

Learn T-SQL Querying

A guide to developing efficient and elegant T-SQL code

Pedro Lopes and Pam Lahoud

Learn T-SQL Querying
Second Edition

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Kaustubh Manglurkar
Publishing Product Manager: Heramb Bhavsar
Book Project Manager: Hemangi Lotlikar
Content Development Editor: Joseph Sunil
Technical Editor: Rahul Limbachiya
Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Prafulla Nikalje
DevRel Marketing Executive: Nivedita Singh

First published: May 2019
Second edition: February 2024

Production reference: 2010324

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK

ISBN 978-1-83763-899-4
www.packtpub.com

To my wife and life partner, Sandra, and to my esteemed friends, mentors, and former colleagues in
Azure Data who develop the SQL Database Engine and keep pushing the boundaries of excellence
– sorry, I can’t list you all here! To the unique people I had the privilege of working with – Amit
Banerjee, Bob Ward, Conor Cunningham, Hanuma Kodavalla, and Slava Oks – for inspiring
me to always move forward and do better, and to everyone who keeps developing and supporting
applications on this most-scalable RDBMS.

– Pedro Lopes

To Andrew and Linus, for spending countless nights and weekends without me. To the entire
#SQLFamily, who continue to inspire me, support me (and each other), and drive me to be better
every day. To my computer-illiterate friends, Jodie, Liza, and Erin, who I know will proudly display
this book on their shelves despite having no idea what any of this means. And to my mom, who bought
me my first computer when I was 8 years old and said “Sure!” when I decided that adding computer
science as a second major in my junior year of college seemed like a good idea.

– Pam Lahoud

Foreword

When I first met Pedro Lopes and Pam Lahoud, I already knew that they had both achieved recognition
as experts in SQL Server, especially in areas such as query processing and performance. As I started
working with them, I quickly realized that not only was the reputation warranted but I also came to
see their characteristics of professionalism, thoroughness, and presentation skills.

All these traits come out in this book, and you gain all the benefits. I love how this book is organized.
If I want to read the entire book end to end, I will first learn the fundamentals and mechanics of the
optimizer from the perspective of writing T-SQL queries. Then, I will get practical advice on how to
write effective queries for maximum performance on topics such as indexing. And then, I’m able to
dive deep into detailed query troubleshooting techniques using the full capabilities of SQL Server.
This organization of the book also allows me to jump to any section aligning with my skills and
knowledge. This powerful story is now brought to life in the second edition of this book, bringing
in enhancements from SQL Server 2019, SQL Server 2022, and Azure SQL designed to make your
applications faster with no code changes.

Even if you believe that you understand query processing with SQL Server, you will benefit from
this book. Using visual flows and examples, the first part of the book gives you a great perspective on
how queries in SQL Server are compiled, executed, and cached. This part also includes key details
of query processing such as cardinality estimation, optimization phases, and methods to control
query optimization.

The second part is the crown jewel of the book. Pedro and Pam pour in their years of experience to
give you the advice you need on topics such as analyzing query plans, proper indexing, best practices
for crafting T-SQL queries, and the often-overlooked area of anti-pattern queries. These chapters are
full of rich advice and examples for you to try out yourself.

Finish off the book by learning how to get faster to tune and troubleshoot query performance using
powerful tools such as Query Profiling, Query Store, and Extended Events. The power of the T-SQL
language comes to life as you learn how to write queries to debug the queries from your application.
As readers, you get the benefit of unique information throughout the book because the authors have
directly worked on these parts of the product.

SQL Server and Azure SQL have evolved over the years to provide more automation and simplify the
requirements to build and manage successful database applications. However, understanding how to
use the power of T-SQL is critical to achieving maximum performance and efficiency. Furthermore,
to take your game to the next level, you need to understand the nuances and mechanics of the query
optimizer and query execution with T-SQL in the engine. This book provides it all in a manner that
you can easily understand, with all the latest updates, and in a format that you can use as a reference
for years to come.

– Bob Ward

Principal architect, Microsoft

Contributors

About the authors
Pedro Lopes is a senior director of engineering at Salesforce, based in WA, USA, leading the organization
responsible for the Marketing Cloud’s DB Management Plane. Previously, he was a principal architect
in Microsoft Azure Data, leading the SQL Server 2022 release until its public preview. He has 20+ years
of industry experience and was with Microsoft for 12+ years. He has extensive experience with query
performance troubleshooting and has been a speaker at numerous conferences, such as SQLBits, PASS
Summit, SQLIntersection, Microsoft Ignite, and Microsoft Build. He has written multiple technical
articles about SQL that are currently in the product documentation, including several on Engine
internals at https://aka.ms/sqlserverguides.

I want to thank the people who have been close to me and supported me throughout, especially my
wife, Sandra. And special thanks to my writing partner and good friend Pam Lahoud, who is both a
technical powerhouse and an outstanding human being, without whom this project would not have
been nearly as rewarding to complete.

Pam Lahoud is a principal PM manager in Microsoft Azure Data, based in Seattle, WA, USA. She has
been with Microsoft since 2006 and currently leads the SQL Server in Azure Virtual Machines product
manager team. She is passionate about SQL Server performance and has focused on performance
tuning and optimization, particularly from the developers’ perspective, throughout her career. She
is a SQL 2008 Microsoft Certified Master with over 20 years of experience working with SQL Server
and has been a speaker at several global events such as the PASS Summit, SQLBits, Microsoft Build,
and Microsoft Ignite.

A big thank you to my partner, Andrew, and our son, Linus, for putting up with countless Sundays at
home with Mama locked up in the office. Thank you to my writing partner, Pedro; we are the classic
example of better together, and this is a life achievement I never would have reached without you!
Forever your work-spouse, no matter which companies we’re at :-)

About the reviewer
Sergey Ten has been working in the database space for over 20 years, primarily on the Microsoft SQL
Server and Oracle database servers. His main areas of expertise are data processing, programming
language design, and high availability.

Sergey currently works at Microsoft as a principal software engineer, working in the SQL Server team
in the areas of query processing and high availability. Prior to that, he worked at Quest Software
developing various Oracle management solutions, and at Guidance Software working on computer
forensics and eDiscovery products.

Preface xv

Part 1: Query Processing Fundamentals

1
Understanding Query Processing 3

Technical requirements 4
Logical statement processing flow 4
Query compilation essentials 6
Query optimization essentials 8
Query execution essentials 12
Plan caching and reuse 14
Stored procedures 14
Ad hoc plan caching 15
Parameterization 16
The sp_executesql procedure 18

Prepared statements 19

How query processing impacts
plan reuse 19
The importance of parameters 21
Security 22
Performance 22
Parameter sniffing 23
To cache or not to cache 24

Summary 25

2
Mechanics of the Query Optimizer 27

Technical requirements 27
Introducing the Cardinality Estimator 28
Understanding the query
optimization workflow 35
The Trivial Plan stage 36
The Exploration stage 38

The Transaction Processing phase 38
The Quick Plan phase 39
The Full Optimization phase 39

Knobs for query optimization 41
Summary 43

Table of Contents

Table of Contentsx

Part 2: Dos and Don’ts of T-SQL

3
Exploring Query Execution Plans 47

Technical requirements 47
What is a query plan? 48
Accessing a query plan 49
Navigating a query plan 54
Query plan operators of interest 57
Blocking versus non-blocking operators 58
Data access operators 58

Joins 68
Spools 78
Sort and aggregation operators 81

Query plan properties of interest 85
Plan-level properties 85
Operator-level properties 107

Summary 117

4
Indexing for T-SQL Performance 119

Technical requirements 119
Understanding predicate
SARGability 120
Data access using indexes 124
Structure of a rowstore index 125
Data access using rowstore indexes 126
Inserting and updating data in
a rowstore index 128

Indexing strategy using
rowstore indexes 129
Best practices for clustered indexes 130
Best practices for non-clustered indexes 132

Index maintenance 146
Summary 147

5
Writing Elegant T-SQL Queries 149

Technical requirements 150
Best practices for T-SQL querying 150
Referencing objects 150
Joining tables 151
Using NOLOCK 152
Using cursors 153

The perils of SELECT * 154
Functions in our predicate 158
Deconstructing table-
valued functions 161
Complex expressions 166

Table of Contents xi

Optimizing OR logic 169
NULL means unknown 172
Fuzzy string matching 176
Inequality logic 178

EXECUTE versus sp_executesql 179
Composable logic 182
Summary 188

6
Discovering T-SQL Anti-Patterns in Depth 189

Technical requirements 189
Implicit conversions 190
Avoiding unnecessary
sort operations 196
UNION ALL versus UNION 197
SELECT DISTINCT 200

Avoiding UDF pitfalls 205
Avoiding unnecessary overhead
with stored procedures 211

Pitfalls of complex views 213
Pitfalls of correlated sub-queries 218
Properly storing intermediate results 219
Using table variables and temporary tables 220
Using Common Table Expressions (CTEs) 225

Summary 229

Part 3: Assembling Our Query
Troubleshooting Toolbox

7
Building Diagnostic Queries Using DMVs and DMFs 233

Technical requirements 233
Introducing DMVs 234
Exploring query execution DMVs 234
sys.dm_exec_sessions 234
sys.dm_exec_requests 236
sys.dm_exec_sql_text 237
sys.dm_os_waiting_tasks 238

Exploring query plan cache DMVs 241
sys.dm_exec_query_stats 241

sys.dm_exec_procedure_stats 243
sys.dm_exec_query_plan 244
sys.dm_exec_cached_plans 246

Troubleshooting common scenarios
with DMV queries 247
Investigating blocking 247
Cached query plan issues 250
Single-use plans (query fingerprints) 250
Finding resource-intensive queries 251

Table of Contentsxii

Queries with excessive memory grants 253

Mining XML query plans 255
Plans with missing indexes 255

Plans with warnings 258
Plans with implicit conversions 260
Plans with lookups 261

Summary 262

8
Building XEvent Profiler Traces 263

Technical requirements 263
Introducing XEvents 264
Getting up and running with
XEvent Profiler 277
Remote collection with
SQL LogScout 280

Analyzing traces with RML
Utilities 285
Summary 291

9
Comparative Analysis of Query Plans 293

Technical requirements 293
Query plan analyzer 317

Summary 327

10
Tracking Performance History with Query Store 329

Technical requirements 329
Introducing the Query Store 330
Inner workings of the Query Store 330
Configuring the Query Store 332

Tracking expensive queries 339
Fixing regressed queries 348
Features that rely on the Query Store 353
Query Store for readable secondary replicas 353

Query Store hinting 354
Parameter Sensitive Plan Optimization 355
Automatic Plan Correction 355
Degree of parallelism feedback 356
Optimized plan forcing 358

Summary 359

Table of Contents xiii

11
Troubleshooting Live Queries 361

Technical requirements 362
Using Live Query Statistics 362
Understanding the need for
lightweight profiling 366

Diagnostics available with Lightweight
Profiling 369

Activity Monitor gets new life 387
Summary 397

12
Managing Optimizer Changes 399

Technical requirements 399
Understanding where QTA and
CE Feedback are needed 400
Understanding QTA fundamentals 404

Exploring the QTA workflow 406
Summary 419

Index 421

Other Books You May Enjoy 432

Preface

Experienced and novice users have always faced choices and trade-offs to achieve the very best
performance when writing T-SQL code for their applications. This book is for all data professionals
who want to master the art of writing efficient T-SQL code in modern SQL Server versions, as well
as Azure SQL Database.

This book will start with query processing fundamentals to help you write solid, performant T-SQL queries.
You will be introduced to query execution plans and how to leverage them for query troubleshooting.
Later, you will learn how to identify various T-SQL patterns and anti-patterns. This will help you
analyze execution plans to gain insights into current performance, as well as determine whether a
query is scalable. You will learn how to build diagnostic queries using dynamic management views
(DMVs) and dynamic management functions (DMFs) to unlock the secrets of T-SQL execution.
Furthermore, you will learn how to leverage SQL Server’s built-in tools to shorten the time to address
query performance and scalability issues. You will learn how to implement various features such as
Extended Events, Query Store, Query Tuning Assistant, and more, using hands-on examples.

By the end of the book, you will be able to determine where query performance bottlenecks are and
understand what anti-patterns may be in use and what you need to do to avoid such pitfalls going
forward. It’s essentially all you need to know to squeeze every last bit of performance out of your
T-SQL queries.

Who this book is for
This book is for database administrators, database developers, data analysts, data scientists, and T-SQL
practitioners who want to master the art of writing efficient T-SQL code and troubleshooting query
performance issues using practical examples. A basic understanding of T-SQL syntax, writing queries
in SQL Server, and using the SQL Server Management Studio tool is helpful to get started.

What this book covers
Chapter 1, Understanding Query Processing, introduces T-SQL query optimization and execution
essentials: how does SQL Server optimize and execute T-SQL? How does SQL Server use parameters?
Are parameters an advantage? When and why does SQL Server cache execution plans for certain T-SQL
statements but not for others? When is that an advantage and when is it a problem? This is information
that any T-SQL practitioner needs to keep as a reference for proactive T-SQL query writing, as well as
reactive troubleshooting and optimization purposes. This chapter will be referenced throughout the
Execution Plan-related chapters, as we link architectural topics to real-world uses.

Prefacexvi

Chapter 2, Mechanics of the Query Optimizer, introduces T-SQL query optimization internals and
architecture, starting with the infamous Cardinality Estimation process and its building blocks. From
there, you will understand how the Query Optimizer uses that information to produce a just-in-time,
good-enough execution plan. This chapter will be referenced throughout the Execution Plan-related
chapters, as we bridge architectural topics to real-world uses.

Chapter 3, Exploring Query Execution Plans, shows you how to read and analyze a graphical query
execution plan, where to look for relevant performance information in the plan, and how to use the
plan to troubleshoot query performance issues.

Chapter 4, Indexing for T-SQL Performance, introduces guidelines to keep in mind for writing T-SQL
queries that perform and scale well. Some basics of database physical design structure such as indexes
will be covered, as well as how the optimizer estimates cost and chooses access methods based on
how the query is written.

Chapter 5, Writing Elegant T-SQL Queries, reveals various common T-SQL patterns and anti-patterns,
specifically those that should be easily identifiable just by looking at the T-SQL construct. This chapter
will have more of a cookbook structure. For each of the patterns, we will show a T-SQL example that
contains the pattern, learn how to rewrite the query to avoid the pattern, and examine query execution
plans before and after the change to show improved performance.

Chapter 6, Discovering T-SQL Anti-Patterns in Depth, reveals various common T-SQL patterns and
anti-patterns that require some more in-depth analysis to be identified – the proverbial elephant
in the room. This chapter will also follow the cookbook structure introduced in Chapter 5, Writing
Elegant T-SQL Queries.

Chapter 7, Building Diagnostic Queries Using DMVs and DMFs, introduces dynamic management
views and functions that expose relevant just-in-time information to unlock the secrets of T-SQL
execution. It includes real-world examples of how to use these artifacts to troubleshoot different poor
performance scenarios, either leveraging snippets provided in this book or in GitHub, and how to
build customized scripts.

Chapter 8, Building XEvent Profiler Traces, introduces Extended Events (XEvents), the lightweight
infrastructure that exposes relevant just-in-time information from every component of the SQL
Database Engine, focused on those related to T-SQL execution. You will get real-world examples of
how to use these XEvents to troubleshoot different poor performance scenarios, leveraging collection
and analysis tools such as the XEvent Profiler, LogScout, and Replay Markup Language for event
analysis, and dropping a note on the infamously deprecated SQL Server Profiler.

Chapter 9, Comparative Analysis of Query Plans, introduces rich-UI tools that ship with SQL Server
Management Studio to enable standalone query plan analysis or compare plans from different points in
time. It then moves on to visually pinpoint the interesting parts that may provide the key to improving
T-SQL query performance and scalability.

Preface xvii

Chapter 10, Tracking Performance History with Query Store, introduces a flagship feature: Query Store.
This is a practical approach to leveraging what is effectively a flight recorder for your SQL Database
Engine T-SQL execution, for the purpose of trend analysis or T-SQL performance troubleshooting and
analysis, through rich UI reports that ship with SQL Server Management Studio. Then, you will see
how Query Store integrates with the Query Plan Comparison and Query Plan Analysis functionalities
for a complete, UI-driven workflow for query performance insights. Lastly, we’ll review some of the
SQL Database Engine features that rely on the data collected by Query Store.

Chapter 11, Troubleshooting Live Queries, introduces the profiling infrastructure that exposes real-time
query execution plans, which enable scenarios such as production system troubleshooting. You will
see a real-world example of how to leverage rich UI tools: Live Query Statistics as a standalone case
or as part of the Activity Monitor functionality of SQL Server Management Studio.

Chapter 12, Managing Optimizer Changes, discusses two features – QTA (client-side) and CE Feedback
(server-side) – which aim to address some of the most common causes of cardinality estimation
(CE)-related performance regressions that may affect our T-SQL queries after an upgrade from an
older version of the SQL Database Engine to a newer version.

To get the most out of this book
A basic understanding of using the SQL Database Engine and writing T-SQL queries will help get you
started with this book. Some familiarity with SQL Server Management Studio or Azure Data Studio
is also helpful for running the sample queries and viewing query execution plans.

Software/hardware covered in the book Operating system requirements

SQL Server (version 2012 or later) and Azure SQL Database Windows or Linux

SQL Server Management Studio Windows

Azure Data Studio Windows, macOS, or Linux

The examples used in this book are designed for use on SQL Server 2022 and Azure SQL Database, but
they should work on any version of SQL Server 2012 or later. The Developer Edition of SQL Server is
free for development environments and can be used to run all the code samples. There is also a free
tier of Azure SQL Database that you can use for testing at https://aka.ms/freedb.

You will need the AdventureWorks2016_EXT (referred to as AdventureWorks) and
AdventureWorksDW2016_EXT (referred to as AdventureWorksDW) sample databases, which
can be found on GitHub at https://github.com/Microsoft/sql-server-samples/
releases/tag/adventureworks.

https://aka.ms/freedb
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks

Prefacexviii

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Note
This book contains many horizontally long screenshots. These have been captured to provide
readers with an overview of the execution plans for various SQL queries. As a result, the text in
these images may appear small at 100% zoom. Additionally, you will be able to see these plans in
more depth in the output in SQL Server as you code along.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Learn-T-SQL-Querying-Second-Edition. If there’s an update to
the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Mount
the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

A block of code is set as follows:

SELECT LastName, FirstName
FROM Person.Person
WHERE FirstName = N'Andrew';

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance,
words in menus or dialog boxes appear in bold. Here is an example: “Select System info from the
Administration panel.”

Tips or important notes
Appear like this.

https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface xix

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Learn T-SQL Querying, Second Edition, we’d love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1-837-63899-3
https://packt.link/r/1-837-63899-3

Prefacexx

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your e-book purchase not compatible with the device of your choice?

Don’t worry!, Now with every Packt book, you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the following link:

https://packt.link/free-ebook/9781837638994

2. Submit your proof of purchase.

3. That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781837638994

Part 1:
Query Processing

Fundamentals

To understand how to write solid, performant T-SQL queries, users should know how SQL Server
runs the T-SQL syntax to deliver the intended result sets in a scalable fashion. This part introduces
you to concepts that are used throughout the remaining parts of the book to explain most patterns
and anti-patterns, as well as mitigation strategies.

This part has the following chapters:

• Chapter 1, Understanding Query Processing

• Chapter 2, Mechanics of the Query Optimizer

1
Understanding

Query Processing

Transact-SQL, or T-SQL as it has become commonly known, is the language used to communicate
with Microsoft SQL Server and Azure SQL Database. Any actions a user wishes to perform in a server,
such as retrieving or modifying data in a database, creating objects, or changing server configurations,
are all done via T-SQL commands.

The first step in learning to write efficient T-SQL queries is understanding how the SQL Database
Engine processes and executes the query. The Query Processor is a component, therefore a noun,
should not be all lowercased includes query compilation, query optimization, and query execution
essentials: how does the SQL Database Engine compile an incoming T-SQL statement? How does the
SQL Database Engine optimize and execute a T-SQL statement? How does the SQL Database Engine
use parameters? Are parameters an advantage? When and why does the SQL Database Engine cache
execution plans for certain T-SQL statements but not for others? When is that an advantage and
when is it a problem? This is information that any T-SQL practitioner needs to keep as a reference for
proactive T-SQL query writing, as well as reactive troubleshooting and optimization purposes. This
chapter will be referenced throughout all following chapters, as we bridge the gap between architectural
topics and real-world usage.

In this chapter, we’re going to cover the following main topics:

• Logical statement processing flow

• Query compilation essentials

• Query optimization essentials

• Query execution essentials

• Plan caching and reuse

• The importance of parameters

Understanding Query Processing4

Technical requirements
The examples used in this chapter are designed for use on SQL Server 2022 and Azure SQL Database,
but they should work on SQL Server version 2012 or later. The Developer Edition of SQL Server is
free for development environments and can be used to run all the code samples. There is also a free
tier of Azure SQL Database you can use for testing at https://aka.ms/freedb.

You will need the sample database AdventureWorks2016_EXT (referred to as AdventureWorks),
which can be found on GitHub at https://github.com/Microsoft/sql-server-
samples/releases/tag/adventureworks. The code samples for this chapter can also be
found on GitHub at https://github.com/PacktPublishing/Learn-T-SQL-Querying-
Second-Edition/tree/main/ch1.

Logical statement processing flow
When writing T-SQL, it is important to be familiar with the order in which the SQL Database Engine
interprets queries, to later create an execution plan. This helps anticipate possible performance issues
arising from poorly written queries, as well as helping you understand cases of unintended results.
The following steps outline a summarized view of the method that the Database Engine follows to
process a T-SQL statement:

1. Process all the source and target objects stated in the FROM clause (tables, views, and TVFs),
together with the intended logical operation (JOIN and APPLY) to perform on those objects.

2. Apply whatever pre-filters are defined in the WHERE clause to reduce the number of incoming
rows from those objects.

3. Apply any aggregation defined in the GROUP BY or aggregate functions (for example, a MIN
or MAX function).

4. Apply filters that can only be applied on the aggregations as defined in the HAVING clause.

5. Compute the logic for windowing functions such as ROW_NUMBER, RANK, NTILE, LAG,
and LEAD.

6. Keep only the required columns for the output as specified in the SELECT clause, and if a
UNION clause is present, combine the row sets.

7. Remove duplicates from the row set if a DISTINCT clause exists.

8. Order the resulting row set as specified by the ORDER BY clause.

9. Account for any limits stated in the TOP clause.

https://aka.ms/freedb
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch1
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch1

Logical statement processing flow 5

It becomes clearer now that properly defining how tables are joined (the logical join type) is important
to any scalable T-SQL query, namely by carefully planning on which columns the tables are joined. For
example, in an inner join, these join arguments are the first level of data filtering that can be enforced,
because only the rows that represent the intersection of two tables are eligible for subsequent operations.

Then it also makes sense to filter out rows from the result set using a WHERE clause, rather than
applying any post-filtering conditions that apply to sub-groupings using a HAVING clause. Consider
these two example queries:

SELECT p.ProductNumber, AVG(sod.UnitPrice)
FROM Production.Product AS p
INNER JOIN Sales.SalesOrderDetail AS sod ON p.ProductID = sod.
ProductID
GROUP BY p.ProductNumber
HAVING p.ProductNumber LIKE 'L%';
SELECT p.ProductNumber, AVG(sod.UnitPrice)
FROM Production.Product AS p
INNER JOIN Sales.SalesOrderDetail AS sod ON p.ProductID = sod.
ProductID
WHERE p.ProductNumber LIKE 'L%'
GROUP BY p.ProductNumber;

While these two queries are logically equivalent, the second one is more efficient because the rows
that do not have a ProductNumber starting with L will be filtered out of the results before the
aggregation is calculated. This is because the SQL Database Engine evaluates a WHERE clause before
a HAVING clause and can limit the row count earlier in the execution phase, translating into reduced
I/O and memory requirements, and also reduced CPU usage when applying the post-filter to the group.

The following diagram summarizes the logical statement-processing flow for the building blocks
discussed previously in this chapter:

Figure 1.1: Flow chart summarizing the logical statement-processing flow of a query

Now that we understand the order in which the SQL Database Engine processes queries, let’s explore
the essentials of query compilation.

Understanding Query Processing6

Query compilation essentials
The main stages of query processing can be seen in the following overview diagram, which we will
expand on throughout this chapter:

Figure 1.2: Flow chart representing the states of query processing

The Query Processor is the component inside the SQL Database Engine that is responsible for compiling
a query. In this section, we will focus on the highlighted steps of the following diagram that handle
query compilation:

Figure 1.3: States of query processing related to query compilation

Query compilation essentials 7

The first stage of query processing is generally known as query compilation and includes a series of
tasks that will eventually lead to the creation of a query plan. When an incoming T-SQL statement
is parsed to perform syntax validations and ensure that it is correct T-SQL, a query hash value is
generated that represents the statement text exactly as it was written. If that query hash is already mapped
to a cached query plan, then it can just attempt to reuse that plan. However, if a query plan for the
incoming query is not already found in the cache, query compilation proceeds with the following tasks:

1. Perform binding, which is the process of verifying that the referenced tables and columns exist
in the database schema.

2. References to a view are replaced with the definition of that view (this is called expanding
the view).

3. Load metadata for the referenced tables and columns. This metadata is as follows:

A. The definition of tables, indexes, views, constraints, and so on, that apply to the query.

B. Data distribution statistics on the applicable schema object.

4. Verify whether data conversions are required for the query.

Note
When the query compilation process is complete, a structure that can be used by the Query
Optimizer is produced, known as the algebrizer tree or query tree.

The following diagram further details these compilation tasks:

Figure 1.4: Flow of compilation tasks for T-SQL statements

Understanding Query Processing8

If the T-SQL statement is a Data Definition Language (DDL) statement, there’s no possible optimization,
and so a plan is produced immediately. However, if the T-SQL statement is a Data Manipulation
Language (DML) statement, the SQL Database Engine will move to an exploratory process known
as query optimization, which we will explore in the next section.

Query optimization essentials
The Query Processor is also the component inside the SQL Database Engine that is responsible for
query optimization. This is the second stage of query processing and its goal is to produce a query
plan that can then be cached for all subsequent uses of the same query. In this section, we will focus
on the highlighted sections of the following diagram that handle query optimization:

Figure 1.5: States of query processing related to query optimization

The SQL Database Engine uses cost-based optimization, which means that the Query Optimizer is
driven mostly by estimations of the required cost to access and transform data (such as joins and
aggregations) that will produce the intended result set. The purpose of the optimization process is
to reasonably minimize the I/O, memory, and compute resources needed to execute a query in the
fastest way possible. But it is also a time-bound process and can time out. This means that the Query
Optimizer may not iterate through all the possible optimization permutations of a given T-SQL
statement, but rather stops itself after finding an estimated “good enough” compromise between low
resource usage and faster execution times.

For this, the Query Optimizer takes several inputs to later produce what is called a query execution
plan. These inputs are the following:

Query optimization essentials 9

• The incoming T-SQL statement, including any input parameters

• The loaded metadata, such as statistics histograms, available indexes and indexed views,
partitioning, and the number of available schedulers

Note
We will further discuss the role of statistics in Chapter 2, Mechanics of the Query Optimizer,
and dive deeper into execution plans in Chapter 3, Exploring Query Execution Plans, later in
this book.

As part of the optimization process, the SQL Database Engine also uses internal transformation
rules and some heuristics to narrow the optimization space – in other words, to narrow the number
of transformation rules that can be applied to the incoming T-SQL statement. The SQL Database
Engine has over 400 such transformation rules that are applicable depending on the incoming T-SQL
statement. For reference, these rules are exposed in the undocumented dynamic management view
sys.dm_exec_query_transformation_stats. The name column in this DMV contains
the internal name for the transformation rule. An example is LOJNtoNL: an implementation rule to
transform a logical LEFT OUTER JOIN to a physical nested loops join operator.

And so, the Query Optimizer may transform the T-SQL statement as written by a developer before
it is allowed to execute. This is because T-SQL is a declarative language: the developer declares what
is intended, but the SQL Database Engine determines how to carry out the declared intent. When
evaluating transformations, the Query Optimizer must adhere to the rules of logical operator precedence.
When a complex expression has multiple operators, operator precedence determines the sequence
in which the operations are performed. For example, in a query that uses comparison and arithmetic
operators, the arithmetic operators are handled before the comparison operators. This determines
whether a Compute Scalar operator can be placed before or after a Filter operator.

The Query Optimizer will consider numerous strategies to search for an efficient execution plan,
including the following:

• Index selection

Are there indexes to cover the whole or parts of the query? This is done based on which search
and join predicates (conditions) are used, and which columns are required for the query output.

• Logical join reordering

The order in which tables are actually joined may not be the same order as they are written
in the T-SQL statement itself. The SQL Database Engine uses heuristics as well as statistics to
narrow the number of possible join permutations to test, and then estimate which join order
results in early filtering of rows and less resource usage. For example, depending on how a
query that joins 6 tables is written, possible join reordering permutations range from roughly
700 to over 30,000.

Understanding Query Processing10

• Partitioning

Is data partitioned? If so, and depending on the predicate, can the SQL Database Engine avoid
accessing some partitions that are not relevant for the query?

• Parallelism

Is it estimated that execution will be more efficient if multiple CPUs are used?

• Whether to expand views

Is it better to use an indexed view, or conversely expand and inline the view definition to
account for the base tables?

• Join elimination

Are two tables being joined in a way that the number of rows resulting from that join is zero?
If so, the join may not even be executed.

• Sub-query elimination

This relies on the same principle as join elimination. Was it estimated that the correlated or
non-correlated sub-query will produce zero rows? If so, the sub-query may not even be executed.

• Constraint simplification

Is there an active constraint that prevents any rows from being generated? For example, does
a column have a non-nullable constraint, but the query predicate searches for null values in
that column? If so, then that part of the query may not even be executed.

• Eligibility for parameter sensitivity optimization

Is the database where the query is executing subject to Database Compatibility Level 160? If so,
are there parameterized predicates considered at risk of being impacted by parameter sniffing?

• Halloween protection

Is this an update plan? If so, is there a need to add a blocking operator?

Query optimization essentials 11

Note
An update plan has two parts: a read part that identifies the rows to be updated and a write
part that performs the updates, which must be executed in two separate steps. In other words,
the actual update of rows must not affect the selection of which rows to update. This problem
of ensuring that the write cursor of an update plan does not affect the read cursor is known
as “Halloween protection” as it was discovered by IBM researchers more than 40 years ago,
precisely on Halloween.

For the Query Optimizer to do its job efficiently in the shortest amount of time possible, data
professionals need to do their part, which can be distilled into three main principles:

• Design for performance

Ensure that our tables are designed with purposeful use of the appropriate data types and
lengths, that our most used predicates are covered by indexes, and that the engine is allowed
to identify and create the required statistical information.

• Write simple T-SQL queries

Be purposeful with the number of joined tables, how the joins are expressed, the number of
columns needed for the result set, how parameters and variables are declared, and which data
transformations are used. Complexity comes at a cost and it may be a wise strategy to break
down long T-SQL statements into smaller parts that create intermediate result sets.

• Maintain our database health

From a performance standpoint alone, ensure that index maintenance and statistics updates
are done regularly.

At this point, it starts to become clear that how we write a query is fundamental to achieving good
performance. But it is equally important to make sure the Query Optimizer is given a chance to do
its job to produce an efficient query plan. That job is dependent on having metadata available that
accurately portrays the data distribution in base tables and indexes. Later in this book, in Chapter 5,
Writing Elegant T-SQL Queries, we will further distill what data professionals need to know to write
efficient T-SQL that performs well.

Also, in the Mechanics of the Query Optimizer chapter, we will cover the Query Optimizer and the
estimation process in greater detail. Understanding how the SQL Database Engine optimizes a query
and what the process looks like is a fundamental step toward troubleshooting query performance – a
task that every data professional will do at some point in their career.

Understanding Query Processing12

Now that we have reviewed query compilation and optimization, the next step is query execution,
which we will explore in the following section.

Query execution essentials
Query execution is driven by the Relational Engine in the SQL Database Engine. This means executing
the plan that resulted from the optimization process. In this section, we will focus on the highlighted
parts of the following diagram that handle query execution:

Figure 1.6: States of query processing related to query execution

Before execution starts, the Relational Engine needs to initialize the estimated amount of memory
needed to run the query, known as a memory grant. Along with the actual execution, the Relational
Engine schedules the worker threads (also known as threads or workers) for the processes to run on
and provides inter-thread communication. The number of worker threads spawned depends on two
key aspects:

• Whether the plan is eligible for parallelism as determined by the Query Optimizer.

• What the actual available degree of parallelism (DOP) is in the system based on the current
load. This may differ from the estimated DOP, which is based on the server configuration max
degree of parallelism (MaxDOP). For example, the MaxDOP may be 8 but the available DOP
at runtime can be only 2, which impacts query performance.

Query execution essentials 13

During execution, as parts of the plan that require data from the base tables are processed, the
Relational Engine requests that the Storage Engine provide data from the relevant rowsets. The data
returned from the Storage Engine is processed into the format defined by the T-SQL statement, and
returns the result set to the client.

This doesn’t change even on highly concurrent systems. However, as the SQL Database Engine needs
to handle many requests with limited resources, waiting and queuing are how this is achieved.

To understand waits and queues in the SQL Database Engine, it is important to introduce other
query execution-related concepts. From an execution standpoint, this is what happens when a client
application needs to execute a query:

Figure 1.7: Timeline of events when a client application executes a query

Tasks and workers can naturally accumulate waits until a request completes – we will see how to
monitor these in Building diagnostic queries using DMVs and DMFs. These waits are surfaced in each
request, which can be in one of three different statuses during its execution:

Figure 1.8: States of task execution in the Database Engine

Understanding Query Processing14

• Running: When a task is actively running within a scheduler.

• Suspended: When a task that is running in a scheduler finds out that a required resource is
not available at the moment, such as a data page, it voluntarily yields its allotted processor time
so that another request can proceed instead of allowing for idle processor time. But a task can
be in this state before it even gets on a scheduler. For example, if there isn’t enough memory to
grant to a new incoming query, that query must wait for memory to become available before
starting actual execution.

• Runnable: When a task is waiting on a first-in first-out queue for scheduler time, but otherwise
has access to the required resources such as data pages.

All these concepts and terms play a fundamental role in understanding query execution and are also
important to keep in mind when troubleshooting query performance. We will further explore how to
detect some of these execution conditions in Chapter 3, Exploring Query Execution Plans.

Plan caching and reuse
As we have now established, the process of optimizing a query can consume a large amount of resources
and take a significant amount of time, so it makes sense to avoid that effort if possible whenever a
query is executed. The SQL Database Engine caches nearly every plan that is created so that it can be
reused when the same query is executed again. But not all execution plans are eligible for caching;
for example, no DDL statements are cached, such as CREATE TABLE. As for DML statements,
most simple forms that only have one possible execution plan are also not cached, such as INSERT
INTO … VALUES.

There are several different methods for plan caching. The method that is used is typically based on
how the query is called from the client. The different methods of plan caching that will be covered in
this section are the following:

• Stored procedures

• Ad hoc plan caching

• Parameterization (simple and forced)

• The sp_executesql procedure

• Prepared statements

Stored procedures

A stored procedure is a group of one or more T-SQL statements that is stored as an object in a SQL
database. Stored procedures are like procedures in other programming languages in that they can
accept input parameters and return output parameters, they can contain control flow logic such as
conditional statements (IF … ELSE), loops (WHILE), and error handling (TRY … CATCH), and

Plan caching and reuse 15

they can return a status value to the caller indicating success or failure. They can even contain calls to
other stored procedures. There are many benefits to using stored procedures, but in this section, we
will focus mainly on their benefit of reducing the overhead of the compilation process through caching.

The first time a stored procedure is executed, the SQL Database Engine compiles and optimizes the
T-SQL within the procedure, and the resulting execution plan is cached for future use. Every subsequent
call to the procedure reuses the cached plan, until such a time as the plan is removed from the cache
due to reasons such as the following:

• Memory pressure

• Server restart

• Plan invalidation – when the underlying objects are changed in some way or a significant
amount of data is changed

Stored procedures are the preferred method for plan caching as they provide the most effective
mechanism of caching and reusing query plans in the SQL Database Engine.

Ad hoc plan caching

An ad hoc query is a T-SQL query that is sent to the server as a block of text with no parameter markers
or other constructs. They are typically built on the fly as needed, such as a query that is typed into a
query window in SQL Server Management Studio (SSMS) and executed, or one that is sent to the
server using the EXECUTE command as in the following code example, which can be executed in the
AdventureWorks sample database:

EXECUTE (N'SELECT LastName, FirstName, MiddleName
FROM Person.Person

WHERE PersonType = N''EM'';')

Note
The letter N preceding a string in a T-SQL script indicates that the string should be interpreted
as Unicode with UTF-16 encoding. In order to avoid implicit data-type conversions, be sure to
specify N for all Unicode string literals when writing T-SQL scripts that involve the NCHAR
and NVARCHAR data types. We discuss implicit conversions and their impact on performance
in Chapter 6, Discovering T-SQL Anti-Patterns in Depth.

The process of parsing and optimizing an ad hoc query is like that of a stored procedure, and will be
just as costly, so it is worth the SQL Database Engine storing the resulting plan in the cache in case
the exact same query is ever executed again. The problem with ad hoc caching is that it is extremely
difficult to ensure that the resulting plan is reused.

Understanding Query Processing16

For the SQL Database Engine to reuse an ad hoc plan, the incoming query must match the cached
query exactly. Every character must be the same, including spaces, line breaks, and capitalization.
The reason for this is that the SQL Database Engine uses a hash function across the entire string to
match the T-SQL statement. If even one character is off, the hash values will not match, and the SQL
Database Engine will again compile, optimize, and cache the incoming ad hoc statement. For this
reason, ad hoc caching cannot be relied upon as an effective caching mechanism.

Note
Even if the database is configured to use case-insensitive collation, this does not apply to query
parsing. The ad hoc plan matching is still case sensitive because of the algorithm used to generate
the hash value for the query string.

If there are many ad hoc queries being sent to an instance of the SQL Database Engine, the plan cache
can become bloated with single-use plans. This can cause performance issues on the system as the
plan cache will be unnecessarily large, taking up memory that could be better used elsewhere in the
system. In this case, turning on the optimize for ad hoc workloads server configuration option is
recommended. When this option is turned on, the SQL Database Engine will cache a small plan stub
object the first time an ad hoc query is executed. This object takes up much less space than a full plan
object and will minimize the size of the ad hoc cache. If the query is ever executed a second time, the
full plan will be cached.

Tip
See the chapter Building Diagnostic Queries using DMVs and DMFs later in this book for a
query that will help identify single-use plans in the cache.

Parameterization

Parameterization is the practice of replacing a literal value in a T-SQL statement with a parameter
marker. Building on the example from the Ad hoc plan caching section, the following code block
shows an example of a parameterized query executed in the AdventureWorks sample database:

DECLARE @PersonType AS nchar(2) = N'EM';
SELECT LastName, FirstName, MiddleName
FROM Person.Person
WHERE PersonType = @PersonType;

In this case, the literal value 'EM' is moved from the T-SQL statement itself into a DECLARE
statement, and the variable is used in the query instead. This allows the query plan to be reused
for different @PersonType values, whereas sending different values directly in the query string
would result in a separate cached ad hoc plan.

Plan caching and reuse 17

Simple parameterization

In order to minimize the impact of ad hoc queries, the SQL Database Engine will automatically
parameterize some simple queries by default. This is called simple parameterization and is the default
setting of the Parameterization database option. With parameterization set to Simple, the SQL
Database Engine will automatically replace literal values in an ad hoc query with parameter markers
in order to make the resulting query plan reusable. This works for some queries, but there is a very
small class of queries that can be parameterized this way.

As an example, the query we introduced previously in the Parameterization section would not be
automatically parameterized in simple mode because it is considered unsafe. This is because different
PersonType values may yield a different number of rows, and thus require a different execution
plan. However, the following query executed in the AdventureWorks sample database would
qualify for simple automatic parameterization:

SELECT LastName, FirstName, MiddleName
FROM Person.Person
WHERE BusinessEntityID = 5;

This query would not be cached as-is. The SQL Database Engine would convert the literal value of 5
to a parameter marker, and it would look something like this in the cache:

(@1 tinyint) SELECT LastName, FirstName, MiddleName
FROM Person.Person
WHERE BusinessEntityID = @1;

Forced parameterization

If an application tends to generate many ad hoc queries, and there is no way to modify the application
to parameterize the queries, the Parameterization database option can be changed to Forced. When
forced parameterization is turned on, the SQL Database Engine will replace all literal values in all
ad hoc queries with parameter markers for the majority of use cases. However, note that there are
documented exceptions that are either of the following:

• Edge cases that most developers will not face, such as statements that contain more than
2,097 literals

• Non-starters because statements will not be parameterized irrespective of whether forced
parameterization is enabled or not, such as when statements contain the RECOMPILE query
hint, statements inside the bodies of stored procedures, triggers, user-defined functions, or
prepared statements that have already been parameterized on the client-side application

Understanding Query Processing18

Take the example of the following query executed in the AdventureWorks sample database:

SELECT LastName, FirstName, MiddleName
FROM Person.Person
WHERE PersonType = N'EM' AND BusinessEntityID IN (5, 7, 13, 17, 19);

This query would be automatically parameterized under forced parameterization as follows:

(@1 nchar(2), @2 int, @3 int, @4 int, @5 int, @6 int) SELECT LastName,
FirstName, MiddleName
FROM Person.Person
WHERE PersonType = @1 AND BusinessEntityID IN (@2, @3, @4, @5, @6);

This has the benefit of increasing the reusability of all ad hoc queries, but there are some risks to
parameterizing all literal values in all queries, which will be discussed later in the The importance of
parameters section.

The sp_executesql procedure

The sp_executesql procedure is the recommended method for sending an ad hoc T-SQL
statement to the SQL Database Engine. If stored procedures cannot be leveraged for some reason, such
as when T-SQL statements must be constructed dynamically by the application, sp_executesql
allows the user to send an ad hoc T-SQL statement as a parameterized query, which uses a similar
caching mechanism to stored procedures. This ensures that the plan can be reused whenever the
same query is executed again. Building on our example from the Ad hoc plan caching section, we can
re-write the query using sp_executesql as in the following example, which can be executed in
the AdventureWorks sample database:

EXECUTE sp_executesql @stmt = N'SELECT LastName,
 FirstName, MiddleName
 FROM Person.Person
 WHERE PersonType = @PersonType;',
@params = N'@PersonType nchar(2)',
@PersonType = N'EM';

This ensures that any time the same query is sent with the same parameter markers, the plan will be
reused, even if the statement is dynamically generated by the application.

How query processing impacts plan reuse 19

Prepared statements

Another method for sending parameterized T-SQL statements to the SQL Database Engine is by using
prepared statements. Leveraging prepared statements involves three different system procedures:

1. sp_prepare: Defines the statement and parameters that are to be executed, creates an
execution plan for the query, and sends a statement handle back to the caller that can be used
for subsequent execution.

2. sp_execute: Executes the statement defined by sp_prepare by sending the statement
handle along with any parameters to the SQL Database Engin.

3. sp_unprepare: Discards the execution plan created by sp_prepare for the query specified
by the statement handle

Steps 1 and 2 can optionally be combined into a single sp_prepexec statement to save a round-
trip to the server.

This method is not generally recommended for plan reuse as it is a legacy construct and may not take
advantage of some of the benefits of parameterized statements that sp_executesql and stored
procedures can leverage. It is worth mentioning, however, because it is used by some cross-platform
database connectivity libraries such as Open Database Connectivity (ODBC) and Java Database
Connectivity (JDBC) as the default mechanism for sending queries to the SQL Database Engine.

Now that we’ve learned the different ways that plans may be cached, let’s explore how plans may be
reused during query processing.

How query processing impacts plan reuse
It’s important to contextualize what happens in terms of query processing that can result in plan
caching and reuse. In this section, we will focus on the highlighted section of the following diagram
that determines whether a query plan can be reused from the cache or needs to be recompiled:

Understanding Query Processing20

Figure 1.9: States of query processing related to query compilation/recompilation

As mentioned before, when an incoming T-SQL statement is parsed, a query hash value representing
that statement is generated, and if that query hash is already mapped to a cached query plan, then
it can just attempt to reuse that plan – unless special circumstances exist that don’t even allow plan
caching, such as when the RECOMPILE hint is present in the T-SQL statement.

Assuming no such pre-existing conditions exist, after matching the query hash with a plan hash, the
currently cached plan is tested for correctness, meaning that the SQL Database Engine will check
whether anything has changed in the underlying referenced objects that would require the plan to be
recompiled. For example, if a new index was created or an existing index referenced in the plan was
dropped, the plan must be recompiled.

If the cached plan is found to be correct, then the SQL Database Engine also checks whether enough
data has changed to warrant a new plan. This refers to the statistics objects associated with tables and
indexes used in the T-SQL statement, and if any are deemed outdated – meaning its modification
counter is high enough as it relates to the overall cardinality of the table to consider it stale.

The importance of parameters 21

Note
In SQL Server 2022 and Azure SQL Database, if the new Parameter Sensitive Plan (PSP)
Optimization feature is used, one query hash can map to multiple query plan hashes. Each
different plan hash is a standalone query plan called a variant, and maps to a single query hash that
was deemed eligible for PSP Optimization. Each plan variant can be recompiled independently.
PSP Optimization will be discussed later in the The importance of parameters section.

We will further discuss the role of statistics in the chapter Mechanics of the Query Optimizer,
and query hashes and query plan hashes in the chapter Exploring Query Execution Plans, in
the Operator-level properties section.

If nothing has significantly changed, then the query plan can be executed, as we discussed in this
chapter in the Query execution essentials section.

The following picture depicts the high-level process for an already cached plan that can be executed as-is:

Figure 1.10: Process for executing a cached plan as-is

However, if any of the preceding checks fail, then the SQL Database Engine invalidates the cached plan
and a new query plan needs to be compiled, as the available optimization space may be different from
the last time the plan was compiled and cached. In this case, the T-SQL statement needs to undergo
recompilation and go through the optimization process driven by the Query Optimizer so that a
new query execution plan is generated (we will describe this process in greater detail in the chapter
Mechanics of the Query Optimizer). If eligible, this newly generated query plan is cached.

Note
The same process is followed for new incoming queries where no query plan is yet cached.

Now that we understand how the SQL Database Engine caches and reuses query plans, let’s explore
one of the most important factors that determines whether a plan may be reused – parameters.

The importance of parameters
As we discussed in the previous section on caching methods, the primary reason to parameterize
queries is to ensure that query execution plans get reused – but why is this important and what other
reasons might there be to use parameters?

Understanding Query Processing22

Security

One reason for using parameterized queries is for security. Using a properly formatted parameterized
query can protect against SQL injection attacks. A SQL injection attack is one where a malicious
user can execute database code (in this case, T-SQL) on a server by appending it to a data entry field
in the application. As an example, assume we have an application that contains a form that asks the
user to enter their name into a text box. If the application were to use an ad hoc statement to insert
this data into the database, it would generally concatenate a T-SQL string with the user input, as in
the following code:

DECLARE @sql nvarchar(MAX);
SET @sql = N'INSERT Users (Name) VALUES (''' + <user input> + ''');';
EXECUTE (@sql);

A malicious user might enter the following value into the text box:

Bob'); DROP TABLE Users; --

If this is the case, the actual code that gets sent to the SQL Database Engine would look like the following:

INSERT Users (Name) VALUES ('Bob'); DROP TABLE Users; --');

This is a valid T-SQL syntax that would successfully execute. It would first insert a row into the Users
table with the Name column set to 'Bob', then it would drop the Users table. This would of course
break the application, and unless there was some sort of auditing in place, we would never know
what happened.

Let’s look at this example again using a parameterized query. The code might look like the following:

EXECUTE sp_executesql @stmt = N'INSERT Users (Name) VALUES (@name)', @
params = N'@name nvarchar(100)', @name = <user input>

This time, if the user were to send the same input, rather than executing the query that the user
embedded in the string, the Database Engine would insert a row into the Users table with the Name
column set to 'Bob'); DROP TABLE Users; --'. This would obviously look a bit strange,
but it wouldn’t break the application nor breach security.

Performance

Another reason to leverage parameters is performance. In a busy SQL system, particularly one that
has a primarily Online Transaction Processing (OLTP) workload, we may have hundreds or even
thousands of queries executing per second.

The importance of parameters 23

Assume that each one of these queries takes about 100 ms to compile and consumes about the same
amount of CPU. This would mean that each second on the system, the server could be consuming
hundreds of seconds of CPU time just compiling queries. That’s a lot of resources to consume just for
preparing the queries for execution, and it doesn’t leave a lot of overhead for actually executing them.

Also recall that when plans are not reused, the procedure cache can become very large and consume
memory that in turn won’t be available for storing data and executing queries. In short, a system
that spends too much time compiling queries may become CPU and/or memory bound and may
perform poorly.

Parameter sniffing

Given that query plan reuse is so important, why wouldn’t the SQL Database Engine parameterize every
query that comes in by default? One of the reasons for this is to avoid query performance issues that
may result from parameter sniffing. Parameter sniffing is something the SQL Database Engine does
in order to optimize a parameterized query. The first time a stored procedure or other parameterized
query executes, the input parameter values are used to drive the optimization process and produce
the execution plan, as discussed in the Query optimization essentials section.

That execution plan will then be cached and reused by subsequent executions of the procedure or query.
For most queries, this is a good thing because using a specific value will result in a more accurate cost
estimation. In some situations, however, particularly where the data distribution is skewed in some
way, the parameters that are sent the first time the query is executed may not represent the typical use
case of the query, and the plan that is generated may perform poorly when other parameter values are
sent. This is a case where reusing a plan might not be a good thing, because the plan is highly sensitive
to user-defined runtime parameters that have widely different data distributions for the same column.

Parameter sniffing, or parameter sensitivity, is a very common cause of plan variability and performance
issues in the SQL Database Engine.

Parameter Sensitive Plan Optimization

SQL Server 2022 introduces the Parameter Sensitive Plan Optimization feature (commonly referred
to as PSP Optimization), which allows the Database Engine to simultaneously cache multiple plans
for a single parameterized query that uses equality predicates.

With PSP Optimization, during the initial compilation of a parameterized query, the Query Optimizer
will evaluate up to three parameters that are likely sensitive to non-uniform (skewed) data distributions.
The feature uses the statistics histograms to search for where the cardinality difference between the least-
occurring value and the most-occurring value for a given column is orders of magnitude off. The result
is the creation of what is called a dispatcher plan, which contains the logic (dispatcher expression) that
bucketizes the predicates’ values, upon which different plan variants can be compiled independently.

Understanding Query Processing24

For each cardinality bucket, a query plan variant will only be compiled if needed, based on actual
runtime parameters. If the parameter values that would result in a given plan variant are never used at
runtime, then that variant of the plan defined in the dispatcher plan will never actually get compiled.
This behavior prevents plan-cache bloating by compiling a plan only if and when its predicate value
demands it.

The following diagram shows the possible plan variants found for a parameterized query with a WHERE
person.ID = @param search predicate:

Figure 1.11: Example of a dispatcher plan defining three query plan variants

We will discuss parameter sensitivity behavior in more detail later in this book, in Chapter 5, Writing
Elegant T-SQL Queries, and Chapter 6, Discovering T-SQL Anti-Patterns in Depth.

To cache or not to cache

In general, caching and reusing query plans is a good thing, and writing T-SQL code that encourages
plan reuse is recommended.

In some cases, such as with a reporting or OLAP workload, caching queries might make less sense.
These types of systems tend to have a heavy ad hoc workload. The queries that run are typically long-
running and, while they may consume a large amount of resources in a single execution, they typically
run with less frequency than OLTP systems. Since these queries tend to be long-running, saving a few
hundred milliseconds by reusing a cached plan doesn’t make as much sense as creating a new plan
that is designed specifically for that execution of the query. Spending that time compiling a new plan
may even result in saving more time in the long run, since a fresh plan will likely perform better than
a plan that was generated based on a different set of parameter values.

Summary 25

In summary, for most workloads in the SQL Database Engine, leveraging stored procedures and/
or parameterized queries is recommended to encourage plan reuse. For workloads that have heavy
ad hoc queries and/or long-running reporting-style queries, consider enabling the optimize for ad
hoc workloads server setting and leveraging the RECOMPILE hint to guarantee a new plan for each
execution (provided that the queries are run with a low frequency), or use forced parameterization to
improve plan reuse opportunities. Also, be sure to review Chapter 8, Building Diagnostic Queries Using
DMVs and DMFs, for techniques to identify single-use plans, monitor for excessive recompilation,
and identify plan variability and potential parameter sniffing issues.

Summary
As this chapter has shown, the way a T-SQL query is written and submitted to the server influences
how it is interpreted and executed by the SQL Database Engine. Even before a single T-SQL query is
written, the choice of development style (for example, using stored procedures versus ad hoc statements)
can have a direct impact on the performance of the application. As we continue our exploration of the
internals of SQL Database Engine query processing and optimization, we will find more and more
opportunities to write T-SQL queries in a way that encourages optimal query performance, starting
with the next chapter.

2
Mechanics of the
Query Optimizer

The next step in our journey to writing efficient T-SQL queries is understanding how the SQL Database
Engine optimizes a query by exploring T-SQL query optimization internals and architecture, starting
with the infamous cardinality estimation process and its building blocks. From there, understand how
the Query Optimizer uses that information to produce a just-in-time good-enough execution plan. This
chapter will be referenced throughout all chapters, as we bridge architectural topics to real-world uses.

In this chapter, we’re going to cover the following main topics:

• Introducing the Cardinality Estimator (CE)

• Understanding the query optimization workflow

Technical requirements
The examples that will be used in this chapter are designed for use on SQL Server 2022 and Azure SQL
Database, but they should work on any version of SQL Server, 2012 or later. The Developer Edition of
SQL Server is free for development environments and can be used to run all the code samples. There
is also a free tier of Azure SQL Database you can use for testing at https://aka.ms/freedb.

You will need the sample AdventureWorks2016_EXT database (referred to as AdventureWorks),
which can be found on GitHub at https://github.com/Microsoft/sql-server-
samples/releases/tag/adventureworks.

The code samples for this chapter can also be found on GitHub at https://github.com/
PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch2.

https://aka.ms/freedb
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch2
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch2

Mechanics of the Query Optimizer28

Introducing the Cardinality Estimator
Before we get started, it’s important to have a common frame of reference for a few terms that will be
referenced throughout this book:

• Cardinality: Cardinality in a database is defined as the number of records, also called tuples,
in each table or view.

• Density: This term represents the average number of duplicate values in each column or
column set – in other words, the average distribution of unique values in the data. It’s defined
as 1 divided by the number of distinct values.

• Frequency: This term represents the average number of occurrences of a given value in a
column or column set. It’s defined as the number of rows times the density.

• Selectivity: This term represents the fraction of the row count that satisfies a given predicate,
between zero and one. This is calculated as the predicate cardinality (Pc) divided by the table
cardinality (Tc) multiplied by 100: (Pc ÷ Tc) × 100. As the average number of duplicates decreases
(the density), the selectivity of a value increases. For example, in a table representing streets
and cities in a country, many streets and cities have the same name, but each street and city
combination has a unique ZIP code. An index on the ZIP code is more selective than an index
on the street or city because the ZIP code has a much lower density than streets or cities alone.

• Statistics: Statistics are the metadata objects that we referred to in Chapter 1, Understanding
Query Processing, and maintain information on the distribution of data in a table or indexed
view, over a specific column or column set. We’ll discuss the role of statistics in more detail
later in this section.

• Histogram: This is a bucketized representation of the distribution of data in a specific column
that is kept in a statistic object. These histograms hold aggregate information on the number
of rows (cardinality) and distinct values (density) for up to 200 ranges of data values, named
histogram steps. For any statistics object, the histogram is always created for the first column only.

In Chapter 1, Understanding Query Processing, we discussed how the Query Optimizer is a fundamental
piece of the overall Query Processor. In this chapter, we will dig deeper into the core component of
cost-based query optimization – the Cardinality Estimator (CE).

As the name suggests, the role of the CE is to provide fundamental estimation inputs to the query
optimization process. For example, at the time of writing, the cardinality of a table containing the
names of every living human on Earth is about 8,000,000,000. But if a predicate is applied to this table
to only find inhabitants in the US, the cardinality after the predicate is applied is only 333,000,000.
Reading through 8,000,000,000 or 333,000,000 records may result in different data-access operations,
such as a full scan or a range scan in this case. As such, early knowledge of the estimated number of

Introducing the Cardinality Estimator 29

rows is fundamental for creating an accurate query execution plan. It would be very inefficient if the
SQL Database Engine had to incur the high cost of accessing actual data to make this estimation – that
would be like executing the query to figure out how to execute the query. Instead, it uses metadata
kept in statistics.

Statistics are the building blocks for the process of cardinality estimation: if statistics don’t accurately
portray underlying data distributions, then the Query Optimizer will work with inaccurate data and
estimate cardinalities that don’t adhere to the reality of the data.

To ensure statistics are kept updated, the SQL Database Engine keeps a modification counter on each
table referenced by the statistic; when enough changes have been made to the table or indexed view
columns tracked by a statistic, an update to that statistic is needed. When a query is compiled or
recompiled, the SQL Database Engine loads all required statistics based on which columns are being
used and determines whether statistics need to be updated.

If the database option for automatic statistics update is enabled (which is the default), the SQL Database
Engine will update the outdated statistic before proceeding with query execution of any execution
plan that referenced that statistic – this is known as a synchronous update. If asynchronous automatic
statistics update is enabled, the SQL Database Engine will proceed with query execution based on the
existing statistic as-is and update the outdated statistic as a background process. Once any statistics
object has been updated, the next time any cached query plan that references that statistic is loaded
for use, it is recompiled.

Up to SQL Server 2014, unless trace flag 2371 is used, the SQL Database Engine uses a threshold
based on the percent of rows changed. This is irrespective of the number of rows in the table. The
threshold is as follows:

• If the table cardinality was 500 or less at the time statistics were evaluated, update every
500 modifications

• If the table cardinality was above 500 at the time statistics were evaluated, update every 500 +
20% of modifications

Starting with SQL Server 2016 and Azure SQL Database, under database compatibility level 130, the
SQL Database Engine uses a dynamic threshold that had been introduced in earlier versions under
trace flag 2371, which keeps adjusting to the number of rows in the table or indexed view. This is the
result of comparing the SQL Server 2014 threshold with the square root of the product of 1,000 and the
current table cardinality. The smallest number resulting from this comparison is used. For example, if
our table contains 1 million rows, then the calculation is SQRT(1,000 * 1,000,000) = 31,622. However,
when the table grows to 2 million rows, the threshold is only 44,721 rows, whereas the SQL Server
2014 threshold would be 400,500 rows. With this change, statistics on large tables are updated more
often, which decreases the chances of producing an inefficient query execution plan and the likely
consequence is poor query performance.

Mechanics of the Query Optimizer30

Note
Database compatibility level is a setting that signals the SQL Database Engine to execute T-SQL
statements in that database using the same functional and query optimization behaviors that were
defaulted for a given Database Engine version. For example, SQL Server 2016 introduced database
compatibility level 130 and a set of new default behaviors, but setting database compatibility
level 120 forces functional and query optimization behaviors that were default in SQL Server
2014, which maps to the version when database compatibility level 120 was introduced.

The CE operates with mathematical models based on certain assumptions about the T-SQL statements
that will be executed. These assumptions are considered during computations to find reasonable
predictions about how many rows are expected to flow through each plan operator. These predictions
are used in the query optimization process to estimate the cost of each query plan.

CE 70, which was introduced back in SQL Server 7.0, used four basic assumptions about how users
queried their data:

• Independence assumption: Data distributions on different columns of the same table are
assumed to be independent of each other, and predicates on different columns of the same table
are therefore also independent of each other. This is known as the independence assumption.

For example, in a fictitious database for a large retail store chain where customer data is stored, a
report shows which customers exist per store location using a query such as SELECT * FROM
Customers WHERE FirstName = 'James' AND City = 'San Francisco'.
We can assume there are many Jameses not only in San Francisco but in other cities as well, so
these two columns are independent.

• Uniformity assumption: Distinct values are evenly distributed in each histogram, and all have
the same frequency. This is known as the uniformity assumption.

• Simple containment: Join predicates are assumed to be dependent on filter predicates. When
users query data joining different tables and set a filter predicate on these tables, it’s assumed
that the filters apply to the joined data and are considered when estimating the number of
rows returned by the join.

Using the example of a fictitious database for the same large retail store chain, different tables
record items sold and items returned, and a report shows the number of returns per sold item
type and date, using a query such as SELECT * FROM Sales INNER JOIN Returns
ON Sales. ReceiptID = Returns.ReceiptID WHERE Sales.Type = 'Toys'
AND Returns.Date = '2019-04-18'. Throughout the year, a fairly steady number
of returns per item are sold, and the estimation shouldn’t change for any given day. However,
when the query predicate changes to WHERE Sales.Type = 'Toys' AND Returns.
Date = '2018-12-27', and the SQL Database Engine is compiling a plan for this new
query, accounting for the filters can greatly impact the join cardinality estimations because in
the days after Christmas, it’s expected that many toys are returned.

Introducing the Cardinality Estimator 31

Whenever we know the filter predicates and the join predicates are highly dependent, as is the
case here, with sales and returns of toys for specific dates greatly dictating the cardinality, simple
containment can yield better estimations and therefore potentially a better plan.

• Inclusion assumption: For filter predicates where a column equals a constant (for example,
WHERE col1 = 10), it is assumed the constant always exists in that column. This is called
the inclusion assumption.

However, application workloads don’t always follow these model assumptions, which can result in
inefficiently optimized query execution plans.

Note
We will discuss more about some out-of-model T-SQL constructs in Chapter 5, Writing Elegant
T-SQL Queries, and Chapter 6, Discovering T-SQL Anti-Patterns in Depth.

The observation and experience of query performance that’s been accrued over the years led to a major
redesign of the cardinality estimator with the release of SQL Server 2014 and CE 120.

The main objectives of this new CE were to improve the quality of cardinality estimation for a broad
range of queries and modern workloads, such as online transaction processing (OLTP), data
warehousing (DW), and decision support systems (DSS), as well as to generate more efficient and
predictable query execution plans for most use cases, especially complex queries.

With that new release, some model assumptions about how users queried their data were changed:

• Independence became partial Correlation, where the combination of the different column
values is not necessarily independent, and it’s assumed this resembles more real-life data querying
patterns. For the example of a fictitious database for a large retail store chain where customer
data is stored, a report lists the names of all customers using a query such as SELECT * FROM
Customers WHERE FirstName = 'James' AND LastName = 'Kirk'. We can
assume a tight correlation between a customer’s first and last names, meaning that while there
are many Jameses, there are not many James Kirks.

• Simple Containment Becomes Base Containment, meaning that filter predicates and join
predicates are independent. The previous example for simple containment uses a set of join
and filter predicates that are very much dependent. Therefore, the base containment default
would yield less accurate cardinality estimations.

However, consider the same fictitious database for the same large retail store chain, where
the HR department runs a report that shows the base salary for full-time employees, using a
query such as SELECT * FROM Payroll INNER JOIN Employee ON Payroll.
EmployeeID = Employee.EmployeeID WHERE Payroll.CompType = 'Base'
AND Employee.Type = 'FTE'.

Mechanics of the Query Optimizer32

In this example, all employees have a base salary, and because this company’s workforce has
one-third FTEs, one-third part-time employees, and one-third contractors, for any employee
type that is queried, the join cardinality estimation wouldn’t change much whether the filter
predicates (the WHERE clause) is there or not. Base containment works best here because we
know that the filter predicates and the join predicates are not necessarily dependent, and filter
values wouldn’t necessarily affect cardinality estimations. Therefore, base containment can
yield better estimations and potentially a better plan for most use cases.

It’s common to see these CE models referred to as Legacy CE and New CE. These are side-by-side
implementations and are more accurately referred to as CE 70, and CE 120 or higher. Being side-by-
side means that developers can opt-in for either CE version as new changes and enhancements are
gated by the database compatibility level.

CE versions are tied to the Database Compatibility Level setting of the SQL Server version when it
was first introduced. These are also available in Azure SQL Database, where the default compatibility
level is the same as the latest version of SQL Server, after the general availability of that version. The
following table contains a mapping reference between database compatibility levels and CE versions:

Introduced in SQL
Server Version

Database
Compatibility Level

CE Version

2008 and 2008 R2 100 70

2012 110 70

2014 120 120

2016 130 130

2017 140 140

2019 150 150

2022 160 160

Table 2.1: Database compatibility levels and their corresponding versions and CE versions

This mapping between database compatibility levels and CE versions is especially useful when the
topic is application certification. For example, if a given application was written and optimized for
SQL Server 2012 (CE 70) and later upgraded as-is to SQL Server 2017 (CE 140), then there’s a chance
that a part of that application’s workload may be susceptible to the model changes of a higher CE
version, and as a result, perform worse than it did in SQL Server 2012. These types of performance
regressions can be handled easily, and the SQL Database Engine includes several features designed
to assist in overcoming a number of these regressions.

SQL Server 2022 introduced a new feature named CE Feedback. As the name suggests, the SQL
Database Engine has a feedback loop that allows it to detect whether a given query has encountered

Introducing the Cardinality Estimator 33

a performance regression that aligns with the changes in CE assumptions we already mentioned:
Independence versus Correlation, Simple Containment versus Base Containment, and another
scenario we’ll discuss later in this book, which is Row Goal.

When a regression is detected, the SQL Database Engine uses a test-and-verify principle. It will
automatically enforce the use of a contrary (CE70) assumption and in the next execution of that
same query, determine whether the newly compiled plan has improved cardinality estimations. If
the plan has improved, it remains as the cached plan for that query. If not, the SQL Database Engine
recompiles that plan with default CE 160 assumptions. This feature automatically removes much of
the risk in upgrading CE versions for application workloads that may be susceptible to the model
changes of a higher CE version.

Note
At the time this book is written, CE Feedback is not yet generally available in Azure SQL
Database. Also, in this first release, CE Feedback only handles SELECT queries..

If you are not using SQL Server 2022, we will discuss these later in this book, where we’ll discuss how
to assemble our query troubleshooting toolbox.

Note
CE 120+ changes mainly target non-leaf-level operators that support logical operations such
as JOIN, UNION, GROUP BY, and DISTINCT. Other T-SQL constructs that only exist at
runtime still behave the same, such as Multi-Statement Table-Valued Functions (MSTVFs),
table variables, local variables, and table-valued parameters. We will discuss these out-of-model
constructs in Chapter 6, Discovering T-SQL Anti-Patterns in Depth.

The inverse is the more common case, though, where without refactoring a query, CE 120+ can do
a better job of optimizing a query plan than CE 70. For example, the AdventureWorks sample
database has several tables the contain employee data. To write a query that returns the employee
name and details such as contacts, address, and job title, a series of inner joins are used. The query
would look like this:

SELECT e.[BusinessEntityID], p.[Title], p.[FirstName],
p.[MiddleName], p.[LastName],p.[Suffix], e.[JobTitle], pp.
[PhoneNumber], pnt.[Name] AS [PhoneNumberType], ea.[EmailAddress],
p.[EmailPromotion], a.[AddressLine1], a.[AddressLine2], a.[City],
sp.[Name] AS [StateProvinceName], a.[PostalCode], cr.[Name] AS
[CountryRegionName], p.[AdditionalContactInfo]
FROM [HumanResources].[Employee] AS e
INNER JOIN [Person].[Person] AS p ON RTRIM(LTRIM(p.
[BusinessEntityID])) = RTRIM(LTRIM(e.[BusinessEntityID]))
INNER JOIN [Person].[BusinessEntityAddress] AS bea ON
RTRIM(LTRIM(bea.[BusinessEntityID])) = RTRIM(LTRIM(e.

Mechanics of the Query Optimizer34

[BusinessEntityID]))
INNER JOIN [Person].[Address] AS a ON RTRIM(LTRIM(a.[AddressID])) =
RTRIM(LTRIM(bea.[AddressID]))
INNER JOIN [Person].[StateProvince] AS sp ON RTRIM(LTRIM(sp.
[StateProvinceID])) = RTRIM(LTRIM(a.[StateProvinceID]))
INNER JOIN [Person].[CountryRegion] AS cr ON RTRIM(LTRIM(cr.
[CountryRegionCode])) = RTRIM(LTRIM(sp.[CountryRegionCode]))
LEFT OUTER JOIN [Person].[PersonPhone] AS pp ON RTRIM(LTRIM(pp.
BusinessEntityID)) = RTRIM(LTRIM(p.[BusinessEntityID]))
LEFT OUTER JOIN [Person].[PhoneNumberType] AS pnt ON RTRIM(LTRIM(pp.
[PhoneNumberTypeID])) = RTRIM(LTRIM(pnt.[PhoneNumberTypeID]))
LEFT OUTER JOIN [Person].[EmailAddress] AS ea ON RTRIM(LTRIM(p.

[BusinessEntityID])) = RTRIM(LTRIM(ea.[BusinessEntityID]));

Note
We are using RTRIM(LTRIM()) functions around the join columns here to prevent the SQL
Database Engine from being able to use indexes effectively and force a more complex cardinality
estimation. Using functions like this is a T-SQL anti-pattern that we will cover in more detail
in Chapter 5, Writing Elegant T-SQL Queries.

With CE 70, the elapsed execution time for this query is 101,975 ms. But with the same query on the
same database on CE 140, the elapsed execution time is only 103 ms.

As shown in the following figure, the query execution plans are radically different in shape and, given
the observed execution times, better optimized using newer versions of the cardinality estimator.

The following figure shows the query plan shape for CE 70:

Figure 2.1: Query plan shape for the example query under CE 70

Understanding the query optimization workflow 35

The query plan shape for CE 140 is as follows:

Figure 2.2 Query plan shape for the example query under CE 140

We will revisit the preceding query example in greater depth in Exploring Query Execution Plans, and
Troubleshooting Live Queries.

Understanding the query optimization workflow
Now, it’s time to take a deeper look at how the SQL Database Engine creates optimized query execution
plans. As referenced in Chapter 1, Understanding Query Processing, this is the second phase of query
processing and for the most part, only Data Manipulation Language (DML) statements undergo
query optimization. The query optimization process is defined by the following cumulative stages:

• Trivial Plan

• Exploration, which, in turn, includes three phases:

 � Transaction Processing

 � Quick Plan

 � Full Optimization

Mechanics of the Query Optimizer36

In the Exploration stage, what differentiates between the several phases is the increasing sets of rules
that apply to each one as the search for a good-enough query plan progresses. Users can learn about
the optimization level of a given query execution plan by looking at the properties of that plan. The
following sections include sample execution plans to illustrate the concepts covered here. Query
execution plans will be discussed in much further detail in Chapter 3, Exploring Query Execution Plans.

The Trivial Plan stage

As mentioned in the Query optimization essentials section of Chapter 1, Understanding Query Processing,
the SQL Database Engine does cost-based optimization. But this has an expensive startup cost, so the
SQL Database Engine will try to avoid this cost for simple queries that may only have one possible
query execution plan.

The Trivial Plan stage generates plans for which there are no alternatives that require a cost-based
decision. The following examples can be executed in the AdventureWorks sample database:

• Using a SELECT … INTO or INSERT INTO statement over a single table with no conditions:

SELECT NationalIDNumber, JobTitle, MaritalStatus
INTO HumanResources.Employee2
FROM HumanResources.Employee;

This produces the following execution plan:

Figure 2.3: Execution plan for the SELECT … INTO query example

• Using an INSERT INTO statement over a single table with a simple condition covered by
an index:

INSERT INTO HumanResources.Employee2
SELECT NationalIDNumber, JobTitle, MaritalStatus
FROM HumanResources.Employee
WHERE BusinessEntityID < 10;

This produces the following execution plan:

Understanding the query optimization workflow 37

Figure 2.4: Execution plan for the INSERT … INTO query example

• Using an INSERT statement with a VALUES clause:

INSERT INTO HumanResources.Employee2
VALUES (87656896, 'CIO', 'M');

This produces the following execution plan:

Figure 2.5: Execution plan for the INSERT … VALUES query example

The information on the optimization level is stored in the execution plan under the Optimization
Level property, with a value of TRIVIAL:

Figure 2.6: The Properties window of an execution plan showing an Optimization Level value of TRIVIAL

Mechanics of the Query Optimizer38

The Trivial Plan stage typically finds very inexpensive query plans that are not affected by
cardinality estimations.

The Exploration stage

If the Trivial Plan stage doesn’t find a suitable plan, then it’s time to enter the cost-based optimization
stage known as Exploration, whose goal is to find a good enough query execution plan based on
the minimum estimated cost to access and join data. If this stage is used, the information on the
optimization level is still stored in the execution plan under the same Optimization Level property,
with a value of FULL.

Note
A good-enough plan refers to the search optimization space and how the SQL Database Engine
may not iterate through all possible plan combinations, but rather look for a plan that meets its
internal thresholds for a good-enough balance of estimated resource usage and execution times.

The Exploration stage is where the CE comes into play. The SQL Database Engine loads statistics and
performs some tasks in preparation for cost-based optimization. These tasks are as follows:

• Simplification, which transforms some sub-queries into semi-joins and even detects if parts
of the query can skip execution, such as avoiding empty tables or searching a table column for
a NULL predicate when that table column has a trusted NOT NULL constraint

• Normalization, which uses the query’s filter predicates and some heuristics to reorder join
operations, and predicates are pushed down to the algebrizer tree to eliminate non-qualifying
rows as early as possible, making later joins more efficient

The cost-based optimization process itself is composed of three phases that we’ll discuss in the next
sections: Transaction Processing, Quick Plan, and Full Optimization.

The Transaction Processing phase

This is phase zero and is suitable for OLTP-centric queries that are simple yet may have more than one
possible query plan. When this phase is completed, the SQL Database Engine compares the estimated
cost of the plan that was found with an internal cost threshold. If the cost of the plan that was found
is cheaper than this internal threshold, the SQL Database Engine will stop further optimizations and
use the plan found by the Transaction Processing phase.

Understanding the query optimization workflow 39

The Quick Plan phase

This is phase one and is used if the plan found by the Transaction Processing phase is still more
expensive than the internal threshold. This phase expands the search for a good-enough plan to cover
rule-based join reordering and spools that may benefit moderately complex queries. To determine if a
good-enough plan has been found, since the Query Optimizer generates each potential query plan, it
compares the cost of the plan that was just evaluated with the estimated cost of continuing to search
for better plan alternatives. This effectively establishes a timeout so that we don’t spend more time
optimizing the query than we would spend executing the current plan. If a plan has been found with a
cost lower than the cost threshold for the Quick Plan phase and lower than the timeout, optimization
is stopped, and that good-enough plan is used. This avoids incurring additional compilation costs.

Note
This timeout is not a fixed number, but rather a non-linear value that is related to the complexity
of the incoming T-SQL statement. Complexity is translated into cost, so the higher the cost of
the query plan, the higher the threshold will be for that plan.

If the plan cost that the Quick Plan phase found is greater than the server configuration for Cost
Threshold for Parallelism and the server is a multi-processor machine, then parallelism is considered.
However, if the plan cost from the Quick Plan phase is less than the configured Cost Threshold for
Parallelism, only serial plans are considered going forward.

Note
Even if a parallel plan is produced, this doesn’t mean the query plan will be executed on multiple
processors. If existing processors are too busy to withstand running a query on multiple CPUs
– technically meaning that there aren’t enough available schedulers – then the plan will be
executed on a single processor. If the Max Degree of Parallelism server configuration is set to
1, parallelism is not considered at all in the optimization process.

The Full Optimization phase

This is phase two and is used for complex queries, where the plan produced by phase one is still
considered more expensive than the cost of searching for more alternative plans – the timeout defined
previously. All internal transformation rules are available for use at this point but scoped to the search
space defined in the preparation tasks, and parallelism is also considered.

The Full Optimization phase can go through a comprehensive set of optimization alternatives, which
can make it time-consuming, especially if a query plan was not found in any preceding phase – because
phase two must produce a plan.

Mechanics of the Query Optimizer40

The timeout defined in the Quick Plan section is the only condition that limits searching for a
good-enough plan during Full Optimization. If a query plan was found before the timeout is hit,
the execution plan will store information under the Reason For Early Termination Of Statement
Optimization property about the outcome of the optimization stage, in this case showing a value of
Good Enough Plan Found.

If the timeout is hit, the Query Optimizer will fall back on the lowest cost plan found so far. The
execution plan will still store information under the Reason For Early Termination Of Statement
Optimization property, in this case showing a value of Time Out.

This property can be seen in the following example of a query executed in the AdventureWorks
sample database:

SELECT pp.FirstName, pp.LastName, pa.AddressLine1, pa.City,
pa.PostalCode
FROM Person.Address AS pa
INNER JOIN Person.BusinessEntityAddress AS pbea ON pa.AddressID =
pbea.AddressID
INNER JOIN Person.Person AS pp ON pbea.BusinessEntityID =
pp.BusinessEntityID
WHERE pa.AddressID = 100;

See the following screenshot of the Reason For Early Termination Of Statement Optimization property:

Figure 2.7: The Properties window for the example query showing the Reason

For Early Termination of Statement Optimization property

Knobs for query optimization 41

The following figure shows the query optimization workflow that has been described in this chapter:

Figure 2.8: Flowchart illustrating the query optimization workflow

For reference, the undocumented dynamic management view, sys.dm_exec_query_optimizer_info,
exposes some interesting statistics gathered by Query Optimizer, such as the number of optimizations
that have been evaluated, as well as the drill-down of optimizations per stage, or the number of
optimization-affecting hints have been used.

Knobs for query optimization
As advanced as the query optimization process is, inefficient plans are still a possibility, which is why
a database developer can use hints in the T-SQL statement and guide the Query Optimizer toward
producing an intended plan. There are several classes of thoroughly documented query hints that
affect query optimization, and it is important to call out a few that can be useful when troubleshooting
a query performance issue, some of which we will use in upcoming chapters.

Mechanics of the Query Optimizer42

Note
Keep in mind that hints force certain behaviors with T-SQL statement optimization and
execution. Microsoft recommends that hints are thoroughly tested and only used as a last resort.
Hinted statements must be reviewed with every upgrade to a major version to determine if
they are still needed since new versions may change behavior, rendering the hint unnecessary
or even harmful.

Let’s look at some of the available hints for the Query Optimizer:

• FORCE ORDER: This is a hint that will prevent any join reordering optimizations, which
has a tangible impact on the query optimization process. When joining tables or views, join
reordering is driven by the goal of reducing the row count flowing through the operators in
a query plan as early as possible. However, there are edge cases where join reordering may
negatively affect the search for a good-enough plan, especially if estimations are based on
skewed or outdated statistics. If the developer knows that the join order, as it was written in
the T-SQL statement, should be efficient enough, because the smaller tables are already used
upfront to limit the row count for subsequent table joins, then testing the use of this hint may
yield good results in such scenarios.

• MAXDOP: This is the hint for overriding system-wide Max Degree of Parallelism (MAXDOP).
Depending on its setting, this hint can affect parallel plan eligibility. For example, if a query
has excessive waits on parallelism, using the MAXDOP hint to lower or remove parallelism may
be a valid option.

• NOEXPAND: This is a hint that directs the Query Optimizer to skip access to underlying tables
when evaluating an indexed view as a possible substitute for part of a query. When the NOEXPAND
hint is present, the Query Optimizer will use the view as if it were a table with a clustered index,
including automatically creating statistics if needed. For example, if a query uses an indexed
view that is being expanded by the Query Optimizer and results in an inefficient query plan,
a developer can include the NOEXPAND hint to make the Query Optimizer forcibly evaluate
the use of an index on a view. Note that Azure SQL Database, while sharing the same Database
Engine code, doesn’t require this hint to automatically use indexed views.

• USE HINT: This hint is not a single hint like the other query hints, but rather a new class of
hints introduced in SQL Server 2016. Its goal is to provide knobs to purposefully guide the
Query Optimizer and query execution toward an intended outcome set by the developer. Every
version of SQL Server since 2016 has introduced new USE HINT hints, and the list of supported
hints can be accessed using the sys.dm_exec_valid_use_hints dynamic management view.
Hints that are included here can change some of the Query Optimizer model assumptions,
disable certain default behaviors, or even force the entire Query Optimizer to behave as it would

Summary 43

under a given database compatibility level. There are many uses for these hints, depending on
the query performance troubleshooting scenario that database professionals may face; we will
look into some of these in upcoming chapters. In Chapter 12, Managing optimizer changes, we
will also cover another feature which uses such hints.

Now, let’s summarize this chapter.

Summary
In this chapter, we explored the internals of the SQL Database Engine’s query optimization process
and defined many important concepts that any database professional writing T-SQL queries will keep
coming back to, especially when troubleshooting query performance issues. The CE is a fundamental
part of the SQL Database Engine’s Query Optimizer: knowing how it uses statistics and the importance
of keeping updated and relevant statistics for the overall query optimization process empowers database
professionals to write good queries – queries that both drive and leverage good database schema
designs. But also, understanding the main estimation model assumptions allows us to account for
these when writing queries and avoid pitfalls that hurt query performance. We will see these pitfalls
in much more detail in Chapter 5, Writing Elegant T-SQL Queries, and Chapter 6, Discovering T-SQL
Anti-Patterns in Depth.

If, at the end of the optimization process, we still have a perceived inefficient plan, then some avenues
of investigation are possible to determine what were the potential reasons for this inefficiency:

• Is it bad cardinality estimation? Analyze the execution plan to find the ratio between estimated
and actual rows in costly operators. Perhaps statistics are stalled and need to be updated.

• Is it a parameter-sensitive plan? Is it a dynamic un-parameterized T-SQL statement? Or perhaps
parameter-sniffing has caused a skewed query plan? The importance of parameters was discussed
in Chapter 1, Understanding Query Processing, in the The importance of parameters section.

• Is it an inadequate physical database design? Are there missing indexes? Are data types for
keys not adequate and leading to unwarranted conversions that affect estimations? Is referential
integrity enforced by triggers instead of indexed foreign keys?

These are some of the aspects we must investigate regarding the potential source of plan inefficiency.
In the next chapter, Chapter 3, Exploring Query Execution Plans, we will learn how to identify these
inefficiencies by investigating the various aspects of query execution plans.

Part 2:
Dos and Don’ts of T-SQL

This part serves as an introduction to query execution plans and how to leverage them for query
troubleshooting. It also covers basic guidelines for writing efficient queries, and common T-SQL
query patterns and anti-patterns.

This part has the following chapters:

• Chapter 3, Exploring Query Execution Plans

• Chapter 4, Indexing for T-SQL Performance

• Chapter 5, Writing Elegant T-SQL Queries

• Chapter 6, Discovering T-SQL Anti-Patterns in Depth

3
Exploring Query
Execution Plans

In the previous chapters, we learned how to construct a Transact-SQL (T-SQL) query, how the SQL
Database Engine processes a query, and how the query is optimized, which results in an execution
plan that can be cached and reused by subsequent query executions. Now that we understand the
steps the SQL Database Engine follows to produce a plan and execute a query, we can investigate an
execution plan to examine the results of this process and begin analyzing how we can improve the
performance of our queries.

In this chapter, we’re going to cover the following main topics:

• What is a query plan?

• Accessing a query plan

• Navigating a query plan

• Query plan operators of interest

• Query plan properties of interest

Technical requirements
The examples used in this chapter are designed for use on SQL Server 2022 and Azure SQL Database,
but they should work on any version of SQL Server, 2012 or later. The Developer Edition of SQL Server
is free for development environments and can be used to run all the code samples. There is also a free
tier of Azure SQL Database that you can use for testing at https://aka.ms/freedb.

https://aka.ms/freedb

Exploring Query Execution Plans48

You will need the AdventureWorks2016_EXT (referred to as AdventureWorks) and
AdventureWorksDW2016_EXT (referred to as AdventureWorksDW) sample databases, which
can be found on GitHub at https://github.com/Microsoft/sql-server-samples/
releases/tag/adventureworks. Code samples for this chapter can also be found on GitHub
at https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-
Edition/tree/main/ch3.

What is a query plan?
Think of a query execution plan as a map that provides information on the physical operators that
implement the logical operations discussed in the Understanding Query Processing chapter, as well as
the execution context for that query that provides information about the system on which the query
was executed. Each physical operator is identified in the plan with a unique node ID.

Note
Query execution plans are often referred to as a showplan, which is a textual, XML, or graphical
representation of the plan.

So far, we’ve used the terms query plan and query execution plan interchangeably. However, in the
SQL Database Engine, there is the notion of an “actual plan” and an “estimated plan.” These differ
only in the fact that an “actual plan” has runtime data collected during actual execution (hence, query
execution plan), whereas an “estimated plan” is the output of the Query Optimizer that is put in the
plan cache (hence, query plan, without the execution moniker).

Note
Going forward, we will refer to plans in a more precise fashion, depending on whether these
have runtime data or not.

The “estimated plan,” known simply as a query plan, includes the following:

• Methods used to retrieve data from a table or indexed view

• Sequence of data retrieval operations

• Order in which tables or indexed views are joined: refer to the Mechanics of the Query Optimizer
chapter, where we discussed join reordering

• Use of temporary structures in tempdb (worktables and workfiles)

• Estimated row counts, iterations, and costs from each step

• How data is aggregated

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch3
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch3

Accessing a query plan 49

Additionally, an “actual plan,” also known as a query execution plan, includes the following:

• Use of parallelism

• Actual row counts and iterations

• Query execution warnings

• Query execution metrics such as elapsed time, CPU time, presence of trace flags, memory
usage, version of the Cardinality Estimator (CE), top waits, and more

Note
Whether all this information is available or just a subset depends on the version of the SQL
Database Engine on which the query execution plan was captured.

So, analyzing a query execution plan is a skill that allows database professionals to identify the following:

• High-cost operations in a single query or batch

• Indexing needs, for example, identifying when a scan is better than a seek or vice versa

• Outdated statistics that no longer accurately portray underlying data distributions

• Unexpected large row counts being passed from operator to operator

• Query or schema modification needs, for example, when a query references multiple levels of
nested views: views that reference views that reference views that reference common tables at
all levels

With this skill, developers and query writers in general can visually analyze how the queries they
write actually perform beyond simply looking at elapsed time. For database administrators (DBAs)
and database reliability engineers, this skill allows them to identify heavy hitters running in the SQL
Database Engine that perhaps weren’t a problem during development time, analyze queries, and
provide mitigations based on query execution plan analysis.

Accessing a query plan
To access estimated plans, which are a direct result of the optimization process, we can use either
T-SQL commands or graphical tools. For the examples shown in this chapter, we use SQL Server
Management Studio (SSMS).

Exploring Query Execution Plans50

Note
For most users, query plans in text format are harder to read and analyze; therefore, we will
use graphical query plan examples throughout the book.

The SET command options SHOWPLAN_TEXT, SHOWPLAN_ALL, and SHOWPLAN_XML
provide text-based information on query plans with different degrees of detail. Using any of
these commands means the SQL Database Engine will not execute the T-SQL statements but
show the query plan as produced by the Query Optimizer.

Take an example of a query that can be executed in the scope of the AdventureWorks sample database:

SELECT pp.FirstName, pp.LastName, pa.AddressLine1, pa.City,
pa.PostalCode
FROM Person.Address AS pa
INNER JOIN Person.BusinessEntityAddress AS pbea ON pa.AddressID =
pbea.AddressID
INNER JOIN Person.Person AS pp ON pbea.BusinessEntityID =
pp.BusinessEntityID
WHERE pa.AddressID = 100;

Let’s see what each of the following options provides in terms of the query plan view:

• SHOWPLAN_TEXT: This option shows all the steps involved in processing the query, including
the type of join that was used, the order in which tables are accessed, and the indexes used for
each table:

Figure 3.1: Showplan in text format with all the plan operators

• SHOWPLAN_ALL: This option shows the same estimated plan as SHOWPLAN_TEXT – a text
output tree – but adds details on each of the physical operations that would be executed, such
as the estimated size of the result rows, the estimated CPU time, and the total cost estimations.
Notice the amount of information produced here:

Accessing a query plan 51

Figure 3.2: Showplan in tabular format with all the plan operators

• SHOWPLAN_XML: This option produces the same estimated plan but as an XML output tree:

Figure 3.3: Showplan as clickable XML link

Because it is generated as a link when used in SSMS, it can be interpreted by SSMS as a graphical
“estimated plan,” and clicking the link will display this graphical plan:

Figure 3.4: Graphical showplan rendered by SSMS

Exploring Query Execution Plans52

Notice that because it is an estimated plan, the arrows are all the same width. This is because
there’s no actual data movement between operators given that this plan was not executed. To
access all the properties returned by SHOWPLAN_ALL, plus many more, right-click the SELECT
operator and click on Properties. We will see these properties in greater detail in the Query
plan properties of interest section.

SHOWPLAN_XML is the option used by SSMS when the Display Estimated Execution Plan
(Ctrl+L) button is clicked:

Figure 3.5: SSMS button to enable SHOWPLAN_XML

To access actual plans, which are optimized plans after being executed, we can again use either
T-SQL commands or graphical tools. The STATISTICS PROFILE and STATISTICS XML
commands provide text-based information on query plans with different degrees of detail. Using
either of these commands means the SQL Database Engine will execute the T-SQL statements
and generate an actual plan or a query execution plan.

• STATISTICS PROFILE shows the same plan as SHOWPLAN_ALL, incremented with actual
rows, and executes to display an actual plan or a query execution plan:

Figure 3.6: STATISTICS PROFILE enables SHOWPLAN_ALL

Accessing a query plan 53

• STATISTICS XML: This option is the “actual plan” counterpart of SHOWPLAN_XML. Next,
we see what appears to be the same output as SHOWPLAN_XML:

Figure 3.7: Showplan as a clickable XML link

However, by expanding the XML (or if using SSMS, by clicking on the link), we see we have
the “actual plan” or the query execution plan:

Figure 3.8: Graphical showplan rendered by SSMS

STATISTICS XML is the option used by SSMS when the Include Actual Execution Plan
(Ctrl+M) button is clicked:

Figure 3.9: SSMS button to enable STATISTICS XML

To access all the properties already seen with SHOWPLAN_XML incremented with runtime statistics
and warnings (if any), right-click the SELECT operator and click on Properties. Again, we will see
these properties in greater detail in the Query plan properties of interest section.

Exploring Query Execution Plans54

Navigating a query plan
Up until this point, we have mentioned query execution plans, and even shown simple examples to
illustrate some points during the Mechanics of the Query Optimizer chapter. However, it is important
for any database professional to understand how to read and analyze a query execution plan as a way
to visually identify positive changes in a plan shape. The remaining chapters in the book will show
query execution plans in more detail for different scenarios of T-SQL patterns and anti-patterns.

Query plans are like trees, where each join branch can represent an entirely separate query. To
understand how to navigate a showplan or query plan, let’s use a practical example of a query executed
in the AdventureWorks sample database:

SELECT p.Title + ' ' + p.FirstName + ' ' + p.LastName AS FullName,
c.AccountNumber, s.Name AS StoreName
FROM Person.Person p
INNER JOIN Sales.Customer c ON c.PersonID = p.BusinessEntityID
INNER JOIN Sales.Store s ON s.BusinessEntityID = c.StoreID
WHERE p.LastName = 'Koski';

This query generates the execution plan seen in the following screenshot. For any graphical query
execution plan, the flow of data is read from right to left and top to bottom:

• Result sets 1 and 2 are joined using a Nested Loops join, creating result set 3

• Then, result sets 3 and 4 are joined using a Hash Match join, creating result set 5

• Finally, result sets 5 and 6 are joined using a Nested Loops join, creating a result set for
the SELECT clause:

Figure 3.10: Graphical showplan with several result sets

Navigating a query plan 55

In an actual plan, the width of the arrows provides an indication of the number of rows flowing
through each operator, such as the thicker arrow seen coming from Clustered Index Scan
on the Customer table (as seen in the following region of the preceding plan). This can often be a
clue to high resource usage and a potential hotspot in the plan:

Figure 3.11: Detail of the actual plan

Also, notice how in the latest versions of SSMS, it becomes easier to distinguish an actual plan from
an estimated plan. In an actual plan or query execution plan, each operator has information about the
elapsed execution time and a comparison of the estimated and actual number of rows flowing through
the operator. In the previous Clustered Index Scan instance, we see this operator read 19,820
rows of 19,820 estimated rows, with a 100 percent match and a perfect estimation.

Tip
Recent versions of SSMS have greatly improved the navigation experience of a graphical query
plan: Click + hold the mouse button anywhere inside the Execution Plan tab, and then drag
the mouse to quickly navigate the query plan. Or, use Ctrl + the mouse wheel to zoom in and
out easily.

For joins, how the showplan is read depends on the type of physical join: the top represents the outer
table for Nested Loops and the build table for a Hash; the bottom represents the inner table for
Nested Loops and the probe table for the Hash. Result sets are created from each join pair, which
are then passed to the next join. We will further discuss join types, seeks, lookups, and other operators
later in this chapter under the Query plan operators of interest section.

Exploring Query Execution Plans56

The following screenshot shows a Nested Loops join with an Index Seek operator on the
Person table as the outer table, and a Key Lookup operator on the Person table as the inner table:

Figure 3.12: Nested Loops join with different operators as the inner and outer sides of the join

In the preceding Index Seek operator, we see this operator read 1 row of 2 estimated rows, with
a 50 percent match and a skewed estimation.

Tip
If the difference between estimated rows and actual rows is large, one or several orders of
magnitude, for example, this means that the Query Optimizer may not have had good statistics
on the table’s data distribution during query optimization. Usually, the first reaction to such a
scenario is to update the relevant statistics on the table and verify whether estimations improved
to be a near 100 percent match.

For any plan captured as text (actual or estimated), note that these are read top to bottom, with the
“|--” characters indicating the nesting levels of the tree. For the same query we used to generate the
graphical plan, STATISTICS PROFILE shows the following query tree:

Query plan operators of interest 57

Figure 3.13: Reading order for showplan in text format

For this query’s plan, we apply the same approach to read the plan:

• Result sets 1 and 2 are joined using a Nested Loops join, creating result set 3

• Then, result sets 3 and 4 are joined using a Hash Match join, creating result set 5

• Finally, result sets 5 and 6 are joined using a Nested Loops join

Next, we will cover some query plan operators that are important to understand to write scalable
T-SQL queries.

Query plan operators of interest
The different icons that are visible in a query execution plan are called operators. Logical operators
describe a relational operation – for example, an INNER JOIN operation. Physical operators
implement the logical operation with a specific algorithm. So, when we examine a query plan, we are
looking at physical operators.

Each physical operator represents a task that needs to be performed to complete the query such as
accessing data with a seek or a scan, joining data with a Hash Match join or a Nested Loops
join, and sorting data. Some operators are especially relevant to understand while writing T-SQL that
scales well. We will look at these operators, understand what they do and how they implement the
physical operation behind the logical operation in T-SQL statements, and become familiar with aspects
that will be important in the upcoming chapters where we explore T-SQL patterns and anti-patterns.

Exploring Query Execution Plans58

Blocking versus non-blocking operators

We can think of an execution plan as a pipeline. Data from one operator flows to the next operator from
right to left. A blocking operator is one where the entire input must be consumed and the operation
completed before the first row can be output to the next operator. An example of a blocking operator
is a Sort operator. When data is sorted, it is impossible to know what the first row output by the
operator should be until the entire sort is complete. A non-blocking operator is one where data may be
output to the next operator in the plan before the operation is complete. When there are no blocking
operators in a plan, data can flow through the plan uninterrupted, and results will be returned from
the query before execution is complete. With a blocking operator, anything past that operator in the
query cannot be processed until the blocking operator is complete, which typically means that no
results will be returned to the client until the entire query is complete.

Data access operators

Data access operators are used to retrieve data from tables and indexes in the SQL Database Engine.
A rowstore is the traditional storage mechanism for most relational database management systems
(RDBMSs). In a rowstore index, each page of data contains all the columns for one or more rows of
data in the table, and so the entire row is stored contiguously across all columns. There are two types
of rowstore indexes in the SQL Database Engine – clustered and non-clustered. Both index types are
stored as a B+ tree data structure, but clustered indexes contain the entire data row at the leaf level
while non-clustered indexes contain only the index columns and a pointer to the data row.

Note
Instead of treating all nodes equally like a B-Tree, the B+Tree structure has two types of nodes.
The lowest-level nodes, also called leaf nodes, hold the actual data. All other nodes, including the
root node, only hold key values and pointers to the next nodes. B+Trees are self-balancing tree
data structures that tend to be wide rather than tall, although the specific structure depends on
the definition of the index. We will discuss index structures in more detail later in this section.

There are two different ways to access data in an index – a seek or a scan. A seek is used when a
predicate present in the query matches the key(s) of an index. In this case, SQL Database Engine can
use the values of the predicate to limit the amount of data that must be searched by following the
pointers within the index from the root to the leaf page to locate matching rows.

As mentioned previously, this applies to both clustered and non-clustered indexes; the only difference
is that with a clustered index, the leaf level contains the actual data pages, while a non-clustered index
contains index pages with pointers to the data pages. We will explore this data access operator in
greater detail in Chapter 4, Indexing for T-SQL Performance.

Query plan operators of interest 59

During optimization, the SQL Database Engine will decide how to access the data required to satisfy
the query based on the columns referenced in the query, the available indexes, and the cost of the
different operations using the estimated cardinality as a cost basis. On the surface, it may seem like a
scan is more expensive than a seek, but depending on how many rows are returned, it may be more
efficient to scan.

As we discussed earlier in the Mechanics of the Query Optimizer chapter, the SQL Database Engine uses
statistics along with some basic assumptions to estimate cardinality. If the estimation is off by a large
amount, the SQL Database Engine may choose an inefficient operator to access the data. If creating
appropriate indexes and updating statistics does not correct the issue, it’s possible that an incorrect
assumption is causing the cardinality estimate to be off. In this case, employing a hint may be the
easiest way to improve the query. The following hints are helpful in influencing the Query Optimizer
to choose a more efficient data access operator:

• INDEX (index name): This hint forces the SQL Database Engine to use an index that
we specify.

• FORCESEEK (index name (column name)): This hint forces the SQL Database
Engine to perform a seek operation. Optionally, we can specify the index and columns to be
used in the seek. It can also be combined with the INDEX hint in order to supply an index for
the seek without specifying columns.

• FORCESCAN: This hint forces the SQL Database Engine to perform a scan operation. It can
also be combined with the INDEX hint to force a scan of a specific index.

Table Scan

The Table Scan operator represents a scan operation on a heap. We will explore heaps in greater
detail in Chapter 4, Indexing for T-SQL Performance.

Table Scan is a non-blocking operator that reads every page of the object and scans them for
the desired rows. A heap does not have any order or structure, so the rows will be output in random
order. Here is an example of a query executed in the AdventureWorks sample database with a
Table Scan operator:

SELECT * FROM DatabaseLog;

The query generates the following execution plan:

Figure 3.14: Execution plan for the SELECT * query

Exploring Query Execution Plans60

While a table scan may generate a large amount of I/O depending on the size of the table, the operator
itself does not require a large amount of additional memory or CPU, and the cost is generally based
on the cost of the I/O.

Clustered Index Scan

The Clustered Index Scan operator is non-blocking and represents a scan operation on a clustered
index. We will explore this index type in greater detail in Chapter 4, Indexing for T-SQL Performance.

A clustered index contains the data pages of the table, so this is effectively a table scan. Because the
clustered index is organized into a tree structure, the data is logically ordered by the keys of the index.
This doesn’t necessarily mean the data will be returned in order; if no ORDER BY clause is specified
in the query, the data may be returned in random order. If there is an ORDER BY clause in the query
that matches the clustered index key or there is some other benefit to outputting the data in order, the
SQL Database Engine may choose to do an ordered scan of the clustered index. This is helpful because
it may prevent the SQL Database Engine from having to sort the data later, which can be an expensive
operation. As with a table scan, the cost of a clustered index scan is generally based on the cost of
the I/O generated; there is no additional memory or CPU required. Here is an example of a query
executed in the AdventureWorks sample database with a Clustered Index Scan operator:

SELECT * FROM Person.Person;

The query generates the following execution plan:

Figure 3.15: Execution plan for the SELECT * query

In this case, there was no ORDER BY clause in the query, so the SQL Database Engine performed an
unordered scan. We can confirm this by looking at the properties of the operator, either by hovering
over the icon with our mouse or by right-clicking it and choosing Properties from the pop-up menu,
as in the next screenshot:

Query plan operators of interest 61

Figure 3.16: Clustered Index Scan Properties window

Exploring Query Execution Plans62

NonClustered Index Scan

A NonClustered Index Scan operator is effectively the same as a Clustered Index Scan
operator. The difference is that the leaf level of a non-clustered index contains index pages rather than
data pages, which means this is generally less I/O than a clustered index scan and is not analogous
to a table scan. The following is an example of a query executed in the AdventureWorks sample
database with a NonClustered Index Scan operator:

SELECT LastName, FirstName
FROM Person.Person
WHERE FirstName = N'Andrew';

The query generates the following execution plan:

Figure 3.17: Execution plan for the SELECT query

The SQL Database Engine will generally choose to do a non-clustered index scan when an index is
present that contains all the columns in the query (also known as a covering index) but does not
support the predicate. In this case, the index contains the FirstName column as a key column, but
it is the second column in the index, so if we are searching for FirstName only, it cannot be used
as a seek predicate in the index. This non-clustered index scan will be slightly cheaper than doing a
clustered index scan because the non-clustered index is narrower (meaning it has fewer columns)
and will take less I/O to scan.

Note
We may notice that there is a missing index suggestion in the execution plan in the previous
example. This is generated when the SQL Database Engine would be able to benefit from an
index that is not present. Looking for missing index suggestions is one way to help optimize
our queries. We’ll be discussing more things to look for in execution plans later in the Query
plan properties of interest section of this chapter.

Query plan operators of interest 63

NonClustered Index Seek

A NonClustered Index Seek operator represents a seek operation against a non-clustered
index. This is also a non-blocking operator, and again is based mainly on the cost of I/O, requiring
no additional memory or CPU. An index seek is a quick way to locate rows that match a predicate
in the WHERE clause of a query, if the keys of the index match the predicate. The following example
shows a query executed in the AdventureWorks sample database with a NonClustered Index
Seek operator:

SELECT LastName, FirstName
FROM Person.Person
WHERE LastName = N'Maxwell';

The query generates the following execution plan:

Figure 3.18: Execution plan for the SELECT query

A NonClustered Index Seek operator may also be used to return a contiguous range of rows
based on the keys of the index. This is referred to as a range scan. This is different from a non-clustered
index scan in that not every row of the index is scanned; the SQL Database Engine uses the values in
the predicate to search only the range of matching keys in the index. The only way to know whether
an index seek is a singleton seek or a range scan is to look at the properties of the index, as seen in the
following screenshot. If the seek predicate is a single value, it’s a seek; if the seek predicate is a range
of values, it’s a range scan:

Exploring Query Execution Plans64

Figure 3.19: NonClustered Index Seek properties’ detail for lookup versus range scan operations

Clustered Index Seek

A Clustered Index Seek operator represents a seek operation against a clustered index. This
is essentially the same as a NonClustered Index Seek operator, except that the leaf level
contains data pages, so the entire row can be output in addition to the index columns. The following
example shows a query executed in the AdventureWorks sample database with a Clustered
Index Seek operator:

SELECT LastName, FirstName
FROM Person.Person
WHERE BusinessEntityID = 5;

Query plan operators of interest 65

The query generates the following execution plan:

Figure 3.20: Execution plan for the SELECT query

Lookups

When a non-clustered index is used to locate rows, only the index columns are present at the leaf level
of the index. If there are additional columns required from the underlying data pages because they are
referenced in the SELECT list or elsewhere in the query, an additional step is required to retrieve this
data. The leaf level of the non-clustered index contains a pointer to the data row that must be followed
in order to retrieve the rest of the data in the row. This operation is called a lookup.

The format of the pointer in the non-clustered index depends on the underlying table storage. For
heaps, we store a row ID, which is made up of the file ID, page ID, and slot ID (a slot is where the row
is stored on the page) of the row. For clustered indexes, we can leverage the B+ Tree structure of the
index to find the row instead, so the key of the clustered index is stored in the non-clustered indexes.
Because of this difference, there are two different types of lookup operations: key lookups and row
ID (RID) lookups. If the underlying table is stored as a heap, a RID lookup is used. If the underlying
table is stored as a clustered index, a key lookup is used (note that a key lookup is simply a clustered
index seek under the covers).

Note
If you’ve been working with the SQL Database Engine for a while, you may remember lookups
being referred to as “bookmark lookups”. This is what they were called in SQL Server 2000. A
bookmark lookup refers to lookups in general but doesn’t distinguish between a key lookup
and an RID lookup. This distinction wasn’t made in the execution plan until SQL Server 2005.

The presence of a lookup operator in a query plan indicates that the query is not covered. A covered
query means that all columns required to satisfy the query are present in a single index. Similarly, a
covering index is an index that contains all the columns necessary to satisfy the query without accessing
the base table. We will talk more about covering indexes in Chapter 5, Writing Elegant T-SQL Queries.

Exploring Query Execution Plans66

RID Lookup

As mentioned previously, a RID Lookup operator represents a lookup from a non-clustered index
into a heap. The following example shows a query executed in the AdventureWorks sample database
with a RID Lookup operator:

SELECT *
FROM DatabaseLog
WHERE DatabaseLogID = 5;

The query generates the following execution plan:

Figure 3.21: Execution plan for the SELECT * query

Notice that the results of the RID Lookup operator are being joined to the non-clustered index seek
via a Nested Loops join operator (we will discuss join operators later in this section).

Key Lookup

A Key Lookup operator represents a lookup from a non-clustered index into a clustered index. It is
effectively a clustered index seek. The following example shows a query executed in the AdventureWorks
sample database with a Key Lookup operator:

SELECT *
FROM Person.Person
WHERE LastName = N'Maxwell';

The query generates the following execution plan:

Query plan operators of interest 67

Figure 3.22: Execution plan for the SELECT * query

Notice how the key lookup is joined to the non-clustered index seek in the same manner as the
RID lookup.

Columnstore Index Scan

The indexes we’ve discussed so far are what are referred to as rowstore indexes. These perform well for
online transaction processing (OLTP) workloads, but data warehousing (DW) or online analytical
processing (OLAP) workloads often benefit from a different type of data storage called columnstore.
In a columnstore index, a page of data contains a single column for one or more rows of data in the
table. Columnstore indexes were introduced in SQL Server 2012 and provide a way to store large
amounts of read-only or read-mostly data in a heavily compressed format with specialized operators
that can process large amounts of data quickly. The only way to access data in a columnstore index is
with the Columnstore Index Scan operator. The following example shows a query executed
in the AdventureWorksDW sample database with a Columnstore Index Scan operator:

SELECT *
FROM FactResellerSalesXL_CCI
WHERE SalesAmount > 10000;

The query generates the following execution plan:

Figure 3.23: Execution plan for the SELECT * query

Exploring Query Execution Plans68

Joins

Join operators are used to join the results of two previous operators in the query plan. They may be
joining entire tables or indexes, or they may be joining the results of previous operators in the plan.
When we think about joins, we may think of INNER, OUTER, and CROSS joins. These are logical
joins that we would write in our T-SQL statement that tell the SQL Database Engine how to combine
the rows of multiple tables and views. The join operators in a query plan define the algorithm that
the SQL Database Engine will use to perform the join. The choice of which join algorithm to use is
based on a cost estimate, not on the type of join being performed.

The physical join operators that the SQL Database Engine may choose from are Nested Loops,
Adaptive, Merge, and Hash joins. The choice of which operation to perform is generally based
on how many rows will be joined and whether there are appropriate indexes to support the join. As
with data access operators, if the SQL Database Engine estimates this cost incorrectly, it may choose
an inefficient join operation. If updating statistics and creating appropriate indexes does not solve
the problem, hints can be used to force the SQL Database Engine to use the join operation that we
specify. The following join hints are available:

• LOOP: Specifies that the SQL Database Engine should perform a Nested Loops join

• HASH: Specifies that the SQL Database Engine should perform a Hash join

• MERGE: Specifies that the SQL Database Engine should perform a Merge join

• REMOTE: Specifies that when joining with a table on a remote SQL Database Engine instance
via a Linked Server connection, the SQL Database Engine should perform the join on the
remote instance

There are two inputs to each join operator in an execution plan. While these inputs may be tables,
indexes, or even the results of a previous join, they are generally referred to as the outer table and
inner table. The outer table is the first input accessed in the join algorithm and will appear on the
top of the join. The inner table is accessed second and appears at the bottom of the join. The choice
of which input should be the inner table and which should be the outer table is relevant in the join
because, depending on the algorithm, it may influence the cost of the overall join and the order in
which rows are output.

Nested Loops joins

A Nested Loops join is a non-blocking operator. In a Nested Loops join, a row is fetched
from the outer table, and the inner table is searched for a matching row. The SQL Database Engine
loops on the inner table until no more rows are found, then it loops on the outer table. Because the
number of iterations of the inner loop is determined by the number of rows in the outer table, the SQL
Database Engine will generally choose the smaller of the two inputs to be the outer table in order to
minimize the cost of the join. Also, since the outer table is the driver of the algorithm, the rows will
be output from the Nested Loops join in the same order as they are input from the outer table.

Query plan operators of interest 69

The following diagram depicts the operation of a Nested Loops join:

Figure 3.24: Representation of a Nested Loops join

If used correctly, the Nested Loops join is generally the most efficient join algorithm for joining
a small number of rows with supporting indexes as it requires a small amount of memory and CPU.

Note
Two additional concepts are applicable to Nested Loops joins during execution:

Rewind: This concept is defined as an execution using the same value as the immediately
preceding execution. In other words, while an inner table is being scanned for matches with the
outer table, if a previously scanned value is found again, then it is said that the value is rewound.

Rebind: This concept is defined as an execution using a different value. In other words, when
a new value is picked from the outer table to be scanned in the inner table, it is said that the
value is rebound.

The following example shows a query executed in the AdventureWorks sample database with a
Nested Loops operator:

SELECT p.LastName, p.FirstName, e.JobTitle
FROM Person.Person AS p
LEFT JOIN HumanResources.Employee AS e ON p.BusinessEntityID =
e.BusinessEntityID
WHERE p.LastName = N'Maxwell';

The query generates the following execution plan:

Exploring Query Execution Plans70

Figure 3.25: Execution plan for the SELECT query

Merge joins

A Merge Join operator represents a merge join in the execution plan. Merge joins are typically
used to join two large input tables that have ordered indexes to support the join. In a Merge join,
the size of the outer table and the inner table doesn’t affect the cost of the join, but both input tables
must be sorted by the same keys in the same order for the join to work. A row is retrieved from the
outer table, then matched with rows from the inner table and the results output. Once all matches
have been exhausted on the inner table, the SQL Database Engine moves to the next row in the outer
table. Since both the inner and outer tables are sorted in the same order going into the Merge join
operation, the output is returned in the same order.

The following diagram depicts the operation of a Merge join:

Figure 3.26: Representation of a Merge join

Query plan operators of interest 71

If there are indexes to support the join and the inputs are already sorted in the proper order, a merge
operation is a very efficient way to join two large tables as it requires very little additional memory
or CPU. This is often the method of choice when joining two tables on a primary key/foreign key
relationship without a WHERE clause to limit the rows returned. The following example shows a query
executed in the AdventureWorks sample database with a Merge Join operator:

SELECT h.AccountNumber, d.ProductID, d.OrderQty
FROM Sales.SalesOrderHeader AS h
INNER JOIN Sales.SalesOrderDetail AS d ON h.SalesOrderID =
d.SalesOrderID;

The query generates the following execution plan:

Figure 3.27: Execution plan for the SELECT query

Hash Match joins

A Hash Match operator is a blocking operator that represents a Hash join operation in an execution
plan. Hash joins are the most efficient way to join two large inputs that are not sorted and/or do not
have any indexes that support the join. A Hash Match operation is expensive in that it consumes a
significant amount of memory and CPU and may generate additional I/O if it does not fit in memory,
but it is generally faster than both Nested Loops and Merge joins when joining a large number
of unsorted rows.

With a Hash Match operator, the outer table is also referred to as the build table, and the inner
table is referred to as the probe table. The smaller of the two inputs will be chosen as the build table,
which will be used to build a hash table in memory. The SQL Database Engine will then apply a hash
function to the join key of each row of the probe table, look it up in the hash table, and output the
results if a match is found.

Exploring Query Execution Plans72

The following diagram depicts the operation of a Hash Match join:

Figure 3.28: Representation of a Hash Match join

If the build table is too large for the entire hash table to fit in memory, intermediate results will be
saved in a workfile in tempdb, and the operation will have to be done recursively. This is called hash
recursion and will generate a hash warning in the execution plan. We can see this as a yellow caution
symbol in the following screenshot, and viewing the properties will tell us that a spill has occurred. In
extreme cases, a hash bailout may occur. This happens when the maximum recursion level is reached
but the hash table still does not fit in memory. A hash bailout will also show up as a hash warning;
we’ll need to look at the spill level specified in the properties of the plan to determine whether a hash
bailout has occurred. There are two different spill levels:

• Spill level 1: This indicates hash recursion. This occurs when the build input does not fit into
available memory, resulting in the split of input into multiple partitions that are processed
separately. If any of these partitions still do not fit into available memory, they are split into
sub-partitions, which are also processed separately. This splitting process continues until each
partition fits into the available memory or until the maximum recursion level is reached.

Query plan operators of interest 73

• Spill level 2 or higher: This indicates a hash bailout. This occurs when a hashing operation
reaches its maximum recursion level and shifts to an alternate plan to process the remaining
partitioned data.

The following query executed in the AdventureWorksDW database includes a Hash Match
operator with a hash warning. For this example, the query memory is purposefully limited using the
MAX_GRANT_PERCENT query hint to produce a spill:

SELECT s.*, c.AverageRate
FROM FactResellerSales AS s
INNER JOIN FactCurrencyRate AS c ON c.CurrencyKey = s.CurrencyKey AND
c.DateKey = s.OrderDateKey
OPTION (MAX_GRANT_PERCENT = 0.01);

The query generates the following execution plan:

Figure 3.29: Execution plan for the SELECT query

Hovering over the Hash Match operator reveals the properties of the operator with details on
the warning:

Exploring Query Execution Plans74

Figure 3.30: Properties window of the Hash Match operator with a spill warning

Query plan operators of interest 75

We will further describe warnings in this chapter, under the Query plan properties of interest section.

Adaptive joins

SQL Server 2017 introduced adaptive query processing, which includes, among other enhancements,
Batch Mode Adaptive joins. Batch mode refers to the query processing method used to process
many rows in bulk or batches. When first introduced, batch mode execution was closely integrated
with the columnstore storage format. Starting with SQL Server 2019, traditional rowstore objects
can also benefit from batch-mode processing. Whether used for columnstore or rowstore objects,
batch-mode processing is best suited for analytical workloads because of its better parallelism and
faster performance.

Note
Adaptive joins are only used if the outer side of a join can run in batch mode. Depending
on the type of physical join selected later, this outer side becomes either the outer table of a
Nested Loops join or the build table for a Hash Match join.

Normally, if cardinality estimations are skewed, the SQL Database Engine may choose an inadequate
physical join based on wrong data, which results in performance degradation. To avoid this, Adaptive
joins will defer the choice of using a Hash Match join or a Nested Loops join until after the
first join input has been scanned.

This means that the Adaptive join implements both join types and then adapts to runtime conditions
by only continuing to execute the appropriate join type on the fly. As discussed in the previous sections,
Nested Loop joins are suitable for small inputs, and Hash Match joins for large inputs.

The SQL Database Engine starts the Adaptive join process by providing rows to a spool-like
structure called the Adaptive Buffer and defines a dynamic threshold that is used to decide when to
use a Hash Match or a Nested Loops plan:

• If the threshold is hit, the SQL Database Engine will use a Hash Match join and the Adaptive
Buffer becomes the build table

• If the actual row count doesn’t exceed the threshold, then the SQL Database Engine uses a
Nested Loops join and the Adaptive Buffer becomes the outer table

The following diagram illustrates the Adaptive join processing flow:

Exploring Query Execution Plans76

Figure 3.31: Representation of an Adaptive join

The following query executed in the AdventureWorksDW database includes an Adaptive
Join operator. Because adaptive joins are only available when the database compatibility level is
mapped to SQL Server 2017 or higher, we need to set it to at least compatibility level 140 with the
following command:

USE [master];
GO
ALTER DATABASE [AdventureWorksDW] SET COMPATIBILITY_LEVEL = 140;
GO

For this example, because the outer table of a join must run in batch mode for Adaptive Join to
be eligible, we are forcing a table with a Clustered Columnstore Index operator to be on
the outer side of the join using the FORCE ORDER query hint:

SELECT s.ProductKey,
SUM(s.OrderQuantity) AS SumOrderQuantity,
 AVG(s.UnitPrice) AS AvgUnitPrice,
AVG(s.DiscountAmount) AS AvgDiscountAmount, c.AverageRate
FROM FactResellerSalesXL_CCI AS s
INNER JOIN FactCurrencyRate AS c ON c.CurrencyKey = s.CurrencyKey AND
c.DateKey = s.OrderDateKey
GROUP BY s.ProductKey, c.AverageRate
OPTION (FORCE ORDER);

The query generates the following execution plan:

Query plan operators of interest 77

Figure 3.32: Execution plan for the SELECT query

Hovering over the Adaptive Join operator reveals the properties of the operator with details on
the adaptive threshold for this specific query, as well as the estimated and actual join type:

Figure 3.33: Adaptive Join Properties window

Exploring Query Execution Plans78

In this query execution plan, we can see that because the actual number of rows was 434,626, which
exceeds the 307 rows in the adaptive threshold, the SQL Database Engine uses a Hash join for this
query. The second branch in the plan represents the probe phase of a standard Hash join. The third
branch is the Clustered Index Seek operator that would be used by the Nested Loops
join if the threshold had not been exceeded: notice the 0 of 11669631 (0%) row, which means
the branch was unused.

Spools

Spools are expensive operators, but they are introduced in a query plan as an optimization, typically
to compensate for inadequate indexes, or to optimize otherwise complex queries by significantly
speeding up the overall runtime of a query. A spool operator reads data and saves it in a worktable
in tempdb. This process is used whenever the Query Optimizer knows that the density of a column
is high (therefore, having low selectivity) and the intermediate result is very complex to calculate. If
this is the case, the SQL Database Engine computes the result once and stores it in a spool so that it
can be searched later in the execution. Spools only exist while the query is being executed.

Conceptually, all physical spool operators function in the same way:

• Read all rows from an input operator downstream

• Store them in a worktable in tempdb

• Allow upstream operators to read from this cache

There are three types of physical spool operators:

• Table Spool: This spool opeator scans the input and places a copy of each row in a worktable.
This is also called a Performance Spool operator, and it can be introduced to support a
Nested Loops join upstream.

• Index Spool: A non-clustered index spool contains a seek predicate. The Index
Spool operator scans the input rows, places a copy of each row in a worktable, and builds
a non-clustered index on the rows. This allows the SQL Database Engine to use the seeking
capability of indexes to output only those rows that satisfy the seek predicate and is usually
introduced when a proper index doesn’t exist for the required predicates.

• Row Count Spool: This spool operator scans the input, counts how many rows are present,
and then returns the row count without any data attached to it. This allows the SQL Database
Engine to check for the existence of rows when the data contained in the rows is not required
and can be introduced by certain T-SQL constructs such as an EXISTS clause dependent on
a COUNT clause.

All the preceding spool operators can implement one of the following two logical operations:

Query plan operators of interest 79

• Eager Spool: This spool operation causes the physical spool to become a non-blocking
operator that will read all rows from the input operator at one time. It populates its worktable
in an “eager” way. In other words, when the spool’s upstream operator asks for the first row,
the spool operator consumes all rows from its input operator and stores them in the worktable.

• Lazy Spool: This spool operation causes the physical spool to become a blocking operator
that reads and stores data only when individual rows are required. It populates the worktable
in a “lazy” fashion. In other words, each time the spool’s upstream operator asks for a row, the
spool operator gets a row from its input operator and stores it in the worktable, rather than
consuming all rows at once. Because of this behavior, memory consumption for a Lazy Spool
operation is smaller than the memory needed for an Eager Spool operation.

For both logical spools, if the operator is rewound (for example, by a Nested Loops operator)
but no rebinding is needed, the spooled data is used instead of rescanning the input. If rebinding is
needed, the spooled data is discarded, and the spool object is rebuilt by re-scanning the input.

Tip
If a spool is causing a bottleneck in a query, refactor it to try to eliminate the spool. Creating
and populating a temp table can sometimes perform better than a spool, and it can be indexed.
If the same spool is used several times, this method can yield better results.

The SQL Database Engine can introduce a Spool or Sort operation to enforce Halloween protection
during a T-SQL statement that updates rows. We introduced Halloween protection in the Query
optimization essentials section of Chapter 1, Understanding Query Processing.

Here is an example of a query executed in the AdventureWorks sample database with a Table
Spool operator:

SELECT WO.WorkOrderID, WO.ProductID, WO.OrderQty, WO.StockedQty,
WO.ScrappedQty, WO.StartDate, WO.EndDate, WO.DueDate,
WO.ScrapReasonID, WO.ModifiedDate, WOR.WorkOrderID, WOR.ProductID,
WOR.LocationID
FROM Production.WorkOrder AS WO
LEFT JOIN Production.WorkOrderRouting AS WOR ON WO.WorkOrderID = WOR.
WorkOrderID AND WOR.WorkOrderID = 12345;

The query generates the following execution plan:

Exploring Query Execution Plans80

Figure 3.34: Execution plan for the SELECT query

In the following screenshot, notice the difference between actual and estimated rows for the spool
(72,591 of 107,588). The SQL Database Engine doesn’t hold statistics on worktables, so estimations are
based on the estimated number of rows (1.48211) multiplied by the estimated number of executions
(72,591). In turn, notice the number of rewinds and rebinds; these match the number of executions
because executing a spool is the action of rewinding and rebinding values as the Nested Loops
operator requires rows to process:

Figure 3.35: Table Spool Properties window

Query plan operators of interest 81

In Chapter 6, Discovering T-SQL Anti-Patterns in Depth, we will discuss some methods for avoiding
Spool operators in our queries.

The spool was included for performance reasons, to cache the result set from the inner side of the
Nested Loops join. The idea is that if the next iteration of the Nested Loops join uses the same
correlated parameters, the spool can “rewind” – replay the results from the prior execution. This saves
the cost of evaluating the inner side subtree, at the cost of caching the result in a worktable. As such,
the NO_PERFORMANCE_SPOOL hint can apply to these scenarios to remove this type of spool. As
always, hints should be used only as a last resort, as they limit the Query Optimizer search space and
may preclude a query from leveraging future query optimization enhancements.

To prove that the spool was beneficial, we can add the hint to the query, like so:

SELECT WO.WorkOrderID, WO.ProductID, WO.OrderQty, WO.StockedQty,
WO.ScrappedQty, WO.StartDate, WO.EndDate, WO.DueDate,
WO.ScrapReasonID, WO.ModifiedDate, WOR.WorkOrderID, WOR.ProductID,
WOR.LocationID
FROM Production.WorkOrder AS WO
LEFT JOIN Production.WorkOrderRouting AS WOR ON WO.WorkOrderID = WOR.
WorkOrderID AND WOR.WorkOrderID = 12345
OPTION (NO_PERFORMANCE_SPOOL);

The query generates the following execution plan:

Figure 3.36: Execution plan for the SELECT query

Instead of a spool, the SQL Database Engine now accesses the clustered index for every single search
on the inner table. We started this section by saying spools are expensive operators, but that they are
also an optimization. That is proven here, whereby eliminating the spool degrades query performance
by using much more CPU.

Sort and aggregation operators

Sort and aggregation operators are present in an execution plan when a query contains an ORDER
BY and/or a GROUP BY clause. In some cases, the SQL Database Engine will introduce a Sort
operator in order to optimize the execution of a query, such as to enable a Merge join or to improve
the performance of a Nested Loops join. We may also see a Sort operator in an execution plan

Exploring Query Execution Plans82

that contains a SELECT DISTINCT clause. DISTINCT is effectively an aggregation as it requires
grouping the rows and only returning one row per distinct set of values. A Sort operation is a simple
way to perform this type of aggregation. As discussed in the Query optimization essentials section of
Chapter 1, Understanding Query Processing, the SQL Database Engine may also add a Sort operator
to an UPDATE plan in order to enforce Halloween protection.

Sort

Sort is a blocking operator that is used to order the input based on one or more columns. Sort
operations can be expensive operations since they require additional memory to store intermediate
results and CPU to perform the sort. If the intermediate results do not fit in memory, Sort operations
may also generate I/O as the results will be saved in a worktable in tempdb.

If any of these happens, a sort warning will be visible in the execution plan. As with a hash warning,
it will appear as a yellow caution symbol in the plan, and the properties will give more details on how
much data was spilled. There are two spill levels:

• Spill level 1: This means one pass over the data was enough to complete the sort

• Spill level 2: This means multiple passes over the data are required to sort the data

The following query executed in the AdventureWorksDW database includes a Sort operation
with a sort warning:

SELECT *
FROM FactResellerSalesXL_PageCompressed s
ORDER BY ProductKey;

The query generates the following execution plan:

Figure 3.37: Execution plan for the SELECT * query

Hovering over the Sort icon will pop up the Properties window, where we can see the sort warning
details, as shown here:

Query plan operators of interest 83

Figure 3.38: Properties window of the Clustered Index Scan operator with a spill warning

We will further describe warnings in this chapter, under the Query plan properties of interest section.

Exploring Query Execution Plans84

Stream aggregation

As mentioned previously, aggregation is used to group rows together when a query contains a GROUP
BY clause. With a GROUP BY clause, the SELECT list typically has one or more aggregate functions
such as SUM, MIN, or MAX. If the input to the aggregation operation is already sorted by the GROUP
BY columns, a Stream Aggregate operator can be used. Stream aggregation is the more efficient
of the two aggregation operators in that it does not require much additional CPU or memory; the
rows are processed as they pass through the operator. The following example shows a query executed
in the AdventureWorks sample database with a Stream Aggregate operator:

SELECT SalesOrderID, COUNT(*) AS ItemCount
FROM Sales.SalesOrderDetail
GROUP BY SalesOrderID;

The query generates the following execution plan:

Figure 3.39: Execution plan for the SELECT query

Hash aggregation

The Hash Match (Aggregate) operator also performs aggregation to support a GROUP BY
clause, but while stream aggregation requires the input to be sorted, hash aggregation does not. Hash
aggregation is effectively the same as a Hash join; the difference is that there is only a single input to
process. As with a Hash join, hash aggregation consumes additional CPU and memory to store the
hash table and may be subject to hash recursion and additional I/O in the form of spills to tempdb.
The following example shows a query executed in the AdventureWorks sample database with a
Hash Match (Aggregate) operator:

SELECT p.Name AS ProductName, SUM(OrderQty) AS TotalProductSales
FROM Sales.SalesOrderDetail sod
INNER JOIN Production.Product p on p.ProductID = sod.ProductID
GROUP BY p.Name;

The query generates the following execution plan:

Query plan properties of interest 85

Figure 3.40: Execution plan for the SELECT query

Query plan properties of interest
Each operator in a query execution plan has several properties that provide context and metrics around
its compilation, optimization, and execution. The plans also have global properties to provide overall
context. Examining some key properties for the overall plan and some operators is especially relevant
to writing T-SQL that scales well. We will look at these properties, understand their meaning, and
become familiar with their significance, which will be important in the chapters where we explore
T-SQL patterns and anti-patterns.

Plan-level properties

The root node of a plan has a few properties that are important for understanding the context of
execution. Different trace flags or SET options change execution context and may drive query
optimization choices, so having this information persisted in the showplan is a valuable tool.

The following example shows a query executed in the AdventureWorks sample database that
allows us to examine most of these properties:

SELECT *
FROM Sales.SalesOrderDetail AS sod
INNER JOIN Production.Product AS p ON sod.ProductID = p.ProductID
ORDER BY Style DESC
OPTION (MAXDOP 1);

Exploring Query Execution Plans86

The query generates the following execution plan:

Figure 3.41: Execution plan for the SELECT * query

Right-click on the root node (SELECT) of the plan, open the context menu, and click on Properties:

Figure 3.42: Context menu on the plan’s root node

This opens the Properties window, as seen next:

Query plan properties of interest 87

Figure 3.43: Plan’s Properties window

For each property selected, the lower part of the Properties window displays some informational text
such as the size of the plan in the plan cache, as highlighted in Figure 3.43.

Note
The properties available depend on the version and build of the SQL Database Engine on
which the plan was captured. As of the time this book was written, all the plan-level properties
described here exist in SQL Server 2016 Service Pack 2 (SP2), SQL Server 2017 Cumulative
Update 3 (CU3), SQL Server 2019, SQL Server 2022, and Azure SQL Database. A subset of
these properties will also be available in SQL Server 2016 SP1 and higher builds, SQL Server
2014 SP3, and SQL Server 2012 SP4.

Exploring Query Execution Plans88

Not all properties are available with an estimated plan because this refers to a compiled plan
that has not yet been executed. Some properties exist at runtime only and, therefore, are only
available for an actual plan; however, all properties in an estimated plan are also available in an
actual plan. In order to distinguish between compile-time and runtime properties in this book, if
a property only exists at runtime, we will use one asterisk after the property name – for example,
Degree of Parallelism *, as seen in the previous screenshot.

With this, let’s look at some of the most important properties as seen in the preceding Properties
window screenshot.

CardinalityEstimationModelVersion

CardinalityEstimationModelVersion indicates the CE version with which the plan
was compiled. In this case, we see 130, mapping to the CE released with SQL Server 2016. While
this query is being executed in a SQL Server 2017 Database Engine, the compatibility level of the
AdventureWorks database is set to 130, because it hasn’t been upgraded since being restored
from a SQL Server 2016 system where it was first created. Because the CE version is a main driver for
the query optimization process, it represents vital information when database professionals analyze
query plans. For more information on CE and database compatibility, see the Mechanics of the Query
Optimizer chapter.

Degree of Parallelism

Degree of Parallelism* indicates the number of CPUs actually used to process a query that
was eligible to execute in parallel. In this case, we see the value is zero because the query was not
executed in parallel. We have discussed how the query optimization process evaluates parallelism
in the Mechanics of the Query Optimizer chapter. If the query had a cost that was high enough to
go parallel but didn’t, an extra property named NonParallelPlanReason* is also shown. In
this case, we can see the reason was MaxDOPSetToOne, and indeed notice the query used the
MAXDOP 1 hint, forcing the Query Optimizer to not evaluate a parallel plan. Compare this with the
EstimatedAvailableDegreeOfParalellism property: for example, if the actual parallelism
was smaller than the estimated parallelism, this may indicate a CPU contention problem.

Memory Grant

Memory Grant* indicates the amount of memory in kilobytes (KB) that the SQL Database Engine
had to acquire to even start executing this query. In this case, we see 57,544 KB, roughly 56 megabytes
(MB). Being limited, memory is one of the most important resources for the SQL Database Engine.
Even when our SQL Database Engine has terabytes (TB) of memory at its disposal, it is most likely
still less than the overall storage taken by all our databases. This means that making sure the SQL
Database Engine can properly estimate the amount of memory to use for a given query to execute
and then use it without waste is a measure of scalability and enhanced concurrency in our database
system. We will discuss this in more detail later in this chapter as we look at possible warnings output
by the SQL Database Engine during execution.

Query plan properties of interest 89

MemoryGrantInfo

MemoryGrantInfo can expand to show additional information on memory usage in KB, to
report on all memory calculations accounted for during query optimization. Next is the detail for
this property for the example query:

Figure 3.44: Memory grant information in the Properties window

The detailed elements of MemoryGrantInfo are the following:

• GrantedMemory* indicates the memory acquired by the Database Engine at runtime.

• GrantWaitTime* indicates the time in seconds the query had to wait for a successful
memory grant. This translates into RESOURCE_SEMAPHORE waits. If no waits occur, the
wait time will be zero.

• MaxQueryMemory* indicates the maximum memory allowed for a single query under
the applicable Resource Governor pool’s MAX_MEMORY_PERCENT configuration. If there
are operators spilling and estimations are mostly correct, the query may be running into
memory starvation.

• MaxUsedMemory* indicates the maximum memory used by the query during execution. If
there is a large skew between the granted memory and the used memory, the SQL Database
Engine will generate warnings, which will be discussed later in this section.

• RequiredMemory* indicates the required memory for the chosen degree of parallelism
when a query runs in parallel. If the query runs in serial mode, this is the same as
SerialRequiredMemory. The query will not start without at least this much memory
being available.

• SerialRequiredMemory indicates the required memory for a serial query plan to execute.
The query will not start without at least this much memory being available.

Exploring Query Execution Plans90

OptimizationLevel

OptimizationLevel refers to the Query Optimizer phase and can be either TRIVIAL or FULL. For
more information on the Query Optimizer workflow, see the Mechanics of the Query Optimizer chapter.

OptimizerHardwareDependentProperties

OptimizerHardwareDependentProperties can expand to show additional information
on system-reported conditions that are accounted for during query optimization. Next is the detail
for this property for the example query:

Figure 3.45: Hardware-dependent optimizer information in the Properties window

The detailed elements of OptimizerHardwareDependentProperties are the following:

• EstimatedAvailableDegreeOfParallelism: This indicates the expected number
of schedulers available for query processing. One means that no parallelism will be available;
a number greater than one allows a parallel plan to be evaluated during query optimization.
Compare this with the Degree of Parallelism* property: for example, if the actual
parallelism was smaller than the estimated parallelism, this may indicate a CPU contention problem.

• EstimatedAvailableMemoryGrant: This indicates the expected amount of memory
(in KB) available for a single query under the applicable Resource Governor pool’s MAX_
MEMORY_PERCENT configuration.

• MaxCompileMemory: This indicates the maximum Query Optimizer memory available (in KB)
during compilation under the applicable Resource Governor pool’s MAX_MEMORY_PERCENT
configuration. If the system is accumulating RESOURCE_SEMAPHORE_QUERY_COMPILE
waits, then queries are waiting to be compiled long before they can execute. This then surfaces as
a high compilation or recompilation scenario. We will further detail this scenario in Chapter 6,
Discovering T-SQL Anti-Patterns in Depth.

OptimizerStatsUsage

OptimizerStatsUsage can expand to show additional information on which statistics objects
were used by the Query Optimizer for a given compilation. When analyzing a query plan that has
performance problems, a database professional can use this information to see which statistics were
loaded for use during query optimization, and also, whether statistics need to be updated, which may
be a root cause of performance problems grounded on CE issues. Next is the detail for this property
for the example query:

Query plan properties of interest 91

Figure 3.46: Statistics used by the optimizer in the Properties window

The detailed elements of OptimizerStatsUsage are the following, and are repeated for every
statistic object loaded for this plan:

• Database, Schema, Table, and Statistics refer to the respective four-part name of
the statistic object.

• LastUpdate refers to the date and time the statistic object was last updated.

• ModificationCount refers to the internal modification counter for each statistic that
drives automatic updates. For more information on statistics, see the Mechanics of the Query
Optimizer chapter.

• SamplingPercent refers to the sampling rate with which a statistic was last updated. It can
reach 100 percent, meaning the statistic was updated as part of a full scan of the underlying
table or indexed view.

QueryPlanHash

QueryPlanHash is a binary hash value calculated on the query plan and used to uniquely identify
a query execution plan. In other words, this is a query plan fingerprint.

QueryHash

QueryHash is a binary hash value calculated on the query text and used to uniquely identify a query.
In other words, this is a query fingerprint. We will see several examples of using the query hash in the
Building diagnostic queries using DMVs and DMFs chapter.

Set Options

Set Options lists the SET options that were current as of compile time. These options determine the
handling of specific information and may be different at runtime because they are based on the current
session. The options tracked are ANSI_NULLS, ANSI_PADDING, ANSI_WARNINGS, ARITHABORT,
CONCAT_NULL_YIELDS_NULL, NUMERIC_ROUNDABORT, and QUOTED_IDENTIFIER. These
SET options affect estimations and query results, which means that if one option is changed inside of
a batch, a recompilation must happen. Keep these options in mind when analyzing a query that may
meet the expected performance in a development or pre-production system but performs poorly in
a production system.

Exploring Query Execution Plans92

For example, ANSI_NULLS specifies the ISO-compliant behavior for NULL equality and inequality
comparison, which dramatically changes the resulting query plan. The following examples executed
in the AdventureWorks sample database differ only in the ANSI_NULLS setting. First, set
ANSI_NULLS to ON as recommended:

SET ANSI_NULLS ON
GO
SELECT *
FROM Sales.SalesOrderDetail AS sod
INNER JOIN Production.Product AS p ON sod.ProductID = p.ProductID
WHERE SellEndDate = NULL
ORDER BY Style DESC
OPTION (MAXDOP 1);

The query generates the following execution plan:

Figure 3.47: Execution plan for the SELECT * query

Then, set ANSI_NULLS to OFF:

SET ANSI_NULLS OFF
GO
SELECT *
FROM Sales.SalesOrderDetail AS sod
INNER JOIN Production.Product AS p ON sod.ProductID = p.ProductID
WHERE SellEndDate = NULL
ORDER BY Style DESC
OPTION (MAXDOP 1);

The query generates the following execution plan:

Query plan properties of interest 93

Figure 3.48: Execution plan for the SELECT * query

The first query returns zero rows and the second returns 99,469 rows, which has an obvious impact
on resource usage. The ISO-compliant statement for NULL equality should instead be the following:

SET ANSI_NULLS ON
GO
SELECT *
FROM Sales.SalesOrderDetail AS sod
INNER JOIN Production.Product AS p ON sod.ProductID = p.ProductID
WHERE SellEndDate IS NULL
ORDER BY Style DESC
OPTION (MAXDOP 1);

The query generates the same execution plan as the preceding ANSI_NULLS OFF example. This is
because when ANSI_NULLS is on, a comparison to NULL must use the ISO convention that a NULL
value evaluates to an unknown value, and as such is not equal to another NULL value. If SET ANSI_
NULLS is not specified for the session or statement, then the ANSI_NULLS database option stands.

Statement

Statement is the actual T-SQL statement that was executed. The statement captured in the plan is
limited to the first 4,000 characters.

TraceFlags

TraceFlags can expand to show additional information on trace flags present during compilation
and execution. Trace flags may change the behavior of the SQL Database Engine during query
compilation and optimization, during query execution, or both. Therefore, during any query performance
troubleshooting exercise, it’s important to know which trace flags were influencing a given query at
any stage. Under the TraceFlags property, two lists can be expanded:

• [1] IsCompileTime | True: This returns a list of all trace flags active in the system
when the query was undergoing the process of compilation and optimization

• [2] IsCompileTime | False*: This returns a list of all trace flags active in the system
when the query was being executed

Exploring Query Execution Plans94

In Figure 3.49, on the left side, we see two trace flags present at both compile and execution time:
7412 and 4199.

Tip
These are documented trace flags. For more information, refer to the SQL Database Engine
documentation page at http://aka.ms/traceflags.

On the right side of Figure 3.49, we see the same two trace flags present at compile time, but only one
at execution time (7412). This means that between the time the query was compiled and the current
query execution plan was captured, trace flag 4199 was disabled at the system level using the DBCC
TRACEOFF (4199, -1) T-SQL command:

Figure 3.49: Trace flags information in the Properties window

Because trace flag 4199 enables Query Optimizer hotfixes, we immediately know that the plan to
which the left side of Figure 3.49 belongs was compiled using a non-default set of query optimization
options. Because trace flag 4199 was since disabled using the Database Console Command (DBCC)
TRACEOFF, such options are not available for new incoming T-SQL queries that have not been
compiled yet. This provides important context for the query performance troubleshooting exercise.

WaitStats

WaitStats* can expand to show additional information about the top 10 waits accrued while the
query was executing in the scope of the current session, in ascending order of wait time in SQL Server
2019, and descending order up to SQL Server 2017. For each wait, three properties are available:

http://aka.ms/traceflags

Query plan properties of interest 95

• WaitCount* refers to the number of times that tasks associated with this request had to wait
for a required resource to become available

• WaitTimeMs* refers to the overall wait time in milliseconds for the number of times a query
had to wait during query execution

• WaitType* refers to the wait type as documented in the SQL Database Engine documentation
under the sys.dm_os_wait_stats dynamic management view (DMV)

Next is the detail for this property for the example query:

Figure 3.50: Wait information in the Properties window

QueryTimeStats

QueryTimeStats* can expand to show additional information on time metrics for a given execution.
The detailed elements in QueryTimeStats include CpuTime* and ElapsedTime* for the overall query
and are available starting with SQL Server 2012 SP4, SQL Server 2014 SP3, SQL Server 2016 SP1, SQL
Server 2017, and in Azure SQL Database. Both are measured in milliseconds and can replace the need
to execute the query with SET STATISTICS TIME separately.

Next is the detail for this property for the example query:

Figure 3.51: Query time statistics information in the Properties window

Exploring Query Execution Plans96

For queries that call User-Defined Functions (UDFs), the UdfCpuTime* and UdfElapsedTime*
elements are also included under QueryTimeStats. These are available starting with SQL Server 2014
SP3, SQL Server 2016 SP2, SQL Server 2017 CU3, and Azure SQL Database. Both are also measured in
milliseconds and provide insight into the cost of executing a UDF, which can otherwise go unnoticed
by simply looking at a plan. The following example creates a scalar UDF in the AdventureWorks
sample database:

CREATE FUNCTION ufn_CategorizePrice (@Price money)
RETURNS NVARCHAR(50)
AS
BEGIN
 DECLARE @PriceCategory NVARCHAR(50)
IF @Price < 100 SELECT @PriceCategory = 'Cheap'
IF @Price BETWEEN 101 and 500 SELECT @PriceCategory = 'Mid Price'
IF @Price BETWEEN 501 and 1000 SELECT @PriceCategory = 'Expensive'
IF @Price > 1001 SELECT @PriceCategory = 'Unaffordable'
RETURN @PriceCategory
END;

And now for a query executed in the AdventureWorks sample database that uses the newly
created UDF:

SELECT dbo.ufn_CategorizePrice(UnitPrice), SalesOrderID,
SalesOrderDetailID, CarrierTrackingNumber, OrderQty, ProductID,
SpecialOfferID, UnitPrice, UnitPriceDiscount, LineTotal, rowguid,
ModifiedDate
FROM Sales.SalesOrderDetail;

In the generated execution plan, we can see the two additional properties under QueryTimeStats:

Figure 3.52: Query time statistics information in the Properties window

MissingIndexes

MissingIndexes refers to potentially missing indexes that may benefit the query’s performance,
as identified by the Query Optimizer during query compilation. During the compilation process,
which we discussed in the Query compilation essentials section of Chapter 1, Understanding Query
Processing, the SQL Database Engine matches existing indexes where any of the columns required for
the query predicates, aggregates, and output are present. Then, it chooses to access the existing index

Query plan properties of interest 97

or set of indexes that minimize the cost of access to the required columns; in other words, the index
or set of indexes that are the cheapest to read data from.

As this matching process occurs, the SQL Database Engine can identify whether the current set of
indexes already covers the query, partially or as a whole, or if a more optimized index could be created
to lower the cost of accessing the required columns. For each table mentioned in the query, if the SQL
Database Engine can find an index that might provide cheaper access to data, then it will store that
missing index recommendation in the cached plan.

The missing index recommendation builds a recommendation based on the following criteria:

• Columns present in join or search equality predicates such as WHERE column = value,
WHERE column IS NULL for a nullable column, or an ON column = column join

• Columns present in join or search inequality predicates such as WHERE column <> value,
WHERE column > value, or WHERE column IS NOT NULL for a nullable column

• Columns present in the output such as those in the SELECT clause or an UPDATE … FROM

For all these conditions, the columns will be listed in the order that they appear in the underlying tables.

The query execution plan for which we have been examining all the previous properties doesn’t have
missing index recommendations, so we need to use a different query. The following example is a
query that executes in the AdventureWorks sample database with an existing NonClustered
Index Scan operator and a Clustered Index Scan operator:

SELECT p.FirstName, p.LastName, c.AccountNumber
FROM Person.Person p
INNER JOIN Sales.Customer c ON c.PersonID = p.BusinessEntityID
WHERE p.FirstName = 'Robert';

The query generates the following execution plan:

Figure 3.53: Execution plan for the SELECT query

Exploring Query Execution Plans98

Recall what we discussed in the previous section, Query plan operators of interest, under NonClustered
Index Scan. In this case, the SQL Database Engine uses the following:

• An existing non-clustered index of the Person table that doesn’t contain the FirstName
column as a leading key column, but it is the second column in the index. Because the query
is searching for FirstName only, the SQL Database Engine cannot seek the index.

• The clustered index of the Customer table because none of the existing non-clustered indexes
contains the PersonID as a key column. Because the query is joining on PersonID only,
the SQL Database Engine cannot seek the index.

Note that in the graphical query plan, we can only see one index recommendation with an estimated
impact of 29.4 percent. However, the query plan may have more than one index recommendation
because the query uses several tables. To see all index recommendations, we need to look at the XML
of the plan or open the Properties window by right-clicking the root node (SELECT), which we can
see in the following screenshot:

Figure 3.54: Missing indexes information in the Properties window

Query plan properties of interest 99

Now, we can see that two index recommendations exist in the screenshot. Based on the order in which
the SQL Database Engine builds index recommendations, we need to look at EQUALITY columns,
then INEQUALITY columns (if any), and finally, at any output columns (identified as INCLUDE).
I can derive index creation statements from this information – in fact, that is what SSMS did in the
graphical query plan:

• One index recommendation for the Person table, with the following index creation statement:
CREATE INDEX IX_FirstName ON [Person].[Person] ([FirstName])

• One index recommendation for the Customer table, with the following index creation statement:
CREATE INDEX IX_PersonID ON [Sales].[Customer] ([PersonID])
INCLUDE ([AccountNumber])

Because there aren’t any existing indexes that even closely match these definitions, we can create the
indexes. Then, we can execute the query again, which generates the following execution plan without
missing index recommendations:

Figure 3.55: Execution plan for the same SELECT query using the same indexes

However, notice the new index on the Person table was not used. We created the new index with the
key on the FirstName column as recommended, so why was the previous index used? The answer
is that the new index doesn’t include the other required column in the Person table – LastName.
It was still cheaper to use the previous index than to use the new non-clustered index, which requires
a lookup in the clustered index. Also, notice the SQL Database Engine changed the join type due
to improved statistical information that became available after the index creation was executed.
Recreating the index to include the LastName column should allow the new index to be used. The
following index creation statement does this: CREATE INDEX IX_FirstName ON [Person].
[Person] ([FirstName]) INCLUDE ([LastName]).

Then, we can execute the query again, which generates the following execution plan:

Exploring Query Execution Plans100

Figure 3.56: Execution plan for the same SELECT query using a new index

As expected, the revised index on the Person table is used. Look for missing index suggestions as
one way to help optimize our queries. All index types and options mentioned will be discussed in
Chapter 4, Indexing for T-SQL Performance.

In the Troubleshooting Common Scenarios with DMV Queries section of Chapter 7, Building Diagnostic
Queries Using DMVs and DMFs, we will see examples of how to leverage DMVs to programmatically
access missing index information that our the SQL Database Engine may be storing.

Parameter List

Parameter List can expand to show additional information on which parameters the current plan
was compiled with and is available for parameterized queries only. This can be useful to troubleshoot
issues such as parameter sniffing and data type conversion issues from within a showplan, without the
need to access the database. That is very useful in case the user who’s analyzing the plan is working
remotely or lacks permission to access the database schema. For each parameter, four elements
are available:

• Column identifies the parameter name in the current plan

• Parameter Compiled Value refers to the first incoming value for the parameter that
drove the process of query optimization

• Parameter Data Type refers to the data type of the first incoming value for the parameter

• Parameter Runtime Value* refers to the last used value for the parameter, for a plan
that had been previously compiled and cached

Note
We will further detail implicit conversion issues in Chapter 6, Discovering T-SQL Anti-Patterns
in Depth.

Query plan properties of interest 101

Take the following example of a stored procedure created and executed in the AdventureWorks
sample database:

CREATE OR ALTER PROCEDURE usp_SalesProds (@P1 NVARCHAR(10))
AS
SELECT *
FROM Sales.SalesOrderDetail AS sod
INNER JOIN Production.Product AS p ON sod.ProductID = p.ProductID
WHERE SalesOrderID = @P1
ORDER BY Style DESC;
GO
EXEC usp_SalesProds @P1 = 49879;
GO
EXEC usp_SalesProds @P1 = 48766;
GO

In the generated execution plan, we can see the information under Parameter List:

Figure 3.57: Plan information on compile-time and runtime parameter usage

On the first execution of the stored procedure, the SQL Database Engine reads the incoming parameters
and uses that information plus statistics to generate a plan that’s optimized to retrieve the required
set of data. This is the reason we see Parameter Compiled Value equal to Parameter
Runtime Value.

On the second execution, notice how Parameter Runtime Value changed but Parameter
Compiled Value remained the same. This indicates that the query plan was reused from the cache.

Now, let’s see an example of a query using sp_prepare in the AdventureWorks sample database:

DECLARE @P1 int;
EXEC sp_prepare @P1 output, N'@P1 int',
N'SELECT *
FROM Sales.SalesOrderDetail AS sod
INNER JOIN Production.Product AS p ON sod.ProductID = p.ProductID
WHERE SalesOrderID = @P1
ORDER BY Style DESC
OPTION (MAXDOP 1);';
SELECT @P1;
GO

Exploring Query Execution Plans102

This returns a handle with value 1, which applications can use by executing sp_execute, before
evicting the plan from the cache with sp_unprepare:

EXEC sp_execute 1, N'49879';
GO
EXEC sp_execute 1, N'48766';
GO
EXEC sp_unprepare 1;
GO

In the generated execution plan, we can see the information under Parameter List:

Figure 3.58: Plan information on runtime parameter usage

Notice that Parameter Compiled Value is absent. This is because the prepared plan was not
parameterized, and so the cached plan does not retain any parameter information. Furthermore,
unlike a stored procedure where a DBA can ultimately see the parameter data type by opening the
T-SQL definition, a prepared query is not an object inside a database. So, having the information on
the parameter data type becomes valuable to troubleshoot conversion issues that could otherwise only
be found by tracing workload activity to detect the sp_prepare statement.

Warnings

Warnings* can expand to show the type of warning and additional information that helps the
troubleshooting process. Plan-level warnings will show as a yellow triangle sign in the graphical
query execution plan at the root-node level (SELECT). Hovering over the operators that display such
a triangle will also show details on the warning. As of the time this book was written, the existing
plan-level warning types were the following.

PlanAffectingConvert

PlanAffectingConvert* happens when the Query Optimizer encounters the need to convert
data types and the conversion operation affects the cardinality estimation process or the ability to
seek an existing index. Because conversions occur at runtime and query optimization happens before
execution, the Query Optimizer cannot account for such information during compilation. This is a
direct result of the developers’ choices, either at the query or database schema level, but can usually

Query plan properties of interest 103

be remediated. The following example shows a query executed in the AdventureWorks sample
database with a conversion warning about cardinality estimates:

CREATE TABLE #tmpSales (SalesOrderID CHAR(10) PRIMARY KEY CLUSTERED);
INSERT INTO #tmpSales
SELECT TOP 1000 SalesOrderID FROM Sales.SalesOrderHeader;
GO
SELECT * FROM #tmpSales WHERE SalesOrderID = 44360;

Next is the warning detail for the example query, where the two cardinality estimation warning types
are present:

Figure 3.59: Plan warning on type conversion affecting estimations

Looking at the query predicate and the table schema, we see the converted expression happens because
of a mismatch between data types: the query predicate is passed as an integer, while the table’s data type
is a string. This affects the ability to do accurate estimations but also prevents seeking the clustered
index for the same reason. All warnings can also be seen in the generated execution plan by hovering
over the SELECT icon:

Figure 3.60: All applicable warnings for the execution plan

Exploring Query Execution Plans104

To remediate this case, simply change either the base table data type to integer or the predicate to
string. This eliminates both warnings because there will be no conversion, and therefore an index
seek can be used rather than a scan.

WaitForMemoryGrant*

WaitForMemoryGrant* happens when a query waits more than 1 second to acquire a memory
grant or when the initial attempt to get the memory fails. RESOURCE_SEMAPHORE waits may indicate
an excessive number of concurrent queries or an excessive amount of memory grant requests that the
current resources cannot handle. The warning reports the number of seconds the query had to wait
for MemoryGrant during execution:

Figure 3.61: Plan warning on memory grant waits

MemoryGrantWarning*

MemoryGrantWarning* happens when the SQL Database Engine detects that memory grants
were not estimated properly, as it relates to the comparison between the initial memory grant and
the memory used throughout execution. This warning happens when one of three conditions occur:

• ExcessiveGrant is fired when the max used memory is too small when compared to
the granted memory. This scenario can cause blocking and severely affect the SQL Database
Engine’s ability to run concurrent workloads efficiently. For example, if the SQL Database
Engine has 10 GB of memory, and each request is granted 1 GB of memory but only uses a
small fraction of that, then, at most, only 10 queries can be active simultaneously, but looking
at the actual used memory, this number could be far greater. Next is the warning detail where
the ExcessiveGrant condition is present:

Figure 3.62: Plan warning on excessive memory grant size

Query plan properties of interest 105

Memory estimations are directly related to the query optimization process and the estimated
plan. There are several ways to attempt remediation, and updating statistics can usually help
improve estimations. Recent versions of the SQL Database Engine can administratively address
these with the use of the MIN_PERCENT_GRANT and the MAX_PERCENT_GRANT query hints.

• GrantIncrease is fired when the grant starts to increase too much, based on the ratio between
the max used memory and the initial requested memory grant. Unlike row mode, where the
initial memory grant is not dynamic, batch mode allows for the initial grant to be exceeded to
a point before a spill occurs. This is done because spilling in batch mode has a greater cost than
spilling in row mode. For example, consider the SQL Database Engine with 10 GB of memory,
where each request is running in batch mode and granted 512 MB of memory. If around 20
requests are executing simultaneously and can exceed that initial amount of memory, this can
cause server instability and unpredictable workload performance.

• UsedMoreThanGranted is fired when the max used memory exceeds the initially granted
memory. Much as with the GrantIncrease scenario, this can cause out-of-memory (OOM)
conditions on the server.

SpatialGuess*

SpatialGuess* happens when the SQL Database Engine must use a fixed selectivity estimation
(also called guess) when optimizing a query that uses spatial data types and indexes. Next is the
warning detail where the SpatialGuess* condition is present:

Figure 3.63: Plan warning on a guess being used for cardinality estimation in a spatial query

UnmatchedIndexes*

UnmatchedIndexes* happens when the Query Optimizer cannot match an existing filtered index
with a query predicate due to parameterization.

Note
The SQL Database Engine can use optimized non-clustered indexes that are defined using a WHERE
clause. These are called filtered indexes and are especially suitable for narrow query coverage.
Being defined on a subset of data, these indexes can significantly improve query performance.

Exploring Query Execution Plans106

The following example creates a filtered index in the AdventureWorks sample database and then
executes a query with an unmatched index warning:

CREATE NONCLUSTERED INDEX FIProductAccessories ON Production.
Product (ProductSubcategoryID, ListPrice) INCLUDE (Name) WHERE
ProductSubcategoryID >= 27 AND ProductSubcategoryID <= 36;
GO
DECLARE @i int = 33
SELECT Name, ProductSubcategoryID, ListPrice
FROM Production.Product
WHERE ProductSubcategoryID = @i AND ListPrice > 25.00;

Next is the UnmatchedIndexes warning detail for the example query. Also, notice the extra
element, UnmatchedIndexes:

Figure 3.64: Plan warning on a filtered index that could not be used due to an out-of-range predicate

It’s clear that the SQL Database Engine was able to identify an eligible filtered index but was unable
to use it because, if a query is parameterized, that means that an incoming parameter with a value
outside the defined filter would not produce a result. In the following example, the SQL Database
Engine can leverage the filtered index:

SELECT Name, ProductSubcategoryID, ListPrice
FROM Production.Product
WHERE ProductSubcategoryID = 33 AND ListPrice > 25.00;

This is because the query is not parameterized, which means the SQL Database Engine can match the
incoming predicate with an existing filtered index and use it to read only the relevant subset of data.

Query plan properties of interest 107

One other alternative to make the SQL Database Engine leverage the filtered index is to build the
variable into the string and then execute it, like so:

DECLARE @i int = 33, @sqlcmd NVARCHAR(500)
SELECT @sqlcmd = 'SELECT Name, ProductSubcategoryID, ListPrice
FROM Production.Product WHERE ProductSubcategoryID = ' + CAST(@i AS
NVARCHAR(5)) + ' AND ListPrice > 25.00;'
EXECUTE sp_executesql @sqlcmd;

This way, the SQL Database Engine executes a query that matches the non-parameterized version,
and the filtered index predicate can be matched.

FullUpdateForOnlineIndexBuild*

FullUpdateForOnlineIndexBuild* happens when converting a partial index update to a
full index update during an online index create or rebuild operation.

Operator-level properties

Analyzing plan-level properties provides context for the overall plan and the system in which the
query plan is executed. After that step, it’s very important to keep in mind some of the key properties
that can be found in the query plan operators of interest that we discussed earlier in this chapter.

The following example shows a query executed in the AdventureWorks sample database that
allows us to examine most of these properties:

SELECT *
FROM Sales.SalesOrderDetail AS sod
INNER JOIN Production.Product AS p ON sod.ProductID = p.ProductID
WHERE p.ProductID BETWEEN 850 AND 860
ORDER BY Style DESC
OPTION (USE HINT('ENABLE_PARALLEL_PLAN_PREFERENCE'));

Exploring Query Execution Plans108

The query generates the following execution plan:

Figure 3.65: Execution plan for the SELECT * query

Right-click on the most expensive operator in the plan, open the context menu, and click on Properties:

Figure 3.66: Opening the operator Properties window

Tip
To identify the most expensive operators, follow the thickest arrows from left to right, top to
bottom. Note that the Cost label in every operator refers to the estimated cost, not the actual
execution cost. Therefore, do not use this label as a method of finding the most expensive
operators in an actual execution plan.

Query plan properties of interest 109

This opens the Properties window:

Figure 3.67: Clustered Index Scan Properties window

Exploring Query Execution Plans110

RunTimeCountersPerThread*

When troubleshooting query performance problems, having the right metrics available in the query
plan avoids unnecessary roundtrips and delays that can be critical. The SQL Database Engine stores
several runtime statistics per operator and per thread under RunTimeCountersPerThread*,
providing great insights into the performance metrics of various data access operators.

Actual I/O Statistics

Optimizing I/O is usually the best tuning approach because with higher I/O comes higher memory
consumption, as the SQL Database Engine needs to store more data pages in the buffer pool, and
higher CPU, as cycles are spent processing I/O requests and data movement.

Actual I/O Statistics* provides information on Large Object (LOB), Physical, and Logical
reads, allowing for immediate insight into the cost of an operator without the need to collect or interpret
the information from SET STATISTICS IO.

If the query was executed in parallel, then we can see how many data pages were read by each thread.
Next is the detail for the most expensive operator in the aforementioned plan, a clustered index scan:

Figure 3.68: Logical reads per thread in the Properties window

Query plan properties of interest 111

Actual Number of Rows

Similarly, having information on the actual number of rows that flowed through the operators allows
database professionals to track the most expensive areas of a plan. Actual Number of Rows
(ActualRows* in the showplan XML) shows the number of rows output by an operator after any
predicates were applied. Number of Rows Read (ActualRowsRead* in the showplan XML)
shows the number of rows read before predicates were applied. Next is the detail for both properties
in the same clustered index scan:

Figure 3.69: Rows per thread in the Properties window

Note
Thread zero is the coordinating thread and does not accumulate I/O, which is handled by all
the other threads for the request.

Actual time statistics

Time is an important measurement, not only by itself but because these properties track the time in
milliseconds an operator spent during execution. As such, comparing these with waits accrued during
execution and the overall query elapsed execution time allows database professionals to pinpoint
expensive areas of the plan with great accuracy.

Actual Elapsed CPU Time (ActualCPUms* in the showplan XML) shows the CPU time
accumulated over all threads, with details on each thread for parallel queries. Actual Elapsed
Time (ActualElapsedms* in the showplan XML) shows the elapsed time the operator took to
execute. Although there is detail on each thread for parallel queries, the overall elapsed time is the
same as the slowest thread time. Having this information in the showplan removes the need to collect
or interpret information from SET STATISTICS TIME.

Next is the detail for both properties in the same clustered index scan:

Exploring Query Execution Plans112

Figure 3.70: Time elapsed per thread in the Properties window

Estimated rows

When analyzing a plan retrieved from the plan cache, which is an estimated plan or query plan, only
the estimations are available. In an actual plan or query execution plan, this information is present,
and it becomes useful to compare it with the actual rows we just discussed. This is because significant
differences between estimated and actual rows usually expose cardinality estimation issues and whether
queries are using underlying indexes efficiently.

Note
We will further discuss remediation techniques for cardinality estimation issues in Chapters
9 through 11 of the book.

Estimated Number of Rows (EstimateRows in the showplan XML) shows the estimated
number of rows output by an operator after any predicates are applied. Estimated Number
of Rows to be Read (EstimatedRowsRead in the showplan XML) shows the estimated
number of rows read before predicates are applied. Next is the detail for both properties in the same
clustered index scan:

Figure 3.71: Estimated rows information in the Properties window

Query plan properties of interest 113

EstimateRowsWithoutRowGoal

The EstimateRowsWithoutRowGoal property is available starting with SQL Server 2016 SP2
and SQL Server 2017 CU3 when the Query Optimizer uses an optimization technique called a Row
Goal. If the Query Optimizer used a row goal, this property expresses the estimated number of rows
that would be processed if the row goal hadn’t been used.

Normally, when the Query Optimizer estimates the cost of a query plan, it usually assumes that all
qualifying rows from all tables must be processed. However, when a query uses a TOP, IN, or EXISTS
clause, a FAST query hint, or a SET ROWCOUNT statement, this causes the Query Optimizer to
search for a query plan that will quickly return a smaller number of rows. This makes a row goal a
very useful optimization strategy for certain query patterns.

The following example shows a query executed in the AdventureWorks sample database that
allows us to examine this property:

SELECT TOP (100) *
FROM Sales.SalesOrderHeader AS s
INNER JOIN Sales.SalesOrderDetail AS d ON s.SalesOrderID =
d.SalesOrderID
WHERE s.TotalDue > 1000;

In the generated execution plan, we can see the EstimateRowsWithoutRowGoal property of
the Clustered Index Scan operator on the SalesOrderDetail table:

Figure 3.72: Estimated row information in the Properties window, if a row goal was not used

These can be compared with the estimated rows we discussed in the previous section to determine
whether the row goal is being used to the query’s advantage or not. If Estimated Number of
Rows is significantly lower than Estimated Number of Rows to be Read and the row
goal is used, it may be the case that the row goal is not improving the plan quality. We will see more of
this property and how to use it for troubleshooting in the Query plan comparison section of Chapter 9,
Comparative Analysis of Query Plans.

In Chapter 2, Mechanics of the Query Optimizer, we discussed the new SQL Server 2022 feature named
CE Feedback, and how it can automatically remove much of the risk in upgrading CE versions for
application workloads that may be susceptible to the model changes of a higher CE version. We
mentioned that Row Goal is also a scenario handled by CE Feedback. The same test-and-verify
principle is used: CE Feedback can detect whether a row goal is being used to the query’s advantage
or not, and if not, disable the row goal for that query.

Exploring Query Execution Plans114

Note
At the time this book is written, CE Feedback is not yet generally available in Azure SQL Database.

Warnings

Warnings* also surface on specific operators. These contain information that helps the troubleshooting
process when drilling through a plan. As with plan-level warnings, operator-level warnings show as
a yellow triangle sign in the graphical query execution plan. Again, hovering over the operators that
display such a triangle will also show details on the warning. As of the time this book was written,
the existing operator-level warning types were the following.

Columns With No Statistics

Columns With No Statistics* happens when the Query Optimizer needs to load statistics on
any given column that’s relevant for the query, but none exist. If Auto-Create Statistics is disabled in
the database, the SQL Database Engine cannot automatically create missing statistics, and this warning
persists between executions. The following example shows a query executed in the AdventureWorks
sample database with a Columns With No Statistics* warning:

USE [master]
GO
ALTER DATABASE [AdventureWorks]
SET AUTO_CREATE_STATISTICS OFF
GO
SELECT [CarrierTrackingNumber]
FROM Sales.SalesOrderDetail
WHERE [OrderQty] > 10
ORDER BY OrderQty;
GO
ALTER DATABASE [AdventureWorks]
SET AUTO_CREATE_STATISTICS ON
GO

In the generated execution plan, we can see the warning under the properties of the Clustered
Index Scan operator that generated it:

Query plan properties of interest 115

Figure 3.73: Plan warning on columns without statistics in the Properties window

If Auto-Create Statistics is enabled, as it is by default and as a best practice, then the SQL Database
Engine will create a single-column statistic on the column that triggered the warning condition if
the column is eligible.

Note
This warning is always present for the inner side of a Nested Loops join involving a spatial
index. This is a by-design behavior.

Tip
Because statistics cannot be created on a non-persisted computed column, Auto-Create Statistics
cannot automatically create a statistic object on these column types. Mark the computed column
as persisted to allow Auto-Create Statistics.

Starting with SQL Server 2019 and in Azure SQL Database, the time spent creating the statistic
triggered by this warning will also be visible as an accumulated wait with the WAIT_ON_SYNC_
STATISTICS_REFRESH type.

Spill To Tempdb*

Spill To Tempdb* happens when the available query memory (known as the memory grant) is
not enough to run the required operation in memory and, rather than halting execution, the operation
instead runs with the support of tempdb workfiles or worktables, depending on the type of spill. By
resorting to I/O rather than being executed solely in memory, spills usually must be remediated as
they can severely slow down query performance. We covered common Sort and Hash spills in the
Query plan operators of interest section of this chapter; they include the following:

• Sort Spill*

• Hash Spill*

• Exchange Spill*

Exploring Query Execution Plans116

No Join Predicate

No Join Predicate happens when the SQL Database Engine cannot identify a join predicate to
apply to a join between two or more tables, and none has been specified in the T-SQL statement text.
The following example shows a query executed in the AdventureWorks sample database with a
No Join Predicate warning:

SELECT *
FROM Sales.SalesOrderHeader AS h,
 Sales.SalesOrderDetail AS d,
 Production.Product AS p
WHERE h.SalesOrderID = 49879;

Unlike all other warnings, the No Join Predicate warning is shown as a red circle with a white
X in the graphical query execution plan:

Figure 3.74: Execution plan for the SELECT * query with a No Join Predicate warning

In the generated plan, we can see the warning under the properties of the Nested Loops operator
that generated it:

Figure 3.75: No Join Predicate warning information in the Properties window

To remediate this case, rewrite the query to state the intended join operation and join predicates:

SELECT *
FROM Sales.SalesOrderHeader AS h
INNER JOIN Sales.SalesOrderDetail AS d ON h.SalesOrderID =
d.SalesOrderID
INNER JOIN Production.Product AS p ON d.ProductId = p.ProductID
WHERE h.SalesOrderID = 49879;

The query then generates the following execution plan:

Summary 117

Figure 3.76: Execution plan for the SELECT * query without the No Join Predicate warning

Summary
Hopefully, after reading this chapter, you have a good understanding of the various elements that make
up a query execution plan in the SQL Database Engine. Nearly everything we need to understand
and troubleshoot the performance of our T-SQL queries can be found somewhere in the plan, either
in the visible part of the plan or in the Properties windows, which we can access by right-clicking
the operators. In the next chapter and throughout the rest of this book, we will use query execution
plans to illustrate various T-SQL patterns and anti-patterns so that we can identify and remediate
them in our own code.

4
Indexing for T-SQL Performance

In the previous chapter, we explored execution plans and the various operators that the SQL Database
Engine uses to retrieve the data requested by a query. While the Query Optimizer does most of the
heavy lifting when choosing the best way to retrieve the data required to satisfy the query, it can only
do so efficiently if the proper indexes are in place.

An index is a structure in the database that speeds up access to data by organizing it in a specific way
based on the type of index. The data structure that works best for your application will depend on
many factors, including the type of data being stored, the volatility of the data, and the data access
patterns that will be used to retrieve the data. The SQL Database Engine offers a few different index
types, such as rowstore, columnstore, XML, and others. Rowstore indexes are the most common
indexes in the SQL Database Engine and are what most people think of when considering indexes
for query tuning, so these are what we will be focusing on for this discussion.

In this chapter, we will dive deeper into how the SQL Database Engine uses rowstore indexes to access
data more efficiently, and how you can develop an indexing strategy that will set you up for better
query performance.

In this chapter, we’re going to cover the following main topics:

• Understanding predicate SARGability

• Data access using rowstore indexes

• Indexing strategy using rowstore indexes

• Index maintenance

Technical requirements
The examples used in this chapter are designed for use on SQL Server 2022 and Azure SQL Database,
but they should work on any version of SQL Server, 2012 or later. The Developer Edition of SQL Server
is free for development environments and can be used to run all the code samples. There is also a free
tier of Azure SQL Database you can use for testing at https://aka.ms/freedb.

https://aka.ms/freedb

Indexing for T-SQL Performance120

You will need the AdventureWorks2016_EXT (referred to as AdventureWorks) and
AdventureWorksDW2016_EXT (referred to as AdventureWorksDW) sample databases, which
can be found on GitHub at https://github.com/Microsoft/sql-server-samples/
releases/tag/adventureworks. The code samples for this chapter can also be found on
GitHub at https://github.com/PacktPublishing/Learn-T-SQL-Querying-
Second-Edition/tree/main/ch4.

Understanding predicate SARGability
A predicate is a filter that can be used to determine the set of conditions to apply to a query to
trim the result set. As we have discussed in previous chapters, these are typically applicable to the
following clauses:

• JOIN clauses, which filter the rows matching the type of join

• WHERE clauses, which filter source rows from a table or an index

• HAVING clauses, which filter the results

Most queries will make use of predicates, usually through a WHERE clause. When a predicate is
serviceable by an index, it is said the predicate is SARGable, which is an acronym for Search ARGument-
able. Having SARGable predicates should be a goal for our T-SQL queries because it can reduce the
number of rows that need to be processed by a plan earlier in the execution – that is, when the data
is being read by the SQL Database Engine. The implementation of this early row count reduction is
called predicate pushdown; it is the action of using the predicate directly in the seek or scan operation
and reading only the rows that match the given predicate. When predicate pushdown is not used, the
cost implications are high: the SQL Database Engine needs to read a larger number of rows from the
source table or index and then filter down to the number of rows that match the predicate.

Note
The SQL Database Engine always optimizes for predicate pushdown, sometimes even when
part of the predicate cannot be serviced by an index, meaning when part of the predicate is
non-SARGable. Even when it results in a higher number of rows being read, this optimization
can eliminate the need for filter operators in a query plan.

Let’s see how to identify whether predicate pushdown is used efficiently with two examples of queries
executing in the scope of the AdventureWorks sample database:

SELECT FirstName, LastName
FROM Person.Person
WHERE LastName like 'S%'
AND FirstName = 'John';
SELECT FirstName, LastName

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch4
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch4

Understanding predicate SARGability 121

FROM Person.Person
WHERE LastName = 'Smith'
AND FirstName like 'J%';

The queries generate the following result sets:

Figure 4.1: Result sets for the predicate pushdown example queries

Here are the respective execution plans:

Figure 4.2: Execution plans for the predicate pushdown example queries

Observe how the plans look the same. However, the estimated cost for Query 1 is much higher than
Query 2 as it relates to the entire batch: 81% and 19%, respectively. This also translates into the time
stats shown in the preceding plans – 64 ms and 1 ms, respectively.

Indexing for T-SQL Performance122

Why such a big difference? By looking at the OptimizerStatsUsage plan property, we know
the plans loaded the same statistics objects:

Figure 4.3: The Properties window for the execution plans for the example

queries showing the OptimizerStatsUsage property

The IX_Person_LastName_FirstName_MiddleName statistic has its histogram on the
LastName column, and the _WA_Sys_00000005_7C4F7684 statistics has its histogram on
the FirstName column. This makes sense because both queries have their predicates on those two
columns, and the Query Optimizer requires this information to be able to produce an optimized query
plan. Looking at the actual rows and estimated rows, we can see that Query 1 returned two rows out
of 15 estimated rows, and Query 2 returned 14 rows out of 35 estimated rows. This is a low number
of rows, and the absolute difference is not significant, so it does not appear that the cost difference
can be explained by an incorrect estimation of the number of rows.

Tip
Statistics that are automatically generated by the Database Engine are always named with the
_WA_Sys prefix. The Database Engine will automatically generate single-column statistics
only when the auto-create statistics option is enabled, which is the default.

As we discussed in Chapter 3, Exploring Query Execution Plans, the Actual Number of Rows and
Estimated Number of Rows properties refer to the number of rows output by an operator after
any predicates were applied. While this can give us an indication of whether the Query Optimizer has
accurately estimated the cost of the query, it is not an accurate measure of whether predicate pushdown
was effective. Instead, comparing the Actual Number of Rows and Number of Rows Read
properties for an actual plan, or the Estimated Number of Rows and Estimated Number
of Rows to be Read properties for an estimated plan, is the correct approach.

Understanding predicate SARGability 123

Those properties are available for the IX_Person_LastName_FirstName_MiddleName
index in the seek operator:

Figure 4.4: Properties of the index seek operator from each of the example queries

For Query 1, we can see that 2,130 rows were read to return two rows after the seek predicate (also
in Figure 4.4) was applied, so there is a significant difference. The predicate that was used for this
query translates a seek condition where the LastName column values are greater than or equal to
S, and LastName is smaller than T. We can also see that that the SQL Database Engine estimated
that 2,118 rows would have to be read to return 14 rows, which is a similar ratio. This indicates that
the SQL Database Engine worked with accurate statistics and came up with good estimates; it just so
happens that the index is not optimal for the query.

Indexing for T-SQL Performance124

Note
The non-SARGable predicate on the FirstName column was also pushed down, for the
condition when values equal John. Although no I/O was saved, this engine optimization
avoided a filter operator to be applied after the seek, saving CPU cycles.

If this query is executed often, then creating a better index for this query may be required, namely
making FirstName the first key column: a full name such as “John” is more selective than one
character followed by a wildcard.

For Query 2, only 14 rows were read to return 14 rows, meaning predicate pushdown read only the
required number of rows for our query, which is also visible in the estimations: both Estimated
Number of Rows and Estimated Number of Rows to be Read match at 35.3287 rows.

The predicates used by queries determine the database index design and vice versa. Predicate pushdown,
namely SQL Server’s ability to push down both SARGable and non-SARGable predicates to the Storage
Engine, is an important performance feature that database professionals must be aware of when writing
T-SQL queries that are expected to perform and scale well.

To summarize, the next time you see a query that returns only a few rows but comparatively takes
a long time to execute and has relatively disproportionate CPU and I/O usage, investigate whether
the query is making efficient use of our indexes. The next section discusses how data access using
indexes works and how we can build more efficient indexes that allow our T-SQL queries to perform
well from an I/O standpoint.

Data access using indexes
Now that we have discussed how the Query Optimizer uses indexes to facilitate predicate pushdown
and make queries more efficient, let’s explore how indexes are structured and why they are so important
for query performance.

Before we begin discussing the structure of indexes, it’s worth understanding how data is stored and
accessed in the SQL Database Engine. Data is stored on 8 KB pages. An object such as a table or an
index is essentially a collection of pages, along with metadata that maps out the structure of the object.
The SQL Database Engine uses a special metadata page called an Index Allocation Map (IAM) page
to locate the pages in an object. IAM pages contain a list of all the pages in a database file that belong
to an object. Each object will have at least one IAM page but depending on the size of the object and
the file structure of the database, there may be more than one IAM page, forming a chain.

Tables that do not have a clustered index are stored as heaps. Heaps do not have any sort of order or
structure; they are simply a collection of pages. Figure 4.5 illustrates a heap in the SQL Database Engine:

Data access using indexes 125

Figure 4.5: Illustration of a heap in the SQL Database Engine

The only way to locate all the pages that belong to a heap is to use the IAM page(s), so the SQL
Database Engine stores a pointer to the first IAM page in the metadata for each object. If there is a
chain of IAM pages, the first page will contain a pointer to the next IAM page, and so on. As you can
imagine, using these IAM pages to return lists of random pages scattered throughout a database file
is not the most efficient way to access data. This is where indexes come in.

Structure of a rowstore index

Rowstore indexes are stored as a special version of a B-tree known as a B+ tree. A B+ tree consists of a
root node, one or more levels of intermediate nodes, and a leaf level. Figure 4.6 illustrates the structure
of B+ trees in the SQL Database Engine:

Figure 4.6: Illustration of the B+ tree data structure that is used

for rowstore indexes in the SQL Database Engine

Each node of the tree is a single page. The root and intermediate level pages contain rows that include
ranges of index keys, along with a pointer to the page on the next level down that contains that range.
Each page also includes a pointer to the previous page and the next page in the same level to allow
for ordered scanning of any level of the index.

Indexing for T-SQL Performance126

The leaf level pages differ based on whether the index is clustered or non-clustered. In clustered indexes,
the leaf level contains the actual data pages. When you create a clustered index on a table, the table is
converted from a heap to a B+ tree and the table becomes a clustered index.

In non-clustered indexes, the leaf level contains index pages that store rows of index keys with pointers
to the data rows. If the underlying table is a heap, the pointer is a row ID (RID) that is a physical pointer
to the file number, page number, and row number where the row is located. If the underlying table is
a clustered index, the pointer is the clustered index key, which provides a logical pointer to the data.

The B+ tree structure is designed to minimize I/O when accessing data, particularly when accessing
a small number of rows in a large table. Each row on an index page contains only index keys and
pointers to child pages, which means that a single index page can hold many rows (the exact number
depends on the size of the index key). Each of these rows points to a child page, so indexes in the
SQL Database Engine tend to fan out wide but do not typically get very deep. This is what leads to
efficient data access.

Data access using rowstore indexes

There are two ways to access data in a rowstore index: a seek or a scan. A seek involves using the
keys of the index to traverse from the root to the leaf to find the rows that match a given predicate.
Figure 4.7 shows an illustration of an index seek:

Figure 4.7: Illustration of an index seek on a rowstore index

Assuming that the index is three levels deep, as Figure 4.7 shows, this index seek would require only
three page reads. An index seek is generally the most efficient way to access data using a rowstore
index, but it requires the predicate to be SARGable. If, for some reason, the index keys can’t be used
to locate rows in the index, a scan may be required.

Scanning an index is usually slightly more efficient than scanning a heap. As we described at the
beginning of this chapter, scanning a heap involves using the IAM pages to locate all the pages of the

Data access using indexes 127

table, which may be scattered throughout the data file(s). This leads to inefficient random I/O. While
random I/O may not be an issue for modern storage systems, the SQL Database Engine has optimizations
built around sequential I/O that may not be used when data is accessed randomly throughout the file.

Since rowstore indexes are stored in a B+ tree structure with pointers to the pages contained within
the index itself, the IAM pages are not required. The metadata for the index contains a pointer to the
root page, which serves as the entry point to the index. The Database Engine starts a scan operation
at the root page, follows the pointers contained in the index pages to traverse from the root to the
first leaf page, and then scans across the leaf level following the next page pointers in the leaf pages.
Figure 4.8 shows an illustration of an index scan:

Figure 4.8: Illustration of an index scan on a rowstore index

Assuming we have the same three-level structure that’s illustrated in Figure 4.7, this index scan would
require three page reads to get from the root to the first leaf level page, plus however many additional
pages are contained at the leaf level. Since index pages are ordered, this generally lends itself to more
efficient sequential I/O. The Query Optimizer also has the option of returning the rows in the order of
the index keys, known as an ordered scan, which may help make the rest of the query more efficient,
especially if there is an ORDER BY clause that matches the index keys, or if it can facilitate the use of
a MERGE join downstream in the plan.

When accessing data using a non-clustered index, whether by a seek or a scan, one additional operation
might be required – a lookup. A lookup is needed when the columns required to satisfy the query
are not contained in the non-clustered index and must be retrieved from the data rows. To perform
the lookup, the SQL Database Engine follows the pointer at the leaf level of the non-clustered index
to find the underlying data row. If the underlying table is a heap, this results in a RID lookup since
the pointer is a RID. If the underlying table is a clustered index, this results in a key lookup (which is
effectively a seek on the clustered index) since the pointer is the clustered index key. When seeking a
clustered index, lookups are never needed because the clustered index contains the actual data rows
at the leaf level.

Indexing for T-SQL Performance128

Inserting and updating data in a rowstore index

B+ trees are not only efficient when returning data – they are also efficient when inserting and updating
data as well. There is a common misconception that rowstore indexes need to be rebuilt periodically
to rebalance the tree, but B+ trees are self-balancing. This means the path from the root to the leaf
is always the same depth, no matter which leaf page you are accessing. So, the number of page reads
required to perform an index seek can be predicted based on the depth of the index.

Building an upside-down tree

Self-balancing is achieved by building the index from the bottom up. When a table with a clustered
index is small enough to fit on one page, the index will consist of only a single page that serves as
both the root and the leaf. Once the first page fills up, a second page is added to the leaf level, which
necessitates a third page be added to point to the original page and the new page. This third page
becomes the new root page. As more pages are added to the leaf level, more rows will be added to the
root page to point to these new pages until the root page eventually fills up and another page is added
to this level, causing the SQL Database Engine to add a new root page to point to the original root
page and the new page at this level. As the table grows, the SQL Database Engine continues pushing
up new levels as needed, so when looking at the metadata for an index, you will notice that the leaf
level is always level 0, the parent level (the level directly above the leaf) is always level 1, and so on
until you reach the root. Thus, a B+ tree is upside down, with the leaves at the bottom and the root
at the top, as illustrated in Figure 4.6.

Page splits

This practice of building the index from the bottom up ensures that the index structure remains
balanced and the cost of an index seek operation remains consistent across the entire index. However,
to avoid restructuring the tree every time a new page is added to the index, the new page must always
be added to the end of the level.

The operation that adds a new page to an index is called a page split. If rows are inserted in the same
order as the index key, new pages will naturally belong at the end of the level, so the SQL Database
Engine simply adds an empty page and adds the new row to this empty page, along with the required
pointers. This is sometimes referred to as an optimized page split. If rows are inserted out of order, or
if updates to existing rows increase their size and cause them to be relocated to a new page, the SQL
Database Engine must perform an out-of-order page split. In this case, a new empty page is added
to the end of the level and half the rows from the original page are relocated to this new page, after
which the pointers are adjusted so that the logical order of the index is maintained, even though the
pages are now physically out of order. Figure 4.9 shows an example of the leaf level after an out-of-
order page split:

Indexing strategy using rowstore indexes 129

Figure 4.9: Illustration of the leaf level of an index after an out-of-order page

split. Note that for simplicity, only the forward pointers are shown

As Figure 4.9 shows, even though the pages are no longer physically ordered in the file, the pointers
maintain the logical order of the index. This is what is known as logical fragmentation. Provided that
the pages are in memory, logical fragmentation doesn’t typically cause performance issues because
the data is accessed via the pointers within the index. If the pages are not in memory, index seeks will
generally remain unaffected by logical fragmentation, but index scan performance may be impacted
because accessing the various fragments of the index will generate additional non-sequential I/O. We
will discuss index fragmentation and how to address it later in this chapter.

As you can see, the B+ tree structure of rowstore indexes provides an efficient way to access data not
only for reading but for inserting and updating as well. They are ideal for traditional OLTP application
patterns that deal with a small number of rows at a time.

Indexing strategy using rowstore indexes
Now that we’ve covered the basics of how rowstore indexes are structured and how they are used to
access data, let’s move on to where and when they should be used, along with some best practices for
efficient index design.

The goal of an indexing strategy is to minimize the amount of I/O required to satisfy the queries being
generated against the database. This translates into a few simple guidelines:

• Keep indexes as small as possible. The more rows that fit on a page, the fewer page reads that
are required to access the data.

• Avoid lookups – they add unnecessary I/O and can sometimes lead to suboptimal query plans.

• Choose index keys that support query predicates so that indexes can be used for seeks rather
than scans.

• When creating indexes with multiple key columns, columns used for equality comparisons
should be first, followed by columns used for inequality comparisons. The leading column
should be the most selective column used for equality comparisons.

• Consider index overhead and index for database use. Do not over-index heavily updated tables.

Indexing for T-SQL Performance130

Best practices for clustered indexes

Typically, the first index you create on a table should be the clustered index. As we discussed in the
Data access using rowstore indexes section, retrieving data from a clustered index is generally more
efficient than a heap, so it is recommended to have a clustered index on every table.

Note
One case where heaps may be more efficient than clustered indexes is as an interim step when
bulk loading data as part of an ETL process. Reading data from a heap is less efficient than a
clustered index, so the ultimate destination of the data should be a clustered index structure.

Remember that the data pages are stored within the clustered index structure, so there can only be
one clustered index on a table. Also, since the clustered index key serves as the pointer to the data
rows in non-clustered indexes, the structure of the clustered index can have an impact on all the
non-clustered indexes on the table.

When choosing which column or columns to create a clustered index on, there are a few guidelines
to consider:

• Uniqueness: The key should be unique

• Size: The key should be as narrow as possible

• Volatility: The key should not be frequently updated (preferably not at all)

• Usability: The key should be created on a column that is frequently used to access the table,
particularly if it’s used in wide queries (SELECT *)

• Order: The key should be on a column that is self-ordering

While these guidelines are not specifically required or enforced by the SQL Database Engine, following
them will lead to more efficient data access.

Uniqueness

The SQL Database Engine needs to have a way to uniquely identify each of the rows in a table. When
there is a clustered index on the table, the clustered index key serves as this unique identifier. If the
key you choose for the clustered index is already unique, the SQL Database Engine can use the key
as-is. If the key is not unique, the SQL Database Engine must make it unique by adding a uniqueifier.
The uniqueifier is an integer stored in a hidden 4-byte column in the table and becomes part of the
clustered index key, so it will increase the size of the key. By choosing an index key that is unique up
front, you can avoid this overhead altogether and make the clustered index key smaller and more useful.

Indexing strategy using rowstore indexes 131

Size

The size of data has an impact on query performance, and this is equally – if not more – important
when it comes to index keys, particularly clustered index keys. The pages of an index are made up of
rows that contain index keys, so the smaller the index key, the smaller the row, and the more rows
will fit on a page. The smaller the index, the fewer page reads required to access the index, both for
seeks and for scans. With a clustered index, this is even more critical because the clustered index key
serves as the pointer to the data in a non-clustered index. This means that the size of the clustered
index key will influence not only the size of the clustered index but the size of all the non-clustered
indexes as well.

Volatility

The keys of a rowstore index provide the order and structure of the index. If the key values change,
the structure of the index must change to accommodate this. Rows may need to be relocated at the
leaf level, which triggers changes up the tree. With clustered indexes, the key is also part of all the
non-clustered indexes, so changes to key values impact not only the clustered index structure but all
the non-clustered indexes on the table as well. It’s important to choose index keys that are static to
avoid unnecessary overhead.

Usability

Since the clustered index structures the entire table around the keys, it's a good idea to create the clustered
index key from a column that is commonly used to access the table. This is particularly important if
there are wide queries (queries that return a large number of columns) that can make use of the key.
A clustered index seek is the most efficient way to return an entire row from a table, so think about
how useful the column or columns may be to your application when choosing a clustered index key.

Order

As we discussed in the index structure section of this chapter, inserting data out of order causes
unnecessary overhead in the form of out-of-order page splits. Using a column that is self-ordered,
such as an identity column (which is integer-based), ensures that data is always inserted in order and
keeps page split overhead at a minimum. This will also lead to less logical fragmentation and reduce
the need for frequent index maintenance.

Tip
It’s become common practice to use globally unique identifiers (GUIDs) as primary keys (and
thus as clustered index keys) in many databases. By their nature, GUIDs are not necessarily
sequential, so their use can lead to out-of-order page splits, as discussed earlier. If you must use a
GUID as a clustered index key, consider generating new GUIDs using the NEWSEQUENTIALID()
function rather than NEWID(). This will generate a sequential GUID and avoid the problem
of out-of-order inserts and page splits.

Indexing for T-SQL Performance132

Primary keys

If you’ve already been working with SQL Server or Azure SQL Database, you might have had a lightbulb
go off after reading the best practices for clustered indexes. When you create a primary key on a table,
by default, the SQL Database Engine creates a clustered index to support the key, also known as a
clustered primary key. A primary key lends itself nicely to a clustered index – it’s unique, it typically
does not change, it’s often an identity column that is small and self-ordering, and it’s one of the most
common ways to return data from a table, either directly or through a join with another table.

In most cases, the primary key should be the clustered index on a table. There are a few exceptions to
this rule where it might make sense to create a non-clustered primary key and a clustered index on a
different column or columns in the table:

• Surrogate keys: If the primary key is a surrogate key that only exists in the database and is not
used for filtering rows either as a predicate or a join condition, choosing the natural key as the
clustered index key might make more sense. An example of a natural key versus a surrogate
key might be a product UPC stored as a string versus a database-assigned identity column
called ProductID.

• Dates: If the table contains a date column and data access is always done by date range (for
example, where the table contains archive data but the most recent data is accessed more
frequently), it might make sense to have the date column be the leading column of the clustered
index, although it’s generally a good idea to keep the primary key column as a secondary column
in the index to avoid the overhead of a unique identifier.

As with anything in the SQL Database Engine, there may be other exceptions to this rule, so use the
guidelines discussed in this section to make the best choice for your application.

Best practices for non-clustered indexes

While the choice of columns for a clustered index is generally based on the structure and nature of
the data, the choice of columns for non-clustered indexes depends on how the data is going to be
accessed by the application. Generally, you want to create non-clustered indexes on any columns that
will frequently be used to filter data, either as a predicate in a WHERE clause or as a join condition.

Indexing strategy using rowstore indexes 133

Foreign keys

Unlike with primary keys, the SQL Database Engine does not automatically create an index on foreign
key columns. As foreign keys are used to establish relationships between columns in different tables
and to enforce referential integrity, it is important to have indexes on those columns, not only because
they are frequently used for joins, but because they are needed to make referential integrity checks
more efficient.

Note
While referential integrity can be enforced at the application level using coding techniques, it’s
a best practice to use declarative referential integrity in the database (foreign keys).

Once you have your primary keys and clustered indexes in place, the next indexes to consider are
non-clustered indexes on all your foreign key columns. After the indexes on foreign key columns are
in place, you will need to begin analyzing the queries generated by your application to determine
any further non-clustered index requirements. As you begin this analysis, it is usually preferable to
add columns to an existing index that supports a foreign key rather than creating a whole new index,
provided that the foreign key column remains the leading column of the index. If you need an index
where the foreign key column is not the leading column of the index, it’s best to create a new index.
We will discuss best practices for multi-column indexes in the next section.

Key column order

The leading column of an index determines the sort order of the index and is where a statistics
histogram will be created as discussed in Chapter 1, Overview of Query Optimization. For the SQL
Database Engine to use a predicate as a seek predicate against an index, the column in the predicate
must match the leading column of the index since this is the column for which the data distribution
is known. For example, consider the following query:

SELECT LastName, FirstName, MiddleName, BusinessEntityID
FROM Person.Person
WHERE LastName = N'Smith';

In the AdventureWorks database, there is a non-clustered index on the Person.Person
table called IX_Person_LastName_FirstName_MiddleName that contains LastName,
FirstName, and MiddleName as key columns in that order. Since LastName is the leading
column of the index, the LastName = N'Smith' predicate can be used as a seek predicate against
this index. Figure 4.10 shows the execution plan for this query:

Indexing for T-SQL Performance134

Figure 4.10: Screenshot of the execution plan for the example query showing the seek predicates

If we were to change the predicate of the query to FirstName, the index can still be used, but since
FirstName is not the leading column, it can’t be used as a seek predicate and the index will have to
be scanned. Here’s the example query using FirstName in the predicate:

Indexing strategy using rowstore indexes 135

SELECT LastName, FirstName, MiddleName, BusinessEntityID
FROM Person.Person
WHERE FirstName = N'John';

Figure 4.11 shows the execution plan:

Figure 4.11: Screenshot of the execution plan for the example query

showing an index scan, as well as a missing index suggestion

As shown in Figure 4.11, not only did the index get scanned, but the Query Optimizer suggested creating
a new index on the FirstName column since there are no indexes on the table with FirstName
as the leading column.

While the leading column is the most important key column, if the predicate contains more than one
condition, additional key columns will make the key more selective and therefore more efficient. Let’s
combine the two example queries into a single query:

SELECT LastName, FirstName, MiddleName, BusinessEntityID
FROM Person.Person
WHERE FirstName = N'John' and LastName = N'Smith';

Figure 4.12 shows the execution plan for this query:

Indexing for T-SQL Performance136

Figure 4.12: Screenshot of the execution plan for the example query showing the seek predicates,

along with the Number of Rows Read and Actual Number of Rows for All Executions properties

Notice that the execution plan looks very similar to the one in Figure 4.10, but both conditions are
being used in the seek predicate since both columns are in the index. This query now returns a single
row, and only this one row had to be read because of the structure of the index. But do you need
both columns in the index? Wouldn’t having the LastName column alone in the index also yield an
index seek? Yes, it would, but it wouldn’t be quite as efficient. Let’s create a new index to test this out:

CREATE NONCLUSTERED INDEX IX_Person_LastName
ON Person.Person (LastName)
INCLUDE(FirstName, MiddleName);

Note
We’re using an INCLUDE clause to avoid having to do a lookup so that we can compare the
results evenly with earlier queries. We will discuss INCLUDE columns in more detail in the
next section.

Indexing strategy using rowstore indexes 137

The Query Optimizer probably won’t choose this index on its own, so we’ll need to force it with a
hint to see the execution plan:

SELECT LastName, FirstName, MiddleName, BusinessEntityID
FROM Person.Person
WITH (INDEX (IX_Person_LastName))
WHERE FirstName = N'John' AND LastName = N'Smith';

Figure 4.13 shows the execution plan for this query:

Figure 4.13: Screenshot of the execution plan for the example query showing

the Predicate and Seek Predicates values, along with the Number of Rows

Read and Actual Number of Rows for All Executions properties

As predicted, we still have an index seek, but if you look closer at the plan, you can see that this is
not quite as efficient as the index that has both LastName and FirstName in the key columns.
This query still returns one row, but 103 rows had to be read to find this one row. While the entire
predicate was able to be evaluated within the index seek, only LastName was part of the seek predicate

Indexing for T-SQL Performance138

because it’s the only key column in the index. FirstName does appear as a predicate, meaning that
the rows were filtered within the index seek operation, but since FirstName isn’t one of the key
columns, all 103 rows with LastName = N'Smith' had to be read to find all the rows that also
had FirstName = N'John'.

Now that we’ve determined having multiple columns in a non-clustered index key can be useful, how
do you know the order in which the columns should appear? There’s a simple rule for this that we
mentioned at the beginning of this section: the most selective equality column should be first, followed
by the rest of the equality columns, then the inequality columns.

As we discussed in Chapter 2, Mechanics of the Query Optimizer, selectivity refers to how distinct the
data is. For example, the queries we’ve reviewed in this chapter so far have all been using an index on
LastName, FirstName, and MiddleName. The order of this index isn’t arbitrary; it’s based on
the selectivity of the columns. In Western cultures, LastName is more selective than FirstName
because there are fewer duplicate last names than there are duplicate first names. In many Eastern
cultures, the selectivity of last names and first names is reversed, with first names being more selective
than last names. If your database contains names like these, it may make sense for an index on names
to have a different column order. The most selective column needs to be listed first because it allows
the Query Optimizer to make the most efficient use of predicate pushdown, narrowing down the set
of rows it must read from the database and making the rest of the operations in the plan more efficient.

The rule also mentions equality versus inequality, which has to do with how the column is used in a
query. An equality column is a column that is used in an equality predicate in a query. In our example
query, both LastName and FirstName are being used as equality columns. An inequality column is
a column that is used in an inequality comparison in a query. An example of an inequality comparison
would be FirstName LIKE N'J%', which returns a range of names that all start with the letter J.
You can think of this as predicate selectivity, an equality comparison is typically more selective than
an inequality comparison.

Let’s look at a query example that shows the importance of column order:

SELECT LastName, FirstName, MiddleName, BusinessEntityID
FROM Person.Person
WHERE PersonType = N'SP'
AND LastName LIKE N'S%';

In this case, we’re using the PersonType column for an equality comparison and the LastName
column for an inequality comparison. There’s no index on the PersonType column, so we’ll need
to create one for this query. There are only six distinct values for PersonType in the table, but there
are over 1,000 distinct values for LastName, meaning that LastName is much more selective than
PersonType. Let’s see what happens if we only take selectivity into account and create an index
with LastName first:

CREATE NONCLUSTERED INDEX IX_Person_LastName_PersonType
ON Person.Person (LastName , PersonType);

Indexing strategy using rowstore indexes 139

When you’re doing index tuning in an isolated development environment with no other activity, it’s
sometimes difficult to tell how efficient an index is because the query may run fast, even if the index
isn’t efficient. Looking at the logical reads generated by a query is helpful when fine-tuning indexes.
You can find this information by looking at the Actual Logical Reads property of an index
operation in an execution plan, or you can use the following command before running the query:

SET STATISTICS IO ON;

This command turns on STATISTICS IO at the session level. Once this is on, every query run from
the same session will report the I/O generated by the query on the Messages tab.

The plan for the example query is shown in Figure 4.14:

Figure 4.14: Screenshot of the execution plan from the example query showing the Seek

Predicates, Number of Rows Read, and Actual Number of Rows for All Executions properties

As you can see, the Query Optimizer was able to seek an index, and both LastName and PersonType
were used in the seek predicate. However, if you look closer at the properties of the index seek, you
may notice that it wasn’t a particularly efficient seek. The query returns a single row, but it had to read

Indexing for T-SQL Performance140

2,130 rows to find that one row. If you think back to how an index is structured, this makes sense. Since
LastName is the leading column, the index is sorted first by LastName, then by PersonType.
There are 2,130 rows in the Person.Person table that have a last name that begins with S, so the
SQL Database Engine must traverse the index from the root to the leaf to find the first one, then scan
across the leaf level until it finds the last one, ultimately keeping only the one row where PersonType
is SP. The query generated 15 logical reads.

Let’s try this query again with the index created the correct way:

CREATE NONCLUSTERED INDEX IX_Person_PersonType_LastName
ON Person.Person (PersonType, LastName);

Figure 4.15 shows the execution plan for the same query with this new index in place:

Figure 4.15: Screenshot of the execution plan from the example query showing the Seek

Predicates, Number of Rows Read, and Actual Number of Rows for All Executions properties

At first glance, the execution plan in Figure 4.15 might not look much different than the one in
Figure 4.14, but if you look closely at the arrow between the Index Seek and Nested Loops join, you
might notice that it’s much thicker in the first plan than it is in the second plan. This is because the

Indexing strategy using rowstore indexes 141

number of rows read in the first plan was higher than in the second plan. If you look at the index seek
properties in Figure 4.15, you will see that Number of Rows Read was 1, the same as the number
of rows returned by the query. Again, think back to the index structure. By changing the order of the
columns, we change the way the index is accessed. Now, the SQL Database Engine can seek directly
to the one row where PersonType is SP and LastName starts with S, there’s no need to scan an
entire range of rows that don’t meet the predicate. For this run of the query, we can see that only five
logical reads were generated rather than the 15 that were needed when the column order was reversed.

Covering indexes

One of the rules we highlighted at the beginning of this section is that you should avoid lookups when
possible. The way you avoid lookups in your query plans is to use covering indexes. A covering index
is a non-clustered index that contains all the columns required to satisfy the query without having to
go to the base table. Similarly, a query that doesn’t have any lookups may be called a covered query.

Note
A clustered index is always a covering index because the leaf level contains the data pages, so
the entire row is available.

Columns that are used for filtering, either in the WHERE clause or in a JOIN condition, should be
key columns in the index, but what about columns in the SELECT list? It doesn’t make sense to have
these as key columns because they would increase the size of the index unnecessarily, so the best way
to add columns from the SELECT list to an index is by using an INCLUDE clause when creating the
index. Included columns are columns that are included at the leaf level of the index, but are not part
of the key, and therefore not used in the sorting and structuring of the index.

Let’s look at our example from the previous section once more:

SELECT LastName, FirstName, MiddleName, BusinessEntityID
FROM Person.Person
WHERE PersonType = N'SP'
AND LastName LIKE N'S%';

We created an index on PersonType and LastName, but we didn’t include any other columns from
the SELECT list. BusinessEntityID is the clustered index key on the table, so this column is
included by default (recall that the clustered index key is the pointer to the data row in a non-clustered
index). This means that to avoid the lookup in the plan shown in Figure 4.15, we would need to add
FirstName and MiddleName to the index. Let’s modify that CREATE INDEX statement accordingly:

CREATE NONCLUSTERED INDEX IX_Person_PersonType_LastName
ON Person.Person (PersonType, LastName)
INCLUDE (FirstName, MiddleName)
WITH (DROP_EXISTING = ON);

Indexing for T-SQL Performance142

Now, if we execute the query again, we’ll see the plan shown in Figure 4.16:

Figure 4.16: Screenshot of an execution plan for the example query showing the output list

As shown in Figure 4.16, the key lookup is gone, and the plan consists of only an index seek. Also, if
you look at the properties of the index seek, you will see that the output list contains all the columns
needed by the query, including the columns in the SELECT list. The index is now a covering index. You
will also see that the number of logical reads has decreased from 5 to 2, simply by covering the query.

Indexing strategy using rowstore indexes 143

Creating covering indexes for your queries makes them efficient, but there is a tradeoff. While included
columns don’t increase the size of an index as much as key columns, they do increase the size, so
you don’t want to add every column in the table. This refers not only to the number of columns but
also to the size of the columns and how much of the total row size is being duplicated in each index.
Keep in mind that indexes are creating duplicate copies of your data, so you want to carefully balance
the storage overhead with the performance benefit. Be sure to consider how often the query is being
executed, and how important the performance of that query is to your application. Also, if you include
columns that are frequently updated, this can cause even more overhead since the columns will need
to be updated in the base table and in any indexes that contain those columns. Covering a query
that is executed frequently, particularly one whose performance is critical, may be worth the added
overhead. It’s also worth mentioning that limiting the columns that are returned by a query can make
it easier to cover the query. In other words, don’t use SELECT * if you can avoid it; returning only
the columns that are needed can help avoid lookups.

Filtered indexes

A filtered index is a non-clustered index that is created on a subset of the data in a table. Filtered
indexes can be useful if there is a subset of the data that is queried frequently for which you want to
create specialized indexes and/or statistics. When you create a filtered index on a table, the statistics
that are created to support the index are also filtered.

One common use case for filtered indexes is in a system that uses soft deletes where rows are marked
as deleted but kept in the table, either for a short period or indefinitely. In systems such as these,
nearly every query in the application will likely need to filter out all the deleted rows. If the deleted
rows never get cleaned up because they are needed for historical purposes, over time, this can create
a significant skew in data distribution. Queries that only need non-deleted data can get less and less
efficient as the number of deleted rows outnumbers the number of non-deleted rows. In this case,
filtered indexes will not only be smaller and more efficient to query, but the statistics that are created
for these indexes are likely to be more accurate as they represent the distribution of only the active data.

In the AdventureWorks database, there is one table that uses a concept like soft deletes –
BillOfMaterials. This table stores a hierarchical list of all the components that make up each
of the products that AdventureWorks sells. Each component has a start date that indicates when
the component began to be used in the assembly, and if the component is discontinued, an end date
is also recorded. Since most of the components are still in use, the components that have a NULL end
date far outnumber the components that have a non-NULL end date. In this case, a filtered index
can come in handy if you want to do any sort of reporting on discontinued components. Take the
following query as an example:

SELECT ProductAssemblyID, p.Name AS ProductName,
 ComponentID, comp.Name AS DiscontinuedComponent,
 StartDate, EndDate
FROM Production.BillOfMaterials AS bom
LEFT JOIN Production.Product AS p

Indexing for T-SQL Performance144

 ON bom.ProductAssemblyID = p.ProductID
LEFT JOIN Production.Product AS comp
 ON bom.ComponentID = comp.ProductID
WHERE EndDate IS NOT NULL
 AND StartDate BETWEEN '01/01/2010' AND '12/31/2010';

This query returns a list of 199 components that were introduced in 2010 that have been discontinued.
Figure 4.17 shows the plan for this query:

Figure 4.17: Screenshot of the execution plan for the example query showing the

Number of Rows Read, Actual Number of Rows for All Executions, and Predicate

for the Clustered Index Scan properties on the BillOfMaterials table

As shown in Figure 4.17, the BillOfMaterials table is being accessed by a clustered index scan,
which means the predicate wasn’t SARGable. The properties of the clustered index scan show that
2,679 rows had to be read to return only 199 rows, resulting in 22 logical reads against this index.

Based on what we’ve learned so far about non-clustered indexes, we can try to add a covering index
for this query:

CREATE NONCLUSTERED INDEX IX_BillOfMaterials_StartDate_EndDate
ON Production.BillOfMaterials (StartDate, EndDate);

Indexing strategy using rowstore indexes 145

Tip
Since the clustered index on the BillOfMaterials table contains both ProductAssemblyID
and ComponentID in the key, there’s no need to explicitly add these columns to the non-
clustered index as included columns – they will be part of the index by default.

With this new index in place, the query gets a bit more efficient. Figure 4.18 shows the plan:

Figure 4.18: Screenshot of the execution plan for the example query with the properties

of the index seek on the new covering index showing the Number of Rows Read, Actual

Number of Rows for All Executions, Predicate, and Seek Predicates properties

Now, there is a seek predicate, and the number of logical reads on the BillOfMaterials table has
been reduced from 22 to 12, but the query is still reading 2,679 rows. Let’s try the filtered index instead:

CREATE NONCLUSTERED INDEX IX_BillOfMaterials_StartDate_Filtered
ON Production.BillOfMaterials (StartDate)
INCLUDE (EndDate)
WHERE (EndDate IS NOT NULL);

Figure 4.19 shows the execution plan for the query:

Indexing for T-SQL Performance146

Figure 4.19: Screenshot of the execution plan for the example query with the

properties of the index seek on the filtered index showing the Number of Rows Read,

Actual Number of Rows for All Executions, and Seek Predicates properties

Now, the number of rows read matches the number of rows returned – 199. Also, the logical reads on
the BillOfMaterials table are reduced even further from 12 to 2.

There are a few caveats to using filtered indexes. It should be obvious that the filter condition in the
index must be present somewhere in the predicate of the query for the index to be used, but keep in
mind that it must match exactly. If any literal values from the filter condition are parameterized in the
query, the index cannot be used. Also, it generally makes more sense to have a single non-clustered
index with the filter column as a key column rather than to create multiple filtered indexes for different
values in the same column.

Index maintenance
While index maintenance is more of a database administration topic than a developer topic, it’s worth
discussing the importance of index maintenance. As we discussed in the section on index structure,
over time, INSERT, UPDATE, and DELETE operations can cause an index to become fragmented.
Once the data is in memory, fragmentation doesn’t cause a noticeable performance issue, so the
main concern is I/O. The SQL Database Engine has a few I/O optimizations, such as the readahead
mechanism that’s used when scanning an index, that rely on the data being stored contiguously. When
the data is fragmented, I/O may not be as efficient.

Summary 147

Another side effect of fragmentation is lower page density. A page is the smallest unit of I/O in the
SQL Database Engine, so an index that contains a lot of partially empty pages will generate a lot more
I/O than necessary. If the pages are full, it will take fewer of them to store the same amount of data.
This is a problem that can impact performance, even if the data is in memory, because it will increase
the number of logical reads needed to complete each query, and it will waste precious memory that
can be used for other things. In short, this is a problem that is much more likely to cause performance
issues than logical fragmentation alone.

Reducing fragmentation and increasing page density can be accomplished by periodically rebuilding or
reorganizing indexes. How often index maintenance should be performed for a given system depends
on many factors and requires a much larger conversation than would be appropriate for this book. So,
for more information on maintaining indexes, consider reviewing the newly updated index maintenance
documentation for SQL Server and Azure SQL at https://aka.ms/IndexMaintenance.

Summary
This chapter covered a lot of ground, so let’s review the overall indexing strategy guidance:

1. Clustered index data access is generally more efficient than heaps and every table in the database
should have a clustered index, except for short-lived tables such as staging tables.

2. Create clustered indexes first based on the data structure. These should generally be primary
keys unless there’s a specific reason to cluster a different column or columns (for example,
surrogate versus natural keys).

3. Create non-clustered indexes on all foreign key columns.

4. Once you begin writing queries, create additional non-clustered indexes to support the application
queries, or add additional columns to existing foreign key indexes.

5. Create covering indexes where practical, balancing overhead with performance.

6. Do not over-index heavily updated tables; balance the cost of index maintenance with the
benefit to queries. Just because the SQL Database Engine allows you to create 999 non-clustered
indexes per table doesn’t mean you should.

7. Keep indexes as small as possible – the more rows that fit on a page, the less I/O is required
to read the data.

https://aka.ms/IndexMaintenance

5
Writing Elegant T-SQL Queries

At this point, we should have a good understanding of how to build a T-SQL query, and the building
blocks of writing T-SQL code such as query optimization fundamentals, reading and interpreting
query plans, and some best practices around indexing and writing efficient T-SQL code. But how do
we build an elegant T-SQL query? One that not only gets the job done but does so efficiently?

There are a few guidelines that are important to keep in mind when writing T-SQL queries to ensure
that they perform and scale well while avoiding some common pitfalls that even experienced T-SQL
developers can encounter that will make a query perform poorly.

In this chapter, we will examine some common T-SQL patterns and anti-patterns, specifically those
that should be easily identified just by looking at the T-SQL code. We’re going to cover the following
main topics:

• Best practices for T-SQL querying

• The perils of SELECT *

• Functions in our predicate

• Deconstructing table-valued functions

• Complex expressions

• Optimizing OR logic

• NULL means unknown

• Fuzzy string matching

• Inequality logic

• EXECUTE versus sp_executesql

• Composable logic

Writing Elegant T-SQL Queries150

Technical requirements
The examples used in this chapter are designed for use on SQL Server 2022 and Azure SQL Database,
but they should work on any version of SQL Server, 2012 or later. The "Developer Edition" of SQL
Server is free for development environments and can be used to run all the code samples. There is
also a free tier of Azure SQL Database you can use for testing at https://aka.ms/freedb.

You will need the sample databases AdventureWorks2016_EXT (referred to as AdventureWorks)
and AdventureWorksDW2016_EXT (referred to as AdventureWorksDW), which can be found
on GitHub at https://github.com/Microsoft/sql-server-samples/releases/
tag/adventureworks. Code samples for this chapter can also be found on GitHub at https://
github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/
main/ch5.

Best practices for T-SQL querying
There are a number of best practices for writing good T-SQL that don’t constitute a pattern or anti-
pattern, which is something we will discuss next in this chapter, but are important enough to observe
when we want to write good queries. This section covers those practices.

Referencing objects

Always reference objects by their two-part name (<schema>.<name>) in T-SQL code because not
doing so has some performance implications.

Using two-part object names prevents name resolution delays during query compilation: if the default
schema for a user connecting to the SQL Database Engine is HumanResources, and that user
attempts to execute the stored procedure dbo.uspGetEmployeeManagers for which it also has
permissions, but simply references uspGetEmployeeManagers, the SQL Database Engine first
searches the HumanResources schema for that stored procedure before searching other schemas,
thus delaying resolution and therefore execution. When that stored procedure is used at scale, it may
introduce unwarranted overhead.

Two-part object names also provide more opportunities for plan reuse and reduce the likelihood of
failed executions if multiple objects with the same name exist across schemas. For cached query plans
to be reused, it is necessary that the objects referenced by the query don’t require name resolutions.
For example, referencing the Sales.SalesOrderDetail table does not require name resolution,
but simply SalesOrderDetail does because there could be tables named SalesOrderDetail
in other schemas.

https://aka.ms/freedb
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch5
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch5
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch5

Best practices for T-SQL querying 151

Joining tables

When writing T-SQL queries, it’s important to distinguish between proper join predicates and
search predicates.

For inner joins, it is best to keep only join arguments in the ON clause, and move all search arguments
to a WHERE clause. Performance-wise there is no difference if the generated query plan is the same,
but the T-SQL is more readable. The following query examples can be executed in the scope of the
AdventureWorks sample database, and yield the same query plans:

SELECT p.ProductID, p.Name, wo.StockedQty, wor.WorkOrderID
FROM Production.WorkOrder AS wo
INNER JOIN Production.Product AS p ON wo.ProductID = p.ProductID
INNER JOIN Production.WorkOrderRouting AS wor ON wo.WorkOrderID = wor.
WorkOrderID
WHERE p.ProductID = 771 AND wor.WorkOrderID = 852;

SELECT p.ProductID, p.Name, wo.StockedQty, wor.WorkOrderID
FROM Production.WorkOrder AS wo
INNER JOIN Production.Product AS p ON wo.ProductID = p.ProductID
 AND p.ProductID = 771
INNER JOIN Production.WorkOrderRouting AS wor ON wo.WorkOrderID = wor.
WorkOrderID
 AND wor.WorkOrderID = 852;

In the first query, it’s immediately readable which conditions are join predicates and which are
search predicates.

For LEFT JOIN, add any search predicates for the table on the right side of the join. This is because
adding filters that eliminate the possibility of NULL values to the table on the right side of a join in the
WHERE clause will convert the OUTER join to an INNER join." We also added a Note callout box after
this sentence and before the next one that reads "Whenever possible we should optimize for INNER
joins because they are inherently more selective than OUTER joins. The following query examples
can be executed in the scope of the AdventureWorks sample database:

SELECT wo.StockedQty, wor.WorkOrderID
FROM Production.WorkOrder AS wo
LEFT JOIN Production.WorkOrderRouting AS wor ON wo.WorkOrderID = wor.
WorkOrderID
WHERE wor.WorkOrderID = 12345;
SELECT wo.StockedQty, wor.WorkOrderID
FROM Production.WorkOrder AS wo
LEFT JOIN Production.WorkOrderRouting AS wor ON wo.WorkOrderID = wor.
WorkOrderID
WHERE wo.WorkOrderID = 12345;

Writing Elegant T-SQL Queries152

These queries yield different query plans but the same result sets. In the first query, a reference to
the Production.WorkOrderRouting table was added as a predicate. Since that table is on the
right side of the join, this resulted in the LEFT OUTER JOIN becoming an INNER JOIN, as seen
in the Nested Loops operator in the query plans:

Figure 5.1 – Execution plan for the two queries on the Production schema

In some cases, this can result in different choices for physical joins, and so impact I/O, memory, and
CPU resources. This also applies in the inverse case – adding a reference to the table on the left side
of a RIGHT JOIN.

Using NOLOCK

The SQL Database Engine uses isolation levels to preserve the logical order of all transactions, and to
protect transactions from the effects of updates performed by other concurrent transactions. The goal is
to uphold the ACID properties of relational databases: Atomicity, Consistency, Isolation, and Durability.

Tip
Read more about ACID at http://en.wikipedia.org/wiki/ACID.

Different isolation levels have trade-offs between concurrency and isolation requirements: using more
restrictive isolation means fewer concurrent transactions. In a nutshell, the SQL Database Engine
complies with ANSI-99 standard isolation levels:

http://en.wikipedia.org/wiki/ACID

Best practices for T-SQL querying 153

• In Read Uncommitted (lowest isolation level, maximum concurrency), statements can read
rows that have been modified by other transactions but not yet committed

• In Read Committed (the default isolation level in the SQL Database Engine), statements cannot
read data that has been modified but not committed by other transactions

• In Repeatable Read, statements cannot read data that has been modified but not yet committed
by other transactions, and no other transactions can modify data that has been read by the
current transaction

• In Serializable (highest isolation level, no concurrency), statements cannot read data that
has been modified but not yet committed by other transactions, no other transactions can
modify data that has been read by the current transaction, and other transactions cannot
insert new rows with key values that would fall in the range of keys read by any statements in
the current transaction

Note
The SQL Database Engine adds two isolation levels above the ANSI standard that are not
discussed in this book: Snapshot and Read Committed Snapshot Isolation (RCSI).

The NOLOCK hint implements the same behavior as Read Uncommitted at the statement level. When
this hint is used, it’s possible to read uncommitted modifications, which are called dirty reads. This
means that by using NOLOCK, a developer is explicitly allowing uncommitted data to be used for
other transactions. Allowing dirty reads allows higher concurrency at the cost of reading data that
can still be rolled back by other transactions. In turn, this may generate application errors, present
uncommitted data to users, or cause users to see duplicate records, or no records at all. This is the sort
of hint that should not be used in queries that require operational precision such as banking or trade.

Using cursors

Cursor usage must be kept to a minimum. Depending on the cursor type, they may use tempdb
worktables, which causes an I/O penalty. Because cursors operate in a row-by-row fashion, they force
the SQL Database Engine to repeatedly fetch a new row, negotiate blocking, and manage locks, to
then output each row result individually.

Consider whether set-based logic can be used. In some cases, cursors appear more straightforward, but
using T-SQL constructs such as common table expressions (CTEs) or temporary tables may achieve
the same results with less overhead. If a set-based approach is not possible, most cursors can be avoided
by using a WHILE loop, namely if there is a Primary Key or Unique Key in the table. However, there
are scenarios where cursors are not only unavoidable, but they are actually needed. If this is the case
but tables don’t need to be updated based on the cursor position, then the recommendation is to use
firehose cursors, meaning forward-only and read-only cursors.

Writing Elegant T-SQL Queries154

Now that we’ve covered some general T-SQL best practices, let’s move on to some common anti-
patterns, starting with SELECT *.

The perils of SELECT *
SELECT * should be avoided in stored procedures, views, and Multi-Statement Table-Valued
Functions (MSTVFs) because our T-SQL code might break if there are any changes to the underlying
schema. For example, applications that reference SELECT * may rely on the ordinal position rather
than column names and may encounter errors if the underlying table definition is changed. Instead,
fully qualify the names of columns that are relevant to our result set.

This also has important performance implications. Some application patterns may rely on reading an
entire dataset and applying filters in the client layer only. For example, imagine a web application where
a sales supervisor can see a report of orders registered for a given month, with details per product.
The application connects to the AdventureWorks sample database and runs a query:

Dim myConnection As New SqlConnection("Our Connection String")
Dim cmd As New SqlCommand
Dim reader As SqlDataReader
cmd.CommandText = "SELECT *
 FROM Sales.SalesOrderHeader AS h
 INNER JOIN Sales.SalesOrderDetail AS d ON h.SalesOrderID =
d.SalesOrderID
 INNER JOIN Production.Product AS p ON d.ProductId = p.ProductID
 WHERE h.OrderDate BETWEEN '2013-02-28 00:00:00.000'
AND '2013-03-30 00:00:00.000';"
cmd.CommandType = CommandType.Text
cmd.Connection = myConnection
myConnection.Open()
reader = cmd.ExecuteReader()
while (reader.Read())
{
 return reader["ProductLine"] as string;
 return reader["Name"] as string;
 return reader["OrderDate"] as DateTime;
 return reader["SalesOrderID"] as Int32;
 return reader["OrderQty"] as Int32;
 return reader["LineTotal"] as double;
 return reader["TotalDue"] as double;
}
reader.Close()
myConnection.Close()

Let’s observe the generated query execution plan:

The perils of SELECT * 155

Figure 5.2 – Execution plan for the SELECT * query building the report of orders

Notice that the SQL Database Engine chose to scan all clustered indexes, even on the table where a
predicate exists. Given that we are retrieving all columns, there is no missing index suggestion about
creating non-clustered indexes because these would be similar in size to the clustered indexes.

Note the execution time statistics for the SELECT * query, and the amount of memory required to
execute that query.

Figure 5.3 – QueryTimeStats for the query execution plan in Figure 5.2

Figure 5.4 – MemoryGrantInfo for the query execution plan in Figure 5.2

Also note in the application code that after getting the entire result set, only the relevant columns for
our report are being used. So, instead of selecting all columns in the table to then trim the number of
columns in the client layer, it is preferable to issue a query that only retrieves the required columns
from the table:

SELECT p.ProductLine, p.[Name], h.OrderDate,
h.SalesOrderID, d.OrderQty, d.LineTotal, h.TotalDue
FROM Sales.SalesOrderHeader AS h
INNER JOIN Sales.SalesOrderDetail AS d ON h.SalesOrderID =
d.SalesOrderID
INNER JOIN Production.Product AS p ON d.ProductId = p.ProductID
WHERE h.OrderDate BETWEEN '2013-02-28 00:00:00.000' AND '2013-03-30
00:00:00.000';

Writing Elegant T-SQL Queries156

Let’s observe the new query execution plan:

Figure 5.5 – Execution plan for the narrower SELECT query

Now compare the execution time statistics for the new SELECT query, and the amount of memory
required to execute that query:

Figure 5.6 – QueryTimeStats for the query execution plan in Figure 5.5

Figure 5.7 – MemoryGrantInfo for the query execution plan in Figure 5.5

Even though the plan shape hasn’t changed, we can clearly see a lower memory requirement (only
1.3 MB instead of 2.4 MB) and lower CPU use and execution time. Reading all columns from a table
usually means accessing the underlying heap or clustered index directly, rather than using narrower
non-clustered indexes. Conversely, reading only the relevant subset of columns unlocks better usage
of our existing index design, or allows for new covering indexes to be created, which can significantly
improve read performance.

Precisely because we need fewer columns, the SQL Database Engine was able to identify an index
suggestion that may yield even better results. This was not possible before because all the columns
were being selected. Because there is no current index that would be useful to change even marginally,
we can create this index suggestion as follows:

CREATE NONCLUSTERED INDEX IX_OrderDate_TotalDue ON [Sales].
[SalesOrderHeader] (

The perils of SELECT * 157

 [OrderDate]
)
INCLUDE ([TotalDue]);

Although it was not suggested, keeping in mind the indexing guidelines we discussed in Chapter 4,
Indexing for T-SQL Performance, we can create an additional covering index for the largest scan in
the query execution plan:

CREATE NONCLUSTERED INDEX IX_SalesOrderID_ProductID_OrderQty_LineTotal
ON [Sales].[SalesOrderDetail] (
 [SalesOrderID],
 [ProductID]
)
INCLUDE (
 [OrderQty],
 [LineTotal]
);

The new query execution plan looks much better, leveraging the two new indexes:

Figure 5.8 – Execution plan for the narrower SELECT query using new indexes

The QueryTimeStats for this query execution plan confirm this; CPU time dropped from 61 ms to
24 ms (61 percent less), and execution time dropped from 299 ms to 57 ms (81 percent less):

Figure 5.9 – QueryTimeStats for the query execution plan in Figure 5.8

Writing Elegant T-SQL Queries158

If you use columnstore indexes, even without specifying any predicates, the same recommendation of
not using SELECT * still applies. Selecting just the column names that are needed for the application
can translate to significant I/O savings as well, because while you are still retrieving all the data in the
columns without filters, being stored in columnar format means that only the columns required are
read. Also, note that sending only the columns needed by the application to the client layer prevents
unnecessary network I/O and reduces the memory footprint of the client. This can improve the overall
performance and scalability of our application as well as the underlying T-SQL queries. Now that
we’ve discussed the perils of SELECT *, let’s move on to another common anti-pattern – functions
in the WHERE clause.

Functions in our predicate
Search predicates should only use deterministic function calls. Calls to non-deterministic functions
with columns for parameters cause the SQL Database Engine to be unable to reference the selectivity
of those columns, as the result of the function is unknown at compile time. Because of this, they cause
unnecessary scans.

Keep in mind what was discussed in previous chapters: that the Query Optimizer uses statistics and
some internal transformation rules and heuristics at compile time to determine a good enough plan
to execute a query; and how the WHERE clause is one of the first to be evaluated during logical query
processing. The Query Optimizer depends on the estimated cost to resolve the search predicates to
choose whether to do seeks or scans over indexes.

The following example shows a query executed in the AdventureWorks sample database that uses
non-deterministic function calls in the search predicate:

SELECT SalesOrderID, OrderDate
FROM Sales.SalesOrderHeader
WHERE YEAR(OrderDate) = 2013 AND MONTH(OrderDate) = 7;

Let’s observe the query execution plan:

Figure 5.10 – Execution plan for the query

We have a scan of the clustered index. Notice that while we have a non-SARGable predicate, it was
pushed down to be resolved during the Clustered Index Scan to return 1,740 rows, but the full 31,465
rows were still read.

Functions in our predicate 159

Figure 5.11 – Clustered index scan properties

Recall what we discussed in the chapter Indexing for T-SQL Performance, in the Understanding predicate
SARGability section. What we have seen calls for a better index, and knowing more about index tuning
recommendations now, I can identify that the following index could be useful:

CREATE NONCLUSTERED INDEX IX_OrderDate ON Sales.SalesOrderHeader (
 OrderDate
);

Executing the same query results in the following query execution plan:

Writing Elegant T-SQL Queries160

Figure 5.12 – Execution plan for the query using the new index

This is still an index scan, although on the newly created index. The new index is narrower, but the
scan still reads 31,645 rows. This is because of the non-deterministic YEAR and DATE functions
being used in the predicate. The same result set can be achieved by rewriting the query to avoid these
function calls in the search predicate and enable the Query Optimizer to consider other options. The
following is just a quick example of how to express the same condition without the use of functions:

DECLARE @start DATETIME = '07/01/2013', @end DATETIME = '07/31/2013'
SELECT SalesOrderID, OrderDate
FROM Sales.SalesOrderHeader
WHERE OrderDate BETWEEN @start AND @end;

Let’s observe the new query execution plan:

Figure 5.13 – Execution plan for the query using local variables

This is now a seek operation that only reads the 1,740 rows that match the search predicate because
the query no longer needs to search based on non-deterministic functions. We could stop the rewrite
here, but we are looking to write efficient T-SQL and one of the main goals is to ensure row estimations
are always as close as possible to actual rows. Notice how the estimations are very skewed. The seek
operation returned 1,740 rows of 5,170 estimated rows. The misestimation comes from the fact that
the query uses local variables that prevent the Query Optimizer from using the statistics histogram
to get accurate estimations.

Deconstructing table-valued functions 161

This can be addressed by using the RECOMPILE hint, or better yet, using sp_executesql. The
following examples show both options; first, here’s the RECOMPILE hint:

DECLARE @start DATETIME = '07/01/2013', @end DATETIME = '07/31/2013'
SELECT SalesOrderID, OrderDate
FROM Sales.SalesOrderHeader
WHERE OrderDate BETWEEN @start AND @end
OPTION (RECOMPILE);

And here’s the sp_executesql method:

EXECUTE sp_executesql @stmt = N'SELECT SalesOrderID, OrderDate FROM
Sales.SalesOrderHeader
WHERE OrderDate BETWEEN @start AND @end;'
 , @params = N'@start DATETIME, @end DATETIME'
 , @start = '07/01/2013', @end = '07/31/2013';

We can observe the new query execution plan:

Figure 5.14 – Execution plan for the query using sp_executesql

Notice the estimation now matches the actual rows, denoting accurate estimations, and a perfect
example of Predicate Pushdown, as we discussed in Chapter 4, Indexing for T-SQL Performance. Now
that we’ve covered the issues with functions in our predicates, let’s dig a little deeper into how table-
valued functions can impact query performance.

Deconstructing table-valued functions
A User-Defined Function (UDF) is like a stored procedure in that it is a block of T-SQL statements
saved as an object, but it differs in that it does not generate a result set; it returns a value of a specified
type. A scalar UDF is a function that returns a single value; a Table-Valued Function (TVF) is a
function that returns a table.

Writing Elegant T-SQL Queries162

There are two types of TVFs in the SQL Database Engine:

• Multi-statement TVFs (MSTVFs): MSTVFs declare a return table type, populate the table,
then return the table at the end of the function

• Inline TVFs: You can think of an inline TVF as a view that takes a parameter, the body of the
function is a single query, and the return value is the result of that query

The following is an example of an MSTVF that we can create in the AdventureWorks sample database:

CREATE OR ALTER FUNCTION dbo.ufn_FindReports (@InEmpID INTEGER)
RETURNS @retFindReports TABLE
(
 EmployeeID int primary key NOT NULL,
 FirstName nvarchar(255) NOT NULL,
 LastName nvarchar(255) NOT NULL,
 JobTitle nvarchar(50) NOT NULL,
 RecursionLevel int NOT NULL
)
/*Returns a result set that lists all the employees who report to the
specific employee directly or indirectly. */
AS
BEGIN
WITH EMP_cte(EmployeeID, OrganizationNode, FirstName, LastName,
JobTitle, RecursionLevel) -- CTE name and columns
 AS (
 -- Get the initial list of Employees for Manager n
 SELECT e.BusinessEntityID, e.OrganizationNode, p.FirstName,
p.LastName, e.JobTitle, 0
 FROM HumanResources.Employee e
INNER JOIN Person.Person p
ON p.BusinessEntityID = e.BusinessEntityID
 WHERE e.BusinessEntityID = @InEmpID
 UNION ALL
 -- Join recursive member to anchor
 SELECT e.BusinessEntityID, e.OrganizationNode, p.FirstName,
p.LastName, e.JobTitle, RecursionLevel + 1
 FROM HumanResources.Employee e
 INNER JOIN EMP_cte
 ON e.OrganizationNode.GetAncestor(1) = EMP_cte.
OrganizationNode
INNER JOIN Person.Person p
ON p.BusinessEntityID = e.BusinessEntityID)

-- copy the required columns to the result of the function
 INSERT @retFindReports

Deconstructing table-valued functions 163

 SELECT EmployeeID, FirstName, LastName, JobTitle, RecursionLevel
 FROM EMP_cte
 RETURN
END;

Since this function returns a table, we can reference it in a T-SQL query just like we would a table.
The following is a sample query that uses this function:

SELECT EmployeeID, FirstName, LastName, JobTitle, RecursionLevel
FROM dbo.ufn_FindReports(25);

The problem with MSTVFs is the cost of the function can’t be determined at compile time, so a fixed
estimation of rows is used to create the query plan. Let’s look at the query execution plan for the
previous example in the following screenshot:

Figure 5.15 – Execution plan for the query using an MSTVF

Notice that the TVF appears as an input to the join as if it were a table with an estimate of 100 rows,
but an actual row count of 0.

Note
Prior to SQL Server 2014, the fixed estimate for MSTVFs was 1. In this case, it would have
been a better estimate, but most MSTVFs return more than 1 row, so 100 is generally a better
fixed estimate.

This inaccurate cardinality estimate could cause the plan to be inefficient, but since the true cardinality
can’t be determined without executing the function, there is not much that can be done to improve
this estimate.

Writing Elegant T-SQL Queries164

Figure 5.16 – QueryTimeStats for the query execution plan in Figure 5.15

The query took 468 ms to execute, with 261 ms of CPU time. Note the UdfElapsedTime is 117 ms
and has to do with this query referencing the GetAncestor system function.

Starting with SQL Server 2017, a new feature called Interleaved Execution for MSTVFs was introduced.
With interleaved execution, rather than using a fixed estimate, optimization is paused when an MSTVF
is encountered, the function is materialized, and the actual row count is used to optimize the rest
of the plan. The resulting plan is then cached, so this process will not be repeated when subsequent
executions reuse the plan. Using the previous example, if we change the database compatibility to
level 140, which maps to the SQL Server 2017 release, we get an accurate row count for our query, as
in the following screenshot:

Figure 5.17 – Execution plan for the query using the Interleaved Execution feature

The QueryTimeStats for this query are improved from the non-interleaved version: CPU time dropped
from 261 ms to 223 ms (~14 percent less), and execution time dropped from 468 ms to 224 ms (~51
percent less), as seen in the following screenshot:

Deconstructing table-valued functions 165

Figure 5.18 – QueryTimeStats for the query execution plan in Figure 5.17

An even better way to do this would be to write the function as an inline TVF. As we mentioned
earlier in this section, inline TVFs behave like views – they can be folded into the query, allowing their
cardinality to be known at compile time, thus generating a more efficient query plan. In the following
example, let’s look at how we can create an inline TVF that returns the same results as the MSTVF:

CREATE OR ALTER FUNCTION dbo.ufn_FindReports_inline (@InEmpID int)
RETURNS TABLE
AS
RETURN
WITH EMP_cte(EmployeeID, OrganizationNode, FirstName, LastName,
JobTitle, RecursionLevel) -- CTE name and columns
 AS (
 -- Get the initial list of Employees for Manager n
 SELECT e.BusinessEntityID AS EmployeeID, e.OrganizationNode,
p.FirstName, p.LastName, e.JobTitle, 0 AS RecursionLevel
 FROM HumanResources.Employee e
 INNER JOIN Person.Person p
 ON p.BusinessEntityID = e.BusinessEntityID
 WHERE e.BusinessEntityID = @InEmpID
 UNION ALL
 -- Join recursive member to anchor
 SELECT e.BusinessEntityID AS EmployeeID, e.OrganizationNode,
p.FirstName, p.LastName, e.JobTitle, RecursionLevel + 1 AS
RecursionLevel
 FROM HumanResources.Employee e
 INNER JOIN EMP_cte
 ON e.OrganizationNode.GetAncestor(1) = EMP_cte.
OrganizationNode
INNER JOIN Person.Person p
ON p.BusinessEntityID = e.BusinessEntityID)
SELECT EmployeeID, FirstName, LastName, JobTitle, RecursionLevel
FROM EMP_cte;

The plan shape for this query looks very different than the previous one:

Writing Elegant T-SQL Queries166

Figure 5.19 – Execution plan for the query using an inline TVF

This is because the function is not being referenced as an object in this plan. The inline TVF is folded into
the query as a table or view would be, allowing for a better overall plan and opening new opportunities
for adjusting the indexes for an even better result. In this case, the performance of the query is like the
interleaved MSTVF – CPU time dropped from 261 ms to 220 ms (~16 percent less), and execution
time dropped from 468 ms to 221 ms (~52 percent less), as seen in the following screenshot:

Figure 5.20 – QueryTimeStats for the query execution plan in Figure 5.19

The takeaway here is to write TVFs as inline TVFs rather than MSTVFs where possible. If the logic
is too complex to make an inline TVF feasible, upgrading to SQL Server 2017 or higher to be able to
leverage interleaved execution might improve query performance when leveraging TVFs. Now that
we understand how proper use of TVFs can improve performance, let’s dig into another common
anti-pattern – complex expressions in a WHERE clause.

Complex expressions
Search predicates should not use complex expressions. Much like the deterministic function calls we
discussed in the Functions in our predicate section, complex expressions can also cause unnecessary scans.

As was discussed in previous chapters, the Query Optimizer uses statistics, internal transformation rules,
and heuristics at compile time to determine a good enough plan to execute a query. This includes the

Complex expressions 167

ability to fold expressions, which is the process of simplifying constant expressions at compile time. For
example, a predicate such as WHERE Column = 320 * 200 * 32 is computed at compile time
to its arithmetic result and, internally, the predicate is evaluated as WHERE Column = 2048000.
But unlike constants, calculations that involve column values, parameters, non-deterministic functions,
or variables are only evaluated at runtime – this is another example of how the Query Optimizer can’t
accurately estimate row counts beforehand, resulting in an inefficient query plan.

The following example shows a query executed in the AdventureWorks sample database that uses
a calculation with a table column in the search predicate. The query lists all ordered products where
an additional 10 percent discount can be added if the final discount is less than or equal to 30 percent:

SELECT ProductID, [UnitPrice], [UnitPriceDiscount],
 [UnitPrice] * (1 - [UnitPriceDiscount]) AS FinalUnitPrice,
 [UnitPriceDiscount] + 0.10 AS NewUnitPriceDiscount,
 [UnitPrice] * (1 - 0.30) AS NewFinalUnitPrice
FROM Sales.SalesOrderDetail
WHERE [UnitPriceDiscount] + 0.10 <= 0.30
GROUP BY ProductID, [UnitPrice], [UnitPriceDiscount];

Let’s observe the query execution plan:

Figure 5.21 – Execution plan for the query

Much as we discussed in the Functions in our predicate section, we see a scan of the clustered index.
The requirement for the query is to find ordered products where the company can add an additional
10 percent and still not go above a 30 percent discount, and the predicate [UnitPriceDiscount]
+ 0.10 <= 0.30 accomplishes that.

But the same requirement can be expressed using a search predicate that does not use a complex
expression, such as seen in the following query:

SELECT ProductID, [UnitPrice], [UnitPriceDiscount],
 [UnitPrice] * (1 - [UnitPriceDiscount]) AS FinalUnitPrice,
 [UnitPriceDiscount] + 0.10 AS NewUnitPriceDiscount,
 [UnitPrice] * (1 - 0.30) AS NewFinalUnitPrice
FROM Sales.SalesOrderDetail
WHERE [UnitPriceDiscount] <= 0.20
GROUP BY ProductID, [UnitPrice], [UnitPriceDiscount];

Let’s observe the new query execution plan:

Writing Elegant T-SQL Queries168

Figure 5.22 – Execution plan for the query

Figure 5.23 – QueryTimeStats for the query execution plan in Figure 5.22

There is no discernible change, but that’s because there isn’t a better index to use in the current schema.
However, the SQL Database Engine found an index suggestion that may yield better results, and this
was possible because the search predicate could now be evaluated at compile time. We can create the
index suggestion as follows:

CREATE NONCLUSTERED INDEX IX_UnitePriceDiscount ON [Sales].
[SalesOrderDetail] (
 [UnitPriceDiscount]
)
INCLUDE (
 [ProductID],
 [UnitPrice]

);

Tip
It’s a good idea to assess the current index design after getting an index suggestion to determine
if an existing index is a subset of the suggested index. If such an index already exists, it is better
to alter this index rather than create a new index that would be redundant and unnecessarily
increase index overhead.

Executing the same query results in the following query execution plan:

Figure 5.24 – Execution plan for the query using the new index

Optimizing OR logic 169

The new plan is much cheaper to execute, which is why it didn’t even qualify for parallelism. And in
fact, if we compare the QueryTimeStats from before and after the index was created, the improvements
are also obvious: CPU time dropped from 140 ms to 67 ms (52 percent less), and execution time
dropped from 276 ms to 74 ms (73 percent less):

Figure 5.25 – QueryTimeStats for the query execution plan in Figure 5.24

Now that we understand the impact complex expressions can have on query performance, let’s move
on to another potential anti-pattern – OR logic.

Optimizing OR logic
A common query pattern involves the need to express several conditions of which at least one must
be true to filter the result set, usually with OR logic. Expressing these OR conditions can have serious
performance drawbacks and can often be replaced with other constructs that provide better scalability
and performance.

The following example shows a query executed in the AdventureWorks sample database that uses
an OR condition in the search predicate. The query lists all rows for a specific product, or where the
price is set at a predetermined value:

SELECT ProductID, [UnitPrice], [UnitPriceDiscount],
 [UnitPrice] * (1 - [UnitPriceDiscount]) AS FinalUnitPrice,
 [UnitPriceDiscount] + 0.10 AS NewUnitPriceDiscount,
 [UnitPrice] * (1 - 0.30) AS NewFinalUnitPrice
FROM Sales.SalesOrderDetail
WHERE ProductID = 770
 OR UnitPrice = 3399.99
GROUP BY ProductID, [UnitPrice], [UnitPriceDiscount];

With the following query execution plan:

Figure 5.26 – Execution plan for the query

Writing Elegant T-SQL Queries170

For reference, the QueryTimeStats for this query execution plan are as follows:

Figure 5.27 – QueryTimeStats for the query execution plan in Figure 5.26

Looking at the search predicates, they are not necessarily mutually exclusive. Still, they can effectively
be expressed as two separate queries that are joined by a UNION operator, as in the following example:

SELECT ProductID, [UnitPrice], [UnitPriceDiscount],
 [UnitPrice] * (1 - [UnitPriceDiscount]) AS FinalnitPrice,
 [UnitPriceDiscount] + 0.10 AS NewUnitPriceDiscount,
 [UnitPrice] * (1 - 0.30) AS NewFinalUnitPrice
FROM Sales.SalesOrderDetail
WHERE ProductID = 770
GROUP BY ProductID, [UnitPrice], [UnitPriceDiscount]
UNION
SELECT ProductID, [UnitPrice], [UnitPriceDiscount],
 [UnitPrice] * (1 - [UnitPriceDiscount]) AS FinalUnitPrice,
 [UnitPriceDiscount] + 0.10 AS NewUnitPriceDiscount,
 [UnitPrice] * (1 - 0.30) AS NewFinalUnitPrice
FROM Sales.SalesOrderDetail
WHERE UnitPrice = 3399.99
GROUP BY ProductID, [UnitPrice], [UnitPriceDiscount];

Let’s observe the new query execution plan:

Figure 5.28 – Execution plan for the query using a UNION

Optimizing OR logic 171

Since we now have separate queries, we see a missing index suggestion. The index being suggested is
the following, which covers the second query in the union:

CREATE NONCLUSTERED INDEX IX_UnitPrice ON [Sales].[SalesOrderDetail] (
 [UnitPrice]
)
INCLUDE (
 [ProductID],
 [UnitPriceDiscount]
);

But I know we can also cover the first query in the union. There is already a non-clustered index
on ProductID, but it does not cover IX_SalesOrderDetail_ProductID. However, I can
change the existing index to make it a covering index with negligible effects on any query that was
using the index before:

CREATE NONCLUSTERED INDEX IX_SalesOrderDetail_ProductID ON [Sales].
[SalesOrderDetail] (
 [ProductID]
)
INCLUDE (
 [UnitPrice],
 [UnitPriceDiscount]
)
WITH DROP_EXISTING;

The new query execution plan is the following:

Figure 5.29 – Execution plan for the query using the new index

Writing Elegant T-SQL Queries172

Tip
If we can verify that the predicates are mutually exclusive and that no repeated rows can exist
in the result set, use UNION ALL instead of UNION and avoid the SORT operator seen in the
plan. There’s more on this in the UNION ALL versus UNION section of Chapter 6, Discovering
T-SQL Anti-Patterns in Depth.

The QueryTimeStats for this query execution plan confirm this improved performance: CPU time
dropped from 42 ms to 23 ms (45 percent less), and execution time dropped from 287 ms to 2 ms
(~99 percent less):

Figure 5.30 – QueryTimeStats for the query execution plan in Figure 5.29

The query execution plan shape now seeks non-clustered indexes. This is a more scalable and better-
performing plan than the one scanning the clustered index. Now that we’ve learned some techniques to
optimize OR logic, let’s learn a little more about NULL and how it’s handled in the SQL Database Engine.

NULL means unknown
In the context of a database, if a column is set to NULL, it effectively means that the value is unknown.
If we compare any other value with NULL, the result of that comparison is also unknown. In other
words, a value can never be equal to NULL, as NULL is the absence of a value. This means the
expression ColumnValue = NULL will never evaluate to true or false; even if ColumnValue is
in fact NULL, it will always evaluate to unknown. To detect if a column value is NULL, we must use
the special expressions IS NULL or IS NOT NULL rather than = or <>.

Note
This handling of NULL is not unique to the SQL Database Engine, it is based on the ANSI
standard handling of NULL values.

Having NULL values in our database is not an anti-pattern in and of itself, but when we assign a
meaning to the value NULL in our application, we may face some challenges when it comes to writing
performant T-SQL due to the need for special handling of NULL comparisons.

Let’s look at an example like this in the AdventureWorks database. The Product table contains
information about products that are sold in the shop, but it also contains information about parts
that are kept in stock that are not goods for sale. These items will not have a category, so the

NULL means unknown 173

ProductSubcategoryID column is NULL for these rows. This makes sense if there truly is no category
for these items, but what if we were to say that a value of NULL in the ProductSubcategoryID
column really means that these items are in the Parts category because they are unfinished goods.
If we want to build a query that returns a list of all the products and includes their category and
sub-category, since the sub-category column is NULL for all the parts, we need to embed a function
in the join condition in order to handle the special NULL case. In fact, we need to get a bit creative
with the T-SQL:

SELECT p.ProductID,
p.Name AS ProductName,
c.Name AS Category,
s.Name AS SubCategory
FROM Production.Product p
LEFT JOIN Production.ProductSubcategory s
ON p.ProductSubcategoryID = s.ProductSubcategoryID
INNER JOIN Production.ProductCategory c
ON ISNULL(s.ProductCategoryID, 5) = c.ProductCategoryID
ORDER BY Category, SubCategory;

We need to perform a LEFT JOIN between the Product and ProductSubcategory tables in
order to include the rows that have a NULL value for ProductSubcategoryID in the Product
table, but if we still want to join these NULL rows with the ProductCategory table, we must
handle these NULL values in the join condition by using the ISNULL() function. We’ve hardcoded
the value of 5, which is the ProductCategoryID for the new Parts category we added for this
example. This would be even more complicated if the value we want to join on is NULL on both sides.
In that case, we would need to have a function on both sides of the join to convert the NULL values
into something that can actually be compared. In this case, there’s a better way we could write this
that would prevent NULL handling in the join. Since we know that all the rows with a NULL value
for ProductSubcategoryID are in the Parts category, we can handle this in the SELECT list
instead. Having an ISNULL() function in the SELECT list does not impact the performance as
much because the function call does not interfere with the selectivity estimate, index usage, or plan
selection; it’s simply executed on the results after they are retrieved:

SELECT p.ProductID,
p.Name AS ProductName,
ISNULL(c.Name, 'Parts') AS Category,
s.Name AS SubCategory
FROM Production.Product p
LEFT JOIN Production.ProductSubcategory s
ON p.ProductSubcategoryID = s.ProductSubcategoryID
INNER JOIN Production.ProductCategory c
ON s.ProductCategoryID = c.ProductCategoryID
ORDER BY Category, SubCategory;

Writing Elegant T-SQL Queries174

Let’s look at the query plan for these two queries and their estimated cost. Query 1 is the “bad” query
with ISNULL() in the join condition, and Query 2 is the “good” query with ISNULL() in the
SELECT list:

Figure 5.31 – Execution plan for Query 1 (the “bad” query) and Query 2 (the “good” query)

Looking at the QueryTimeStats for these two queries, we can see that Query 1 uses three times as
much CPU as Query 2:

Figure 5.32 QueryTimeStats for the query execution plan in Figure 5.31

We might notice that there is a scan of the Product table in both plans, which leads to an expensive
Hash Match. This is because there is no index on the ProductSubcategoryID column in the
Product table. Let’s add a covering index to that column to see if we can get the plan to be a little better:

NULL means unknown 175

CREATE NONCLUSTERED INDEX [IX_Product_ProductSubcategoryID] ON
[Production].[Product] (
 [ProductSubcategoryID]
)
INCLUDE (
[Name]
);

Now if we run the queries again, we get the following plans and their estimated cost:

Figure 5.33 – Execution plan for Query 1 and Query 2 using the new index

Query 1 uses the covering index, but because the ISNULL() function prevents the SQL Database
Engine from using the predicate as a seek predicate, it has to scan it. Query 2, on the other hand,
gets much better with seeks and Nested Loops joins. This is reflected in the QueryTimeStats as well:

Figure 5.34 – QueryTimeStats for the query execution plan in Figure 5.33

Writing Elegant T-SQL Queries176

Query 1 goes down to 1 ms, whereas Query 2 stays the same at 1 ms. Keep this in mind when using
NULL in our application. NULL means unknown or the absence of a value and requires special handling
for comparisons; don’t rely on it to represent something concrete. Now that we understand how NULL
works, let’s move on to another potential performance pitfall – fuzzy string matching.

Fuzzy string matching
When searching for strings in the SQL Database Engine using =, the strings must match exactly for
the expression to evaluate to true. If we want to match only part of the string, however, we must use a
LIKE operator with wildcards. If we want to search for a pattern anywhere within a string, we need
both leading and trailing wildcards. The problem with this is that it prevents us from being able to
use an index or accurately estimate the cardinality. An index with a string key is sorted starting with
the first character of the string, but if we are searching for a pattern that may appear in the middle of
the string, the SQL Database Engine must scan every value and search for the matching pattern in
each string in the column. A LIKE operator with a leading wildcard (%a value or %a value%)
almost always causes a scan operation.

Consider an example from the AdventureWorks database where we want to find all the Flat
Washers in the Product table. We know they all start with “Flat Washer” but there are several
different names in the table. If we’re not sure whether there are any characters before the words “Flat
Washer,” we could write the following query:

SELECT ProductID, Name AS ProductName, ProductNumber
FROM Production.Product
WHERE Name LIKE '%Flat Washer%';

This query would yield the following execution plan:

Figure 5.35 – Execution plan for the query

Fuzzy string matching 177

Notice there’s an Index Scan, which is the most expensive operator in the plan.

If we look at the result set, we can see that the words “Flat Washer” always appear at the beginning
of the string:

Figure 5.36 – Result set for the query

In this case, we don’t really need the leading wildcard, so we could re-write the query as follows:

SELECT ProductID, Name AS ProductName, ProductNumber
FROM Production.Product
WHERE Name LIKE 'Flat Washer%';

And then we can examine the execution plan:

Figure 5.37 – Execution plan for the improved query

Writing Elegant T-SQL Queries178

The expensive scan is replaced by a more efficient Index Seek.

If you must use a LIKE expression, try to avoid using a leading wildcard if possible. LIKE expressions
without a leading wildcard translate into a range scan. If it is not possible to avoid the leading wildcard,
we might consider using full text indexes and their accompanying text functions such as CONTAINS
to provide better performance for fuzzy string matching, particularly if this is the only filter condition
on these queries. Now on to another similar potential query problem – inequality logic.

Inequality logic
Inequality logic is logic that involves negative comparisons such as !=, <>, NOT IN, and NOT LIKE.
This type of predicate can be costly because it often results in evaluating each row, which translates
to scan operations. Consider the following queries, 1 and 2, from the AdventureWorks database:

SELECT BusinessEntityID, FirstName, LastName
FROM Person.Person
WHERE PersonType NOT IN ('EM','SP','IN','VC','GC');
SELECT BusinessEntityID, FirstName, LastName
FROM Person.Person
WHERE PersonType = 'SC';

These queries are logically equivalent, since 'SC' is the only PersonType that is not listed in the
first query. Out of the box, the execution plans look like this:

Figure 5.38 – Execution plan for Query 1 and Query 2

At this point, they appear to have the same estimated cost, but notice that both are doing a Clustered
Index Scan and there is a missing index suggestion from the SQL Database Engine. This is because
there is no index on the PersonType column to support the query. Let’s add the following covering
index to support this query:

EXECUTE versus sp_executesql 179

CREATE NONCLUSTERED INDEX [IX_Person_PersonType] ON [Person].[Person]
(
 [PersonType] ASC
)
INCLUDE (
 [BusinessEntityID],
 [FirstName],
 [LastName]
);

Once we add the index, the SQL Database Engine can leverage it for both queries, but notice that the
first query results in a scan of the index, whereas the second query performs a seek. Also note the
estimated cost difference between the plans, the first query is much more expensive than the second:

Figure 5.39 – Execution plan for Query 1 and Query 2 using the new index

As we can see, while both queries are logically the same and return the same results, the second query
is much more efficient than the first once the proper indexes are in place. If we have the option of
writing a filter condition using an equality comparison or an inequality comparison, using the equality
comparison is generally better. Now that we’ve explored a few different ways we can rewrite queries to
get better performance, let’s look at an anti-pattern related to how the query itself is executed.

EXECUTE versus sp_executesql
There are times when an application must build a T-SQL statement dynamically before executing
it on the server. In order to execute a dynamically created T-SQL statement, we can use either the
EXECUTE command or the sp_executesql stored procedure. The sp_executesql procedure
is the preferred method for executing dynamic T-SQL because it allows us to add parameter markers
and thus increases the likelihood that the SQL Database Engine will be able to reuse the plan and
avoid costly query compilations.

Writing Elegant T-SQL Queries180

Here’s an example script from the AdventureWorks database that builds a dynamic T-SQL statement
and executes it via the EXECUTE command:

DECLARE @sql nvarchar(MAX), @JobTitle nvarchar(50) = N'Sales
Representative';

SET @sql = 'SELECT e.BusinessEntityID, p.FirstName, p.LastName
FROM HumanResources.Employee e
INNER JOIN Person.Person p ON p.BusinessEntityID = e.BusinessEntityID
WHERE e.JobTitle = N''' + @JobTitle + '''';

EXECUTE (@sql);

Notice that there is a variable for the JobTitle column, but the EXECUTE command does not
allow parameters, so this variable is appended to the T-SQL string in order to include it in the
resulting query. We can reuse the same script by changing 'Sales Representative' to
'Accountant' and re-running it, but because the resulting query is not parameterized, the SQL
Database Engine will have to compile and cache the query again. We can verify this by examining the
sys.dm_exec_query_stats dynamic management view (DMV). Recall from the Query plan
properties of interest section of Chapter 3, Exploring Query Execution Plans, that there is a property
called QueryHash that contains a value that can identify a query in the cache and will return all the
queries that are syntactically equivalent but have different query strings for some reason:

SELECT st.text, qs.sql_handle, qs.execution_count
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) st
WHERE qs.query_hash = 0x3A17ADF596F7D5C9;

This query returns the following results:

Figure 5.40 – Result set showing different SQL handles for the same query hash

We can see that there are two different queries here, one for each of the different JobTitle values,
and each has a single execution. Each execution of the script resulted in a separate compilation and
a separate cached query plan.

EXECUTE versus sp_executesql 181

Note
We will discuss sys.dm_exec_query_stats as well as other dynamic management views
in more detail in Chapter 7, Building Diagnostic Queries Using DMVs and DMFs.

Let’s see how we can rewrite this script using sp_executesql instead:

DECLARE @sql nvarchar(MAX), @JobTitle nvarchar(50) = N'Sales
Representative';

SET @sql = 'SELECT e.BusinessEntityID, p.FirstName, p.LastName
FROM HumanResources.Employee e
INNER JOIN Person.Person p ON p.BusinessEntityID = e.BusinessEntityID
WHERE e.JobTitle = @p1';

EXEC sp_executesql @sql, N'@p1 nvarchar(50)', @JobTitle;

Notice that in this case, we can use the @JobTitle variable as a parameter in the query. If we change
the value of @JobTitle to 'Accountant' and run the query again, the SQL Database Engine
can reuse the existing execution plan from the cache. We can verify this by running the same query
against sys.dm_exec_query_stats with the QueryHash from this new query. This time,
the results are different:

Figure 5.41 – Result set showing the same SQL handle for the same query hash and two executions

Notice that the query in the cache has a parameter marker, and the execution count is 2, indicating
that the query plan has been reused.

Whenever our application requires dynamic T-SQL for any reason, using the sp_executesql
procedure rather than the EXECUTE command is generally more efficient because it will increase
the likelihood that the SQL Database Engine can reuse the query plan. Also recall that in the The
importance of parameters section in the Understanding Query Processing chapter, we mentioned that
parameters and the use of sp_executesql can also help prevent SQL injection attacks, so it is more
secure than using EXECUTE. For these reasons, sp_executesql is the recommended method for
executing dynamic T-SQL. Now that we know the proper way to execute dynamic T-SQL, let’s look
at another common programming problem – composable logic – and how it might actually perform
better if written as dynamic T-SQL.

Writing Elegant T-SQL Queries182

Composable logic
Composable logic is what some developers use to make a single T-SQL statement do more than one
thing, which allows us to reuse the same code for multiple tasks. When writing procedural code,
reusability is desired because it makes the code more concise and maintainable. It allows developers
to create libraries of modules that can be reused in other areas of the application, or even in other
applications altogether. In T-SQL, however, there can be a hefty performance penalty for writing
generic reusable code.

For the SQL Database Engine to execute a query in the most efficient way, it needs to estimate the
cost of the query and choose operators that will return the results in the cheapest way possible. This
is all done at compile-time based on how the query is written. With composable logic, however, the
true cost of the query cannot be known until runtime because it is based on variables that change
whenever the query is run. This type of generic code causes the SQL Database Engine to generate
a generic plan at compile time that will work no matter what the runtime values are. Typically, this
plan will not perform well for any combination of runtime values, whereas a specific plan generated
for the specific case that is being executed would likely perform much better. Writing T-SQL code for
the specific case that it is needed may result in some code duplication and less maintainability, what
developers sometimes refer to as spaghetti code, but it will almost always provide better performance
and scalability.

Consider the following stored procedure, which can be executed in the AdventureWorks
sample database:

CREATE OR ALTER PROCEDURE usp_GetSalesPersonOrders @SalesPerson INT
NULL
AS
BEGIN
 SELECT SalesOrderID, p.FirstName AS SalesFirstName, p.LastName AS
SalesLastName
 FROM Sales.SalesOrderHeader AS soh
 LEFT JOIN Person.Person AS p ON soh.SalesPersonID =
p.BusinessEntityID
 WHERE @SalesPerson IS NULL OR SalesPersonID = @SalesPerson;
END;

This is an example of composable logic. If a value is sent for the @SalesPerson parameter, we are
effectively executing this query:

SELECT SalesOrderID, p.FirstName as SalesFirstName, p.LastName as
SalesLastName
FROM Sales.SalesOrderHeader AS soh
LEFT JOIN Person.Person AS p ON soh.SalesPersonID = p.BusinessEntityID
WHERE SalesPersonID = @SalesPerson;

Composable logic 183

If NULL is sent for the @SalesPerson parameter, we are effectively executing this query:

SELECT SalesOrderID, p.FirstName as SalesFirstName, p.LastName as
SalesLastName
FROM Sales.SalesOrderHeader AS soh
LEFT JOIN Person.Person p ON soh.SalesPersonID = p.BusinessEntityID;

Note that this second query has no WHERE clause. It will return the entire SalesOrderHeader
table, including any matching rows from the Person table. This is naturally going to be much more
expensive than the first query and should really have a different query plan. Let’s look at the query
plans and see how the SQL Database Engine would perform each query if written separately:

Figure 5.42 – Execution plan for Query 1 and Query 2

As we can see, the estimated cost for Query 1, which uses the @SalesPerson variable in the
WHERE clause, is much cheaper than the estimated cost for Query 2, which returns every row in the
SalesOrderHeader table. Also, note that Query 1 uses Index Seeks and a Nested Loops join,
whereas Query 2 uses Index Scans and a Hash Match. Here are the resulting QueryTimeStats:

Writing Elegant T-SQL Queries184

Figure 5.43 – QueryTimeStats for the query execution plans in Figure 5.42

Now let’s try executing Query 1 by using the stored procedure that we created earlier:

EXECUTE usp_GetSalesPersonOrders @SalesPerson = 279;

This yields the following query execution plan:

Figure 5.44 – Execution plan for Query 1 using the stored procedure for the first time

In this plan, the SQL Database Engine chooses to use a Nested Loops join, but one of the Index Seeks
has become a scan. Also, if we look at the QueryTimeStats property of the plan, this plan used 5 ms
of CPU time to execute – more than double the amount of time the standalone query used:

Figure 5.45 – QueryTimeStats for the query execution plan in Figure 5.44

We can also execute the equivalent of Query 2 using this stored procedure by sending a NULL value
for @SalesPerson:

EXECUTE usp_GetSalesPersonOrders @SalesPerson = NULL;

This execution of the stored procedure will reuse the same plan from the cache, but the runtime is
very different:

Composable logic 185

Figure 5.46 – QueryTimeStats for the same query execution plan using a NULL parameter

While the difference isn’t as much as with Query 1, Query 2 used 28 ms of CPU time versus 27 ms
when run as a standalone query. So, the plan generated by this generic stored procedure is worse for
both queries than a plan generated for the specific queries.

The situation gets even worse if we happen to execute the stored procedure with @SalesPerson
= NULL the first time. We introduced the concept of parameter sniffing in the The importance of
parameters section in the Understanding Query Processing chapter. Composable logic in stored procedures
leaves our application even more vulnerable to parameter sniffing issues. Let’s look at the plan that
is generated if we execute the preceding stored procedure for the first time with a NULL parameter:

Figure 5.47 – Execution plan for the stored procedure compiled using a NULL parameter

This is effectively the same plan that was generated for Query 2 earlier, and the CPU time is similar
at 29 ms. For Query 2, the impact of the composable logic is small, but what happens if we reuse this
plan for the @SalesPerson = 279 case? First, the CPU time is even higher than with the first
stored procedure plan – 8 ms versus 5 ms:

Figure 5.48 – QueryTimeStats for the same query execution plan using a non-NULL parameter

We can also see an excessive memory grant warning:

Writing Elegant T-SQL Queries186

Figure 5.49 – Execution plan for the same query execution plan using a non-NULL parameter

Because of parameter sniffing, the plan created the first time the procedure was run returned a
much larger number of rows that necessitated an expensive Hash Match that used a large amount of
memory. When using a specific parameter value rather than NULL, the number of rows returned is
much smaller, and thus neither the Hash Match nor the memory grant make sense. At compile time,
the SQL Database Engine must choose a plan that works for any parameter value that may be sent at
runtime. Unfortunately, because of composable logic, the plan chosen is often the wrong one.

The best way to resolve this issue would be to have separate stored procedures for the two queries.
The problem with this is that we can end up with many stored procedures that have similar queries
and similar names, and code manageability can become an issue. One compromise is to have a single
stored procedure with conditional logic outside the query in question. Here’s an example of how that
would look for these queries:

CREATE OR ALTER PROCEDURE usp_GetSalesPersonOrders_better @SalesPerson
INT NULL
AS
BEGIN
 IF @SalesPerson IS NULL
 BEGIN

Composable logic 187

 SELECT SalesOrderID, p.FirstName AS SalesFirstName,
p.LastName AS SalesLastName
 FROM Sales.SalesOrderHeader AS soh
 LEFT JOIN Person.Person AS p
ON soh.SalesPersonID = p.BusinessEntityID
 END
 ELSE
 BEGIN
 SELECT SalesOrderID,
p.FirstName AS SalesFirstName,
p.LastName AS SalesLastName
 FROM Sales.SalesOrderHeader AS soh
 LEFT JOIN Person.Person AS p
ON soh.SalesPersonID = p.BusinessEntityID
 WHERE SalesPersonID = @SalesPerson;
 END
END;

The code is slightly less readable, but we get the benefit of the right plan at runtime:

Figure 5.50 – Execution plan for the stored procedure with conditional logic outside the query

Writing Elegant T-SQL Queries188

This is reflected in the QueryTimeStats:

Figure 5.51 – QueryTimeStats for the query execution plan in Figure 5.50

Another way to solve this problem would be to use dynamic T-SQL. In the previous section, EXECUTE
versus sp_executesql, we discussed using sp_executesql to execute dynamic T-SQL statements
with parameter markers to allow the SQL Database Engine to cache and reuse the plans. If we have
composable logic that involves many different options and would generate too many permutations
to make conditional logic practical, leveraging dynamic T-SQL is likely the best option. Using the
sp_executesql procedure allows us to programmatically generate code that is still reusable by
the SQL Database Engine, so we get the right plan for the query every time without excessive compile
time and cache bloat.

Summary
In this chapter, we reviewed a few T-SQL anti-patterns, such as SELECT * syntax, OR logic, and
functions in our predicates, that are relatively easy to find simply by looking at our T-SQL code and
how it is written. The scenarios covered in this chapter are some of the most common examples of
patterns that prevent our T-SQL queries from scaling well and maintaining the expected level of
performance throughout the lifetime of the application. All are easy to detect, and most have easy
workarounds. Therefore, when writing queries, try to avoid these anti-patterns by leveraging some
of the techniques we outlined here.

In the next chapter, we will investigate some T-SQL anti-patterns that are a bit more difficult to identify
as they require some additional research beyond simply reading the code.

6
Discovering T-SQL Anti-

Patterns in Depth

In Chapter 5, Writing Elegant T-SQL Queries, we covered some anti-patterns that may impact query
performance that should be obvious just by reading the T-SQL code itself. Now we will move on
to some anti-patterns that may require some more in-depth analysis to be identified. These often
involve T-SQL that at first glance seems straightforward, but when we dig into the query plan, there
may be hidden performance pitfalls such as expensive operations or hidden practices that prevent
predicate SARGability.

In this chapter we will cover the following topics:

• Implicit conversions

• Avoiding unnecessary sort operations

• Avoiding UDF pitfalls

• Avoiding unnecessary overhead with stored procedures

• Pitfalls of complex views

• Pitfalls of correlated sub-queries

• Properly storing intermediate results

Technical requirements
The examples used in this chapter are designed for use on SQL Server 2022 and Azure SQL Database,
but they should work on versions of SQL Server 2012 and later. The Developer Edition of SQL Server
is free for development environments and can be used to run all the code samples. There is also a free
tier of Azure SQL Database you can use for testing at https://aka.ms/freedb.

https://aka.ms/freedb

Discovering T-SQL Anti- Patterns in Depth190

You will need the sample databases AdventureWorks2016_EXT (referred to as AdventureWorks)
and AdventureWorksDW2016_EXT (referred to as AdventureWorksDW), which can be found
on GitHub at https://github.com/Microsoft/sql-server-samples/releases/
tag/adventureworks. The code used in this chapter can also be found on GitHub at https://
github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/
main/ch6.

Implicit conversions
We introduced the concept of implicit conversions in the chapter Exploring Query Execution Plans,
particularly in the context of PlanAffectingConvert warnings. An implicit conversion happens
when the SQL Database Engine needs to compare two values that are not of the same data type. At
this point we should understand how to recognize an implicit conversion in our query plans, but what
may not always be obvious is how they got there in the first place and how to correct them.

The most obvious cause of implicit conversions is to compare two columns that are not of the same data
type. We can easily avoid this by making sure that columns that are related in our database, and thus
may be joined, are of the same data type. A common mistake that can cause this situation is where we
have some tables that have been created with NVARCHAR strings and some tables that have VARCHAR
strings. This may happen because a database was upgraded at some point to support Unicode UTF-16
strings so new tables have NVARCHAR strings, but old tables still have VARCHAR strings, or perhaps
some of the old tables were missed when data types were changed. The best resolution in this case is
to convert the VARCHAR columns to NVARCHAR so that the data types match.

Another cause of implicit conversions that is not so obvious, but is perhaps the most common, is
mismatched parameter data types. This is particularly common when using an Object-Relational
Mapper (ORM) such as Entity Framework (EF). EF sends queries to the SQL Database Engine as
parameterized statements. By default, any strings that are sent as parameters are of NVARCHAR type.
This is fine, as long as the strings in the database are stored as NVARCHAR, but if they are stored as
VARCHAR, this will lead to implicit conversions of the type that will make any comparisons using
these parameters non-SARGable.

Let’s look at an example from the AdventureWorks database that illustrates this situation. We will
build a parameterized query using sp_executesql to simulate how an EF query would appear to
the SQL Database Engine. All the strings in the AdventureWorks database are stored as NVARCHAR,
so we’ll need to do some setup to create our scenario here. Using the following queries, let’s set up a
table called Product_Narrow, which will contain a subset of the data in the Product table, but
with VARCHAR strings instead of NVARCHAR:

 CREATE TABLE [Production].[Product_Narrow](
 [ProductID] [int] NOT NULL,
 [Name] [varchar](50) NOT NULL,
 [ProductNumber] [varchar](25) NOT NULL,
 [Color] [varchar](15) NULL,

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch6
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch6
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch6

Implicit conversions 191

 [StandardCost] [money] NOT NULL,
 [ListPrice] [money] NOT NULL,
 [Size] [varchar](5) NULL,
 [SizeUnitMeasureCode] [char](3) NULL,
 [WeightUnitMeasureCode] [char](3) NULL,
 [Weight] [decimal](8, 2) NULL,
 [Class] [char](2) NULL,
 [Style] [char](2) NULL,
 [ProductSubcategoryID] [int] NULL,
 [ProductModelID] [int] NULL,
 CONSTRAINT [PK_Product_Narrow_ProductID] PRIMARY KEY CLUSTERED (
 [ProductID] ASC
));
GO

INSERT Production.Product_Narrow
 (ProductID, Name, ProductNumber, Color, StandardCost,
ListPrice, Size, SizeUnitMeasureCode
 , WeightUnitMeasureCode, Weight, Class, Style,
ProductSubcategoryID, ProductModelID)
SELECT ProductID, Name, ProductNumber, Color, StandardCost, ListPrice,
Size, SizeUnitMeasureCode
 , WeightUnitMeasureCode, Weight, Class, Style,
ProductSubcategoryID, ProductModelID
FROM Production.Product;
CREATE UNIQUE NONCLUSTERED INDEX [AK_Product_Narrow_Name] ON
[Production].[Product_Narrow]
(
 [Name] ASC
);

First, let’s start with an implicit conversion example that would not trigger a PlanAffectingConvert
warning. We’ll use the original Product table for this query:

EXEC sp_executesql N'SELECT ProductID, Name, ListPrice, StandardCost
FROM Production.Product
 WHERE Name = @ProductName'
 , N'@ProductName VARCHAR(50)', 'Long-Sleeve Logo Jersey,
XL';

The Name column in the Product table is stored as a user-defined type called Name, which maps
to NVARCHAR(50). Using sp_executesql, we sent VARCHAR(50) instead. Here’s the query
execution plan:

Discovering T-SQL Anti- Patterns in Depth192

Figure 6.1 – Execution plan using sp_executesql with parameter conversion and no warning

Notice that there is an implicit conversion here, but it didn’t produce a warning. This is because the
SQL Database Engine converted the parameter, rather than the column. This conversion happened
only one time against the literal side of the comparison, so it doesn’t affect the plan at all. We can
verify this by sending the correct parameter data type:

EXEC sp_executesql N'SELECT ProductID, Name, ListPrice, StandardCost
 FROM Production.Product
 WHERE Name = @ProductName'
 , N'@ProductName nvarchar(50)', N'Long-Sleeve Logo
Jersey, XL';

Here’s the query execution plan – no implicit conversion this time:

Implicit conversions 193

Figure 6.2 – Execution plan using sp_executesql without an implicit conversion

Now let’s use our new Product_Narrow table to illustrate an implicit conversion that will cause
a warning. We’ll use the same query, but this time remember that the Name column is stored as
VARCHAR(50) rather than NVARCHAR(50):

EXEC sp_executesql N'SELECT ProductID, Name, ListPrice, StandardCost
 FROM Production.Product_Narrow
 WHERE Name = @ProductName'
 , N'@ProductName nvarchar(50)', N'Long-Sleeve Logo
Jersey, XL';

The following is our query execution plan, including a warning this time:

Discovering T-SQL Anti- Patterns in Depth194

Figure 6.3 – Execution plan using sp_executesql with a conversion warning

If we look at the properties of the scan, we’ll see there’s an implicit conversion, but this time the SQL
Database Engine converted the column side of the comparison rather than the literal side as it did in
the previous query against the Product table, making the predicate non-SARGable:

Figure 6.4 – Properties of the Scan operator in the execution plan with a conversion warning

Implicit conversions 195

We might be wondering why the SQL Database Engine would choose to do this conversion when it
is obviously more expensive than converting the literal side of the comparison. The reason is that the
SQL Database Engine must follow the rules of data type precedence when performing an implicit
conversion. The SQL Database Engine will convert all the data types involved in the comparison
to the data type that has the highest precedence, if the conversion is possible at all. For example, a
DATETIME2 type only implicitly converts to strings and other date- and time-related types. Here’s
a list of the SQL Database Engine data types in order of their precedence:

1. user-defined data types
(highest)

2. sql_variant

3. xml

4. datetimeoffset

5. datetime2

6. datetime

7. smalldatetime

8. date

9. time

10. float

11. real

12. decimal

13. money

14. smallmoney

15. bigint

16. int

17. smallint

18. tinyint

19. bit

20. ntext

21. text

22. image

23. timestamp

24. uniqueidentifier

25. nvarchar
(including NVARCHAR(MAX))

26. nchar

27. varchar (including VARCHAR(MAX))

28. char

29. varbinary
(including VARBINARY(MAX))

30. binary (lowest)

Notice that NVARCHAR has a higher precedence than VARCHAR. This means that no matter which
side of the comparison the VARCHAR value is on, it will always be converted to NVARCHAR, even if it
makes the predicate non-SARGable. The solution here is simple: send the correct parameter data type
and the conversion will be unnecessary. See the following example with the correct parameter data type:

EXEC sp_executesql N'SELECT ProductID, Name, ListPrice, StandardCost
 FROM Production.Product_Narrow
 WHERE Name = @ProductName'
 , N'@ProductName varchar(50)', 'Long-Sleeve Logo
Jersey, XL';

Discovering T-SQL Anti- Patterns in Depth196

When sending the correct data type of VARCHAR(50) for the parameter, no implicit conversion is
needed and the SQL Database Engine is able to choose a better plan:

Figure 6.5 – Execution plan using sp_executesql without conversions

This problem is easy to see when the code is all in the database in the form of stored procedures, but
when the database code is generated on the client, it may be more difficult to identify. If we see a
conversion warning in a query execution plan, be sure to check the ParameterList property and
verify that the data types of all the parameters are correct. See the Exploring Query Execution Plans
chapter for more information on the ParameterList property.

EF is one example of a database code generator vulnerable to this problem, but it is not the only one.
With the increasing popularity of code-first database design, this problem is becoming more and more
common. It’s important to take the time to ensure that the data types chosen for the database match
the needs of the application, and even more so that, when possible, the database code is strictly typed
based on the actual data types rather than the defaults. Now that we understand how important data
types are in avoiding the performance issues associated with implicit conversions, let’s move on to
learning about sort operations and how to avoid them.

Avoiding unnecessary sort operations
Sort operations in a query plan are very expensive, so we need to avoid anything that might introduce
a sort where it is not needed. Using ORDER BY in our query practically guarantees a sort unless we
happen to be able to leverage an index and an ordered scan.

Avoiding unnecessary sort operations 197

Tip
If your query needs to produce an ordered result set and uses a covering index, ensure the
index sort order is the same as the query’s desired order. This will increase the likelihood that
the SQL Database Engine can leverage the index to order the rows rather than having to do a
costly sort operation.

This may be necessary if we need our result set to be returned in a specific order, but if order is not
important, this is just overhead.

In this section, we will look at a few examples that may introduce an unnecessary sort operation.

UNION ALL versus UNION

The UNION and UNION ALL syntax is used to combine the results of two separate queries into a
single result set. If it is possible for rows to be duplicated between the two queries and we do not want
to return duplicate rows, using the UNION syntax will cause the SQL Database Engine to filter out
any duplicate rows in the two sets. Doing this requires a sort operation, however, so it is important to
only use UNION when necessary. If duplicate values are allowed in the final result set, or if the source
results sets cannot have duplicates to begin with – for example, both inputs have unique constraints
or primary keys and the sets don’t overlap – then using a UNION ALL is more efficient. This avoids
introducing implicit sort operations that increase the query cost.

Let’s look at an example from the AdventureWorks database. The store is going to have a friends
and family sale and we’d like to invite all our customers and vendors to get a special discount on this
day. We need to build an email list to send out the promotion, but the information about customers
is stored separately from vendors. The easiest way to do this is to create two separate queries and join
them using the UNION syntax.

Here’s what the query might look like:

SELECT 'Customer' AS ContactType, p.FirstName, p.LastName,
e.EmailAddress
FROM Sales.Customer c
INNER JOIN Person.Person p ON c.PersonID = p.BusinessEntityID
INNER JOIN Person.EmailAddress e ON e.BusinessEntityID =
p.BusinessEntityID
WHERE EmailPromotion > 0
UNION
SELECT 'Vendor' AS ContactType, v.FirstName, v.LastName,
v.EmailAddress
FROM Purchasing.vVendorWithContacts v
WHERE EmailPromotion > 0;

If we use a UNION, as with the preceding query, this is what the plan looks like:

Discovering T-SQL Anti- Patterns in Depth198

Figure 6.6 – Execution plan using UNION and a concatenation operator

And here are the QueryTimeStats for this query:

Figure 6.7 – QueryTimeStats for the plan using UNION and a concatenation operator

There is obviously some opportunity for tuning here as we have several scans and hash matches, which
can be eliminated with the addition of an index or two, but notice there is also a sort operation that
makes up 95 percent of the estimated cost. This can be eliminated by simply changing the UNION
operator to UNION ALL. Unlike UNION, UNION ALL assumes that there is no overlap between the
result sets that are being combined – if there are overlaps, then the duplicates will not be eliminated as
they would by using UNION. We know that there is no overlap between our vendors and customers, and
even there were, we are fine with sending duplicate emails, especially because vendors may receive a
different email than customers. Here’s the plan for the same query with UNION ALL instead of UNION:

Avoiding unnecessary sort operations 199

Figure 6.8 – Execution plan using UNION ALL, sort, and concatenation operators

Notice the sort operator is gone now, and the results are the same, but the QueryTimeStats have improved:

Figure 6.9 – QueryTimeStats for the plan using UNION ALL, sort, and concatenation operators

Both CPU and elapsed time were reduced from 61 ms to 45 ms (an improvement of ~26 percent).
When we need to join two or more result sets together, leveraging UNION ALL rather than UNION
wherever possible will make our queries more efficient with very little effort on our part.

Discovering T-SQL Anti- Patterns in Depth200

SELECT DISTINCT

Like the UNION syntax, using DISTINCT in our SELECT query directs the SQL Database Engine to
filter out any duplicate rows that may be in the results, which it typically does by introducing a sort
operation. If we already have an ORDER BY clause in the query, the sort may be necessary anyway
so this would not be additional overhead, but if order is not important, and neither are duplicates,
then DISTINCT is unnecessary and the query would likely be cheaper without it.

Rather than blindly applying a DISTINCT operator to our query, it’s worth taking some time to
investigate why there are duplicate rows in the results. It may be expected and intentional, but getting
duplicates in our results when they are not expected often indicates an error condition. It could be
due to an incorrectly formed join condition, bad data in the table (for example, incorrect ETL causing
duplicate or missing values, or the lack of a unique or primary key allowing duplicate rows), or selecting
columns from a table that together are not unique. The outcome is that using DISTINCT can hide
these conditions but doesn’t solve them. Even if the duplicates are expected, there may be a cheaper
way to get the desired results than applying DISTINCT.

Going back to the AdventureWorks database, let’s assume that we want to get a list of all the
categories and subcategories for products that haven’t been discontinued. The most basic way to do
this would be the following query:

SELECT c.Name AS Category, s.Name AS SubCategory
FROM Production.Product p
INNER JOIN Production.ProductSubcategory s
ON p.ProductSubcategoryID = s.ProductSubcategoryID
INNER JOIN Production.ProductCategory c
ON s.ProductCategoryID = c.ProductCategoryID
WHERE p.DiscontinuedDate IS NULL;

Unfortunately, this query by itself will return a lot of duplicate rows because there are many products
that have the same category and subcategory. The simplest way to fix this problem is to add DISTINCT
to the query:

SELECT DISTINCT c.Name AS Category, s.Name AS SubCategory
FROM Production.Product p
INNER JOIN Production.ProductSubcategory s
ON p.ProductSubcategoryID = s.ProductSubcategoryID
INNER JOIN Production.ProductCategory c
ON s.ProductCategoryID = c.ProductCategoryID
WHERE p.DiscontinuedDate IS NULL;

Avoiding unnecessary sort operations 201

This solves the problem, but it also requires the SQL Database Engine to sort all the rows and keep
only the unique category and subcategory combinations. Another way to do this is to use an IN or
EXISTS predicate in the WHERE clause. Here’s an example of what that query might look like:

SELECT c.Name AS Category, s.Name AS SubCategory
FROM Production.ProductSubcategory s
INNER JOIN Production.ProductCategory c
ON s.ProductCategoryID = c.ProductCategoryID
WHERE s.ProductSubcategoryID IN (SELECT ProductSubcategoryID
 FROM Production.Product
 WHERE DiscontinuedDate IS NULL);

This may look more complicated and, on the surface, may seem more expensive, but if we examine
the plans we can see that it’s cheaper:

Figure 6.10 – Plan comparison using DISTINCT and a sub-query with IN

Discovering T-SQL Anti- Patterns in Depth202

Query 1 with DISTINCT in the SELECT clause contains a Sort operator which accounts for 23
percent of the estimated cost. Query 2 which uses the IN clause does not require a sort. This query
returns the same results but does so with less effort. While it may be more effort for us to take the
time to investigate the query plan and determine whether there’s an alternative to adding DISTINCT,
we only need to spend that effort once, whereas the SQL Database Engine will have to spend it every
time it executes the query.

SELECT TOP 1 with ORDER BY

A very common way to return the maximum or minimum row in a set is to perform a SELECT TOP
1 query with an ORDER BY clause. The problem with this pattern is that it again may result in an
unnecessary sort operation. The SQL Database Engine will need to sort all the rows to order them
by the desired column, but then return only the first (or last) row in the set. In some cases, it is more
efficient to find the minimum or maximum value first, then select the row that is equal to this value.

Let’s look at an example from the AdventureWorks database. The following query returns the row
with the highest sub-total from the Sales.SalesOrderHeader table:

SELECT TOP 1 soh.CustomerID, SalesPersonID, SubTotal, OrderDate, cust.
LastName as CustomerLastName, cust.FirstName as CustomerFirstName
FROM Sales.SalesOrderHeader soh
INNER JOIN sales.Customer c ON c.CustomerID = soh.CustomerID
LEFT JOIN Person.Person cust ON cust.BusinessEntityID = c.CustomerID
ORDER BY SubTotal DESC;

Alternatively, for this sample database we could write the query the following way, when we know the
sub-query can only return one row:

SELECT soh.CustomerID, SalesPersonID, SubTotal, OrderDate, cust.
LastName as CustomerLastName, cust.FirstName as CustomerFirstName
FROM Sales.SalesOrderHeader soh
INNER JOIN sales.Customer c ON c.CustomerID = soh.CustomerID
LEFT JOIN Person.Person cust ON cust.BusinessEntityID = c.CustomerID
WHERE SubTotal = (SELECT MAX(SubTotal) FROM Sales.SalesOrderHeader);

Examining the two query plans, we can see that Query 1 (the TOP 1 plan) is significantly more
expensive than Query 2, and it includes a costly sort operator:

Avoiding unnecessary sort operations 203

Figure 6.11 – Plan comparison using TOP with a sort operator and a sub-query

Notice there is a missing index suggestion for Query 2 in the preceding plan. If we add this index it can
be leveraged by both plans and will eliminate the sort in Query 1, but Query 2 will still be significantly
cheaper because it can perform the TOP operation earlier in the plan. The following query plan does
not include the expensive sort operator:

Discovering T-SQL Anti- Patterns in Depth204

Figure 6.12 – Same plan comparison as in the preceding figure, after creating a supporting index

Keep in mind that not all queries will benefit from removing the TOP 1, but it’s worth looking into,
especially if the query in question is already very expensive and/or runs frequently. Now that we’ve
discovered some techniques to avoid sorts when using TOP 1 with ORDER BY in our queries, let’s
learn about user-defined functions and how they influence query performance.

Avoiding UDF pitfalls 205

Avoiding UDF pitfalls
Scalar User-Defined Functions (UDFs) are a very useful T-SQL programming artifact because they
allow a specific routine to be reused very easily. However, these seemingly harmless constructs can
be detrimental to performance, because the Query Optimizer does not account for any T-SQL logic
inside a UDF, and UDFs are executed for every row in the result set just like a cursor. When using
scalar UDFs, there are specific recommendations that apply to UDFs that access system or user data,
and recommendations that apply to all UDFs.

An example of a scalar UDF that does not access data was referenced in the chapter Exploring Query
Execution Plans, in the Query plan properties of interest section, as seen in the following code block:

CREATE FUNCTION ufn_CategorizePrice (@Price money)
RETURNS NVARCHAR(50)
AS
BEGIN
 DECLARE @PriceCategory NVARCHAR(50)
 IF @Price < 100 SELECT @PriceCategory = 'Cheap'
 ELSE IF @Price BETWEEN 101 and 500 SELECT @PriceCategory = 'Mid
Price'
 ELSE IF @Price BETWEEN 501 and 1000 SELECT @PriceCategory =
'Expensive'
 ELSE IF @Price > 1001 SELECT @PriceCategory = 'Unaffordable'
 RETURN @PriceCategory
END;

An example of a query that uses that UDF in the AdventureWorks sample database looks like
the following:

SELECT dbo.ufn_CategorizePrice(UnitPrice),
 SalesOrderID, SalesOrderDetailID, CarrierTrackingNumber,
 OrderQty, ProductID, SpecialOfferID, UnitPrice,
UnitPriceDiscount,
 LineTotal, rowguid, ModifiedDate
FROM Sales.SalesOrderDetail;

And note the resulting query execution plan:

Figure 6.13 – Execution plan using a scalar UDF

Discovering T-SQL Anti- Patterns in Depth206

Evaluating the performance impact of running a UDF in our T-SQL code was not an easy task until
the recent versions of the SQL Database Engine. We see that the UDF execution is identified only by
the presence of the Compute Scalar operator, and its logic is obfuscated from the query plan. We also
observe that it took almost 4 times as much time to execute the UDF (931 ms) than to read the data
from the table (275 ms).

Also note that the plan above is not being executed in parallel. This is because by-design, UDFs inhibit
the use of parallelism, which may also add to performance problems with certain queries that would
be otherwise eligible for parallelism.

We know this scalar UDF doesn’t access data by looking at its definition, but the SQL Database Engine
doesn’t expand the UDF definition at compile time, so the assumption is that the UDF does access
data. This adds overhead to UDF execution.

The following query example allows us to see the UDF properties:

-- Object accesses system data, system catalogs or virtual system
tables, in the local instance of SQL Server?
SELECT OBJECTPROPERTYEX(OBJECT_id('dbo.ufn_CategorizePrice'),
'SystemDataAccess') AS AccessesSystemData
-- Object accesses user data, user tables, in the local instance of
SQL Server?
SELECT OBJECTPROPERTYEX(OBJECT_id('dbo.ufn_CategorizePrice'),
'UserDataAccess') AS AccessesUserData
-- The precision and determinism properties of the object can be
verified by SQL Server?
SELECT OBJECTPROPERTYEX(OBJECT_id('dbo.ufn_CategorizePrice'),
'IsSystemVerified') AS HasBeenSystemVerified
GO

Executing the preceding query yields the following resultset:

Figure 6.14 – Properties of the scalar UDF

Avoiding UDF pitfalls 207

We see the SQL Database Engine takes a pessimistic approach and assumes the scalar UDF we created
might access both system and user data, and it has not been system-verified. Especially for UDFs that
do not access data (such as the case in this example), always specify the SCHEMABINDING option
during the UDF creation, as seen in the following example:

CREATE OR ALTER FUNCTION ufn_CategorizePrice (@Price money)
RETURNS NVARCHAR(50)
WITH SCHEMABINDING
AS
BEGIN
 DECLARE @PriceCategory NVARCHAR(50)
 IF @Price < 100 SELECT @PriceCategory = 'Cheap'
 ELSE IF @Price BETWEEN 101 and 500 SELECT @PriceCategory = 'Mid
Price'
 ELSE IF @Price BETWEEN 501 and 1000 SELECT @PriceCategory =
'Expensive'
 ELSE IF @Price > 1001 SELECT @PriceCategory = 'Unaffordable'
 RETURN @PriceCategory
END;

This will make the UDF schema-bound and mark the UDF as a deterministic object in the system,
allowing the SQL Database Engine to verify the UDF and properly derive its data-access properties.

Note
For UDFs that are schema-bound, any attempt to change the underlying schema that depends
on the UDF will result in an error. But the schema binding option ensures that the UDF will
not inadvertently break due to schema changes.

We can use the preceding query example to see the new UDF properties, which now yields the
following resultset:

Figure 6.15 – Properties of the schema-bound scalar UDF

Discovering T-SQL Anti- Patterns in Depth208

In the previous screenshot we can see that the new schema-bound UDF has been system-verified and
does not access neither system nor user data. When schema-binding scalar UDFs, the SQL Database
Engine can determine in advance whether the UDF accesses system catalogs or virtual system tables,
and whether the UDF accesses user tables. In turn, this ensures that the Query Optimizer does not
generate any unnecessary operations for query plans involving UDFs that don’t access data and avoids
having to derive the underlying schema properties for each execution of the UDF.

This schema-bound UDF was verified to not access user tables, and notice the resulting query
execution plan:

Figure 6.16 – Execution plan using a schema-bound scalar UDF

In the chapter Exploring Query Execution Plans, in the Query plan properties of interest section, we
referenced an improvement introduced in the SQL Database Engine in SQL Server 2016 SP2 and SQL
Server 2017 CU3, where showplan started to include UDF runtime stats in the QueryTimeStats property.

Looking at those UDF runtime stats, we see the UDF still has a significant cost (500 ms of elapsed
time), although smaller than the non-schema-bound UDF.

Note that the aforementioned object properties can be determined using the following sample query:

SELECT OBJECTPROPERTY(object_id, 'IsDeterministic'),
 OBJECTPROPERTY(object_id, 'IsSystemVerified'),
 OBJECTPROPERTY(object_id, 'SystemDataAccess'),
 OBJECTPROPERTY(object_id, 'UserDataAccess'),
 OBJECTPROPERTY(object_id, 'IsSystemVerified')
FROM sys.objects WHERE name = 'ufn_CategorizePrice';

When a scalar UDF accesses data, the potential performance implications on SQL Server 2017
or an earlier version are considerable. The following example can be executed in the scope of the
AdventureWorks sample database:

CREATE OR ALTER FUNCTION dbo.ufn_GetTotalQuantity (@SalesOrderID INT)
RETURNS INT
WITH SCHEMABINDING
AS
BEGIN
DECLARE @Qty INT

Avoiding UDF pitfalls 209

SELECT @Qty = SUM(OrderQty)
FROM Sales.SalesOrderDetail
WHERE SalesOrderID = @SalesOrderID
RETURN (@Qty)
END;
GO

SELECT TOP 5000 *,
 dbo.ufn_GetTotalQuantity (SalesOrderID) AS TotalQty
FROM Sales.SalesOrderHeader;

The query generates the following execution plan:

Figure 6.17 – Execution plan using a schema-bound scalar UDF

We can make similar observations regarding the obfuscation of the T-SQL logic inside the UDF. The
QueryTimeStats for this query execution plan are the following:

Figure 6.18 – QueryTimeStats for the plan using schema-bound scalar UDF

The recommended action to attempt to improve the plan is to surface the expressions inside the
UDF to the query itself, in an exercise called inlining the expression. Doing this across all queries
that reference the scalar UDF may be hard work, but the effort may be warranted if the performance
gains are considerable.

Starting with SQL Server 2019 however, and starting with database compatibility level 150, the SQL
Database Engine can automatically inline certain UDF expressions, and account for the UDF logic
during query optimization to yield better query plans.

The goal of the Scalar UDF inlining feature is to improve performance for queries that invoke scalar
UDFs, where the UDF execution is a bottleneck, without any code changes.

Discovering T-SQL Anti- Patterns in Depth210

Note
A team of researchers at Microsoft’s Gray Systems Lab developed the Froid framework for
inlining UDF constructs into parent queries. The Froid paper can be accessed at http://
www.vldb.org/pvldb/vol11/p432-ramachandra.pdf.

An object property can be used to determine whether a scalar UDF is can be made inline (inlineable)
for any given version of the SQL Database Engine, using the following sample query:

SELECT is_inlineable, inline_type
FROM sys.sql_modules
WHERE object_id = OBJECT_ID('ufn_CategorizePrice');

The full list of requirements for a scalar UDF to be inlined is available in the documentation page for
the feature and has grown throughout several Cumulative Updates for SQL Server 2019.

By simply changing the AdventureWorks database compatibility level from 130 to 150, notice the
resulting query execution plan where all the scalar UDF logic is now visible:

Figure 6.19 – Execution plan showing the scalar UDF was inlined

The QueryTimeStats for this inlined execution plan are considerably better than before, both in CPU
time and elapsed time:

Figure 6.20 – QueryTimeStats for the plan using schema-bound scalar UDF

Now that we’ve learned some techniques to make our user-defined functions more efficient, let’s move
on to a similar discussion about stored procedures.

Avoiding unnecessary overhead with stored procedures 211

Avoiding unnecessary overhead with stored procedures
In stored procedures, use the SET NOCOUNT ON notation even when there’s a requirement to return
the current row count during execution, as in the following example:

CREATE OR ALTER PROCEDURE [dbo].[uspStocksPerWorkOrder] @WorkOrderID
[int]
AS
BEGIN
SET NOCOUNT ON;
 SELECT wo.StockedQty, wor.WorkOrderID
 FROM Production.WorkOrder AS wo
 LEFT JOIN Production.WorkOrderRouting AS wor
ON wo.WorkOrderID = wor.WorkOrderID
 WHERE wo.WorkOrderID = @WorkOrderID;
END;

When SET NOCOUNT is ON, the count indicating the number of rows affected by a T-SQL statement
is not returned to the application layer, which provides a performance boost.

Note
The @@ROWCOUNT function will still be incremented even with SET NOCOUNT ON.

To put this to a test, we can use the ostress utility and simulate a client application executing the
same stored procedure 1,000 times over 10 concurrent connections, as seen in the following command:

ostress.exe -S<my_server_name> -E -dAdventureWorks -Q"EXEC [dbo].

[uspStocksPerWorkOrder] 117" -n10 -r1000

Note
ostress is a free command line tool that is part of the Replay Markup Language (RML)
Utilities for SQL Server. This tool can be used to simulate the effects of stressing a SQL instance
by using ad hoc queries or pre-saved .sql script files.

Executing the preceding command three times yields the following elapsed time information:

OSTRESS exiting normally, elapsed time: 00:00:31.057

OSTRESS exiting normally, elapsed time: 00:00:31.484

OSTRESS exiting normally, elapsed time: 00:00:31.476

Discovering T-SQL Anti- Patterns in Depth212

We can see a stable elapsed time between executions. Now if we recreate the stored procedure to
remove the SET NOCOUNT ON and execute the same command three times, it yields the following
elapsed time information:

OSTRESS exiting normally, elapsed time: 00:00:33.771

OSTRESS exiting normally, elapsed time: 00:00:33.824

OSTRESS exiting normally, elapsed time: 00:00:34.097

Again, we get consistent results but higher elapsed time throughout the test runs. For stored procedures
that do not return large datasets such as the case here, or for stored procedures that contain T-SQL
loops, setting NOCOUNT to ON can provide a significant performance boost: network traffic is reduced
because the SQL Database Engine doesn’t send the DONE_IN_PROC token stream for each statement
in the code. This may not be noticeable in singleton executions, but when a stored procedure is executed
multiple times, the scale effect is usually measurable.

Also, strive to validate input parameters early in the T-SQL code. Doing this allows early determination
of whether data access operations can run, instead of encountering issues after much work has already
been done, wasting resources. Using the previous example, adding an IF condition prevents data
access if the incoming parameter is null for a column that doesn’t accept null values by design:

CREATE OR ALTER PROCEDURE [dbo].[uspStocksPerWorkOrder] @WorkOrderID
[int]
AS
BEGIN
SET NOCOUNT ON;
 IF @WorkOrderID IS NOT NULL
 BEGIN
 SELECT wo.StockedQty, wor.WorkOrderID
 FROM Production.WorkOrder AS wo
 LEFT JOIN Production.WorkOrderRouting AS wor
ON wo.WorkOrderID = wor.WorkOrderID
 WHERE wo.WorkOrderID = @WorkOrderID;
 END;
END;

While these simple changes may seem small, they can add up to a lot across an application that relies
heavily on stored procedures, especially on a busy production system. Another place where small
changes can add up to big gains is with views. In the next section, we’ll examine some best practices
around complex views.

Pitfalls of complex views 213

Pitfalls of complex views
Views are often used with the same intent as User-Defined Functions (UDFs) – to allow easy re-use
of what could otherwise be a complex expression to inline in our T-SQL query. Often developers build
a view that will serve multiple queries, and then just select from that view with different SELECT
statements and different filters, be those joins or search predicates. However, what may look like a
seemingly harmless T-SQL construct may be detrimental for query performance if the underlying
view is complex.

Imagine that in the AdventureWorks sample database, a developer built an all-encompassing view
that gets data on all company employees, as in the following example:

CREATE OR ALTER VIEW [HumanResources].[vEmployeeNew]
AS
SELECT e.[BusinessEntityID], p.[Title], p.[FirstName], p.[MiddleName],
 p.[LastName], p.[Suffix], e.[JobTitle], pp.[PhoneNumber],
 pnt.[Name] AS [PhoneNumberType], ea.[EmailAddress],
p.[EmailPromotion],
 a.[AddressLine1], a.[AddressLine2], a.[City], sp.[Name] AS
[StateProvinceName],
 a.[PostalCode], cr.[Name] AS [CountryRegionName]
FROM [HumanResources].[Employee] AS e
INNER JOIN [Person].[Person] AS p
ON p.[BusinessEntityID] = e.[BusinessEntityID]
INNER JOIN [Person].[BusinessEntityAddress] AS bea
ON bea.[BusinessEntityID] = e.[BusinessEntityID]
INNER JOIN [Person].[Address] AS a
ON a.[AddressID] = bea.[AddressID]
INNER JOIN [Person].[StateProvince] AS sp
ON sp.[StateProvinceID] = a.[StateProvinceID]
INNER JOIN [Person].[CountryRegion] AS cr
ON cr.[CountryRegionCode] = sp.[CountryRegionCode]
INNER JOIN [Person].[PersonPhone] AS pp
ON pp.BusinessEntityID = p.[BusinessEntityID]
INNER JOIN [Person].[PhoneNumberType] AS pnt
ON pp.[PhoneNumberTypeID] = pnt.[PhoneNumberTypeID]
INNER JOIN [Person].[EmailAddress] AS ea
ON p.[BusinessEntityID] = ea.[BusinessEntityID];

This view may have been built as an encapsulation for a recurrent query, making it just an easily
referenceable artifact. But later, another developer needs to build a report with a simplified org chart,
and the following query is executed using the preexisting view:

SELECT Title, FirstName, MiddleName, LastName, Suffix, JobTitle
FROM [HumanResources].[vEmployeeNew];

Discovering T-SQL Anti- Patterns in Depth214

Notice the resulting query execution plan:

Figure 6.21 – Execution plan using the view previously created

And its QueryTimeStats property:

Figure 6.22 – QueryTimeStats for the plan using the view previously created

Also notice the information concerning how the Query Optimizer got to this plan (seen in the Reason
for Early Termination Of Statement Optimization property in showplan): a timeout means that the
best available plan found before the Query Optimizer timeout hit was used. The immediate conclusion
is that the query is probably too complex and the optimization space too wide to run through it all
before the internal timeout is reached.

The fact is the plan accesses five tables to retrieve data from each one, even though the columns in
the SELECT clause are present in a small subset of the tables (just two, in this case). Each table in the
query execution plan outputs 290 rows, therefore incurring I/O for each table.

Pitfalls of complex views 215

What if we could simplify the query, having the report query only the required data? To do this, we
replace the query referencing the view with a query that only accesses the required tables:

SELECT Title, FirstName, MiddleName, LastName, Suffix, JobTitle
FROM HumanResources.Employee AS e
INNER JOIN [Person].[Person] AS pp ON e.BusinessEntityID =
pp.BusinessEntityID;

Note the resulting query execution plan:

Figure 6.23 – Execution plan accessing only the required tables instead of the view

And its QueryTimeStats property:

Figure 6.24 – QueryTimeStats for the plan accessing only the required tables instead of the view

The result is a simpler and faster plan. Also notice the information seen in the Reason for Early
Termination Of Statement Optimization showplan property: the optimization search space was
smaller and so was covered inside the internal timeout period, resulting is the good-enough plan
seen earlier.

Discovering T-SQL Anti- Patterns in Depth216

This is an example of how our workload may be incurring higher costs because certain shortcuts
were used at development time – in this case, using an all-encompassing view that doesn’t fit all
usage scenarios – which may even limit the Query Optimizer ability to search for a more optimal
plan. Simplification is the key action in these cases – only query for what we want to query, and no
more. The performance and scalability of our workload will speak for itself. This is similar to what
we discussed in the Composable logic section of Chapter 5, Writing Elegant T-SQL Queries – writing
generic code saves development time, but the potential trade-off is poor performance during execution.

Another less efficient but valid option is to create a unique clustered index on the view and ensure
the SQL Database Engine accesses the view itself, rather than expanding it.

Note
Expanding the view is the action of opening the view definition and using the tables defined
inside the view, rather than accessing the view itself. This is done for every view but can be
optionally skipped for indexed views, also known as materialized views.

To create an indexed view, we must first recreate the view as schema-bound by adding the WITH
SCHEMABINDING keyword to the view definition:

CREATE OR ALTER VIEW [HumanResources].[vEmployeeNew]
WITH SCHEMABINDING
AS
(…)

And then create the following index:

CREATE UNIQUE CLUSTERED INDEX IX_vEmployeeNew
ON [HumanResources].[vEmployeeNew] (
 [BusinessEntityID]

);

Note
A view without an index contains no data, it’s simply the definition of a query stored as an
object. Once an index is created on the view, however, the results of the view are physically
stored as a database object, as if we had created a new table. This results in additional storage
requirements and overhead when updating data in the base tables that are referenced by the view.

To ensure the view is used directly by the Query Optimizer, we can add the NOEXPAND table hint,
as seen as in the following example:

SELECT Title, FirstName, MiddleName, LastName, Suffix, JobTitle
FROM [HumanResources].[vEmployeeNew] WITH (NOEXPAND);

Pitfalls of complex views 217

Notice the resulting query execution plan and QueryTimeStats:

Figure 6.25 – Execution plan using the view using NOEXPAND

Figure 6.26 – QueryTimeStats for the plan using the view using NOEXPAND

While this is not as optimal as querying only for the data we need for the report, creating an indexed
view is a valid strategy for improving query performance, as we can see by comparing the preceding
QueryTimeStats with the QueryTimeStats in the first query using the non-indexed view: CPU time
dropped from 6 ms to 1 ms (~84 percent less), and execution time dropped from 56 ms to 27 ms (~52
percent less). The estimated cost for each plan is also clearly different as seen next, whereby using the
indexed view in Query 1 is significantly more efficient than Query 2:

Figure 6.27 – Comparison of execution plans using the view with and without NOEXPAND

While in this case we used the NOEXPAND table hint, if a view is indexed then the Query Optimizer
may choose to do indexed view matching automatically, a process whereby the view is used directly
rather than expanding it to access the underlying tables. This process can also be forced by using the
NOEXPAND table hint as we did in this example.

Discovering T-SQL Anti- Patterns in Depth218

Note
Before SQL Server 2016 Service Pack 1, only Enterprise Edition could do indexed view matching:
the NOEXPAND hint was required to use indexed views in Standard Edition. Azure SQL Database
doesn’t require the NOEXPAND hint to make use of indexed view matching.

The SQL Database Engine will automatically create statistics on an indexed view when the NOEXPAND
table hint is used. If we see a plan that is using indexed views and notice a plan warning about missing
statistics, then either use the hint or manually create the missing statistics.

Now that we understand how complex views can impact performance and how to make them more
efficient, let’s move on to another common but sometimes problematic pattern, correlated sub-queries.

Pitfalls of correlated sub-queries
It is not uncommon to use sub-queries to express certain predicates inline in queries, but developers
must keep in mind that joins are frequently better than correlated sub-queries. The following query
examples can be executed in the scope of the AdventureWorks sample database:

SELECT wo.StockedQty, wo.WorkOrderID, wor.ActualCost
FROM Production.WorkOrder AS wo
INNER JOIN Production.WorkOrderRouting AS wor ON wo.WorkOrderID = wor.
WorkOrderID
WHERE wor.WorkOrderID = 12345;
SELECT wo.StockedQty, wo.WorkOrderID,
 (SELECT wor.ActualCost
 FROM Production.WorkOrderRouting AS wor
 WHERE wor.WorkOrderID = 12345)
FROM Production.WorkOrder AS wo
WHERE wo.WorkOrderID IN
 (SELECT wor.WorkOrderID
 FROM Production.WorkOrderRouting AS wor
 WHERE wor.WorkOrderID = 12345);

These yield different query plans but the same resultsets, where the plan with the correlated sub-queries
is more expensive:

Properly storing intermediate results 219

Figure 6.28 – Comparison of execution plans where one uses a sub-query

The estimated cost for each plan is clearly different, and use of the join emerges as the favorite as it is
significantly more efficient than the correlated sub-query.

This is another pattern that is often encountered when using database code generation tools such as
Entity Framework. With these tools it may not be a simple task to change the code that is generated,
but in some cases, you may be able to introduce a stored procedure or view to influence the generated
code. While it may take some extra time and understanding of the data model to express the logic as
joins rather than sub-queries, the effort often pays off, especially for queries that are executed frequently.
Another area where some extra effort can pay big dividends is using intermediate result sets to simplify
complex business logic. Let’s examine some ways we can make this technique more efficient.

Properly storing intermediate results
There are times when a query can become very complex, either because of a complicated database
schema or because of complex business logic in the query, or both. In these cases, it may be easier to
write the query in parts and store intermediate query results so that they can be used in a later query.
This can make the query more readable, but it can also help the SQL Database Engine create a better
query execution plan. There are different ways to store intermediate query results – this section will
look at a few different options along with some of the considerations for when and where to use them.

Discovering T-SQL Anti- Patterns in Depth220

Using table variables and temporary tables

Table variables and temporary tables serve the same basic principle: to store an intermediate resultset
to be used by a subsequent query. Database developers use these to break down complex joined queries
that typically are not very efficient.

Tip
We have mentioned before about how the way a query is written can severely compromise the
SQL Database Engine’s ability to optimize the query efficiently in the little time it has to do it.

This means that a complex T-SQL query can be broken down into simpler T-SQL statements that
store intermediate results before being used to join with other tables. Imagine a developer needs to
build a query in the AdventureWorks sample database that returns the sales quota data by year
for each salesperson. This requires intermediate calculations that cannot be easily expressed with a
joined query. Instead, a developer can use table variables to store intermediate results and then use a
simple joined query, as seen in the following example:

DECLARE @Sales_TV TABLE (
 SalesPersonID int NOT NULL,
 TotalSales money,
 SalesYear smallint
);
-- Populate the first Table Variable
INSERT INTO @Sales_TV
SELECT SalesPersonID, SUM(TotalDue) AS TotalSales,
 YEAR(OrderDate) AS SalesYear
FROM Sales.SalesOrderHeader
WHERE SalesPersonID IS NOT NULL
GROUP BY SalesPersonID, YEAR(OrderDate);
-- Define the second Table Variable, which stores sales quota data by
year for each salesperson.
DECLARE @Sales_Quota_TV TABLE (
 BusinessEntityID int NOT NULL,
 SalesQuota money,
 SalesQuotaYear smallint
);
INSERT INTO @Sales_Quota_TV
SELECT BusinessEntityID, SUM(SalesQuota) AS SalesQuota,
 YEAR(QuotaDate) AS SalesQuotaYear
FROM Sales.SalesPersonQuotaHistory
GROUP BY BusinessEntityID, YEAR(QuotaDate)
-- Define the outer query by referencing columns from both Table
Variables.

Properly storing intermediate results 221

SELECT CONCAT(FirstName, ' ', LastName) AS SalesPerson, SalesYear,
 FORMAT(TotalSales,'C','en-us') AS TotalSales, SalesQuotaYear,
 FORMAT (SalesQuota,'C','en-us') AS SalesQuota,
 FORMAT (TotalSales -SalesQuota, 'C','en-us') AS Amt_Above_or_Below_
Quota
FROM @Sales_TV AS Sales_TV
INNER JOIN @Sales_Quota_TV AS Sales_Quota_TV
 ON Sales_Quota_TV.BusinessEntityID = Sales_TV.SalesPersonID
 AND Sales_TV.SalesYear = Sales_Quota_TV.SalesQuotaYear
INNER JOIN Person.Person
 ON Person.BusinessEntityID = Sales_Quota_TV.BusinessEntityID
ORDER BY SalesPersonID, SalesYear;

Notice the resulting query execution plan with three queries:

Figure 6.29 – Execution plan using table variables

Alternatively, temporary tables can be used, as seen in the following example:

DROP TABLE IF EXISTS #Sales_TT;
CREATE TABLE #Sales_TT (
 SalesPersonID int NOT NULL,
 TotalSales money,

Discovering T-SQL Anti- Patterns in Depth222

 SalesYear smallint
);
-- Populate the first Temp Table
INSERT INTO #Sales_TT
SELECT SalesPersonID, SUM(TotalDue) AS TotalSales,
 YEAR(OrderDate) AS SalesYear
FROM Sales.SalesOrderHeader
WHERE SalesPersonID IS NOT NULL
GROUP BY SalesPersonID, YEAR(OrderDate);
-- Define the second Temp Table, which stores sales quota data by year
for each sales person.
DROP TABLE IF EXISTS #Sales_Quota_TT;
CREATE TABLE #Sales_Quota_TT (
 BusinessEntityID int NOT NULL,
 SalesQuota money,
 SalesQuotaYear smallint
);
INSERT INTO #Sales_Quota_TT
SELECT BusinessEntityID, SUM(SalesQuota) AS SalesQuota,
 YEAR(QuotaDate) AS SalesQuotaYear
FROM Sales.SalesPersonQuotaHistory
GROUP BY BusinessEntityID, YEAR(QuotaDate)
-- Define the outer query by referencing columns from both Temp
Tables.
SELECT CONCAT(FirstName, ' ', LastName) AS SalesPerson, SalesYear,
 FORMAT(TotalSales,'C','en-us') AS TotalSales, SalesQuotaYear,
 FORMAT (SalesQuota,'C','en-us') AS SalesQuota,
 FORMAT (TotalSales -SalesQuota, 'C','en-us') AS Amt_Above_or_Below_
Quota
FROM #Sales_TT AS Sales_TT
INNER JOIN #Sales_Quota_TT AS Sales_Quota_TT
 ON Sales_Quota_TT.BusinessEntityID = Sales_TT.SalesPersonID
 AND Sales_TT.SalesYear = Sales_Quota_TT.SalesQuotaYear
INNER JOIN Person.Person
 ON Person.BusinessEntityID = Sales_Quota_TT.BusinessEntityID
ORDER BY SalesPersonID, SalesYear;

Notice the resulting query execution plan with three queries. Comparing Query 1 and Query 2 from
the table variable and temporary table examples, we see the plan is the same on both, except for the
type of object where the data is inserted.

Properly storing intermediate results 223

Figure 6.30 – Execution plan using temporary table

However, notice how the plans for Query 3 in both examples are different. Notice especially the
differences in the information of how many actual rows versus estimated rows flowed through the
operators in each plan. In the table variable case, we see the estimations are always 1, whereas in the
temporary table case they are either completely accurate (i.e., the actual rows and estimated rows
match) or are much closer to each other (3,364 actual of 1,977 estimated rows).

Figure 6.31 – Comparison of Query 3 in two plans, using a table variable or a temporary table

Discovering T-SQL Anti- Patterns in Depth224

This is because the SQL Database Engine supports automatic statistics creation on temporary tables,
as well as manual statistics creation and update, which the Query Optimizer can use. Up to and
including SQL Server 2017, table variables are runtime objects only and are compiled together with
all other statements, before any of the statements that populate the table variables even execute. For
this reason, the Query Optimizer uses a default estimation of one row for table variables since the
row count is not available at compile time.

However, in SQL Server 2019 and under database compatibility level 150, the Table Variable Deferred
Compilation feature is available. With this feature, the compilation of a statement that references a
table variable that doesn’t exist is deferred until the first execution of the statement, just as is done for
temporary tables. In effect, this means that table variables are materialized on their first use, and the
Query Optimizer uses the row count in the first materialization of the table variable to create a query
plan. See the following example of Query 3 running in SQL Server 2017, and then in SQL Server 2019.

Figure 6.32 – Comparison of Query 3 in two plans using either the table

variable deferred compilation feature versus a temporary table

While in this case the plan doesn’t materially change, the estimated and actual rows match when
using SQL Server 2019’s deferred compilation of Table Variables, providing the Query Optimizer the
opportunity to create a query plan with better estimate memory requirements, which translates into
improved resource usage.

Properly storing intermediate results 225

Using Common Table Expressions (CTEs)

Common Table Expressions (CTEs) are runtime constructs to derive an inline intermediate result
set from a query. This means that a complex T-SQL query can be broken down into simpler T-SQL
statements that store intermediate results before joining with other tables or other CTEs that had been
previously defined in the T-SQL statement. For example, take the two following queries that can be
executed in the AdventureWorks sample database:

WITH Sales_CTE (SalesPersonID, SalesOrderID, SalesYear)
AS
(
 SELECT SalesPersonID, SalesOrderID, YEAR(OrderDate) AS SalesYear
 FROM Sales.SalesOrderHeader
 WHERE SalesPersonID IS NOT NULL
)
SELECT SalesPersonID, COUNT(SalesOrderID) AS TotalSales, SalesYear
FROM Sales_CTE
GROUP BY SalesYear, SalesPersonID
ORDER BY SalesPersonID, SalesYear;
GO
SELECT SalesPersonID, COUNT(SalesOrderID) AS TotalSales,
YEAR(OrderDate) AS SalesYear
FROM Sales.SalesOrderHeader
WHERE SalesPersonID IS NOT NULL
GROUP BY YEAR(OrderDate), SalesPersonID
ORDER BY SalesPersonID, SalesYear;
GO

The queries generate the following execution plans:

Figure 6.33 – Execution plans for queries listing the total sales per year and by salesperson

Discovering T-SQL Anti- Patterns in Depth226

These yield matching query plans because they express the same set of conditions and were optimized
the same way. However, CTEs can be very useful to express conditions that become impossible to
express with a joined query, such as recursive queries or queries that reference nested result sets.

The following example is a different way of building a query that can be executed in the AdventureWorks
sample database and builds a CTE that is then referenced by another CTE before being joined with
the Person.Person table:

WITH Sales_CTE (SalesPersonID, TotalSales, SalesYear)
AS
-- Define the first CTE query.
(
 SELECT SalesPersonID, SUM(TotalDue) AS TotalSales,
 YEAR(OrderDate) AS SalesYear
 FROM Sales.SalesOrderHeader
 WHERE SalesPersonID IS NOT NULL
 GROUP BY SalesPersonID, YEAR(OrderDate)
)
,
-- Define the second CTE query, which returns sales quota data by year
for each sales person.
Sales_Quota_CTE (BusinessEntityID, SalesQuota, SalesQuotaYear)
AS
(
 SELECT BusinessEntityID, SUM(SalesQuota) AS SalesQuota,
 YEAR(QuotaDate) AS SalesQuotaYear
 FROM Sales.SalesPersonQuotaHistory
 GROUP BY BusinessEntityID, YEAR(QuotaDate)
)
-- Define the outer query by referencing columns from both CTEs and a
Table.
SELECT CONCAT(FirstName, ' ', LastName) AS SalesPerson, SalesYear,
 FORMAT(TotalSales,'C','en-us') AS TotalSales, SalesQuotaYear,
 FORMAT (SalesQuota,'C','en-us') AS SalesQuota,
 FORMAT (TotalSales -SalesQuota, 'C','en-us') AS Amt_Above_or_Below_
Quota
FROM Sales_CTE
INNER JOIN Sales_Quota_CTE
ON Sales_Quota_CTE.BusinessEntityID = Sales_CTE.SalesPersonID
 AND Sales_CTE.SalesYear = Sales_Quota_CTE.SalesQuotaYear
INNER JOIN Person.Person
ON Person.BusinessEntityID = Sales_Quota_CTE.BusinessEntityID
ORDER BY SalesPersonID, SalesYear;

Properly storing intermediate results 227

Notice the resulting query execution plan with one single query, unlike the table variable and temporary
table variants:

Figure 6.34 – Execution plan for a single query listing the total sales per year and by salesperson

CTEs can be a very efficient alternative for driving Query Optimizer choices that improve performance.
In the chapter Exploring Query Execution Plans in the Query plan operators of interest section, we had
the following example of a query executed in the AdventureWorks sample database:

SELECT WO.WorkOrderID, WO.ProductID, WO.OrderQty, WO.StockedQty,
WO.ScrappedQty, WO.StartDate, WO.EndDate, WO.DueDate,
WO.ScrapReasonID, WO.ModifiedDate, WOR.WorkOrderID,
 WOR.ProductID, WOR.LocationID
FROM Production.WorkOrder AS WO
LEFT JOIN Production.WorkOrderRouting AS WOR
ON WO.WorkOrderID = WOR.WorkOrderID AND WOR.WorkOrderID = 12345;

The query generates the following execution plan:

Figure 6.35 – Execution plan for the query listing orders

Where we can see its QueryTimeStats property:

Figure 6.36 – QueryTimeStats for the plan

Discovering T-SQL Anti- Patterns in Depth228

Notice the Table Spool operator, which we know at this point is something developers must attempt to
avoid. We can’t always avoid these, for example a spool that enforces Halloween protection is unlikely to
be removable. But in this case, refactoring the query to move the part that required the spool to a CTE
and including the join predicate seeking on the scalar value 12345 allows us to eliminate the spool:

;WITH cte AS (
SELECT WorkOrderID, ProductID, LocationID
FROM Production.WorkOrderRouting WHERE WorkOrderID = 12345
)
SELECT WO.WorkOrderID, WO.ProductID, WO.OrderQty, WO.StockedQty,
WO.ScrappedQty, WO.StartDate, WO.EndDate, WO.DueDate,
WO.ScrapReasonID, WO.ModifiedDate, WOR.WorkOrderID,
 WOR.ProductID, WOR.LocationID
FROM Production.WorkOrder AS WO LEFT JOIN cte AS WOR
ON WO.WorkOrderID = WOR.WorkOrderID
GO

Verify the new execution plan:

Figure 6.37 – Execution plan for the query listing orders now using a CTE

Its QueryTimeStats property is as follows:

Figure 6.38 – QueryTimeStats for the plan using a CTE

Because of the CTE use, the Query Optimizer found that a Merge Join is a good-enough join
algorithm, and better than a Nested Loops, which is why the Spool is eliminated in this case. And
the plan becomes cheap enough to avoid exceeding the cost threshold for parallelism configuration,
which means it is executed in serial.

Summary 229

Let’s compare the preceding QueryTimeStats with the QueryTimeStats in the first query using the
non-indexed view: the CPU time dropped from 247 ms to 46 ms (~81 percent less), and execution
time dropped from 713 ms to 46 ms (~93 percent less). For such a simple query, this means we not
only improved the singleton execution and CPU time, but also removed any use of tempdb. This
in turn improved the scalability of the workload by using fewer resources and reducing the overall
concurrency in the workload.

Summary
This chapter covered some performance pitfalls that are not always obvious when writing T-SQL queries.
Using the knowledge and tools covered in earlier chapters together with the anti-patterns discussed in
this chapter, we should now be able to dig deeper into our query execution plans and uncover issues
that have the potential to impact performance and scalability before they reach production. Up to
now, we have been focusing on how to write efficient, performant T-SQL code, but what if the code
is already written and we are faced with identifying these issues in an existing system?

In the next and final part of the book, we will investigate some of the tools available to us that help
identify and troubleshoot issues with our T-SQL query performance.

Part 3:
Assembling Our Query

Troubleshooting Toolbox

This part introduces all the diagnostics artifacts and tools that ship with the SQL Database Engine
and SQL Server Management Studio for query performance troubleshooting.

This part has the following chapters:

• Chapter 7, Building Diagnostic Queries Using DMVs and DMFs

• Chapter 8, Building XEvent Profiler Traces

• Chapter 9, Comparative Analysis of Query Plans

• Chapter 10, Tracking Performance History with Query Store

• Chapter 11, Troubleshooting Live Queries

• Chapter 12, Managing Optimizer Changes

7
Building Diagnostic Queries

Using DMVs and DMFs

Dynamic management views (DMVs) and dynamic management functions (DMFs) expose relevant
real-time information that can unlock the secrets of T-SQL execution and SQL Database Engine health,
even on a live production server. There are hundreds of DMVs and DMFs (collectively referred to as
DMVs) available in the SQL Database Engine, and while they are mostly documented, it may not be
obvious how they can be used by database developers and administrators to troubleshoot performance
both in production systems and during the development process.

In this chapter, we will start by enumerating some of the DMVs that are most relevant for both T-SQL
developers and database administrators alike to troubleshoot T-SQL query performance. Building on
this information, we will provide real-world examples to explore how to use DMVs to troubleshoot
different poor-performance scenarios, as well as give us the information needed to begin building
our own DMV scripts. This chapter covers the following topics:

• Introducing DMVs

• Exploring query execution DMVs

• Exploring query plan cache DMVs

• Troubleshooting common scenarios with DMV queries

Technical requirements
The examples used in this chapter are designed for use on SQL Server 2022 and Azure SQL Database,
but they should work on any version of SQL Server, 2012 or later. The Developer edition of SQL Server
is free for development environments and can be used to run all the code samples. There is also a free
tier of Azure SQL Database you can use for testing at https://aka.ms/freedb.

https://aka.ms/freedb

Building Diagnostic Queries Using DMVs and DMFs234

You will need the sample databases AdventureWorks2016_EXT (referred to as AdventureWorks)
and AdventureWorksDW2016_EXT (referred to as AdventureWorksDW), which can be found
on GitHub at https://github.com/Microsoft/sql-server-samples/releases/
tag/adventureworks. Code samples for this chapter can also be found on GitHub at https://
github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/
main/ch6.

Introducing DMVs
SQL Server 2005 introduced a new concept in the Database Engine – the SQL Operating System
(SQLOS). The SQLOS is an abstraction layer that encapsulates all the low-level resource management
and monitoring tasks that the SQL Database Engine must perform while providing an application
programming interface (API) for other components of the Database Engine to leverage these services.
Not only does this centralization of resource management code make the SQL Database Engine more
efficient, but it also provides a central location for monitoring various aspects of Database Engine
performance. DMVs take advantage of this centralized architecture by providing the user with a
mechanism to view this information in a way that is lightweight and accurate.

DMVs allow the user to query memory structures in SQLOS. Some DMVs show information that
is only relevant for the specific point in time at which they are queried, while other DMVs show
cumulative information that goes back to the last time the SQL Database Engine service was started.
Because they are querying in-memory structures, most DMVs do not retain any information between
restarts of the SQL Database Engine service.

Hundreds of DMVs can be used to monitor everything from memory consumption to query performance,
as well as features of the SQL Database Engine such as replication, Resource Governor, and availability
groups. In this chapter, we will be focusing on DMVs that are relevant for troubleshooting T-SQL
query performance, as well as some other performance issues that are relevant when monitoring
query execution.

Exploring query execution DMVs
Several different DMVs may be relevant when analyzing the activity that is currently happening in
a SQL Database Engine. In this section, we will cover a few of the most common DMVs, along with
some examples of the information that they can provide.

sys.dm_exec_sessions

The sys.dm_exec_sessions DMV lists information about all the sessions that are currently
active on the server. This includes both user sessions and system sessions, and it also includes idle
sessions that are connected but are not currently executing any queries.

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks

Exploring query execution DMVs 235

Tip
Idle sessions can be identified by looking for rows that have a status of sleeping. When using
connection pooling especially, it is common to have several user sessions in a sleeping status.

This DMV can be used to view information that is relevant to the session, such as login_name,
host_name, program_name, and other properties that would be set at the session level. This can
be helpful when trying to identify which applications might be connected to the server, and which
databases those applications are connected to. It shows current information only, so once a session is
no longer active, it will not be visible in the view.

Here is a sample query that can be executed against sys.dm_exec_sessions:

SELECT session_id, login_time, host_name, program_name, login_name,
status, last_request_start_time, db_name(database_id) AS [db_name]
FROM sys.dm_exec_sessions
WHERE session_id = 93;

The following screenshot shows an example of the results when running this query from SQL Server
Management Studio (SSMS):

Figure 7.1 – Results of a query on sys.dm_exec_sessions

There are a few interesting things to note here. The first is session_id. This is important because
it will help identify this session in other DMVs.

Tip
We can use the is_user_process column of sys.dm_exec_sessions to determine
whether a session is generated by the system (is_user_process = 0) or by a user
(is_user_process = 1), but most system sessions have a session ID less than 50. This
is a shortcut that can help us distinguish between user and system sessions in other views that
contain session_id. In newer versions of the SQL Database Engine, there may be system
sessions with an ID greater than 50, but they will typically have a status of background.

Building Diagnostic Queries Using DMVs and DMFs236

When we run a query in SSMS, we might notice that the status bar at the bottom contains information
such as our login name, the server we are connected to, and the database name. The number in
parentheses next to our login name is our session_id. We can see this same information in sys.
dm_exec_sessions, along with the program_name Microsoft SQL Server Management
Studio – Query, indicating the session is coming from a query window in SSMS. If we are investigating
a long-running query in a production SQL Database Engine, this information can help us identify
where that query is coming from and who is executing it.

sys.dm_exec_requests

When we execute a T-SQL statement or batch on the server, it is called a request. This DMV lists
all the requests that are currently active on the server. Once a batch completes and the results have
been consumed by the client who made the request, it will no longer appear in this view, even if the
session that generated it is still active. We can join this view to sys.dm_exec_sessions through
the session_id column to obtain information about the session such as program_name and
login_time, as well as information about the query execution such as cpu_time, total_
elapsed_time, and logical_reads. This DMV displays information that is current for the
moment in time at which it was queried, so the results returned will likely be different each time it is run.

For example, the following query will give us information about queries that are currently executing:

SELECT r.session_id, r.start_time, s.program_name, r.status,
r.command, r.sql_handle, r.statement_start_offset, r.statement_end_
offset, r.database_id
FROM sys.dm_exec_requests r
INNER JOIN sys.dm_exec_sessions s ON s.session_id = r.session_id
WHERE r.session_id > 50
 AND r.status IN ('running', 'runnable', 'suspended');

As we can see in the following screenshot, there are two queries currently executing from SSMS:

Figure 7.2 – Results of a query on sys.dm_exec_requests and sys.dm_exec_sessions

Exploring query execution DMVs 237

Note
Refer to Chapter 1, Understanding Query Processing, for a discussion of the various states that a
query will cycle through during execution. Filtering out sessions that have a status other than
running, runnable, or suspended will allow us to focus on user sessions only.

We can gain a lot of information from this view about the performance of a request as well, such as
CPU consumption, elapsed time in milliseconds, and I/O. The following query shows some of the
relevant performance-related columns:

SELECT session_id, status, cpu_time, total_elapsed_time, logical_
reads, reads, writes
FROM sys.dm_exec_requests
WHERE session_id > 50
 AND status IN ('running', 'runnable', 'suspended');

The following screenshot shows the results of this query:

Figure 7.3 – Results of a query on sys.dm_exec_requests

sys.dm_exec_sql_text

The sys.dm_exec_sql_text DMF is a helper function that can be used in conjunction with
any DMV that contains the sql_handle column to retrieve the text of a query. We can select from
this system table-valued function by passing a valid sql_handle as a parameter, but it is most
commonly used via the CROSS APPLY operation in combination with queries against either sys.
dm_exec_requests or sys.dm_exec_query_stats.

Building on our example from the previous section, we can use the CROSS APPLY operator to
retrieve the text of the queries that are running, as in the following query:

SELECT r.session_id, r.start_time, s.program_name, r.status, r.st.text
AS statement_text, r.statement_start_offset, r.statement_end_offset,
r.database_id
FROM sys.dm_exec_requests r
INNER JOIN sys.dm_exec_sessions s ON s.session_id = r.session_id
CROSS APPLY sys.dm_exec_sql_text(r.sql_handle) st
WHERE r.session_id > 50
 AND r.status IN ('running', 'runnable', 'suspended');

Building Diagnostic Queries Using DMVs and DMFs238

This query yields the results illustrated in the following screenshot:

Figure 7.4 – Results of a query using sys.dm_exec_sql_text

Alternatively, we can copy one of the values for sql_handle that we obtained from the first sample
query in the sys.dm_exec_requests section and execute this DMF as a standalone query:

SELECT *
FROM sys.dm_exec_sql_
text(0x020000002EED8B2B6539C6D9CB85FAAA57145FECF54E1DA
700);

This query yields the following results:

Figure 7.5 – Results of a query on sys.dm_exec_sql_text for a specific handle

As we can see, the text column contains the text of the first sample query we executed in the sys.
dm_exec_requests section.

sys.dm_os_waiting_tasks

Every request that is submitted to the SQL Database Engine is broken down into one or more tasks,
depending on whether parallelism is involved. As we mentioned previously in the Query execution
essentials section of Chapter 1, Understanding Query Processing, each task that is involved in processing
the query is assigned to a worker thread, and these threads are used to complete the work of the query
on the CPUs. Throughout the execution of a query, the various threads will cycle through the statuses
running, runnable, and suspended as they process the different operations required to complete
the query. When a task needs to wait for a resource, it goes into the suspended state. This is relevant
information when troubleshooting query performance because it indicates contention for a resource

Exploring query execution DMVs 239

of some kind. The sys.dm_os_waiting_tasks DMV lists all the tasks that are active within
the server, but are in the suspended state, meaning they are waiting for a resource. This view contains
information such as wait_type, which is helpful when analyzing what is contributing to a query’s
execution time. This information is also available at the request level via sys.dm_exec_requests
as we discussed earlier in this chapter, but when a query is running in parallel, the information listed
at the request level may not be giving us a full picture of what is going on at the individual thread level.

Let’s change the columns we select from sys.dm_exec_requests to show more information
about the current status of the queries that are executing:

SELECT r.session_id, r.start_time, r.status, r.sql_handle,
 r.wait_type, r.wait_time, r.wait_resource
FROM sys.dm_exec_requests r
WHERE r.session_id > 50
 AND r.status IN ('running', 'runnable', 'suspended')

The following screenshot illustrates the results of this query:

Figure 7.6 – Results of query getting requests from user sessions and their current request state

Note that session_id 101 is currently in the suspended state, which means it is waiting for
a resource. The wait_type column contains the value CXPACKET. This wait type indicates that
the query is running in parallel, but we’re only getting information from one of the threads in sys.
dm_exec_requests, the coordinator thread. If we want to know what all the suspended threads that
are involved in this query execution are doing, we need to join the sys.dm_os_waiting_tasks
DMV to get the task-level detail:

SELECT r.session_id, t.exec_context_id, t.blocking_exec_context_id,
r.start_time, r.status, r.sql_handle, t.wait_type, t.wait_duration_ms
FROM sys.dm_exec_requests r
LEFT JOIN sys.dm_os_waiting_tasks t ON r.session_id = t.session_id
WHERE r.session_id > 50
 AND r.status IN ('running', 'runnable', 'suspended')
ORDER BY t.exec_context_id

Note that a left join is used in this query because it is possible to have rows in sys.dm_exec_
requests that have no waiting tasks, but we still want them to appear in our results. This yields
the following results:

Building Diagnostic Queries Using DMVs and DMFs240

Figure 7.7 – Results of a query getting requests from user sessions including thread detail

We can see that session 93 was in the running state, so the fields from sys.dm_os_waiting_
tasks are NULL for this row. For session 101, the parallel query, there are several rows returned with
different values for exec_context_id and blocking_exec_context_id. These show the
various tasks that make up the request, and which tasks are blocking them, along with wait_type
and wait_duration_ms. Note that while sys.dm_exec_requests showed only CXPACKET
for the wait type, there are in fact several tasks waiting on CXCONSUMER as well. The task with
exec_context_id = 0 is the coordinator thread; the rest of the tasks are the ones doing actual work.

Tip
A detailed discussion about waits is beyond the scope of this book, but if we would like more
information about wait types, search the SQL Database Engine documentation for the sys.
dm_os_wait_stats DMV. This DMV shows cumulative wait information since the server
was last started. The documentation for this DMV contains a reference for the various wait
types and what they mean.

Exploring query plan cache DMVs 241

Exploring query plan cache DMVs
Another set of DMVs that are helpful when troubleshooting T-SQL query performance is the query
plan cache-related DMVs. While the execution DMVs we discussed in the previous section contain
point-in-time information that changes frequently, these DMVs contain information about queries
that are currently in the plan cache, which can contain information back to when the server was last
restarted, depending on how long the query plans remain in the cache.

Note
The amount of time a plan remains in the cache depends on several factors such as memory
pressure, recompilation, and schema changes. Provided that the server has been online for
some time and no cache-flushing events have occurred, such as changing max degree of
parallelism, or manually clearing the plan cache by running ALTER DATABASE SCOPED
CONFIGURATION CLEAR PROCEDURE_CACHE, these plan cache DMVs should give you
a good idea of the overall query performance on the server.

Before describing the DMVs in more detail, it’s important to understand how query execution plans
are stored. Query execution plans are stored as a batch, which means that all the statements that were
submitted to the server as a single request are stored as a single plan object. An example of a batch
might be a single stored procedure or a group of T-SQL queries submitted in a single request.

Tip
If running a query from SSMS, the GO command serves as a batch separator. All the T-SQL
statements between GO commands make up a single batch. Note that GO is not a T-SQL
statement itself; it simply directs SSMS to submit the preceding statements to the Database
Engine as a batch.

A plan object will have a plan_handle, which is a hexadecimal value that uniquely identifies
the object. The text of the batch will also have a handle called sql_handle, which can be used to
identify the T-SQL query itself and retrieve the batch text. Within that batch, there will be one or more
statements. Each statement is identified by a statement_start_offset and statement_
end_offset which are byte offsets from the beginning of the batch text that point to the beginning
and end of the statement within the batch. We can use these offsets to extract the individual queries
from a batch, typically by using a SUBSTRING function. Keep these concepts in mind as we explore
the various plan cache DMVs.

sys.dm_exec_query_stats

The sys.dm_exec_query_stats DMV displays cumulative query execution statistics for all
the queries that are currently in the cache. As we observed in the previous section, the sys.dm_
exec_requests DMV shows query performance while the query is executing. Once the query is

Building Diagnostic Queries Using DMVs and DMFs242

complete, sys.dm_exec_query_stats is incremented with this new execution information.
While query execution plans are stored as a batch, this DMV lists one row per statement, so there
may be multiple rows with the same plan_handle and sql_handle. These rows will have a
different statement_start_offset and statement_end_offset to distinguish between
the statements in the same batch.

Many different query performance metrics can be gathered with this DMV. This sample query highlights
a few of the more common ones:

SELECT st.text, qs.plan_handle, qs.last_execution_time, qs.execution_
count, qs.total_worker_time AS total_cpu_time,
qs.total_worker_time/qs.execution_count AS average_cpu_time,
qs.total_logical_reads, qs.total_logical_reads/qs.execution_count AS
average_logical_reads, qs.total_elapsed_time, (qs.total_elapsed_time/
qs.execution_count)/1000000 AS average_elapsed_time_sec
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) st
WHERE qs.sql_handle =
0x0200000022D4D930BD648A1C5BA9320D2448C8F7CFCEF3D
600;

In this case, we’ve used the instance of sql_handle that we retrieved earlier from the sample query
against sys.dm_exec_requests. This query yields the following results:

Figure 7.8 – Results of query getting query performance metrics for a specific sql_handle

Based on the execution_count value in the results, we can see that this query plan has been
executed six times since it entered the cache. The columns that start with total_ are cumulative for
all six executions, so we can calculate the average by dividing by execution_count. Also, note that
all times are in microseconds, so in order to get the average execution time in seconds, we calculated
the average first by dividing total_elapsed_time by execution_count, then we divided
by 1,000,000 to convert microseconds to seconds. In addition to totals, each metric also has columns
for minimum and maximum values across all executions, as well as the value for the last execution.

Tip
In the Troubleshooting common scenarios with DMV queries section, we will cover some
additional columns that are specific to certain performance scenarios, but a comprehensive
list of the columns returned by this DMV can be found by searching for the sys.dm_exec_
query_stats documentation page.

Exploring query plan cache DMVs 243

sys.dm_exec_procedure_stats

The sys.dm_exec_procedure_stats DMV is like sys.dm_exec_query_stats in that
it contains cumulative execution statistics for query plans in the cache, but at the stored procedure
level rather than the query level. Stored procedures may contain T-SQL code constructs other than
queries such as conditional logic, variable assignments, and function calls. These constructs consume
resources, but they aren’t accounted for in sys.dm_exec_query_stats because they aren’t
queries. This DMV can be used to determine the total resource consumption of the procedure as a
whole, including code that is not accounted for in sys.dm_exec_query_stats.

The following example shows a stored procedure that contains some conditional logic as well as
a WAITFOR command that causes the execution to wait for the specified amount of time before
proceeding to the next statement in the procedure:

CREATE OR ALTER PROCEDURE uspGetEmployeeByDepartment @Department
nvarchar(50)
AS
SELECT *
FROM HumanResources.vEmployeeDepartment
WHERE Department = @Department
IF @Department = N'Engineering'
 WAITFOR DELAY '00:00:10'
GO

We can execute this stored procedure a few times in the AdventureWorks sample database with a
few different values for @Department, and then use the following query to see the execution statistics:

SELECT object_name(object_id, database_id) AS proc_name, plan_handle,
execution_count, min_elapsed_time, max_elapsed_time
FROM sys.dm_exec_procedure_stats
WHERE object_id = object_id('uspgetEmployeeByDepartment')

This query returns the following results:

Figure 7.9 – Results of a query getting query performance metrics for a specific stored procedure

Notice the difference between the minimum and maximum elapsed time. This is because the WAITFOR
command only executes when @Department = N'Engineering' so these executions take
over 10 seconds, whereas other parameter values take much less time, only about the time it takes to
execute the query. We can confirm this by using the value from the plan_handle column to look
up the statements in sys.dm_exec_query_stats:

SELECT st.text, qs.statement_start_offset, qs.statement_end_offset,

Building Diagnostic Queries Using DMVs and DMFs244

qs.execution_count, qs.min_elapsed_time, qs.max_elapsed_time
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) st
WHERE plan_handle = 0x05001E008116D84AA0BC768B1F0
200000100;

This query returns the following results:

Figure 7.10 – Results of a query getting performance metrics for statements in a specific stored procedure

Notice that while the minimum elapsed time for the query alone is close to the minimum elapsed time
of the entire procedure, the maximum elapsed time is an order of magnitude smaller. This is because
the WAITFOR command is not part of the query, and thus its execution time is not included here.

There are two other DMVs that are like sys.dm_exec_procedure_stats called sys.
dm_exec_trigger_stats and sys.dm_exec_function_stats. These DMVs can be
used to view execution statistics for triggers and functions respectively, in the same way sys.
dm_exec_procedure_stats is used for stored procedures.

sys.dm_exec_query_plan

The sys.dm_exec_query_plan DMF is another helper function like sys.dm_exec_sql_
text that retrieves the estimated execution plan based on a plan_handle. We can call sys.
dm_exec_query_plan on its own with a valid plan_handle, or we can leverage CROSS
APPLY with views such as sys.dm_exec_query_stats that contain a plan_handle column.

The value that is returned in the query_plan column is in XML format but querying this view in
SSMS will show the XML as a link. When clicked, the link will open as a graphical plan in a new tab.

We can use the instance of plan_handle we found earlier in the sys.dm_exec_procedure_
stats section to retrieve the estimated plan for the uspGetEmployeeByDepartment stored
procedure, as in the following example:

SELECT query_plan
FROM sys.dm_exec_query_plan(0x05001E008116D84AA0BC768B1F0
200000100);

The following screenshot shows the results of this query:

Figure 7.11 – Results of query getting the plan for a specific plan_handle

Exploring query plan cache DMVs 245

If we click the link displayed in the results, the following query execution plan opens in a new window:

Figure 7.12 – Query plan for the uspGetEmployeeByDepartment stored procedure

There are some cases where even if the plan is still in the cache and we have a valid plan_handle,
sys.dm_exec_query_plan returns a NULL value for the plan. In most cases, the reason for this
is that the query that generated the plan is very complex and has many nested elements within it. Due
to a limitation with the XML data type that only allows for 128 levels of nested elements, these complex
plans cannot be returned via sys.dm_exec_query_plan. If we face this situation, we can attempt
to use the sys.dm_exec_text_query_plan function instead. This function returns the plan as
NVARCHAR(max) rather than XML. The text returned is XML data, but since the NVARCHAR(max)
datatype doesn’t have any formatting, it isn’t affected by the nesting limitation. Query plans retrieved
this way will not be clickable, so we will need to copy the XML data from the column, paste it into a
new window (either SSMS or some other text editor), and save it as a .sqlplan file. Once we have
this file, we can double-click it and SSMS will open it as a graphical plan.

The following query can be used to retrieve the same plan using sys.dm_exec_text_query_plan:

SELECT query_plan
FROM sys.dm_exec_text_query_plan(0x05001E008116D84AA0BC768B1F0
200000100, 152,
316);

Note that this function takes two additional parameters, which are statement_start_offset
and statement_end_offset. These values can also be obtained from sys.dm_exec_query_
stats. This query returns the following results:

Figure 7.13 – Results of query getting the plan for a specific statement

inside the uspGetEmployeeByDepartment stored procedure

Building Diagnostic Queries Using DMVs and DMFs246

As we can see, the results are essentially the same as sys.dm_exec_query_plan, except there
is no hyperlink.

sys.dm_exec_cached_plans

The sys.dm_exec_cached_plans DMV can be used to view all the query execution plans that
are currently in the cache. Unlike sys.dm_exec_query_stats, which contains information about
the execution of the query, this DMV contains information about the plan object itself, including things
such as the size of the plan, the type of plan (for example, stored procedure, prepared statement, ad
hoc query, and so on), and the number of times the plan has been used. Also, since plans are stored
as a batch, this DMV will have only one row per plan, rather than one row per statement as in sys.
dm_exec_query_stats.

Here’s an example of a query against sys.dm_exec_cached_plans:

SELECT TOP 10 plan_handle, usecounts, size_in_bytes, objtype, query_
plan
FROM sys.dm_exec_cached_plans
CROSS APPLY sys.dm_exec_query_plan(plan_handle)
ORDER BY size_in_bytes DESC;

Note in the preceding query example that we can CROSS APPLY the sys.dm_exec_query_plan
DMF with this DMV in order to retrieve the plan. This query yields the following results, ordered by
the size of the plan, largest first:

Figure 7.14 – Results of a query getting the top 10 largest plans in a cache

This is just a simple example that returns the 10 largest plans in the cache. In the next section, we will
look at a few more comprehensive queries that leverage sys.dm_exec_cached_plans.

Troubleshooting common scenarios with DMV queries 247

Troubleshooting common scenarios with DMV queries
Now that we have reviewed some of the DMVs that are relevant for examining query performance, we
can look at how to combine these views into larger queries that target specific troubleshooting scenarios.

Note
Many of the examples in this chapter are derived from queries on the Tiger Toolbox on GitHub
(https://aka.ms/tigertoolbox). For more examples and comprehensive DMV
scripts, be sure to download and explore this repository.

Investigating blocking
Blocking is a very common scenario in many database systems. This is what happens when one query
holds exclusive access to a resource that another query also requires. It is normal for some blocking
to occur, but severe blocking can cause major performance issues and should be investigated. When
troubleshooting query performance, it’s a good idea to check for blocking first to see if queries are
slow because they are expensive, or because they are being blocked by some other workload.

The key DMVs for investigating blocking are sys.dm_exec_requests and sys.dm_os_
waiting_tasks. As we discussed previously, these DMVs show us which queries are currently
running and what state they are in. They also have columns that will indicate which sessions may be
causing blocking.

The following example shows a simple query that can be used to look for blocking on the system:

SELECT s.session_id, s.last_request_end_time, ISNULL(r.status,s.
status) AS status, s.database_id, r.blocking_session_id, r.wait_type,
r.wait_time, r.wait_resource, s.open_transaction_count
FROM sys.dm_exec_sessions s
LEFT JOIN sys.dm_exec_requests r ON r.session_id = s.session_id
WHERE s.is_user_process = 1;

The following screenshot shows an example of the results this query might generate on a system that
has blocking:

https://aka.ms/tigertoolbox

Building Diagnostic Queries Using DMVs and DMFs248

Figure 7.15 – Results of a query getting current blocked sessions

Notice that session 99 has a status of suspended, which indicates it’s waiting for something. The
wait_type column shows a value of LCK_M_S, which means the session is waiting on a shared lock.
The wait_resource column gives some information about what resource the session is trying to
lock – it’s a key (as in a key of an index), in database 30, with hobt_id of 72057594048086016.

Note
The hobt_id identifier stands for Heap or B-Tree ID. This is the identifier for a single partition
of an object, either a table, an index, or column store segments.

We can reference system catalog views in the database to determine which object the lock request is
for. The following query will return the index that is causing this blocking situation:

SELECT object_name(p.object_id) AS [object_name], p.index_id, i.name
AS index_name, partition_number
FROM sys.partitions p
INNER JOIN sys.indexes i ON i.object_id = p.object_id AND i.index_id =
p.index_id
WHERE p.hobt_id = 72057594048086016;

This will return the following results in the AdventureWorks sample database:

Figure 7.16 – Results of the example query showing the index where blocking is occurring

Investigating blocking 249

The blocking_session_id column shows a value of 109, which means that session 109 is
the session that is currently holding this resource and therefore blocking session 99. Interestingly,
session 99 has a status of sleeping, which means it is not currently executing a query, but open_
transaction_count is 1, which means it started a transaction but hasn’t committed or rolled
back the transaction. This is what is sometimes referred to as an orphaned session; it can happen when
an application generates an unhandled exception, and the transaction doesn’t get cleaned up. In this
case, there’s not much we can do to resolve the blocking situation naturally, so we typically need to kill
the orphaned session (session 109), which should allow the blocked session (session 99) to proceed.

Tip
Other wait types may cause blocking, such as PAGELATCH_EX, which can be seen in the
previous screenshot. These wait types are not user objects such as tables and indexes, they are
pages that are an internal resource.

We can still get more information about these resources using a new DMF in SQL Server 2019 called
sys.dm_db_page_info. Using wait_resource 26:1:157921 from the previous screenshot,
we can generate the following query to determine which page this resource references:

SELECT *
FROM sys.dm_db_page_info (26,1,157921,'LIMITED');

In this case, the blocking scenario was quite simple, one session was blocking one other session. In
some cases, blocking can be very complex and form what’s called a blocking chain. A blocking chain
is hierarchical, one session blocks another session, and that session in turn blocks another session, and
so forth. In this case, the session that starts the blocking chain is called the head blocker. This complex
blocking is difficult to diagnose using a simple query such as the one we referenced here. In this case,
we can use a more comprehensive query such as can be found in the Tiger Toolbox (http://aka.
ms/uspWhatsUp), or by using a tool such as Activity Monitor in SSMS. We can read more about
Activity Monitor in Chapter 11, Troubleshooting Live Queries.

We may notice in the preceding screenshot showing a blocking situation, that there are other sessions
that are suspended but have a value of 0 for blocking_session_id. These sessions are waiting
for a resource, but it’s not considered blocking because the resource is not one that is owned by
another session. These are typically system resources such as the disk, memory, or CPU. In this case,
wait_type is WRITELOG, which means the session is waiting to write to the transaction log on disk.

http://aka.ms/uspWhatsUp
http://aka.ms/uspWhatsUp

Building Diagnostic Queries Using DMVs and DMFs250

Cached query plan issues
As we discussed earlier in the sys.dm_exec_query_stats section, the SQL Database Engine maintains
execution statistics for all the queries that are currently in the cache. There is a wealth of information
in this DMV that we can use to troubleshoot several different query performance-related issues.
We will cover a few issues here, but be sure to reference the BPCheck script in the Tiger Toolbox
(https://aka.ms/bpcheck) for a more comprehensive example of queries to identify these
scenarios and others.

Single-use plans (query fingerprints)

In the EXECUTE vs. sp_executesql section of Chapter 5, Writing Elegant T-SQL Queries, we discussed
how to send ad hoc T-SQL queries to the SQL Database Engine in a way that allows for plan reuse (also
see the Plan caching and re-use section in Chapter 1, Understanding Query Processing, for the importance
of plan reuse). If we are not sure whether or not our application is successfully parameterizing queries
and leveraging plan reuse, we can use the query_hash column in sys.dm_exec_query_stats
(known as the query fingerprint) to identify queries that are logically equivalent but have different
entries in the cache. Queries that have the same query_hash but different values for the sql_handle
column are stored as separate objects but are effectively the same query.

The following sample query can be used to identify single-use or low-use plans:

SELECT qs.query_hash, Query_Count = COUNT(DISTINCT sql_handle),
Executions = SUM(execution_count), CPU = SUM(qs.total_worker_time),
Reads = SUM(qs.total_logical_reads), Duration = SUM(qs.total_elapsed_
time), Sample_Query = MAX(st.text)
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) st
GROUP BY qs.query_hash
HAVING COUNT(DISTINCT sql_handle) > 5 --> Can be any number, depending
on our tolerance for duplicate queries
ORDER BY Query_Count DESC;

The results of this query are shown in the following screenshot:

Figure 7.17 – Results of a query getting single-use or low-use plans

https://aka.ms/bpcheck

Cached query plan issues 251

The results show a single row where Query_Count is 8. This means that the cache currently contains
eight different queries that have the same query_hash and therefore are effectively the same query.
If we look at the Sample_Query column, we’ll find the following query:

SELECT p.BusinessEntityID, p.FirstName, p.LastName, e.EmailAddress
FROM Person.Person p
INNER JOIN Person.EmailAddress e ON p.BusinessEntityID =
e.BusinessEntityID
WHERE PersonType = 'IN' AND EmailPromotion = 1;

As we can see, this query does not have any parameter markers. There are three different ways we
can fix this:

• Create a stored procedure and have the application call that instead.

• Parameterize the query by using sp_executesql or parameter objects from the database
connection library.

• Turn on Forced Parameterization.

If there are only one or two queries like this, it may be easy enough to fix them by modifying the code
using either method 1 or 2. If there are hundreds of queries that need to be parameterized, it might
be worth turning on Forced Parameterization to temporarily correct the issue until the application
can be re-written, using the following T-SQL command:

ALTER DATABASE CURRENT SET PARAMETERIZATION FORCED WITH NO_WAIT;

It may also be worth enabling the Optimize for Ad hoc Workloads server setting to prevent plan
cache bloating for workloads that contain many single-use ad hoc batches, using the following
T-SQL command:

EXEC sys.sp_configure N'optimize for ad hoc workloads', N'1';
GO
RECONFIGURE WITH OVERRIDE;
GO

These are also useful if the application is developed by a third-party software vendor, and we do not
have the ability to change the code.

Finding resource-intensive queries

If the SQL Database Engine is experiencing resource contention such as high CPU consumption or
heavy I/O, or we simply want to find queries that are resource intensive, we can use sys.dm_exec_
query_stats to list out the top resource-consuming queries that are currently in the cache. There
are several different metrics available via sys.dm_exec_query_stats, such as CPU, logical
reads, and elapsed time, which we can sort to obtain a list of queries that consume large amounts of
these resources.

Building Diagnostic Queries Using DMVs and DMFs252

The following query will list out the top 10 queries by average CPU consumption in the cache:

 WITH queries AS
(SELECT TOP 10 [execution_count],
[total_worker_time]/[execution_count] AS [Avg_CPU_Time],
[total_elapsed_time]/[execution_count] AS [Avg_Duration],
[total_logical_reads]/[execution_count] AS
[Avg_Logical_Reads],
ISNULL([Total_grant_kb]/[execution_count], -1) AS [Avg_Grant_KB],
ISNULL([Total_used_grant_kb]/[execution_count], -1) AS [Avg_Used_
Grant_KB],
plan_handle, sql_handle
FROM sys.dm_exec_query_stats
ORDER BY [Avg_CPU_Time] DESC)
SELECT st.[text], qp.query_plan, queries.*
FROM queries
OUTER APPLY sys.dm_exec_query_plan(queries.plan_handle) AS qp
OUTER APPLY sys.dm_exec_sql_text(queries.sql_handle) AS st;

This query yields the following results:

Figure 7.18 – Results of a query getting the top 10 queries by average CPU use in cache

Cached query plan issues 253

Notice that many of the queries in the results have only a single execution. Tuning these queries
would make them faster, but if they’re only executed occasionally, this may not have a large impact
on the overall server performance. If we want to reduce CPU consumption on the server as a whole,
we might consider changing the query to sort by total_worker_time rather than the calculated
Avg_CPU_Time column. This would bring queries to the top that are both high-CPU consumers
and are executed frequently.

We can use this same query to examine other aspects of server performance. If we want to find slow
queries, sort by Avg_Duration. If we want to find I/O intensive queries, sort by Avg_Logical_
Reads or total_logical_reads. If we want to find queries that use a large amount of memory,
sort by Avg_Grant_KB or total_grant_kb. We can find more queries like these in the BPCheck
script in the Tiger Toolbox (https://aka.ms/bpcheck), or we can experiment with our own
queries using the example in this section as a starting point.

Queries with excessive memory grants

In Chapter 3, Exploring Query Execution Plans, we covered a few different topics regarding memory
grants, particularly in the Query plan properties of interest section. It is important for the SQL Database
Engine to get memory grants correct. If a query asks for more memory than it needs, other queries may
be stuck waiting for a memory grant even though this memory is not actually being used. Similarly, if
the query asks for less memory than it needs, it could end up spilling to disk, which will slow it down
significantly. In the previous section, Finding resource intensive queries, we explored the different ways
to sort results from sys.dm_exec_query_stats to surface queries that consume a large amount
of resources. We can also use these columns to do more complex computations that will allow us to
identify queries that have an excessive memory grant.

The following query is a modification of the example we showed in the Finding resource intensive
queries section:

 WITH queries AS
 (SELECT TOP 10 [execution_count],
 [total_worker_time]/[execution_count] AS [Avg_CPU_Time],
 [total_elapsed_time]/[execution_count] AS [Avg_Duration],
 [total_logical_reads]/[execution_count] AS [Avg_Logical_Reads],
 ISNULL([total_grant_kb]/[execution_count], -1) AS [Avg_Grant_KB],
 ISNULL([total_used_grant_kb]/[execution_count], -1) AS [Avg_Used_
Grant_KB],
 COALESCE((([total_used_grant_kb] * 100.00) / NULLIF([total_grant_
kb],0)), 0) AS [Grant2Used_Ratio],
 plan_handle, sql_handle
 FROM sys.dm_exec_query_stats
 WHERE total_grant_kb/execution_count > 1024 AND execution_count >
1
 ORDER BY [Grant2Used_Ratio])

https://aka.ms/bpcheck

Building Diagnostic Queries Using DMVs and DMFs254

SELECT st.[text], qp.query_plan, queries.*
FROM queries
OUTER APPLY sys.dm_exec_query_plan(queries.plan_handle) AS qp
OUTER APPLY sys.dm_exec_sql_text(queries.sql_handle) AS st;

In this query, we added a new column called Grant2Used_Ratio, which is a calculation of the
percent of the memory grant that was actually used. The lower this ratio, the further off the memory
grant estimate was, which means a large amount of memory is being wasted. Looking at the WHERE
clause in the example, we can see that we are filtering out single execution queries and queries that
have a very small memory grant (1 KB or less).

The following screenshot shows sample results from this query:

Figure 7.19 – Results of a query getting the top 10 queries by average grant size in cache

The top query in this result has Grant2Used_Ratio of 0, which is the worst it can possibly be.
In this case, the query requested 1.5 GB of memory and didn’t use any of it! This is a query that we
would want to tune as soon as possible. The rest of the queries in the list have low percentages, but
their Avg_Grant_KB values are not very high, so they may not be as big of a problem as the first
query. We can experiment with different predicates in the WHERE clause and different sorting columns
to find different issues with memory grants using the sample query in this section as a starting point.

Mining XML query plans 255

Mining XML query plans
As we mentioned in the sys.dm_exec_query_plan section, query execution plans are stored as XML,
and the sys.dm_exec_query_plan DMV returns them as a proper XML data type. This allows
us to leverage XML Path Language (XPath) to generate queries that can search for elements and
attributes within the query execution plans. Using these XPath queries, or XQueries, we can search for
common query performance issues across all the query execution plans in the cache, rather than having
to examine each graphical plan individually. In this section, we will cover a few common scenarios,
but be sure to reference the Mining-PlanCache section of the Tiger Toolbox (https://aka.
ms/tigertoolbox) for more examples.

Tip
The queries shown in this section can be used individually to search for specific issues, but
running the entire BPCheck script from the Tiger Toolbox (https://aka.ms/bpcheck)
will gather all this information and more in a single resultset.

Plans with missing indexes

In the Query plan properties of interest section of Chapter 3, Exploring Query Execution Plans, we
discussed the MissingIndexes property. If this property exists in a query execution plan, it
means that there is at least one index that the SQL Database Engine could have benefitted from that
does not exist.

The following query uses DMVs to list all the missing index suggestions since the last restart:

SELECT DB_NAME(d.database_id) as [database_name], OBJECT_NAME(d.
object_id, d.database_id) AS object_name, total_cost_savings =
ROUND(s.avg_total_user_cost * s.avg_user_impact * (s.user_seeks +
s.user_scans),0) /100, s.avg_total_user_cost, s.avg_user_impact,
s.user_seeks, s.user_scans, d.equality_columns, d.inequality_columns,
d.included_columns
FROM sys.dm_db_missing_index_groups g
INNER JOIN sys.dm_db_missing_index_group_stats s on s.group_handle =
g.index_group_handle
INNER JOIN sys.dm_db_missing_index_details d on d.index_handle =
g.index_handle
ORDER BY total_cost_savings DESC;

Sample results for this query can be seen in the following screenshot:

https://aka.ms/tigertoolbox
https://aka.ms/tigertoolbox

Building Diagnostic Queries Using DMVs and DMFs256

Figure 7.20 – Results of query listing all the missing index suggestions

This is useful for getting an overall idea of all the missing index suggestions across all the queries on
the server, but on a busy server with many applications and databases, this may be overwhelming.
Also, while this gives us the ability to sort the index suggestions by potential impact, there is no way
to determine which queries may benefit from these indexes. Also, in some cases, the index suggestion
may not be practical. Looking at the query execution plan that generated the missing index suggestion
may reveal an even better index that would improve the query performance even more, and perhaps
be useable by multiple queries.

Tip
Use the BPCheck script from the Tiger Toolbox (https://aka.ms/bpcheck) to learn
about missing indexes that may be required in a database. BPCheck can optionally generate
the index creation scripts for the missing indexes that are expected to have a very high impact
using a scoring method. BPCheck can warn if two missing indexes would be redundant if
created; for example, if one suggested index is already a subset of another suggested index.

https://aka.ms/bpcheck

Mining XML query plans 257

The following query can be used to look for any query execution plans that have the
MissingIndex property:

WITH XMLNAMESPACES (DEFAULT 'http://schemas.microsoft.com/
sqlserver/2004/07/showplan'),
PlanMissingIndexes AS (SELECT query_plan, cp.usecounts, cp.refcounts,
cp.plan_handle
FROM sys.dm_exec_cached_plans cp WITH (NOLOCK)
CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) tp
WHERE cp.cacheobjtype = 'Compiled Plan' AND tp.query_plan.exist('//
MissingIndex')=1)
SELECT c1.value('(//MissingIndex/@Database)[1]', 'sysname') AS
database_name,
c1.value('(//MissingIndex/@Schema)[1]', 'sysname') AS [schema_name],
c1.value('(//MissingIndex/@Table)[1]', 'sysname') AS [table_name],
c1.value('@StatementText', 'VARCHAR(4000)') AS sql_text,
c1.value('@StatementId', 'int') AS StatementId, pmi.usecounts, pmi.
refcounts,
c1.value('(//MissingIndexGroup/@Impact)[1]', 'FLOAT') AS impact,
REPLACE(c1.query('for $group in //ColumnGroup for $column in $group/
Column where $group/@Usage="EQUALITY" return string($column/@Name)').
value('.', 'varchar(max)'),'] [', '],[') AS equality_columns,
REPLACE(c1.query('for $group in //ColumnGroup for $column in $group/
Column where $group/@Usage="INEQUALITY" return string($column/@
Name)').value('.', 'varchar(max)'),'] [', '],[') AS inequality_
columns,
REPLACE(c1.query('for $group in //ColumnGroup for $column in $group/
Column where $group/@Usage="INCLUDE" return string($column/@Name)').
value('.', 'varchar(max)'),'] [', '],[') AS include_columns, pmi.
query_plan, pmi.plan_handle
FROM PlanMissingIndexes pmi
CROSS APPLY pmi.query_plan.nodes('//StmtSimple') AS q1(c1)
WHERE pmi.usecounts > 1
ORDER BY c1.value('(//MissingIndexGroup/@Impact)[1]', 'FLOAT') DESC
OPTION(RECOMPILE, MAXDOP 1);

The following screenshot shows sample results for this query:

Figure 7.21 – Results of a query showing plans that have the MissingIndex property

Building Diagnostic Queries Using DMVs and DMFs258

As the results show, this query allows us to gather the same information that the DMVs provide, but
include the query execution plan so that further analysis can be done before we create any of the
indexes suggested.

Tip
Executing XQueries can be very expensive, particularly on a busy server that has a very large
procedure cache. Avoid running this type of query directly on a production server. If we would
like to analyze a production workload, it is best to dump the XML query plans into a table on
the production server, and then backup or detach the database and restore or attach it on a
test server for analysis. Also note that this is why the OPTION(RECOMPILE, MAXDOP 1)
clause has been added to each of these queries.

Plans with warnings

In the Query plan properties of interest section of Chapter 3, Exploring Query Execution Plans, we
covered warnings, which can occur in a query execution plan at either the plan level or the operator
level. We can leverage XQueries to identify plans with warnings as well.

The following query will find query execution plans that have a plan-level warning:

WITH XMLNAMESPACES (DEFAULT 'http://schemas.microsoft.com/
sqlserver/2004/07/showplan'),
WarningSearch AS (SELECT qp.query_plan, cp.usecounts, cp.objtype,
wn.query('.') AS StmtSimple, cp.plan_handle
FROM sys.dm_exec_cached_plans cp WITH (NOLOCK)
CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) qp
CROSS APPLY qp.query_plan.nodes('//StmtSimple') AS p(wn)
WHERE wn.exist('//Warnings') = 1 AND wn.exist('@QueryHash') = 1)
SELECT StmtSimple.value('StmtSimple[1]/@StatementText',
'VARCHAR(4000)') AS sql_text,
StmtSimple.value('StmtSimple[1]/@StatementId', 'int') AS StatementId,
CASE WHEN c2.exist('@UnmatchedIndexes[. = "1"]') = 1 THEN
'UnmatchedIndexes'
WHEN (c4.exist('@ConvertIssue[. = "Cardinality Estimate"]') = 1 OR
c4.exist('@ConvertIssue[. = "Seek Plan"]') = 1) THEN 'ConvertIssue_'
+ c4.value('@ConvertIssue','sysname') END AS warning, ws.objtype,
ws.usecounts, ws.query_plan, ws.plan_handle
FROM WarningSearch ws
CROSS APPLY StmtSimple.nodes('//QueryPlan') AS q1(c1)
CROSS APPLY c1.nodes('./Warnings') AS q2(c2)
CROSS APPLY c1.nodes('./RelOp') AS q3(c3)
OUTER APPLY c2.nodes('./PlanAffectingConvert') AS q4(c4)
OPTION(RECOMPILE, MAXDOP 1);

Mining XML query plans 259

The following screenshot shows sample results for this query:

Figure 7.22 – Results of a query showing plans that have a plan-level warning

We can also use a similar query to find warnings at the operator level. The following query will find
query execution plans that have an operator-level warning:

WITH XMLNAMESPACES (DEFAULT 'http://schemas.microsoft.com/
sqlserver/2004/07/showplan'),
WarningSearch AS (SELECT qp.query_plan, cp.usecounts, cp.objtype,
wn.query('.') AS StmtSimple, cp.plan_handle
FROM sys.dm_exec_cached_plans cp WITH (NOLOCK)
CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) qp
CROSS APPLY qp.query_plan.nodes('//StmtSimple') AS p(wn)
WHERE wn.exist('//Warnings') = 1 AND wn.exist('@QueryHash') = 1)
SELECT StmtSimple.value('StmtSimple[1]/@StatementText',
'VARCHAR(4000)') AS sql_text,
StmtSimple.value('StmtSimple[1]/@StatementId', 'int') AS StatementId,
c1.value('@PhysicalOp','sysname') AS physical_op,
c1.value('@LogicalOp','sysname') AS logical_op,
CASE WHEN c2.exist('@NoJoinPredicate[. = "1"]') = 1 THEN
'NoJoinPredicate'
WHEN c3.exist('@Database') = 1 THEN 'ColumnsWithNoStatistics' END AS
warning, ws.objtype, ws.usecounts, ws.query_plan, ws.plan_handle
FROM WarningSearch ws
CROSS APPLY StmtSimple.nodes('//RelOp') AS q1(c1)
CROSS APPLY c1.nodes('./Warnings') AS q2(c2)
OUTER APPLY c2.nodes('./ColumnsWithNoStatistics/ColumnReference') AS
q3(c3)
OPTION(RECOMPILE, MAXDOP 1);

The following screenshot shows sample results for this query:

Figure 7.23 – Results of a query showing plans that have an operator-level warning

Use these queries to start experimenting with finding different warnings in our query plans. We can
change the predicates in these queries to look for any of the warnings outlined in Chapter 3, Exploring
Query Execution Plans.

Building Diagnostic Queries Using DMVs and DMFs260

Plans with implicit conversions

In the previous section, Plans with warnings, we looked at an XQuery that will find plans that have
conversion warnings at the plan level. If we want to find query execution plans that have implicit
conversions anywhere in the plan, whether or not they generate a PlanAffectingConvert
warning, we can use an XQuery that looks specifically for implicit conversions.

The following query will find query execution plans that have implicit conversions in any of the
operators within the plan:

WITH XMLNAMESPACES (DEFAULT 'http://schemas.microsoft.com/
sqlserver/2004/07/showplan'),
Convertsearch AS (SELECT qp.query_plan, cp.usecounts, cp.objtype,
cp.plan_handle, cs.query('.') AS StmtSimple
FROM sys.dm_exec_cached_plans cp WITH (NOLOCK)
CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) qp
CROSS APPLY qp.query_plan.nodes('//StmtSimple') AS p(cs)
WHERE cp.cacheobjtype = 'Compiled Plan'
AND cs.exist('@QueryHash') = 1
AND cs.exist('.//ScalarOperator[contains(@ScalarString, "CONVERT_
IMPLICIT")]') = 1
AND cs.exist('.[contains(@StatementText, "Convertsearch")]') = 0)
SELECT c2.value('@StatementText', 'VARCHAR(4000)') AS sql_text,
c2.value('@StatementId', 'int') AS StatementId,
c3.value('@ScalarString[1]','VARCHAR(4000)') AS expression,
ss.usecounts, ss.query_plan, ss.plan_handle
FROM Convertsearch ss
CROSS APPLY query_plan.nodes('//StmtSimple') AS q2(c2)
CROSS APPLY c2.nodes('.//ScalarOperator[contains(@ScalarString,
"CONVERT_IMPLICIT")]') AS q3(c3)
OPTION(RECOMPILE, MAXDOP 1);

The following screenshot shows sample results for this query:

Figure 7.24 – Results of a query showing plans that have implicit conversion warnings

Leveraging this query will help us identify queries that are comparing two values with different data types,
either because of incorrect parameter types, or mismatched data types in the database schema itself.

Mining XML query plans 261

Plans with lookups

One of the quickest ways to tune a query is to add a covering index. As we discussed in Chapter 3,
Exploring Query Execution Plans, the presence of a lookup in a query execution plan indicates that a
query is not covered. We can leverage this same XQuery method to find query execution plans that
contain a lookup anywhere in the plan.

The following query will find query execution plans that have a lookup:

WITH XMLNAMESPACES (DEFAULT 'http://schemas.microsoft.com/
sqlserver/2004/07/showplan'),
Lookupsearch AS (SELECT qp.query_plan, cp.usecounts, ls.query('.') AS
StmtSimple, cp.plan_handle
FROM sys.dm_exec_cached_plans cp (NOLOCK)
CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) qp
CROSS APPLY qp.query_plan.nodes('//StmtSimple') AS p(ls)
WHERE cp.cacheobjtype = 'Compiled Plan'
AND ls.exist('//IndexScan[@Lookup = "1"]') = 1
AND ls.exist('@QueryHash') = 1)
SELECT StmtSimple.value('StmtSimple[1]/@StatementText',
'VARCHAR(4000)') AS sql_text,
StmtSimple.value('StmtSimple[1]/@StatementId', 'int') AS StatementId,
c1.value('@NodeId','int') AS node_id,
c2.value('@Database','sysname') AS database_name,
c2.value('@Schema','sysname') AS [schema_name],
c2.value('@Table','sysname') AS table_name,
'Lookup - ' + c1.value('@PhysicalOp','sysname') AS physical_
operator, c2.value('@Index','sysname') AS index_name, c3.value('@
ScalarString','VARCHAR(4000)') AS predicate, ls.usecounts, ls.query_
plan, ls.plan_handle
FROM Lookupsearch ls
CROSS APPLY query_plan.nodes('//RelOp') AS q1(c1)
CROSS APPLY c1.nodes('./IndexScan/Object') AS q2(c2)
OUTER APPLY c1.nodes('./IndexScan//ScalarOperator[1]') AS q3(c3)
-- Below attribute is present either in Index Seeks or RID Lookups so
it can reveal a Lookup is executed
WHERE c1.exist('./IndexScan[@Lookup = "1"]') = 1
AND c2.value('@Schema','sysname') <> '[sys]'
OPTION(RECOMPILE, MAXDOP 1);

The following screenshot shows sample results from this query:

Building Diagnostic Queries Using DMVs and DMFs262

Figure 7.25 – Results of a query showing plans that have a lookup

While we can’t add covering indexes to all queries, this sample XQuery can help us identify areas
where our index strategy can be improved, and hopefully reveal targeted indexes that may benefit
multiple queries.

Summary
While the examples in this chapter are only a small sample, hopefully at this point, we can see
how DMVs and DMFs can be a powerful troubleshooting tool when it comes to diagnosing query
performance issues. They are lightweight, easy to use, and provide a breadth of information that is
useful for zeroing in on the performance issues that were covered in Chapter 5, Writing Elegant T-SQL
Queries, and Chapter 6, Discovering T-SQL Anti-Patterns in Depth.

While DMVs are great for point-in-time and cumulative analysis, there are some issues that can only
be diagnosed by catching queries and related data in real time. This is where tracing with Extended
Events (XEvents) is useful. In the next chapter, we will introduce XEvents and discuss how to set up the
new XEvent profiler trace that can capture all the queries that are executed against a server in real time.

8
Building XEvent Profiler Traces

In Chapter 7, Building Diagnostic Queries Using DMVs and DMFs, we learned how to gain insights
into query performance using the built-in system views. This information is valuable, but because
these views mostly represent the current point in time, they are not always sufficient to answer every
question we have about the performance of our queries. In this chapter, we will introduce Extended
Events (XEvents), the lightweight infrastructure that exposes relevant just-in-time information from
every component of the SQL Database Engine, focusing on those related to T-SQL execution. We will
explore real-world examples of how to use these XEvents to troubleshoot different poor performance
scenarios, leverage collection and analysis tools such as the XEvent Profiler, SQL LogScout and Replay
Markup Language (RML) utilities for event analysis, and drop a note on the infamously deprecated
SQL Server Profiler.

In this chapter, we’re going to cover the following main topics:

• Introducing XEvents

• Getting up and running with the XEvent Profiler

• Remote collection with SQL LogScout

• Analyzing traces with RML Utilities

Technical requirements
The examples used in this chapter are designed for use on SQL Server 2022 and Azure SQL Database,
but they should work on any version of SQL Server, 2012 or later. The Developer Edition of SQL Server
is free for development environments and can be used to run all the code samples. There is also a free
tier of Azure SQL Database you can use for testing at https://aka.ms/freedb.

https://aka.ms/freedb

Building XEvent Profiler Traces264

You will need the AdventureWorks2016_EXT (referred to as AdventureWorks) and
AdventureWorksDW2016_EXT (referred to as AdventureWorksDW) sample databases, which
can be found on GitHub at https://github.com/Microsoft/sql-server-samples/
releases/tag/adventureworks. Code samples for this chapter can also be found on GitHub
at https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-
Edition/tree/main/ch8.

Introducing XEvents
When we connect to the SQL Database Engine and run a query, it fires a series of events – a user
logs in, a connection is established, a query begins executing, a plan is found in the cache, a plan is
recompiled, and a query completes execution (these are just a few examples). Virtually everything
that happens within the Database Engine is an event.

While Dynamic Management Views (DMVs) are powerful tools, they don’t always give a complete
picture of what is going on within the engine. Most DMVs provide a snapshot in time, a picture of
what is going on the moment they are queried. They may have some history that goes back to the last
time the server was restarted, but even then, the information is typically cumulative; they can’t tell us
what the server looked like a few minutes before, and they can’t tell us the events that led up to the
current state. This is where tracing comes in. Tracing allows us to capture all the occurrences of one
or more events on the server over a period of time, and store that data in a target location, typically
a file on disk, for later analysis.

The XEvents engine provides a mechanism to consume events, collect related data, and direct them to
a target for later analysis. The events themselves are defined at various points in the Database Engine
code that are significant for some reason.

Using XEvents to trace these significant database events can give you a much greater level of detail
than DMVs, but the cost to the server is higher. While the XEvents engine is relatively lightweight
compared to other tracing mechanisms such as SQL Trace, it still generates overhead on the server
and should only be used when this level of detail is required.

There are a few terms that are important to understand before we begin creating XEvent traces:

• A package is a container for a group of XEvents objects (events, actions, filters, etc.) that are
related in some way. There are three packages in the SQL Database Engine – package0 (the
default package), sqlserver, and sqlos.

• An event is a point of interest in the SQL Database Engine code. When an event fires, it means
that the code in question was reached, and any information that is relevant to that event is
captured. There are hundreds of events in the SQL Database Engine, far too many to list here,
but we will cover some T-SQL performance-related events in this chapter and a few of the
remaining chapters in the book.

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch8
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch8

Introducing XEvents 265

• A channel is a categorization of events by intended audience. There are four channels in the
SQL Database Engine:

 � Admin – General events that are targeted to administrators, such as cpu_threshold_
exceeded and xml_deadlock_report.

 � Operational – Events used to diagnose a problem, such as blocked_process_report
and server_memory_change.

 � Analytic – Events that are used in performance investigations, such as sql_batch_
completed and rpc_completed.

 � Debug – Events that are used for deep troubleshooting and debugging such as inaccurate_
cardinality_estimate. These events are generally reserved for use when working
with Microsoft Support. They can be especially expensive to consume and should be used
with caution.

• A category (also known as a keyword) is a finer-grain categorization used to identify events
that pertain to a specific component or area of the Database Engine.

• A target is where the event output is directed. The SQL Database Engine supports six targets:

 � Event file – A file on disk. This is the most common, and the one we will use most often
when creating XEvent traces.

 � Ring buffer – This is a circular in-memory buffer, meaning when the buffer is full, the oldest
events are overwritten.

 � Event counter – This target simply counts the occurrences of an event, rather than capturing
the data for the event.

 � Histogram – This is like the event counter target in that it counts occurrences, but the
histogram target allows us to sort events into buckets based on data available in the event.
This is useful for something like the wait_info event where we might want to count the
number of waits by the wait_type event field.

 � Event pairing – This target allows us to pair events such as login and logout so that we can
identify events that don’t occur as a matched set.

 � Event Tracing for Windows (ETW) – ETW is a common framework that is used to correlate
traces across applications running on Windows or with the operating system itself.

Building XEvent Profiler Traces266

• An action is a response to an event firing. Typically, this is additional data that we want to
collect that’s not a part of the event data itself.

• A session is the definition of the XEvent collection that we want to perform. In a session, we
define the events we want to collect, the target, the actions, and any predicates we might want
to apply to filter the events that are captured.

•

Figure 8.1: Hierarchy of XEvents objects

Now that we’ve got our terms defined, let’s look at an example of how we can use XEvents to analyze
database activity. Assume that a group within our company is about to release a new application that
they want us to validate. The developers have used some sort of database code generator, so there are
no stored procedures in the database for us to review. To get an idea of the queries that the application
generates and the performance of those queries, we want to trace all the query activity against the
server while the application is being tested in pre-production.

Introducing XEvents 267

For this example, we’ll use SQL Server Management Studio (SSMS) to create and analyze an XEvent
session. To get started, expand the Extended Events section under the Management folder in Object
Explorer. Right-click on Sessions and choose New Session…, as shown in the following screenshot:

Figure 8.2: SSMS Object Explorer window showing the Extended Events > Sessions context window

In the New Session window, type in a name for our session, as shown in the following screenshot:

Building XEvent Profiler Traces268

Figure 8.3: SSMS XEvents New Session window

Click on the Events page to add events, and then optionally add actions and filter predicates. Since
we want to capture all the queries that are executing against the server, we’ll need two events at a
minimum: rpc_completed and sql_batch_completed. RPC stands for Remote Procedure
Call. When an application executes a stored procedure using a procedure object, it comes through as
an RPC. This is also the event we would see if we ran a query via sp_executesql, or if we built a
parameterized query from client code using a database connectivity library such as Open Database
Connectivity (ODBC). If we send an ad hoc query to the server using EXECUTE, or by sending a
text query string, the query will be a SQL batch rather than an RPC. There are events for both starting
and completing a batch or an RPC, but if all we want to know are the queries that are executing and
the performance metrics for those queries, the completed events are enough.

In the following screenshot, we are typing completed into the search box to find the desired events:

Introducing XEvents 269

Figure 8.4: SSMS XEvents New Session window showing the Events selection page

In this screenshot, we can see the following:

1. The search box used to locate events that contain the search term in the name – this is where
we typed completed.

2. The name and description of the selected event.

3. The event fields that the selected event collects by default, including a description of each field.

After we select the events we want, we then click the right arrow to add them to the session. Once we
have added all the events, we can click the Configure button to add any actions and filter predicates
that we might want.

In the event configuration window, we can add any additional fields that we’d like to collect (actions)
when the event fires. Since we are not familiar with the applications working on the server, it might be
worthwhile to collect client_app_name so we can see the various applications that are running
queries against the server. Each event is configured separately, so if we want to collect the same
actions for all the events, we need to select all the events in the Selected events box, as shown in the
following screenshot:

Building XEvent Profiler Traces270

Figure 8.5: SSMS XEvents New Session window showing the Events configuration page

In most cases, the event fields that are part of the event are enough to provide the data needed for
analysis. Try to avoid adding a large number of actions if possible. Gathering this data is extra work
that must be done for each event whenever it fires, so adding too many actions can cause extra
overhead on the server.

Once we have added the desired actions, click the Filter (Predicate) tab to add any predicates. This
allows us to filter the events that will be passed to the target. While filtering out events can keep the size
of our target down, it does not reduce the overhead of the session as each event must be processed to
apply the filter. In this case, we’re only interested in the queries that are coming from the application,
not system sessions. To keep system sessions out of our trace, we can add a filter to both events to
capture only events where is_system = 0. Again, the events are configured separately, so we can
apply different filters to each event. In this case, we want the same filter for both so we will select both
events, as shown in the following screenshot:

Introducing XEvents 271

Figure 8.6: SSMS XEvents New Session window showing the Events filter configuration page

As we can see here, we’ve added our filter to both events. The lightning bolt column indicates actions,
and the funnel column indicates filters. Each event has one action configured and a filter applied.

At this point, we could click OK and start the session, but then the only way to view the events would
be to watch the session live in real time. This wouldn’t allow us to do much analysis of the data, so
we want to add a target to the session before we create it. We will add a file target so that we can save
the event data and then analyze it on another server later. To do this, click the Data Storage page in
the Select a page window, then click Click here to add a target, and finally, choose event_file
from the target Type drop-down list. Once we choose event_file, several configurable properties
appear below the Targets window. We can choose the file name and location, maximum size, whether
a new file should be created when the file is full (file rollover), and the maximum number of files.
In this case, we will keep the default values and the files will be created in the default log directory
for SQL Server, for example, C:\Program Files\Microsoft SQL Server\MSSQL14.
SQL2017\MSSQL\Log. This is shown in the following screenshot:

Building XEvent Profiler Traces272

Figure 8.7: SSMS XEvents New Session window showing the Data Storage page

With a maximum file size of 1 GB and a maximum number of 5 files, we will retain up to 5 GB of
event data. Once the maximum of five files is reached, if the trace is still running, the oldest trace file
will be removed when a new file is created to maintain the maximum of five files.

Note
You can use an event file target in Azure SQL Database by creating a storage container in Azure
and creating a database-scoped credential to allow the SQL Database Engine to connect to the
storage container. Specific instructions for creating XEvent sessions in Azure SQL Database
can be found at https://aka.ms/AzureSQLDBXEvents.

As we can see from the previous screenshot, all the required elements have been configured so the
session is marked as Ready and will be created once we click OK. Before we do that, it’s worth clicking
the Script button so we can see what the equivalent T-SQL is to create this session. Using T-SQL to
configure a session is another option that allows us to save the definition of the session for use on
other servers. The following code block shows the T-SQL script that will create this event session:

CREATE EVENT SESSION [NewApplicationQueryTrace] ON SERVER
ADD EVENT sqlserver.rpc_completed(

https://aka.ms/AzureSQLDBXEvents

Introducing XEvents 273

 ACTION(sqlserver.client_app_name)
 WHERE ([sqlserver].[is_system]=(0))),
ADD EVENT sqlserver.sql_batch_completed(
 ACTION(sqlserver.client_app_name)
 WHERE ([sqlserver].[is_system]=(0)))
ADD TARGET package0.event_file(SET
filename=N'NewApplicationQueryTrace')
GO

At this point, we can either run the script or click OK on the New Session window to create the
session. Since we did not check the Start the event session immediately after session creation box
when we configured the event session, we’ll now need to manually start and stop it once we’re ready
to test the application. Again, we can do this either via T-SQL or through SSMS. From SSMS, find the
session in the Management | Extended Events | Sessions folder, right-click, and choose Start Session,
as shown in the following screenshot:

Figure 8.8: SSMS Object Explorer window showing the Extended Events | Sessions context window

The following script will start the session via T-SQL:

ALTER EVENT SESSION NewApplicationQueryTrace ON SERVER
STATE = start;

Building XEvent Profiler Traces274

Once the session has started, we can instruct the testing team to begin testing the application. Once the
team has notified us that they have completed their test, we can stop the session in a similar manner;
right-click on the session and click Stop Session or run the following T-SQL script:

ALTER EVENT SESSION NewApplicationQueryTrace ON SERVER
STATE = stop;

At this point, we are ready to do some analysis of the data collected. Expand the NewApplicationQueryTrace
session and there should be a single target, package0.event_file. Right-click on this file and click View
Target Data…, as shown in the following screenshot:

Figure 8.9: SSMS Object Explorer window showing the Extended Events | Sessions

| NewApplicationQueryTrace | package0.event_file context window

This opens the event file as a new tab in SSMS. The tab has a summary view at the top that shows the
list of events ordered by their timestamp. Clicking any of the events in the summary view displays the
details of that event in the Details tab below. By default, only the name (event name) and timestamp
columns are displayed in the summary view, but you can right-click on any of the fields in the Details
tab and click Show Column in Table to display the field as a column in the summary view above.
This is all shown in the following screenshot:

Introducing XEvents 275

Figure 8.10: SSMS event_file tab showing both summary and Details windows

along with the context menu for the cpu_time event field

Once you have the desired fields displayed, you can use either the Extended Events menu or the
toolbar to filter, group, aggregate, and search for data within the XEvent results, as shown in the
following screenshot:

Building XEvent Profiler Traces276

Figure 8.11: Extended Events menu and toolbar in SSMS

In the preceding screenshot, we can see the following:

1. The Extended Events menu that appears when an XEvent data viewer tab is opened.

2. The XEvents toolbar that appears when an XEvent data viewer tab is opened.

3. Additional fields that were added from the Details tab.

Tip
Depending on the screen resolution and the width of the SSMS window, we may or may not
be able to see the entirety of the XEvents toolbar. If only one or two buttons are visible, we can
use the mouse to pull the toolbar down to a new line so that the entire bar is visible.

While SSMS has a rich set of features that allows you to analyze XEvents data within the UI, when
there are many events or we need to do more extensive analysis on the trace as a whole, it may be
easier and more efficient to use another tool to do the analysis for us. In the Analyzing traces with
RML Utilities section later in this chapter, we will introduce such a tool.

Getting up and running with XEvent Profiler 277

In this section, we have done a very high-level introduction to tracing with XEvents. Many of the
scenarios we have described throughout the book can be detected and analyzed by collecting events
such as query_post_execution_showplan to retrieve an actual execution plan, statement_
recompile to detect statements that are recompiling frequently, blocked_process_report
to detect blocking, and many, many more. We will cover a few more events in the remainder of the
book, but a great way to get started is to open the New Session window in SSMS and begin browsing
the available events along with their descriptions, to get an idea of the breadth of information that
can be collected using this method.

Getting up and running with XEvent Profiler
Those of us who have been working with SQL Server for some time are likely to have experience with
SQL Server Profiler. Profiler is a tool that has been around since the early versions of SQL Server and
leverages the SQL Trace infrastructure to provide event-based monitoring of SQL Server. While it
has been deprecated since SQL Server 2012, many users still prefer it over XEvents due to its ease of
use, familiarity, and the rich set of tools that have been built over the years to capture, analyze, and
replay trace data.

While SQL Server Profiler is still available in the product, its use has declined over the years as XEvents
gained feature parity. Starting with SQL Server 2012, all the events that can be captured with Profiler
can also be captured with XEvents, and with less overhead on the server. In fact, XEvents have a much
wider range of events than Profiler and a rich set of actions that can be captured along with the events
to provide much more detail than Profiler. Also, XEvents have more flexibility in configuration with
the ability to apply filters at the event level, more complex targets, and the ability to support multiple
targets in a single session.

Given that XEvents are a more powerful and lighter-weight way to monitor SQL Server, why are
users still using SQL Server Profiler? The answer is most often either ease of use or lack of knowledge
about XEvents. Since Profiler has been available for much longer, the tools that go along with it have
been as well, so users have become familiar with them. The good news is that most of these tools now
support XEvents as well, so we can continue to use all the tools we are familiar with, but still leverage
the power and performance of XEvents. In the last few sections of this chapter, we will discuss some
of the complementary tools that help us work with XEvents to profile our applications and servers.

One of the benefits of SQL Server Profiler was that it was very easy to get a trace going quickly. With
all its built-in templates, we can open the tool, click Start, and we’re up and running. This is very
handy if there’s an ongoing problem that we need to diagnose quickly.

All the templates that were available in Profiler are available in XEvents, and we can access them from
the New Session window, as shown in the following screenshot:

Building XEvent Profiler Traces278

Figure 8.12: SSMS XEvents New Session window showing the Profiler Equivalents templates

The only problem with setting up an XEvent session is that it requires a few more steps than creating a
live Profiler trace. Once we add the template, we then need to check the box for Start the event session
immediately after session creation and Watch live data on screen as it is captured or add a target.
Once the session is running, only the name and timestamp fields will be visible in the viewer, so
we’ll need to select the events and add any additional fields we want to view. This can take quite a bit
of time, so if we’re trying to catch something quickly, by the time we get this set up, we could miss it.

By leveraging the XEvent Profiler in SSMS, with a few clicks, we can be up and running with a live
XEvent trace that gives us a similar experience to SQL Server Profiler. At the bottom of Object Explorer
in SSMS, we’ll see a folder called XEvent Profiler. Expanding this folder will show us two options
for traces – Standard and TSQL – which map to the Profiler templates with the same names. Simply
right-click the desired template and click Launch Session, as shown in the following screenshot:

Getting up and running with XEvent Profiler 279

Figure 8.13: SSMS Object Explorer window with the XEvent Profiler | Standard context menu

This will start up the session using the selected template, open a live data XEvent viewer that contains the
same columns we would see in Profiler, and start displaying events, as shown in the following screenshot:

Figure 8.14: Sample results from a Standard XEvent Profiler trace

In short, XEvent Profiler gives us a quick and easy way to see what’s happening on a server in real
time, with less overhead than SQL Server Profiler.

Building XEvent Profiler Traces280

Remote collection with SQL LogScout
While configuring an XEvent session is simple enough when you have access to the server, if you
find yourself in a situation where you need to analyze server or application performance remotely,
XEvents can be a challenge. As we discussed in the Introducing XEvents section, we can save the XEvent
session as a script file and send it to someone to run, but to analyze the data, we’ll need a file target,
and configuring one requires knowledge of the disk layout of the system. Also, we would need to
ensure that the person we send the script to has at least basic SQL Database Engine knowledge such
as how to open, edit, and execute a T-SQL script along with the rights to create an XEvent session.
If the person who has access to the server is not a database professional, this might be a challenge.

This is the type of troubleshooting that Microsoft Support must do every day. To make the job easier,
they created a tool called SQL LogScout, which is available to the public on GitHub. If you open a
case with Microsoft Support, you may be asked to download and run this tool, but it’s also a useful
tool to use for your own troubleshooting. You can find everything you need to get started with SQL
LogScout at https://aka.ms/sqllogscout, but we’ll cover some of the basics here.

Note
SQL LogScout is specifically designed to collect data from a server (virtual or physical) hosting
one or more SQL Server instances, so this section applies to SQL Server only. You can collect
similar data from Azure SQL Database using the built-in diagnostics; learn more at https://
aka.ms/AzureSQLDBMonitorTune.

SQL LogScout is a configurable tool that can collect various diagnostic information from SQL Server
and from the server on which it is running (either Windows or Linux). It can be used to collect things
such as Performance Monitor (Perfmon), DMV output, SQL error logs, Windows event logs, custom
T-SQL scripts, and more – including XEvents. The tool is based on PowerShell and can be run from the
command line, from PowerShell, or even with a graphical user interface (GUI). Like its predecessor,
PSSDiag, everything it collects is written to a folder called output in the same directory it runs
from. This folder can then be zipped and sent to Microsoft Support for analysis.

Tip
SQL LogScout can be downloaded from https://aka.ms/get-sqllogscout, but if
you happen to be running SQL Server on an Azure VM using a SQL Server Marketplace image,
the tool will already be available on the VM by default in the C:\SQLServerTools folder.

https://aka.ms/sqllogscout
https://aka.ms/AzureSQLDBMonitorTune
https://aka.ms/AzureSQLDBMonitorTune
https://aka.ms/get-sqllogscout

Remote collection with SQL LogScout 281

The download for SQL LogScout consists of a .zip file that contains a bin folder with all the supporting
files and scripts, and the main SQL_LogScout.cmd script file. These files need to be placed on
the local machine where SQL Server is running. XEvent traces can become large depending on how
busy the server is, so be sure you are running SQL LogScout from a folder that has several gigabytes
of space available. It is not a good idea to put the collector on a drive that hosts SQL Server data or
transaction log files, as we do not want to generate unnecessary I/O on these drives and potentially
cause a performance issue on the server.

The easiest way to run the collector is to open an elevated Command Prompt and run the SQL_
LogScout command. There are several parameters that you can use, which are all documented
in the Readme.htm file in the bin folder and at https://aka.ms/sqllogscout, but for
our purposes, we will use the GUI to view the main options. After running the SQL_LogScout
command, you will be asked whether you would like to use GUI mode; type Y to launch GUI mode,
as shown in the following screenshot:

Figure 8.15: Elevated Command Prompt running the SQL LogScout script showing the GUI mode prompt

After hitting Enter, the GUI window will open on the screen, as shown here:

https://aka.ms/sqllogscout

Building XEvent Profiler Traces282

Figure 8.16: The SQL LogScout GUI

Let’s examine the various options that can be configured using this tool:

1. The SQL Instance dropdown is populated with the SQL Server instances found on the local
machine. Choose the instance you wish to monitor here; you can only monitor one instance
at a time.

2. The Scenario(s) list allows us to choose one or more troubleshooting scenarios that will enable
various collectors in the tool. General Performance will get what is needed to troubleshoot the
most common scenarios. Light Performance will configure a very lightweight XEvent trace, like
the one we collected in the Introducing XEvents section of this chapter. Detailed Performance
will configure a much heavier trace that includes the query_post_execution_showplan
event. This gives us everything we need to troubleshoot a query performance issue, but it can
consume a large amount of resources on the server and shouldn’t be run for more than a few
minutes at a time.

Remote collection with SQL LogScout 283

3. On the right side of the window are two tabs that contain configuration options for the Perfmon
and XEvent collectors. The scenario(s) chosen will determine which counters and events are
collected, but you can use these tabs to customize the collection according to your needs.

4. Once everything is configured as desired, click the Ok button to return control to the command
window and begin collection.

After clicking Ok, SQL LogScout will begin collecting the requested data and you will see the following
output in the command window:

Figure 8.17: Command window showing the output generated by the SQL LogScout tool

A couple of things to note about this window are as follows:

1. If you choose the Detailed Performance collector, you will get a warning about the potential
performance impact on the server. You must type Y to acknowledge this warning before SQL
LogScout will continue collecting.

2. After the green line that states Please type ‘STOP’ to terminate the diagnostics collection…
is shown, the collector is gathering data.

Once the issue has been reproduced or the required data is collected, type STOP to stop the collector.
When the collector is stopped, some additional data will be gathered, then the script will complete,
and the SQL LogScout command window should look like the following screenshot:

Building XEvent Profiler Traces284

Figure 8.18: Command window showing the output of the SQL LogScout tool after it has been stopped

Once the collector has stopped, you can then go to the location of the collector and find the folder
named output; zip the folder and move the results to another machine for analysis or to upload to
Microsoft Support. We can then manually review the data by opening the XEvent trace files in SSMS
and the other various files in a text editor, or we can use a tool such as RML Utilities to automatically
analyze the XEvent data and produce a report that we can review instead. In the next section, we
will explore RML Utilities and see how we can use it to analyze XEvent trace files quickly and easily.

Tip
A great tool for analyzing SQL LogScout data is SQL Nexus. This is another tool created and
maintained by Microsoft Support that can not only run and display results for RML Utilities
but also has some great reports for other output files that SQL LogScout generates. You can
find SQL Nexus on GitHub at https://aka.ms/SQLNexus.

https://aka.ms/SQLNexus

Analyzing traces with RML Utilities 285

Analyzing traces with RML Utilities
RML Utilities is a suite of tools that can be used to analyze and replay SQL Database Engine workloads.
We first introduced the RML Utilities in Chapter 6, Discovering T-SQL Anti-Patterns in Depth, in the
Avoiding unnecessary overhead with stored procedures section where we used the ostress tool to simulate
a multithreaded workload on the server. The input to ostress can be a single query or T-SQL script,
but ostress can also take a prepared trace file (either SQL Trace or XEvents) as input. This allows you
to capture a workload from a production server, and then replay that workload on a test server so that
you can experiment with various settings or performance tuning options – or even test how a new
version of the SQL Database Engine would perform with the same workload.

Another tool that is part of RML Utilities is ReadTrace. The ReadTrace tool is used to analyze and
prepare traces for replay via ostress, but it can also be used to do a general analysis of an XEvent trace.
Together with its native Reporter tool, RML Utilities can be used to extract and aggregate relevant
data from the trace, and then present it in a way that allows you to quickly zero in on poor-performing
queries, or other potential performance issues on the server and/or with the application.

In this section, we will explore using ReadTrace and Reporter to analyze the XEvent trace we captured
via SQL LogScout in the previous section, Remote collection with SQL LogScout.

The first thing we need to do to begin the analysis is to run the ReadTrace tool with the XEvents
output from our SQL LogScout collection. Once we have downloaded and installed RML Utilities
from https://aka.ms/RMLUtilities, we find some helpful shortcuts in the Start menu, as
shown in the following screenshot:

Figure 8.19: Windows Start menu showing the RML Utilities for SQL Server program group

https://aka.ms/RMLUtilities

Building XEvent Profiler Traces286

ReadTrace is a command-line tool, but there is a shortcut called RML Cmd Prompt that will automatically
open a Command Prompt in the correct location. From here, you can run the ReadTrace /?
command to get some information about the various commands and switches that are available, as
well as some examples of how to run the tool. We are doing a basic analysis of XEvent data for the
purpose of performance troubleshooting, not to replay the trace, so the following sample command
can be used:

ReadTrace -S<servername>\<instancename> -E -IC:\PSSDIAG\
output\SERVERNAME_20231008T1545148475_xevent_LogScout_
target_0_133412787193700000.xel -f -dNewApplicationPerf -T28 -T29

Let’s look at the switches used in the example:

• -S is the SQL Server that ReadTrace will connect to for the purposes of loading and aggregating
the trace data.

• -E indicates we should connect to the server with a trusted connection (Windows authentication).

• -I<filename> is the first .xel trace file to be imported. If the trace rolled over and multiple
files were generated, ReadTrace will automatically read all the .xel files in the same sequence.

• -f indicates that individual session-level RML files should not be created. These are required
for replay, but not for analyzing the trace for performance.

• -d is the database name that will be created and will contain the trace analysis data once the
process is complete.

• -T28 and -T29 are trace flags that disable validation of events collected. As long as we are
using SQL LogScout to collect the traces, we should have the events we need for performance
analysis, and using these trace flags can help avoid some validation errors that may prevent a
successful import of the files.

Note
RML Utilities can be installed on any Windows machine, client, or server, but it needs to connect
to either a local or remote SQL Server database to perform and save its analysis. Installing on
a production server is not recommended.

Depending on the size of the trace file(s), this may take several minutes to complete. Once it is
complete, review the output to look for any errors that may have occurred, then close the RML Cmd
Prompt window.

Analyzing traces with RML Utilities 287

If the trace files were successfully processed, the Reporter tool will automatically open and display the
Performance Overview report. If it does not open for some reason, or to view reports for a collection
that was done in the past, we can open Reporter from the Start menu. When it is opened this way,
the first screen is a configuration screen where we can enter connection information.

In the Server Name and Baseline Database fields, we enter the SQL Database Engine instance name
and database name where we had directed the ReadTrace output, as shown in the following screenshot:

Figure 8.20: RML Utilities Reporter tool window showing the Properties tab

When we click OK, the Reporter tool will open the Performance Overview report, as shown in the
following screenshot:

Building XEvent Profiler Traces288

Figure 8.21: RML Utilities Reporter tool window showing the Performance Overview report

This report gives us some overall statistics about the workload, such as the number of batches started
and batches completed, along with resource consumption. This information is graphed over time so
we can get an idea of the overall workload pattern. At the top, there are several hyperlinks that will
open other more detailed reports in new tabs. This allows us to switch between the reports as we
analyze the data.

Tip
If the links do not work, you may need to install a hotfix for the Visual Studio Report Viewer,
which is one of RML’s dependencies. This hotfix can be found at https://support.
microsoft.com/kb/2549864.

https://support.microsoft.com/kb/2549864
https://support.microsoft.com/kb/2549864

Analyzing traces with RML Utilities 289

Exploring the various reports will give us a good picture of what was happening on the server while the
trace was running. Covering all the reports is out of scope for this book, but one worth mentioning,
and perhaps the most useful one, is the Top Unique Batches report. This report presents the top
unique batches that ran during the trace, along with several metrics for each query. The following
screenshot shows an example of this report:

Figure 8.22: RML Utilities Reporter tool window showing the Top Unique Batches report

The graphs at the top of the report show the top queries by each metric: CPU, Duration, Reads, and
Writes. The list of queries is first sorted by CPU and assigned a number based on their position in the
list. Query Number 1 has the highest total CPU, Query Number 2 the next, and so on.

Building XEvent Profiler Traces290

The other three graphs sort the list by their respective metrics using the numbers assigned based on
the CPU ranking. As you can see in the previous screenshot, Query Number 1 had the highest total
CPU and total duration but did not have the highest reads or writes. Also note that these metrics are
a total across all executions of the query. The number of executions is also indicated in the graph.

Each of the queries is listed below the graphs ordered by CPU ranking, and as we can see at the bottom
of the previous screenshot, the text of the query is a hyperlink. Clicking this hyperlink opens a detailed
report for that query, as shown in the following screenshot:

Figure 8.23: RML Utilities Reporter tool window showing the

Unique Batch Details report for the selected query

Summary 291

This report allows us to see more detailed metrics for the query in question, including average,
minimum, and maximum numbers for each of the various metrics, as well as the performance of the
query graphed over the time of the collection. The Query Editor hyperlink at the top of the report
allows us to open the query in an SSMS query editor window so we can examine the T-SQL and begin
tuning the query using the knowledge we have gained in this book.

Tip
In the GitHub Tiger Toolbox (http://aka.ms/tigertoolbox) in the SQL Nexus
and ReadTrace Analysis Scripts folder, we can find scripts that allow us to
extract interesting information from the ReadTrace database that is not available through the
default reports.

As we can see, RML Utilities provides us with a few simple tools that make the work of analyzing
XEvent traces quick and easy. Together with SQL LogScout, we can easily gather the data we need to
diagnose any number of T-SQL performance issues, even without direct access to the server where
the queries are running.

Summary
In this chapter, we reviewed the Extended Events engine in the SQL Database Engine and how you
can leverage XEvent traces to gather detailed data about query execution and performance. We also
discussed the various free tools from Microsoft that can be used to configure, capture, and analyze
XEvent traces quickly and easily. Together with DMVs, we now have several tools in our toolbelt that
can be used to diagnose and troubleshoot the various issues covered throughout the book.

In the next chapter, we will review yet another tool that is part of SQL Server designed to help diagnose
query performance issues – using SSMS for the analysis of query plans.

http://aka.ms/tigertoolbox

9
Comparative Analysis of

Query Plans

In Chapter 3, Exploring Query Execution Plans, we discussed how to access query plans, how to navigate
a query plan, and what properties we can look for when analyzing query performance issues. SQL
Server Management Studio (SSMS) has rich UI features to make query plan analysis easier. This
chapter will introduce the query plan comparison and query plan analysis functionalities in SSMS
to help streamline the process of troubleshooting certain classes of issues with query performance.

In this chapter, we will cover the following topics:

• Query plan comparison

• Query plan analysis

Technical requirements
The examples used in this chapter are designed for use on SQL Server 2022 and Azure SQL Database,
but they should work on any version of SQL Server that is 2012 or later. The Developer edition of SQL
Server is free for dev environments and can be used to run all the code samples. There is also a free
tier of Azure SQL Database you can use for testing at https://aka.ms/freedb.

https://aka.ms/freedb

Comparative Analysis of Query Plans294

You will need the sample databases AdventureWorks2016_EXT (referred to as AdventureWorks)
and AdventureWorksDW2016_EXT (referred to as AdventureWorksDW), which can be found
on GitHub at https://github.com/Microsoft/sql-server-samples/releases/
tag/adventureworks. Code samples for this chapter can also be found on GitHub at https://
github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/
main/ch9.

Query plan comparison
Throughout their careers, database professionals are likely to encounter some of the following scenarios:

• Troubleshooting point-in-time performance regressions. In other words, the scenario where
a query was meeting performance expectations, but after an incident it started to slow down.
Finding the root cause may uncover opportunities to tune queries that prevent regressions
from reoccurring.

• Determine what the impact of rewriting a T-SQL query is. For example, when tuning a query,
it may be required to rewrite it in part or as a whole. Does it actually perform better?

• Determine the impact of changing or adding a schema object such as an index.

For all these scenarios, typically we must compare query plans to determine what differences may help
explain what changed between the plans. For example, what are the differences between plan A – a
plan from a query that has regressed in the production system – and plan B – a plan from the same
query that was tuned in a development (dev) machine using a copy of the same database?

In the following example, we captured the plan for a query that was not performing as expected in
production – when compared to dev tests. The plan was captured using one of the methods described
in the Exploring query plan cache DMVs section of Chapter 7, Building Diagnostic Queries Using DMVs
and DMFs. That query plan was saved as a .sqlplan file, and we can open it with SSMS in the dev
environment. The following screenshot shows the captured query plan:

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch9
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch9
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch9

Technical requirements 295

Figure 9.1: Query execution plan as captured from a plan cache DMV

In the following screenshot, we can see more details of the queries inside the stored procedure:

Figure 9.2: Close-up of the query section of the execution plan shown in Figure 9.1

Comparative Analysis of Query Plans296

The stored procedure in the preceding query plan is executing in the AdventureWorks sample
database, and is created as in the following example:

CREATE OR ALTER PROCEDURE usp_GetSalesOrderDetailToDate @FromDate
DATETIME
AS
SET NOCOUNT ON;
SELECT TOP 1500 h.SalesOrderID, h.RevisionNumber, h.OrderDate,
 h.OnlineOrderFlag, h.PurchaseOrderNumber, h.DueDate,
 h.ShipDate, h.Status, h.AccountNumber, h.CustomerID
FROM Sales.SalesOrderHeader AS h
INNER JOIN Sales.SalesOrderDetail AS d ON h.SalesOrderID =
d.SalesOrderID
WHERE h.OrderDate >= @FromDate;
SELECT TOP 100 h.SalesOrderID, h.RevisionNumber, h.OrderDate,
 h.OnlineOrderFlag, h.PurchaseOrderNumber, h.DueDate,
 h.ShipDate, h.Status, h.AccountNumber, h.CustomerID
FROM Sales.SalesOrderHeader AS h
INNER JOIN Sales.SalesOrderDetail AS d ON h.SalesOrderID =
d.SalesOrderID
WHERE h.TotalDue > 1000;

Only the first query in the stored procedure depends on parameters. We can see the parameter with
which this stored procedure was compiled in the Parameter List section of the plan’s properties. This
provides us with our first hypothesis to test: is this issue related to parameter sniffing? And if so, would
updating statistics provide a different plan?

Figure 9.3: Properties window of the example execution plan showing Parameter List

Note
We discussed the topic of parameter sniffing in the The importance of parameters section in
Chapter 1, Understanding Query Processing, and Query plan properties of interest in Chapter 3,
Exploring Query Execution Plans.

Technical requirements 297

In a production-like dev machine, we can execute the stored procedure with the compiled value
'2014-3-28 00:00:00' using the following T-SQL command:

EXECUTE usp_GetSalesOrderDetailToDate '2014-3-28 00:00:00'

This yields the following query execution plan:

Figure 9.4: Execution plan for the example stored procedure

We want to compare this query execution plan (an actual execution plan) with the query plan from
production (an estimated execution plan). We need to determine whether this was a valid execution
as it relates to production. Are the plans in both environments being compiled in the same way? The
plan shapes are similar, but we need to have more evidence than that.

In the past, we would need two monitors for this comparison, but not in more recent versions of SSMS.
To compare the plan we just got with the previously saved .sqlplan file, right-click anywhere in
the query execution plan, and the following menu pops up:

Comparative Analysis of Query Plans298

Figure 9.5: Query execution plan with context menu showing the Compare Showplan option

Clicking the Compare Showplan menu option opens an Open file dialog, where we can search for
and open the required .sqlplan file. In turn, this opens the new Showplan Comparison tab:

Figure 9.6: SSMS Showplan Comparison tab

Technical requirements 299

Tip
The SSMS query plan comparison feature can open .sqlplan files from any version of the
SQL Database Engine, starting with SQL Server 2008. Also, this feature can be used completely
disconnected from any instance of the SQL Database Engine, when comparing two previously
saved .sqlplan files.

What are the components of query plan comparison we see on the screen? We will go through each one.

First, there’s the split window with the compared plans. At the top, we have the query execution plan
(the actual execution plan), identified as Execution plan, and at the bottom, we have the ProdPlan.
sqlplan file that had been previously saved (the estimated execution plan).

Figure 9.7: Split execution plan window showing the current query

execution plan along with the saved plan from disk

Comparative Analysis of Query Plans300

Normally, when two query execution plans are compared, the same region on each plan is highlighted
with the same color and outline pattern. When we click on one colored region in any compared plan,
the UI will center the other plan on the matching region. In this case, we can’t see that behavior just
yet. We’ll see why further ahead.

Also, depending on whether we use a tall/vertical monitor instead of a wide/horizontal monitor, right-
clicking any area of a plan shows the following menu, where the split comparison tab can be toggled
from the default top/bottom to left/right:

Figure 9.8: Query execution plan context menu showing the Toggle Splitter Orientation

option to toggle between top/bottom and left/right comparison windows

Second, the Showplan Analysis window will open in the scope of the Multi Statement tab. Here,
we can select which statement pair to compare. By default, each plan opens in the scope of Query 1.
The default nomenclature of the plans is Top Plan and Bottom Plan, signifying their position in the
comparison tab. If the comparison window orientation has been toggled from the default, then this
will be displayed as Left Plan and Right Plan.

Figure 9.9: Showplan Analysis window showing the Multi Statement tab

Technical requirements 301

The Statement Options tab allows us to configure the plan comparison experience, such as whether
to ignore the database names when comparing plans, which is useful when comparing plans between
a production environment and dev, where the dev database has a different name, for example, if
the production database is called AdventureWorks, and AdventureWorksDev in the dev
environment, but the schema of both databases is the same.

Third, the Properties comparison window opens in the scope of the root node for the compared
statements. The nomenclature of the plans here is also Top Plan and Bottom Plan, or Left Plan and
Right Plan if the comparison window orientation has been toggled from the default. Each property on
either side that is either not matched to a counterpart on the other side, or whose existing counterpart
has a different value, will show the mathematical symbol for difference (≠). Only top-level and first-
level nested properties are compared. Beyond the first nesting level, properties are not compared and
must be manually expanded and compared.

Figure 9.10: Query execution plan properties window showing both

Top Plan and Bottom Plan from the plan comparison

Comparative Analysis of Query Plans302

Notice that in the preceding screenshot, hardly any property is actually comparable because the starting
point for any plan comparison – the root node of the first query in both plans – is different in both
plans. In the top plan, the root node is a SELECT statement, and in the bottom plan, the root node
is an EXECUTE PROC statement. Why?

That is because the query plan captured in production is a cached plan from a stored procedure and
as such it has extra elements, as compared to the actual execution plan for the stored procedure we
got from the dev environment.

Take a look at the following screenshot: the top plan shows the two query statements separately as
Query 1 and Query 2, whereas the bottom plan has both query statements consolidated under Query
2 and the execute command under Query 1. The latter is what we see for cached plans from stored
procedures or user-defined functions.

Figure 9.11: Comparison of execution plans when captured from a live

exeuction versus being saved from a cached plan DMV

Technical requirements 303

To compare the correct statements – in this case, comparing the estimated plan and the actual plan
for a stored procedure – we need to use a multi-step process. First, we need to go back to the Multi
Statement tab and select Query 1 from the top plan, and Query 2 from the bottom plan, as seen in
the following screenshot:

Figure 9.12: Showplan Analysis window showing the Multi Statement

tab with the desired statement comparison chosen

This resets the comparison window to highlight similar areas in both plans, so we can start comparing
what has happened in the same context for both plans. Only data processing operators such as seeks,
scans, and joins are accounted for when searching for similar regions. Also, the same table must be
used in the matching region of the plan.

In the following screenshot, we can see the matched regions between the compared plans. In the
top plan, we selected Query 1 to compare. In the bottom plan, we selected Query 2, which actually
contains two separate queries, and thus has two matching regions. We know these two regions don’t
belong to the same query in this example – only one relates to the first query in the stored procedure
– but they both have a join with two inputs on the same tables (remember, plan comparison ignores
Compute Scalar), making them similar enough to be matched.

Comparative Analysis of Query Plans304

Figure 9.13: Query plan comparison showing highlighting of related regions

Technical requirements 305

If we wanted to compare the second queries in each batch, we would need to return to the Multi
Statement tab and choose Query 2 from the top plan and Query 2 again from the bottom plan.

We’ll focus on comparing the highlighted regions of both plans, as shown in the previous screenshot.
But before doing that, we want to know whether there are any compilation differences between
production and dev that can lead us down the wrong investigation path. To do that, we compare the
root nodes (SELECT) on both plans. Click on the root node (SELECT) of the Top Plan, and manually
click on the corresponding SELECT statement of the Bottom Plan, as seen in the previous screenshot.

Looking at the following Properties window, we can compare properties that can help answer our
question: are we looking at equivalent query plans?

Figure 9.14: Properties window showing relevant regions highlighted for both the top and bottom plans

Comparative Analysis of Query Plans306

Both plans have the same CardinalityEstimationModelVersion (130) and Estimated Number of Rows.
The TraceFlags property is signaled as being different between plans. Expanding them reveals that’s
not the case, it’s just that the top plan is an actual execution plan, and thus it has both IsCompileTime
| True and IsCompileTime | False, whereas the bottom plan – a cached plan or estimated execution
plan – only has IsCompileTime | True. But the actual trace flags are the same on both environments
(showing only trace flag 7412 in the preceding screenshot) and none impact the Query Optimizer.

Tip
Refer to the Query plan properties of interest section of Chapter 3, Exploring Query Execution
Plans, for a run-down of most of the relevant showplan properties.

More importantly, the QueryHash and QueryPlanHash values are the same. This means that the
plan we are analyzing in dev is equivalent to production, which helps attest that the dev environment
is good enough to dig deeper into the standing hypothesis: are we experiencing a parameter sniffing
issue? And are statistics outdated?

A quick look in the OptimizerStatsUsage property in both plans shows that both plans used the
same set of statistics objects (only three statistics are expanded in the following screenshot) and that
no statistics require updating – notice the ModificationCount value is 0 and SamplingPercent is
100 – so in principle, we can rule out outdated statistics as a problem.

Technical requirements 307

Figure 9.15: Properties window showing the OptimizerStatsUsage

property highlighted in both the top and bottom plans

Comparative Analysis of Query Plans308

Now we are confident that whatever investigations and recommendations we do in the dev environment
are likely to be applicable to production. Looking back at the actual execution plan, it’s evident that
the clustered index scan on the SalesOrderDetail table has skewed estimations – it returned 103,128
of 7,915 rows, which is over 1,300 percent of what had been estimated.

Figure 9.16: Query plan comparison highlighting the SalesOrderDetail clustered index scan operator

This may very well be a parameter sniffing issue. So, next, we clear the plans from the plan cache, and
try with different parameters, as seen in the following examples:

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;
GO
EXEC usp_GetSalesOrderDetailToDate '2014-5-28 00:00:00'
GO
ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;

Technical requirements 309

GO
EXEC usp_GetSalesOrderDetailToDate '2013-5-28 00:00:00'
GO

These examples yield the following query execution plans, which do not differ from the query plan
we saved from the production environment, nor from the query execution plan produced for the
first compiled value:

Figure 9.17: Query plan comparison for the example procedure

after recompiling to check for parameter sniffing

It is not parameter sniffing. But the answer lies somewhere in the query plan. Focus on the overly
skewed clustered index scan and its properties. As seen in the following screenshot, the bottom plan
(production) has a severe skew between the Estimated Number of Rows and the Estimated Number
of Rows to be Read (7,915 of 121,317 rows) values. The top plan (dev) has the same estimation skews,
but these are not confirmed by runtime data: comparing Actual Number of Rows with Number of
Rows Read shows these are equal. We have seen this pattern in the Understanding predicate SARGability
section of Chapter 4, Indexing for T-SQL Performance. Could this be a predicate pushdown-related
problem? Notice there aren’t seek predicate properties in the clustered index scan, so there isn’t any
predicate involved here.

Comparative Analysis of Query Plans310

Figure 9.18: Properties window showing various estimated row properties

highlighted, including EstimateRowsWithoutRowGoal

However, notice another property: EstimateRowsWithoutRowGoal. We discussed this property in
the Query plan properties of interest section of Chapter 3, Exploring Query Execution Plans.

EstimateRowsWithoutRowGoal shows that if a row goal wasn’t used, the Query Optimizer would
account for 103,128 rows to be processed rather than just 7,915. That would be much closer to the
121,317 rows that were actually read.

Technical requirements 311

Note
When a query uses a TOP, IN, or EXISTS clause, the FAST query hint, or a SET ROWCOUNT
statement, this causes the Query Optimizer to search for a query plan that will quickly return
a smaller number of rows – this is called row goal optimization.

When the row goal is very low and a join is required, the Query Optimizer will use nested loop joins
because its initial cost (the cost to produce the first row) is relatively low. However, when the row goal
is larger, other types of joins might be preferred. For example, a Hash Match join is usually a good
choice when the SQL Database Engine needs to join larger inputs. Although it has a higher initial
cost because it must build a hash table before any rows can be returned, once the hash table is built,
the Hash Match join is generally cheaper. But if the two join inputs are sorted on their join predicate,
a Merge join is usually the cheapest.

We can disable the Query Optimizer row goal technique and see whether that has a positive effect. Starting
with SQL Server 2016 SP1, this can be done at the query level using the DISABLE_OPTIMIZER_
ROWGOAL use hint, or trace flag 4138 for earlier versions.

Tip
Starting with SQL Server 2022, the Cardinality Estimation (CE) Feedback feature will
automatically evaluate whether disabling the Query Optimizer row goal technique will have a
positive effect on the given query. We touched on the CE Feedback feature in the Understanding
the query optimization workflow section of Chapter 2, Mechanics of the Query Optimizer.

Before we change the stored procedure to add the hint, save the actual execution plan from the
stored procedure execution in the dev environment to a .sqlplan file. We will need it to do a final
comparison. Then change the stored procedure, as seen in the following example:

ALTER PROCEDURE usp_GetSalesOrderDetailToDate @FromDate DATETIME
AS
SET NOCOUNT ON;
SELECT TOP 1500 h.SalesOrderID, h.RevisionNumber, h.OrderDate,
 h.OnlineOrderFlag, h.PurchaseOrderNumber, h.DueDate,
 h.ShipDate, h.Status, h.AccountNumber, h.CustomerID
FROM Sales.SalesOrderHeader AS h
INNER JOIN Sales.SalesOrderDetail AS d ON h.SalesOrderID =
d.SalesOrderID
WHERE h.OrderDate >= @FromDate
OPTION (USE HINT('DISABLE_OPTIMIZER_ROWGOAL'));
SELECT TOP 100 h.SalesOrderID, h.RevisionNumber, h.OrderDate,
 h.OnlineOrderFlag, h.PurchaseOrderNumber, h.DueDate,
 h.ShipDate, h.Status, h.AccountNumber, h.CustomerID
FROM Sales.SalesOrderHeader AS h

Comparative Analysis of Query Plans312

INNER JOIN Sales.SalesOrderDetail AS d ON h.SalesOrderID =
d.SalesOrderID
WHERE h.TotalDue > 1000;

Then we execute the stored procedure again as in the following example:

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;
GO
EXECUTE usp_GetSalesOrderDetailToDate '2014-3-28 00:00:00';

We now need to compare the resulting query execution plan with the DevPlan.sqlplan file we
saved earlier. The Plan Comparison window opens, as seen in the following screenshot, in the scope
of Query 1 and the first occurrence of a similar region or operator.

Figure 9.19: Query plan comparison with the new stored procedure

showing both similarities and differences highlighted

Technical requirements 313

Note that for this comparison, we also want to highlight differences, not only the default similar regions
or operators. For that purpose, we can go to the Statement Options tab in the Showplan Analysis
window and check the Highlight operators not matching similar segments box, after which the
operators that don’t match between plans are highlighted in yellow.

Figure 9.20: Showplan Analysis Statement Options window showing the

Highlight operators not matching similar segments checkbox checked

Back to the previous Plan Comparison window, we see the execution plans for Query 1 are different.
The join type between both tables has changed from a Merge join to a Hash Match join, which executes
much faster (9 ms instead of 28 ms). Hash Matches are usually a good choice when the SQL Database
Engine needs to join larger inputs, which, now that we have removed the row goal optimization, we
can verify here.

The only similar region between plans is the clustered index scan on the SalesOrderHeader table,
but where before it was the outer table for a Merge join, it’s now the Build table for the Hash Match
join. While this operator returns fewer rows in the bottom plan (the original query) than in the top
plan (the hinted query), it also takes longer to execute (10 ms instead of 3 ms). This can be explained
by looking at the compared properties of both operators in the following screenshot:

Comparative Analysis of Query Plans314

Figure 9.21: Properties window showing relevant properties highlighted in both the top and bottom plans

In the preceding screenshot, we can see the following:

• The Actual Number of Rows value after the [h].[OrderDate]>=[@FromDate] predicate
is applied changed from 284 in the bottom plan to 5,963 in the top plan

• The Number of Rows Read (before the predicate is applied) value changed from 25,786 in the
bottom plan to 31,465 in the top plan (this is the full TableCardinality)

Technical requirements 315

• Yet we see in Actual Time Statistics that the scan is faster in the top plan. Why?

• Both the Actual Number of Rows and Estimated Number of Rows values in the top plan
match the EstimateRowsWithoutRowGoal value in the bottom plan. This was expected when
we purposefully hinted at the row goal optimization.

The scan of the bottom plan is slower because it has the Ordered property set to True, which
indicates that the scan needs to enforce an explicit order to guarantee that the Merge join has
the required sorted input. At the Storage Engine level, this means enforcing that all rows are
read in their logical order, following a linked list of index leaf level pages ordered by index key
order – rather than their physical order, the page allocation order.

The scan of the top plan has the Ordered property set to False, which indicates the rows are
read by following the index leaf level pages physical order. This explains that while the scan
in the top plan reads more rows than the bottom plan, it is faster by reading all pages in order
of physical allocation.

And what about the other index that is now identified as a difference? The clustered index scan on
the SalesOrderDetail table was replaced by a non-clustered index scan. In the following plan
comparison screenshot, we can see the following:

• While the bottom plan (the original query) has a big underestimation of the actual number
of rows (103,128 compared to 7,915 estimated rows), the top plan (the hinted query) has an
overestimation (9,049 actual rows compared to121,317 estimated rows)

• However, the scan in the top plan executed in 1 ms, whereas the scan in the bottom plan
executed in 13 ms

Comparative Analysis of Query Plans316

Figure 9.22: Query plan comparison with the new stored procedure showing the non-

clustered index scan in the top plan versus the clustered index scan in the bottom plan

But even if the SQL Database Engine had to scan the entire non-clustered index as it did with the
clustered index in the previous plan, it would still be faster with the new plan. Why? We can see
information about the indexes in SalesOrderDetail using the following T-SQL query example:

SELECT t.name AS TableName, i.name AS IndexName,
 i.type_desc, p.rows, a.total_pages, a.used_pages,
 CONVERT(DECIMAL(19,2),ISNULL(a.used_pages,0))*8/1024 AS
DataSizeMB,
 ips.index_depth, ips.avg_record_size_in_bytes
FROM sys.allocation_units AS a

Query plan analyzer 317

INNER JOIN sys.partitions AS p ON p.hobt_id = a.container_id AND
a.type = 1
INNER JOIN sys.indexes AS i ON i.object_id = p.object_id
 AND i.index_id = p.index_id
INNER JOIN sys.tables AS t ON t.object_id = p.object_id
CROSS APPLY sys.dm_db_index_physical_stats (DB_ID(), p.object_id,
i.index_id, NULL, 'SAMPLED') AS ips
WHERE t.name = 'SalesOrderDetail';

The following screenshot shows the resultset for the query example:

Figure 9.23: Results of the example metadata query showing the indexes of the SalesOrderDetail table

When compared to the clustered index, we can see that even if the SQL Database Engine had to scan
the full non-unique, non-clustered index IX_SalesOrderDetail_ProductID, that would
amount to 2.4 MB of I/O instead of 10 MB for a full scan of the clustered index, which would be
consistently better. The size difference is explained by the average record size for the non-clustered
index being 16 bytes versus 80 bytes for the clustered index. Now that we’ve learned how to use the
plan comparison tool in SSMS to help troubleshoot query performance by comparing two plans with
each other, let’s look at another helpful tool that can guide our query performance troubleshooting
– the query plan analyzer.

Query plan analyzer
So far, we have had to analyze query plans by correlating information in plan and operator properties
to create working hypotheses on how to solve query performance issues. One constant throughout all
these troubleshooting scenarios has to do with comparing estimated rows with actual rows flowing
through the operators in a query plan. This is because significant differences between estimated and
actual rows usually expose cardinality estimation issues, which speak to several possible causes,
from outdated statistics to parameter sniffing or even out-of-model constructs such as User-Defined
Functions (UDFs) or Multi-Statement Table-Valued Functions (MSTVFs).

Depending on the query performance problem, it may not be easy to even start troubleshooting,
especially in complex plans. This is exactly why SSMS has a plan analysis tool, and this can jump-start
our query performance troubleshooting efforts.

In the following example, we will examine a query that was not performing as expected in production.
Specifically, one stored procedure that’s executed many times a minute was thought to be abnormally
slow, because the application that used it was not responding properly.

Comparative Analysis of Query Plans318

First, we tried running the stored procedure in the dev environment using sample data and couldn’t
find any major issues with the resulting query plan, nor its performance. This must mean that whatever
is happening can only be found in production. What is needed to proceed with troubleshooting is an
actual execution plan, and so we used Extended Events (XEvents) to capture the query execution plan
for the offending stored procedure using the query_post_execution_showplan XEvent – not
an easy proposition given collecting this XEvent itself generates overhead. We will discuss several
other ways of collecting the actual execution plan in a much more lightweight fashion in Chapter 11,
Troubleshooting Live Queries.

The captured query execution plan is the following:

Figure 9.24: Query execution plan of the problem stored procedure

The stored procedure in the preceding query execution plan is in the AdventureWorks sample
database, and is created as follows:

CREATE OR ALTER PROCEDURE usp_SalesTracking @UpdatedOn datetime
AS
SET NOCOUNT ON;
SELECT *
FROM Sales.SalesOrderHeader AS soh
INNER JOIN Sales.OrderTracking AS ot ON ot.SalesOrderID = soh.
SalesOrderID
WHERE ot.EventDateTime >= @UpdatedOn;
GO

With the plan open, right-click anywhere in the query execution plan, and the following menu pops up:

Query plan analyzer 319

Figure 9.25: Query execution plan context menu showing the Analyze Actual Execution Plan menu option

Clicking the Analyze Actual Execution Plan menu option opens a new window docked on the
bottom – Showplan Analysis:

Figure 9.26: Scenarios tab of the Showplan Analysis window

Inside the window, there is a Scenarios tab – a placeholder for future scenarios if there’s user demand
for them – on which we find the Inaccurate Cardinality Estimation tab.

Note
At the time of this revision, Microsoft is no longer investing in this feature in favor of the
new CE Feedback feature introduced in SQL Server 2022. We touched on CE Feedback in the
Understanding the query optimization workflow section of Chapter 2, Mechanics of the Query
Optimizer. You can read more about CE Feedback at https://aka.ms/CEFeedback.

If we click on the link to the right under Finding Details, we get a popup that explains what this
scenario is all about:

“One of the most important inputs for the Query Optimizer to choose an optimal execution plan is the
estimated number of rows to be retrieved per operator. These estimations model the amount of data to

https://aka.ms/CEFeedback

Comparative Analysis of Query Plans320

be processed by the query, and therefore drive cost estimation. Changes in the estimated number of rows
is one of the most frequent reasons for the Query Optimizer to pick different query plans.

This scenario helps you to find differences in estimated number of rows between two execution plans,
scoped to the operators that perform similar data processing, and suggests possible causes for those
differences, as well as possible workarounds to improve the estimates. Note that this automation may not
identify all operators, their differences, or all possible root causes. So while the information displayed here
is a tentative mitigation opportunity to resolve an issue identified by this scenario, it should still help in
analyzing root causes of plan difference.”

As it suggests, it will try to find hotspots in the query execution plan that have to do with patterns of
inaccurate cardinality estimation and two such findings are already on the left side of the window. As
shown in the following screenshot, selecting any of the findings will center the plan on the offending
operator – in this case, the clustered index scan:

Figure 9.27: Scenarios tab of the Showplan Analysis window showing one of the findings

highlighted in both the analysis window and the corresponding query plan

Query plan analyzer 321

We should always start by analyzing findings that are related to data reading operators such as seeks
and scans, and then move up the query plan tree to aggregates and joins. The clustered index scan
in the plan has a 56,000 percent difference between the actual and estimated row numbers (332
compared to 186,280). Notice the Finding Details section to the right. Two possible reasons for the
misestimation are as follows:

• The plan analyzer found a predicate in this scan that depends on a parameter whose runtime
value is different from the compile-time value, or that the compile-time value is NULL. This
constitutes a case of bad parameter sniffing.

• Clicking the link at the end of the finding (the word here) opens a pop-up window with detailed
background information about bad parameter sniffing and how to mitigate it.

Because it’s common to have misestimations based on wrong or outdated statistics, the query plan
analyzer suggests we need to look at whatever statistics are loaded for this plan and verify whether
they need to be updated. Again, clicking the link at the end of the finding (the word here) opens a
pop-up window with background information.

We can start with suggestion 2 because it’s very easy to determine using an actual execution plan. On the
plan root node (SELECT), open the properties window to analyze the OptimizerStatsUsage property.
As seen in the following screenshot, no statistics require updating – notice the ModificationCount value
is 0; however, several statistics related to the OrderTracking table have only 30 percent sampling.
This may be an issue – if it’s possible to update statistics with a higher sampling ratio, especially for
tables whose data distribution is not uniform, that is always a good choice.

Comparative Analysis of Query Plans322

Figure 9.28: Properties window of the query plan showing the OptimizerStatsUsage property

If updating statistics with a larger sample is not doable for now (maybe the tables have millions of rows
and updating with a larger sample could cause problems), we can move on to suggestion 1, where it
points to bad parameter sniffing.

Query plan analyzer 323

Note
We discussed the topic of parameter sniffing in the The importance of parameters section in
Chapter 1, Understanding Query Processing, and Query plan properties of interest in Chapter 3,
Exploring Query Execution Plans.

This is also easy enough to investigate: open the properties window to analyze the Parameter List
property. As seen in the following screenshot, the parameter with which the stored procedure was
compiled and optimized is not the same as the parameter runtime value.

Figure 9.29: Properties window of the query plan showing the Parameter List property

This means that at its first execution, the plan was optimized for the '2011-07-31 00:00:00.000'
data value and that the plan was cached for subsequent use.

Note
Before moving on, we save the current plan to a .sqlplan file because we may need it later
to compare with other plans.

Executing the stored procedure with the compiled value yields the following query execution plan:

Figure 9.30: Query plan for the stored procedure when executed with the compiled value of the parameter

Comparative Analysis of Query Plans324

A quick analysis shows that all operators have perfect estimations – the actual rows are the same as
the estimated rows. This confirms that the currently cached plan is optimized for the first incoming
parameter, which is an older date. But if the parameter used in the first compilation wasn’t the most
used, but instead more recent dates are often used as parameters, the reasonable hypothesis is that
compiling the stored procedure and executing it for the first time using a common parameter will
yield a different plan.

We can test this using the following example, which creates a new test stored procedure that is not
called by the application:

CREATE OR ALTER PROCEDURE usp_SalesTracking_Test @UpdatedOn datetime
AS
SET NOCOUNT ON;
SELECT *
FROM Sales.SalesOrderHeader AS soh
INNER JOIN Sales.OrderTracking AS ot ON ot.SalesOrderID = soh.
SalesOrderID
WHERE ot.EventDateTime >= @UpdatedOn;
GO
EXECUTE usp_SalesTracking_Test '2014-6-30 00:00:00'
GO

Executing the new stored procedure with the common value yields the following query execution plan:

Figure 9.31: Query plan for the test stored procedure executed with the more common parameter value

This is a very different plan that also executed faster. We can use the plan comparison feature we
discussed in the previous section to quickly find the main differences between the plan we just got
and the previously saved ParamSniffingInvestigation.sqlplan file. The comparison
window looks like the following:

Query plan analyzer 325

Figure 9.32: Query plan comparison between the original plan and the new test stored procedure plan

The plans are similar, with a couple of interesting observations to be made:

• The clustered index scan on the OrderTracking table has accurate estimations that match the
common case of returning fewer records – the estimated rows match the actual rows returned

• The previous Hash Match join (the bottom plan compiled with a parameter value of '2011-
7-31 00:00:00') turned to a Merge join (the top plan compiled with a parameter value
of '2014-6-30 00:00:00'), due to the corrected estimations

Opening the properties of the root nodes (SELECT) shows additional relevant information that speaks
to the need to optimize for the common case, as seen in the following screenshot:

• The QueryTimeStats value for each query shows that optimizing for the common value (the
top plan) executes faster than reusing the plan from production (the bottom plan), compiled
with an older date: 32 ms instead of 81 ms.

• The Memory Grant value is also much lower in the top plan (1.9 MB) than in the bottom
plan (76 MB). Expanding the MemoryGrantInfo section would reveal that of the 76 MB, the
bottom plan only used 7 MB.

Comparative Analysis of Query Plans326

Figure 9.33: Properties window for the query plan comparison between

the original plan and the test stored procedure plan

We discussed the effects on concurrency of having memory grant misestimations in the Query plan
properties of interest section of Chapter 3, Exploring Query Execution Plans, and how to mine the plan
cache for other such concurrency inhibitors in the Troubleshooting common scenarios with DMV
queries section of Chapter 7, Building Diagnostic Queries Using DMVs and DMFs.

Summary 327

Having proven that this is a case of bad parameter sniffing, a few options are available to remediate
the issue in production:

• Rewrite the stored procedure to add the OPTION (RECOMPILE) hint. With this hint, a
plan is calculated every time the stored procedure is executed and optimized for the current
incoming parameter value.

• Rewrite the stored procedure to add the OPTION (OPTIMIZE FOR (@UpdatedOn =
'2014-6-30 00:00:00')) hint. With this hint, even after recompiling, the stored
procedure will be optimized for the common value – a recent date that we chose.

• Rewrite the stored procedure to add the OPTION (OPTIMIZE FOR UNKNOWN) hint. This
will create a generic plan that may not be necessarily optimized for any incoming parameter.

Tip
This currently has the same effect as rewriting the stored procedure to assign the parameter
value to a local variable and using that within the query rather than the parameter directly.
However, this is simply a side effect of the way local variables affect the optimization process,
and not explicitly directing the Query Optimizer to turn off parameter sniffing.

• If most queries in a database had a bad parameter sniffing issue, then disabling parameter sniffing
may be a mitigation when hinting all the code is not feasible. To do this at the database level, use
the database-scoped PARAMETER_SNIFFING configuration in the following T-SQL command:

ALTER DATABASE SCOPED CONFIGURATION SET PARAMETER_SNIFFING =
OFF;

To do this at the system level, use the DBCC TRACEON (4136, -1) T-SQL command to enable
trace flag 4136 globally. Note that enabling a global trace flag requires sysadmin privileges and can’t
be used on Azure.

Summary
In the Query plan comparison section, we were able to take a query plan from the production
environment that was not performing as expected and validate that when running the same query in
the dev environment with a production-like database we were able to get a consistent reproduction of
the issue. Then, through comparative analysis of the cached query plan from production (an estimated
execution plan) and the actual execution plan from dev, we could create hypotheses from the data we
observed until we found the root cause. Last, we tested a fix for the root cause of the issue by hinting
at queries, which again, by comparing plans, determined that the new plan was better than the old
plan, which should now be implemented in production.

Comparative Analysis of Query Plans328

In the Query plan analyzer section, we were able to take a query plan that had been captured in the
production environment through an XEvent trace and get started on finding what could be negatively
affecting performance by using this new feature. This allowed us to find significant differences between
estimated and actual rows in the affected query execution plan and directed us to investigate a bad
parameter sniffing problem, which turned out to be confirmed. After that, we were given several
strategies to deal with the problem to bring back to production and definitively mitigate the issue.

In the next chapter, we will look at a tool called the Query Store that can help capture query plans and
identify query performance regressions.

10
Tracking Performance

History with Query Store

This chapter will introduce the Query Store, which is effectively a flight recorder for the SQL Database
Engine T-SQL executions, allowing performance tracking over time and analysis of workload trends
through rich-UI reports that are included with SQL Server Management Studio (SSMS).

We will also see how Query Store integrates with Query Plan Comparison, which was covered in
Chapter 9, Comparative Analysis of Query Plans, for a complete user interface (UI)-driven workflow
for query performance insights. This chapter covers the following topics:

• Introducing the Query Store

• Tracking expensive queries

• Fixing regressed queries

• Features that rely on the Query Store

Technical requirements
The examples used in this chapter are designed for use on SQL Server 2022 and Azure SQL Database,
but they should work on any version of SQL Server 2012 or later. The Developer Edition of SQL Server
is free for development environments and can be used to run all the code samples. There is also a free
tier of Azure SQL Database that you can use for testing at https://aka.ms/freedb.

You will need the AdventureWorks2016_EXT (referred to as AdventureWorks) and
AdventureWorksDW2016_EXT (referred to as AdventureWorksDW) sample databases, which
can be found on GitHub at https://github.com/Microsoft/sql-server-samples/
releases/tag/adventureworks. Code samples for this chapter can also be found on GitHub
at https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-
Edition/tree/main/ch10.

https://aka.ms/freedb
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch10
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch10

Tracking Performance History with Query Store330

Introducing the Query Store
The requirement to track query performance statistics over time has been a longtime request by
SQL Database Engine users because it unlocks the ability to go back in time and understand trends
and point-in-time occurrences. Maybe a point-in-time issue with the database caused our company
website to glitch, or a critical application slows down periodically without a predictable pattern, or
we noticed that part of our workload is much slower after an upgrade to a new version of the SQL
Database Engine. Barring any hardware problems, all these scenarios can usually be boiled down to
one common cause – query plan optimization choices. This led to the creation of the Query Store –
an effective flight recorder for our databases that’s available in SQL Server (starting with SQL Server
2016) and Azure SQL Database, including Managed Instance.

Recall what we discussed on the process of query optimization in Chapter 1, Understanding Query
Processing, and specifically the role of cardinality estimation discussed in Chapter 2, Mechanics of the
Query Optimizer: the SQL Database Engine can consider many plans during the query optimization
process and so, when a problem happens, being able to backtrack historical information to understand
whether there were changes to the query plans of slow queries is fundamental.

We have seen queries that allow us to mine the plan cache to get all types of important information
in the Exploring query plan cache DMVs section of Chapter 7, Building Diagnostic Queries Using
DMVs and DMFs, but those alone are not enough to help answer three pressing questions during a
performance troubleshooting exercise:

• Which query or set of queries slowed down from a previous moment in time?

• What was the previous query plan that worked better than the current plan in the cache?

• Is there a way I can force the plan to look more like the “good” plan? Can I use a plan guide,
for example? We will see how a plan guide can be used in Chapter 11, Troubleshooting Live
Queries, in the Activity Monitor gets new life section.

To answer these questions, the Query Store captures query plans and runtime execution statistics in the
user database. Storing information on disk means that, unlike most DMVs, its information is available
after a restart, database upgrade, and query plan recompilations. With all of this, Query Store makes
it easier to find performance regressions and mitigate them literally with one click of a button – we’ll
show this later in this chapter in the Fixing regressed queries section – which is a process that can take
hours or days with other means, such as collecting traces and analyzing them manually. Query Store
also unlocks the ability to identify top resource-consuming queries and analyze performance trends
across workloads, putting database professionals in the driving seat when it comes to learning about
recurring patterns and finding tuning opportunities to optimize our T-SQL queries.

Inner workings of the Query Store

When a query is compiled, its query text and plan (the same plan that gets stored in the plan cache)
are captured in Query Store’s memory structures to minimize I/O overhead. When the query’s first

Introducing the Query Store 331

execution completes (and any subsequent execution), runtime execution statistics are also stored
in memory. In the background, an asynchronous process runs to bucketize the information in time
interval aggregates and stores all this data in internal tables that reside in the user database. Both the
aggregation time intervals and storage for on-disk tables are configurable, and we will cover them in
the next section of this chapter.

Storing internal tables in the user database means that the QS is a single-database performance
tracking system that stays with database backups and database clones. This is a powerful capability
because we can get a database backup that includes its Query Store from one system and analyze the
performance data in another system.

Note
Database clones refer to schema-only databases created with the DBCC CLONEDATABASE
command. This operation creates a database with empty tables and indexes but maintains all
programmability objects such as stored procedures and functions, as well as statistics objects
and the Query Store. This becomes a powerful tool during cases of remote assistance for query
optimization-related issues.

On top of Query Store’s memory and disk tables, there are system views to access all the information
that is stored on both dimensions of data that’s collected: query compilation and query execution time
information. The QS system views exist in Azure SQL Database and SQL Server.

The SQL Server 2022 QS system views can be seen in the following screenshot, which we will use
throughout this chapter:

Figure 10.1: SSMS IntelliSense window showing some of the SQL Server 2022 QS system views

In turn, SSMS has a rich UI experience on Query Store that’s built on top of the system views. The
available SSMS Query Store reports can be accessed under each database in the Query Store
folder, as seen in the following screenshot:

Tracking Performance History with Query Store332

Figure 10.2: SSMS Object Explorer showing the built-in Query Store reports

The following diagram outlines the Query Store architecture discussed in this section:

Figure 10.3: Diagram depicting the Query Store architecture

Configuring the Query Store

Azure SQL Database has the Query Store enabled by default. In SQL Server 2022, the Query Store is
enabled by default for new databases, but any databases that were migrated from older systems will
maintain the Query Store state from the version from which they migrated. In SQL Server 2016, 2017,
and 2019, it must be enabled manually. This can be done in two different ways:

Introducing the Query Store 333

• Using T-SQL, as seen in the following example for the AdventureWorks2016 sample database:

USE [master]
GO
ALTER DATABASE [AdventureWorks2016]
SET QUERY_STORE = ON;
GO
ALTER DATABASE [AdventureWorks2016]
SET QUERY_STORE (OPERATION_MODE = READ_WRITE);

• Using SSMS, when we right-click on a database name in Object Explorer, select Properties,
select the Query Store page, and change Operation Mode from Off to Read Write, as seen
in the following screenshot:

Figure 10.4: SSMS Database Properties window showing the Query Store properties

Tracking Performance History with Query Store334

In the previous screenshot, we can see the full size of the database (743.6 MB) and how much of that
size is used by Query Store (3.0 MB). From the current Query Store size limit (1024.0 MB), we can
also see how much is used (3.0 MB).

While the Query Store is disabled by default in older versions of SQL Server, it can be enabled via
the model database. This will ensure that each new database will inherit the enabled Query Store
settings from the model database. However, QS options cannot be set for the model database via
SSMS. T-SQL must be used, as seen in the following example:

USE [master]
GO
ALTER DATABASE [model] SET QUERY_STORE = ON;
GO
ALTER DATABASE [model] SET QUERY_STORE (OPERATION_MODE = READ_WRITE);

As for the settings to control the QS behavior through SSMS, they are as follows:

• Operation Mode: Defines the current operational status of QS, such as whether it is currently
collecting data. It can be disabled (Off), disabled but not cleared (Read only), and enabled for
data collection (Read write).

• Data Flush Interval (Minutes): Defines the frequency to persist collected runtime statistics
from memory to disk tables. The default is 15 minutes (900 seconds internally), which is what
Microsoft recommends for most systems.

• Statistics Collection Interval: Defines the time interval buckets for aggregation. The default is
1 hour (60 minutes internally). Microsoft doesn’t recommend a lower value for 24x7 operation.

• Max Plans per Query: Defines the maximum number of plans maintained for each query. The
default is 200, and when the limit is reached, QS stops capturing new plans for that query. This
can be the case for stored procedures that recompile often for example.

Tip
If you choose to change the default value of Max Plans per Query, keep in mind that it will have
a direct impact on the effectiveness of features that rely on the Query Store, such as Automatic
Plan Correction (APC) and Parameter Sensitive Plan Optimization (PSPO).

• Max Size (MB): Defines the maximum size up to which the Query Store can grow inside the
user database before it starts to clean up older information. The Max Size (MB) limit isn’t
strictly enforced. The storage usage is checked only when the QS writes data to disk, which is
set by the Data Flush Interval (Minutes) option. If the cleanup process cannot keep up before
the QS space is full, then the QS operation mode will change to Read only. The default up to
SQL Server 2017 is 100 MB, increased to 1 GB in SQL Server 2019.

Introducing the Query Store 335

• Query Store Capture Mode: Defines the amount of query information collected. Query Store
can collect information on all queries (All), only queries that execute regularly (Auto), or no
queries whatsoever (None). The default is All up to SQL Server 2017 (but highly recommended
to use Auto instead), and changes to Auto in SQL Server 2019 – the same as Azure SQL
Database. The All setting can be used sporadically for point-in-time troubleshooting, but we
have other methods of collecting query plan information that don’t aggregate data, which we
discuss in Chapter 11, Troubleshooting Live Queries.

• Size Based Cleanup Mode: Defines whether the internal cleanup task removes the oldest
queries and their related runtime statistics from the Query Store using a least recently used
(LRU) algorithm. The cleanup task wakes up when the size of QS on-disk tables reaches 90
percent of the defined maximum. The cleanup task stops when approximately 20 percent of
the defined maximum is free. The default is Auto but can also be Off, in which case the QS
operation mode will change to Read only when the size limit is reached.

• Stale Query Threshold (Days): Defines the duration that runtime statistics must be kept per
collected query. For queries that haven’t been executed over the defined time, its runtime
statistics are evicted. The default is 30 days. Consider the time that we need to reasonably keep
query execution history. For example, if our workload roughly repeats itself every other week,
we can lower this configuration value to 15 days because we should only need to keep about
2 weeks of data to investigate any issues.

• Wait Stats Capture Mode: Defines whether wait stats should be captured (On) or not (Off). The
default is On. A detailed discussion about waits is outside the scope of this book, but if more
information about the various wait types is needed, the SQL Database Engine documentation
about waits is on the page for the sys.dm_os_wait_stats DMV. This DMV shows
cumulative wait information since the server was last started.

However, QS does not collect detailed information per individual wait type name. Instead, QS
groups wait types per category, such as Lock, CPU, Tran Log IO, Network IO, Buffer IO, Latch,
and numerous others. The mapping between Query Store wait categories and real wait type
names is available in the SQL Database Engine documentation page for the system view, sys.
query_store_wait_stats.

Microsoft also recommends enabling two global trace flags that improve QS behavior on typical
production systems:

• Trace flag 7745: Used to prevent QS data from having to be written to disk in case of a failover or
shutdown, which would otherwise delay the failover or shutdown. However, this causes QS data
that has not been persisted to disk yet to be lost (up to the time that was defined by Data Flush
Interval), but typically, this is not critical. This is the default behavior in Azure SQL Database.

Tracking Performance History with Query Store336

• Trace flag 7752: Up to SQL Server 2017, this trace flag is used to allow asynchronous load of the
Query Store during database startup operations. The default synchronous load can delay database
startup until the Query Store is fully available, which may not be warranted for production
databases where uptime is more valuable than synchronous availability of monitoring data.
Starting with SQL Server 2019, this trace flag is not needed because asynchronous load becomes
the default behavior. This is also the default behavior in Azure SQL Database.

We can see the options in the following screenshot, where the defaults were changed to the recommended
values, just after we changed Operation Mode to Read write:

Figure 10.5: SSMS Database Properties window showing Query

Store settings with their recommended values

Introducing the Query Store 337

We can also use T-SQL, as shown in the following example:

USE [master]
GO
ALTER DATABASE [AdventureWorks2016] SET QUERY_STORE = ON;
GO
ALTER DATABASE [AdventureWorks2016] SET QUERY_STORE (
 OPERATION_MODE = READ_WRITE,
 DATA_FLUSH_INTERVAL_SECONDS = 900,
 INTERVAL_LENGTH_MINUTES = 60,
 MAX_STORAGE_SIZE_MB = 1000,
 QUERY_CAPTURE_MODE = AUTO,
 SIZE_BASED_CLEANUP_MODE = AUTO,
 MAX_PLANS_PER_QUERY = 200,
 WAIT_STATS_CAPTURE_MODE = ON,
 CLEANUP_POLICY = (STALE_QUERY_THRESHOLD_DAYS = 90)
);

SQL Server 2019 introduced a new Operation Mode called Custom. When it's enabled, you can fine-
tune data collection in a server by specifying additional Query Store configurations using the Query
Store Capture Policy setting. The new Custom settings define what happens during the internal capture
policy time threshold: a time boundary during which the configurable conditions are evaluated and,
if any are true, the query is eligible to be captured by Query Store. The new settings are as follows:

• Stale Capture Policy Threshold: Defines the time window for which one or more of the other
Query Store capture policy OR conditions need to occur for a query to be captured in the
Query Store. While the default is 1 day, it can be set as low as 1 hour, and up to 7 days. As you
evaluate changes from the default value, it’s important to be mindful that lowering the value
will increase the load on Query Store, because it is likely that more queries will be captured.

• Execution Count: Defines the number of times a query must be executed within the time
window configured in Stale Capture Policy Threshold for the query to be considered for
capture. The default is 30, which means that if using all default configurations, a query must
execute at least 30 times in one day to be captured in the Query Store.

• Total Compile CPU Time (ms): Defines the total cumulative CPU time a query must spend
during compilation within the time window configured in Stale Capture Policy Threshold
for the query to be considered for capture. The default is 1000, which means that if using all
default configurations, a query must accumulate at least one second of CPU time during query
compilation in one day to be captured in the Query Store.

• Total CPU Time (ms): Defines the total cumulative CPU time a query must spend in execution
within the time window configured in Stale Capture Policy Threshold for the query to be
considered for capture. The default is 100, which means that if using all default configurations,
a query must accumulate at least 100 ms of CPU time during query execution in one day to
be captured in the Query Store.

Tracking Performance History with Query Store338

From the T-SQL example we used previously, the full syntax available in SQL Server 2019 and later
becomes the following:

USE [master]
GO
ALTER DATABASE [AdventureWorks2016] SET QUERY_STORE = ON
GO
ALTER DATABASE [AdventureWorks2016] SET QUERY_STORE (
 OPERATION_MODE = READ_WRITE,
 DATA_FLUSH_INTERVAL_SECONDS = 900,
 INTERVAL_LENGTH_MINUTES = 60,
 MAX_STORAGE_SIZE_MB = 1000,
 QUERY_CAPTURE_MODE = CUSTOM,
 SIZE_BASED_CLEANUP_MODE = AUTO,
 MAX_PLANS_PER_QUERY = 200,
 WAIT_STATS_CAPTURE_MODE = ON,
 CLEANUP_POLICY = (STALE_QUERY_THRESHOLD_DAYS = 90),
 QUERY_CAPTURE_POLICY = (
 EXECUTION_COUNT = 30
 TOTAL_COMPILE_CPU_TIME_MS = 1000
 TOTAL_EXECUTION_CPU_TIME_MS = 100
)

);

Note
If using SQL Server 2016, ensure that Cumulative Update 2 of Service Pack 2 is installed at a
minimum. This update included several scalability fixes for Query Store that are part of SQL
Server 2017 and later.

When Query Store is configured according to the best practices we discussed in this chapter, it can be
enabled 24x7. When QS is always enabled, it can start providing value to every database professional
who ever had to invest countless hours in query performance troubleshooting resulting from plan
changes related to data distribution changes, or even configuration changes with SQL Server. We’ll
discuss some of the ways database professionals can make use of the valuable information stored in
the QS later in this chapter, but first, let’s learn about some of the ways the database engine itself can
use the QS.

Tracking expensive queries 339

Tracking expensive queries
Query Store only collects plans for Data Manipulation Language (DML) statements such as SELECT,
INSERT, UPDATE, DELETE, MERGE, and BULK INSERT, as these are the T-SQL statements that will
be responsible for most of our SQL Database Engine’s resource usage. Most database administrators
(DBAs) and database reliability engineers are constantly looking for ways to optimize resource usage;
after all, if T-SQL queries are using just the resources they need (CPU, I/O, and memory), then the
SQL Database Engine is operating at peak efficiency and allows for maximum concurrency with its
current hardware resources.

This brings us to one of the main benefits of Query Store: tracking our workload heavy hitters – the
most resource-consuming queries. With this exercise, we may be able to uncover tuning opportunities
that, if successful, further improve the efficiency of the server’s resource usage.

To generate enough workload in our AdventureWorks database, we will be using an application
called QueryStoreSimpleDemo.exe, available in the Microsoft GitHub sample repository at
https://github.com/Microsoft/sql-server-samples/blob/master/samples/
features/query-store. When this executable is started, we are prompted to enter the SQL
Database Engine instance we want to connect to and one of several sample workloads that are available,
as seen in the following screenshot. For now, we will use the L option.

Figure 10.6: Command window showing the QueryStoreSimpleDemo.exe application running

To have relevant data for our exercise, we leave the workload executing for about one hour at least, to
allow considerable resources to be used and tracked and have a production-like data collection available
in Query Store. Then, we can start by using some of the reports and system views to understand the
behavior of the workload over our AdventureWorks sample database. We will start by double-
clicking on the Top Resource Consuming Queries SSMS report, highlighted in the following screenshot:

https://github.com/Microsoft/sql-server-samples/blob/master/samples/features/query-store
https://github.com/Microsoft/sql-server-samples/blob/master/samples/features/query-store

Tracking Performance History with Query Store340

Figure 10.7: SSMS Object Explorer showing the Top Resource Consuming Queries report

This opens the report in a new window tab, as seen in the following screenshot:

Figure 10.8: Top Resource Consuming Queries Query Store report in SSMS

Let’s explore what this report can show us. The top-left quadrant (marked as 1 in the preceding screenshot)
displays the top 25 resource consumers for our database. Just above it, we see two dropdowns that
allow us to change the following:

Tracking expensive queries 341

• Metric: The setting by which the charts are drawn (marked as 1.1 in the preceding screenshot),
from the default Duration (ms) to any other metric available, as seen in the following
screenshot detail.

• Statistic: The aggregation used for the chosen metric (marked as 1.2 in the preceding screenshot)
with the default being Total, but others are available such as average (Avg), maximum (Max),
minimum (Min), and standard deviation (Std Dev).

Figure 10.9: Top Resource Consuming Queries Query Store report detail showing

the Metric dropdown with the default Duration (ms) highlighted

For example, assume our server is CPU-bound: it makes sense to change the metric to CPU Time
(ms) so we can see those queries and analyze them for tuning opportunities. Other scenarios are
possible; for example, if we’ve detected waiting queries and suspect parallelism may be misused in
the workload, then we change the metric to DOP to find queries that operate with a high degree of
parallelism and may be waiting too much. Or maybe memory is the concern, and so using the Memory
Consumption (KB) metric is the starting point.

The top-right quadrant (marked as 2 in Figure 10.8) displays the plan summary for the chosen
query – namely, its distribution throughout the timeline. If more than one plan exists for the query
in scope, we’ll see different colors for each Plan Id number. We will explore other options available
here later in this section.

The bottom (marked as 3 in Figure 10.8) displays the query plan – the same as the cached query
plan. Given that we know query plan choices drive resource usage, this is an important resource to
have available. There are no runtime metrics in the query plan – this is not an actual execution plan,
but we can explore runtime information about this plan by playing with the top-left quadrant view.

Tracking Performance History with Query Store342

The top-left quadrant can also be displayed in a tabular format organized by the chosen metric, which
makes it easier to see actual numbers to correlate with the query plans. To change the view, we click
the button highlighted in the following screenshot:

Figure 10.10: Detailed view of the Top Resource Consuming Queries Query Store

report displaying the menu bar with the grid format view button highlighted

This changes the report to the following view (notice we also changed the metric to CPU Time (ms)):

Figure 10.11: Top-left quadrant of the Top Resource Consuming

Queries Query Store report displaying grid view

Notice that query ID 20 is the heaviest in terms of total CPU time. We can also see the same information
programmatically, using the system views that the report also leverages, as shown in the following
sample query:

SELECT TOP 25 q.query_id, qt.query_sql_text,
 SUM(rs.count_executions) AS total_execution_count,
 AVG(rs.avg_rowcount) AS avg_rowcount,
 CAST(AVG(rs.avg_duration/1000) AS decimal(8,2)) AS avg_duration_
ms,
 CAST(AVG(rs.avg_cpu_time/1000) AS decimal(8,2)) AS avg_cpu_time_
ms,

Tracking expensive queries 343

 CAST(AVG(rs.avg_query_max_used_memory/8) AS decimal(8,2)) AS avg_
query_max_used_memory_KB,
 CAST(AVG(rs.avg_physical_io_reads/8) AS decimal(8,2)) AS avg_
physical_io_reads_KB,
 CAST(AVG(rs.avg_logical_io_reads/8) AS decimal(8,2)) AS avg_
logical_io_reads_KB,
 CAST(AVG(rs.avg_logical_io_writes/8) AS decimal(8,2)) AS avg_
logical_io_writes_KB
FROM sys.query_store_query_text AS qt
INNER JOIN sys.query_store_query AS q ON qt.query_text_id = q.query_
text_id
INNER JOIN sys.query_store_plan AS p ON q.query_id = p.query_id
INNER JOIN sys.query_store_runtime_stats AS rs ON p.plan_id = rs.plan_
id
WHERE execution_type = 0
GROUP BY q.query_id, qt.query_sql_text
ORDER BY avg_cpu_time_ms DESC;

This returns the following result set ordered by average CPU time. Not surprisingly, query ID 20 is
the heaviest:

Figure 10.12: Results of the sample query showing top CPU queries from the Query Store DMVs

Tracking Performance History with Query Store344

We can also see the top 25 queries by their average wait time using the following sample query:

SELECT TOP 25 q.query_id, qt.query_sql_text, wait_category_desc,
 SUM(ws.total_query_wait_time_ms) AS total_query_wait_time_ms,
 AVG(ws.avg_query_wait_time_ms) AS avg_query_wait_time_ms
FROM sys.query_store_query_text AS qt
INNER JOIN sys.query_store_query AS q ON qt.query_text_id = q.query_
text_id
INNER JOIN sys.query_store_plan AS p ON q.query_id = p.query_id
INNER JOIN sys.query_store_wait_stats AS ws ON p.plan_id = ws.plan_id
WHERE ws.wait_category_desc NOT IN ('Unknown', 'Idle')
AND ws.execution_type = 0
GROUP BY q.query_id, qt.query_sql_text, ws. wait_category_desc
ORDER BY avg_query_wait_time_ms DESC;

This returns the following result set, where query ID 20 is the second query with the most wait time.
Notice it is a parallelism-related wait:

Figure 10.13: Results of the sample query showing queries with

the most wait time from the Query Store DMVs

While using the system view can prove to be a powerful tool, if the rich UI experience that’s available
in SSMS reports is preferred, a Query Wait Statistics report is also available. Opening it provides the
view seen in the following screenshot, where we confirm that parallelism waits are the most prevalent
in the workload:

Tracking expensive queries 345

Figure 10.14: Query Wait Statistics Query Store report in SSMS

Clicking in the first bar (Parallelism) opens a second view with the details for that wait category, as
seen in the following screenshot. It confirms what we’d seen in the waits DMV – query ID 20 is the
second highest in wait times:

Figure 10.15: Query Wait Statistics drilldown report showing queries with the most parallelism waits

Tracking Performance History with Query Store346

Now, we have a clear notion of the heavy hitters that need investigation, and the working hypothesis
that tuning these will drive down CPU usage and alleviate my CPU-bound server. Back in the QS
report, let’s take the first query (20) and investigate. In the bottom section, we have the query plan;
we can click the magnifier button, as shown in the following screenshot, to open the query text:

Figure 10.16: Detailed view of the Top Resource Consuming Queries Query Store

report displaying the menu bar with the investigate query button highlighted

We can click the ellipsis (…) button on the right side, as shown in the following screenshot, for the
same purpose:

Figure 10.17: Query plan view of the Top Resource Consuming Queries

Query Store report displaying the ellipsis button

Once the query opens in a new session window, we can execute to get the following actual execution plan:

Figure 10.18: Execution plan for the query retrieved by clicking the investigate query button in Query Store

We can also get the QueryTimeStats values for this plan:

Figure 10.19: QueryTimeStats for the example query

Tracking expensive queries 347

Now that we have the query execution plan, in the WaitStats property, we confirm that this query
waited mostly on CXPACKET, which is a parallelism wait, just like it was reported in Query Store:

Figure 10.20: WaitStats for the example query showing CXPACKET waits

We also have a Clustered Index Scan on the SalesOrderDetail table. The query only needs
three columns from this table so it is a relevant subset, but there’s no index that can cover the query.
However, we see that the existing IX_SalesOrderDetail_ProductID index already covers
the join predicate on the ProductID column. Given that there are no other predicates on the query,
and we need three extra columns just for SELECT, we can add them to this index as INCLUDE
columns. The hypothesis is that if the SQL Database Engine uses a narrower index, it can optimize
I/O, which in turn has tangible effects on CPU usage as well. And given that the new columns are
not interfering with the key of the existing index, any other queries that need it won’t be too affected
and we should be able to address our current heavy hitter query. The index can be changed using the
following query example:

CREATE NONCLUSTERED INDEX IX_SalesOrderDetail_ProductID ON [Sales].
[SalesOrderDetail] (
 [ProductID] ASC
)
INCLUDE (
 [OrderQty],
 [UnitPrice],
 [UnitPriceDiscount]
) WITH DROP_EXISTING;

After creating the index, we execute the query again to get the following actual execution plan, using
the new index. Notice the plan no longer executes in parallel because it became cheap enough not to
exceed the Cost Threshold for Parallelism configuration. And because of the lower cost to access
data in both tables, Hash Match was replaced with Nested Loops, which is cheaper, and Sort has gone
now because both indexes are sorted on the required key order:

Tracking Performance History with Query Store348

Figure 10.21: Execution plan for the example query after the new index was created

The QueryTimeStats values for this plan reflect the lower resource usage: CPU time dropped from 514
ms to 265 ms (~49 percent less), and execution time dropped from 704 ms to 570 ms (20 percent less):

Figure 10.22: QueryTimeStats for the execution plan with the new index

And without parallelism, there are no more parallelism waits for this query. By cutting CPU usage in
half, we were successful in tuning this query. The next step would be to continue with the other heavy
hitters until the CPU is reduced to an acceptable level.

Fixing regressed queries
Parameters are fundamental drivers of the query optimization process. We discussed the topic of
parameter sensitivity, known as parameter sniffing, in the The importance of parameters section
in Chapter 1, Understanding Query Processing, and the Query plan properties of interest section in
Chapter 3, Exploring Query Execution Plans.

This brings us to the other main benefit of Query Store: tracking plan changes over time – in other
words, regressions from parameter-sensitive plans. With this exercise, we want to make sure the
volatility that can come with parameter-sensitive plans is addressed, and that the plan that is used
is the one that’s best for most uses, if not all. If successful, we will address the complaints we’ve been
getting that sometimes the application just slows down for a few minutes and then recovers.

To generate enough workload in our AdventureWorks database, again, we will use the
QueryStoreSimpleDemo.exe application, available in the Microsoft GitHub sample repository at
https://github.com/Microsoft/sql-server-samples/blob/master/samples/
features/query-store. When this executable is started, we are prompted to enter the SQL
Database Engine instance we want to connect to, and one of several sample workloads that are available,
as shown in the following screenshot. For now, we will use the S option.

https://github.com/Microsoft/sql-server-samples/blob/master/samples/features/query-store
https://github.com/Microsoft/sql-server-samples/blob/master/samples/features/query-store

Fixing regressed queries 349

Figure 10.23: Command window showing the QueryStoreSimpleDemo.exe application running

To have relevant data for our exercise, we leave the workload executing for about 15 to 20 minutes at
least – although less than that already produces visible results. Then, we can start to understand the
behavior of the workload over the AdventureWorks sample database. We can start by double-
clicking on the Queries With High Variation SSMS report, highlighted in the following screenshot:

Figure 10.24: SSMS Object Explorer showing the Queries With High Variation built-in Query Store report

Then, the report opens in a new window, as shown in the following screenshot, in which we changed
to the standard deviation (Std Dev) statistic:

Tracking Performance History with Query Store350

Figure 10.25: Queries With High Variation Query Store report in SSMS

Immediately we see that query ID 1 has two plans being tracked (top-right quadrant) with widely
different performance. Query ID 1 is the query with the widest variance between executions (top-left
quadrant) running in our SQL Server.

We can click on each plan (4 and 1) but we can also use Plan Comparison for the job. We discussed
this tool as a standalone in Chapter 9, Comparative Analysis of Query Plans, but it can also be used
from within Query Store. To do that, hold down the Shift key and click on both IDs in the Plan Id
legend; after they’re selected, as shown in the following screenshot, click the Plan Comparison button:

Figure 10.26: Top-right quadrant of the Queries With High Variation Query Store report showing the

plan summary for query 1 with the two Plan IDs selected and the Plan Comparison button highlighted

Fixing regressed queries 351

The comparison window appears as shown in the following screenshot:

Figure 10.27: Plan Comparison window showing the two selected Plan IDs

Notice that the only similarity between the plans is a Clustered Index Scan on the SalesOrderHeader
table. Everything else is different: the data reader on the SalesOrderDetail tables changes from
Clustered Index Scan in Plan ID 1 to Clustered Index Seek in Plan ID 4, which affects the type of
join. Plan ID 1 has a Merge Join that changes to Nested Loops on Plan ID 1. Looking at the compared
Properties window, we can see why the plans are different: the plans were compiled with different
parameters, so this is a case of parameter sensitivity.

Figure 10.28: Properties for the two plans from the Plan Comparison window

Tracking Performance History with Query Store352

And because we have ParentObjectId in the query plan, the following example tells us the queries
in the comparison are executed in the context of the usp_SalesFromDate stored procedure:

SELECT OBJECT_NAME(1913109906);

We have covered several techniques to deal with this scenario in the Query Plan Comparison section
of Chapter 9, Comparative Analysis of Query Plans, but in the meantime, the application is unstable.
This is where Query Store proves its worth again. We can select Plan ID 1, which is consistently better,
as seen in the report, and click the Force Plan button, as shown in the following screenshot:

Figure 10.29: Menu bar on the plan window of the Queries With High

Variation Query Store report highlighting the Force Plan button

With just one click, we stabilized the application by forcing the better plan, and minutes later, we
refreshed the report to see that Plan ID 4 is no longer used. Notice in the following screenshot that
the forced plan shows a checkmark to signal it’s been forced. Also notice that the Unforce Plan button
became available in case we ever need to let the query optimization process run again – for example,
if we applied one of the mitigation techniques by making code changes with a CREATE OR ALTER
PROCEDURE.

Figure 10.30: Plan summary for query 1 window with the forced Plan

ID selected and the Unforce Plan button highlighted

Features that rely on the Query Store 353

If we had to force several plans in our work to minimize application issues over time, it could be easy
to lose track of which plans are forced. That’s why SSMS also includes a Queries With Forced Plans
report, which looks like the following screenshot:

Figure 10.31: Queries With Forced Plans report in SSMS

This report will allow you to track all the queries that have plans forced by the Query Store.

Features that rely on the Query Store
When the QS was first introduced in SQL Server 2016, it was turned off by default to avoid potential
impact on production workloads, as Microsoft just didn’t know how it would behave with the millions
of workload permutations executing out in the wild. Over time, there have been numerous scalability
improvements, and better default settings were introduced in Azure and SQL Server 2019, both from
customer input and Microsoft Engineering’s own experience with the QS. This resulted in the ability
to have QS turned on by default for new databases, starting with SQL Server 2022.

Having the QS enabled by default is great for database professionals, but perhaps more importantly,
it becomes part of an entire feedback system that gives the SQL Database Engine rich information
about query performance. Some of that information can be used to ensure the Query Optimizer can
shortcut certain decisions, learn from past performance degradation patterns, and make queries more
efficient over time. In this section, we’re going to cover a few of these innovations that are available
in Azure SQL Database and SQL Server 2022.

Query Store for readable secondary replicas

With the advent of Always On availability group read-scaleout replicas, it’s become common to run
different workloads against read-only replicas of a database. However, the QS was only tracking
workloads executing on the primary replica. This means that the QS was essentially blind to the wealth
of data specific to read-only workloads, and users blind to the insights it could provide. With SQL
Server 2022, the QS can be enabled on secondary replicas. Query data is captured on the secondary,
shipped to the primary’s QS, and persisted there with the scope of the replica it applies to. It also means
that plan forcing becomes available for the scope of secondary replicas, including the ability to force
or unforce a plan for all replicas, or only for read-only replicas in an Availability Group.

Tracking Performance History with Query Store354

Query Store hinting

SQL Server 2022 introduces the ability to hint queries through the QS, which replaces plan guides as
a way to shape query plans without changing application code. Plan guides have always been a useful
but not easily managed nor easily implemented method to apply hints.

But why apply hints to queries in the Database Engine rather than source code? Query hints can be
used to enforce certain behaviors upon a given query when that behavior can’t be changed through
a query rewrite. There are scenarios where there’s no source code access to make changes to a query,
such as the case of a vendor application. Or there’s dynamically generated code via an object-relational
mapper (ORM). Therefore, the ability to still force certain behaviors at compile time or even at execution
time in a targeted manner is an invaluable method to mitigate some classes of performance issues.

With hints, we can limit the maximum degree of parallelism (MaxDOP) for specific queries, force a
Hash Match oin instead of a Nested Loops join, or limit the memory grant size for a bulk operation.

Because the QS is enabled by default for new databases in SQL Server 2022 and enabled for several
years now in Azure SQL Database, this feature is readily available for shaping query plans and behavior
without changing application code, with the improved manageability of the QS. Hints applied through
the QS hints are persisted, which means they survive restarts.

To use hints through the QS, we must find the query_id of the query to modify, execute the sp_
query_store_set_hints stored procedure with the query ID and new USE HINT query hint
string to apply to the query, and that’s it. The list of supported hints can be accessed using the sys.
dm_exec_valid_use_hints DMV.

Here’s an example of finding and setting a hint to limit the MaxDOP for a query referencing the
Sales.SalesOrderDetail table in AdventureWorks:

SELECT query_sql_text, q.query_id
FROM sys.query_store_query_text qt
INNER JOIN sys.query_store_query q ON qt.query_text_id = q.query_text_
id
WHERE query_sql_text like N'%FROM Sales.SalesOrderDetail%';
GO
EXEC sp_query_store_set_hints 46006, N'OPTION(MAXDOP 1)';

If I later need to also force a specific Query Optimization compatibility level for the same query and
keep the MAXDOP hint, then the full set of hints must be set for the query:

EXEC sp_query_store_set_hints 46006, N'OPTION(MAXDOP 1, USE
HINT(''QUERY_OPTIMIZER_COMPATIBILITY_LEVEL_120''))';

Features that rely on the Query Store 355

And removing all hints for the query is simple enough with this example:

EXEC sp_query_store_clear_hints 46006;

You can use the example queries to create a wrapper and automate QS hinting throughout your SQL
environment for well-known queries that you previously determined must be hinted.

Note
Query Store hints are also the visible implementation artifact of the CE Feedback feature, which
we discussed in Chapter 2, Mechanics of the Query Optimizer. CE Feedback uses documented
query hints to force a given CE model assumption when a regression is detected, and the SQL
Database Engine tests its applicability through a test-and-verify principle.

Parameter Sensitive Plan Optimization

We introduced the Parameter Sensitive Plan Optimization (PSPO) feature in Chapter 1. While
PSPO is not dependent on the QS for its common use cases, when QS is enabled, plan variants are
captured and have their own query_id. This means the QS is required to force a plan for a query
variant and to use hints for plan variants.

Automatic Plan Correction

Automatic Plan Correction (APC), previously named Automatic Plan Regression Correction
(APRC), was introduced in SQL Server 2017. APC automatically identifies query execution plans that
have regressed – for example, when CPU use for the query changed by orders of magnitude – and
fixes the regression by forcing the last known good plan, the plan that existed before the regression
occurred. This means that DBAs and database reliability engineers can avoid a middle-of-the-night
call about some query that regressed due to a plan change.

And what if you need to know when APC made some change while you were sleeping or otherwise
occupied? The list of detected plan choice regressions, and whether APC acted on them, can be
accessed using the sys.dm_db_tuning_recommendations DMV. While data in this DMV is
not persisted and, therefore, is not available after a restart, forced plans are persisted in the QS, which
means they survive restarts. So, in this scenario, you might not know why the plan was reverted, but
you can still see the various plans that exist for a given query_id and determine when the plan
change happened.

Note
The forcing mechanism is through the execution of the sp_query_store_force_plan
stored procedure, which can be used manually as well.

Tracking Performance History with Query Store356

APC can be enabled using T-SQL, as seen in the following example for the AdventureWorks
sample database:

USE [master]
GO
ALTER DATABASE [AdventureWorks2016]
SET AUTOMATIC_TUNING (FORCE_LAST_GOOD_PLAN = ON);

APC’s most common use case is the correction of a parameter-sensitive query scenario that originated
a plan flip: a recompilation leads to caching and reuse of a query plan that’s not deemed good for
most of the use cases of that parameterized query, causing a perceived regression. In this case, the
last known good plan is forced to fix the regression. Note that APC doesn’t negate PSPO though; it
merely changes the scope of its action to cover plan variants, as these are standalone queries for the
context of the Query Store.

Degree of parallelism feedback

The use of parallel processing is very useful for many queries, especially those reading large amounts of
data and doing different types of data aggregations or sorting. While there is a documented Parallelism
physical operator in showplan – the Exchange Iterator – internally in the SQL Database Engine,
parallelism is implemented as if it were two operators: producers that push data to consumers, and
consumers that may have to wait for data from producers. That is important to know because, with
perfect parallelism, all threads would read the same number of rows, and there should be no waits
between producer and consumer threads, as each thread produces its rowset.

However, in the real world, we can observe several parallelism waits, which occur when the Database
Engine is trying to synchronize the Exchange Iterator as it handles data streams (as stated in the product
documentation, it can “distribute streams, gather streams, and repartition streams logical operations”),
or getting a required buffer such as when fetching rows from an Index Scan.

Tip
Starting with SQL Server 2022 and in Azure SQL Database, CXPACKET and CXCONSUMER waits
are accrued by data reading operators only, such as Index Scan or Sort, whereas CXSYNC_PORT
and CXSYNC_CONSUMER are accrued specifically for Exchange Iterator synchronization tasks.

For example, for an Index Scan producing one million rows executing in parallel, when there are
four CPUs available, it is said the query is executing with a degree of parallelism (DOP) of four.
Each thread reading rows would be expected to read 250,000 rows, and if there is no blocking, finish
almost simultaneously.

Features that rely on the Query Store 357

Note
For any operator executing in parallel, the number of threads spawned is the same as DOP +
1: the threads reading their part of the rowset, plus the coordinating thread that is responsible
for coordinating the data stream from each individual thread doing the reads.

Therefore, the use of parallelism becomes inefficient when the imbalance between threads leads to
wait times that are so high that they offset the benefits of parallel execution. In other words, if 1 of the
4 threads actually reads 700,000 rows while each of the other threads only reads 100,000 rows, this
imbalance means that the coordinating thread (producer) has to wait for the longer running thread
to complete, accruing CXPACKET waits.

And so, it becomes easier to understand how producer waits are the ones that may require attention,
while consumer waits are inevitable as a passive consequence of longer-running producers. A leading
cause is inaccurate cardinality estimations, which can be observed in a query execution plan when the
number of estimated and actual rows processed has a significant difference. One of the most common
strategies to address excess CXPACKET waits if inaccurate cardinality estimations are present is to
update statistics. Otherwise, forcing a specific (lower) MaxDOP value through a query hint is the other
common approach. If inefficient parallelism is widespread in a given database workload, a database
engineer may be tempted to just reduce the MaxDOP server or database configuration, which affects
all workloads: your queries suffering from inefficient parallelism will likely improve, at the cost of
some analytical queries that would benefit from higher parallelism becoming less efficient.

Note
Before SQL Server 2019, the default value for MaxDOP is set to 0 in both Server and Database
configurations. This means using all available schedulers if a query is eligible for parallelism.
Starting with SQL Server 2019, the default MaxDOP is calculated at setup time based on available
processors and NUMA configuration and is set to 8 in Azure SQL Database.

Inefficient parallelism, where one size doesn’t fit all, is precisely the scenario where DOP Feedback
becomes a fundamental feature to ensure optimal parallelism for most queries. The goal of the feature
is to increase overall concurrency and reduce waits significantly, even if it slightly increases elapsed
time for a given query.

DOP Feedback will identify parallelism inefficiencies for repeating queries, based on CPU time, elapsed
time, and waits. If parallelism usage is deemed inefficient, DOP Feedback will lower DOP for the query
from whatever is the configured DOP for the next execution, down to a minimum of two, and verify
whether it helps. In its current implementation, DOP will be adjusted using a stepped approach where
the steps are multiples of 4, picking the next closest DOP from the current DOP. Verified feedback is
persisted in the QS, so the optimal DOP for a given query survives restarts.

Tracking Performance History with Query Store358

What if lowering the DOP does more harm? DOP Feedback will detect regressions and revert to the
last known good DOP for the query. If an application or user cancels a query, it will also be deemed
a regression.

So, is DOP Feedback using a QS hint? No, the MAXDOP query hint is not used because using query
hints would force a plan recompilation, but adjusting DOP through DOP Feedback doesn’t recompile
plans. It uses an internal mechanism not accessible or usable otherwise.

What if data distribution changes and the previously optimal DOP value for a query is no longer valid?
DOP Feedback’s current stable feedback is re-verified upon plan recompilation. It may be readjusted
back to a higher DOP value, or continue to be lowered from the last stable value, but the Server and
Database MaxDOP setting will always be upheld as the ceiling.

Optimized plan forcing

As we discussed in Chapter 1, Understanding Query Processing, query compilation and optimization
is a multi-phased process of quickly generating a “good-enough” query execution plan. The overall
query execution time always includes time spent in compilation, which can at times be time and
resource-consuming in terms of CPU and memory.

The SQL Database Engine caches query plans for reuse, which reduces much of the compilation
overhead for repeating queries. However, query plans can be evicted from the plan cache due to
restarts or memory pressure, which means subsequent calls to the same query will require a full new
compilation, meaning the benefit is no longer present.

Sometimes “compile storms” may happen, which are occasions when a SQL Database Engine is
restarted, and when application database calls resume, they cause numerous plans to be simultaneously
compiled within a short period of time. This concurrent compilation activity drives up CPU usage,
memory, and even compile blocking: all can impact query execution time.

With SQL Server 2022 and in Azure SQL Database, Optimized Plan Forcing (OPF) reduces compilation
overhead for repeating queries, although in its current version, it works only for queries forced through
the QS, either by the user or by APC.

After a plan is compiled and stored for a forced query, a compilation replay script (CRS) will persist
key compilation steps to shortcut a recompilation of that plan whenever needed, at a fraction of the
cost of a would-be full new compilation.

Summary 359

Note
The CRS is not user-visible. Also, OPF is compatible with Query Store hints and supports Query
Store secondary replicas (a preview feature).

While OPF doesn’t solve compile storms scenarios for SQL Server 2022 or in Azure SQL Database at
the time this book is written, the feature does show promise that compile storms may be solvable in
a future iteration of this feature.

Summary
This chapter covered the important topic of storing query performance statistics in the flight recorder,
which is the Query Store, which allows us to access query plans and their runtime statistics, along
with how they change over time. With what we’ve learned so far in all the previous chapters of this
book (especially in Chapter 3, Exploring Query Execution Plans, about what information lies inside
query plans), we can now more easily find resolutions for performance problems. We can easily
identify plans that must be tuned, or for quick mitigation, just return to a known good plan that had
been stored in Query Store. We also learned how the Query Store enables several helpful features that
allow the Query Optimizer to automatically detect and correct common query performance issues.

Finally, we covered how to use either system views or SSMS to uncover the highest resource-consuming
queries executing in our databases and help us quickly find and fix query performance issues that
are related to plan changes, which greatly simplifies query performance troubleshooting. But it also
provides performance stability across SQL Database Engine upgrades when following the recommended
database compatibility level upgrade process, which we will discuss in the Understanding where QTA
is needed section of Chapter 12, Managing Optimizer Changes.

In the next chapter of the book, we will investigate how to troubleshoot a different kind of query
performance issue for which the tools and methods we have covered so far may not be helpful:
long-running queries.

11
Troubleshooting Live Queries

During our career as a database professional, we likely encounter cases where a runaway query
takes hours to complete or doesn’t even complete by any reasonable time measurement. How do we
troubleshoot cases such as this?

A query execution plan can help provide a conclusive explanation of query performance issues.
But to get a query execution plan there is one requirement a long-running query can’t easily meet:
query completion.

If the query takes a long time to complete or never actually does, then how can we troubleshoot these
cases? And what happens if we take that production query back to our development server and it runs
fine? That means there is a set of conditions that can only be reproduced in the production server, be
that the size of the database, the data distribution statistics, or even the availability of resources such as
memory or CPU. Therefore, the ability to analyze a query execution plan while the query is executing
is something many SQL Server professionals have been requesting for a long time.

This chapter will introduce the Query Profiling Infrastructure that exposes real-time query execution
plans, which enable scenarios such as production systems troubleshooting. We will explore real-world
examples of how to leverage rich-UI tools for query performance troubleshooting: Live Query Statistics
as a standalone case, or as part of the Activity Monitor functionality of SQL Server Management
Studio (SSMS).

In this chapter, we’re going to cover the following main topics:

• Using Live Query Statistics

• Understanding the need for lightweight profiling

• Activity Monitor gets new life

Troubleshooting Live Queries362

Technical requirements
The examples used in this chapter are designed for use on SQL Server 2022 and Azure SQL Database,
but they should work on any version of SQL Server, 2012 or later. The Developer Edition of SQL Server
is free for development environments and can be used to run all the code samples. There is also a free
tier of Azure SQL Database that you can use for testing at https://aka.ms/freedb.

You will need the sample databases AdventureWorks2016_EXT (referred to as AdventureWorks)
and AdventureWorksDW2016_EXT (referred to as AdventureWorksDW), which can be found
on GitHub at https://github.com/Microsoft/sql-server-samples/releases/
tag/adventureworks. Code samples for this chapter can also be found on GitHub at https://
github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/
main/ch11.

Using Live Query Statistics
To meet the need to analyze a query execution plan while the query is executing, Live Query Statistics
(LQS) was introduced with the SQL Server 2016 release of SSMS, adding rich visuals by animating
the in-flight execution plan to allow more immediate and precise identification of hot spots in a plan
during query execution.

To see LQS in action, open a new query window in SSMS, in which we can use the following example
query from Chapter 2, Mechanics of the Query Optimizer. This could be a previously identified long-
running query that was created to troubleshoot and tune:

SELECT e.[BusinessEntityID], p.[Title], p.[FirstName],
 p.[MiddleName], p.[LastName], p.[Suffix], e.[JobTitle],
 pp.[PhoneNumber], pnt.[Name] AS [PhoneNumberType],
 ea.[EmailAddress], p.[EmailPromotion], a.[AddressLine1],
 a.[AddressLine2], a.[City], sp.[Name] AS [StateProvinceName],
 a.[PostalCode], cr.[Name] AS [CountryRegionName],
p.[AdditionalContactInfo]
FROM [HumanResources].[Employee] AS e
INNER JOIN [Person].[Person] AS p
 ON RTRIM(LTRIM(p.[BusinessEntityID])) = RTRIM(LTRIM(e.
[BusinessEntityID]))
INNER JOIN [Person].[BusinessEntityAddress] AS bea
 ON RTRIM(LTRIM(bea.[BusinessEntityID])) = RTRIM(LTRIM(e.
[BusinessEntityID]))
INNER JOIN [Person].[Address] AS a
 ON RTRIM(LTRIM(a.[AddressID])) = RTRIM(LTRIM(bea.[AddressID]))
INNER JOIN [Person].[StateProvince] AS sp
 ON RTRIM(LTRIM(sp.[StateProvinceID])) = RTRIM(LTRIM(a.
[StateProvinceID]))
INNER JOIN [Person].[CountryRegion] AS cr

https://aka.ms/freedb
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch11
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch11
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch11

Using Live Query Statistics 363

 ON RTRIM(LTRIM(cr.[CountryRegionCode])) = RTRIM(LTRIM(sp.
[CountryRegionCode]))
LEFT OUTER JOIN [Person].[PersonPhone] AS pp
 ON RTRIM(LTRIM(pp.BusinessEntityID)) = RTRIM(LTRIM(p.
[BusinessEntityID]))
LEFT OUTER JOIN [Person].[PhoneNumberType] AS pnt
 ON RTRIM(LTRIM(pp.[PhoneNumberTypeID])) = RTRIM(LTRIM(pnt.
[PhoneNumberTypeID]))
LEFT OUTER JOIN [Person].[EmailAddress] AS ea
 ON RTRIM(LTRIM(p.[BusinessEntityID])) = RTRIM(LTRIM(ea.
[BusinessEntityID]));

To see the query progress for the query while it executes on the AdventureWorks sample database,
click on the Include Live Query Statistics button, as shown in the following screenshot:

Figure 11.1: SQL Server Management Studio toolbar with the

Include Live Query Statistics button highlighted

When the query execution starts, the Live Query Statistics tab appears, showing the in-flight query
execution plan.

As the query execution progresses in the following plan, we can see the following:

1. Solid lines connecting two operators, indicating areas of the plan that are complete.

2. Dotted and animated lines connecting two operators, indicating areas of the plan that are
still in flight.

3. Operators with their elapsed time stopped, indicating they have finished processing rows.

4. Operators with their elapsed time continuing to tick, indicating they are still processing rows.

5. The overall query elapsed time.

6. The estimated query progress displayed as a percentage. This is an on-the-fly calculation based
on the estimated rows versus the actual rows that have already been processed. This calculation
is just an indicator that can be accurate enough if the plan doesn’t have severe skew between
the estimated and actual number of rows. However, for severely skewed estimations, this can
be inaccurate, and will not show the expected linear progress.

Troubleshooting Live Queries364

Figure 11.2: Live Query Statistics window for the example query

For all query plan operators, we can also see the actual number of rows processed versus the estimated
number of rows, together with the percentage of actual rows versus estimated rows.

For example, the Index Scan of the previous plan reads 19,972 of 19,972 rows (100%), which means that
estimations were completely accurate compared to the actual rows processed by that operator. But for the
Clustered Index Scan, we see it is currently in progress, and reading row 89 of 1,371,849,433,900,000,256
estimated rows (yes, over one quintillion rows). Given that the PhoneNumberType table has only
290 rows and the scan happens once, the misestimation is obvious.

Tip
Even though LQS was released with SQL Server 2016’s SSMS, we can use any modern version of
SSMS, such as version 17 or later, to connect to any SQL Server instance and use LQS, starting
with SQL Server 2014.

LQS is an SSMS UI feature that provides visualization over data stored in the sys.dm_exec_query_
profiles DMV. The following query is an example that allows programmatic access to the same
information SSMS rendered as a graphical showplan. Note the long-running query was executing in
session ID 97, therefore the predicate on session_id = 97.

SELECT node_id, physical_operator_name, SUM(row_count) AS row_count,
 SUM(estimate_row_count) AS estimate_row_count,
 CAST(SUM(row_count)*100 AS float) /
SUM(estimate_row_count) AS operator_progress
FROM sys.dm_exec_query_profiles

Using Live Query Statistics 365

WHERE session_id = 97
GROUP BY node_id, physical_operator_name
ORDER BY node_id;

The result set for the query shows the following information:

• Each individual operator in the plan (node IDs) that processes rows of data. This excludes
operators such as Compute Scalar. Note that node ID 0 corresponds to the top left operator
(Merge Join) just before the root node (SELECT) in the graphical query plan, node ID 1 is
the Sort at the outer side of the Merge join, node ID 2 is the NonClustered Index Scan leading
up to that Sort, node ID 3 is the Nested Loops join at the inner side of the Merge Join, and so
on and so forth.

• A snapshot of the current row count for the moment the DMV was invoked.

• The estimated row count for each operator.

• A calculation that provides the current operator progress.

The following screenshot shows the resultset for the sys.dm_exec_query_profiles example:

Figure 11.3: Resultset for the sys.dm_exec_query_profiles example query

Troubleshooting Live Queries366

In summary, using the LQS feature is extremely useful for a scenario where we have a previously
identified query that runs with poor performance in a production very large database (VLDB) but
has no issues running in a development machine with a smaller dataset. Often, restoring a VLDB
outside a production environment is a non-starter, and so troubleshooting in production is the only
viable option.

Understanding the need for lightweight profiling
If you are asking yourself why you would want to know about an obscure Database Engine component
named Query Profiling Infrastructure, then read on. Not many database professionals know it by
name, but most have dealt with it when they need to troubleshoot query performance issues in a
production environment. When a SQL Server performance issue occurs, one of the first requirements
is to understand which queries are being executed and how system resources are being used, and one
of the most important artifacts anyone can use to find out more about queries that are executing is
query plans.

Analyzing a query plan, also known as an estimated execution plan, means that we’re only looking
at what SQL Server estimated should be a good-enough plan to return the intended results efficiently.
But since an estimated plan is missing runtime data for analysis, it can’t truly provide a conclusive
explanation for many query performance issues. Recall what we covered about the query compilation
and optimization process in Chapter 1, Understanding Query Processing, and more specifically how
SQL Server estimates work, as discussed in Chapter 2, Mechanics of the Query Optimizer: estimations
drive optimizer choices, and when these estimations are wrong, then the generated plans are inefficient.

So, what is needed is a query execution plan, also known as an actual execution plan. These allow
us to see runtime data that is crucial to uncover hot spots in the plan, such as the actual number of
rows processed by a query operator.

This runtime information has been accessible for many years and many different versions of SQL
Server, but at a very high cost. Collecting runtime data on queries adds overhead to the query execution
itself – the SQL Server team measured a 75 percent overhead with a TPC-C-like workload – which
is why this information is not readily available all the time.

Note
TPC-C is a standard Online Transaction Processing (OLTP) workload that is used to benchmark
database systems. You can find out more about TPC-C at http://www.tpc.org/tpcc.

The high cost of this data collection is grounded in the need to enable the standard version of the
Query Profiling Infrastructure, the Standard Query Execution Statistics Profile Infrastructure, or
Standard Profiling for short, which must be enabled to collect information about query execution
plans, namely the number of actual rows flowing through operators, as well as CPU and I/O usage.
Standard Profiling can be enabled globally to collect information for all queries, or for a single session
and query.

http://www.tpc.org/tpcc

Understanding the need for lightweight profiling 367

To collect query execution plans for a single query using Standard Profiling, the following methods
are available:

• Use SET STATISTICS XML ON or SET STATISTICS PROFILE ON before a T-SQL
query is executed – we covered these commands in the Accessing a query plan section of
Chapter 4, Exploring Query Execution Plans

• Live Query Statistics – this feature was covered in the previous section of this chapter

To collect query execution plans for all queries using Standard Profiling, one of the following methods
can be used:

• Using the query_post_execution_showplan Extended Event (XEvent or XE) in an XEvent
trace. We discussed XEvents in Chapter 9, Building XEvent Profiler Traces.

• Using the Showplan XML trace event in SQL Trace and SQL Server Profiler. However, these
methods are deprecated and should not be used in SQL Server 2012 or newer versions, where
the more complete and less intrusive XEvents are available.

SQL Server 2014 SP2 and SQL Server 2016 introduced a lightweight version of the Query Profiling
Infrastructure that exists side-by-side with Standard Profiling, the new Lightweight Query Execution
Statistics Profiling Infrastructure, or Lightweight Profiling (LWP) for short. LWP has evolved
over time to hold true to its name and concentrate on the fundamental task of democratizing access
to the equivalent of an actual execution plan – which is an essential artifact for query performance
troubleshooting. The SQL Server team measured a 1.5 to 2 percent overhead with a TPC-C-like
workload – a significant improvement from Standard Profiling. Lightweight Profiling can also be
enabled globally to collect information for all queries, or for a single session and query.

To collect query execution plans for a single query using Lightweight Profiling, use the QUERY_
PLAN_PROFILE query hint in conjunction with a trace that captures the query_plan_profile
XEvent. We will show how this XEvent can be used in more detail later in this section.

Note
Clicking the Live Query Statistics button in SSMS enables Standard Profiling for that single
query, irrespective of whether Lightweight Profiling is enabled globally and already populating
the sys.dm_exec_query_profiles DMV. In this case, the DMV is populated using
Standard Profiling for that query only, and Lightweight Profiling is used for all other queries.

Troubleshooting Live Queries368

To collect query execution plans for all queries using Lightweight Profiling, one of the following
methods can be used:

• Enable trace flag 7412 globally in SQL Server 2016 and SQL Server 2017. If our SQL Server
instance is not already CPU-bound and can withstand the 1.5-to-2 percent overhead as a
trade-off to having always available runtime data for every query in every session, then it is a
recommended best practice to enable this trace flag at startup. To enable the trace flag globally,
but not at startup, use the following T-SQL command: DBCC TRACEON (7412, -1).
When Lightweight Profiling is enabled globally, the sys.dm_exec_query_profiles
DMV is populated for all queries that are being executed.

• Using the query_thread_profile or query_post_execution_plan_profile
XEvents in an XEvent trace. We will discuss how to use these XEvents in more detail later in
this section.

Starting with SQL Server 2019, LWP is enabled by default, and trace flag 7412 is not needed. However,
LWP can be disabled at the database level setting the database scoped configuration LIGHTWEIGHT_
QUERY_PROFILING to OFF using the following T-SQL command: ALTER DATABASE SCOPED
CONFIGURATION SET LIGHTWEIGHT_QUERY_PROFILING = OFF;

So, what is available in a query execution plan that is obtained through LWP? How is that plan different
from one obtained using Standard Profiling? Why is the term “equivalent of an actual execution plan”
being used here? These are all pertinent questions that we will answer in this chapter.

From SQL Server 2014 through SQL Server 2017, the noticeable difference between Standard Profiling
and Lightweight Profiling is that LWP did not collect per-operator CPU runtime information because
tracking CPU usage across queries is one of the aspects that added so much overhead to Standard
Profiling. Per-operator CPU usage isn’t necessarily fundamental information when we are troubleshooting
a query performance issue. For these SQL Server versions, LWP still collects per-operator I/O usage
information and actual row counts – this is the important information. At the query level, LWP still
collects information about overall CPU and elapsed time, memory grant usage, runtime warnings,
and actual Degree of Parallelism (DOP).

Note
If both Query Profiling Infrastructures are enabled simultaneously, then Standard Profiling takes
precedence over Lightweight Profiling, for the scope in which each is enabled. For example, if
LWP is enabled globally, but then we use SET STATISTICS XML ON for a specific query,
that query’s execution plan will use Standard Profiling instead.

Starting with SQL Server 2019, LWP was revised to specifically exclude per-operator I/O runtime
information by default – only per-operator row counts are reported. This was done after finding that
in very extreme cases, even tracking I/O could introduce overhead that would make LWP not stay
true to its principle of being lightweight. LWP still collects the same query-level information as it did
in previous versions.

Understanding the need for lightweight profiling 369

Tip
If we require per-operator I/O information to be collected with LWP and have tested its impact
on our SQL Server, we can enable trace flag 7415 to restore per-operator I/O metrics as available
in SQL Server 2016 and SQL Server 2017.

Diagnostics available with Lightweight Profiling

Because it became cheaper to collect information about query execution plans with LWP, this allowed
several diagnostics artifacts to be added to SQL Server: XEvents and Dynamic Management Functions
(DMFs). We will discuss all these new diagnostics and how to use them for the remainder of this section.

The query_thread_profile XEvent

SQL Server 2016 Service Pack 1 introduced a new XEvent named query_thread_profile.
Unlike the query_post_execution_showplan XEvent that uses only Standard Profiling,
query_thread_profile uses Lightweight Profiling by default. Also, unlike query_post_
execution_showplan, query_thread_profile doesn’t output a query execution plan as
a single showplan XML file – it outputs one event per operator and thread with the same execution
statistics that are expected in a query execution plan. This means that it can be quite verbose, but since
it’s based on Lightweight Profiling rather than Standard Profiling, it can be used for a longer period
of time than was possible with query_post_execution_showplan.

The following example shows a session that uses this XEvent:

CREATE EVENT SESSION [PerfStats_Node] ON SERVER
ADD EVENT sqlserver.query_thread_profile(
 ACTION(sqlos.scheduler_id, sqlserver.database_id, sqlserver.is_
system,
sqlserver.plan_handle, sqlserver.query_hash_signed, sqlserver.query_
plan_hash_signed,
sqlserver.server_instance_name,sqlserver.session_id, sqlserver.
session_nt_username, sqlserver.sql_text)
)
 ADD TARGET package0.event_file(
 SET filename=N'C:\Temp\PerfStats_Node.xel',
max_file_size=(50), max_rollover_files=(2)
)
WITH (MAX_MEMORY=4096 KB, EVENT_RETENTION_MODE=ALLOW_SINGLE_EVENT_
LOSS,
MAX_DISPATCH_LATENCY=30 SECONDS, MAX_EVENT_SIZE=0 KB, MEMORY_
PARTITION_MODE=NONE,
 TRACK_CAUSALITY=OFF,STARTUP_STATE=OFF);

Troubleshooting Live Queries370

To see the output this XEvent produces, execute the following query in the AdventureWorks
sample database:

ALTER EVENT SESSION [PerfStats_Node] ON SERVER STATE = start;
GO
SELECT COUNT(*)
FROM Sales.SalesOrderDetail AS sod
INNER JOIN Sales.SalesOrderHeader AS soh ON soh.SalesOrderID = sod.
SalesOrderID
GROUP BY soh.Status;
GO
ALTER EVENT SESSION [PerfStats_Node] ON SERVER STATE = stop;
GO

The resulting file can be opened using SSMS as seen in the following screenshot. Note that the same
XEvent session and query were executed in SQL Server 2017 and SQL Server 2019 for comparison
between the versions:

Figure 11.4: Example query_thread_profile xEvent

Understanding the need for lightweight profiling 371

Note
The examples in this chapter compare SQL Server 2017 with SQL Server 2019 as this is when
the relevant Lightweight Profiling changes were made. SQL Server 2022 has some additional
fields, such as actual_page_server_ra_reads, actual_page_server_reads,
and several hpc_* fields. These new event fields reference Azure SQL Database Hyperscale
and HPC architectures are not relevant for the discussions in this chapter, so we have elected
to keep the SQL Server 2019 examples.

Notice that for one single query execution, this XEvent fired four times, once for each operator that
processes data in the query plan. Let’s focus on the last XEvent fired for this session. In it, we can find
the following information:

• Runtime data that includes the number of actual rows read by this operator (node ID) that matches
the RunTimeCountersPerThread showplan element we discussed in the Operator-level
properties section of Chapter 4, Exploring Query Execution Plans. Notice that the CPU time is
zero because LWP doesn’t collect per-operator CPU metrics. As expected in the SQL Server
2019 example, the per-operator I/O metrics are also not populated.

• The io_reported action indicates whether I/O is reported in the XEvent or not. As expected, it’s
True for SQL Server 2014 through SQL Server 2017 and False starting with SQL Server 2019.

• The current node ID in this case is 4. This information will be used to map this node ID when
we look at a graphical query plan.

• As mentioned, this XEvent fires once per operator and thread. In this example trace, we only
have one XEvent per node ID, and each node ID shows a thread ID zero. When an operator
only fires one XEvent, this thread ID will always be zero, and this means the operator executed
in serial, meaning on a single scheduler. If an operator executes in parallel, for example, with a
DOP of 4, then five such XEvents are fired for a single operator: one for the coordinator thread
and one per each of the four child threads.

• The query plan hash that is needed to retrieve the query plan from the cache is useful for
mapping the text-only XEvent data to a graphical query plan.

Tip
Starting with SQL Server 2014 SP2 and SQL Server 2016, use the query_hash_signed
and query_plan_hash_signed actions instead of the query_hash and query_
plan_hash actions to correlate data from XEvent collections with DMVs such as sys.
dm_exec_requests and sys.dm_exec_query_stats. The query_hash and
query_plan_hash actions are not the same data types as the respective columns in the
DMVs, which doesn’t allow the expected correlation.

Troubleshooting Live Queries372

The node IDs can be searched in the graphical execution plan so we can get more clarity on all the
operator types in this plan. We can use the query plan hash to get the graphical plan from the cache
using the following query in SSMS:

SELECT qp.query_plan
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp
WHERE CAST(qs.query_plan_hash AS BIGINT) = -4407577682464253461;

This returns the following result set:

Figure 11.5: Results of the example query showing a link to the graphical query execution plan

Clicking on the link in the results tab opens the graphical plan, and now it’s time to start mapping
the XEvent session runtime information with the cached plan. To do this, we use the Node Search
feature in SSMS. Right-click anywhere in the plan and click on Find Node:

Figure 11.6: Graphical query plan retrieved by the example query

This feature allows me to search for any property that exists in the showplan XML file, as shown in
the following screenshot:

Understanding the need for lightweight profiling 373

Figure 11.7: The Node Search feature in SSMS

Searching for NodeId = 4 immediately focuses on the Non-Clustered Index Scan that represents
node ID 4 in the following query plan:

Figure 11.8: Results of the node search showing the Index Scan (NodeId = 4) highlighted

Correlating this with the data in the XEvent, I now know this Index Scan read 121,317 rows, in 1,266
logical reads, and 1,375 read-aheads. This XEvent is very useful for collecting runtime query data at
scale, which may be worth the time-consuming task of doing this correlation exercise.

Troubleshooting Live Queries374

The query_plan_profile XEvent

SQL Server 2016 SP2 CU3 and SQL Server 2017 CU11 introduced a new XEvent named query_
plan_profile. This XEvent outputs the equivalent of a query execution plan like the query_
post_execution_showplan XEvent. Unlike the query_post_execution_showplan
Xevent, which uses Standard Profiling, query_plan_profile uses Lightweight Profiling by default.

The query_plan_profile XEvent allows a very targeted plan collection that can be used for a
longer period of time to gather data for a specific query execution and doesn’t require any object or
statement filtering in the XEvent session. This is because the XEvent only fires for a query or queries
that are using the USE HINT ('QUERY_PLAN_PROFILE') hint. The following is an example
session that uses this XEvent:

CREATE EVENT SESSION [PerfStats_LWP_Plan_Single] ON SERVER
ADD EVENT sqlserver.query_plan_profile(
 ACTION(sqlos.scheduler_id, sqlserver.database_id, sqlserver.is_
system,
sqlserver.plan_handle, sqlserver.query_hash_signed, sqlserver.query_
plan_hash_signed,
sqlserver.server_instance_name,sqlserver.session_id, sqlserver.
session_nt_username, sqlserver.sql_text)
)
 ADD TARGET package0.event_file(
 SET filename=N'C:\Temp\PerfStats_LWP_Plan_Single.xel',
max_file_size=(50), max_rollover_files=(2)
)
WITH (MAX_MEMORY=4096 KB, EVENT_RETENTION_MODE=ALLOW_SINGLE_EVENT_
LOSS,
MAX_DISPATCH_LATENCY=30 SECONDS, MAX_EVENT_SIZE=0 KB, MEMORY_
PARTITION_MODE=NONE, TRACK_CAUSALITY=OFF,STARTUP_STATE=OFF);

To see the output this XEvent produces, we need to set up our example. Creating the following stored
procedure in the AdventureWorks sample database allows us to later use this XEvent as we would
probably do in a production environment:

CREATE OR ALTER PROCEDURE [Sales].[CountSalesOrderByStatus]
AS
SELECT COUNT(*)
FROM Sales.SalesOrderDetail AS sod

Understanding the need for lightweight profiling 375

INNER JOIN Sales.SalesOrderHeader AS soh
 ON soh.SalesOrderID = sod.SalesOrderID
GROUP BY soh.Status;

In a production system, most likely we will not be able to alter the existing stored procedure to add the
required hint. The same would happen if a query we want to track is generated by an application and
we can’t change the query at its origin. The solution is to use a plan guide to add the hint, as shown in
the following example created for the Sales.CountSalesOrderByStatus stored procedure:

EXEC sp_create_plan_guide
@name = N'Guide1',
@stmt = 'SELECT COUNT(*)
FROM Sales.SalesOrderDetail AS sod
INNER JOIN Sales.SalesOrderHeader AS soh
 ON soh.SalesOrderID = sod.SalesOrderID
GROUP BY soh.Status;',
@type = N'OBJECT',
@module_or_batch = N'Sales.CountSalesOrderByStatus',
@params = NULL,
@hints = N'OPTION (USE HINT (''QUERY_PLAN_PROFILE''))';

Now we can execute the following example query in the AdventureWorks sample database:

ALTER EVENT SESSION [PerfStats_LWP_Plan_Single] ON SERVER STATE =
start;
GO
EXEC Sales.CountSalesOrderByStatus;
GO
ALTER EVENT SESSION [PerfStats_LWP_Plan_Single] ON SERVER STATE =
stop;
GO

The resulting file can be opened using SSMS, as shown in the following screenshot:

Troubleshooting Live Queries376

Figure 11.9: Example of the query_plan_profile xEvent

The XEvent contains runtime data for the overall query, including the duration in microseconds,
memory grant information, and the actual DOP that was used: 1, meaning the query executed in serial.

To see the plan itself, click on the Query Plan tab. Note that the same XEvent session and query was
executed in SQL Server 2017 and SQL Server 2019 for comparison between the versions:

Understanding the need for lightweight profiling 377

Figure 11.10: Graphical query plans accessed via the Query Plan tab within the xEvent viewer

Notice that the plans don’t have any reference to the statement text that was executed: this is already
present in the XEvent itself, and so this information can be removed from the captured plan to make
the collection more lightweight. Furthermore, the SQL Server 2019 plan contains one extra operator –
the Cost root node – which has information that is usually found in a root node of a query execution
plan, which was discussed in the Query plan properties of interest section in Chapter 3, Exploring
Query Execution Plans.

When we look at the properties for node ID 4 – the Non-Clustered Index Scan – they include the
number of actual rows read by this operator (node ID), which can also be seen below the operator
icon as the number of actual rows versus the number of estimated rows that flowed through the
operator (121,317 of 12,1317). However, in the SQL Server 2019 example we see the I/O metrics are
not present because LWP in SQL Server 2019 doesn’t collect I/O information by default, as shown in
the following screenshot:

Troubleshooting Live Queries378

Figure 11.11: Properties window for the Non-Clustered Index Scan in the example query plan

The query_post_execution_plan_profile XEvent

SQL Server 2017 Cumulative Update 14 and SQL Server 2019 introduced a new XEvent named
query_post_execution_profile that can be used to collect the equivalent of an actual
execution plan for all queries, much like the query_post_execution_showplan XEvent.
Unlike the query_plan_profile XEvent, query_post_execution_profile is not
bound to a query hint, but it also uses Lightweight Profiling by default. The following is an example
session that uses this XEvent:

CREATE EVENT SESSION [PerfStats_LWP_Plan_All] ON SERVER
ADD EVENT sqlserver.query_post_execution_plan_profile(
 ACTION(sqlos.scheduler_id, sqlserver.database_id, sqlserver.is_
system,
sqlserver.plan_handle, sqlserver.query_hash_signed, sqlserver.query_
plan_hash_signed,

Understanding the need for lightweight profiling 379

sqlserver.server_instance_name,sqlserver.session_id, sqlserver.
session_nt_username, sqlserver.sql_text)
)
 ADD TARGET package0.event_file(
 SET filename=N'C:\Temp\PerfStats_LWP_Plan_All.xel',
max_file_size=(50), max_rollover_files=(2)
)
WITH (MAX_MEMORY=4096 KB, EVENT_RETENTION_MODE=ALLOW_SINGLE_EVENT_
LOSS,
MAX_DISPATCH_LATENCY=30 SECONDS, MAX_EVENT_SIZE=0 KB, MEMORY_
PARTITION_MODE=NONE,
 TRACK_CAUSALITY=OFF,STARTUP_STATE=OFF);

To see the output this XEvent produces, execute the following example query in the AdventureWorks
sample database:

ALTER EVENT SESSION [PerfStats_LWP_Plan_All] ON SERVER STATE = start;
GO
SELECT COUNT(*)
FROM Sales.SalesOrderDetail AS sod
INNER JOIN Sales.SalesOrderHeader AS soh
 ON soh.SalesOrderID = sod.SalesOrderID
GROUP BY soh.Status;
GO
ALTER EVENT SESSION [PerfStats_LWP_Plan_All] ON SERVER STATE = stop;
GO

The resulting file can be opened using SSMS, as shown in the following screenshot:

Troubleshooting Live Queries380

Figure 11.12: XEvent viewer showing the query_post_execution_plan_profile xEvent

The XEvent contains the same runtime data we had observed for the query_plan_profile
XEvent. This makes sense because these XEvents are very close implementations, minus the binding
to a query hint on query_plan_profile. Therefore, as expected when we click in the Query
Plan tab, the observations for SQL Server 2017 and SQL Server 2019 query execution plans are also
the same as in the previous chapter for the query_plan_profile XEvent.

The sys.dm_exec_query_statistics_xml DMF

SQL Server 2016 SP1 introduced a new DMF named sys.dm_exec_query_statistics_xml
that uses Lightweight Profiling by default, but also works if Standard Profiling is enabled. This DMF
outputs the query execution plan as a snapshot of the current in-flight request. As such, this query
execution plan will have transient runtime statistics captured at the moment the DMF was invoked.

Understanding the need for lightweight profiling 381

The ability to programmatically access the query execution plan for any running request is a leap
forward for scenarios where we must troubleshoot a long-running query. In this case, we can use this
DMF, or Live Query Statistics – which we discussed in the first section of this chapter.

Let’s look at a practical example of using this new DMF. The following example was used in Chapter 2,
Mechanics of the Query Optimizer, and was saved into a file named ProblemQuery.sql:

SELECT e.[BusinessEntityID], p.[Title], p.[FirstName],
 p.[MiddleName], p.[LastName], p.[Suffix], e.[JobTitle],
 pp.[PhoneNumber], pnt.[Name] AS [PhoneNumberType],
 ea.[EmailAddress], p.[EmailPromotion], a.[AddressLine1],
 a.[AddressLine2], a.[City], sp.[Name] AS [StateProvinceName],
 a.[PostalCode], cr.[Name] AS [CountryRegionName],
p.[AdditionalContactInfo]
FROM [HumanResources].[Employee] AS e
INNER JOIN [Person].[Person] AS p
 ON RTRIM(LTRIM(p.[BusinessEntityID])) = RTRIM(LTRIM(e.
[BusinessEntityID]))
INNER JOIN [Person].[BusinessEntityAddress] AS bea
 ON RTRIM(LTRIM(bea.[BusinessEntityID])) = RTRIM(LTRIM(e.
[BusinessEntityID]))
INNER JOIN [Person].[Address] AS a
 ON RTRIM(LTRIM(a.[AddressID])) = RTRIM(LTRIM(bea.[AddressID]))
INNER JOIN [Person].[StateProvince] AS sp
 ON RTRIM(LTRIM(sp.[StateProvinceID])) = RTRIM(LTRIM(a.
[StateProvinceID]))
INNER JOIN [Person].[CountryRegion] AS cr
 ON RTRIM(LTRIM(cr.[CountryRegionCode])) = RTRIM(LTRIM(sp.
[CountryRegionCode]))
LEFT OUTER JOIN [Person].[PersonPhone] AS pp
 ON RTRIM(LTRIM(pp.BusinessEntityID)) = RTRIM(LTRIM(p.
[BusinessEntityID]))
LEFT OUTER JOIN [Person].[PhoneNumberType] AS pnt
 ON RTRIM(LTRIM(pp.[PhoneNumberTypeID])) = RTRIM(LTRIM(pnt.
[PhoneNumberTypeID]))
LEFT OUTER JOIN [Person].[EmailAddress] AS ea
 ON RTRIM(LTRIM(p.[BusinessEntityID])) = RTRIM(LTRIM(ea.
[BusinessEntityID]));

We can use the ostress utility and simulate a client application executing the same long-running
query over 10 concurrent connections, as seen in the following command:

ostress.exe -S<my_server_name> -E -dAdventureWorks -iProblemQuery.sql
-n10 -r1000

Troubleshooting Live Queries382

Note
ostress is a free command line tool that is part of the Replay Markup Language (RML)
utilities for SQL Server. This tool can be used to simulate the effects of stressing a SQL Server
instance by using ad hoc queries or .sql script files.

While the workload is executing, we can join sys.dm_exec_query_statistics_xml with
other DMVs, such as sys.dm_exec_requests, sys.dm_exec_sessions, and sys.
dm_exec_connections. The following query uses the sys.dm_exec_requests DMV as a
starting point, since I’m looking to get the current state of the execution plan for an in-flight request:

SELECT er.session_id, er.start_time, er.status, er.database_id,
 er.wait_type, er.last_wait_type, er.cpu_time, er.total_elapsed_
time,
 er.logical_reads, er.granted_query_memory, er.dop,
 st.text, qsx.query_plan
FROM sys.dm_exec_requests AS er
CROSS APPLY sys.dm_exec_sql_text(plan_handle) AS st
CROSS APPLY sys.dm_exec_query_statistics_xml(session_id) AS qsx;

This query returns the following results:

Figure 11.13: Results of the example DMV query

Each row is an in-flight request. To see a snapshot of the ongoing query execution plan, click the link
in the query_plan column:

Understanding the need for lightweight profiling 383

Figure 11.14: Graphical query plan as accessed through the example DMV query

If we zoom into the bottom right quadrant of the query execution plan, as shown in the following
screenshot, we see some slow progress in building two Table Spools. We discussed Spools in in the
Query plan operators of interest section of Chapter 3, Exploring Query Execution Plans, and the focus of
analysis should be this section of the plan we made in the Using live query statistics section of this chapter.

Figure 11.15: Zoomed in view of the section of the query plan highlighted in Figure 11.14

Troubleshooting Live Queries384

Tip
In the GitHub Tiger Toolbox (http://aka.ms/tigertoolbox), we can find a comprehensive
script that can quickly help us diagnose performance issues with in-flight requests and blocking
scenarios (http://aka.ms/uspWhatsUp). This script uses a combination of DMVs that
includes sys.dm_exec_query_statistics_xml.

The sys.dm_exec_query_plan_stats DMF

SQL Server 2019 introduced a new DMF named sys.dm_exec_query_plan_stats that uses
Lightweight Profiling by default, and like the DMF in the previous section, also works if Standard
Profiling is enabled. This DMF outputs the last known equivalent of a query execution plan for any given
query whose query plan can still be found in the plan cache. In other words, every data professional
can now have the last actual execution plan always available for any query.

Note
This DMF only maintains a subset of what is available through XEvents using Lightweight
Profiling. The available information for plans accessed through this DMF are operator-level
row count, spill warnings (without I/O detail), and query-level CPU time and elapsed time.
Wait statistics and operator-level I/O statistics are not included due to the potential overhead.

There are two methods to enable this DMF to be populated:

• Enable trace flag 2451 (at the session level or globally by adding the -1 parameter) using the
following T-SQL command:

DBCC TRACEON(2451, -1);

• Set the database scoped configuration LAST_QUERY_PLAN_STATS to ON using the following
T-SQL command:

ALTER DATABASE SCOPED CONFIGURATION SET LAST_QUERY_PLAN_STATS =
ON;

The concept of always having the last known query execution plan available is a game-changer for
troubleshooting just-in-time scenarios where a query’s performance has suddenly regressed, and we
are the database professional that gets a call informing us that the application has poor performance
as a result and that we must provide root-cause analysis.

If it’s a long-running query, then we can use Live Query Statistics or the DMF in the previous section.
But if it’s a case of a query that has been executing (to completion) repeatedly in the last few minutes,
then accessing the last known actual execution plan allows us to start troubleshooting immediately,
without needing to set up any kind of tracing.

http://aka.ms/tigertoolbox
http://aka.ms/uspWhatsUp

Understanding the need for lightweight profiling 385

Note
SQL Trace and SQL Server Profiler are deprecated and should not be used in modern versions
of SQL Server because more complete and less intrusive XEvents are available.

If we are familiar with Query Store (QS), which we discussed in Chapter 10, Tracking Query Performance
History with the Query Store, then that may be our first go-to feature to troubleshoot our current
scenario. However, QS aggregates performance data in configurable time periods, which is excellent
for performance troubleshooting over time (analogous to a time series) and analyzing workload
trends, but for just-in-time scenarios where the requirement is to get the query’s execution plan that
just executed, then this DMF is a welcome diagnostic.

Note
If any Query Profiling Infrastructure is enabled, the DMF captures and saves the query execution
plan data for all query plans in the cache. If the query is canceled, the query execution plan
will have data up to the point when the query was canceled.

Let’s look at a practical example of using this new DMF. The following sample query can be executed
in the scope of the AdventureWorks sample database:

SELECT TOP 1000 *
FROM [dbo].[DimProduct] AS dp
INNER JOIN [dbo].[DimProductCategory] AS dpc ON
dp.ProductSubcategoryKey = dpc.ProductCategoryKey;

We can then join with other DMVs, such as sys.dm_exec_cached_plans, sys.dm_exec_
query_stats, sys.dm_exec_requests, sys.dm_exec_procedure_stats, and sys.
dm_exec_trigger_stats. Next, we have examples of queries that can retrieve information
on the specific query, including the last known equivalent of a query execution plan from sys.
dm_exec_query_plan_stats.

The following query uses the sys.dm_exec_cached_plans DMV as a starting point, since
the sys.dm_exec_query_plan_stats DMF can only report on query plans that are cached:

SELECT qps.dbid, st.text, qps.query_plan,
 cp.refcounts, cp.usecounts, cp.cacheobjtype, cp.objtype
FROM sys.dm_exec_cached_plans AS cp
CROSS APPLY sys.dm_exec_sql_text(plan_handle) AS st
CROSS APPLY sys.dm_exec_query_plan_stats(plan_handle) AS qps
WHERE st.text LIKE '%SELECT TOP 1000%';

This query returns the following results:

Troubleshooting Live Queries386

Figure 11.16: Results of the example query

Note
If the corresponding runtime plan information is not available, the query_plan column
shows NULL.

The following query uses the sys.dm_exec_query_stats DMV as a starting point in order to
see performance metrics for all queries that have executed since the last SQL Server startup, where
the query plan is still in the plan cache:

SELECT qps.dbid, st.text, qps.query_plan,
 qs.last_dop, qs.last_elapsed_time, qs.last_execution_time,
 qs.last_grant_kb, qs.last_used_grant_kb, qs.last_logical_reads,
 qs.last_logical_writes, qs.last_physical_reads,
 qs.last_rows, qs.last_spills, qs.last_worker_time
FROM sys.dm_exec_query_stats AS qs
OUTER APPLY sys.dm_exec_sql_text(plan_handle) AS st
OUTER APPLY sys.dm_exec_query_plan_stats(plan_handle) AS qps
WHERE st.text LIKE '--%';

This query returns the following results:

Figure 11.17: Results of the example query

Again, if the corresponding runtime plan information is not available, the query_plan column
is NULL. On both results, click the link in the query_plan column to open the last known query
execution plan, as shown in the following screenshot:

Activity Monitor gets new life 387

Figure 11.18: Graphical query execution plan as accessed from the link in the results shown in Figure 11.17

Tip
In the GitHub Tiger Toolbox (http://aka.ms/tigertoolbox), we can find a comprehensive
script that can quickly help us diagnose performance issues with in-flight requests and blocking
scenarios (http://aka.ms/uspWhatsUp). This script uses a combination of DMVs that
includes sys.dm_exec_query_plan_stats.

Activity Monitor gets new life
Live Query Statistics (LQS) has a viable use case, as we discussed in the Using Live Query Statistics
section of this chapter: a previously identified long-running query. But what if we haven’t identified
an offending query yet? What if we are the database professional that got that middle-of-the-night call
asking us to solve an issue with a business-critical ETL process that runs every night, but is unusually
slow today?

Note
ETL is an acronym for Extract-Transform-Load, which is the name given to a process that
extracts data from a data source, enacts transformations in that data such as aggregations or
calculations, and loads the result into a destination such as a database. A typical example of an
ETL process is a SQL Server Agent job that schedules the execution of a SQL Server Integration
Services (SSIS) package.

http://aka.ms/tigertoolbox
http://aka.ms/uspWhatsUp

Troubleshooting Live Queries388

That is where Activity Monitor (AM) comes in. AM is an SSMS feature that’s been there for a long
time and has probably gone unnoticed by many SSMS users. AM can be enabled by right-clicking
the instance name in Object Explorer, and then clicking on Activity Monitor, as shown in the
following screenshot:

Figure 11.19: Screenshot depicting how to access Activity Monitor from the Object Explorer in SSMS

A new tab will be displayed which contains the following information sections:

• An Overview section showinga few key performance counters: CPU usage, number of waiting
tasks, database I/O measured in MB/sec, and number of batch requests/sec. Notice the CPU
is running at 80 percent now that the ETL is executing. I’m also doing six batch requests/sec,
which is a very low number.

Activity Monitor gets new life 389

Figure 11.20: Overview section of Activity Monitor

• The current Processes or sessions active in SQL Server, including useful information such as
the login and database that set the context for that session, the current task state (Running,
Runnable, or Suspended) as defined in the Query execution essentials section of Chapter 1,
Understanding Query Processing, wait information which shows details if the task is in the
Suspended state, the calling application and host machine, and whether the current session is
a head blocker of a blocking chain. All this information is coming from DMVs, which were
thoroughly discussed in Chapter 7, Building Diagnostic Queries Using DMVs and DMFs.

Figure 11.21: Processes section of Activity Monitor

Troubleshooting Live Queries390

• The current Resource Waits, including the wait category and metrics such as the cumulative
wait time accrued for the wait type.

Figure 11.22: Resource Waits section of Activity Monitor

• The Data File I/O related to the read and write I/O, including access latency for each file.

Figure 11.23: Data File I/O section of Activity Monitor

• And the Recent and Active Expensive Queries, allowing us to pinpoint queries with long
elapsed times and CPU usage.

Activity Monitor gets new life 391

Figure 11.24: Recent and Expensive Queries sections of Activity Monitor

Troubleshooting Live Queries392

Here is the interesting part about why AM should be part of our toolbox: when one of the Query
Profiling Infrastructures we discussed in the previous chapter is enabled globally, the sys.dm_exec_
query_profiles DMV is populated for every query that is executing, which means that unlike LQS,
which can only show the live plan for the query running in my own session, AM can show live plans
for queries in any session.

Tip
When the query_post_execution_showplan XEvent is in use, the sys.dm_exec_
query_profiles DMV is populated for all queries using Standard Profiling. This means
that using AM or directly querying the DMV has a higher impact than when LWP is used. In
the previous chapter, we covered the many ways in which LWP can be enabled.

So, when I got the middle-of-the-night call, I accessed the ETL process and looked at which queries
were being used. Then I used AM to easily pinpoint the query being executed by the ETL process and
see its live plan. How? By using the Active Expensive Queries tab in AM, right-clicking a long-running
query, and selecting the Show Live Execution Plan option, as shown in the following screenshot:

Figure 11.25: Context menu for a query in the Active Expensive Queries section

of Activity Monitor showing the Show Live Execution Plan option

Tip
If the Show Live Execution Plan menu option is grayed out, this means that neither Standard
Profiling nor Lightweight Profiling are enabled globally. To enable LWP globally for all queries,
see the Understanding the need for Lightweight Profiling section.

For this query, which has been executing for over 100 seconds now, a new tab will display the live
execution plan, as shown in the following screenshot:

Activity Monitor gets new life 393

Figure 11.26: An example of Live Query Statistics for a currently running query

Tip
Notice that this is the same query we used in the previous section on Live Query Statistics
(LQS), but when it’s displayed in AM, the operator times are missing. Why? Remember that
LQS leverages Standard Profiling, which tracks operator-level information such as CPU and
elapsed time. However, in this example, we are using Lightweight Profiling, which does not
include that per-operator information.

As the database professional who got the middle-of-the-night call, how can I analyze and possibly solve
the ongoing performance issue? Start by opening the plan properties by right-clicking the root node
and selecting Properties – refer to the Plan-level properties and Operator-level properties sections of
Chapter 3, Exploring Query Execution Plans for more information on the available showplan properties
that are useful for troubleshooting query performance.

It’s best to first try to understand if there are any server-wide configurations that may be impacting
query execution. One good place to start is trace flags. Are there trace flags impacting this query’s
execution? If I look at the trace flag information in the plan, I notice two trace flags, as shown in the
following screenshot:

Figure 11.27: Properties window of the example query plan showing trace flag information

Troubleshooting Live Queries394

I can extract two data points from here:

• There were global (server-wide) trace flags present at the time this query was compiled.

• Of the two trace flags, we know now that 7412 enables Lightweight Query Profiling (LWP) by
default, which allows me to use AM to troubleshoot in the first place. So, we need to research
trace flag 9481 to see if it’s impacting query optimization choices that could affect the plan.

If we look at the documentation about trace flags (http://aka.ms/traceflags), here is
the explanation for what trace flag 9481 does: it enables us to “set the query optimizer cardinality
estimation model to the SQL Server 2012 (11.x) and earlier versions, irrespective of the compatibility
level of the database”.

This is a good starting point: although this ETL is executing in a SQL Server 2017 instance and the
AdventureWorks database is in database compatibility level 130, which maps to using CE 130,
the query was optimized with CE 70 instead, as shown in the following screenshot:

Figure 11.28: Properties window of the example query plan showing CardinalityEstimationModelVersion

So, here is a working hypothesis: using CE 130 most likely will yield a different query plan. Will it
improve the query performance over the current plan?

Note
Refer to the Introducing the Cardinality Estimator section of Chapter 3, Mechanics of the Query
Optimizer, for further context on the potentially enormous impact this CE change carries for
the query optimization process.

http://aka.ms/traceflags

Activity Monitor gets new life 395

Let’s experiment with overriding the global trace flag at the query level in order to work out the
effect of using the default CE model for database compatibility level 130. To do that, I will take
the query from the execution plan, open a new query window in SSMS, add the OPTION (USE
HINT('FORCE_DEFAULT_CARDINALITY_ESTIMATION')) hint to my query, and execute it
in AdventureWorks:

SELECT e.[BusinessEntityID], p.[Title], p.[FirstName],
 p.[MiddleName], p.[LastName], p.[Suffix], e.[JobTitle],
 pp.[PhoneNumber], pnt.[Name] AS [PhoneNumberType],
 ea.[EmailAddress], p.[EmailPromotion], a.[AddressLine1],
 a.[AddressLine2], a.[City], sp.[Name] AS [StateProvinceName],
 a.[PostalCode], cr.[Name] AS [CountryRegionName],
p.[AdditionalContactInfo]
FROM [HumanResources].[Employee] AS e
INNER JOIN [Person].[Person] AS p
 ON RTRIM(LTRIM(p.[BusinessEntityID])) = RTRIM(LTRIM(e.
[BusinessEntityID]))
INNER JOIN [Person].[BusinessEntityAddress] AS bea
 ON RTRIM(LTRIM(bea.[BusinessEntityID])) = RTRIM(LTRIM(e.
[BusinessEntityID]))
INNER JOIN [Person].[Address] AS a
 ON RTRIM(LTRIM(a.[AddressID])) = RTRIM(LTRIM(bea.[AddressID]))
INNER JOIN [Person].[StateProvince] AS sp
 ON RTRIM(LTRIM(sp.[StateProvinceID])) = RTRIM(LTRIM(a.
[StateProvinceID]))
INNER JOIN [Person].[CountryRegion] AS cr
 ON RTRIM(LTRIM(cr.[CountryRegionCode])) = RTRIM(LTRIM(sp.
[CountryRegionCode]))
LEFT OUTER JOIN [Person].[PersonPhone] AS pp
 ON RTRIM(LTRIM(pp.BusinessEntityID)) = RTRIM(LTRIM(p.
[BusinessEntityID]))
LEFT OUTER JOIN [Person].[PhoneNumberType] AS pnt
 ON RTRIM(LTRIM(pp.[PhoneNumberTypeID])) = RTRIM(LTRIM(pnt.
[PhoneNumberTypeID]))
LEFT OUTER JOIN [Person].[EmailAddress] AS ea
 ON RTRIM(LTRIM(p.[BusinessEntityID])) = RTRIM(LTRIM(ea.
[BusinessEntityID]))
OPTION (USE HINT('FORCE_DEFAULT_CARDINALITY_ESTIMATION'));

This hinted query executed in 291ms, while the original query is still running at almost 3 minutes'
elapsed time.

Note
The shape for the ETL original plan and the new plan using the hint can be seen in the Introducing
the Cardinality Estimator section in Chapter 3, Mechanics of the Query Optimizer.

Troubleshooting Live Queries396

At this point, I have several possible actions:

• Disable the trace flag globally, unless the trace flag had been enabled as a result of workload
tests that showed most queries benefit from CE 70. Even so, it’s recommended to not use the
trace flag, but rather the corresponding database-scoped configuration to set that behavior at
the database level, using the following T-SQL command:

ALTER DATABASE SCOPED CONFIGURATION SET LEGACY_CARDINALITY_
ESTIMATION = ON;

• If the decision to disable the trace flag warrants further system-wide tests, then at least for the
offending query, we know that using CE 130 yields better results. Change the ETL to add the
USE HINT('FORCE_DEFAULT_CARDINALITY_ESTIMATION') hint.

• If changing the ETL code is not possible now, consider creating a plan guide that adds the
required hint on the fly for any incoming execution of that query, as shown in the following
example. This allows new incoming execution to use the new optimized plan, while not making
any immediate changes to the ETL code:

EXEC sp_create_plan_guide
@name = N'Guide1',
@stmt = 'SELECT e.[BusinessEntityID], p.[Title], p.[FirstName],
 p.[MiddleName], p.[LastName], p.[Suffix], e.[JobTitle],
 pp.[PhoneNumber], pnt.[Name] AS [PhoneNumberType],
 ea.[EmailAddress], p.[EmailPromotion], a.[AddressLine1],
 a.[AddressLine2], a.[City], sp.[Name] AS
[StateProvinceName],
 a.[PostalCode], cr.[Name] AS [CountryRegionName],
p.[AdditionalContactInfo]
FROM [HumanResources].[Employee] AS e
INNER JOIN [Person].[Person] AS p
 ON RTRIM(LTRIM(p.[BusinessEntityID])) = RTRIM(LTRIM(e.
[BusinessEntityID]))
INNER JOIN [Person].[BusinessEntityAddress] AS bea
 ON RTRIM(LTRIM(bea.[BusinessEntityID])) = RTRIM(LTRIM(e.
[BusinessEntityID]))
INNER JOIN [Person].[Address] AS a
 ON RTRIM(LTRIM(a.[AddressID])) = RTRIM(LTRIM(bea.
[AddressID]))
INNER JOIN [Person].[StateProvince] AS sp
 ON RTRIM(LTRIM(sp.[StateProvinceID])) = RTRIM(LTRIM(a.
[StateProvinceID]))

Summary 397

INNER JOIN [Person].[CountryRegion] AS cr
 ON RTRIM(LTRIM(cr.[CountryRegionCode])) = RTRIM(LTRIM(sp.
[CountryRegionCode]))
LEFT OUTER JOIN [Person].[PersonPhone] AS pp
 ON RTRIM(LTRIM(pp.BusinessEntityID)) = RTRIM(LTRIM(p.
[BusinessEntityID]))
LEFT OUTER JOIN [Person].[PhoneNumberType] AS pnt
 ON RTRIM(LTRIM(pp.[PhoneNumberTypeID])) = RTRIM(LTRIM(pnt.
[PhoneNumberTypeID]))
LEFT OUTER JOIN [Person].[EmailAddress] AS ea
 ON RTRIM(LTRIM(p.[BusinessEntityID])) = RTRIM(LTRIM(ea.
[BusinessEntityID]));',
@type = N'SQL',
@module_or_batch = NULL,
@params = NULL,
@hints = N'OPTION (USE HINT (''FORCE_DEFAULT_CARDINALITY_
ESTIMATION''))';

After making this change, look at AM’s Overview section:

Figure 11.29: Overview section of the Activity Monitor after the plan guide has been put in place

Notice the CPU is now running at 20 percent and the ETL is still executing. I’m also doing 60 batch
requests/sec, which is significantly better than my starting point of 6 batch requests/sec.

Summary
This chapter covered the important topic of tracking query progress, and how to use either Live
Query Statistics to see the live progress of a single query in SSMS, or Activity Monitor to access the
live progress of any running query. We also covered how these tools and underlying Database Engine
features are invaluable to troubleshoot and solve query performance issues, namely for those queries
that take hours to complete, or never do.

Troubleshooting Live Queries398

The Query Profiling Infrastructures available in SQL Server depend on the Database Engine version.
The following table summarizes the options to enable either of the Query Profiling Infrastructures
and the minimum required version for each option:

Standard Profiling Lightweight Profiling
Globally XEvent session with query_post_

execution_showplan XE; starting with
SQL Server 2012

Trace Flag 7412; starting with
SQL Server 2016 SP1

Showplan XML trace event in SQL Trace
and SQL Server Profiler; starting with SQL
Server 2000

XEvent session with query_
thread_profile XE;
starting with SQL Server
2014 SP2

–

XEvent session with query_
post_execution_plan_
profile XE; starting with
SQL Server 2019

Single session

Use SET STATISTICS XML ON; starting
with SQL Server 2000

QUERY_PLAN_PROFILE
query hint + XEvent session
with query_plan_
profile XE; starting with
SQL Server 2016 SP2 CU3 and
2017 CU11

Use SET STATISTICS PROFILE ON;
starting with SQL Server 2000 –

Click LQS button in SSMS; starting with SQL
Server 2014 SP2 –

This analysis was possible because at this point, we know how to create reasonable hypotheses about
potential query performance issues by analyzing query plan properties, and what they say about the
query optimization choices during compilation time.

In the next and final chapter of the book, we will investigate a tool available to us in SSMS that will
help identify and remediate issues with our T-SQL query performance that arise due to changes in
the Cardinality Estimator, specifically when upgrading our database compatibility level. This tool is
invaluable when upgrading our database to a new version of SQL Server.

12
Managing Optimizer Changes

In this chapter, we will discuss how users can manage Query Optimizer changes throughout versions
of the SQL Database Engine. We will cover a client-side feature in SQL Server Management Studio
(SSMS) – the Query Tuning Assistant (QTA) – and a new feature for the SQL Server 2022 release – CE
Feedback. Both features aim at addressing some of the most common causes of cardinality estimation
(CE)-related performance regressions that may affect our T-SQL queries after an upgrade from an
older version of SQL Server to a newer version, namely SQL Server 2016 and above.

At the time of writing, SQL Server 2014 is months away from completing its 10-year life cycle and
reaching end of support. Also, SQL Server 2016 and SQL Server 2017 no longer have mainstream
support. This can raise concerns for all those still running applications supported by these legacy
SQL Server versions.

However, modernizing the database platform (a synonym for upgrading in this context) is not a risk-
free proposition. The risk that, after upgrading and leaping so many years and versions, a part of an
application’s workload can experience performance regressions due to CE changes is very real. This is
why Microsoft has invested over the years in building features that can greatly mitigate much of this
regression risk Query Store, Automatic Plan Correction (APC), QTA, and CE Feedback.

This chapter covers the following topics:

• Understanding where QTA and CE Feedback are needed

• Understanding QTA fundamentals

• Exploring the QTA workflow

Technical requirements
The examples used in this chapter are designed for use on SQL Server 2022 and Azure SQL Database,
but they should work on any version of SQL Server, 2012 or later. The Developer edition of SQL Server
is free for development environments and can be used to run all the code samples. There is also a free
tier of Azure SQL Database that you can use for testing at https://aka.ms/freedb.

https://aka.ms/freedb

Managing Optimizer Changes400

You will need the AdventureWorks2016_EXT (referred to as AdventureWorks) and
AdventureWorksDW2016_EXT (referred to as AdventureWorksDW) sample databases, which
can be found on GitHub at https://github.com/Microsoft/sql-server-samples/
releases/tag/adventureworks. Code samples for this chapter can also be found on GitHub
at https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-
Edition/tree/main/ch12.

Understanding where QTA and CE Feedback are needed
The CE version that our databases use directly influences how query plans are created for queries that
will be executed in those databases. And we have seen first-hand the effects of the CE every time we
compared estimated number of rows with actual number of rows throughout the book – for example,
in the Query plan comparison section of Chapter 9, Comparative Analysis of Query Plans, where we
dealt with the Row Goal optimization scenario.

When upgrading from older versions of the SQL Database Engine to newer versions (for example, an
older SQL Server version to Azure SQL Database or SQL Server 2022), we need to be conscious of how
upgrading from an older CE version to a newer CE can affect our workloads – benefits are expected
for the most part, but regressions can happen. For example, we discussed in Chapter 6, Discovering
T-SQL Anti-Patterns in Depth, how the latest versions of the SQL Database Engine solve classic anti-
patterns with little to no code changes – and these are overall welcomed changes.

Additionally, we also need to be conscious of the difference between upgrading the SQL Database
Engine as platform binaries and upgrading the Database Compatibility Level setting of the user
databases. For the sake of what we’re discussing in this chapter, upgrading database compatibility
means upgrading to a more recent CE version, and unlocking some newer engine features that we’ve
discussed throughout this book.

Note
For example, the features Degree of Parallelism (DOP) Feedback and Parameter Sensitive
Plan Optimization (PSPO) – both of which we discussed in previous chapters – require the
latest 160 compatibility level to work.

The CE version doesn’t change just by upgrading the SQL Database Engine version itself. In other
words, upgrading the SQL Database Engine binaries doesn’t necessarily mean we must upgrade the
database compatibility – in fact, we shouldn’t – at least not immediately after we upgrade the binaries.
Decoupling the two upgrade moments – SQL Database Engine and the Database Compatibility
Level – allows us to keep workloads stable after the SQL Database Engine upgrade because the Query
Optimizer still works, with the rules mapping to the compatibility level. How can we do that? How
do we take charge of upgrade risks?

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks

Understanding where QTA and CE Feedback are needed 401

Tip
We discussed how the CE version is tied to the concept of the database compatibility level, and
we show their version mapping in the Introducing the Cardinality Estimator section of Chapter 2,
Mechanics of the Query Optimizer.

The following diagram summarizes Microsoft’s recommended steps to minimize risk with CE upgrades:

Figure 12.1: Recommended steps to minimize risk with CE upgrades

These detailed steps, which are based on the difference between upgrading the SQL Database Engine
platform and upgrading a database’s compatibility level, are outlined here:

1. Upgrade SQL Server from any older version (for example, SQL Server 2012 to SQL Server
2022), and keep databases in the same database compatibility level as the source SQL Server
version. This step only applies to SQL Server, whether running in your own data center or in
a VM hosted by a public cloud vendor. In the most common upgrade scenarios, the database
compatibility level will not change on user databases after the upgrade:

 � If we do an in-place upgrade, all user databases keep the same database compatibility level
as before the upgrade, 110 – this was the highest and native compatibility level in SQL
Server 2012.

 � If we do a side-by-side upgrade (a migration), then all databases that are moved through
attach/detach or backup/restore also keep the same database compatibility level as before
the upgrade.

Note
If you are using Azure SQL Database, the in-place upgrade of the SQL Database Engine is a
continuous, roll-forward process that is handled by Microsoft Azure. For existing user databases,
much like as would happen with a SQL Server in-place upgrade, their database compatibility
level is kept as-is.

2. Enable the Query Store, as we discussed in Chapter 10, Tracking Performance History with
the Query Store.

Managing Optimizer Changes402

3. Let Query Store collect a baseline for the workload that represents the typical business cycle for
your applications. If we are going through this process in production, this means allowing the
production workload to just execute. If we are doing this in a pre-production or development
(dev) environment, then we need to ensure that whatever test workload we have is a valid
representation of the production workload.

4. Once we know enough time has passed and the Query Store has accrued enough information
about our workloads, plan to change the database compatibility level to our chosen target level; in
this case, it will be 160, which is the highest compatibility level in the SQL Server 2022 release.
This is a per-database operation.

We can do this by using the ALTER DATABASE CURRENT SET COMPATIBILITY_LEVEL
= 160; T-SQL command or by using the database Options menu in SSMS, as shown in the
following screenshot:

Figure 12.2: Database Properties showing the available compatibility levels

5. Monitor the Regressed Queries report in Query Store to quickly find and fix regressions with
the Force Plan feature, as shown in the following screenshot.

Figure 12.3: The Force Plan button in the Regressed Queries Query Store report

This becomes possible precisely because a baseline collection of query plans that were produced
using CE 110 – the same that drove Query Optimizer choices in SQL Server 2012 – was
collected. From there, any regressions that occur due to the change in the CE version become
trackable and actionable.

In our current scenario, because we have upgraded to SQL Server 2022 in this case, we can
enable the Automatic Plan Correction (APC) feature, and this last step of forcing the plan
becomes automated. We can enable APC using the ALTER DATABASE CURRENT SET
AUTOMATIC_TUNING (FORCE_LAST_GOOD_PLAN = ON); T-SQL command.

Understanding where QTA and CE Feedback are needed 403

Note
Automatic tuning is a database feature that was released with SQL Server 2017 and is also in
Azure SQL Database. One of its functionalities is APC, which identifies query execution plan
regressions based on CPU time. In the scope of CE upgrades, APC will revert to the last known
good query plan, provided the recommended baseline with the source database compatibility level
was collected. We discussed APC in Chapter 10, Tracking Performance History with Query Store.

At this point, we might ask, if the Query Store and APC can mitigate query regression problems when
I upgrade the database compatibility level, why would Microsoft create the QTA tool, or invest in the
newer CE Feedback feature?

The main challenge is that too many database professionals skip the recommended process and
somewhat recklessly upgrade to the latest database compatibility level, immediately after the SQL
Database Engine is upgraded. They become exposed to the risk of finding that a part of the database’s
workload has regressed, caused by not having a baseline that enables Query Store and APC to help
with any plan change that resulted in performance degradation.

Therefore, QTA was released back in 2019 and provides a wizard-like experience to guide the user
through the recommended process, from a single entry point in SSMS.

As Microsoft has continued to invest in this space, with the most recent release of the SQL Database
Engine in SQL Server 2022, the CE Feedback feature has become available and largely addresses
performance regression scenarios tied to CE version upgrades (changes to the CE assumptions)
without the need for a previous-version baseline collection.

Note
We discussed CE assumption changes in Chapter 2, Mechanics of the Query Optimizer, and how
the CE Feedback feature can detect and attempt to correct cardinality estimation inferences
tied to those changes, when they prove to be detrimental to query performance. At the time of
writing, CE Feedback is not yet generally available in Azure SQL Database.

While CE Feedback can automatically detect these scenarios, it will only apply feedback to queries
where the skew between estimated and actual rows is orders of magnitude off, and that skew results
in performance drops. This is a reasonably conservative approach, given that the feature doesn’t
require user input to make decisions, and therefore, it must be certain that the changes it enacts are
indeed worth it.

In contrast, queries with a much lower skew between estimated and actual rows are reported by QTA
because it is driven by the user, and we are in control of which queries are in scope.

Also, CE Feedback is only available if you upgrade the compatibility level to 160, and therefore, if
your target version for upgrade is SQL Server 2019, only QTA is an option to manage the risk of
compatibility level upgrades.

Managing Optimizer Changes404

Now that we understand what QTA and CE Feedback are and why they are important, let’s dive deeper
into the QTA and how it works.

Understanding QTA fundamentals
While guiding us through the recommended process, QTA doesn’t follow it exactly. The very last step,
step 5, will not have the same outcome we saw in the previous section; instead of providing options
to revert to a last known good plan, QTA helps to find a new state that is not the pre-CE upgrade
or post-CE upgrade plan but a new plan that will hopefully outperform both of the previous plans.

The following diagram summarizes the recommended steps to minimize risk with CE upgrades using
QTA, which replaces the very last step of the process described in the previous Understanding where
QTA and CE Feedback are needed section:

Figure 12.4: The recommended steps to minimize risk with CE upgrades using QTA

How does QTA find a better query plan for regressed queries? Starting with the same data that’s
available in Query Store’s Regressed Queries report, QTA will look for query patterns that may be
affected by changes in CE, specifically from CE 70 to CE 120 and higher.

Note
QTA only handles SELECT queries, both ad hoc and parameterized. For parameterized queries,
QTA can only experiment on those where the compiled parameter is available in the Parameter
List property of the query plan. We discussed this query plan property in Chapter 3, Exploring
Query Execution Plans, in the Query plan properties of interest section.

Understanding QTA fundamentals 405

QTA will then experiment with those queries, executing them with query hints that adjust several
CE model choices, and those that result in alternate query plans. After the analysis is complete, who
decides which plans are better and should be used? The user does. As we reach the end of the process,
we will be able to see the alternatives that exist for each plan and easily pick the one that’s either faster
or uses less CPU, for example. We will describe the workflow in the next section, as we upgrade our
AdventureWorksDW database to SQL Server 2022’s native database compatibility level, 160.

Just like the newer CE Feedback feature, QTA can handle the following CE model changes:

• Predicate independence versus correlation. We discussed this CE assumption in the Introducing
the Cardinality Estimator section of Chapter 2, Mechanics of the Query Optimizer. If the
experiments indicate that using CE 70’s independence assumption yields better estimations
than the default correlation assumption, then the resulting query plan is added to the list of
recommendations. Under the covers, QTA was able to switch the default CE assumption for
the specific query being experimented on, by applying the USE HINT ('ASSUME_MIN_
SELECTIVITY_FOR_FILTER_ESTIMATES') query hint. This hint causes SQL Server to
create a query plan that accounts for the cardinality of each column in an AND filter predicate,
rather than the cardinality of all columns combined by the AND predicate.

• Simple Join Containment versus Base Join Containment: We also discussed this CE assumption
in the Introducing the Cardinality Estimator section of Chapter 2, Mechanics of the Query Optimizer.
Like the previous bullet regarding independence versus correlation, if the experiments indicate
that using the legacy simple containment assumption yields better estimations than the default
base containment assumption, the resulting query plan is added to the list of recommendations.
The hint applied by QTA to include this consideration is USE HINT ('ASSUME_JOIN_
PREDICATE_DEPENDS_ON_FILTERS'). This hint causes the SQL Database Engine to
create a query plan that assumes the estimated cardinality needs to be calculated by accounting
for filter predicates applicable to tables, rather than calculating only by using the base tables
(without any filter predicates). In simpler terms, first estimate the non-join filter predicates,
and then the join predicates.

• Multi-Statement Table Valued Function (MSTVF) fixed estimations: As we discussed in
the Deconstructing table-valued functions section of Chapter 5, Writing Elegant T-SQL Queries,
the Query Optimizer uses a default estimation of 100 rows for MSTVFs, since the row count
is not available at compile time – this is a runtime structure. This has always been the case in
SQL Server, but in older versions, the default estimation was just 1 row, whereas starting from
SQL Server 2014, this assumption was increased to 100 rows. It may not look like much on its
own, but this estimation is used throughout the query optimization process and drives other
optimizations on top of this assumption. The change back in CE 120 can be enough to impact
query plans that heavily depended on the previous version’s combination of optimizations based
on one row. Under the covers, QTA was able to switch the default CE assumption of 100 rows
back to 1 row for the specific query being experimented on, by applying the QUERYTRACEON
9488 query hint.

Managing Optimizer Changes406

Note
Performance issues tied to MSTVF-fixed estimations became obsolete with the interleaved
execution for MSTVFs feature, introduced in SQL Server 2017. We discussed this feature in
Chapter 5, Writing Elegant T-SQL Queries.

• If all the listed scenarios fail to improve the query plan, then, as a last resort, QTA will consider
reverting to CE 70 in full, by applying the USE HINT ('FORCE_LEGACY_CARDINALITY_
ESTIMATION') query hint. This extreme catch-all approach is not a consideration for CE
Feedback. In this regard, QTA can go to the extreme of using a “hammer” approach, whereas
CE Feedback always uses a very targeted “scalpel” approach.

Exploring the QTA workflow
We’ve briefly described what QTA does and, in greater depth, how QTA works internally. But now,
it’s time to actually run through the recommended database compatibility upgrade we discussed in
the Understanding QTA fundamentals section.

QTA is a session-based tool, which means we can open and close it at will while the database compatibility
upgrade process progresses. This is useful, given that the recommended database compatibility upgrade
process can run for days, depending on the business cycle that our workload serves.

Tip
QTA doesn’t need to run from an SSMS installed on the server. It can execute the workflow
against the server from our laptop, desktop, or another designated management machine that
you have available.

The way QTA stores our session’s state and analysis data is by creating a few tables in the targeted user
database in the msqta schema, as shown in the following screenshot. This schema will remain in the
database, and it’s not recommended to remove it.

Exploring the QTA workflow 407

Figure 12.5: msqta schema objects in the AdventureWorksDW database

Tip
Multiple tuning sessions can be created on a single database over time, but only one active
session can exist for any given database.

Before we start a database compatibility upgrade process, some housekeeping tasks are needed, such
as configuring Query Store if it’s not already running in the database. QTA can do this for us as part
of the Create Session wizard.

For this example, we installed a SQL Server 2022 instance where we restored our database,
AdventureWorksDW. Given this database was restored, it keeps the same database compatibility
level, 110, that it had in the source SQL Server 2012 instance.

To start a new session, we go to SQL Server Management Studio (SSMS), connect to our new SQL
Server 2022, right-click the database name, select Tasks, select Database Upgrade, and click on New
Database Upgrade Session, as shown in the following screenshot:

Managing Optimizer Changes408

Figure 12.6: Starting the database upgrade session from SSMS

This action opens the session configuration window, where the first step is to enter some information
that will drive the upgrade process:

• The expected Workload duration (days) to capture (the minimum is 1 day), which is used
to configure Query Store in the next step: For our example, the business cycle we’ve identified
is 5 days – meaning it can take up to five days for Query Store to capture all the application
workload and some ETL processes we execute every night. We need to ensure we capture
a representative baseline so that after we complete the database compatibility upgrade, any
regressed queries can be found and analyzed by QTA.

• The intended target database compatibility level that the database should be set to after
the QTA workflow completes: Given that the database is now at database compatibility level
110 and we are working in SQL Server 2022, all higher compatibility levels are available in the
dropdown. For this example, we’ll select 160.

Exploring the QTA workflow 409

The following screenshot displays the QTA window where we configured the session:

Figure 12.7: The QTA session configuration Setup screen

While QTA guides us through the recommended upgrade process, let’s keep in mind that Query Store
is storing all the information. This is especially relevant for the point in time after we upgrade the
database compatibility. For any query that may not be eligible for QTA to deal with, we are free to use
Query Store’s Regressed Queries report to find other ways of handling regressed queries, such as forcing
a previously known good plan, while we fix the query to work natively in the new CE – in this case,
160. The following screenshot shows the Regressed Queries report under the Query Store in SSMS:

Managing Optimizer Changes410

Figure 12.8: Query Store reports in SSMS

The next step is to configure Query Store. In the Settings window, we can see two columns. The
following screenshot displays the QTA window where we configured the Query Store:

Figure 12.9: The QTA Query Store configuration setup screen

Exploring the QTA workflow 411

From the screenshot, we can see the following:

• In the Current state of the Query Store for our database, note that Operation Mode is set to Off
because we have not enabled Query Store manually. If we had enabled Query Store previously,
we would be able to change its settings here, editing any configuration if the Current radio
button is selected.

• In the Recommended settings for Query Store, note the proposed Stale Query Threshold (days)
setting is twice the number we entered for the workload duration on the previous screen (refer
to the explanation prior to Figure 12.7). This is because we had selected 5 days, and Query Store
needs to be able to collect our five-days baseline, plus five days’ worth of workload after we
change to compatibility level 160. Only then do we compare the same business cycle across CE
70 and CE 160, allowing Query Store to identify regressed queries that span the relevant time
window. We can opt to accept the recommended settings by clicking on the Recommended
radio button.

After clicking Next, we get a new screen with some information on how we’ve configured the session,
instructing us to start running our workload (QTA does not generate any workload for us). If we’re
running QTA in a test server, then we are responsible for generating our test workload.

Alternatively, let’s say I have gone through the recommended upgrade process in production manually
(as we discussed in the Understanding where QTA is needed section). Then, we could restore the
production database backup to a test server, and the Query Store for that database would allow us to
jump to the analysis and experimentation step later in the QTA workflow.

In our example, we’re running this process in production, which means we can just let our normal
business cycle happen normally as application workloads execute. On this new screen, click Finish
to exit the session setup – this completes step 1 of the QTA workflow.

To start running through the upgrade process itself, we return to SSMS, right-click the database
name, select Tasks, select Database Upgrade, and click on Monitor Sessions, as shown in the
following screenshot:

Managing Optimizer Changes412

Figure 12.10: Monitoring QTA sessions in SSMS

A new window tab opens in SSMS, in the scope of QTA’s session management page. In the following
screenshot, we can see our current session. Click on the session name, and then click on Details to
open it:

Figure 12.11: The QTA session currently active

Exploring the QTA workflow 413

Note in the previous screenshot that we are in step 1 of five steps of the upgrade process – Setup. When
we open the session, we enter step 2, Data Collection, in Substep 1 of 3 - Baseline Data Collection,
as shown in the following screenshot:

 Figure 12.12: The QTA baseline data collection step

As we can see on the QTA screen, it asks us to start our workload if not already started. We’re running
our upgrade process in a production server, so the workload is already executing. We can close this
screen and go away for five days while our baseline populates – but, for example, if we decide that after
just three days we have enough data collected and don’t need the full five days, we can come back to
QTA via the Monitor Sessions task, and we’ll be right where we left off.

After our baseline is complete, we return to QTA in step 2 and check the Done with workload run
box, as shown in the following screenshot:

Figure 12.13: Ending the QTA baseline data collection step

This signals to QTA that it’s time to move forward with the upgrade process, and when we click Next,
the following prompt appears, asking us to upgrade the database compatibility level to our chosen
target, 160:

Managing Optimizer Changes414

Figure 12.14: Confirming the compatibility level upgrade step

When we click Yes, QTA enters Substep 2 of 3 - Upgrade Database and upgrades the database
compatibility level, as shown in the following screenshot. Then, we click Next to move on to the last
data collection step:

Figure 12.15: QTA upgrade database step

Substep 3 of 3 - Observed Data Collection is similar to substep 1 of 3 – we are asked to run the same
workload that constitutes the baseline so that it can compare the proverbial apples to apples and,
through Query Store, find all regressed queries. Again, we can close the QTA window and go away
for the next five days until we have a full comparison available.

We have a Refresh button available, that we can use during those five days to keep track of what’s
been found so far. Clicking on it refreshes the list of top regressed queries – note that some queries
already executed over 150 times in mere seconds.

Exploring the QTA workflow 415

Figure 12.16: The QTA post upgrade data collection step

As we can see in the preceding screenshot, the default settings list the top 20 regressed queries, but we
can change the number of queries to show – from 20 to whatever number is relevant to us. The list is
built on the default metric, which is the overall query duration, but this can be changed to CpuTime.
The default Aggregation setting for the chosen metric is an average (Avg), but others are available,
as shown in the preceding screenshot. If we change any of these settings, we need to click Refresh.

In the query table, we can see that the query text is limited to the first 100 characters, which is still
enough for us to recognize the query. If not, click the ellipsis button (…), and the query text will
appear in a different tab, as shown in the following screenshot:

Figure 12.17: The details of a captured query

We also see the number of executions, or runs, the baseline metric, and the observed metric – in this
case, the duration in milliseconds for both the pre-upgrade and post-upgrade collections, as well as
the % change and whether the query is tunable – meaning whether QTA can experiment on the query.
Note that Query ID 1 is not tunable, as indicated by the False value in the Tunable column. It is a
parameterized query, and the compile-time parameters are not available.

Managing Optimizer Changes416

After our post-upgrade data collection is complete, we return to QTA, still on step 2, and check the
Done with workload run box, as shown in the following screenshot:

Figure 12.18: Both data collections completed in QTA

This signals QTA to move forward to the Analysis phase. When we click Next, QTA enters step 3 –
View Analysis. Here, we look at what queries we want to submit for analysis. We look at the queries
using different metrics and aggregations, and we can see a few queries that got slower or had no change
after the upgrade, as shown in the following screenshot:

Exploring the QTA workflow 417

Figure 12.19: The QTA data analysis step

This is a one-time selection process, and for the sake of this exercise, I selected all queries to be
analyzed. By clicking Next, we enter the Analysis process, which we must agree to, as shown in the
following screenshot:

Figure 12.20: Confirmation that the QTA data analysis step can start

On the next screen, while the analysis process is ongoing, the Status column displays a Initial value
for all queries. After a few minutes, the status updates to Test complete, which leads to step 4 – View
Findings, as shownn in the following screenshot, and we can see what improvements were found:

Managing Optimizer Changes418

Figure 12.21: The QTA data analysis step completed

We can see the baseline metric – the workload as it executed before the database compatibility upgrade
– and the new observed metric, which is the result of the analysis process. % Change shows us all
queries, and query 7 improved by up to 67 percent. If we click on one of the links in the Query Option
column, it will open the product documentation in the scope of the proposed hint.

After we select which queries we want to deploy the recommendations for, based on the improvement
percentage (we have selected all but one), we click the Deploy button, as shown in the following screenshot:

Figure 12.22: Selecting improved queries in QTA

This creates a plan guide with the required query hint that will improve the query performance,
based on the analysis that was done, which consisted of actually executing the queries and collecting

Summary 419

runtime metrics. After deployment of the plan guides, all queries will show a Deployed status, and
we reach step 5 – Verification – as shown in the following screenshot:

Figure 12.23: Deploying plan guides to force optimized queries

The upgrade is successfully complete, and we managed to improve the regressed queries and restore
good performance to the part of our workload that had regressed after upgrading from CE70 to CE160.

Note
QTA uses plan guides and was not updated to use Query Store plan forcing with Query Store
hints, which is a new feature in SQL Server 2022 and Azure SQL Database, as discussed in
Chapter 10, Tracking Performance History with Query Store.

If, in the next few days, we notice that the improvement for one or more tuned queries is not as beneficial
as the analysis showed, we can resume the session in the Verification step, select the offending query,
and click the Rollback button to remove the respective plan guide.

Summary
From the set of regressed workloads that the SQL Database Engine team has handled over the years,
the initial scenarios covered by QTA and CE Feedback are some of the most common after a database
compatibility level upgrade (and, therefore, a CE upgrade), which can make users question whether
to upgrade. But that is just because when upgrading from an old version, such as SQL Server 2008
or 2012, our T-SQL queries were fully tuned to the only CE model set that existed at the time. When
some aspects of cardinality estimation changed, there was a possibility that some queries would have
to be tuned for the new models. Fortunately, the SQL Database Engine team believes that backward
compatibility is an asset in the SQL Database Engine and included these hints, which allow selective
tuning opportunities for the scenarios covered by QTA and CE Feedback, as well as others less common
not covered by QTA nor CE Feedback.

Managing Optimizer Changes420

Whether you choose to use QTA or not, following the recommended CE upgrade process we detailed
here is the only way we can ensure control over our workloads, as they naturally evolve and progress
throughout the years of use and Database Engine versions. Even without QTA, running through the
CE upgrade process by interacting directly with Query Store, APC and CE Feedback is a strong step
toward ensuring our T-SQL queries remain scalable, delivering the level of performance that’s expected
for the applications they serve.

If you have gotten this far, congratulations – you are now an expert T-SQL developer! We hope that
this book has helped unlock some of the mysteries of T-SQL query performance in the SQL Database
Engine, illustrating that how a query is written can and does impact how it will perform.

In this book, we learned the following:

• How the SQL Database Engine processes queries and the various building blocks of a T-SQL query

• How the Query Optimizer estimates the cost of a query and identifies the cheapest query plan

• How plans are cached and reused to save time and resources

• How to analyze a query plan to identify areas that may cause the query to perform poorly

• Some best practices to write efficient T-SQL queries that can use indexes effectively

• Several anti-patterns that can cause the Query Optimizer to choose an inefficient query plan
or make the query perform poorly

• Some of the free tools and features available from Microsoft to help you identify and troubleshoot
poor-performing queries in your environment

The knowledge gained from reading this book will help identify and troubleshoot existing query
performance issues, as well as avoid anti-patterns when writing T-SQL code in the future. Most
importantly, you should now have the skills to write efficient and elegant T-SQL code for all your SQL
Database Engine querying needs.

Index

A
ACID

reference link 152
action 266
Activity Monitor (AM) 361, 388-397
actual execution plan 366
Actual I/O Statistics 110
Actual Number of Rows 111
Actual time statistics 111
Adaptive joins 75-78
ad-hoc plan caching 15, 16
ANSI-99 standard isolation levels

Read Committed 153
Read Uncommitted 153

application programming
interface (API) 234

Automatic Plan Correction
(APC) 355, 356, 399

Automatic Plan Regression
Correction (APRC) 355

automatic tuning 403

B
B+ tree structure 58, 126
Base Containment 31
Base Join Containment 405
BillOfMaterials 143
blocking 247

investigating 247-249
blocking chain 249
blocking operator 58
B-Tree data structure 58
B-Tree ID 248
build table 71

C
cached query plan issues 250

queries, with excessive memory
grants 253, 254

resource-intensive queries, finding 251-253
single-use plans (query

fingerprints) 250, 251
cardinality 28

Index422

Cardinality Estimation (CE) 311, 399
CardinalityEstimationModelVersion 88
Cardinality Estimator

(CE) 28, 30-35, 49, 400
versions 32

category (keyword) 265
CE 70 30

inclusion assumption 31
independence assumption 30
query plan shape 34
simple containment 30
uniformity assumption 30

CE 120 31
CE 140 34

query plan shape 35
CE Feedback 32, 399, 403
channel 265
channels, SQL Database Engine

admin 265
analytic 265
debug 265
operational 265

clustered indexes, best practices 130
order 131
primary keys 132
size 131
uniqueness 130
usability 131
volatility 131

Clustered Index Scan operator 60
Clustered Index Seek operator 64
clustered primary key 132

surrogate keys 132
Columnstore Index Scan 67
Columns With No Statistics* 114, 115
Common Table Expressions (CTEs) 153

used, for storing intermediate
results 225-228

compilation replay script (CRS) 358
compile-time 182
complex expressions 166-169
complex views

pitfalls 213-217
composable logic 182-188
consumers 356
correlated sub-queries

pitfalls 218, 219
correlation 31
Cost Threshold for Parallelism 39
covering indexes 141
Create Session wizard 407
cursors

using 153

D
data

accessing, with indexes 124
accessing, with rowstore indexes 126, 127

data access operators 58, 59
Clustered Index Scan 60
Clustered Index Seek 64
Columnstore Index Scan 67
lookups 65
NonClustered Index Scan 62
NonClustered Index Seek 63
Table Scan 59, 60

database administrators (DBAs) 49, 339
Database Compatibility Level 30, 400
Database Console (DBCC) command 94
data definition language (DDL) statement 8
data manipulation language (DML)

statement 8, 35, 339
data warehousing (DW) workloads 31, 67
decision support systems (DSS) 31
Degree of Parallelism

(DOP) 12, 88, 356, 368, 400

Index 423

density 28
development (dev) environment 402
DMV queries

common scenarios, troubleshooting 247
DOP Feedback 357
Dynamic Management Functions

(DMFs) 233, 369
Dynamic Management Views

(DMVs) 180, 233, 234, 264, 355

E
Entity Framework (EF) 190
equality column 138
estimated execution plan 366
Estimated rows 112
EstimateRowsWithoutRowGoal 113
event 264
event counter 265
event file 265
event pairing 265
Event Tracing for Windows (ETW) 265
EXECUTE

versus sp_executesql 179-181
expensive queries

tracking 339-348
Exploration stage, query

optimization workflow 38
Extended Events (XEvents) 263-277, 318
Extract-Transform-Load (ETL) 387

F
filtered index 143
frequency 28
Full Optimization phase, query

optimization workflow 39-41
FullUpdateForOnlineIndexBuild* 107
fuzzy string matching 176-178

G
globally unique identifiers (GUIDs) 131
global trace flags

trace flag 7745 335
trace flag 7752 336

graphical user interface (GUI) 280

H
hash aggregation 84
Hash Match operator 71-73
hash warning 72
HAVING clause 120
head blocker 249
Heap 248
hints, Query Optimizer

FORCE ORDER 42
MAXDOP 42
NOEXPAND 42
USE HINT 42

histogram 28, 265

I
implicit conversions 190-196
included column 141
index 119
index allocation map (IAM) pages 124
indexed view matching 218
indexing strategy, with rowstore index 129

clustered indexes, best practices 130
non-clustered indexes, best practices 132

index maintenance 146, 147
reference link 147

inequality column 138
inequality logic 178, 179
inline TVFs 162
inner table 68

Index424

interleaved execution 164, 406
intermediate results

storing 219
storing, with CTEs 225-228
storing, with table variables and

temporary tables 220-224

J
Java Database Connectivity (JDBC) 19
JOIN clause 120
join hints

HASH 68
LOOP 68
MERGE 68
REMOTE 68

join operators 68
Adaptive joins 75-78
Hash Match 71-73
Merge Join 70
Nested Loops 68, 69

K
key lookup 127
Key Lookup operator 66
kilobytes (KB) 88
Knobs

for query optimization 41-43

L
Large Object (LOB) 110
least recently used (LRU) algorithm 335
Legacy CE 32
Lightweight Profiling (LWP) 394

need for 366-368

Live Query Statistics
(LQS) 361, 367, 387, 393

using 362-366
logical fragmentation 129
logical statement processing flow 4, 5
lookups 65

Key Lookup 66
RID Lookup 66

M
maximum degree of parallelism

(MaxDOP) 12, 42, 354
megabytes (MB) 88
memory grant 12
Memory Grant* 88
MemoryGrantInfo 89
MemoryGrantWarning* 104, 105
Merge Join operator 70, 228
mining XML query plans 255

with implicit conversions 260
with lookups 261
with missing indexes 255-258
with warnings 258, 259

MissingIndexes 96-100
Multi-Statement Table Valued Functions

(MSTVF) 33, 154, 162, 317, 405

N
Nested Loops join 68, 69
New CE 32
Node Search feature 372
No Join Predicate 116
NOLOCK

using 152, 153
non-blocking operator 58

Index 425

non-clustered indexes, best practices 132
covering indexes 141-143
filtered index 143-146
foreign keys 133
key column order 133-141

NonClustered Index Scan operator 62
NonClustered Index Seek operator 63
NULL 172-176

O
Object-Relational Mapper (ORM) 190, 354
objects

referencing 150
online analytical processing

(OLAP) workloads 67
online transaction processing (OLTP)

workloads 22, 31, 67, 366
Open Database Connectivity

(ODBC) 19, 268
operator-level properties 107, 109

Actual I/O Statistics 110
Actual Number of Rows 111
Actual time statistics 111
Estimated rows 112
EstimateRowsWithoutRowGoal 113
RunTimeCountersPerThread* 110
Warnings 114

OptimizationLevel 90
Optimized Plan Forcing (OPF) 358
OptimizerHardwareDependentProperties

90
OptimizerStatsUsage 90, 91
ORDER BY clause

SELECT TOP query, performing
with 202-204

orders of magnitude (OOM) 56
OR logic

optimizing 169-172
orphaned session 249
ostress tool 285, 381, 382
outer table 68
out-of-memory (OOM) conditions 105

P
package 264
page split 128
parameterization 16

forced parameterization 17, 18
simple parameterization 17

Parameter List 100-102
ParameterList property 196
parameters

caching 24
importance 21
Parameter Sensitive Plan

Optimization 23, 24
parameter sniffing 23
performance 22, 23
security 22

Parameter Sensitive Plan Optimization
(PSPO) 21, 355, 400

Performance Monitor (Perfmon) 280
PlanAffectingConvert

warnings 102, 104, 190
plan caching 14

ad-hoc plan caching 15, 16
methods 14
parameterization 16
prepared statements 19
sp_executesql procedure 18
stored procedures 14

Index426

Plan Comparison 350
plan-level properties 85-87

CardinalityEstimationModelVersion 88
Degree of Parallelism* 88
Memory Grant 88
MemoryGrantInfo 89
MissingIndexes 96-100
OptimizationLevel 90
OptimizerHardwareDependentProperties 90
OptimizerStatsUsage 90, 91
Parameter List 100-102
QueryHash 91
QueryPlanHash 91
QueryTimeStats 95, 96
Set Options 91-93
Statement 93
TraceFlags 93, 94
WaitStats 94, 95
Warnings 102

plan reuse
during query processing 19-21

platform binaries 400
predicate 120

functions 158-161
predicate cardinality (Pc) 28
predicate SARGability 120-123
prepared statements 19
probe table 71
producers 356
PSSDiag 280

Q
query compilation essentials 6-8
query completion 361
query execution DMVs 234

sys.dm_exec_requests 236, 237
sys.dm_exec_sessions 234-236

sys.dm_exec_sql_text 237, 238
sys.dm_os_waiting_tasks 238-240

query execution essentials 12-14
query execution plan 48, 49, 361

constraint simplification 10
eligibility, for parameter sensitivity

optimization 10
halloween protection 10
index selection 9
join elimination 10
logical join reordering 9
parallelism 10
partitioning 10
sub-query elimination 10
views, expanding 10

query fingerprint 250
QueryHash 91
query optimization essentials 8, 9
query optimization workflow 35, 36

Exploration stage 38
Full Optimization phase 39-41
Quick Plan phase 39
Transaction Processing phase 38
Trivial Plan stage 36-38

Query Optimizer 9, 28
principles 11

query plan 48, 49, 341
accessing 49-53
comparison 294-317
navigating 54-57

query plan analyzer 317-327
query plan cache DMVs 241

sys.dm_exec_cached_plans 246
sys.dm_exec_procedure_stats 243, 244
sys.dm_exec_query_plan 244, 245
sys.dm_exec_query_stats 241, 242

QueryPlanHash 91
query plan operators 57

Index 427

aggregation 81
blocking operator 58
data access operators 58, 59
hash aggregation 84
joins 68
non-blocking operator 58
Sort 81, 82
spools 78-81
stream aggregation 84

query_plan_profile XEvent 374-377
query plan properties 85

operator-level properties 107, 109
plan-level properties 85-87

query_post_execution_plan_
profile XEvent 378-380

query_post_execution_showplan
Extended Event 367

query processing
impacting plan reuse 19-21

Query Processor 6, 8
Query Profiling Infrastructure 361, 366
Query Store 330

architecture 332
Automatic Plan Correction 355, 356
configuring 332-338
degree of parallelism (DOP)

feedback 356, 357
expensive queries, tracking 339-348
features, relying on 353
for readable secondary replicas 353
hinting 354
inner workings 330, 331
optimized plan forcing 358
Parameter Sensitive Plan Optimization

(PSPO) feature 355
regressed queries, fixing 348-353

Query Store (QS) 385
query_thread_profile XEvent 369-373
QueryTimeStats 95, 96, 157, 169
Query Tuning Assistant (QTA) 399, 403

fundamentals 404-406
workflow 406-418

Quick Plan phase, query
optimization workflow 39

R
Read Committed Snapshot

Isolation (RCSI) 153
ReadTrace tool 285
rebind 69
regressed queries

fixing 348-353
Regressed Queries report 402
relational database management

systems (RDBMS) 58
remote collection

with SQL LogScout 280-284
Remote Procedure Call (RPC) 268
Replay Markup Language (RML) 263, 382
Reporter tool 285
rewind 69
RID lookup 127
RID Lookup operator 66
ring buffer 265
risk, with CE upgrades

minimizing, with Microsoft’s
recommended steps 401, 402

RML Utilities
traces, analyzing with 285-291

row goal 113
Row Goal optimization scenario 400

Index428

row ID (RID) 126
rowstore 58
rowstore index

data, accessing with 126, 127
data, inserting 128
data, updating 128
page splits 128, 129
scanning 126
structure 125, 126
upside-down tree, building 128
used, for indexing strategy 129

runtime 182
RunTimeCountersPerThread* 110

S
SARGable 120
Scalar UDF inlining feature 209
seek 58
SELECT * 154-158
SELECT DISTINCT 200-202
selectivity 28
SELECT TOP 1 query

performing, with ORDER
BY clause 202-204

self-balancing 128
session 266
Set Options 91-93
Showplan XML trace event 367
Simple Containment 31
Simple Join Containment 405
Snapshot 153
sort operations 82

avoiding 196
sort warning 82
spaghetti code 182
SpatialGuess* 105

sp_executesql
versus EXECUTE 179-181

sp_executesql procedure 18
Spill To Tempdb* 115
spool operators

Eager Spool 79
Index Spool 78
Lazy Spool 79
Row Count Spool 78
Table Spool 78

spools 78-81, 228
SQL Database Engine 8, 29, 400
SQL LogScout 280

download link 280
used, for remote collection 280-284

SQL Operating System (SQLOS) 234
SQL Server 2016 Service Pack 2 (SP2) 87
SQL Server 2017 Cumulative

Update 3 (CU3) 87
SQL Server Integration Services (SSIS) 387
SQL Server Management Studio

(SSMS) 15, 49, 235, 267,
293, 361, 399, 407

Standard Profiling 366
Statement 93
statistics 28, 29
stored procedures 14

unnecessary overhead 211, 212
unnecessary overhead, avoiding

with 211, 212
stream aggregation 84
sys.dm_exec_cached_plans 246
sys.dm_exec_procedure_stats 243, 244
sys.dm_exec_query_optimizer_info 41
sys.dm_exec_query_plan 244, 245
sys.dm_exec_query_plan_stats

DMF 384, 385, 386

Index 429

sys.dm_exec_query_profiles DMV 392
sys.dm_exec_query_statistics_

xml DMF 380-383
sys.dm_exec_query_stats 241, 242
sys.dm_exec_requests 236, 237
sys.dm_exec_sessions 234, 236
sys.dm_exec_sql_text 237, 238
sys.dm_exec_valid_use_hints dynamic

management view 42
sys.dm_os_waiting_tasks 238-240
sys.dm_os_wait_stats DMV 95

T
table cardinality (Tc) 28
Table Scan operator 59, 60
table-valued function (TVF)

constructing 161-166
inline TVFs 162
multi-statement TVFs (MSTVFs) 162

table variables
used, for storing intermediate

results 220-224
target 265
targets, SQL Database Engine

event counter 265
event file 265
event pairing 265
Event Tracing for Windows (ETW) 265
histogram 265
ring buffer 265

temporary tables
used, for storing intermediate

results 220-224
terabytes (TB) 88

Tiger Toolbox
URL 255

TPC-C 366
URL 366

TraceFlags 93, 94
traces

analyzing, with RML Utilities 285-291
Transaction Processing phase, query

optimization workflow 38
Transact-SQL (T-SQL) 3

logical statement processing flow 4
Trivial Plan stage, query optimization

workflow 36-38
T-SQL querying, best practices

cursor, using 153
joining tables 151, 152
NOLOCK, using 152
objects, referencing 150

tuples 28

U
UdfElapsedTime 164
UNION

versus UNION ALL 197-199
uniqueifier 130
UnmatchedIndexes* 105-107
unnecessary overhead

avoiding, with stored procedures 211
User-Defined Functions

(UDFs) 96, 161, 205-210, 213, 317
pitfalls, avoiding 205-210

V
very large database (VLDB) 366

Index430

W
WaitForMemoryGrant* 104
WaitStats 94, 95
Warnings 102, 114

Columns With No Statistics 114, 115
FullUpdateForOnlineIndexBuild* 107
MemoryGrantWarning* 104, 105
No Join Predicate 116
PlanAffectingConvert 102-104
SpatialGuess* 105
Spill To Tempdb* 115
UnmatchedIndexes* 105-107
WaitForMemoryGrant* 104

WHERE clause 120

X
XEvent Profiler

working with 277-279
XEvents 268
XML Path Language (XPath) 255
XQueries 255

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

The MySQL Workshop

Thomas Pettit, Scott Cosentino

ISBN: 978-1-83921-490-5

• Understand the concepts of relational databases and document stores

• Use SQL queries, stored procedures, views, functions, and transactions

• Connect to and manipulate data using MS Access, MS Excel, and Visual Basic for Applications
(VBA)

• Read and write data in the CSV or JSON format using MySQL

• Manage data while running MySQL Shell in JavaScript mode

• Use X DevAPI to access a NoSQL interface for MySQL

• Manage user roles, credentials, and privileges to keep data secure

• Perform a logical database backup with mysqldump and mysqlpump

https://packt.link/1839214902

433Other Books You May Enjoy

Professional Azure SQL Managed Database Administration

Ahmad Osama, Shashikant Shakya

ISBN: 978-1-80107-652-4

• Understanding Azure SQL database configuration and pricing options

• Provisioning a new SQL database or migrating an existing on-premises SQL Server database
to an Azure SQL database

• Backing up and restoring an Azure SQL database

• Securing and scaling an Azure SQL database

• Monitoring and tuning an Azure SQL database

• Implementing high availability and disaster recovery with an Azure SQL database

• Managing, maintaining, and securing managed instances

https://packt.link/1801076529

434

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Learn T-SQL Querying, Second Edition, we’d love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the Amazon review page for this
book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-837-63899-3

435

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your e-book purchase not compatible with the device of your choice?

Don’t worry!, Now with every Packt book, you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the following link:

https://packt.link/free-ebook/9781837638994

2. Submit your proof of purchase.

3. That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781837638994

	Cover
	Title Page
	Copyright and Credits
	Foreword
	Contributors
	Table of Contents
	Preface
	Part 1:
Query Processing Fundamentals
	Chapter 1: Understanding Query Processing
	Technical requirements
	Logical statement processing flow
	Query compilation essentials
	Query optimization essentials
	Query execution essentials
	Plan caching and reuse
	Stored procedures
	Ad hoc plan caching
	Parameterization
	The sp_executesql procedure
	Prepared statements

	How query processing impacts plan reuse
	The importance of parameters
	Security
	Performance
	Parameter sniffing
	To cache or not to cache

	Summary

	Chapter 2: Mechanics of the
Query Optimizer
	Technical requirements
	Introducing the Cardinality Estimator
	Understanding the query optimization workflow
	The Trivial Plan stage
	The Exploration stage
	The Transaction Processing phase
	The Quick Plan phase
	The Full Optimization phase

	Knobs for query optimization
	Summary

	Part 2:
Dos and Don’ts of T-SQL
	Chapter 3: Exploring Query
Execution Plans
	Technical requirements
	What is a query plan?
	Accessing a query plan
	Navigating a query plan
	Query plan operators of interest
	Blocking versus non-blocking operators
	Data access operators
	Joins
	Spools
	Sort and aggregation operators

	Query plan properties of interest
	Plan-level properties
	Operator-level properties

	Summary

	Chapter 4: Indexing for T-SQL Performance
	Technical requirements
	Understanding predicate SARGability
	Data access using indexes
	Structure of a rowstore index
	Data access using rowstore indexes
	Inserting and updating data in a rowstore index

	Indexing strategy using rowstore indexes
	Best practices for clustered indexes
	Best practices for non-clustered indexes

	Index maintenance
	Summary

	Chapter 5: Writing Elegant T-SQL Queries
	Technical requirements
	Best practices for T-SQL querying
	Referencing objects
	Joining tables
	Using NOLOCK
	Using cursors

	The perils of SELECT *
	Functions in our predicate
	Deconstructing table-valued functions
	Complex expressions
	Optimizing OR logic
	NULL means unknown
	Fuzzy string matching
	Inequality logic
	EXECUTE versus sp_executesql
	Composable logic
	Summary

	Chapter 6: Discovering T-SQL Anti-
Patterns in Depth
	Technical requirements
	Implicit conversions
	Avoiding unnecessary sort operations
	UNION ALL versus UNION
	SELECT DISTINCT

	Avoiding UDF pitfalls
	Avoiding unnecessary overhead with stored procedures
	Pitfalls of complex views
	Pitfalls of correlated sub-queries
	Properly storing intermediate results
	Using table variables and temporary tables
	Using Common Table Expressions (CTEs)

	Summary

	Part 3:
Assembling Our Query Troubleshooting Toolbox
	Chapter 7: Building Diagnostic Queries Using DMVs and DMFs
	Technical requirements
	Introducing DMVs
	Exploring query execution DMVs
	sys.dm_exec_sessions
	sys.dm_exec_requests
	sys.dm_exec_sql_text
	sys.dm_os_waiting_tasks

	Exploring query plan cache DMVs
	sys.dm_exec_query_stats
	sys.dm_exec_procedure_stats
	sys.dm_exec_query_plan
	sys.dm_exec_cached_plans

	Troubleshooting common scenarios with DMV queries
	Investigating blocking
	Cached query plan issues
	Single-use plans (query fingerprints)
	Finding resource-intensive queries
	Queries with excessive memory grants

	Mining XML query plans
	Plans with missing indexes
	Plans with warnings
	Plans with implicit conversions
	Plans with lookups

	Summary

	Chapter 8: Building XEvent Profiler Traces
	Technical requirements
	Introducing XEvents
	Getting up and running with XEvent Profiler
	Remote collection with SQL LogScout
	Analyzing traces with RML Utilities
	Summary

	Chapter 9: Comparative Analysis of
Query Plans
	Technical requirements
	Query plan analyzer
	Summary

	Chapter 10: Tracking Performance
History with Query Store
	Technical requirements
	Introducing the Query Store
	Inner workings of the Query Store
	Configuring the Query Store

	Tracking expensive queries
	Fixing regressed queries
	Features that rely on the Query Store
	Query Store for readable secondary replicas
	Query Store hinting
	Parameter Sensitive Plan Optimization
	Automatic Plan Correction
	Degree of parallelism feedback
	Optimized plan forcing

	Summary

	Chapter 11: Troubleshooting Live Queries
	Technical requirements
	Using Live Query Statistics
	Understanding the need for lightweight profiling
	Diagnostics available with Lightweight Profiling

	Activity Monitor gets new life
	Summary

	Chapter 12: Managing Optimizer Changes
	Technical requirements
	Understanding where QTA and CE feedback are needed
	Understanding QTA fundamentals
	Exploring the QTA workflow
	Summary

	Index
	Other Books You May Enjoy

