on-premises SQL Server
versions.

The sys.dm_exec_query_stats DMV returns aggregated statistics such as execution
count, reads, writes, and worker time for the cached query plans.

The following query returns the top five most CPU-intensive queries:

SELECT TOP 5

(total_worker_time/execution_count)/(1000*1000) AS [Avg CPU Time(Seconds)],

SUBSTRING(st.text, (qs.statement_start_offset/2)+1, ((CASE qs.statement_end_
offset

WHEN -1 THEN DATALENGTH(st.text)

ELSE qs.statement_end_offset

END - qs.statement_start_offset)/2) + 1) AS statement_text, qs.execution_
count, (qs.total_elapsed_time/execution_count)/(1000*1000) AS [Avg

Duration(Seconds)]

FROM sys.dm_exec_query_stats AS qs

CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) AS st ORDER BY total_worker_
time/execution_count DESC;

https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views?view=sql-server-2017
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views?view=sql-server-2017
https://docs.microsoft.com/azure/azure-sql/database/monitoring-with-dmvs
https://docs.microsoft.com/azure/azure-sql/database/monitoring-with-dmvs
http://download.microsoft.com/download/D/B/D/DBDE7972-1EB9-470A-BA18-58849DB3EB3B/TShootPerfProbs2008.docx
http://download.microsoft.com/download/D/B/D/DBDE7972-1EB9-470A-BA18-58849DB3EB3B/TShootPerfProbs2008.docx

Monitoring an Azure SQL Database and SQL Managed Instance using DMVs | 589

The following query returns the top five longest-running queries:

SELECT TOP 5

(total_worker_time/execution_count)/(1000*1000) AS [Avg CPU Time(Seconds)],

SUBSTRING(st.text, (qs.statement_start_offset/2)+1, ((CASE qs.statement_end_
offset

WHEN -1 THEN DATALENGTH(st.text)

ELSE qs.statement_end_offset

END - qs.statement_start_offset)/2) + 1) AS statement_text, qs.execution_
count, (qs.total_elapsed_time/execution_count)/(1000*1000) AS [Avg

Duration(Seconds)]

FROM sys.dm_exec_query_stats AS qs

CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) AS st ORDER BY (qs.total_
elapsed_time/execution_count) DESC;

You can order by the preceding query on the total_logical_reads column to get the
top five most extensive read-intensive queries.

Monitoring blocking
Blocking is a scenario where a query is waiting to acquire a lock on a resource that is
already locked by another query. Blocking causes major performance problems and can
bring a database to a halt.

The following query returns the blocking details:

-- Get blocked queries

SELECT w.session_id

,w.wait_duration_ms

,w.wait_type

,w.blocking_session_id

,w.resource_description

,t.text

FROM sys.dm_os_waiting_tasks w INNER JOIN sys.dm_exec_requests r ON
w.session_id = r.session_id

CROSS APPLY sys.dm_exec_sql_text (r.sql_handle) t WHERE w.blocking_session_
id>0

GO

590 | Monitoring and tuning

In order to see the preceding query results, generate a blocking scenario by following
these steps:

1. Open a new query window in SQL Server Management Studio and connect to the
toystore database. Execute the following query:

Begin Tran
INSERT INTO [Warehouse].[Colors] (
ColorID, ColorName, LastEditedBy, ValidFrom, ValidTo
)
VALUES (1001,
'Pulpy Orange', 1, getdate(), getdate()
)
-- ROLLBACK

The preceding query will open a new transaction to insert a new row in the
Colors table. However, the transaction is left open and is not closed, as ROLLBACK is
commented out.

2. Open another query window in SSMS and connect to the toystore database.
Execute the following query:

INSERT INTO [Warehouse].[Colors] (
ColorID, ColorName, LastEditedBy, ValidFrom, ValidTo
)
VALUES (1001,
'Pulpy Green', 1, getdate(), getdate()
)

The preceding query tries to insert a row in the Colors table; however, it is blocked
by the query in step 1.

3. Run the following query to detect blocking:

-- Get blocked queries
SELECT w.session_id
,w.wait_duration_ms
,w.wait_type
,w.blocking_session_id
,w.resource_description
,t.text
FROM sys.dm_os_waiting_tasks w INNER JOIN sys.dm_exec_requests r ON
w.session_id = r.session_id
CROSS APPLY sys.dm_exec_sql_text (r.sql_handle) t WHERE w.blocking_
session_id>0
GO

Monitoring an Azure SQL Database and SQL Managed Instance using DMVs | 591

You should get the following output. The session_id value may be different in your
case:

Figure 10.78: Session ID 106 is blocked by session ID 130

Session ID 106 is requesting an exclusive lock on the Colors table; however, session
ID 130 already has an exclusive lock on the Colors table. Therefore, session ID 106 is
blocked by session ID 130.

To remove the block, uncomment and execute the ROLLBACK command in the first query
provided in Step 1.

In this section, we learned how to monitor Azure SQL Database using T-SQL. Let's now
look at monitoring Azure SQL Database using extended events.

Extended events
Extended events, introduced in SQL Server 2008, are lightweight methods used to
capture diagnostic information in SQL Server.

Extended events are similar to SQL Trace; however, they're more lightweight and
scalable than SQL Trace.

The following are the important components of an extended event:

• Session: An extended event session, when started, captures the specified data
for one or more events.

• Events: Events are the activities or actions that the data is to be recorded for.
For example, sql_statement_starting and sql_statement_completed are the
events raised whenever an SQL statement is started or completed on the given
database.

• Event Fields: Every event has a set of event fields or data points that are
recorded whenever the event is triggered. For example, the sql_statement_
completed event has a duration event field.

• Global Fields: These are the common data points to be recorded whenever
the specified event occurs. Examples of global fields are session_id, sql_text,
database_name, and database_id.

• Target: The target specifies the storage to be used for the data capture. The
following targets are allowed in an SQL database:

• Ring Buffer Target: The data is stored in memory for a brief interval of time.

592 | Monitoring and tuning

• Event Counter: Counts all events that occurred during a particular extended
event session instead of capturing full event details. It can be used to
characterize a workload to be CPU-intensive, I/O-intensive, or memory-
intensive.

• Event File Target: Writes full event details to an Azure Storage container. This
allows you to do historical analysis on the saved data.

Examining queries using extended events
In this section, we'll examine queries made to the toystore database using extended
events. Imagine we're looking after the Query Performance Insight report of Toystore
Ltd.

After generating the report, we plan to look at the extended events to track down the
queries that are taking longer than 10 seconds to complete on the toystore database.
We'll use extended events to capture such queries:

Open a new query window in SQL Server Management Studio and connect to the
toystore database.

1. Execute the following query to create the extended event session:

CREATE EVENT SESSION [LongRunningQueries] ON DATABASE ADD EVENT sqlserver.
sql_statement_completed
(ACTION (
sqlserver.database_name, sqlserver.query_hash, sqlserver.query_plan_hash,
sqlserver.sql_text, sqlserver.username
)
WHERE ([sqlserver].[database_name]=N'toystore' AND duration > 1000)
)
ADD TARGET package0.ring_buffer WITH (STARTUP_STATE=OFF)
GO

The preceding query creates an extended event session, LongRunningQueries, with
the event as sql_statement_completed, an action that specifies the global fields to
capture, the target as a ring buffer, and Startup_State set to Off, which means that
the session will not automatically start when the SQL Server services are started.

Note

You can copy the code from C:\Code\Chapter10\CreateExtendedEvent.sql.

The file location may change depending on where you have unzipped the code
files.

Monitoring an Azure SQL Database and SQL Managed Instance using DMVs | 593

2. Execute the following query to start the LongRunningQueries session:

-- Start the Event Session
ALTER EVENT SESSION [LongRunningQueries] ON DATABASE STATE = START;

3. Execute the following PowerShell command to start the workload:

powershell.exe "C:\Code\Chapter10\Start-Workload.ps1 -sqlserver toyfactory
-database toystore -sqluser sqladmin -sqlpassword Packt@pub2 -workloadsql
"C:\Code\Chapter10\workload.sql"
-numberofexecutions 10"

4. Wait for at least one execution to complete. In Steps 4 and 5, we execute queries to
get the output from the extended event target. Execute the following query to get
the target data into a temporary table:

-- Get the target data into temporary table
SELECT
 se.name AS [XEventSession],
 ev.event_name,
 ac.action_name,
 st.target_name,
 se.session_source,
 st.target_data,
 CAST(st.target_data AS XML) AS [target_data_XML]
into #XEventData
FROM
 sys.dm_xe_database_session_event_actions AS ac

 INNER JOIN sys.dm_xe_database_session_events AS ev ON
ev.event_name = ac.event_name
 AND CAST(ev.event_session_address AS BINARY(8)) = CAST(ac.event_
session_address AS BINARY(8))

 INNER JOIN sys.dm_xe_database_session_object_columns AS oc
 ON CAST(oc.event_session_address AS BINARY(8)) = CAST(ac.event_
session_address AS BINARY(8))

 INNER JOIN sys.dm_xe_database_session_targets AS st
 ON CAST(st.event_session_address AS BINARY(8)) = CAST(ac.event_
session_address AS BINARY(8))

 INNER JOIN sys.dm_xe_database_sessions AS se
 ON CAST(ac.event_session_address AS BINARY(8)) = CAST(se.address

594 | Monitoring and tuning

AS BINARY(8))
WHERE
 oc.column_name = 'occurrence_number'
 AND
 se.name = 'LongRunningQueries'
 AND
 ac.action_name = 'sql_text'
ORDER BY
 se.name,
 ev.event_name,
 ac.action_name,
 st.target_name,
 se.session_source;

5. Then, execute the following query to parse the target XML xEvent into a table:

-- Parse the target xml xevent into table
SELECT * FROM
(SELECT
xed.event_data.value('(data[@name="statement"]/value)[1]',
'nvarchar(max)') AS sqltext,
xed.event_data.value('(data[@name="cpu_time"]/value)[1]', 'int') AS cpu_t
ime,
xed.event_data.value('(data[@name="duration"]/value)[1]', 'int') AS
duration,
xed.event_data.value('(data[@name="logical_reads"]/value)[1]', 'int') AS
logical_reads
FROM #XEventData
CROSS APPLY target_data_XML.nodes('//RingBufferTarget/event') AS xed
(event_data)
) As xevent
WHERE duration > = 10000000
GO
DROP TABLE #XEventData

Note

You can also copy the code from Steps 4 and 5 from C:\Code\Chapter10\
ReadExtendedEventData.sql.

Monitoring an Azure SQL Database and SQL Managed Instance using DMVs | 595

The extended event data is stored in XML format. First, the query puts the target
XML into a temporary table. The extended event target details are stored in a sys.
dm_xe_database_session_targets DMV.

A sample target XML is shown in the following code:

<event name="sql_statement_completed" package="sqlserver" timestamp="2018-
02-03T16:19:28.708Z">
<data name="duration">
<type name="int64" package="package0"></type>
<value>1</value>
</data>
<data name="cpu_time">
<type name="uint64" package="package0"></type>
<value>0</value>
</data>
<data name="physical_reads">
<type name="uint64" package="package0"></type>
<value>0</value>
</data>
<data name="logical_reads">
<type name="uint64" package="package0"></type>
<value>0</value>
</data>
…
…
</data>

Each event has an XML element with event fields as the child elements. This makes
it easy to parse the event data.

When parsing data, make sure that the event field data type is the same as what is
mentioned in the XML. For example, for the statement field, the data type should be
nvarchar, because in XML, the data type mentioned is the Unicode string.

596 | Monitoring and tuning

Once you have at least one execution of the workload completed, you should get an
output similar to the following:

Figure 10.79: The Result of the workload execution

The query returns all of the SQL statements that have durations greater than 10
seconds.

6. Run the following query to stop and drop the extended event session:

-- Stop the Event Session
ALTER EVENT SESSION [LongRunningQueries] ON DATABASE STATE = STOP;
GO
-- Drop the Event Target
ALTER EVENT SESSION [LongRunningQueries] ON DATABASE DROP TARGET package0.
ring_buffer;
GO
-- Drop the Event Session
DROP EVENT SESSION [LongRunningQueries] ON DATABASE;
GO

This completes the section.

Note

Here's some additional reading for extended events.

More information on extended events DMVs can be found at https://docs.
microsoft.com/sql/relational-databases/system-dynamic-management-views/
extended-events-dynamic-management-views?view=sql-server-2017.

More information on extended event lists can be found at https://docs.microsoft.
com/sql/relational-databases/system-catalog-views/sys-server-event-sessions-
transact-sql?view=sql-server-2017.

https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/extended-events-dynamic-management-views?view=sql-server-2017
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/extended-events-dynamic-management-views?view=sql-server-2017
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/extended-events-dynamic-management-views?view=sql-server-2017
https://docs.microsoft.com/sql/relational-databases/system-catalog-views/sys-server-event-sessions-transact-sql?view=sql-server-2017
https://docs.microsoft.com/sql/relational-databases/system-catalog-views/sys-server-event-sessions-transact-sql?view=sql-server-2017
https://docs.microsoft.com/sql/relational-databases/system-catalog-views/sys-server-event-sessions-transact-sql?view=sql-server-2017

Tuning an Azure SQL database | 597

Tuning an Azure SQL database
In this section, we'll look at the out-of-the-box performance tuning features provided
by automatic tuning in an Azure SQL database.

Automatic tuning
Azure SQL Database automatic tuning utilizes artificial intelligence to continuously
monitor and improve queries executed on an Azure SQL database.

Automatic tuning observes the workload and applies recommendations to speed up
performance. The recommendations are applied when database activity is low so that
there aren't any performance impacts when applying recommendations.

The following options are available for automatic tuning:

• Create Index: Automatically identifies and implements missing indexes to
improve workload performance. It also verifies whether the indexes created have
improved the performance. The Create Index option is disabled by default.

• Drop Indexes: Automatically identifies and removes duplicate, redundant, and
unused indexes. The Drop Indexes option is disabled by default.

• Force Last Good Plan: Using the execution plan, it automatically identifies the
queries that are slower than the previous good plan and forces the use of the
last-known good plan to improve the query's performance. Force Last Good Plan
is enabled by default.

Automatic tuning has to be manually switched to ON, and is set to OFF by default. Also, it
gives you an option to either automatically or manually apply the recommendations.

To enable automatic tuning, follow the following instructions:

1. Open a browser and log in to the Azure portal (https://portal.azure.com) with your
Microsoft Azure credentials.

2. Open the toystore database and select the Automatic Tuning option from the
Intelligent Performance section on the toystore database page.

https://portal.azure.com

598 | Monitoring and tuning

On the Automatic tuning pane, under Inherit from, select Don't inherit. Under
Configure the automatic tuning options, toggle ON for FORCE PLAN and the
CREATE INDEX and DROP INDEX options. Click Apply to save the automatic tuning
settings:

Figure 10.80: Configuring the automatic tuning options

Alternatively, you can also enable automatic tuning by executing the following
query in the toystore database:

ALTER DATABASE current SET AUTOMATIC_TUNING = CUSTOM
ALTER DATABASE current SET AUTOMATIC_TUNING (FORCE_LAST_GOOD_PLAN
= ON, CREATE_INDEX = ON, DROP_INDEX = ON)

Note

The DROP INDEX feature should be used carefully. There may be an index that is
used specifically for a query (say, a report query) which runs once a month but is
still important. DROP INDEX may drop that index as it's used only once a month.

Existing Azure SQL logical servers with no pre-configured automatic tuning option and
new Azure SQL servers are both configured to automatically inherit the Azure defaults.

Tuning an Azure SQL database | 599

In-memory technologies
In-memory technologies were first introduced in SQL Server 2012, and are built into
the SQL Server Database Engine. They can improve performance significantly for
workloads such as data ingestion, data load, and analytical queries.

In Azure SQL Database, in-memory technologies are only available in the Premium and
Business Critical service tiers.

Azure SQL Database has the following in-memory technologies: in-memory OLTP and
columnstore indexes. Let's talk about them briefly.

In-memory OLTP
As the name suggests, in-memory OLTP improves performance for transaction
processing scenarios where a major portion of the workload consists of inserts,
updates, and deletes.

In-memory OLTP is achieved by using one of the following objects: memory-optimized
tables and natively compiled stored procedures.

Memory-optimized tables
Memory-optimized tables are used to store data in memory. All of the data in a
memory-optimized table resides in memory. Memory-optimized tables and disk-based
tables can reside within the same database simultaneously.

A table is defined as being a memory-optimized table at the time of its creation. A
memory-optimized table creation script is shown in the following code snippet:

CREATE TABLE dbo.Orders (
OrderId int not null IDENTITY PRIMARY KEY NONCLUSTERED,
CustomerId int not null, OrderDate datetime not null, Quantity int not
null
) WITH
(MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA);

The Memory_Optimized keyword specifies whether the table is a memory-optimized
table. The durability refers to retaining only the schema, or the schema and data, for
the memory-optimized table. As the table is in memory, the data will go out of memory
if the machine is restarted. However, if the durability is set to SCHEMA_AND_DATA, SQL
Server makes sure that the data isn't lost.

600 | Monitoring and tuning

There are two types of indexes allowed on an in-memory table, and these are hash
and non-clustered indexes. The indexes don't contain data rows. Instead, they contain
memory pointers to the data rows. The indexes are also in memory. Hash indexes are
used to optimize point lookups and aren't suitable for range lookups; non-clustered
indexes are best suited for range lookups.

Memory-optimized tables can be accessed through the regular Data Definition
Language (DDL) and Data Manipulation Language (DML) commands.

Natively compiled procedures
A regular or InterOP stored procedure is compiled and the plan is cached within the
SQL server. However, a natively compiled procedure is compiled into DLL and is loaded
in memory. This further improves DML command performance on memory-optimized
tables.

Note:

Any query or stored procedure other than a natively compiled stored procedure is
referred to as InterOP.

The natively compiled procedure syntax is displayed in Figure 10.81:

Figure 10.81: Syntax of a natively compiled procedure

Tuning an Azure SQL database | 601

A natively compiled procedure contains the regular T-SQL code as the InterOP or
regular procedures; however, it's defined differently at the time of creation. The term
Native_Compilation defines that the procedure is a natively compiled procedure and is
to be compiled into DLL.

A natively compiled procedure should be schema-bound and should have the execution
context. A natively compiled procedure is always executed in a snapshot transaction
isolation level. Memory-optimized tables and natively compiled procedures can be used
together to speed up an OLTP workload and make it up to 20 times faster.

Columnstore indexes
Columnstore indexes, introduced in SQL Server 2012 (as non-clustered columnstores),
use columnar storage instead of regular row-based storage to store data. A row-store
has rows with multiple columns arranged sequentially on a page; however, in a column
store, the values of a single column (from different rows) are stored contiguously.

Note

Clustered columnstore indexes were added in SQL Server 2014, whereas non-
clustered columnstore indexes were introduced in SQL Server 2012.

In a row-store, this is how data is stored on disk:

Figure 10.82: Data storage representation in a row-store

However, in a columnstore, the same information is stored as follows:

Figure 10.83: Data storage representation in columnstore

602 | Monitoring and tuning

This allows faster response times and less storage for data warehouse scenarios.

A columnstore has better compression than a row-store, because values of the same
data type compress better than values of different data types (a row-store contains
columns with different data types, while a columnstore has values from the same type).

This improves query performance, as only those pages that contain the selected column
values are scanned or fetched, thereby decreasing the reads.

For example, consider the following query:

SELECT Name, profession FROM Employees

The preceding query will only touch pages with the Name and Profession columns if run
against a columnstore. However, against a row-store, the query will run through all the
pages. This significantly improves the performance in data warehouse scenarios with
huge tables.

There are two types of columnstore indexes, clustered and non-clustered:

• Clustered columnstore index: Clustered columnstore indexes store the entire
table data as columnstores. They can reduce the storage footprint by up to 10
times its original size. They can be used on fact tables in a data warehouse to
speed up queries and fit more data into the available storage.

The syntax for creating a clustered column store index is as follows:

CREATE CLUSTERED COLUMNSTORE INDEX CCS_Orders ON [Sales].[Orders]

• Non-clustered columnstore index: Non-clustered columnstore indexes are
created on sets of table columns and can co-exist. When introduced in SQL
Server 2012, non-clustered column indexes weren't updatable; in other words,
if you had a non-clustered column index on a table, you were not allowed to
update the data in that table using DML statements.

However, starting from SQL Server 2016, they are now updatable and can be used
to gain real-time operational insights into your transactional data. You can query
operational data directly instead of spending time doing ETL and loading the data
into a data warehouse. You can do all of this without any impact on operations.

The syntax for creating a non-clustered columnstore index is as follows:

CREATE NONCLUSTERED COLUMNSTORE INDEX nccsix_CustomerID
ON [Sales].[Orders] (CustomerID,ContactPersonID,OrderDate);

Tuning an Azure SQL database | 603

The preceding query creates a non-clustered column store index on customerid,
contactpersonid, and orderdate. The columnstore structure is stored separately
from the table structure.

Note

To learn more about columnstore indexes, refer to https://docs.microsoft.com/
sql/t-sql/statements/create-columnstore-index-transact-sql?view=sql-server-
2017&viewFallbackFrom=sqlserver-2017.

Columnstore indexes have two types of data compression. The default columnstore
compression is columnstore_archive compression. A columnstore index is good at
compression by design. A page in a columnstore index has data from one column, which
is one data type. Therefore, compression is better when compressing data of a similar
data type, instead of mixed data types, as is the case with a row-store.

columnstore_archive compression further increases the compression rate. The
compression is 37-66% percent higher than the default columnstore compression.
Archive compression can be used to compress infrequently used data to save disk
space.

To enable columnstore_archive on an existing column store index, execute the following
query:

ALTER INDEX nccsix_CustomerID ON [Sales].[Orders] REBUILD WITH (DATA_
COMPRESSION=COLUMNSTORE_ARCHIVE)

To disable columnstore_archive compression on an existing columnstore index, execute
the following query:

ALTER INDEX nccsix_CustomerID ON [Sales].[Orders] REBUILD WITH (DATA_
COMPRESSION=COLUMNSTORE)

To create a new columnstore index with columnstore_archive compression, execute the
following query:

CREATE NONCLUSTERED COLUMNSTORE INDEX nccsix_CustomerID_AC

ON [Sales].[Orders] (

CustomerID, ContactPersonID, OrderDate

) WITH(DATA_COMPRESSION=COLUMNSTORE_ARCHIVE)

Note

Starting from SQL Server 2019, you can use the sp_estimate_data_compression_
savings DMV to compare the relative data compression benefits of columnstore
indexes. However, this DMV isn't supported in Azure SQL Database.

https://docs.microsoft.com/sql/t-sql/statements/create-columnstore-index-transact-sql?view=sql-server- 2017&viewFallbackFrom=sqlserver-2017
https://docs.microsoft.com/sql/t-sql/statements/create-columnstore-index-transact-sql?view=sql-server- 2017&viewFallbackFrom=sqlserver-2017
https://docs.microsoft.com/sql/t-sql/statements/create-columnstore-index-transact-sql?view=sql-server- 2017&viewFallbackFrom=sqlserver-2017

604 | Monitoring and tuning

In addition to compression, columnstores also support batch execution mode. There
are two types of execution modes when reading data from an index: row execution and
batch execution. In row execution mode, the data is processed row by row, whereas in
batch execution mode, the rows are processed in batches (between 64 and 912 rows)
at a time. This significantly benefits aggregation queries, meaning aggregations can be
applied to one batch at a time instead of one row at a time.

Note

Batch mode execution is supported in a row-store from SQL Server 2019 onward.

Let's see batch mode in action.

Connect to the toystore Azure SQL Database using SSMS. Open a new query window.
Copy and paste the following query:

select

 stockitemid,

 sum(unitprice) AS totalprice,

 sum(quantity) AS quantity

from sales.orderlines

group by stockitemid

Press Ctrl + M to enable the actual execution plan and execute the query. You should
get an execution plan as shown here:

Figure 10.84: Actual execution mode

Tuning an Azure SQL database | 605

Observe that the execution mode is Row.

Let's execute the following query to create a nonclustered columnstore index on the
Sales.orderlines table:

CREATE NONCLUSTERED COLUMNSTORE INDEX CCI_Orderlines ON Sales.
Orderlines(stockitemid,unitprice,quantity)

Let's run the following aggregate query again and observe the execution plan:

select

 stockitemid,

 sum(unitprice) AS totalprice,

 sum(quantity) AS quantity

from sales.orderlines

group by stockitemid

The following is the execution plan of the preceding query:

Figure 10.85: Batch execution mode

Observe that the row execution mode is Batch. However, there is no guarantee that we
will get the batch execution mode for every query that uses columnstore indexes.

606 | Monitoring and tuning

Monitoring cost
Managing cost is as important as getting the best performance out of a database. As we
work to tune and optimize a database, we can scale down to a lower performance tier,
resulting in cost savings without any performance degradation. Cost is another metric
that can be used to show management the benefits of database tuning.

We can use the Cost Management feature to monitor costs. To do that, in the Azure
portal, search for and open Cost Management + Billing.

Figure 10.86: Navigating to Cost Management + Billing

On the Cost Management + Billing page, select Cost Management:

Figure 10.87: The Cost Management service

Tuning an Azure SQL database | 607

On the Cost Management page, select Cost analysis. On the Cost analysis page, group
costs by resource and then specify the database in the Filter items text box:

Figure 10.88: Cost analysis by Azure SQL databases

Note

The currency shown is in Indian Rupee (INR). The currency will be different in your
case. We can further specify budgets and create alerts whenever the cost reaches
the budget.

Activity: Exploring the in-memory OLTP feature
In this activity, we'll compare the performance of a disk-based table with a memory-
optimized table for an OLTP workload for our toystore database. Let's consider a case
where we want to explore the new in-memory OLTP feature using memory-optimized
tables. But before we do that, to check whether it is truly profitable, we compare the
performance of disk-based tables and memory-optimized tables. This can be done via
the following steps:

1. Run the following command in a PowerShell console to change the service tier of
the toystore database to the Premium tier. The in-memory technologies are only
available for the Premium service tier:

PowerShell.exe "C:\Code\Chapter02\ScaleUpAzureSQLDB.ps1"
-resourcegroupname toystore -azuresqlservername
toyfactory -databasename toystore -newservicetier Premium
-servicetierperfomancelevel P1 -AzureProfileFilePath "C:\Code\
MyAzureProfile.json"

608 | Monitoring and tuning

2. Navigate to C:\Code\Chapter10\InMemoryOLTP and open the CreateObjects.sql file in
SQL Server Management Studio. This query creates the following objects:

• uspInsertOrders: A traditional disk-based stored procedure that inserts
new orders, as specified by the @numberoforderstoinsert parameter. If
@numberoforderstoinsert is set to 10, then it will insert 10 new orders into the
Sales.Orders table.

• Orders_Inmem: The memory-optimized version of the Sales.Orders table. The
schema is the same as that of the Sales.Orders table; however, it has Memory_
Optimized set to ON.

• Customers_Inmem: The memory-optimized version of the Sales.Customers table.
The schema is the same as that of the Sales.Customers table; however, it has
Memory_ Optimized set to ON. All of the existing customers in the Sales.Customers
table are inserted into the Sales.Customers_Inmem table.

• uspInsertOrders_Inmem: This is a natively compiled version of the
uspInsertOrders procedure. It inserts a number of orders, as specified by the
@numberoforderstoinsert parameter, into the Sales.Orders_Inmem table.

The following query automatically maps all the lower isolation levels to the
snapshot isolation level for memory-optimized tables:

ALTER DATABASE CURRENT SET MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT = ON

This changes the database context to toystore. Press F5 to execute the query.

3. Execute the following command in a PowerShell console. This will insert 10,000
orders into the Sales.Orders table using the ostress utility described at the
beginning of the chapter:

PowerShell.exe "C:\Code\Chapter10\InMemoryOLTP\Start-Workload.ps1
-sqlserver toyfactory -database toystore -sqluser sqladmin
-sqlpassword Packt@pub2 -ostresspath '"C:\Program Files\Microsoft
Corporation\RMLUtils\ostress.exe"' -workloadtype disk"

The workloadtype parameter specifies which procedure is executed. If the value is
disk, the InterOP procedure is executed (uspInsertOrders), which inserts a value
into the Sales.Orders (disk-based) table.

Otherwise, if the workloadtype parameter is set to inmem, the natively compiled
procedure is executed (uspInsertOrders_Inmem), which inserts a value into the
Sales.Orders_Inmem (memory-optimized) table.

Tuning an Azure SQL database | 609

You should get the following output. The elapsed time might be different in your
case:

Figure 10.89: The time elapsed for the query execution

As you can see, it took 163 seconds to insert 10,000 orders into the disk-based table.
You can execute the following query to count the number of orders that have been
inserted:

SELECT COUNT(*) FROM sales.orders WHERE orderdate=CONVERT(date, getdate())
Output of inserting orders into the Sales.Orders table

4. Execute the following command in a PowerShell console. This will insert 10,000
orders into the Sales.Orders_Inmem table using the ostress utility described at the
beginning of this chapter:

PowerShell.exe "C:\Code\Chapter10\InMemoryOLTP\Start-Workload.ps1
-sqlserver toyfactory -database toystore -sqluser sqladmin-sqlpassword
Packt@pub2 -ostresspath '"C:\Program Files\Microsoft Corporation\RMLUtils\
ostress.exe"' -workloadtype inMem"

Figure 10.90: Time elapsed for inserting 10,000 orders into the Sales.Orders_Inmem table

It took only 31 seconds to insert 10,000 records into the memory-optimized table
using the natively compiled stored procedure.

You can execute the following query to count the number of orders inserted into
the Sales.Orders_Inmem table:

SELECT COUNT(*) FROM sales.orders_Inmem WHERE orderdate=CONVERT(date,
getdate())

610 | Monitoring and tuning

5. Navigate to C:\Code\Chapter10\InMemoryOLTP and open the Cleanup.sql file in SQL
Server Management Studio:

-- Clean up
DROP PROCEDURE IF EXISTS uspInsertOrders_Inmem
GO
DROP PROCEDURE IF EXISTS uspInsertOrders
GO
DROP TABLE IF EXISTS [Sales].Orders_Inmem
GO
DROP TABLE IF EXISTS [Sales].Customers_Inmem
GO
-- delete inserted data from the orders table.
DELETE FROM sales.orders WHERE orderdate=CONVERT(date, getdate())
GO
-- Change the database edition to basic ALTER DATABASE toystore MODIFY
(EDITION = 'basic');

The script drops the memory-optimized objects, deletes the rows inserted into the
Sales.Order table as part of the activity, and changes the database edition to Basic
from Premium. This completes the activity.

Monitoring and tuning an Azure SQL Managed Instance
In this section, we will be using HammerDB, the most popular open-source load testing
software, to simulate a real-time workload. We are running the workload against a
4 vCore General Purpose SQL Managed Instance. We are using 50 HammerDB virtual
users to measure the performance of the workload on a TPCC database with 50
warehouses.

Requirements:

• Client machine from which to run this workload

• SQL Server client tools, such as SQL Server Management Studio

• HammerDB to generate the workload

• The Query Performance Insight library to monitor real-time workload
performance

Tuning an Azure SQL database | 611

Choose the client within the same Azure region to avoid network latency issues.

Note

To download the HammerDB tool and install the Query Performance Insight library
for SQL Managed Instance, please visit the following links:

The Query Performance Insight library: https://github.com/JocaPC/qpi

HammerDB: https://hammerdb.com/download.html

General Purpose instance I/O characteristics
Let's recap the I/O characteristics of a General Purpose SQL Managed Instance. This
was discussed in Chapter 2, Service tiers:

Figure 10.91: I/O characteristics for a General Purpose SQL Managed Instance

In this section we will generate a load test data and run a workload with 50 virtual users
using the HammerDB tool. Follow these steps to complete this task:

1. Open the HammerDB tool and click on SQL Server, then select the TPROC-C
option:

Figure 10.92: HammerDB SQLServer TPC workload

https://github.com/JocaPC/qpi
https://hammerdb.com/download.html

612 | Monitoring and tuning

2. In this step, we will see options to prepare the schema for a load test. Double-click
on Options under the Schema Build tree and fill in the details as per your
environment. In this step, we are using SQL Managed Instance and an existing
database:

Figure 10.93: HammerDB Schema Build tree options

Tuning an Azure SQL database | 613

3. Expand the Schema Build option and double-click on Build to start generating the
schema creation scripts. This step will take a while since it's building the schema
and populating the workload data:

Figure 10.94: Confirming the schema build

614 | Monitoring and tuning

4. The preceding steps may run for quite a while, depending on your instance
resources; once the Schema Build step is completed, we need to prepare the
load script to run the workload. To generate the load script, double-click on
Options under Driver Script. Enter the SQL Managed Instance details, such as the
hostname, port, and ODBC driver version, and click OK.

To find the correct ODBC driver version on your client machine, please follow the
steps here: https://docs.microsoft.com/sql/database-engine/configure-windows/
check-the-odbc-sql-server-driver-version-windows?view=sql-server-ver15:

Figure 10.95: HammerDB driver script options

https://docs.microsoft.com/sql/database-engine/configure-windows/check-the-odbc-sql-server-driver-version-windows?view=sql-server-ver15
https://docs.microsoft.com/sql/database-engine/configure-windows/check-the-odbc-sql-server-driver-version-windows?view=sql-server-ver15

Tuning an Azure SQL database | 615

5. When we are ready with the load script, it's time to deploy virtual users to simulate
a real-time workload. Double-click on Options under the Virtual User tree and fill
in the Virtual Users and Iterations values:

Figure 10.96: HammerDB Virtual User Options

616 | Monitoring and tuning

6. Here we are almost ready to start the workload. Click on Create to deploy virtual
users, and after that, click on Run to start the load test:

Figure 10.97: HammerDB—running the load test

Tuning an Azure SQL database | 617

7. To monitor the transaction counter, click on the Start Transaction Counter button
in the toolbar:

Figure 10.98: Monitoring the tpm counter

So far, we have seen steps for generating load test data and running a workload with
50 virtual users using the HammerDB tool. In the next section, we will see scripts for
workload monitoring and transaction per minute (tpm) counter performance.

618 | Monitoring and tuning

Monitoring the first run with the default file configuration of the TPC-C
database
Now the load test is running with the default file configuration for the TPC-C database,
and we can see that the transaction per minute counter is fluctuating between 6,000
and 8,500 tpm, and that it's stable at this point.

Let's monitor the workload using Query Performance Insight library queries:

1. Run the following statements to set the baseline for the file and wait statistics.
You can run these queries in the database where you have deployed the Query
Performance Insight script:

--Take the file snapshot stats baseline
exec qpi.snapshot_file_stats;
-- Take the wait statistics baseline
exec qpi.snapshot_wait_stats;

2. Run the following statement to get the current file snapshot:

--Get the current file stats.
--Enter the database name used by HammerDB.
select * from qpi.file_stats where db_name='tpcc1';

Figure 10.99: Query Performance Insight file statistics

The preceding figure shows that the data_0 file for the tpcc1 database is struggling,
with IOPS throughput at 490, since the file size is in the 0>=to <=128 GB range
and latency_ms is higher (around 1,700 ms). Generally, I/O latency for the General
Purpose tier should be around 4-5 ms.

3. Let's also monitor the instance wait statistics at the same time using the Query
Performance Insight library. Run the following SQL query to get the top instance
wait types:

-- Get the wait stats
select * from qpi.wait_stats order by wait_time_s desc;

Tuning an Azure SQL database | 619

Here is the output of the preceding wait statistics query:

Figure 10.100: Query Performance Insight wait statistics

The preceding figure shows the top wait types, and here we can see that the
PAGEIOLATCH_SH and PAGEIOLATCH_EX wait types are dominating the instance wait
statistics.

At the same time, the HammerDB transaction counter is moving up and down
between 6,000 and 8,500 transactions per minute:

Figure 10.101: HammerDB tpm counter

4. Let's increase the tpcc1 database data file size and see the impact on the load test.
Run the following T-SQL query to increase the tpcc1 database data file size to 250
GB and it will fall under the >128 to <=512 GB and 2,300 IOPS limits:

ALTER DATABASE [tpcc1] MODIFY FILE (NAME = N'data_0', SIZE = 250GB)

620 | Monitoring and tuning

5. After the file size increment, you will start observing an improvement in the tpm
counter and file statistics for the instance. Run the following to see a current
snapshot of the file statistics:

select * from qpi.file_stats where db_name='tpcc1';

Figure 10.102: Query Performance Insight file statistics snapshot

The previous figure shows increased IOPS throughput and better read and write
latency for the data file on the tpcc1 database.

At the same time, you can see the jump in the tpm counter for the load test:

Figure 10.103: HammerDB tpm counter

Here, we can observe 36,000 transactions per minute executing on the managed
instance with the same vCore capacity and an increased file size.

In this section, we have seen quick steps to take to run and monitor load testing
on managed instances using open-source tools such as HammerDB and the Query
Performance Insight library.

The purpose of this section is only to show you how easily you can simulate a near real-
time workload and benchmark the performance of your workload for a General Purpose
managed instance. These tpm counter numbers may be different in your environment,
based on the current workload or client configuration.

Summary | 621

Summary
In this chapter, we covered different ways of monitoring and tuning Azure SQL
Databases and SQL Managed Instances. We learned how to use Azure SQL Database
performance metrics and Query Performance Insight to monitor database metrics and
queries from the Azure portal.

The chapter talked about using Azure SQL Analytics to monitor Azure SQL Database
and SQL Managed Instance. Intelligent Insights, provided by Azure SQL Analytics,
can be used to set up alerts on different metrics such as CPU, log I/O, blocks, and
deadlocks for Azure SQL Database. Intelligent Insights can also be used to fine-tune
long-running and CPU- or I/O-intensive queries to further optimize an Azure SQL
database.

We also learned how to set up alerts on database metrics, and proactively acted as
and when alerts were raised. We learned about important DMVs and how to set up
extended events to monitor a SQL database or a managed instance.

Following this, we set up automatic tuning for an Azure SQL database, and we used
in-memory OLTP to improve the performance of an OLTP workload. We also looked at
the steps to monitor and benchmark SQL Managed Instance using open-source tools
such as HammerDB and Query Performance Insight queries. Performance tuning is a
vast topic, and this book doesn't cover every aspect of it; however, it does give you an
insight into the available options. You can explore these options in detail to optimize
your environment.

In the next chapter, we will look at improving performance using in-memory
technologies, online and resumable DDL operations, SQL Graph queries, Azure Machine
Learning, and other improvements that you can make.

In the previous chapter, we learned various ways of monitoring and performance
tuning options for Azure SQL Database and SQL Managed Instance. This chapter talks
about the important database features available in Azure SQL Database and Azure SQL
Managed Instance.

We will learn about SQL Data Sync, which is used to sync data between two or more
Azure SQL databases or on-premises SQL servers, and we'll look at the SQL Graph
capabilities and enhancements in Azure SQL Database. We will also explore newly
added features, such as the Azure Machine Learning service and distributed transaction
support by creating SQL trust groups in Azure SQL Managed Instance.

Database features

11

624 | Database features

By the end of this chapter, you will be able to:

• Implement SQL Data Sync to sync an Azure SQL database with an on-premises
database.

• Use SQL Graph queries to create and query graph tables.

• Implement SQL Graph enhancements.

• Create a model to predict future sales using the Azure Machine Learning service
in Azure SQL Managed Instance.

• Run distributed transactions and create Server Trust Groups in Azure SQL
Managed Instance.

This chapter talks about improving performance using in-memory technologies, online
and resumable Data Definition Language (DDL) operations, and also SQL Graph queries
and improvements.

This chapter also covers the machine learning features for executing in-database R and
Python scripts.

Azure SQL Data Sync
As the name suggests, Azure SQL Data Sync allows bi-directional data syncing between
one or more Azure SQL databases and on-premises databases. The Azure SQL Data
Sync service is free; however, there are charges for data movement into and out of an
Azure SQL database.

Note

Azure SQL Sync doesn't support SQL Managed Instance at the time of writing.

Azure SQL Data Sync | 625

Figure 11.1 shows how data is typically synced between an Azure SQL database and an
on-premises database:

Figure 11.1: Syncing between an Azure SQL database and on-premises database

Azure SQL Data Sync is based around the idea of sync groups. A sync group has a hub
database and one or more member databases. The Data Sync is always from hub to
member, or from member to hub. There's no data sync between two member databases.

A sync group has the following components:

• Hub database: This should be an Azure SQL database. The Data Sync happens to
or from the hub database.

• Member database: A member database is an Azure SQL database, an
on-premises database, or SQL Server running on an Azure VM.

• Sync database: This should be an Azure SQL database in the same region as the
hub database. The sync database has the Data Sync metadata and log.

• Sync schema: This specifies the table and columns to be synced (not included in
the diagram).

• Sync direction: The Data Sync direction can be from hub database to member
database, from member database to hub database, or bi-directional.

• Sync interval: The frequency at which the Data Sync occurs.

• Local sync agent: The local sync agent or gateway is required for data sync from
an on-premises database. The agent is installed on-premises and connects to the
Azure SQL database for the Data Sync. To find out more about local sync agents,
please visit https://docs.microsoft.com/azure/azure-sql/database/sql-data-
sync-agent-overview.

https://docs.microsoft.com/azure/azure-sql/database/sql-data-sync-agent-overview
https://docs.microsoft.com/azure/azure-sql/database/sql-data-sync-agent-overview

626 | Database features

Azure SQL Data Sync works by tracking data changes using insert, update, and delete
triggers in a separate table in the user database. The sync app then takes care of
merging the tracked data to the member database.

If there is a conflict, there are two potential solutions: either the hub wins, or the
member wins. If the hub wins, the changes to the hub database overwrite the changes
in the member database. If the member wins, the changes to the member database
overwrite the changes to the hub database.

SQL Data Sync can be configured to connect with member and hub databases securely
using the private link, which is in public preview at the time of writing. For more details,
refer to https://docs.microsoft.com/azure/azure-sql/database/sql-data-sync-data-
sql-server-sql-database#private-link-for-data-sync-preview.

Data Sync can be used for the following scenarios:

• Synchronizing on-premises data to Azure SQL Database when moving to the
cloud. Consider a scenario where there is a database for multiple applications
and the applications are to be moved to the cloud. Data for particular
applications can be synced from on-premises to Azure SQL Database.

• Separating the reporting workload from the transactional workload. The member
database can be used for reporting, thereby offloading read workloads from
the transactional database. The Data Sync is not real time, or as spontaneous as
Always On or transactional replication. This should be considered when using
Data Sync for such scenarios.

• Applications nowadays have users across the globe. Therefore, having a database
closer to users speeds up the application's performance by reducing network
latency. Data Sync can be used to synchronize data between the databases in
different regions.

Data Sync is not a recommended solution for disaster recovery, read-scale, and
when migrating from an on-premises computer running SQL Server to an Azure SQL
database. However, Data Sync is helpful for post-migration, to keep the source and
target databases in sync.

https://docs.microsoft.com/azure/azure-sql/database/sql-data-sync-data-sql-server-sql-database#private-link-for-data-sync-preview
https://docs.microsoft.com/azure/azure-sql/database/sql-data-sync-data-sql-server-sql-database#private-link-for-data-sync-preview

Azure SQL Data Sync | 627

Data Sync has the following limitations:

• Data Sync doesn't have transactional consistency; rather, it has eventual
consistency. Data Sync guarantees that all changes will be synced eventually and
that there will be no data loss. This implies that there can be a delay for the data
to be synced between the target and source databases. Therefore, SQL Data Sync
can't be used for real-time reporting.

• Data Sync has a performance impact on the database as it uses triggers to track
changes. It's therefore advised to assess data sync requirements before using it.

• Data Sync doesn't support Azure Active Directory authentication.

• A table participating in Data Sync can't have an identity column that's not the
primary key.

• Data Sync doesn't support tables with the same name but different schema; for
example, tables such as Finance.Person and Sales.Person aren't supported.

• Schema changes are not automatically synced. Workarounds are available. Refer
to the following link to automate the replication of the schema changes in SQL
Data Sync: https://docs.microsoft.com/azure/azure-sql/database/sql-data-
sync-update-sync-schema.

• When using Always Encrypted, only the tables and columns that aren't encrypted
can be synced.

• With encrypted columns, only columns up to 24 MB in size can be synced.

Let's look at configuring data sync between two Azure SQL databases using PowerShell.

Activity: Configuring Data Sync between two Azure SQL databases using
PowerShell
In this activity, we'll configure Data Sync between two Azure SQL databases using
PowerShell. We'll configure Data Sync from the toystore database to the toystore_rpt
database. The toystore_rpt database is a copy of the toystore database. We'll use the
PowerShell script provided by Microsoft with a few modifications.

Before we configure the Data Sync, we'll restore a copy of the toystore database as the
toystore_rpt database. The toystore_rpt database will be the Data Sync member, and
the toystore database will be the Data Sync hub.

https://docs.microsoft.com/azure/azure-sql/database/sql-data-sync-update-sync-schema
https://docs.microsoft.com/azure/azure-sql/database/sql-data-sync-update-sync-schema

628 | Database features

To restore a copy of toystore as toystore_rpt, follow these steps:

1. Open a new PowerShell console window and change the directory to Chapter05.

2. Execute the following command to restore toystore as toystore_rpt:

PS E:\Professional-Azure-SQL-Database-Administration-Second-Edition\
Chapter05> .\PITRAzureSQLDB.ps1 -sqlserver toyfactorytem -database
toystore
-sqluser test -sqlpassword SuperSecret! -resourcegroupname toystore
-newdatabasename toystore_rpt

Note

You may have to change the file location, database user, and password.

3. You'll be prompted to provide the point in time to which to restore the database.
Use the one mentioned in the prompt shown in Figure 11.2:

Figure 11.2: Specifying the point in time for restoration of the database

Note

The time highlighted in Figure 11.2 will be different in your case.

When the restore command completes successfully, the database will be created and
will be available for use.

The next step is to configure Data Sync. The Data Sync PowerShell script is taken from
the documentation (with some modifications), available at https://docs.microsoft.com/
azure/azure-sql/database/scripts/sql-data-sync-sync-data-between-sql-databases.

The new version of the script is in the Chapter11 directory in the code base for the
book.

https://docs.microsoft.com/azure/azure-sql/database/scripts/sql-data-sync-sync-data-between-sql-databases
https://docs.microsoft.com/azure/azure-sql/database/scripts/sql-data-sync-sync-data-between-sql-databases

Azure SQL Data Sync | 629

The script is explained with relevant comments, and it's recommended you go through
the script before executing it. The script:

• Creates the Data Sync metadata database and the Data Sync group, and adds the
member database to the Data Sync group.

• Updates the database schema from the hub database in the Data Sync metadata
database.

• Adds the specified tables and columns to be synced in the Data Sync metadata
database.

• Triggers a manual sync, verifies whether Data Sync is working properly,
and updates the Data Sync schedule in order to run as specified by the
IntervalInSeconds parameter.

The script expects the following parameters:

• SubscriptionID: The subscription ID of the Azure subscription under which the
objects will be created.

• ResourceGroupName: The hub database server resource group name. As the Data
Sync metadata is created under the same logical server as the hub database, the
resource group for the hub and Data Sync metadata is the same.

• ServerName: The Azure logical SQL Server name of the hub database.

• DatabaseName: The hub database name.

• SyncDatabaseResourceGroupName: The resource group of the sync database. This
should be the same as the ResourceGroupName parameter value.

• SyncDatabaseServerName: The Azure logical SQL Server name for the Data Sync
metadata database. This is the same as the logical server name for the hub
database. This is not a prerequisite. The logical server name for the Data Sync
metadata database can be different; however, the location of the server should
be the same as that of the hub server.

• SyncDatabaseName: The Data Sync metadata database name.

• SyncGroupName: The Data Sync group name.

630 | Database features

• ConflictResolutionPolicy: The Data Sync group conflict resolution policy.

• IntervalInSeconds: The Data Sync frequency.

• SyncMemberName: The name of the Data Sync member.

• MemberServerName: The logical SQL server name of the member database.

• MemberDatabaseName: The member database name.

• MemberDatabaseType: The member database type; either Azure SQL Database or
an on-premises database.

• SyncDirection: The Data Sync direction.

• TablesColumnsToSync: A comma-separated list of the tables and columns to be
synced.

• Hubdbuser: The SQL user for the hub database. The script assumes that the user
is the same for the hub database, Data Sync, and the member database.

• Hubdbpassword: The password for the SQL user. The script assumes that the
password is the same for the hub database, Data Sync, and the member database.

Now let's run the script and take a look at the result:

1. To execute the script, open a new PowerShell console window and change the
directory to Chapter11.

2. Copy and paste the following command. You may have to change the parameter
values to suit your environment:

.\ConfigureDataSync.ps1 -SubscriptionId "b85b0680-m764-9I88-x7893-
fb6e89c39f38" -ResourceGroupName Packt -ServerName packtdbserver
-DatabaseName toystore -SyncDatabaseResourceGroupName Packt
-SyncDatabaseServerName packtdbserver -SyncDatabaseName syncdb
-SyncGroupName toystoresyncdb -ConflictResolutionPolicy "HubWin"
-IntervalInSeconds 300 -SyncMemberName member1 -MemberServerName
packtdbserver -MemberDatabaseName toystore_rpt -MemberDatabaseType
"AzureSQLDatabase" -SyncDirection "Bidirectional" -TablesColumnsToSync
'[Sales].[Orders].[CustomerID]' -hubdbuser dbadmin -hubdbpassword
Awesome@1234

3. When the script completes successfully, navigate to the Azure portal to verify that
the objects have been created.

Azure SQL Data Sync | 631

4. In the Azure portal, open the toystore database (the hub database) and select Sync
to other databases:

Figure 11.3: The database on the Azure portal

5. Observe that the sync group, toystoresyncdb, is created as part of the execution of
the preceding script:

Figure 11.4: The Sync to other databases option

632 | Database features

6. Click the sync group name to open the Database Sync Group page:

Figure 11.5: The Database Sync Group page

The Database Sync Group page lets you add or remove a data sync member and
add tables and columns to sync.

7. Click the Databases tile to add/remove a data sync member:

Figure 11.6: The Select sync members pane

Azure SQL Data Sync | 633

8. Click the Tables tile to add/remove tables or columns to sync:

Figure 11.7: The tables pane

The existing tables or columns that are being synced are marked with a checkmark.
To add tables and columns, check the one you want to add and click Save.

Let's now see Data Sync in action.

9. Connect to the toystore database in SSMS and execute the following query to
update the CustomerID column for a given orderid:

UPDATE Sales.Orders SET CustomerID=30 WHERE orderid=73096;

634 | Database features

10. Switch to the Azure portal Database Sync Group window and click Sync to start the
Data Sync:

Figure 11.8: The Sync option on the database pane

11. In a new query window in SSMS, execute the following query against toystore_rpt
(the member database) to verify whether or not it has the updated CustomerID from
toystore (the hub database):

SELECT * FROM Sales.Orders WHERE orderid=73096

Figure 11.9: Query output on the member database

The sync was successful, and the CustomerID column in both the hub and the
member database has the same value for the OrderID 73096.

Online and resumable DDL operations | 635

12. Once you are done, click Delete on the Data Sync group page to delete the sync
group and the associated configuration:

Figure 11.10: Deleting the sync group

This completes the activity. In this activity, we learned how to set up SQL Data Sync
between two Azure SQL databases using PowerShell.

Online and resumable DDL operations
The online CREATE INDEX and REBUILD INDEX operations can be paused and resumed as
and when required, or when killed/failed.

The operation is marked as resumable by specifying RESUMABLE=ON. For example, the
following CREATE INDEX operation is a resumable operation:

CREATE INDEX IX_Orders_CustomerID_Includes ON Sales.
Orders(CustomerID,Comments)

INCLUDE(DeliveryInstructions,InternalComments)

WITH(ONLINE=ON,MAXDOP=1,RESUMABLE=ON)

GO

636 | Database features

To pause an ongoing online resumable CREATE INDEX operation, either kill the session or
execute the PAUSE statement, as shown here:

ALTER INDEX IX_Orders_CustomerID_Includes on Sales.Orders PAUSE

GO

To resume a paused online resumable CREATE INDEX operation, either execute the CREATE
INDEX query mentioned earlier or execute the following query:

ALTER INDEX IX_Orders_CustomerID_Includes on Sales.Orders RESUME

GO

You can also specify MAX_DURATION in minutes that the resumable operation should run
before it's paused. For example, the following query runs for 1 minute. If the index isn't
created in 1 minute, the operation is paused and can be resumed by using any of the
methods specified earlier:

CREATE INDEX IX_Orders_CustomerID_Includes ON Sales.Orders(CustomerID)
INCLUDE(Comments,DeliveryInstructions,InternalComments)
WITH(ONLINE=ON,MAXDOP=1,RESUMABLE=ON,MAX_DURATION=1)

GO

The values for MAX_DURATION must be between 1 and 10,080 minutes.

The following query returns all the ongoing resumable operations:

SELECT

Object_Name(Object_id) AS TableName, [name] as IndexName,

sql_text, last_max_dop_used, state_desc, percent_complete

FROM sys.index_resumable_operations;

Here's an example output from the preceding query when a resumable CREATE INDEX
operation is running:

Figure 11.11: Output for the CREATE INDEX operation

The resumable operation has the following limitations:

• SORT_IN_TEMPDB=ON isn't supported.

• The resumable CREATE INDEX/REBUILD INDEX command can't be executed within
an explicit transaction.

• Filtered Index isn't supported with the resumable option.

• The LOB, Computed, and Timestamp columns can't be included.

SQL Graph queries and improvements | 637

SQL Graph queries and improvements
A graph database consists of nodes and edges. The nodes represent entities in your
graph, such as people or organizations, and edges represent the relationship between
two entities. The graph databases are optimized for implementing hierarchies and
many-to-many relationships, and for analyzing interconnected data and relationships.
This is difficult to implement in a relational database.

Let's look at modeling a very popular use case for a graph database: a social media
application. A social media application allows users to follow, like, post, comment, and
tag other users. Let's look at a simple model in Figure 11.12 that allows users to do this:

Note

To find out more about graphs, refer to https://docs.microsoft.com/sql/relational-
databases/graphs/sql-graph-overview?view=sql-server-ver15.

Figure 11.12: Social media model for following users

In Figure 11.12, the circles represent nodes and the lines represent edges or
relationships. The relationship is follows. The graph tells us that Amy follows Hudson,
Hudson follows Kayla, Kayla follows Amy, Amy follows Sophie, and Sophie follows Amy.

In Azure SQL Database, nodes and edges are stored as tables. Therefore, to model this
example, we'll need two tables: a Person node table, and a follows edge table.

The following query creates a node table called Person:

CREATE TABLE [Person] (

Id int identity, FullName varchar(100), PhoneNumber varchar(25),

EmailAddress varchar(100)

) AS NODE;

https://docs.microsoft.com/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-ver15
https://docs.microsoft.com/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-ver15

638 | Database features

A node can have properties such as phone number and email address in the Person
table. All indexes and data types are supported. That is, you can define any type of index
on a node property, including columnstore indexes.

Let's insert some sample records in the Person table:

Insert into Person Values ('Kayla Woodcock','(415) 555-0102','kaylaw@

wideworldimporters.com'),

('Hudson Onslow','(415) 555-0102','Hudson@wideworldimporters.com'),
('Sophia Hinton','(415) 555-0102','Sophia@wideworldimporters.com'), ('Amy
Trefl','(415) 555-0102','Amy@wideworldimporters.com');

The preceding query inserts people's details.

A Select query executed on the Person table gives the following output:

Figure 11.13: The Person table output

Take a look at the $node_id column in the output. $node_id is a pseudo-column that
uniquely identifies each node in the database.

Let's now create an edge table, as follows:

create table follows AS EDGE

GO

An edge table may or may not have user-defined properties in it. In this example, we
did not define any properties. Like the node tables, all data types and indexes are
supported on edge table properties.

A Select query on the follows table gives the following output:

Figure 11.14: Select operation on the follows table

There are no records in the edge table yet. Take a look at the different columns in
the edge table. $edge_id is a pseudo-column that uniquely identifies an edge in the
database.

$from_id contains the $node_id of the node from where the edge originates.

SQL Graph queries and improvements | 639

The $to_id column contains the $node_id of the node at which the edge terminates.
Let's insert values into the follows table as per the following relationship:

"Amy follows Hudson | Hudson follows Kayla | Kayla follows Amy | Amy follows Sophie |
Sophie follows Amy"

When inserting data into an edge table, along with the user-defined properties that
you might have in the edge table, you must insert values for the $from_id and $to_id
columns. $from_id and $to_id must hold the $node_id of the nodes that you are trying
to connect using the given edge in the graph:

insert into follows values

((select $node_id from Person where FullName='Kayla Woodcock'),(select

$node_id from Person where FullName='Amy Trefl')),

((select $node_id from Person where FullName='Amy Trefl'),(select $node_id
from Person where FullName='Sophia Hinton')),

((select $node_id from Person where FullName='Sophia Hinton'),(select $node_
id from Person where FullName='Amy Trefl')),

((select $node_id from Person where FullName='Amy Trefl'),(select $node_id
from Person where FullName='Hudson Onslow'))

((select $node_id from Person where FullName='Hudson Onslow'),(select $node_
id from Person where FullName='Kayla Woodcock'))

GO

A select query on the follows table gives the following result:

Figure 11.15: Output of the select query

The follows table correctly defines the relationship between each of the node IDs.

To query the relationships, a new match built-in operator is used. match is used in a
WHERE clause. The following query lists all the people that Amy follows:

SELECT person1.Fullname ,person2.fullname

FROM person AS person1, person AS person2, follows WHERE match(person1
-(follows)-> person2)

AND person1.fullname = 'Amy Trefl'

640 | Database features

Here's the output from the preceding query:

Figure 11.16: Output of the SELECT query

The syntax for the match operator is defined as (person1-(follows)->person2). Anything
that appears at the two ends of the arrow are nodes, and edges appear inside the
parenthesis. When using match, you always go from one node to another via an edge.
This was a simple example of how a graph schema can be implemented in Azure SQL
Database.

Graph database integrity using edge constraints
Edge constraints can help enforce a specific semantic between nodes. To explain this,
let's extend the preceding example with a new node that contains a list of the people
with deactivated, or inactive, accounts. A deactivated account cannot follow any other
person. Therefore, an active person (in the Person node) can follow an inactive person
(in the Blocked node); however, an inactive person (in the Blocked node) can't follow an
active person (in the Person node).

Execute the following query to create a Blocked node and mark Hudson Onslow as
blocked or deactivated:

CREATE TABLE [Blocked] (

Id int identity, FullName varchar(100), PhoneNumber varchar(25),

EmailAddress varchar(100)

) AS NODE;

GO

Insert into Blocked Values ('Hudson Onslow','(415) 555-0102','Hudson@
wideworldimporters.com');

Let's create the "follows" (edge) table with an edge constraint:

CREATE TABLE follows (

CONSTRAINT ec_blocked Connection (Person To Blocked,Person To Person)

)

As Edge

SQL Graph queries and improvements | 641

The preceding query creates an edge table called follows, with an edge constraint
called ec_blocked. The edge constraint only allows connections from the Person node to
the Blocked node, and from the Person node to itself.

Execute the following query to insert relationships in the edge table. This is allowed as
per the constraint definition:

insert into follows values

((select $node_id from Person where FullName='Kayla Woodcock'),(select

$node_id from Person where FullName='Amy Trefl')),

((select $node_id from Person where FullName='Amy Trefl'),(select $node_id
from Person where FullName='Sophia Hinton')),

((select $node_id from Person where FullName='Sophia Hinton'),(select $node_
id from Person where FullName='Amy Trefl')),

((select $node_id from Person where FullName='Amy Trefl'),(select $node_id
from Blocked where FullName='Hudson Onslow'));

GO

Let's now insert a connection from a Blocked node to a Person node, which isn't allowed
as per the constraint's definition:

insert into follows values

((select $node_id from Blocked where FullName='Hudson Onslow'),(select

$node_id from Person where FullName='Kayla Woodcock'));

GO

The preceding query terminates with the following error:

Msg 547, Level 16, State 0, Line 58

The INSERT statement conflicted with the EDGE constraint "ec_blocked". The
conflict occurred in database "GraphDB", table "dbo.follows".

The statement has been terminated.

You can also define cascading actions on an edge constraint. Cascading actions on an
edge constraint let users define the actions that the database engine takes when a user
deletes the node(s), which the given edge connects. The following referential actions
can be defined:

• NO ACTION: The database engine raises an error when you try to delete a node
that has connecting edge(s).

• CASCADE: When a node is deleted from the database, connecting edge(s) are
deleted.

642 | Database features

The following example creates the follow edge with an ON DELETE CASCADE action. That
is, when a Person node is deleted from the Person node table, all connecting edges
(incoming or outgoing) to that node will be automatically deleted. If cascading delete
actions are not defined on the edge constraint, it will be the user's responsibility, after
deleting a node, to delete all the connecting edges. If they do not do so, there will be
dangling edges in the graph:

CREATE TABLE follows (

CONSTRAINT ec_blocked Connection (Person To Blocked,Person To Person) ON
DELETE CASCADE

)

As Edge

To learn more about implementing ON DELETE CASCADE, refer to the following
link: https://docs.microsoft.com/sql/relational-databases/tables/graph-edge-
constraints?view=sql-server-ver15#defining-referential-actions-on-a-new-edge-table.

Using derived tables or views in match

Graph queries on Azure SQL Database support using views and derived table aliases
in a match query. To use these aliases in match, the views and derived tables must be
created either on node or edge tables, which may or may not have some filters on them,
or a set of node or edge tables combined using the UNION ALL operator. The ability to
use derived table and view aliases in MATCH queries could be very useful in scenarios
where you are looking to query heterogeneous entities or heterogeneous connections
between two or more entities in your graph.

Match in merge DML

The match operator is supported with the MERGE DML statement. The MERGE DML statement
allows you to run insert, update, and delete statements on a target table based on the
values matched from the source table. You can read more about this at https://docs.
microsoft.com/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-
ver15&viewFallbackFrom=sql-serverver15.

One of the most important features of a SQL Graph database is the SHORTEST_PATH
function. You can read more about it at https://docs.microsoft.com/sql/relational-
databases/graphs/sql-graph-shortest-path?view=sql-server-ver15.

In this section, we have discussed SQL Graph queries features for Azure SQL Database.
Next, let's look at the Machine Learning Services feature in Azure SQL Managed
Instance.

https://docs.microsoft.com/sql/relational-databases/tables/graph-edge-constraints?view=sql-server-ver15#defining-referential-actions-on-a-new-edge-table
https://docs.microsoft.com/sql/relational-databases/tables/graph-edge-constraints?view=sql-server-ver15#defining-referential-actions-on-a-new-edge-table
https://docs.microsoft.com/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-ver15&viewFallbackFrom=sql-serverver15
https://docs.microsoft.com/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-ver15&viewFallbackFrom=sql-serverver15
https://docs.microsoft.com/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-ver15&viewFallbackFrom=sql-serverver15
https://docs.microsoft.com/sql/relational-databases/graphs/sql-graph-shortest-path?view=sql-server-ver15
https://docs.microsoft.com/sql/relational-databases/graphs/sql-graph-shortest-path?view=sql-server-ver15

Machine Learning Services | 643

Machine Learning Services
Machine Learning Services was first introduced in SQL Server 2016 (on-premises) as
R Services. Machine learning is now available in Azure SQL Managed Instance. It's in
preview at the time of writing.

Machine Learning Services provides machine learning capabilities for Azure SQL
Managed Instance and allows in-database R and Python scripts to be run for high-
performance predictive analytics. Running in-database R and Python scripts uses
the data in the managed instance instead of pulling the data over the network from a
different source. In the absence of Machine Learning Services, you would have to set up
R and Python and get the data from a remote data source for the analysis.

Machine Learning Services makes it possible to run R and Python scripts in stored
procedures or T-SQL statements.

R is a programming language that's extensively used for data analysis, machine learning,
and predictive analytics. R packages provide out-of-the-box methods to implement
statistical and machine learning algorithms such as linear and non-linear regression,
classification, and decision tree classification.

Python is one of the most popular programming languages. Using Python, you can do
all sorts of tasks, such as web development and data analysis, and it's emerged as a
great language for implementing machine learning.

Common R and Python packages are included in Machine Learning Services. You can
use RevoScaleR, MicrosoftML, olapR, and sqlrutils for R. For Python, in addition to
Microsoft packages such as revoscalepy and microsoftml, you can also use and install
open-source packages and framework such as PyTorch, TensorFlow, and scikit-learn.

644 | Database features

Differences between Machine Learning Services in SQL Server and
Azure SQL Managed Instance
The SQL Managed Instance and SQL Server Machine Learning Services are quite
similar; however, there are some important differences:

Table 11.1: Azure SQL Managed Instance Vs. SQL Server - Machine Learning Services

The Machine Learning Services public preview for SQL Managed Instance has the
following limitations:

• Only Python and R packages are supported, and external languages such as Java
cannot be used.

• Loopback connections are not supported.

• It's available in the US, Asia, Europe, and Australia regions only.

• Message Passing Interface (MPI) scenarios are not supported.

If you change the pricing tier of your Azure SQL Managed Instance, then a support
request needs to be raised to re-enable the dedicated resource limits for R/Python.

Note

Machine Learning Services in SQL Managed Instance is in public preview. To sign
up, please visit https://docs.microsoft.com/azure/azure-sql/managed-instance/
machine-learning-services-overview#signup.

Machine Learning Services

Azure SQL Managed Instance SQL Server

R (v3.5.2) and Python (v3.7.1) are supported. R (v3.3.3) and Python (v3.5.2) are
supported.

external scripts enabled needs to
.

No support packages that depend on external runtimes such as
Java or the OS API. Packages can use external runtimes.

Packages can make outbound calls using NSG rules. Packages can make network calls.

Not possible to limit R resources using Resource Governor.
In preview, R resources can use a maximum 20% of Azure SQL
Managed Instance resources.

Yes, Resource Governor can be
used to limit R resources.

https://docs.microsoft.com/azure/azure-sql/managed-instance/machine-learning-services-overview#signup
https://docs.microsoft.com/azure/azure-sql/managed-instance/machine-learning-services-overview#signup

Machine Learning Services | 645

Activity: Run basic Python scripts
In this activity, you will learn to write basic scripts to run a simple Python program,
check the Python version, and check the installed Python packages from an SSMS query
window.

Perform the following steps to complete the activity:

1. Open a new query window in SSMS and run the following script to run a simple
Hello, World! program:

EXECUTE sp_execute_external_script @language = N'Python',
@script = N'print("Hello, World!")';
GO

If you get an error instead of the following output, then Machine Learning Services
isn't enabled on the Azure SQL Managed Instance, and you should refer to the
earlier note to enable it:

Figure 11.17: Output for Hello, World! using Python

2. Run the following script to check the Python version:

EXECUTE sp_execute_external_script @language = N'Python'
 , @script = N'
import sys
print(sys.version)
'

The preceding script will display output such as the following:

Figure 11.18: Output for Python version

646 | Database features

3. Run the following script to check installed Python packages:

EXECUTE sp_execute_external_script @language = N'Python'
 , @script = N'
import pkg_resources
import pandas
dists = [str(d) for d in pkg_resources.working_set]
OutputDataSet = pandas.DataFrame(dists)
'
WITH RESULT SETS(([Package] NVARCHAR(max)))
GO

You will see output like this:

Figure 11.19: Output for Python packages

In this activity, we learned to run some basic scripts using Python. We have also verified
the installed Python version and Python packages that are pre-installed by Microsoft in
Machine Learning Services.

Machine Learning Services | 647

Activity: Using Machine Learning Services in Azure SQL Managed
Instance to forecast monthly sales for the toystore database
In this activity, you'll use linear regression on the monthly sales data in the toystore
Azure SQL Managed Instance database to forecast the sales for the coming months.
You'll run R scripts in Azure SQL Managed Instance to train and save a model in a
database table. You'll then use the saved model to forecast sales in upcoming months.

Note

The Machine Learning Services public preview should be enabled in Azure SQL
Managed Instance in order to perform the steps in the activity.

All the steps in this activity are on the toystoreml managed database with the Machine
Learning Services public preview enabled. You can use an existing or a new managed
database; however, the Machine Learning Services public preview should be enabled in
Azure SQL Managed Instance.

Follow these steps to complete the activity:

Note

The queries used in the activity can also be copied from the ~/Chapter11/
ActivityMachineLearning.sql file in the code bundle.

1. We'll import the monthly sales data into the MonthlySales table in the toystoreml
database. The MonthlySales table will be used to train the machine learning model.
Execute the following query to create the MonthlySales table:

CREATE TABLE [dbo].[MonthlySales]([year] [smallint] NULL, [month]
[tinyint] NULL, [Amount] [money] NULL
)

Execute the following bcp command in a command-line console window. The
bcp command inserts the data in the ~/Chapter11/MonthlySales.dat file into the
MonthlySales table:

bcp MonthlySales in "E:\Professional-Azure-SQL-Database-Administration-
Second-Edition\Chapter11\MachineLearning\monthlysales.dat" -c -t -S
packtsqlmi.<dnszone>.database.windows.net -d toystoreml -U dbadmin -P
xxxxxxx

You'll have to change the managed instance name, the database name, the user, and
the password for your environment.

648 | Database features

You should get the following output from the bcp command:

Figure 11.20: Output of the bcp command

Open a new query window in SSMS, connect to the toystoreml database, and query
the MonthlySales table:

SELECT * FROM MonthlySales

You should get an output similar to Figure 11.21:

Figure 11.21: The MonthlySales table data

The MonthlySales table contains the monthly sales amount for each year. We'll use
this data to predict the sales amount for the upcoming months.

Machine Learning Services | 649

2. Before we start creating the model, execute the following query in SSMS to verify
whether the Machine Learning Services public preview is enabled on the database:

EXECUTE sp_execute_external_script @language =N'R', @script=N'print("Hello
World")';

If you get an error instead of the following output, then Machine Learning Services
isn't enabled on the managed instance:

Figure 11.22: Output for Hello World using R

The sp_execute_external_script stored procedure executes a given R script on a
given dataset. The dataset is a valid input database query.

3. The MonthlySales table has three columns: year, month, and amount. The amount
column contains the sales amounts for the given year and month.

The linear regression model will describe the relationship between the sales
amount (the dependent variable) and the year and month (independent variables).

A linear regression algorithm requires a formula to describe the relationship
between the dependent variable (amount) and the independent variables (year and
month), as well as input data, to train the model.

The linear regression formula is defined in an R script, and the input data is
provided from the MonthlySales table.

650 | Database features

Execute the following query to create a generate_linear_model procedure to create
a linear regression model:

DROP PROCEDURE IF EXISTS generate_linear_model;
GO
CREATE PROCEDURE generate_linear_model
AS
BEGIN
EXECUTE sp_execute_external_script @language = N'R',
@script = N'
lrmodel <- rxLinMod(formula = amount ~ (year+month), data = MonthlySales);
trained_model <- data.frame(payload = as.raw(serialize(lrmodel,
connection=NULL)));
' ,
@input_data_1 = N'SELECT
year,month,amount FROM MonthlySales',
@input_data_1_name =
N'MonthlySales',
@output_data_1_name = N'trained_model'
WITH RESULT SETS
(
(
model VARBINARY(MAX)
)
);
END;

sp_execute_external_script executes the R script against the data from the
MonthlySales table.

The @script variable has an R script that uses the rxLinMod function. The first
argument to rxLinMod is the formula that defines the amount as dependent on the
year and month. The second variable defines the dataset.

@input_data_1 is the SQL query that sets the training data to train the model.

@input_data_1_name is the name given to the data return by the query in @ input_
data_1. The dataset's name is used as the second argument to the rxLinMod function.

@output_data_1_name is the name of the output dataset. The procedure returns a
model in the varbinary data type.

Machine Learning Services | 651

4. The next step is to execute the generate_linear_model procedure and store the data
model in a table.

Execute the following queries to create a table and then execute the generate_
linear_model procedure to store the model in the table:

DROP TABLE IF EXISTS dbo.monthly_sales_models
GO
CREATE TABLE dbo.monthly_sales_model
(
model_name VARCHAR(30) NOT NULL
DEFAULT ('default model') PRIMARY KEY, model VARBINARY(MAX) NOT NULL
);
GO
INSERT INTO dbo.monthly_sales_models
(
model
)
EXECUTE generate_linear_model;
GO
Query the monthly_sales_models table to verify the row inserted.
SELECT * FROM monthly_sales_models

You should get output as shown in Figure 11.23:

Figure 11.23: Output for the generate_linear_model function

5. The next step is to insert the year and month in the MonthlySales table for which we
need to predict the sales amount.

Execute the following query to insert the values:

INSERT INTO dbo.MonthlySales
(
year, month
)
VALUES
 (2019, 7),
 (2019, 8),
 (2019, 9),
 (2019, 10),
 (2019, 11),
GO

652 | Database features

6. The next step is to predict the sales amount for the years and months inserted in
step 5. These year and month values were not in the MonthlySales table and the
sales amount is not available for them.

Execute the following query to predict the sales amount:

DECLARE @salesmodel VARBINARY(MAX) = (
SELECT model FROM dbo.monthly_sales_models
WHERE model_name = 'default
model'
);
EXECUTE sp_execute_external_script @language = N'R',
@script = N'
current_model <- unserialize(as.raw(salesmodel));
new <- data.frame(NewMonthlySalesData);
predicted.amount <- rxPredict(current_model, new);
OutputDataSet <- cbind(new, ceiling(predicted.amount));
',
@input_data_1 = N'SELECT [year],[month]
FROM [dbo].[MonthlySales] where amount is null',
@input_data_1_name =
N'NewMonthlySalesData',
@params = N'@salesmodel
varbinary(max)',
@salesmodel = @salesmodel
WITH RESULT SETS
(
(
[year] INT,
[month] INT,
predicted_sales INT
)
);

The query passes the new year and month values and the saved model to the
rxPredict function to generate the predictions for the sales amount. The @
salesmodel variable contains the model created in step 4.

The @script parameter is the R script that generates predictions. The rxPredict
function takes two arguments, the model and the new data. The first argument,
current_model, is the unserialized form of the @salesmodel. The second argument,
new, is the data from the T-SQL query as specified in the @input_data_1 parameter.

The @input_data_1 parameter specifies the data for the prediction. The query

Distributed transactions in Azure SQL Managed Instance | 653

selects the year and month from the MonthlySales table where the amount is not
available.

@output_data_1_name is the name given to the dataset returned by the query
specified by the @input_data_1_parameter parameter.

@params defines the @salesmodel input parameter. @salesmodel contains the model
created in step 4.

You should get the output shown in Figure 11.24:

Figure 11.24: Output for the predicted monthly sales data

Note that this is not a business-ready solution to forecast sales. It only illustrates the
use and benefits of Machine Learning Services for analyzing the data in Azure SQL
Managed Instance by running in-database R scripts.

This concludes Machine Learning Services in Azure SQL Managed Instance. Let's also
look at the newly added distributed transaction feature in SQL Managed Instance.

Distributed transactions in Azure SQL Managed Instance
A distributed transaction is a database transaction in which there are two or more
database servers involved. In an on-premises computer running SQL Server, this is
managed by the Microsoft Distributed Transaction Coordinator (MSDTC) process.
Microsoft recently announced support for distributed transactions in SQL Managed
Instance, and this feature is available in preview. Since the MSDTC service is not
available for Platform-as-a-Service in Azure, this feature is directly integrated with
Azure SQL Managed Instance.

654 | Database features

Before you run a transaction across multiple instances, first you need to add all the
instances into a mutual security and communication relationship. This can be done
by creating a Server Trust Group between all the instances using the Azure portal. If
the instances are not part of the same virtual network, then Virtual Network Peering
(discussed in Chapter 9, High availability and disaster recovery) is required to have a
communication link between instances. Also, you need to configure network security
group inbound and outbound security rules for port 5024 and 11000-12000 on all
participating virtual networks.

Server Trust Group
By using a Server Trust Group, you can manage the trust between managed instances.
Once you create a Server Trust Group, a certificate-based trust is established between
its participants. Creation and deletion of the Server Trust Group are only allowed using
the Azure portal during the preview period and there is no support for PowerShell or
the Azure CLI.

Figure 11.25 shows multiple managed instances in a Server Trust Group that can execute
distributed transactions using T-SQL:

Figure 11.25: Server Trust Group

Distributed transactions in Azure SQL Managed Instance | 655

Figure 11.25 shows a quick overview of running a distributed transaction using the
T-SQL command line from cloud or on-premises applications. All the managed
instances are part of a Server Trust Group, and Instance2 is coordinating a distributed
transaction across multiple databases hosted on managed instances.

Activity: Creating a Server Trust Group using the Azure portal
In this activity, we will be creating a Server Trust Group between two SQL Managed
Instances running in different regions. We have already set up Global VNet peering
between two VNets. You can refer to Chapter 9, High availability and disaster recovery,
in Activity: Configuring an auto-failover group for SQL Managed Instance.

Follow these steps to create a Server Trust Group:

1. Go to the Azure portal by using https://portal.azure.com.

2. Navigate to SQL Managed Instance where you want to add the Server Test Group.

3. Under Security, select the SQL trust groups blade and click on the New Group
button:

Figure 11.26: SQL trust groups server blade

https://portal.azure.com

656 | Database features

4. Enter a Group name, select the secondary managed instance, and click on Save to
create the SQL trust group:

Figure 11.27: Create SQL trust group form

Distributed transactions in Azure SQL Managed Instance | 657

5. After deployment, the SQL trust groups page looks like the following:

Figure 11.28: Newly added SQL trust group

In this activity, you have learned to create SQL trust groups using the Azure portal.
We have added two managed instances running in different regions from the same
subscription. If you want to edit group members then you have to delete and re-create
the Server Trust Group.

In preview, you are only allowed to add two managed instances in a group. If you wish
to run distributed transaction for more than two managed instances, then you need to
create a Server Trust Group for each pair of managed instances.

Activity: Running distributed transactions using T-SQL
T-SQL support for running distributed transactions is only available in SQL Managed
Instance. You can only run distributed transactions on managed instances that belong
to the same Server Trust Group. Using T-SQL, you can run distributed transactions
using SQL Managed Instance public and private endpoints.

In this activity, managed instances refer to each other using a linked server.

658 | Database features

Follow these steps to run a distributed transaction on SQL Managed Instance:

1. Add a linked server for a remote managed instance:

 -- Configure the Linked Server
 -- Add second Azure SQL Managed Instance as Linked Server
 EXEC sp_addlinkedserver
 @server='RemoteSQLMI', -- Linked server name
 @srvproduct='',
 @provider='sqlncli', -- SQL Server Native Client
 @datasrc='packtsqlmi2.231383d50c2f.database.windows.net' – SQL
Managed Instance endpoint

 -- Add credentials and options to this Linked Server
 EXEC sp_addlinkedsrvlogin
 @rmtsrvname = 'RemoteSQLMI', -- Linked server name
 @useself = 'false',
 @rmtuser = 'miadmin', -- login
 @rmtpassword = '<Enter your password here>' -- password

This T-SQL query adds a linked server called RemoteSQLMI for the packsqlmi2
managed instance. We are using the SQL Server native client as a provider to
connect the remote instance. We are also specifying the login credentials for
remote managed instance authentication. In this exercise, we have used miadmin
account, but you can also use any account that has the required privileges.

Distributed transactions in Azure SQL Managed Instance | 659

2. Run a distributed transaction using T-SQL:

USE toystore;
GO
--Stopping execution and rolling it back for any error
SET XACT_ABORT ON;
GO
--Start of distributed transaction
BEGIN DISTRIBUTED TRANSACTION;

--Select order before deletion on local instance
Select * FROM [toystore].[Sales].[Orders] WHERE OrderID = 73499;
Delete Order from local instance.
DELETE FROM [toystore].[Sales].[Orders] WHERE OrderID = 73499;
--Select Order After deletion on local instance
Select * FROM [toystore].[Sales].[Orders] WHERE OrderID = 73499;

--Select order before deletion on remote instance
Select * FROM [RemoteSQLMI].[toystore].[Sales].[Orders] WHERE OrderID =
73499;
Delete candidate from remote instance.
DELETE FROM [RemoteSQLMI].[toystore].[Sales].[Orders] WHERE OrderID =
73499;
--Select order after deletion on remote instance
Select * FROM [RemoteSQLMI].[toystore].[Sales].[Orders] WHERE OrderID =
73499;

--Commit
COMMIT TRANSACTION;
GO

These T-SQL statements run a distributed transaction between two SQL Managed
Instance parts of an SQL trust group. These are simple SQL statements for deleting a
record and verifying the execution by running a SELECT statement. Here, we are using a
linked server (RemoteSQLMI) to run queries against the secondary managed instance.

660 | Database features

You will see output similar to Figure 11.29:

Figure 11.29: Output window for the distributed transaction

In this activity, we have learned how to run a distributed transaction on SQL Managed
Instance. We created a linked server to establish communication between members of
a SQL trust group. We also ran a distributed transaction to delete an order based on
the OrderID field from toystore database hosted on the managed instances. Distributed
transactions are only limited to Server Trust Group members.

In this exercise, we talked about running distributed transactions using T-SQL. For a
.NET development experience, please visit https://docs.microsoft.com/azure/azure-
sql/database/elastic-transactions-overview#net-development-experience.

Summary
In this chapter, we learned about database features, Azure SQL Data Sync, online
and resumable DDL operations, and SQL Graph database. We also explored Machine
Learning Services and distributed transaction features for Azure SQL Managed
Instance.

Azure SQL Data Sync is an easy-to-set-up process of syncing data between two or
more Azure SQL databases, or an Azure SQL database and an on-premises computer
running SQL Server. Data Sync can be used to support cloud migration or to offload
reporting workloads.

Resumable DDL operations allow CREATE INDEX and REBUILD INDEX tasks to be paused
or resumed as and when required. This helps when we need to recover from problems
wherein a long-running CREATE INDEX or REBUILD INDEX statement causes blocking and
slows system performance.

SQL Graph capabilities provide a flexible and easy way to implement many-to-many
relationships or hierarchies.

https://docs.microsoft.com/azure/azure-sql/database/elastic-transactions-overview#net-development-experience
https://docs.microsoft.com/azure/azure-sql/database/elastic-transactions-overview#net-development-experience

Summary | 661

Machine Learning Services allows you to run R and Python scripts on Azure SQL
Managed Instance. Server Trust Groups in Azure SQL Managed Instance allow you to
run distributed transactions.

In the next chapter, we'll learn about modernizing applications using Azure SQL
Managed Instance, Azure SQL Database serverless compute, and the Hyperscale
performance tier.

Application modernization is the process of upgrading an application to a better
infrastructure or architecture using new platforms or technologies so as to improve
overall application performance, deployment quality and frequency, business
continuity, and scalability with limited cost and management.

Public cloud computing platforms, such as Microsoft Azure, Amazon Web Services, and
Google Cloud Platform, provide modern infrastructure to host and run applications.
Application modernization today mostly refers to running an application (and
databases) on a public cloud platform.

App modernization

12

664 | App modernization

Microsoft Azure provides multiple database deployment options to migrate to or to
host new databases. These are SQL Server on Azure Virtual Machines (IaaS), Azure SQL
Database, and Azure SQL Managed Instance (PaaS):

Figure 12.1: The Azure SQL family

Azure's managed SQL database offerings (SQL Database and SQL Managed Instance)
allow you to concentrate on application development and optimization by providing
managed services such as backup, business continuity, security, infrastructure
management, OS management, SQL Server installation, and scaling.

Azure's managed SQL database offerings allow the use of an existing SQL Server license
and enable you to save licensing costs under Azure Hybrid Benefit, with multiple
service tiers for running different application workloads. This makes them a good
option when running SQL Server on Azure.

SQL Database provides similar PaaS features to SQL Managed Instance, with Serverless
and Hyperscale service tiers, giving customers multiple options to choose a suitable
pricing tier as per their workloads.

Note

We can also migrate databases other than SQL Server on SQL Managed Instance
or SQL Database by migrating the data and schema using Azure Data Migration
Services.

In this chapter, we'll discuss managed SQL database features that facilitate easy cloud
adoption with very little cost and effort.

Best for lift & shift cloud migrations
and apps requiring OS level access

Full administrative rights to build
highly customized systems

Automated manageability features

Best for modernizing existing
apps

Nearly 100% compatible with
on-premises SQL Server and
fully managed by Microsoft

Best for modern and cloud apps

Pre-provisioned and serverless
compute and hyperscale storage
to meet specific workload
requirements.

Azure SQL
Managed Instance

Azure SQL
Database

SQL Server on Azure
Virtual Machine

Azure SQL Family

Infrastructure-as-a-Service (laaS) Platform-as-a-Service (PaaS)

Migrating an SQL Server workload to SQL Managed Instance | 665

By the end of this chapter, you will be able to understand:

• Migration to Azure's managed SQL databases

• Backup and restore

• Scaling and business continuity features

• The SQL Database serverless compute tier

• Scaling to the Hyperscale service tier

Let's get started with migrating an SQL Server workload to SQL Managed Instance.

Migrating an SQL Server workload to SQL Managed Instance
SQL Managed Instance is nearly 100% compatible with SQL Server (on-premises or on
Azure Virtual Machines) and provides easy lift and shift when migrating databases from
an on-premises environment.

You get the following benefits when migrating to SQL Managed Instance:

• Easy migration with minimal application changes

• Saved costs by using existing SQL Server licenses under Azure Hybrid Benefit

• Managed service benefit, wherein you can concentrate on database development
and optimization, while backup, restore, business continuity, security, and
scaling are provided out of the box

You can attain SQL Server database compatibility using Data Migration Assistant and
then migrate the schema and the data using any of the migration methods discussed in
Chapter 4, Backups, such as backup and restore, transactional replication, or Azure Data
Migration Services.

SQL Managed Instance works well with single-instance, multiple-database applications.

You can also choose to do an offline or an online migration. An offline migration is
one in which there's downtime, and an online migration is one that has near-zero
downtime. Offline migration can be done using native backup and restore, whereas
Azure Data Migration Services and transactional replication can be used for online
migration.

After a successful migration, you can focus on improving application performance,
while regular database administration is managed by Microsoft. Let's now look at the
managed services you get with SQL Managed Instance.

666 | App modernization

Backup and restore
One of the most important tasks for DBAs is configuring backup and restore in SQL
Server (on-premises or SQL on Azure Virtual Machines). Although there are multiple
native and third-party tools and scripts available to configure backups, it is still
necessary to define a recovery strategy, configure the backup, set up alerts for backup
failures, verify backups by restoring them on another instance, and automate point-in-
time restore.

Backups are natively available with SQL Managed Instance as described in Chapter 5,
Restoration. Moreover, a database can easily be restored to a point in time from the
Azure portal with a few clicks or a simple PowerShell command. This takes away the
time and complexity of setting up backups when migrating to SQL Managed Instance.

SQL installation and patches
SQL Managed Instance comes with the latest SQL Server version installed. We have
seen in Chapter 1, Introduction to Azure SQL managed databases, that provisioning a
managed instance can be easily done through the Azure portal and PowerShell. It takes
around 3–4 hours for the managed instance to be available; however, it will be available
to use without any further installation.

Installing SQL Server manually is easy, and there are certain best practices to consider
that are already taken care of in SQL Managed Instance.

Zero-downtime SQL Server patching is another important task that is to be performed
manually for an on-premises or SQL Server on Azure Virtual Machines. Zero-downtime
patching requires either a failover cluster installation or an Always On implementation.
The patch is first installed on the passive or the secondary SQL Server Instance. After a
successful patch installation, a manual failover is performed to the secondary/passive
instance. The patch is then installed on the new secondary instance. All of the steps are
to be properly documented and discussed prior to patch installation.

SQL Managed Instance takes care of zero-downtime patching natively. This saves a
lot of time that would be spent on doing it manually, which can instead be utilized to
improve the application.

Note

Refer to the following link to upgrade replicas in an Always On availability group:
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/
upgrading-always-on-availability-group-replica-instances?view=sql-server-ver15.

https://docs.microsoft.com/sql/database-engine/availability-groups/windows/upgrading-always-on-availability-group-replica-instances?view=sql-server-ver15
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/upgrading-always-on-availability-group-replica-instances?view=sql-server-ver15

Migrating an SQL Server workload to SQL Managed Instance | 667

Scaling
There are two types of scaling options available with SQL Managed Instance:

• Scaling up/down by changing the number of vCores

• Scaling out by offloading reads to read-only replicas

Scaling up and down by increasing or decreasing the number of vCores is done
transparently by setting up a new managed instance (handled by the service, not
manually), and there's no downtime. When the target instance is up and running, the
connections are switched to it. This affects in-process transactions, which can be
mitigated by implementing a retry logic. It may take 2–4 hours to scale a managed
instance up or down. The scaling up and down example is covered in detail in Chapter
3, Migration.

Scaling not only improves performance but can also save costs when you scale down
to a lower performance tier. For example, imagine you have optimized database
performance so your database can now work with fewer resources. You can scale down
to a lower performance tier to save SQL licensing as well as performance tier costs.
This is possible in an on-premises environment; however, it requires a lot of work and
time to set up an infrastructure with reduced resources.

Scaling out refers to offloading reads to secondary read-only replicas. SQL Database
and SQL Managed Instance provide read-only replicas, which can be used to redirect
read queries. The inserts are done at the primary replica phase, whereas the reads are
done during the read-only secondary replicas. This removes the load from the primary
replica, thereby providing increased throughput for write queries.

High availability and disaster recovery
SQL Managed Instance guarantees 99.99% uptime. You can visit the following link for
details about SLAs on different service tiers: https://azure.microsoft.com/support/
legal/sla/sql-database/.

The General Purpose service tier uses SQL Server in a failover cluster instance
(active/passive virtual machine) with shared storage to provide high availability. The
shared storage used is Azure premium storage, which has built-in high availability
and redundancy. If the primary (active) virtual machine fails, an automatic failover is
performed on the passive node to provide high availability.

The Business Critical service tier uses an Always On availability group to provide high
availability. Configuring a failover cluster instance and Always On requires knowledge
and expertise in Windows Server Failover Cluster and Always On. Moreover, it takes a
considerable amount of time. These are available natively in SQL Managed Instance.

https://azure.microsoft.com/support/legal/sla/sql-database/
https://azure.microsoft.com/support/legal/sla/sql-database/

668 | App modernization

Refer to the following link for details on configuring failover cluster instances: https://
docs.microsoft.com/en-gb/azure/azure-sql/virtual-machines/windows/failover-
cluster-instance-overview.

Let's now look at the newly introduced features in SQL Managed Instance.

Newly introduced features
In this section, we will look at the newly added features of the SQL Managed Instance
offering, such as support for SQL Server Reporting Services databases, distributed
transactions, Azure Machine Learning, improved database backup retention, and
support for global virtual network peering.

Support for hosting SSRS catalog databases
If your SQL Server Reporting Services (SSRS) reports pull data from databases hosted
on SQL Managed Instance, then you can also host the reporting services catalog
databases on SQL Managed Instance to reduce the database engine footprint.

With SSRS 2019, now you can point to SQL Managed Instance during the SSRS
configuration or re-point the existing reporting databases to SQL Managed Instance
using SSRS Configuration Manager. You can also migrate the databases using backup
and restore methods from an on-premises SQL Server to a managed instance:

Figure 12.2: SSRS database configuration with SQL Managed Instance

UserDB1
Azure SQL
Managed Instance

UserDB2

UserDB3

ReportServer

ReportServerTempDB

Azure VM

https://docs.microsoft.com/en-gb/azure/azure-sql/virtual-machines/windows/failover-cluster-instance-overview
https://docs.microsoft.com/en-gb/azure/azure-sql/virtual-machines/windows/failover-cluster-instance-overview
https://docs.microsoft.com/en-gb/azure/azure-sql/virtual-machines/windows/failover-cluster-instance-overview

Migrating an SQL Server workload to SQL Managed Instance | 669

Figure 12.2 is an illustration of how reporting services are typically configured with
SQL Managed Instance. Here, we are running SSRS on Azure Virtual Machines and
hosting the report server databases (ReportServer and ReportServerTempDB) on SQL
Managed Instance.

If you have SSRS 2016 or 2017 in your environment, then you can still host the reporting
databases on SQL Managed Instance. You just need to configure the instance before
installing the reporting services on Azure Virtual Machines, and you need to enable
the suppress recovery model errors configuration on SQL Managed Instance prior
to SSRS configuration. For more information on the suppress recovery model errors
configuration, please visit https://docs.microsoft.com/sql/database-engine/configure-
windows/suppress-recovery-model-errors-server-configuration-option?view=sql-
server-ver15.

Azure Machine Learning
Azure Machine Learning provides machine learning capabilities for SQL Managed
Instance and allows in-database R and Python scripts to be run for high-performance
predictive analytics. Running in-database R and Python scripts uses the data in the
managed database instead of pulling the data over the network from a different source.
In the absence of Azure Machine Learning, you would have to set up R and Python and
get the data from a remote data source for the analysis:

Figure 12.3: R and Python support SQL Managed Instance

Azure Machine Learning makes it possible to run R and Python scripts in stored
procedures or T-SQL statements. You can refer to a detailed discussion of this topic in
Chapter 11, Database features.

https://docs.microsoft.com/sql/database-engine/configure-windows/suppress-recovery-model-errors-server-configuration-option?view=sql-server-ver15
https://docs.microsoft.com/sql/database-engine/configure-windows/suppress-recovery-model-errors-server-configuration-option?view=sql-server-ver15
https://docs.microsoft.com/sql/database-engine/configure-windows/suppress-recovery-model-errors-server-configuration-option?view=sql-server-ver15

670 | App modernization

Distributed transaction support
Distributed transactions have been available in the SQL Server world for a very long
time with the help of Microsoft Distributed Transaction Coordinator (popularly
known as MSDTC). Microsoft recently announced support for distributed transactions
on SQL Managed Instance. This allows you to run distributed transactions in a cloud
environment just like you would with on-premises SQL Server. Now you can run
transactions across instances deployed in different Azure regions and virtual networks.

This feature is useful for scenarios, for example, where a modern application has
separate database instances for hosting Sales and Warehouse databases. When users
update records in the Sales databases, the associated records are updated in the
Warehouse database.

This cross-instance collaboration is secured with the help of the Server Trust Group
entity.

During the preview phase, managed instances are only supported as transaction
participants with .NET and T-SQL client application layers.

For more detailed information, please refer to the distributed transactions information
in Chapter 11, Database features.

Global virtual network peering support

SQL Managed Instance runs in a secure isolated virtual network. With global virtual
network peering available, you can enable connectivity across all Azure public regions
without additional bandwidth restrictions and, as always, keep all your traffic on the
Microsoft backbone. This configuration simplifies the auto failover group deployment
for SQL Managed Instance. Prior to global virtual network peering, you needed to rely
on a VPN or ExpressRoute setup.

A cost-effective way of managing backups

SQL Managed Instance now allows you to manage your backups in a more cost-
effective way by providing improved compressed backups, short-term retention, and
multiple options to choose backup storage redundancy.

Microsoft has improved the backup compression by up to 30% for database backups.
This can cut your backup storage costs by reducing the database backup size. There is
no additional configuration required for this improvement.

You can now configure the backup retention for active databases from anywhere
between 1 and 35 days (reduced from 7–35 days). You can also configure the deleted
database backup retention to 0–35 days (reduced from 7–35 days). Setting backup
retention to 0 means there will be no backup stored for the selected database. This can
be helpful in reducing backup costs for large deleted databases.

SQL Database serverless | 671

With this, Microsoft also allows you to choose less expensive backup storage
redundancy options during managed instance creation. You can now choose between
RA-GRS, ZRS, and LRS. For more information on backup retention and backup storage
redundancy options, please refer to Chapter 4, Backups.

These were some of the new features that were introduced for SQL Managed Instance
recently. You can visit https://azure.microsoft.com/updates/?category=databases for
more recent announcements related to SQL Database and SQL Managed Instance.

PaaS capabilities and nearly 100% compatibility with on-premises/Virtual Machines
SQL Server makes SQL Managed Instance the most suitable deployment option
for modernizing your applications. This allows you to focus on major application
development while Microsoft manages all the instance availability, backups, patching,
and other management activities.

Now, let's look at the SQL Database serverless pricing tier and understand how it's a
good fit for application modernization.

SQL Database serverless
SQL Database serverless automatically scales compute based on workload demand
and bills for the amount of compute used per second. Serverless databases can also be
configured to automatically pause during inactive periods when only storage is billed
and automatically resume when database activity returns.

Serverless is available for single database deployments in the General Purpose tier of
the vCore purchasing model at the time of writing this book.

Serverless use cases
Auto-scaling and auto-pausing and resuming in serverless often provide an optimal
balance between performance and compute cost trade-offs for both production or
development databases.

Serverless databases are well suited to the following scenarios:

• Databases with intermittent, unpredictable usage patterns interspersed with
periods of inactivity and lower average compute utilization over time.

• New databases without usage history or SQL Server migrations where compute
sizing is difficult or not possible to estimate prior to deployment in SQL
Database.

• Applications that require the database to be frequently rescaled can benefit from
the serverless auto-scaling feature.

https://azure.microsoft.com/updates/?category=databases

672 | App modernization

Creating a serverless database
Let's start by looking at how to provision a serverless database using the Azure portal:

1. Open the Azure portal, https://portal.azure.com. In the search box, type sql
database and then select SQL databases from the search drop-down list:

Figure 12.4: Searching for SQL databases

On the SQL databases page, click Add to add a new SQL database:

Figure 12.5: Creating a new SQL database

2. On the Create SQL Database page, provide information for Subscription, Resource
Group, Database name, and Server. If you don't have an existing server, you can
create a new Azure SQL Logical Server by clicking Create new and following the
instructions:

https://portal.azure.com

Creating a serverless database | 673

Figure 12.6: The Create SQL Database pane

Click on the Configure database link to configure the database properties.

3. On the Configure page, under the General-Purpose tab (vCore pricing model),
select Compute tier as Serverless.

Set Min vCores to 1 and Max vCores to 8:

Note

The amount of memory available depends on the minimum and maximum vCore
numbers. As you increase/decrease the minimum and maximum vCores, the
minimum and maximum memory change accordingly.

Figure 12.7: Configuring the number of minimum and maximum vCores

674 | App modernization

The default auto-pause delay is set to 1 hour, which is the minimum auto-pause
limit available at the time of writing.

4. Set Data max size to 10 GB:

Figure 12.8: Configuring the Auto-pause delay and Data max size

The maximum storage limit for the serverless tier is 4 TB. The transaction log size
allocated is ~30% of the data max size. The log space allocated in this case is 3 GB,
as shown in Figure 12.8.

The Configure page also provides a cost summary as per the selected configuration
options. The compute and storage are billed separately in serverless. The billing
is covered in detail under the SQL Database serverless billing section later in the
chapter.

5. Click Apply to save the selected configuration and return to the Create SQL
Database page.

6. On the Create SQL Database page, click Review + create to get a summary of the
selected configuration:

Creating a serverless database | 675

Figure 12.9: The Review + create page

7. Click Create to provision the database. It usually takes 1–5 minutes to provision SQL
Database with this particular configuration.

Auto-scaling in serverless
The compute for a serverless database is automatically scaled based on workload
demand between the minimum and maximum vCores configured and a corresponding
range in memory. In general, serverless databases are run on a machine with sufficient
capacity to provide resources with near instantaneous responsiveness and without
interruption for any amount of compute requested within limits set by the max vCores
configured. Occasionally, load balancing occurs to provide additional capacity if the
underlying host machine is unable to satisfy workload demand. In this case, the scaling
latency can take up to several minutes and the database remains online during the load
balancing operation except when connections are briefly dropped when switching to
the new host machine.

676 | App modernization

Cache Reclamation
Memory for serverless databases is reclaimed more frequently than for provisioned
compute databases which is important to control costs, but can impact performance.
Unlike provisioned compute databases, memory from the SQL cache is reclaimed
from a serverless database when CPU or active cache utilization is low. Active cache
utilization is considered low when the total size of the most recently used cached
entries is below threshold for a period of time. When reclamation occurs, the cache
size is reduced incrementally to a fraction of its previous size and this iteration only
continues if usage remains low. However, the cache size is never reduced below the
minimum memory limit as defined by the minimum vCores. When demand for more
memory returns, the cache is allowed to grow unconstrained up to the max memory
limit.

Auto-pausing in serverless
A serverless database auto-pauses whenever the idle time of the workload exceeds
the elapsed time specified by the auto-pause delay. The auto-pause delay can be set
between 1 hour and 7 days.

The idle time is described by the following conditions:

• If the number of user sessions is zero

• If CPU usage of the user workload is zero

Auto-pausing can be disabled altogether if the performance impact outweighs the
cost savings. Moreover, there is no option to manually pause and resume a serverless
database.

Additionally, certain features are not supported if auto-pause is enabled. For details on
features that require disabling auto-pause refer to https://docs.microsoft.com/azure/
azure-sql/database/serverless-tier-overview#autopausing.

Note that if auto-pause is disabled, the serverless database can still benefit from
compute auto-scaling and billing based on the amount of compute used per second.

Auto-resuming in serverless
A serverless database automatically resumes when database activity occurs. A common
auto-resume trigger is a database login, but there are a variety of conditions that
can trigger auto-resume. For details on auto-resume triggers refer to https://docs.
microsoft.com/azure/azure-sql/database/serverless-tier-overview#autoresuming.
Once auto-resume is triggered, the latency before the database is back online is
typically around one minute or less.

https://docs.microsoft.com/azure/azure-sql/database/serverless-tier-overview#autopausing
https://docs.microsoft.com/azure/azure-sql/database/serverless-tier-overview#autopausing
https://docs.microsoft.com/azure/azure-sql/database/serverless-tier-overview#autoresuming
https://docs.microsoft.com/azure/azure-sql/database/serverless-tier-overview#autoresuming

Creating a serverless database | 677

When the database auto-resumes it takes time for the SQL cache to warm-up and the
queries may have slower response times for the warm-up duration. The applications
running on Azure SQL Database serverless should be able to cope with this delay in
compute warm-up. Alternatively, if the performance impact of compute warm-up due
to auto-resuming cannot be tolerated, then auto-pausing can be disabled while still
enjoying the serverless benefits of auto-scaling and compute billing based on usage.

We discussed the auto-scaling capabilities in serverless a few pages ago. It is important
to note that auto-scaling is independent of auto-pausing and resuming, and can
function either alone or in conjunction with auto-pausing and resuming.

SQL Database serverless billing
The compute (CPU and memory) cost is calculated as the maximum CPU (vCore) and
memory used per second. There's no compute cost for the duration when serverless
is paused. The minimum compute bill when serverless isn't paused and isn't used
(CPU and memory utilization is less than the minimum vCore/memory provisioned) is
calculated on the basis of minimum vCores provisioned.

The following formula is used to calculate the compute cost:

Compute cost = vCore unit price * max (min vCores, vCores used, min memory * 1.3,
memory GB used * 1/3)

The vCore unit price is the cost per vCore per second. To get the updated price, refer to
https://azure.microsoft.com/pricing/details/sql-database/single/.

For example, consider the following scenario. Imagine that a serverless database,
configured with 8 max vCores, 1 min vCore, and 1-hour auto-pause delay runs for
4 hours, consuming 4 vCores and 8 GB memory (for the 4-hour duration). It's then idle
for the next hour and is auto-paused as per the auto-pause configuration.

Let's now apply the preceding compute cost formula and list the variable values:

• vCore unit price = $0.0001450/sec (East US Region)

• min vCores = 1

• vCores used = 4

• min memory = 3 GB

• memory used = 8 GB

Note

The vCore unit price varies from one Azure region to another. You can
get the vCore unit price from here: https://azure.microsoft.com/pricing/
calculator/?service=sql-database.

https://azure.microsoft.com/pricing/details/sql-database/single/
https://azure.microsoft.com/pricing/calculator/?service=sql-database
https://azure.microsoft.com/pricing/calculator/?service=sql-database

678 | App modernization

Applying the preceding values to the formula, we get:

Compute cost per second = $0.0001450 * max(1,4,(3*1.3),(8*1/3))

 = $0.0001450 * max(1,4,3.9,2.7)

 = $0.0001450 * 4 = $0.00058/sec

The amount $0.00058 is for 1 second. As per our example scenario, the database was
used for 4 hours, so the hourly cost will be $0.00058 * 60 * 60 * 4 = $8.352.

In addition to this, the database was running idle for the next hour before getting
paused. The database is billed for the minimum cost for this duration and is calculated
as:

vCore unit price * max(min vCores, min memory GB * 1/3)

Substituting values into the preceding formula, we get:

Compute cost per second (idle) = $0.0001450 * max(1,3*1/3)

 = $0.0001450 * max(1,1)

 = $0.0001450 * 1 = $0.0001450/sec

The per-second cost for the time that the database was idle turns out to be $0.0001450,
which is equivalent to the cost of 1 vCore. The hourly cost will be $0.0001450 * 60 * 60
= $0.522.

Therefore, the total cost for the database will be $8.352 + $0.522 = $8.874.

We can also use Azure Pricing Calculator to calculate the pricing for the given
scenario. To do that, go to https://azure.microsoft.com/pricing/calculator and add
SQL Database from the list of productions.

To use the calculator, set the region as East US (you can change it as per your
environment), TYPE as Single Database, PURCHASE MODEL as vCore, SERVICE TIER
as General Purpose, and COMPUTE TIER as Serverless.

Under Billed vCores, set Maximum vCores to 8 and Minimum vCores to 1.

Set CPU Used (vCores) to 4, Memory used (GB) to 8, and Duration (in seconds) to
14400 (4 hours):

https://azure.microsoft.com/pricing/calculator

Creating a serverless database | 679

Figure 12.10: Using Azure Pricing Calculator to calculate SQL Database serverless pricing

As shown in Figure 12.10, the total amount for our example is $8.35, which is similar to
the amount we calculated manually using the formula.

Demonstration of auto-scaling and compute billing in serverless
To see auto-scaling in action, we'll run a workload against a serverless database and
observe the CPU percentage and app_cpu_billed counter. The toystore serverless
database is configured with 4 max vCores and 0.5 min vCores, 20 GB storage, and a
1-hour auto-pause delay.

The CPU percentage counter shows the percentage of vCores used by the workload
relative to the maximum vCores. The app_cpu_billed counter shows the amount of
compute billed during the reporting period. The app_cpu_billed metric is calculated
by aggregating the amount of vCores and memory used per second. The serverless
database cost is the product of the vCore unit price and this metric.

To demonstrate this, follow these steps:

1. Execute the following query against the toystore serverless database to create the
orders table:

CREATE TABLE orders (
 id int IDENTITY,
 productid INT,
 quantity INT,
 MONEY,
 orderdate DATETIME DEFAULT getdate()
)

680 | App modernization

2. Execute the following query against the toystore serverless database to create the
InsertOrders procedure:

CREATE OR ALTER PROCEDURE InsertOrders
AS
SET NOCOUNT ON
DECLARE @i INT = 1
WHILE(@i<=10000)
BEGIN
INSERT INTO orders(productid,quantity,unitprice) VALUES(@i*2,@i,@i*2.3)
SET @i=@i+1
END

This query inserts 10000 records in the orders table created in the previous step.

3. Execute the following code in the Replay Markup Language (RML) command
prompt:

ostress.exe -Spacktdbserver.database.windows.net -Uaosama -PAwesome@1234
-dtoystore -Q"Execute InsertOrders" -n100 -r100

The code creates 100 threads to run the InsertOrders stored procedure against the
toystore serverless database. Each thread is executed 100 times.

As the workload is executing, switch over to the Azure portal and open the toystore
serverless database overview page:

Figure 12.11: Examining the CPU percentage metric

Creating a serverless database | 681

Figure 12.11 shows the increase in the CPU percentage as the workload progresses.

The database auto-scales to use the vCores as required by the workload. A CPU
percentage of 59% refers to 59% of 4 (maximum vCores configured), which is equivalent
to 2.36 vCores.

Let's now look at the app_cpu_billed metric for the same duration:

Figure 12.12: App CPU billed metric

Figure 12.12 shows the App CPU billed metric for the duration of the workload. The total
CPU billed is 5,750 vCore seconds (~1.5 hours). The cost for the workload is therefore
5750 * $0.0001450 = $0.83. $0.0001450 is the vCore unit price for the East US region.

The total amount billed will be $0.83 plus the minimum cost for an hour before the
toystore database is paused.

If this workload runs, say, four times a day, then the total hours charged will be 4*1.5 =
6 hours and the total cost will be around 4*0.83 = $3.32 (plus the minimum amount for
4 hours) for 1 day.

If we compare this with a General Purpose provisioned compute with a maximum of 4
vCores, the cost will be $24.21 for a day. The storage cost is the same for both serverless
and provisioned compute.

Note

The preceding cost is from the Azure pricing calculator (https://azure.microsoft.
com/pricing/calculator) for a General Purpose Gen5, 4 vCore provisioned compute
in the East US 2 region, running one instance for 24 hours.

https://azure.microsoft.com/pricing/calculator
https://azure.microsoft.com/pricing/calculator

682 | App modernization

As we can see, there's a significant cost saving with SQL Database serverless for
intermittent, unpredictable workloads with periods of inactivity. A serverless database
is therefore the recommended option for such workloads.

Let's compare the provisioned compute and serverless compute tiers in the next
section.

Serverless vs. provisioned compute
The provisioned compute tier allows us to choose a fixed number of vCores which are
billed hourly. The number of vCores can be scaled up or down manually as and when
required. Let’s look at the differences between the provisioned and serverless compute
tiers.

Table 12.1: Serverless vs. provisioned compute

SQL Database provides different compute tiers for different application workloads.
Choosing an appropriate compute tier provides better performance with optimum cost
savings.

Feature Serverless compute Provisioned compute

Performance
management Automatic scaling and sizing Manual scaling and sizing

Scaling speed Fastest Slower

Compute
responsiveness Lower after inactive usage periods

Auto-pause Supported Not supported

Billing granularity Per second Per hour

Hardware
Generation Only supported with Gen5 Supports Gen5, M-series, and Fsv2-series

Service tier Only supported in General Purpose Supported in General Purpose,
Hyperscale, and Business Critical

Database usage
pattern

Intermittent, unpredictable usage with
lower average compute utilization
over time.

Regular usage patterns with higher
average compute utilization over time or
multiple databases using elastic pools

Scaling to the Hyperscale service tier | 683

Scaling to the Hyperscale service tier
SQL Database introduced the Hyperscale service tier in May 2019 for General
Availability; since then, it's been a popular choice for users who seek high performance
and high scalability. The Azure SQL Hyperscale service tier solves most of the very
large database (VLDB) problems, such as backup, restore, and scaling.

Considering moving to the Hyperscale service tier
The Hyperscale service tier should be considered as the first choice for a typical
workload. Here are some example scenarios:

• If you have a large on-premises SQL Server database and want to modernize
applications while moving to the cloud.

• If you are hitting max storage limits in the existing service tier of an Azure SQL
database. Hyperscale supports a max storage amount of up to 100 TB.

• If you require fast database backups/restore operations irrespective of database
size.

• If you need higher log throughput irrespective of database size and vCore count.

• If you need fast scale-up/down operations.

• If you need to scale out a read-only workload by provisioning one or more read
replicas.

These are some of the qualities that make the Hyperscale service tier an ideal choice
for any database. The Hyperscale service tier is designed to run a broad range of SQL
Server workloads, but it's primarily optimized for online transaction processing (OLTP)
and hybrid transaction and analytical processing (HTAP) workloads.

Note

Please refer to the FAQs here to learn more about the Hyperscale service tier:
https://docs.microsoft.com/azure/azure-sql/database/service-tier-hyperscale-
frequently-asked-questions-faq.

Now, we will go through an activity that demonstrates how to move an existing SQL
database to the Hyperscale service tier.

https://docs.microsoft.com/azure/azure-sql/database/service-tier-hyperscale-frequently-asked-questions-faq
https://docs.microsoft.com/azure/azure-sql/database/service-tier-hyperscale-frequently-asked-questions-faq

684 | App modernization

Activity: Updating an existing SQL database to the Hyperscale service
tier using the Azure portal
You can move your existing SQL database to the Hyperscale service tier. At this point,
moving to the Hyperscale service tier is a one-way operation; you can't move databases
from Hyperscale to another service tier other than by exporting and importing data.
Microsoft recommends trying out the Hyperscale service tier by making a copy of
production databases and then moving the copy to the Hyperscale service tier.

In this activity, we will learn how to move an existing SQL database to the Hyperscale
service tier using the Azure portal.

Follow these steps to complete the activity:

1. Go to the Azure portal and navigate to the SQL database that you are moving to the
Hyperscale service tier.

2. Under Settings, select Configure and choose the Hyperscale option:

Figure 12.13: Selecting the Hyperscale service tier

Scaling to the Hyperscale service tier | 685

3. Remember that scaling from Hyperscale to another service tier is not possible and
set the Azure Hybrid option and vCores and Secondary Replicas counts. Once
finished, click on Apply to start the migration:

Figure 12.14: Hyperscale service tier options

4. Monitor the Notifications tab for deployment progress:

Figure 12.15: Hyperscale deployment notification

686 | App modernization

Success notification

This may take some time depending on the data size; you will receive a notification
that looks like this:

Figure 12.16: Hyperscale deployment success notification

In this activity, we have scaled an existing toystore DTU-based SQL database to the
Hyperscale service tier with 2 vCore compute and one secondary replica configuration.
Now let's look at how to move an existing SQL database to the Hyperscale service tier
using PowerShell commands.

Activity: Updating an existing SQL database to the Hyperscale service
tier using PowerShell commands
In the previous activity, we have seen quick steps to move an existing SQL database
to the Hyperscale service tier using the Azure portal. Here we will perform the same
activity using PowerShell commands.

Follow these steps to complete this activity:

1. Open Cloud Shell from the Azure portal by clicking on the Cloud Shell icon:

Figure 12.17: Navigating to Cloud Shell

2. Switch to the PowerShell terminal to run PowerShell code:

Figure 12.18: Switching to the PowerShell terminal

Scaling to the Hyperscale service tier | 687

3. Set the variables according to your environment:

#setting up variable as per your environment
$subscription = "xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxx"
$resourceGroup = "SQLServer"
$serverName = "toyfactory1"
$databaseName = "toystore1"
$edition = "Hyperscale"
$sku = "HS_Gen5_2"
$replicaCount =1

4. Select the SQL Database subscription:

#Select the Azure SQL Database subscription
Select-AzSubscription -SubscriptionId $subscription

5. Update the database properties using the following PowerShell command:

#Updating existing Azure SQL Database to Hyperscale service tier.
Set-AzSqlDatabase -ResourceGroupName $resourceGroup -DatabaseName
$databaseName -ServerName $serverName -Edition $edition
-RequestedServiceObjectiveName $sku -ReadReplicaCount $replicaCount

Figure 12.19: Set-AzSqlDatabase PowerShell command output

Note that the Edition setting is Hyperscale, which confirms that the database has been
upgraded to the Hyperscale tier.

In this activity, we have used Az.sql PowerShell module commands to scale an existing
DTU-based SQL database to the Hyperscale service tier.

688 | App modernization

Read scale-out an SQL Hyperscale database
A Hyperscale database also provides an option to read scale-out by offloading read-
only workloads to secondary read replicas. This is a similar option to the Premium/
Business Critical service tiers, where you can offload the read-only workload by adding
the ApplicationIntent=ReadOnly flag to the application connection string. Hyperscale
uses a different architecture to the Premium/Business Critical service tiers to provide
the read scale-out feature. Please refer to Chapter 2, Service tiers, to learn more about
the Hyperscale service tier architecture.

Hyperscale secondary replicas share the same page servers as the primary database.
If you have more than one replica, then the workload will be distributed across the
available replicas. All the data changes are updated independently on replicas, so you
will see a different data latency between replicas. In addition to read scale-out, these
replicas also serve as hot-standbys in case of a failover from the primary replica.

Summary
In this chapter, we discussed different deployment options for the Azure SQL family,
such as SQL Managed Instance, SQL Database serverless, and the Hyperscale service
tier. We also learned how managed databases help in application modernization by
leveraging PaaS capabilities, such as backups, patching, availability, and easy scaling
options. This allows developers to focus on their key application development and leave
most of the database management operations to Microsoft.

With this, we have learned how to successfully set up SQL Database and SQL Managed
Instance, migrate our data from an on-premises database to provisioned cloud
databases and instances, how to scale these databases and instances as per our
requirements, and how to manage our costs optimally. We've also looked at how to
secure these databases and instances and the built-in high-availability features of SQL
Database and SQL Managed Instance, and we discussed some of their more advanced
functions. We will now be able to work on applications that are built on SQL Database
and SQL Managed Instance with ease.

About

All major keywords used in this book are captured alphabetically in this section. Each one is
accompanied by the page number of where they appear.

Index

>

A
aborts: 469
access: 5, 17-18, 20, 31-32,

53, 129, 134, 140, 182,
185-187, 217, 239-240,
244, 249, 254-255,
260-264, 268-274,
277-278, 280, 285,
294-299, 304-305, 309,
311, 315-317, 322, 325,
335, 390, 415, 441, 444,
464, 469, 555, 573

account: 44, 46, 51, 71-72,
129-130, 134-135,
147-148, 161, 168, 173,
177, 179-183, 185-186,
205, 219, 222, 241,
260-262, 264, 268,
286-288, 293-294,
297, 302, 307, 311,
343-345, 372, 376-377,
394, 429, 451, 454,
498, 506, 545-547,
549, 573, 640, 658

activity: 21, 42, 46, 73, 77,
91, 95, 105-106, 112,
116-117, 125, 138-139,
141-142, 144-145,
148-149, 152, 156, 162,
167-168, 172, 179, 185,
188, 191, 205-206, 217,
221, 224, 227, 235-236,
285, 298, 302, 304-305,
308-309, 315-317,
322, 325-326, 330,
342-343, 360, 363,
371-372, 381, 388-389,
394, 399-400, 403,
406, 408-409, 411-412,
426, 434, 448, 452,
457, 471, 473, 481, 488,

490-491, 495, 504-505,
511, 514, 519, 527, 557,
567, 578-579, 597, 607,
610, 627, 635, 645-647,
655, 657, 660, 671, 676,
683-684, 686-687

address: 17, 27, 49-50, 114,
241-251, 254, 264, 279,
283, 289, 302, 316, 326,
335, 446, 593, 638

alerts: 302, 304, 325-326,
331-334, 343, 353,
361-362, 394, 536, 541,
543, 548, 550, 561-563,
566, 607, 621, 666

algorithm: 649
analytics: 286-288,

410-411, 530, 545,
549-553, 555-562,
566-567, 572-573,
621, 643, 669

artificial: 597
asymmetric: 302
attacks: 5-6, 325, 330
auditing: 31, 285-290,

293-294, 303
azure-sql: 28, 30, 38,

56, 64, 72-73, 91, 165,
185, 302, 389, 448,
588, 625-628, 644,
660, 668, 676, 683

B
back-end: 148
backup: 1, 3, 24-25,

29, 38, 71-72, 95, 117,
122, 138-141, 147-150,
155-163, 165, 167-174,
183-185, 187-189,
191-193, 202-203,
205-206, 211, 215-216,

225-226, 231, 236-237,
240, 298-300, 302,
448, 471, 664-666,
668, 670-671, 683

bacpac: 29, 77-78, 92-93,
120, 122, 173-175,
177-178, 181-183,
191-192, 201, 217,
219-220, 237, 383

balancer: 27
benchmark: 60, 620-621
binary: 593-594
blocking: 364, 411, 557,

560-561, 563-564, 566,
584, 589-590, 660

boolean: 394, 497
buffer: 65, 70,

591-592, 596

C
cached: 70-71, 249, 367,

369, 588, 600, 676
calculator: 677-679, 681
cascading: 641-642
catalog: 74, 668
checkpoint: 468-471
cleanup: 301, 469, 610
client: 5, 17-18, 27, 40,

243-244, 251, 254, 292,
297, 300, 305, 316, 335,
368, 372, 451, 610-611,
614, 620, 658, 670

cluster: 25-28, 65,
403-406, 445, 457,
460, 464, 666-668

cmdlet: 47-49, 181-182,
215, 226, 377-379,
431-433, 451, 453,
500-502, 508-510

column: 18, 134, 277,
279-280, 283, 318,
323-324, 365,
381-382, 386, 388,
397, 574-575, 587, 589,
594, 601-603, 627,
633-634, 638-639, 649

columnar: 601
commit: 72, 466, 468,

472, 474, 659
compute: 10, 38, 60,

63-68, 70-73, 77, 83-85,
91, 156, 164, 214, 406,
410, 416, 444-445,
460-462, 464, 532,
535, 661, 665, 671,
673-679, 681-682, 686

connection: 28, 32, 40, 70,
81, 102, 113-114, 139, 150,
185-186, 241, 250-251,
254, 256-258, 268,
275-277, 294, 304-305,
315, 330-331, 335,
368-369, 401, 411-412,
476-477, 479, 488, 512,
584, 640-642, 650, 688

container: 8, 29, 37,
180-181, 183, 219,
293-294, 296-299,
546, 550, 592

counter: 74-75, 592,
617-620, 679

credential: 54, 140, 181,
187, 296, 299, 347-349,
352, 400-401, 438-442

customer: 278-279,
317-319, 321-322, 335,
364-366, 368, 379,
381, 388, 403, 415,
417-418, 440-441

D
dacpac: 29, 93, 173, 217
dashboard: 280,

533, 535, 567
database: 1-10, 13-14,

16, 18, 20-22, 24-34,
38, 40, 42-43, 46,
48-50, 57, 59-60,
63-64, 66, 68, 70-78,
80-85, 87-101, 103-106,
108, 111-112, 114-119,
121-127, 129, 131-134,
137-138, 140-142, 144,
146, 148-153, 155-167,
169, 171-185, 187-189,
191-195, 197-231,
233-237, 239-242,
244-245, 247-251,
253-256, 258-262,
264, 268-278, 280-281,
285-289, 292, 298, 302,
304-305, 315-316, 318,
327-328, 330-331, 333,
335, 337-343, 347-348,
353-354, 360-372, 374,
376-380, 382-389,
394-395, 397-404,
410-413, 415-423, 426,
428, 430-440, 443-444,
448, 454, 457, 459-464,
466-483, 486-488,
491-495, 497, 500-502,
504, 509, 511-513,
527, 529-536, 538,
542-544, 548-550, 552,
557-560, 567, 574-576,
578-579, 584-586,
588-593, 595-599,
603-604, 606-608,
610, 612, 618-621,
623-634, 637-638,

640-642, 647-649,
653, 658, 660-661,
664-684, 686-688

datacenter: 63, 304, 364
dataframe: 646
datalength: 587-589
datareader: 270, 272-274
dataset: 649-650, 653
data-tier: 173, 176-177
dbmanager: 271
deadlocks: 2, 550, 561, 621
debugging: 193
decrypting: 302
delimiter: 574
deployment: 3-4, 24,

27-28, 35, 37-38, 42,
56, 90-92, 119-120,
142, 165, 173, 176, 201,
370, 391, 394, 415-416,
444, 446-454, 457,
459, 475, 517-518, 523,
525, 657, 663-664,
670-671, 685-686, 688

developer: 184, 471
devops: 3, 370, 543
diagnostic: 536, 543-546,

548-550, 552-553,
555, 561, 584, 591

directory: 25, 45, 50, 55,
74, 81, 183, 223, 226,
230, 234, 239, 257,
261-264, 266-268, 274,
276, 360, 373-374, 376,
379, 383, 392, 394,
396, 427, 429, 433,
498, 503, 505-506,
512, 627-628, 630

discovery: 280-281,
283, 293

domain: 27, 129, 134,
262, 264-265, 335

download: 73, 93,
371-372, 588, 611

downtime: 89, 91,
93-94, 141, 212, 338,
405, 665, 667

driver: 270, 305, 614
dtu-based: 60, 83-84, 91,

338, 342, 586, 686-687
duration: 29, 56, 71, 91,

117, 300, 403-404, 471,
479, 508, 533, 549,
560-561, 580-581, 583,
588-592, 594-595,
636, 677-678, 681

dynamic: 6-7, 33,
239-240, 279, 527,
529, 539-541, 587

E
e-commerce: 42
elastic: 4, 10, 30, 32, 63,

88, 337-338, 342, 364,
368, 371-372, 374-376,
399-400, 403, 413,
415-423, 426, 428,
430-440, 443-444,
457, 463, 466, 477-478,
483, 550, 559

encryption: 184-185, 240,
298, 302, 305, 400, 438

entity: 97, 670
errors: 66, 99, 122, 373,

384, 543, 566, 669
events: 33, 97, 240,

285-286, 298-299, 460,
475, 527, 529-530, 543,
591-593, 596, 621

execution: 30, 68, 70,
78, 80, 347, 376-377,
383-384, 429, 435,
440-442, 498, 506,
549, 580, 588-589,
593, 596-597, 601,
604-605, 609, 631, 659

export: 29, 92, 174-178,
181-184, 217, 224, 226,
230, 235, 282, 568

F
failover: 5, 31, 41, 65-67,

70, 405, 457, 460-462,
464, 475-481, 488-494,
496-497, 502, 505,
508-514, 520, 523-527,
666-668, 670, 688

filegroup: 31
filename: 181
filestream: 32
filetable: 32
firewall: 5-6, 17-20, 27,

49-50, 182, 185-186,
239-250, 253-254,
260, 289, 297, 304, 316,
335, 390, 441, 486

folder: 50, 173-174, 327,
330, 372, 376-377,
383-384, 390, 396,
433, 503, 512, 533, 557

framework: 97, 270, 643
frequency: 156, 189, 435,

564, 625, 630, 663

G
gateway: 5-6, 27,

260, 411, 625
geo-backup: 216-217
georestore: 236
github: 611
graphs: 417, 556,

559, 637, 642

H
hadoop: 401
hammerdb: 530,

610-612, 614-621
hardware: 1, 5-6, 28, 64,

72-73, 90, 363, 460
horizontal: 72, 337,

363-365, 413
hostname: 27, 315, 614
hyperlink: 312
hyperscale: 64, 67-72,

81-82, 84, 193, 410, 475,
661, 664-665, 683-688

I
identity: 15, 140, 187, 262,

269, 296, 299, 317, 400,
438-440, 472, 474, 599,
627, 637, 640, 679

inbound: 40, 53-54, 240,
309, 312, 314-316, 654

incident: 475
indexes: 597, 599-603,

605, 638
inserts: 318, 329, 472,

474, 599, 608, 638,
647, 667, 680

install: 390, 611, 643

instance: 1-3, 21-22,
24-34, 36-41, 50, 52,
55-57, 59-60, 64-67,
73, 75-76, 83, 85, 87-91,
93, 95, 99, 106, 110,
113, 117, 129, 137-144,
146, 149-153, 155-165,
167-168, 170-172,
184-189, 191-193, 199,
201, 205-206, 208-211,
215-217, 227-228, 231,
234-237, 239-240,
256, 261, 269-270, 272,
285, 292-294, 296,
298-300, 305-306,
308-309, 311-313,
315-316, 335, 337-338,
341, 360, 364, 403-413,
415-416, 437, 444-448,
450-457, 459-460,
462, 466-467, 471,
475, 477-478, 480-481,
513-514, 517-521,
523-527, 529-536, 539,
543-544, 549-550,
559, 584-585, 588,
610-612, 614, 618-621,
623-624, 642-645,
647, 649, 653, 655-661,
664-671, 681, 688

isolation: 25, 315, 335,
370, 469, 601, 608

iteration: 444, 676

J
jobcred: 439
jobstep: 440
jobsteps: 442
jobuser: 438-439, 441

K
key-value: 366, 387
keyword: 402, 599
keywords: 165

L
labels: 282, 284
learning: 3, 25, 342, 403,

410, 540, 621, 623-624,
642-647, 649, 653,
660-661, 668-669

levels: 61, 63, 417, 469, 608
library: 368, 372, 530,

610-611, 618, 620
license: 64, 263, 409, 664
lifecycle: 441
linear: 643, 647, 649-651
locking: 316
logical: 6, 8, 25, 37, 46,

72, 239, 249, 347, 360,
376-377, 380-381, 435,
439, 469, 471, 480,
586-587, 589, 594-595,
598, 629-630, 672

lookups: 600
lrmodel: 650
ltrbackup: 171, 206

M
machines: 1, 18,

25, 89, 249, 403,
664-666, 669, 671

manager: 365-369, 371,
376-377, 379-380, 382,
384-385, 394, 401, 668

mapping: 258, 365-368,
380-381, 394, 399

masked: 279-280, 323-325
masterdb: 247-248

masteruser: 438
metadata: 280, 324,

388, 435, 625, 629
metric: 343, 532, 536,

540-541, 559, 578,
583, 606, 679-681

microsoft: 1-6, 9-10, 20,
24, 27-28, 30, 32, 37-38,
42, 51, 53, 56-57, 60,
64, 72-75, 89, 91-93,
106, 108, 110, 118, 139,
142, 146, 156, 158, 165,
170, 173, 176, 184-185,
188, 239, 241, 252, 255,
257, 261, 263-264, 270,
298, 302, 305, 360,
372-373, 382-383,
389-390, 401, 404,
419, 421, 429, 431, 436,
438, 447-448, 466-467,
470-471, 498, 506, 517,
527, 547, 549, 563, 568,
578, 588, 596-597, 603,
608-609, 614, 625-628,
637, 642-644, 646, 653,
660, 663-671, 676-678,
681, 683-684, 688

models: 29, 51, 88,
338, 369-370, 446,
460, 651-652

module: 51, 161-162, 236,
372-373, 377, 379-381,
390, 395-396, 408, 687

mongodb: 93
monitoring: 1, 3, 5, 33,

73, 335, 361-362, 443,
529-532, 535-536,
545, 548, 550, 555,
559, 567, 578, 584, 586,
588-589, 591, 606,
610, 617-618, 621, 623

N
navigation: 7, 21, 23, 81,

100, 195, 202, 207, 209,
217, 264, 343, 421

networking: 4, 11, 28, 39,
110-111, 264, 305-306,
309-310, 462, 518-519

networks: 18, 25-27, 111,
249-250, 253-254,
260, 305, 335, 517,
521, 654, 670

nslookup: 256, 259

O
object: 19-20, 117-118, 125,

131, 137, 174-175, 181,
223, 225, 269, 274, 296,
324, 342, 380-382, 385,
388, 397-400, 402, 440,
487, 500, 509, 593, 636

offline: 93, 95, 110, 115,
138, 141, 153, 280,
282, 302, 483, 665

online: 30, 42, 60, 93,
95, 110, 141-142,
144-146, 150-153, 621,
624, 635-636, 660,
665, 675-676, 683

oracle: 93
ostress: 74, 78, 80, 360,

534, 608-609, 680
outage: 157, 191, 199, 462,

466, 477-479, 508
outbound: 53-54, 240,

255, 316, 654
outlook: 317, 320
overload: 77

P
package: 122, 173, 178,

592, 595-596, 646
pandas: 646
parameter: 45, 50, 56,

74-75, 78, 81, 165, 183,
221, 224-226, 228, 230,
232, 235-236, 318, 353,
360, 375, 377, 379-380,
383-384, 393, 396, 402,
412, 428-433, 441, 450,
496-503, 505-506,
508-509, 511, 513, 558,
608, 629-630, 652-653

password: 10, 14, 17, 37,
45-46, 48, 77-78, 102,
119, 135, 181-182, 213,
219, 240, 260-262,
264-265, 268, 271-274,
276, 279, 327-328,
330-331, 347-348, 360,
375-379, 393, 395,
400, 428, 438-439,
484, 496-497, 499,
505, 507, 534, 558, 573,
628, 630, 647, 658

patches: 666
pattern: 415-416, 419, 541
payload: 650
peering: 26, 260, 305,

478, 514, 521-523, 527,
654-655, 668, 670

platform: 1, 5-7,
90, 315, 663

policy: 27, 158, 165,
167-169, 172, 254, 278,
318-319, 321-322,
478-479, 492, 508, 630

portal: 2, 7, 14-16, 18, 21,
23, 29, 33-34, 42, 57,
81, 83-84, 108, 142,
156, 160-161, 163-165,
167, 173, 175, 183, 185,
188, 192-195, 197, 199,
201-202, 204-205, 207,
209-212, 216-217, 224,
231, 235-236, 242-245,
250-251, 256, 264-266,
268, 280, 286, 289-290,
292-293, 302, 305-306,
308-309, 315, 326,
330-331, 338, 341, 343,
353, 361-362, 390-391,
406, 408, 410-411, 421,
423, 436, 443, 447-449,
452-454, 456, 463, 466,
481-482, 491, 513-515,
518, 521, 523, 525, 527,
529-533, 535-536,
548, 550, 555-558, 561,
566-567, 573, 579, 584,
597, 606, 621, 630-631,
634, 654-655, 657, 666,
672, 680, 684, 686

private: 26-27, 113-114,
186, 240, 249, 254-260,
294, 309, 315-316,
335, 626, 657

procedure: 123, 246, 248,
435, 441-442, 469,
476, 588, 600-601,
608-610, 649-651, 680

processor: 68, 70
profiler: 33
protocol: 53, 308
python: 5, 25, 343, 624,

643-646, 661, 669
pytorch: 643

Q
queries: 6, 24, 32, 57, 63,

67-68, 89-91, 97-98,
289-290, 337, 339,
341-342, 364, 369,
399-400, 403, 438,
442-443, 478, 534,
549, 555, 560, 563,
578-580, 582-584,
587-590, 592-593,
597, 599, 602, 604,
618, 621, 624, 637, 642,
647, 651, 659, 667, 677

queued: 397

R
readable: 31, 475-476, 483
reader: 130, 272
readonly: 70, 410-412, 688
readwrite: 411
real-time: 286, 545, 602,

610, 615, 620, 627
rebuild: 71, 467, 603,

635-636, 660
recovery: 29-30, 38,

70-71, 89-90, 153, 155,
212, 216, 236, 426, 457,
459-460, 466-475,
527, 626, 654-655,
666-667, 669

recurring: 302
region: 25-26, 37, 63,

89, 157, 170, 188,
193, 206, 211-212,
216-217, 231, 236-237,
255-256, 426, 457,
461-462, 466, 475-481,
483-484, 490-492,
495, 508, 516, 527, 611,
625, 677-678, 681

register: 106, 108, 176, 379
replica: 7, 63, 67, 70, 72, 81,

410-412, 426, 464, 466,
483, 490, 667, 686, 688

report: 93, 96, 285, 421,
436, 567, 569-570,
592, 598, 669

resize: 447, 457
restore: 3, 24, 29, 72,

95, 138-141, 156-157,
167-168, 171, 177, 184,
189, 191-193, 195-211,
215-217, 222-231,
233-237, 299, 302, 383,
448, 457, 468, 627-628,
665-666, 668, 683

retention: 25, 29, 71,
156-162, 164-169,
171-172, 192-193,
201-204, 206, 296, 299,
546, 668, 670-671

rollback: 467-469,
471-475, 590-591

row-level: 239-240,
277-278, 471

runbook: 343, 345-351,
353, 362

runtime: 32, 90,
444, 543, 549

S
scaling: 72, 77, 79-81, 84,

335, 337-339, 342,
363-364, 403-410,
413, 416, 446, 455-457,
664-665, 667, 675,
683, 685, 688

scheduler: 30, 435, 547
scheduling: 68, 148, 444

schema: 73, 87, 92, 100,
104, 106, 138, 153,
173, 176, 178, 198, 237,
272-273, 283, 318,
366-367, 371, 379, 382,
384-385, 387-388, 402,
436, 439, 444, 467, 549,
599, 608, 612-614, 625,
627, 629, 640, 664-665

script: 30, 43, 49-50,
55, 73-75, 78, 81, 104,
122-123, 179-181, 183,
221, 223-228, 230-232,
234-236, 273, 338-339,
347-348, 351, 360, 363,
372, 375-378, 383-387,
394-397, 426, 428-430,
433-436, 439, 444, 450,
496-498, 500-503,
505-506, 511-513,
542, 557, 599, 610,
614-615, 618, 627-631,
645-646, 649-650, 652

secondary: 7, 31, 33, 41,
63, 67, 70-72, 272, 411,
426, 464, 476-481,
483-490, 492-494, 497,
499-504, 507-508,
510-515, 517-518,
520-527, 656, 659,
666-667, 685-686, 688

secret: 140, 187, 296,
299, 400, 438

security: 3, 5, 28, 52, 54,
56, 74, 114, 129-130,
134-135, 186, 237,
239-240, 254-256,
260, 274, 277-281,
285, 296, 300, 302,
304-306, 309,
312-316, 318, 320-322,
325-326, 331-335, 444,
448, 450, 486, 543,
654-655, 664-665

seeding: 404, 478, 486
server: 1-6, 10, 14, 16-22,

24-25, 28-33, 38,
41-43, 46, 48-50, 57,
59-60, 64-65, 68, 70-71,
73-74, 76-78, 81, 83, 85,
87-93, 95-98, 100-102,
104-106, 111-114, 117, 119,
124-125, 129, 133-135,
137-139, 141, 144-145,
148-149, 152-153, 163,
165, 173, 175, 182, 184,
188, 191, 193-194, 197,
203, 207-208, 212-215,
217-220, 224, 227, 237,
239-240, 242, 245, 250,
253-256, 258, 260,
264, 266, 268-272,
274-276, 285, 292, 296,
298-302, 326-327, 330,
335, 340, 347-348, 360,
368-369, 373, 376-377,
380-381, 383, 385,
390, 397, 400, 409-411,
416, 421, 428, 434-435,
439-440, 443-444,
459-460, 464, 467, 471,
473, 477-481, 483-488,
490-494, 497, 499-504,
507-513, 522, 525, 527,
534, 543, 549, 558, 578,

584-586, 588, 590-592,
599-604, 608, 610-611,
624-626, 629-630,
643-644, 653-655,
657-661, 664-672, 683

serverless: 77, 91, 363,
461, 661, 664-665,
671-682, 688

session: 47, 78, 251, 254,
456, 472-475, 488, 534,
586-587, 589-596, 636

sharding: 364-366,
368-369, 371-372,
374-375, 377-381,
383, 387-388, 396,
399, 402, 417

shardmap: 368,
380-382, 435

signal: 355, 538-539,
547, 563

signature: 140, 185,
187, 294-296, 299

sizing: 419, 671
snippet: 45, 51, 236,

341, 368, 375, 380,
393, 427, 599

software: 24, 38, 83,
90, 460, 610

splitting: 389-390,
392, 396, 574

sqladmin: 46, 50, 78, 183,
224, 226, 360, 383, 396,
400, 433, 503-504,
512-513, 534, 578,
586-587, 593, 608

stability: 426
standard: 10-11, 24, 60-63,

71-72, 79-80, 83-84,
110, 141, 158, 179, 283,
287, 417-422, 430,
433, 435-436, 457,
460-461, 467-470, 479

statistics: 61-63, 174, 452,
543, 549, 555-556, 559,
580, 584, 588, 618-620

storage: 4, 8, 10, 29, 31-32,
38, 60, 63-68, 70-72,
77, 83-85, 91, 139-140,
147-148, 156-159,
161-165, 167, 173, 177,
179-189, 201, 214-217,
219, 236, 249, 286-288,
292-294, 297-299, 302,
401, 404, 406, 408-410,
416, 419-420, 445, 447,
457, 460-462, 464, 466,
530-532, 535, 545-547,
549, 584-585, 591-592,
601-602, 667, 670-671,
674, 679, 681, 683

streaming: 286, 478
structure: 269, 603
subnet: 25-26, 28, 39,

51-53, 56, 145, 186,
251-254, 258, 312,
315, 444-445, 448,
450-451, 514, 517, 519

subscriber: 31, 126,
133-135, 137

syntax: 368, 600, 602, 640

T
tables: 24, 30, 32-33, 90,

105, 116-117, 127, 137-138,
174, 270, 272-274, 277,
281, 324, 342, 366-369,
371, 378-379, 382,
385-388, 397, 400, 403,
439, 599-602, 607-608,
624, 627, 629-630,
632-633, 637-638, 642

target: 89, 96, 100, 102,
111-116, 121, 144, 146,
177, 197, 203, 208, 294,
298, 397, 435, 438-444,
483-484, 591-596,
626-627, 642, 667

tempdb: 32, 64, 66-67,
342, 448, 461, 469, 636

template: 448-450
threat: 25, 239-240,

302-304, 325-326, 332
threshold: 339, 356, 536,

539-542, 563, 585, 676
throughput: 40, 66,

70, 72, 187, 315, 464,
618, 620, 667, 683

timestamp: 181,
209, 595, 636

toyfactory: 18, 22, 50,
78, 183, 215, 224,
226-227, 250, 256-257,
259, 268, 360, 383,
385, 390, 396-397,
400-401, 421, 431, 433,
481-482, 503-504,
512-513, 534, 547, 578,
593, 607-609, 687

toystore: 8, 14, 16, 18,
20, 23, 42, 50, 74, 78,
81-82, 95-96, 99, 101,
103, 117-118, 122-125,
131-132, 134, 140-142,
150, 161, 165, 167-177,
179, 183-184, 187-188,
194-195, 197-198,
202-203, 205-206,
208, 212, 215, 217, 224,
226-227, 230-231,

235, 273-274, 277, 286,
289-290, 292, 316-317,
327, 330-331, 334,
339-341, 343-344,
353-354, 360-363,
371, 374, 376, 378-381,
383-389, 394, 396-403,
417, 420-421, 425-426,
431, 433, 439, 448, 471,
473-474, 481, 487-489,
491, 495, 503-504,
512-513, 534, 544-545,
547, 552, 555, 557, 560,
576, 578-579, 584,
586, 590, 592-593,
597-598, 604, 607-610,
627-628, 630-631,
633-634, 647, 659-660,
679-681, 686-687

tracking: 626
traffic: 27-28, 305, 312,

316, 339, 480-481,
521, 523, 670

trigger: 354, 479,
541-542, 676

U
unicode: 245, 595
unique: 9-10, 189, 246,

386, 441, 478
update: 191, 199, 242,

244-248, 253, 268,
278, 308, 310, 320,
409, 442, 602, 626,
633, 642, 670, 687

upgrade: 176, 479, 666
uptime: 66-67, 465, 667

V
validate: 41, 113-114,

180, 369
varchar: 317, 323, 327,

402, 441, 637, 640, 651
variable: 47-49, 51, 161,

307, 311, 377-382,
396, 409, 429, 431,
498-499, 506-507, 579,
649-650, 652, 677, 687

vcores: 76-77, 84, 110,
141, 338-339, 341, 416,
447, 452, 667, 673,
675-679, 681-682, 685

version: 24, 40, 93, 169,
174, 176, 240, 305-308,
327, 330, 372, 442,
469, 608, 614, 628,
645-646, 666

vertical: 72, 337-339,
342, 363, 413, 426

virtual: 1, 18, 25-28, 34,
39, 52, 56, 89, 95, 106,
111, 113, 141-142, 145,
249-256, 258, 260,
305, 309, 312-313,
315, 335, 403-406,
444-446, 448-452, 457,
460, 478, 514-517, 519,
521-523, 527, 610-611,
615-617, 654, 664-671

W
warehouse: 30, 78, 194,

198-199, 205, 209,
487-488, 590, 602, 670

webhook: 343,
349-353, 359, 542

windows: 2, 25-27, 30, 32,
43-44, 50, 68, 77-78,
97, 101, 140-141, 145,
179, 181, 184, 187-188,
221, 224, 228, 232,
258-259, 261-262, 292,
296, 299-300, 315, 328,
330, 373-374, 377, 383,
392, 395-396, 401, 427,
433, 439, 446, 495,
503-504, 512, 534, 557,
647, 658, 666-668, 680

workflow: 346-347
workgroups: 61
workload: 1, 33, 59,

73-74, 76-77, 85, 89,
150, 187, 360-361, 370,
405, 410-411, 418, 464,
478, 529, 533-535,
556-557, 559-560,
578-579, 587, 592-593,
596-597, 599, 601,
607, 610-618, 620-621,
626, 665, 671, 675-676,
679-681, 683, 688

workspace: 286,
288-289, 549-553,
555-556, 558, 561-562,
566-567, 572-573

X
xevent: 594
xeventdata: 593-594

Y
yearly: 166-167, 169, 172

Z
zone-level: 462, 466

	Cover
	FM
	Table of Contents
	Preface
	Chapter 1: Introduction to Azure SQL managed databases
	Who manages what?
	The Azure SQL Database architecture
	The Client Layer
	The Service Layer
	The Platform Layer
	The Infrastructure Layer
	The Azure SQL Database request flow

	Provisioning an Azure SQL Database
	Connecting and querying the SQL Database from the Azure portal
	Connecting to and querying the SQL Database from SQL Server Management Studio
	Deleting resources

	Introduction to Azure SQL Managed Instance
	Connecting to Azure SQL Managed Instance
	Virtual cluster connectivity architecture
	Network requirements

	Differences between SQL Database, SQL Managed Instance, and SQL Server
	Backup and restore
	Recovery model
	SQL Server Agent
	Change Data Capture
	Auditing
	Mirroring
	Table partitioning
	Replication
	Multi-part names
	SQL Server Browser
	FileStream
	Common Language Runtime (SQL CLR)
	Resource Governor
	Global temporary tables
	Log shipping
	SQL Trace and Profiler
	Trace flags
	System stored procedures
	The USE statement
	Exercise: Provisioning an Azure SQL Managed Instance using the Azure portal

	Activity: Provisioning Azure SQL Server and SQL Database using PowerShell
	Exercise: Provisioning an Azure SQL Managed Instance

	Summary

	Chapter 2: Service tiers
	The DTU model
	DTU service tiers
	The vCore model

	vCore service tiers
	The General Purpose service tier
	Azure Premium Storage characteristics
	The Business Critical service tier
	The Hyperscale service tier
	vCore hardware generations

	Determining an appropriate performance tier
	DMA SKU recommendation
	Azure SQL Database compute tiers
	Scaling up the Azure SQL Database service tier
	Changing a service tier

	Exercise: Provisioning a Hyperscale SQL database using PowerShell
	Choosing between vCore and DTU-based purchasing options
	Licensing
	Flexibility

	Summary

	Chapter 3: Migration
	Migration methodology
	Determining the migration benefits
	Selecting a service model
	Selecting a service tier
	Selecting the primary region and disaster recovery region
	Determining compatibility issues
	Selecting a migration tool

	Choosing between Azure SQL Database and SQL Managed Instance
	Features
	Migration
	Time to develop and market

	Tools for determining compatibility issues
	Data Migration Assistant
	SQL Server Data Tools (SSDT) for Visual Studio
	SQL Server Management Studio (SSMS)
	SQLPackage.exe
	Azure Database Migration Services

	Choosing a migration tool and performing migration
	Activity: Migrating an on-premises SQL database to Azure SQL Database using DMA
	Activity: Migrating an SQL Server database on an Azure virtual machine to an Azure SQL database using Azure DMS
	Activity: Migrating an on-premises SQL Server database to Azure SQL Database using SSMS
	Activity: Migrating an SQL Server database to an Azure SQL database using transactional replication
	Activity: Migrating an on-premises SQL Server to Azure SQL Managed Instance using the native backup and restore method (offline approach)
	Activity: Migrating an SQL Server on an Azure Virtual Machine to SQL Managed Instance using Azure DMS (online approach)

	Summary

	Chapter 4: Backups
	Automatic backups
	Backup storage
	Backup retention period

	Optimize backup storage costs for Azure SQL Database and Azure SQL Managed Instance
	Choose the right backup storage type
	Optimize the database backup retention period
	Maximize your free backup storage space
	Configure LTR backups
	Use Azure Policy
	Configure long-term backup retention for Azure SQL Database and Azure SQL Managed Instance
	Long-term retention configuration on Azure SQL Managed Instance

	Activity: Configure LTR Backups for Azure SQL Managed Instance using PowerShell
	Manual Backups for Azure SQL Database
	DACPAC and BACPAC
	Backing up an Azure SQL Database Using SQL Server Management Studio (SSMS)
	Manual versus Automated Backups

	Activity: Perform Manual Backups Using PowerShell
	Perform native COPY_ONLY backup on Azure SQL Managed Instance
	Perform a manual COPY_ONLY backup using T-SQL commands

	Summary

	Chapter 5: Restoration
	Restore types
	Point-in-time restore
	Performing a PITR on an Azure SQL Database using the Azure portal
	Performing a PITR for an SQL Managed Instance using the Azure portal
	Long-term database restore
	Performing an LTDR on an Azure SQL Database using the Azure portal
	Performing an LTDR for SQL Managed Instance using PowerShell

	Restoring deleted databases
	Restoring a deleted database on Azure SQL Database using the Azure portal
	Restoring a deleted database on SQL Managed Instance using the Azure portal

	Geo-restoring databases
	Performing a geo-restore on an SQL Database using the Azure portal
	Performing a geo-restore on an SQL Managed Instance using the Azure portal

	Importing a database (Azure SQL Database only)
	Activity: Performing a PITR for an Azure SQL Database with PowerShell
	Activity: Performing a geo-restore of an Azure SQL Database with PowerShell
	Activity: Performing Point-In-Time restore for SQL Managed Instance with PowerShell
	Part 1: Restoring a database to a point in time using PowerShell on one managed instance
	Part 2: Performing a cross-instance point-in-time restore from an existing database

	Activity: Geo-restoring a database hosted on SQL Managed Instance using the Az PowerShell module
	Activity: Restoring a deleted database on SQL Managed Instance using PowerShell
	Summary

	Chapter 6: Security
	Network security
	Firewall rules

	Managing server-level firewall rules using the Azure portal
	Managing server-level firewall rules using Transact-SQL
	Managing database-level firewall rules using Transact-SQL
	Service endpoints
	Configuring service endpoints for SQL Database
	Private endpoint

	Authentication
	SQL authentication
	Azure AD authentication
	Azure AD
	Active Directory - Password
	Using Active Directory - Password to authenticate to a SQL database
	SQL Database authentication structure
	SQL Database and SQL Managed Instance authentication considerations

	Authorization
	Server-level administrative roles
	Non-administrative users
	Creating contained database users for Azure AD authentication
	Groups and roles
	Row-level security
	Dynamic data masking
	Data Discovery & Classification
	Exercise: Configuring Data Discovery & Classification for SQL Database
	Auditing
	Exercise: Configuring SQL Database auditing
	Exercise: Configuring auditing for SQL Managed Instance

	Activity: Audit COPY_ONLY backup events on SQL Managed Instance using audit logs
	Steps to configure an audit for backup and restore events

	Transparent Data Encryption
	Azure Defender for SQL
	Securing data traffic
	Enforcing a minimal TLS version for SQL Database and SQL Managed Instance

	Activity: Setting a minimum TLS version using the Azure portal and PowerShell for SQL Managed Instance
	Using the Azure portal
	Using PowerShell

	Configuring and securing public endpoints in SQL Managed Instance
	Securing SQL Managed Instance public endpoints
	Locking traffic flow down using NSG or firewall rules

	Activity: Implementing RLS
	Activity: Implementing DDM
	Activity: Implementing Azure Defender for SQL to detect SQL injection and brute-force attacks
	Summary

	Chapter 7: Scalability
	Vertical scaling
	Scale-up or scale-down service tiers
	Vertical partitioning

	Activity: Creating alerts
	Horizontal scaling
	Shard map manager
	Sharding data models
	Activity: Creating shards
	Activity: Splitting data between shards
	Activity: Using elastic database queries

	Scaling a managed instance
	Duration of scale-up/down operations
	Activity: Scaling up SQL Managed Instance using the Azure portal
	Activity: Scaling a managed instance using the Az.sql PowerShell module

	Alternate ways of scaling SQL Managed Instance
	Activity: Connecting to the SQL Managed Instance internal read replica using SSMS

	Summary

	Chapter 8: Elastic and instance pools
	Introducing elastic database pools in SQL Database
	When should you consider elastic database pools?
	Sizing an elastic database pool
	Creating an elastic database pool and adding toystore shards to the elastic database pool
	Geo-replication considerations for elastic database pools
	Auto-failover group considerations for elastic database pools

	Activity: Exploring elastic database pools
	Elastic database jobs
	Elastic job agent
	Job database
	Target group
	Jobs
	Use cases
	Exercise: Configuring an elastic database job using T-SQL

	Introducing instance pools in SQL Managed Instance
	Key differences between an instance pool and a single managed instance
	Architecture differences between an instance pool and a single SQL managed instance
	Resource limits
	Public preview limitations
	Performance and security considerations for instance pools

	Deploying an instance pool using PowerShell commands
	Activity: Deploying and managing a managed instance in an instance pool

	Summary

	Chapter 9: High availability and disaster recovery
	High availability
	The basic, standard, and general-purpose service tier locally redundant availability model
	General-purpose service tier zone-redundant configuration
	The premium/business-critical tier locally redundant availability model
	The premium/business critical service tier zone-redundant configuration

	Accelerated database recovery (ADR)
	The standard database recovery process
	The ADR process
	Activity: Evaluating ADR

	Disaster recovery
	Active geo-replication
	Auto-failover groups
	Activity: Configuring active geo-replication and performing manual failover using the Azure portal
	Activity: Configuring an Azure SQL Database auto-failover group using Azure portal
	Activity: Configuring active geo-replication for Azure SQL Database using PowerShell
	Activity: Configuring auto-failover groups for Azure SQL Database using PowerShell
	Activity: Configuring an auto-failover group for SQL Managed Instance

	Summary

	Chapter 10: Monitoring and tuning
	Monitoring an Azure SQL Database and SQL Managed Instance using the Azure portal
	Monitoring database metrics
	Alert rules, database size, and diagnostic settings
	Diagnostic settings and logs
	Intelligent Performance
	Query Performance Insight

	Analyzing diagnostic logs using Azure SQL Analytics
	Creating a Log Analytics workspace
	Creating an Azure SQL Analytics solution
	Generating a workload and reviewing insights

	Activity: Monitoring Azure SQL Database with Log Analytics and Power BI
	Monitoring queries using the Query Performance Insight pane
	Monitoring an Azure SQL Database and SQL Managed Instance using DMVs
	Monitoring database metrics
	Monitoring connections
	Monitoring query performance
	Monitoring blocking
	Extended events
	Examining queries using extended events

	Tuning an Azure SQL database
	Automatic tuning
	In-memory technologies
	In-memory OLTP
	Memory-optimized tables
	Natively compiled procedures
	Columnstore indexes
	Monitoring cost
	Activity: Exploring the in-memory OLTP feature
	Monitoring and tuning an Azure SQL Managed Instance
	General Purpose instance I/O characteristics
	Monitoring the first run with the default file configuration of the TPC-C database

	Summary

	Chapter 11: Database features
	Azure SQL Data Sync
	Activity: Configuring Data Sync between two Azure SQL databases using PowerShell

	Online and resumable DDL operations
	SQL Graph queries and improvements
	Graph database integrity using edge constraints

	Machine Learning Services
	Differences between Machine Learning Services in SQL Server and Azure SQL Managed Instance
	Activity: Run basic Python scripts
	Activity: Using Machine Learning Services in Azure SQL Managed Instance to forecast monthly sales for the toystore database

	Distributed transactions in Azure SQL Managed Instance
	Server Trust Group
	Activity: Creating a Server Trust Group using the Azure portal
	Activity: Running distributed transactions using T-SQL

	Summary

	Chapter 12: App modernization
	Migrating an SQL Server workload to SQL Managed Instance
	Backup and restore
	SQL installation and patches
	Scaling
	High availability and disaster recovery
	Newly introduced features
	Support for hosting SSRS catalog databases
	Azure Machine Learning
	Distributed transaction support

	SQL Database serverless
	Serverless use cases

	Creating a serverless database
	Auto-scaling in serverless
	Cache Reclamation
	Auto-pausing in serverless
	Auto-resuming in serverless
	SQL Database serverless billing
	Demonstration of auto-scaling and compute billing in serverless
	Serverless vs. provisioned compute

	Scaling to the Hyperscale service tier
	Considering moving to the Hyperscale service tier
	Activity: Updating an existing SQL database to the Hyperscale service tier using the Azure portal
	Activity: Updating an existing SQL database to the Hyperscale service tier using PowerShell commands
	Read scale-out an SQL Hyperscale database

	Summary

	Index

