


Learn T-SQL Querying

A guide to developing efficient and elegant T-SQL code

Pedro Lopes and Pam Lahoud



Learn T-SQL Querying
Second Edition

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted 
in any form or by any means, without the prior written permission of the publisher, except in the case 
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information 
presented. However, the information contained in this book is sold without warranty, either express 
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable 
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and 
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot 
guarantee the accuracy of this information.

Group Product Manager: Kaustubh Manglurkar
Publishing Product Manager: Heramb Bhavsar
Book Project Manager: Hemangi Lotlikar
Content Development Editor: Joseph Sunil
Technical Editor: Rahul Limbachiya
Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Prafulla Nikalje
DevRel Marketing Executive: Nivedita Singh

First published: May 2019
Second edition: February 2024

Production reference: 2010324

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK

ISBN 978-1-83763-899-4
www.packtpub.com



To my wife and life partner, Sandra, and to my esteemed friends, mentors, and former colleagues in 
Azure Data who develop the SQL Database Engine and keep pushing the boundaries of excellence 
– sorry, I can’t list you all here! To the unique people I had the privilege of working with – Amit 
Banerjee, Bob Ward, Conor Cunningham, Hanuma Kodavalla, and Slava Oks – for inspiring 
me to always move forward and do better, and to everyone who keeps developing and supporting 
applications on this most-scalable RDBMS.

– Pedro Lopes

To Andrew and Linus, for spending countless nights and weekends without me. To the entire 
#SQLFamily, who continue to inspire me, support me (and each other), and drive me to be better 
every day. To my computer-illiterate friends, Jodie, Liza, and Erin, who I know will proudly display 
this book on their shelves despite having no idea what any of this means. And to my mom, who bought 
me my first computer when I was 8 years old and said “Sure!” when I decided that adding computer 
science as a second major in my junior year of college seemed like a good idea.

– Pam Lahoud



Foreword

When I first met Pedro Lopes and Pam Lahoud, I already knew that they had both achieved recognition 
as experts in SQL Server, especially in areas such as query processing and performance. As I started 
working with them, I quickly realized that not only was the reputation warranted but I also came to 
see their characteristics of professionalism, thoroughness, and presentation skills.

All these traits come out in this book, and you gain all the benefits. I love how this book is organized. 
If I want to read the entire book end to end, I will first learn the fundamentals and mechanics of the 
optimizer from the perspective of writing T-SQL queries. Then, I will get practical advice on how to 
write effective queries for maximum performance on topics such as indexing. And then, I’m able to 
dive deep into detailed query troubleshooting techniques using the full capabilities of SQL Server. 
This organization of the book also allows me to jump to any section aligning with my skills and 
knowledge. This powerful story is now brought to life in the second edition of this book, bringing 
in enhancements from SQL Server 2019, SQL Server 2022, and Azure SQL designed to make your 
applications faster with no code changes.

Even if you believe that you understand query processing with SQL Server, you will benefit from 
this book. Using visual flows and examples, the first part of the book gives you a great perspective on 
how queries in SQL Server are compiled, executed, and cached. This part also includes key details 
of query processing such as cardinality estimation, optimization phases, and methods to control 
query optimization.

The second part is the crown jewel of the book. Pedro and Pam pour in their years of experience to 
give you the advice you need on topics such as analyzing query plans, proper indexing, best practices 
for crafting T-SQL queries, and the often-overlooked area of anti-pattern queries. These chapters are 
full of rich advice and examples for you to try out yourself.

Finish off the book by learning how to get faster to tune and troubleshoot query performance using 
powerful tools such as Query Profiling, Query Store, and Extended Events. The power of the T-SQL 
language comes to life as you learn how to write queries to debug the queries from your application. 
As readers, you get the benefit of unique information throughout the book because the authors have 
directly worked on these parts of the product.



SQL Server and Azure SQL have evolved over the years to provide more automation and simplify the 
requirements to build and manage successful database applications. However, understanding how to 
use the power of T-SQL is critical to achieving maximum performance and efficiency. Furthermore, 
to take your game to the next level, you need to understand the nuances and mechanics of the query 
optimizer and query execution with T-SQL in the engine. This book provides it all in a manner that 
you can easily understand, with all the latest updates, and in a format that you can use as a reference 
for years to come.

– Bob Ward

Principal architect, Microsoft
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Preface

Experienced and novice users have always faced choices and trade-offs to achieve the very best 
performance when writing T-SQL code for their applications. This book is for all data professionals 
who want to master the art of writing efficient T-SQL code in modern SQL Server versions, as well 
as Azure SQL Database.

This book will start with query processing fundamentals to help you write solid, performant T-SQL queries. 
You will be introduced to query execution plans and how to leverage them for query troubleshooting. 
Later, you will learn how to identify various T-SQL patterns and anti-patterns. This will help you 
analyze execution plans to gain insights into current performance, as well as determine whether a 
query is scalable. You will learn how to build diagnostic queries using dynamic management views 
(DMVs) and dynamic management functions (DMFs) to unlock the secrets of T-SQL execution. 
Furthermore, you will learn how to leverage SQL Server’s built-in tools to shorten the time to address 
query performance and scalability issues. You will learn how to implement various features such as 
Extended Events, Query Store, Query Tuning Assistant, and more, using hands-on examples.

By the end of the book, you will be able to determine where query performance bottlenecks are and 
understand what anti-patterns may be in use and what you need to do to avoid such pitfalls going 
forward. It’s essentially all you need to know to squeeze every last bit of performance out of your 
T-SQL queries.

Who this book is for
This book is for database administrators, database developers, data analysts, data scientists, and T-SQL 
practitioners who want to master the art of writing efficient T-SQL code and troubleshooting query 
performance issues using practical examples. A basic understanding of T-SQL syntax, writing queries 
in SQL Server, and using the SQL Server Management Studio tool is helpful to get started.

What this book covers
Chapter 1, Understanding Query Processing, introduces T-SQL query optimization and execution 
essentials: how does SQL Server optimize and execute T-SQL? How does SQL Server use parameters? 
Are parameters an advantage? When and why does SQL Server cache execution plans for certain T-SQL 
statements but not for others? When is that an advantage and when is it a problem? This is information 
that any T-SQL practitioner needs to keep as a reference for proactive T-SQL query writing, as well as 
reactive troubleshooting and optimization purposes. This chapter will be referenced throughout the 
Execution Plan-related chapters, as we link architectural topics to real-world uses.
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Chapter 2, Mechanics of the Query Optimizer, introduces T-SQL query optimization internals and 
architecture, starting with the infamous Cardinality Estimation process and its building blocks. From 
there, you will understand how the Query Optimizer uses that information to produce a just-in-time, 
good-enough execution plan. This chapter will be referenced throughout the Execution Plan-related 
chapters, as we bridge architectural topics to real-world uses.

Chapter 3, Exploring Query Execution Plans, shows you how to read and analyze a graphical query 
execution plan, where to look for relevant performance information in the plan, and how to use the 
plan to troubleshoot query performance issues.

Chapter 4, Indexing for T-SQL Performance, introduces guidelines to keep in mind for writing T-SQL 
queries that perform and scale well. Some basics of database physical design structure such as indexes 
will be covered, as well as how the optimizer estimates cost and chooses access methods based on 
how the query is written.

Chapter 5, Writing Elegant T-SQL Queries, reveals various common T-SQL patterns and anti-patterns, 
specifically those that should be easily identifiable just by looking at the T-SQL construct. This chapter 
will have more of a cookbook structure. For each of the patterns, we will show a T-SQL example that 
contains the pattern, learn how to rewrite the query to avoid the pattern, and examine query execution 
plans before and after the change to show improved performance.

Chapter 6, Discovering T-SQL Anti-Patterns in Depth, reveals various common T-SQL patterns and 
anti-patterns that require some more in-depth analysis to be identified – the proverbial elephant 
in the room. This chapter will also follow the cookbook structure introduced in Chapter 5, Writing 
Elegant T-SQL Queries.

Chapter 7, Building Diagnostic Queries Using DMVs and DMFs, introduces dynamic management 
views and functions that expose relevant just-in-time information to unlock the secrets of T-SQL 
execution. It includes real-world examples of how to use these artifacts to troubleshoot different poor 
performance scenarios, either leveraging snippets provided in this book or in GitHub, and how to 
build customized scripts.

Chapter 8, Building XEvent Profiler Traces, introduces Extended Events (XEvents), the lightweight 
infrastructure that exposes relevant just-in-time information from every component of the SQL 
Database Engine, focused on those related to T-SQL execution. You will get real-world examples of 
how to use these XEvents to troubleshoot different poor performance scenarios, leveraging collection 
and analysis tools such as the XEvent Profiler, LogScout, and Replay Markup Language for event 
analysis, and dropping a note on the infamously deprecated SQL Server Profiler.

Chapter 9, Comparative Analysis of Query Plans, introduces rich-UI tools that ship with SQL Server 
Management Studio to enable standalone query plan analysis or compare plans from different points in 
time. It then moves on to visually pinpoint the interesting parts that may provide the key to improving 
T-SQL query performance and scalability.
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Chapter 10, Tracking Performance History with Query Store, introduces a flagship feature: Query Store. 
This is a practical approach to leveraging what is effectively a flight recorder for your SQL Database 
Engine T-SQL execution, for the purpose of trend analysis or T-SQL performance troubleshooting and 
analysis, through rich UI reports that ship with SQL Server Management Studio. Then, you will see 
how Query Store integrates with the Query Plan Comparison and Query Plan Analysis functionalities 
for a complete, UI-driven workflow for query performance insights. Lastly, we’ll review some of the 
SQL Database Engine features that rely on the data collected by Query Store.

Chapter 11, Troubleshooting Live Queries, introduces the profiling infrastructure that exposes real-time 
query execution plans, which enable scenarios such as production system troubleshooting. You will 
see a real-world example of how to leverage rich UI tools: Live Query Statistics as a standalone case 
or as part of the Activity Monitor functionality of SQL Server Management Studio.

Chapter 12, Managing Optimizer Changes, discusses two features – QTA (client-side) and CE Feedback 
(server-side) – which aim to address some of the most common causes of cardinality estimation 
(CE)-related performance regressions that may affect our T-SQL queries after an upgrade from an 
older version of the SQL Database Engine to a newer version.

To get the most out of this book
A basic understanding of using the SQL Database Engine and writing T-SQL queries will help get you 
started with this book. Some familiarity with SQL Server Management Studio or Azure Data Studio 
is also helpful for running the sample queries and viewing query execution plans.

Software/hardware covered in the book Operating system requirements

SQL Server (version 2012 or later) and Azure SQL Database Windows or Linux

SQL Server Management Studio Windows

Azure Data Studio Windows, macOS, or Linux

The examples used in this book are designed for use on SQL Server 2022 and Azure SQL Database, but 
they should work on any version of SQL Server 2012 or later. The Developer Edition of SQL Server is 
free for development environments and can be used to run all the code samples. There is also a free 
tier of Azure SQL Database that you can use for testing at https://aka.ms/freedb.

You will need the AdventureWorks2016_EXT (referred to as AdventureWorks) and 
AdventureWorksDW2016_EXT (referred to as AdventureWorksDW) sample databases, which 
can be found on GitHub at https://github.com/Microsoft/sql-server-samples/
releases/tag/adventureworks.

https://aka.ms/freedb
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
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If you are using the digital version of this book, we advise you to type the code yourself or access 
the code from the book’s GitHub repository (a link is available in the next section). Doing so will 
help you avoid any potential errors related to the copying and pasting of code.

Note
This book contains many horizontally long screenshots. These have been captured to provide 
readers with an overview of the execution plans for various SQL queries. As a result, the text in 
these images may appear small at 100% zoom. Additionally, you will be able to see these plans in 
more depth in the output in SQL Server as you code along.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Learn-T-SQL-Querying-Second-Edition. If there’s an update to 
the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Mount 
the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

A block of code is set as follows:

SELECT LastName, FirstName
FROM Person.Person
WHERE FirstName = N'Andrew';

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, 
words in menus or dialog boxes appear in bold. Here is an example: “Select System info from the 
Administration panel.”

Tips or important notes
Appear like this.

https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
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Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Learn T-SQL Querying, Second Edition, we’d love to hear your thoughts! Please click 
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1-837-63899-3
https://packt.link/r/1-837-63899-3
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Part 1:  
Query Processing 

Fundamentals

To understand how to write solid, performant T-SQL queries, users should know how SQL Server 
runs the T-SQL syntax to deliver the intended result sets in a scalable fashion. This part introduces 
you to concepts that are used throughout the remaining parts of the book to explain most patterns 
and anti-patterns, as well as mitigation strategies.

This part has the following chapters:

• Chapter 1, Understanding Query Processing

• Chapter 2, Mechanics of the Query Optimizer





1
Understanding  

Query Processing

Transact-SQL, or T-SQL as it has become commonly known, is the language used to communicate 
with Microsoft SQL Server and Azure SQL Database. Any actions a user wishes to perform in a server, 
such as retrieving or modifying data in a database, creating objects, or changing server configurations, 
are all done via T-SQL commands.

The first step in learning to write efficient T-SQL queries is understanding how the SQL Database 
Engine processes and executes the query. The Query Processor is a component, therefore a noun, 
should not be all lowercased includes query compilation, query optimization, and query execution 
essentials: how does the SQL Database Engine compile an incoming T-SQL statement? How does the 
SQL Database Engine optimize and execute a T-SQL statement? How does the SQL Database Engine 
use parameters? Are parameters an advantage? When and why does the SQL Database Engine cache 
execution plans for certain T-SQL statements but not for others? When is that an advantage and 
when is it a problem? This is information that any T-SQL practitioner needs to keep as a reference for 
proactive T-SQL query writing, as well as reactive troubleshooting and optimization purposes. This 
chapter will be referenced throughout all following chapters, as we bridge the gap between architectural 
topics and real-world usage.

In this chapter, we’re going to cover the following main topics:

• Logical statement processing flow

• Query compilation essentials

• Query optimization essentials

• Query execution essentials

• Plan caching and reuse

• The importance of parameters
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Technical requirements
The examples used in this chapter are designed for use on SQL Server 2022 and Azure SQL Database, 
but they should work on SQL Server version 2012 or later. The Developer Edition of SQL Server is 
free for development environments and can be used to run all the code samples. There is also a free 
tier of Azure SQL Database you can use for testing at https://aka.ms/freedb.

You will need the sample database AdventureWorks2016_EXT (referred to as AdventureWorks), 
which can be found on GitHub at https://github.com/Microsoft/sql-server-
samples/releases/tag/adventureworks. The code samples for this chapter can also be 
found on GitHub at https://github.com/PacktPublishing/Learn-T-SQL-Querying-
Second-Edition/tree/main/ch1.

Logical statement processing flow
When writing T-SQL, it is important to be familiar with the order in which the SQL Database Engine 
interprets queries, to later create an execution plan. This helps anticipate possible performance issues 
arising from poorly written queries, as well as helping you understand cases of unintended results. 
The following steps outline a summarized view of the method that the Database Engine follows to 
process a T-SQL statement:

1. Process all the source and target objects stated in the FROM clause (tables, views, and TVFs), 
together with the intended logical operation (JOIN and APPLY) to perform on those objects.

2. Apply whatever pre-filters are defined in the WHERE clause to reduce the number of incoming 
rows from those objects.

3. Apply any aggregation defined in the GROUP BY or aggregate functions (for example, a MIN 
or MAX function).

4. Apply filters that can only be applied on the aggregations as defined in the HAVING clause.

5. Compute the logic for windowing functions such as ROW_NUMBER, RANK, NTILE, LAG, 
and LEAD.

6. Keep only the required columns for the output as specified in the SELECT clause, and if a 
UNION clause is present, combine the row sets.

7. Remove duplicates from the row set if a DISTINCT clause exists.

8. Order the resulting row set as specified by the ORDER BY clause.

9. Account for any limits stated in the TOP clause.

https://aka.ms/freedb
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch1
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch1
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It becomes clearer now that properly defining how tables are joined (the logical join type) is important 
to any scalable T-SQL query, namely by carefully planning on which columns the tables are joined. For 
example, in an inner join, these join arguments are the first level of data filtering that can be enforced, 
because only the rows that represent the intersection of two tables are eligible for subsequent operations.

Then it also makes sense to filter out rows from the result set using a WHERE clause, rather than 
applying any post-filtering conditions that apply to sub-groupings using a HAVING clause. Consider 
these two example queries:

SELECT p.ProductNumber, AVG(sod.UnitPrice)
FROM Production.Product AS p
INNER JOIN Sales.SalesOrderDetail AS sod ON p.ProductID = sod.
ProductID
GROUP BY p.ProductNumber
HAVING p.ProductNumber LIKE 'L%';
SELECT p.ProductNumber, AVG(sod.UnitPrice)
FROM Production.Product AS p
INNER JOIN Sales.SalesOrderDetail AS sod ON p.ProductID = sod.
ProductID
WHERE p.ProductNumber LIKE 'L%'
GROUP BY p.ProductNumber;

While these two queries are logically equivalent, the second one is more efficient because the rows 
that do not have a ProductNumber starting with L will be filtered out of the results before the 
aggregation is calculated. This is because the SQL Database Engine evaluates a WHERE clause before 
a HAVING clause and can limit the row count earlier in the execution phase, translating into reduced 
I/O and memory requirements, and also reduced CPU usage when applying the post-filter to the group.

The following diagram summarizes the logical statement-processing flow for the building blocks 
discussed previously in this chapter:

Figure 1.1: Flow chart summarizing the logical statement-processing flow of a query

Now that we understand the order in which the SQL Database Engine processes queries, let’s explore 
the essentials of query compilation.
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Query compilation essentials
The main stages of query processing can be seen in the following overview diagram, which we will 
expand on throughout this chapter:

Figure 1.2: Flow chart representing the states of query processing

The Query Processor is the component inside the SQL Database Engine that is responsible for compiling 
a query. In this section, we will focus on the highlighted steps of the following diagram that handle 
query compilation:

Figure 1.3: States of query processing related to query compilation
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The first stage of query processing is generally known as query compilation and includes a series of 
tasks that will eventually lead to the creation of a query plan. When an incoming T-SQL statement 
is parsed to perform syntax validations and ensure that it is correct T-SQL, a query hash value is 
generated that represents the statement text exactly as it was written. If that query hash is already mapped 
to a cached query plan, then it can just attempt to reuse that plan. However, if a query plan for the 
incoming query is not already found in the cache, query compilation proceeds with the following tasks:

1. Perform binding, which is the process of verifying that the referenced tables and columns exist 
in the database schema.

2. References to a view are replaced with the definition of that view (this is called expanding 
the view).

3. Load metadata for the referenced tables and columns. This metadata is as follows:

A. The definition of tables, indexes, views, constraints, and so on, that apply to the query.

B. Data distribution statistics on the applicable schema object.

4. Verify whether data conversions are required for the query.

Note
When the query compilation process is complete, a structure that can be used by the Query 
Optimizer is produced, known as the algebrizer tree or query tree.

The following diagram further details these compilation tasks:

Figure 1.4: Flow of compilation tasks for T-SQL statements
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If the T-SQL statement is a Data Definition Language (DDL) statement, there’s no possible optimization, 
and so a plan is produced immediately. However, if the T-SQL statement is a Data Manipulation 
Language (DML) statement, the SQL Database Engine will move to an exploratory process known 
as query optimization, which we will explore in the next section.

Query optimization essentials
The Query Processor is also the component inside the SQL Database Engine that is responsible for 
query optimization. This is the second stage of query processing and its goal is to produce a query 
plan that can then be cached for all subsequent uses of the same query. In this section, we will focus 
on the highlighted sections of the following diagram that handle query optimization:

Figure 1.5: States of query processing related to query optimization

The SQL Database Engine uses cost-based optimization, which means that the Query Optimizer is 
driven mostly by estimations of the required cost to access and transform data (such as joins and 
aggregations) that will produce the intended result set. The purpose of the optimization process is 
to reasonably minimize the I/O, memory, and compute resources needed to execute a query in the 
fastest way possible. But it is also a time-bound process and can time out. This means that the Query 
Optimizer may not iterate through all the possible optimization permutations of a given T-SQL 
statement, but rather stops itself after finding an estimated “good enough” compromise between low 
resource usage and faster execution times.

For this, the Query Optimizer takes several inputs to later produce what is called a query execution 
plan. These inputs are the following:
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• The incoming T-SQL statement, including any input parameters

• The loaded metadata, such as statistics histograms, available indexes and indexed views, 
partitioning, and the number of available schedulers

Note
We will further discuss the role of statistics in Chapter 2, Mechanics of the Query Optimizer, 
and dive deeper into execution plans in Chapter 3, Exploring Query Execution Plans, later in 
this book.

As part of the optimization process, the SQL Database Engine also uses internal transformation 
rules and some heuristics to narrow the optimization space – in other words, to narrow the number 
of transformation rules that can be applied to the incoming T-SQL statement. The SQL Database 
Engine has over 400 such transformation rules that are applicable depending on the incoming T-SQL 
statement. For reference, these rules are exposed in the undocumented dynamic management view 
sys.dm_exec_query_transformation_stats. The name column in this DMV contains 
the internal name for the transformation rule. An example is LOJNtoNL: an implementation rule to 
transform a logical LEFT OUTER JOIN to a physical nested loops join operator.

And so, the Query Optimizer may transform the T-SQL statement as written by a developer before 
it is allowed to execute. This is because T-SQL is a declarative language: the developer declares what 
is intended, but the SQL Database Engine determines how to carry out the declared intent. When 
evaluating transformations, the Query Optimizer must adhere to the rules of logical operator precedence. 
When a complex expression has multiple operators, operator precedence determines the sequence 
in which the operations are performed. For example, in a query that uses comparison and arithmetic 
operators, the arithmetic operators are handled before the comparison operators. This determines 
whether a Compute Scalar operator can be placed before or after a Filter operator.

The Query Optimizer will consider numerous strategies to search for an efficient execution plan, 
including the following:

• Index selection

Are there indexes to cover the whole or parts of the query? This is done based on which search 
and join predicates (conditions) are used, and which columns are required for the query output.

• Logical join reordering

The order in which tables are actually joined may not be the same order as they are written 
in the T-SQL statement itself. The SQL Database Engine uses heuristics as well as statistics to 
narrow the number of possible join permutations to test, and then estimate which join order 
results in early filtering of rows and less resource usage. For example, depending on how a 
query that joins 6 tables is written, possible join reordering permutations range from roughly 
700 to over 30,000.
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• Partitioning

Is data partitioned? If so, and depending on the predicate, can the SQL Database Engine avoid 
accessing some partitions that are not relevant for the query?

• Parallelism

Is it estimated that execution will be more efficient if multiple CPUs are used?

• Whether to expand views

Is it better to use an indexed view, or conversely expand and inline the view definition to 
account for the base tables?

• Join elimination

Are two tables being joined in a way that the number of rows resulting from that join is zero? 
If so, the join may not even be executed.

• Sub-query elimination

This relies on the same principle as join elimination. Was it estimated that the correlated or 
non-correlated sub-query will produce zero rows? If so, the sub-query may not even be executed.

• Constraint simplification

Is there an active constraint that prevents any rows from being generated? For example, does 
a column have a non-nullable constraint, but the query predicate searches for null values in 
that column? If so, then that part of the query may not even be executed.

• Eligibility for parameter sensitivity optimization

Is the database where the query is executing subject to Database Compatibility Level 160? If so, 
are there parameterized predicates considered at risk of being impacted by parameter sniffing?

• Halloween protection

Is this an update plan? If so, is there a need to add a blocking operator?
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Note
An update plan has two parts: a read part that identifies the rows to be updated and a write 
part that performs the updates, which must be executed in two separate steps. In other words, 
the actual update of rows must not affect the selection of which rows to update. This problem 
of ensuring that the write cursor of an update plan does not affect the read cursor is known 
as “Halloween protection” as it was discovered by IBM researchers more than 40 years ago, 
precisely on Halloween.

For the Query Optimizer to do its job efficiently in the shortest amount of time possible, data 
professionals need to do their part, which can be distilled into three main principles:

• Design for performance

Ensure that our tables are designed with purposeful use of the appropriate data types and 
lengths, that our most used predicates are covered by indexes, and that the engine is allowed 
to identify and create the required statistical information.

• Write simple T-SQL queries

Be purposeful with the number of joined tables, how the joins are expressed, the number of 
columns needed for the result set, how parameters and variables are declared, and which data 
transformations are used. Complexity comes at a cost and it may be a wise strategy to break 
down long T-SQL statements into smaller parts that create intermediate result sets.

• Maintain our database health

From a performance standpoint alone, ensure that index maintenance and statistics updates 
are done regularly.

At this point, it starts to become clear that how we write a query is fundamental to achieving good 
performance. But it is equally important to make sure the Query Optimizer is given a chance to do 
its job to produce an efficient query plan. That job is dependent on having metadata available that 
accurately portrays the data distribution in base tables and indexes. Later in this book, in Chapter 5, 
Writing Elegant T-SQL Queries, we will further distill what data professionals need to know to write 
efficient T-SQL that performs well.

Also, in the Mechanics of the Query Optimizer chapter, we will cover the Query Optimizer and the 
estimation process in greater detail. Understanding how the SQL Database Engine optimizes a query 
and what the process looks like is a fundamental step toward troubleshooting query performance – a 
task that every data professional will do at some point in their career.
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Now that we have reviewed query compilation and optimization, the next step is query execution, 
which we will explore in the following section.

Query execution essentials
Query execution is driven by the Relational Engine in the SQL Database Engine. This means executing 
the plan that resulted from the optimization process. In this section, we will focus on the highlighted 
parts of the following diagram that handle query execution:

Figure 1.6: States of query processing related to query execution

Before execution starts, the Relational Engine needs to initialize the estimated amount of memory 
needed to run the query, known as a memory grant. Along with the actual execution, the Relational 
Engine schedules the worker threads (also known as threads or workers) for the processes to run on 
and provides inter-thread communication. The number of worker threads spawned depends on two 
key aspects:

• Whether the plan is eligible for parallelism as determined by the Query Optimizer.

• What the actual available degree of parallelism (DOP) is in the system based on the current 
load. This may differ from the estimated DOP, which is based on the server configuration max 
degree of parallelism (MaxDOP). For example, the MaxDOP may be 8 but the available DOP 
at runtime can be only 2, which impacts query performance.
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During execution, as parts of the plan that require data from the base tables are processed, the 
Relational Engine requests that the Storage Engine provide data from the relevant rowsets. The data 
returned from the Storage Engine is processed into the format defined by the T-SQL statement, and 
returns the result set to the client.

This doesn’t change even on highly concurrent systems. However, as the SQL Database Engine needs 
to handle many requests with limited resources, waiting and queuing are how this is achieved.

To understand waits and queues in the SQL Database Engine, it is important to introduce other 
query execution-related concepts. From an execution standpoint, this is what happens when a client 
application needs to execute a query:

Figure 1.7: Timeline of events when a client application executes a query

Tasks and workers can naturally accumulate waits until a request completes – we will see how to 
monitor these in Building diagnostic queries using DMVs and DMFs. These waits are surfaced in each 
request, which can be in one of three different statuses during its execution:

Figure 1.8: States of task execution in the Database Engine
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• Running: When a task is actively running within a scheduler.

• Suspended: When a task that is running in a scheduler finds out that a required resource is 
not available at the moment, such as a data page, it voluntarily yields its allotted processor time 
so that another request can proceed instead of allowing for idle processor time. But a task can 
be in this state before it even gets on a scheduler. For example, if there isn’t enough memory to 
grant to a new incoming query, that query must wait for memory to become available before 
starting actual execution.

• Runnable: When a task is waiting on a first-in first-out queue for scheduler time, but otherwise 
has access to the required resources such as data pages.

All these concepts and terms play a fundamental role in understanding query execution and are also 
important to keep in mind when troubleshooting query performance. We will further explore how to 
detect some of these execution conditions in Chapter 3, Exploring Query Execution Plans.

Plan caching and reuse
As we have now established, the process of optimizing a query can consume a large amount of resources 
and take a significant amount of time, so it makes sense to avoid that effort if possible whenever a 
query is executed. The SQL Database Engine caches nearly every plan that is created so that it can be 
reused when the same query is executed again. But not all execution plans are eligible for caching; 
for example, no DDL statements are cached, such as CREATE TABLE. As for DML statements, 
most simple forms that only have one possible execution plan are also not cached, such as INSERT 
INTO … VALUES.

There are several different methods for plan caching. The method that is used is typically based on 
how the query is called from the client. The different methods of plan caching that will be covered in 
this section are the following:

• Stored procedures

• Ad hoc plan caching

• Parameterization (simple and forced)

• The sp_executesql procedure

• Prepared statements

Stored procedures

A stored procedure is a group of one or more T-SQL statements that is stored as an object in a SQL 
database. Stored procedures are like procedures in other programming languages in that they can 
accept input parameters and return output parameters, they can contain control flow logic such as 
conditional statements (IF … ELSE), loops (WHILE), and error handling (TRY … CATCH), and 



Plan caching and reuse 15

they can return a status value to the caller indicating success or failure. They can even contain calls to 
other stored procedures. There are many benefits to using stored procedures, but in this section, we 
will focus mainly on their benefit of reducing the overhead of the compilation process through caching.

The first time a stored procedure is executed, the SQL Database Engine compiles and optimizes the 
T-SQL within the procedure, and the resulting execution plan is cached for future use. Every subsequent 
call to the procedure reuses the cached plan, until such a time as the plan is removed from the cache 
due to reasons such as the following:

• Memory pressure

• Server restart

• Plan invalidation – when the underlying objects are changed in some way or a significant 
amount of data is changed

Stored procedures are the preferred method for plan caching as they provide the most effective 
mechanism of caching and reusing query plans in the SQL Database Engine.

Ad hoc plan caching

An ad hoc query is a T-SQL query that is sent to the server as a block of text with no parameter markers 
or other constructs. They are typically built on the fly as needed, such as a query that is typed into a 
query window in SQL Server Management Studio (SSMS) and executed, or one that is sent to the 
server using the EXECUTE command as in the following code example, which can be executed in the 
AdventureWorks sample database:

EXECUTE (N'SELECT LastName, FirstName, MiddleName
FROM Person.Person

WHERE PersonType = N''EM'';')

Note
The letter N preceding a string in a T-SQL script indicates that the string should be interpreted 
as Unicode with UTF-16 encoding. In order to avoid implicit data-type conversions, be sure to 
specify N for all Unicode string literals when writing T-SQL scripts that involve the NCHAR 
and NVARCHAR data types. We discuss implicit conversions and their impact on performance 
in Chapter 6, Discovering T-SQL Anti-Patterns in Depth.

The process of parsing and optimizing an ad hoc query is like that of a stored procedure, and will be 
just as costly, so it is worth the SQL Database Engine storing the resulting plan in the cache in case 
the exact same query is ever executed again. The problem with ad hoc caching is that it is extremely 
difficult to ensure that the resulting plan is reused.
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For the SQL Database Engine to reuse an ad hoc plan, the incoming query must match the cached 
query exactly. Every character must be the same, including spaces, line breaks, and capitalization. 
The reason for this is that the SQL Database Engine uses a hash function across the entire string to 
match the T-SQL statement. If even one character is off, the hash values will not match, and the SQL 
Database Engine will again compile, optimize, and cache the incoming ad hoc statement. For this 
reason, ad hoc caching cannot be relied upon as an effective caching mechanism.

Note
Even if the database is configured to use case-insensitive collation, this does not apply to query 
parsing. The ad hoc plan matching is still case sensitive because of the algorithm used to generate 
the hash value for the query string.

If there are many ad hoc queries being sent to an instance of the SQL Database Engine, the plan cache 
can become bloated with single-use plans. This can cause performance issues on the system as the 
plan cache will be unnecessarily large, taking up memory that could be better used elsewhere in the 
system. In this case, turning on the optimize for ad hoc workloads server configuration option is 
recommended. When this option is turned on, the SQL Database Engine will cache a small plan stub 
object the first time an ad hoc query is executed. This object takes up much less space than a full plan 
object and will minimize the size of the ad hoc cache. If the query is ever executed a second time, the 
full plan will be cached.

Tip
See the chapter Building Diagnostic Queries using DMVs and DMFs later in this book for a 
query that will help identify single-use plans in the cache.

Parameterization

Parameterization is the practice of replacing a literal value in a T-SQL statement with a parameter 
marker. Building on the example from the Ad hoc plan caching section, the following code block 
shows an example of a parameterized query executed in the AdventureWorks sample database:

DECLARE @PersonType AS nchar(2) = N'EM';
SELECT LastName, FirstName, MiddleName
FROM Person.Person
WHERE PersonType = @PersonType;

In this case, the literal value 'EM' is moved from the T-SQL statement itself into a DECLARE 
statement, and the variable is used in the query instead. This allows the query plan to be reused 
for different @PersonType values, whereas sending different values directly in the query string 
would result in a separate cached ad hoc plan.
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Simple parameterization

In order to minimize the impact of ad hoc queries, the SQL Database Engine will automatically 
parameterize some simple queries by default. This is called simple parameterization and is the default 
setting of the Parameterization database option. With parameterization set to Simple, the SQL 
Database Engine will automatically replace literal values in an ad hoc query with parameter markers 
in order to make the resulting query plan reusable. This works for some queries, but there is a very 
small class of queries that can be parameterized this way.

As an example, the query we introduced previously in the Parameterization section would not be 
automatically parameterized in simple mode because it is considered unsafe. This is because different 
PersonType values may yield a different number of rows, and thus require a different execution 
plan. However, the following query executed in the AdventureWorks sample database would 
qualify for simple automatic parameterization:

SELECT LastName, FirstName, MiddleName
FROM Person.Person
WHERE BusinessEntityID = 5;

This query would not be cached as-is. The SQL Database Engine would convert the literal value of 5 
to a parameter marker, and it would look something like this in the cache:

(@1 tinyint) SELECT LastName, FirstName, MiddleName
FROM Person.Person
WHERE BusinessEntityID = @1;

Forced parameterization

If an application tends to generate many ad hoc queries, and there is no way to modify the application 
to parameterize the queries, the Parameterization database option can be changed to Forced. When 
forced parameterization is turned on, the SQL Database Engine will replace all literal values in all 
ad hoc queries with parameter markers for the majority of use cases. However, note that there are 
documented exceptions that are either of the following:

• Edge cases that most developers will not face, such as statements that contain more than 
2,097 literals

• Non-starters because statements will not be parameterized irrespective of whether forced 
parameterization is enabled or not, such as when statements contain the RECOMPILE query 
hint, statements inside the bodies of stored procedures, triggers, user-defined functions, or 
prepared statements that have already been parameterized on the client-side application
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Take the example of the following query executed in the AdventureWorks sample database:

SELECT LastName, FirstName, MiddleName
FROM Person.Person
WHERE PersonType = N'EM' AND BusinessEntityID IN (5, 7, 13, 17, 19);

This query would be automatically parameterized under forced parameterization as follows:

(@1 nchar(2), @2 int, @3 int, @4 int, @5 int, @6 int) SELECT LastName, 
FirstName, MiddleName
FROM Person.Person
WHERE PersonType = @1 AND BusinessEntityID IN (@2, @3, @4, @5, @6);

This has the benefit of increasing the reusability of all ad hoc queries, but there are some risks to 
parameterizing all literal values in all queries, which will be discussed later in the The importance of 
parameters section.

The sp_executesql procedure

The sp_executesql procedure is the recommended method for sending an ad hoc T-SQL 
statement to the SQL Database Engine. If stored procedures cannot be leveraged for some reason, such 
as when T-SQL statements must be constructed dynamically by the application, sp_executesql 
allows the user to send an ad hoc T-SQL statement as a parameterized query, which uses a similar 
caching mechanism to stored procedures. This ensures that the plan can be reused whenever the 
same query is executed again. Building on our example from the Ad hoc plan caching section, we can 
re-write the query using sp_executesql as in the following example, which can be executed in 
the AdventureWorks sample database:

EXECUTE sp_executesql @stmt = N'SELECT LastName,
      FirstName, MiddleName
      FROM Person.Person
      WHERE PersonType = @PersonType;',
@params = N'@PersonType nchar(2)',
@PersonType = N'EM';

This ensures that any time the same query is sent with the same parameter markers, the plan will be 
reused, even if the statement is dynamically generated by the application.
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Prepared statements

Another method for sending parameterized T-SQL statements to the SQL Database Engine is by using 
prepared statements. Leveraging prepared statements involves three different system procedures:

1. sp_prepare: Defines the statement and parameters that are to be executed, creates an 
execution plan for the query, and sends a statement handle back to the caller that can be used 
for subsequent execution.

2. sp_execute: Executes the statement defined by sp_prepare by sending the statement 
handle along with any parameters to the SQL Database Engin.

3. sp_unprepare: Discards the execution plan created by sp_prepare for the query specified 
by the statement handle

Steps 1 and 2 can optionally be combined into a single sp_prepexec statement to save a round-
trip to the server.

This method is not generally recommended for plan reuse as it is a legacy construct and may not take 
advantage of some of the benefits of parameterized statements that sp_executesql and stored 
procedures can leverage. It is worth mentioning, however, because it is used by some cross-platform 
database connectivity libraries such as Open Database Connectivity (ODBC) and Java Database 
Connectivity (JDBC) as the default mechanism for sending queries to the SQL Database Engine.

Now that we’ve learned the different ways that plans may be cached, let’s explore how plans may be 
reused during query processing.

How query processing impacts plan reuse
It’s important to contextualize what happens in terms of query processing that can result in plan 
caching and reuse. In this section, we will focus on the highlighted section of the following diagram 
that determines whether a query plan can be reused from the cache or needs to be recompiled:
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Figure 1.9: States of query processing related to query compilation/recompilation

As mentioned before, when an incoming T-SQL statement is parsed, a query hash value representing 
that statement is generated, and if that query hash is already mapped to a cached query plan, then 
it can just attempt to reuse that plan – unless special circumstances exist that don’t even allow plan 
caching, such as when the RECOMPILE hint is present in the T-SQL statement.

Assuming no such pre-existing conditions exist, after matching the query hash with a plan hash, the 
currently cached plan is tested for correctness, meaning that the SQL Database Engine will check 
whether anything has changed in the underlying referenced objects that would require the plan to be 
recompiled. For example, if a new index was created or an existing index referenced in the plan was 
dropped, the plan must be recompiled.

If the cached plan is found to be correct, then the SQL Database Engine also checks whether enough 
data has changed to warrant a new plan. This refers to the statistics objects associated with tables and 
indexes used in the T-SQL statement, and if any are deemed outdated – meaning its modification 
counter is high enough as it relates to the overall cardinality of the table to consider it stale.
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Note
In SQL Server 2022 and Azure SQL Database, if the new Parameter Sensitive Plan (PSP) 
Optimization feature is used, one query hash can map to multiple query plan hashes. Each 
different plan hash is a standalone query plan called a variant, and maps to a single query hash that 
was deemed eligible for PSP Optimization. Each plan variant can be recompiled independently. 
PSP Optimization will be discussed later in the The importance of parameters section.

We will further discuss the role of statistics in the chapter Mechanics of the Query Optimizer, 
and query hashes and query plan hashes in the chapter Exploring Query Execution Plans, in 
the Operator-level properties section.

If nothing has significantly changed, then the query plan can be executed, as we discussed in this 
chapter in the Query execution essentials section.

The following picture depicts the high-level process for an already cached plan that can be executed as-is:

Figure 1.10: Process for executing a cached plan as-is

However, if any of the preceding checks fail, then the SQL Database Engine invalidates the cached plan 
and a new query plan needs to be compiled, as the available optimization space may be different from 
the last time the plan was compiled and cached. In this case, the T-SQL statement needs to undergo 
recompilation and go through the optimization process driven by the Query Optimizer so that a 
new query execution plan is generated (we will describe this process in greater detail in the chapter 
Mechanics of the Query Optimizer). If eligible, this newly generated query plan is cached.

Note
The same process is followed for new incoming queries where no query plan is yet cached.

Now that we understand how the SQL Database Engine caches and reuses query plans, let’s explore 
one of the most important factors that determines whether a plan may be reused – parameters.

The importance of parameters
As we discussed in the previous section on caching methods, the primary reason to parameterize 
queries is to ensure that query execution plans get reused – but why is this important and what other 
reasons might there be to use parameters?
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Security

One reason for using parameterized queries is for security. Using a properly formatted parameterized 
query can protect against SQL injection attacks. A SQL injection attack is one where a malicious 
user can execute database code (in this case, T-SQL) on a server by appending it to a data entry field 
in the application. As an example, assume we have an application that contains a form that asks the 
user to enter their name into a text box. If the application were to use an ad hoc statement to insert 
this data into the database, it would generally concatenate a T-SQL string with the user input, as in 
the following code:

DECLARE @sql nvarchar(MAX);
SET @sql = N'INSERT Users (Name) VALUES (''' + <user input> + ''');';
EXECUTE (@sql);

A malicious user might enter the following value into the text box:

Bob'); DROP TABLE Users; --

If this is the case, the actual code that gets sent to the SQL Database Engine would look like the following:

INSERT Users (Name) VALUES ('Bob'); DROP TABLE Users; --');

This is a valid T-SQL syntax that would successfully execute. It would first insert a row into the Users 
table with the Name column set to 'Bob', then it would drop the Users table. This would of course 
break the application, and unless there was some sort of auditing in place, we would never know 
what happened.

Let’s look at this example again using a parameterized query. The code might look like the following:

EXECUTE sp_executesql @stmt = N'INSERT Users (Name) VALUES (@name)', @
params = N'@name nvarchar(100)', @name = <user input>

This time, if the user were to send the same input, rather than executing the query that the user 
embedded in the string, the Database Engine would insert a row into the Users table with the Name 
column set to 'Bob'); DROP TABLE Users; --'. This would obviously look a bit strange, 
but it wouldn’t break the application nor breach security.

Performance

Another reason to leverage parameters is performance. In a busy SQL system, particularly one that 
has a primarily Online Transaction Processing (OLTP) workload, we may have hundreds or even 
thousands of queries executing per second.
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Assume that each one of these queries takes about 100 ms to compile and consumes about the same 
amount of CPU. This would mean that each second on the system, the server could be consuming 
hundreds of seconds of CPU time just compiling queries. That’s a lot of resources to consume just for 
preparing the queries for execution, and it doesn’t leave a lot of overhead for actually executing them.

Also recall that when plans are not reused, the procedure cache can become very large and consume 
memory that in turn won’t be available for storing data and executing queries. In short, a system 
that spends too much time compiling queries may become CPU and/or memory bound and may 
perform poorly.

Parameter sniffing

Given that query plan reuse is so important, why wouldn’t the SQL Database Engine parameterize every 
query that comes in by default? One of the reasons for this is to avoid query performance issues that 
may result from parameter sniffing. Parameter sniffing is something the SQL Database Engine does 
in order to optimize a parameterized query. The first time a stored procedure or other parameterized 
query executes, the input parameter values are used to drive the optimization process and produce 
the execution plan, as discussed in the Query optimization essentials section.

That execution plan will then be cached and reused by subsequent executions of the procedure or query. 
For most queries, this is a good thing because using a specific value will result in a more accurate cost 
estimation. In some situations, however, particularly where the data distribution is skewed in some 
way, the parameters that are sent the first time the query is executed may not represent the typical use 
case of the query, and the plan that is generated may perform poorly when other parameter values are 
sent. This is a case where reusing a plan might not be a good thing, because the plan is highly sensitive 
to user-defined runtime parameters that have widely different data distributions for the same column.

Parameter sniffing, or parameter sensitivity, is a very common cause of plan variability and performance 
issues in the SQL Database Engine.

Parameter Sensitive Plan Optimization

SQL Server 2022 introduces the Parameter Sensitive Plan Optimization feature (commonly referred 
to as PSP Optimization), which allows the Database Engine to simultaneously cache multiple plans 
for a single parameterized query that uses equality predicates.

With PSP Optimization, during the initial compilation of a parameterized query, the Query Optimizer 
will evaluate up to three parameters that are likely sensitive to non-uniform (skewed) data distributions. 
The feature uses the statistics histograms to search for where the cardinality difference between the least-
occurring value and the most-occurring value for a given column is orders of magnitude off. The result 
is the creation of what is called a dispatcher plan, which contains the logic (dispatcher expression) that 
bucketizes the predicates’ values, upon which different plan variants can be compiled independently.
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For each cardinality bucket, a query plan variant will only be compiled if needed, based on actual 
runtime parameters. If the parameter values that would result in a given plan variant are never used at 
runtime, then that variant of the plan defined in the dispatcher plan will never actually get compiled. 
This behavior prevents plan-cache bloating by compiling a plan only if and when its predicate value 
demands it.

The following diagram shows the possible plan variants found for a parameterized query with a WHERE 
person.ID = @param search predicate:

Figure 1.11: Example of a dispatcher plan defining three query plan variants

We will discuss parameter sensitivity behavior in more detail later in this book, in Chapter 5, Writing 
Elegant T-SQL Queries, and Chapter 6, Discovering T-SQL Anti-Patterns in Depth.

To cache or not to cache

In general, caching and reusing query plans is a good thing, and writing T-SQL code that encourages 
plan reuse is recommended.

In some cases, such as with a reporting or OLAP workload, caching queries might make less sense. 
These types of systems tend to have a heavy ad hoc workload. The queries that run are typically long-
running and, while they may consume a large amount of resources in a single execution, they typically 
run with less frequency than OLTP systems. Since these queries tend to be long-running, saving a few 
hundred milliseconds by reusing a cached plan doesn’t make as much sense as creating a new plan 
that is designed specifically for that execution of the query. Spending that time compiling a new plan 
may even result in saving more time in the long run, since a fresh plan will likely perform better than 
a plan that was generated based on a different set of parameter values.
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In summary, for most workloads in the SQL Database Engine, leveraging stored procedures and/
or parameterized queries is recommended to encourage plan reuse. For workloads that have heavy 
ad hoc queries and/or long-running reporting-style queries, consider enabling the optimize for ad 
hoc workloads server setting and leveraging the RECOMPILE hint to guarantee a new plan for each 
execution (provided that the queries are run with a low frequency), or use forced parameterization to 
improve plan reuse opportunities. Also, be sure to review Chapter 8, Building Diagnostic Queries Using 
DMVs and DMFs, for techniques to identify single-use plans, monitor for excessive recompilation, 
and identify plan variability and potential parameter sniffing issues.

Summary
As this chapter has shown, the way a T-SQL query is written and submitted to the server influences 
how it is interpreted and executed by the SQL Database Engine. Even before a single T-SQL query is 
written, the choice of development style (for example, using stored procedures versus ad hoc statements) 
can have a direct impact on the performance of the application. As we continue our exploration of the 
internals of SQL Database Engine query processing and optimization, we will find more and more 
opportunities to write T-SQL queries in a way that encourages optimal query performance, starting 
with the next chapter.





2
Mechanics of the  
Query Optimizer

The next step in our journey to writing efficient T-SQL queries is understanding how the SQL Database 
Engine optimizes a query by exploring T-SQL query optimization internals and architecture, starting 
with the infamous cardinality estimation process and its building blocks. From there, understand how 
the Query Optimizer uses that information to produce a just-in-time good-enough execution plan. This 
chapter will be referenced throughout all chapters, as we bridge architectural topics to real-world uses.

In this chapter, we’re going to cover the following main topics:

• Introducing the Cardinality Estimator (CE)

• Understanding the query optimization workflow

Technical requirements
The examples that will be used in this chapter are designed for use on SQL Server 2022 and Azure SQL 
Database, but they should work on any version of SQL Server, 2012 or later. The Developer Edition of 
SQL Server is free for development environments and can be used to run all the code samples. There 
is also a free tier of Azure SQL Database you can use for testing at https://aka.ms/freedb.

You will need the sample AdventureWorks2016_EXT database (referred to as AdventureWorks), 
which can be found on GitHub at https://github.com/Microsoft/sql-server-
samples/releases/tag/adventureworks.

The code samples for this chapter can also be found on GitHub at https://github.com/
PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch2.

https://aka.ms/freedb
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch2
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch2
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Introducing the Cardinality Estimator
Before we get started, it’s important to have a common frame of reference for a few terms that will be 
referenced throughout this book:

• Cardinality: Cardinality in a database is defined as the number of records, also called tuples, 
in each table or view.

• Density: This term represents the average number of duplicate values in each column or 
column set – in other words, the average distribution of unique values in the data. It’s defined 
as 1 divided by the number of distinct values.

• Frequency: This term represents the average number of occurrences of a given value in a 
column or column set. It’s defined as the number of rows times the density.

• Selectivity: This term represents the fraction of the row count that satisfies a given predicate, 
between zero and one. This is calculated as the predicate cardinality (Pc) divided by the table 
cardinality (Tc) multiplied by 100: (Pc ÷ Tc) × 100. As the average number of duplicates decreases 
(the density), the selectivity of a value increases. For example, in a table representing streets 
and cities in a country, many streets and cities have the same name, but each street and city 
combination has a unique ZIP code. An index on the ZIP code is more selective than an index 
on the street or city because the ZIP code has a much lower density than streets or cities alone.

• Statistics: Statistics are the metadata objects that we referred to in Chapter 1, Understanding 
Query Processing, and maintain information on the distribution of data in a table or indexed 
view, over a specific column or column set. We’ll discuss the role of statistics in more detail 
later in this section.

• Histogram: This is a bucketized representation of the distribution of data in a specific column 
that is kept in a statistic object. These histograms hold aggregate information on the number 
of rows (cardinality) and distinct values (density) for up to 200 ranges of data values, named 
histogram steps. For any statistics object, the histogram is always created for the first column only.

In Chapter 1, Understanding Query Processing, we discussed how the Query Optimizer is a fundamental 
piece of the overall Query Processor. In this chapter, we will dig deeper into the core component of 
cost-based query optimization – the Cardinality Estimator (CE).

As the name suggests, the role of the CE is to provide fundamental estimation inputs to the query 
optimization process. For example, at the time of writing, the cardinality of a table containing the 
names of every living human on Earth is about 8,000,000,000. But if a predicate is applied to this table 
to only find inhabitants in the US, the cardinality after the predicate is applied is only 333,000,000. 
Reading through 8,000,000,000 or 333,000,000 records may result in different data-access operations, 
such as a full scan or a range scan in this case. As such, early knowledge of the estimated number of 
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rows is fundamental for creating an accurate query execution plan. It would be very inefficient if the 
SQL Database Engine had to incur the high cost of accessing actual data to make this estimation – that 
would be like executing the query to figure out how to execute the query. Instead, it uses metadata 
kept in statistics.

Statistics are the building blocks for the process of cardinality estimation: if statistics don’t accurately 
portray underlying data distributions, then the Query Optimizer will work with inaccurate data and 
estimate cardinalities that don’t adhere to the reality of the data.

To ensure statistics are kept updated, the SQL Database Engine keeps a modification counter on each 
table referenced by the statistic; when enough changes have been made to the table or indexed view 
columns tracked by a statistic, an update to that statistic is needed. When a query is compiled or 
recompiled, the SQL Database Engine loads all required statistics based on which columns are being 
used and determines whether statistics need to be updated.

If the database option for automatic statistics update is enabled (which is the default), the SQL Database 
Engine will update the outdated statistic before proceeding with query execution of any execution 
plan that referenced that statistic – this is known as a synchronous update. If asynchronous automatic 
statistics update is enabled, the SQL Database Engine will proceed with query execution based on the 
existing statistic as-is and update the outdated statistic as a background process. Once any statistics 
object has been updated, the next time any cached query plan that references that statistic is loaded 
for use, it is recompiled.

Up to SQL Server 2014, unless trace flag 2371 is used, the SQL Database Engine uses a threshold 
based on the percent of rows changed. This is irrespective of the number of rows in the table. The 
threshold is as follows:

• If the table cardinality was 500 or less at the time statistics were evaluated, update every 
500 modifications

• If the table cardinality was above 500 at the time statistics were evaluated, update every 500 + 
20% of modifications

Starting with SQL Server 2016 and Azure SQL Database, under database compatibility level 130, the 
SQL Database Engine uses a dynamic threshold that had been introduced in earlier versions under 
trace flag 2371, which keeps adjusting to the number of rows in the table or indexed view. This is the 
result of comparing the SQL Server 2014 threshold with the square root of the product of 1,000 and the 
current table cardinality. The smallest number resulting from this comparison is used. For example, if 
our table contains 1 million rows, then the calculation is SQRT(1,000 * 1,000,000) = 31,622. However, 
when the table grows to 2 million rows, the threshold is only 44,721 rows, whereas the SQL Server 
2014 threshold would be 400,500 rows. With this change, statistics on large tables are updated more 
often, which decreases the chances of producing an inefficient query execution plan and the likely 
consequence is poor query performance.
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Note
Database compatibility level is a setting that signals the SQL Database Engine to execute T-SQL 
statements in that database using the same functional and query optimization behaviors that were 
defaulted for a given Database Engine version. For example, SQL Server 2016 introduced database 
compatibility level 130 and a set of new default behaviors, but setting database compatibility 
level 120 forces functional and query optimization behaviors that were default in SQL Server 
2014, which maps to the version when database compatibility level 120 was introduced.

The CE operates with mathematical models based on certain assumptions about the T-SQL statements 
that will be executed. These assumptions are considered during computations to find reasonable 
predictions about how many rows are expected to flow through each plan operator. These predictions 
are used in the query optimization process to estimate the cost of each query plan.

CE 70, which was introduced back in SQL Server 7.0, used four basic assumptions about how users 
queried their data:

• Independence assumption: Data distributions on different columns of the same table are 
assumed to be independent of each other, and predicates on different columns of the same table 
are therefore also independent of each other. This is known as the independence assumption.

For example, in a fictitious database for a large retail store chain where customer data is stored, a 
report shows which customers exist per store location using a query such as SELECT * FROM 
Customers WHERE FirstName = 'James' AND City = 'San Francisco'. 
We can assume there are many Jameses not only in San Francisco but in other cities as well, so 
these two columns are independent.

• Uniformity assumption: Distinct values are evenly distributed in each histogram, and all have 
the same frequency. This is known as the uniformity assumption.

• Simple containment: Join predicates are assumed to be dependent on filter predicates. When 
users query data joining different tables and set a filter predicate on these tables, it’s assumed 
that the filters apply to the joined data and are considered when estimating the number of 
rows returned by the join.

Using the example of a fictitious database for the same large retail store chain, different tables 
record items sold and items returned, and a report shows the number of returns per sold item 
type and date, using a query such as SELECT * FROM Sales INNER JOIN Returns 
ON Sales. ReceiptID = Returns.ReceiptID WHERE Sales.Type = 'Toys' 
AND Returns.Date = '2019-04-18'. Throughout the year, a fairly steady number 
of returns per item are sold, and the estimation shouldn’t change for any given day. However, 
when the query predicate changes to WHERE Sales.Type = 'Toys' AND Returns.
Date = '2018-12-27', and the SQL Database Engine is compiling a plan for this new 
query, accounting for the filters can greatly impact the join cardinality estimations because in 
the days after Christmas, it’s expected that many toys are returned.
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Whenever we know the filter predicates and the join predicates are highly dependent, as is the 
case here, with sales and returns of toys for specific dates greatly dictating the cardinality, simple 
containment can yield better estimations and therefore potentially a better plan.

• Inclusion assumption: For filter predicates where a column equals a constant (for example, 
WHERE col1 = 10), it is assumed the constant always exists in that column. This is called 
the inclusion assumption.

However, application workloads don’t always follow these model assumptions, which can result in 
inefficiently optimized query execution plans.

Note
We will discuss more about some out-of-model T-SQL constructs in Chapter 5, Writing Elegant 
T-SQL Queries, and Chapter 6, Discovering T-SQL Anti-Patterns in Depth.

The observation and experience of query performance that’s been accrued over the years led to a major 
redesign of the cardinality estimator with the release of SQL Server 2014 and CE 120.

The main objectives of this new CE were to improve the quality of cardinality estimation for a broad 
range of queries and modern workloads, such as online transaction processing (OLTP), data 
warehousing (DW), and decision support systems (DSS), as well as to generate more efficient and 
predictable query execution plans for most use cases, especially complex queries.

With that new release, some model assumptions about how users queried their data were changed:

• Independence became partial Correlation, where the combination of the different column 
values is not necessarily independent, and it’s assumed this resembles more real-life data querying 
patterns. For the example of a fictitious database for a large retail store chain where customer 
data is stored, a report lists the names of all customers using a query such as SELECT * FROM 
Customers WHERE FirstName = 'James' AND LastName = 'Kirk'. We can 
assume a tight correlation between a customer’s first and last names, meaning that while there 
are many Jameses, there are not many James Kirks.

• Simple Containment Becomes Base Containment, meaning that filter predicates and join 
predicates are independent. The previous example for simple containment uses a set of join 
and filter predicates that are very much dependent. Therefore, the base containment default 
would yield less accurate cardinality estimations.

However, consider the same fictitious database for the same large retail store chain, where 
the HR department runs a report that shows the base salary for full-time employees, using a 
query such as SELECT * FROM Payroll INNER JOIN Employee ON Payroll.
EmployeeID = Employee.EmployeeID WHERE Payroll.CompType = 'Base' 
AND Employee.Type = 'FTE'.
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In this example, all employees have a base salary, and because this company’s workforce has 
one-third FTEs, one-third part-time employees, and one-third contractors, for any employee 
type that is queried, the join cardinality estimation wouldn’t change much whether the filter 
predicates (the WHERE clause) is there or not. Base containment works best here because we 
know that the filter predicates and the join predicates are not necessarily dependent, and filter 
values wouldn’t necessarily affect cardinality estimations. Therefore, base containment can 
yield better estimations and potentially a better plan for most use cases.

It’s common to see these CE models referred to as Legacy CE and New CE. These are side-by-side 
implementations and are more accurately referred to as CE 70, and CE 120 or higher. Being side-by-
side means that developers can opt-in for either CE version as new changes and enhancements are 
gated by the database compatibility level.

CE versions are tied to the Database Compatibility Level setting of the SQL Server version when it 
was first introduced. These are also available in Azure SQL Database, where the default compatibility 
level is the same as the latest version of SQL Server, after the general availability of that version. The 
following table contains a mapping reference between database compatibility levels and CE versions:

Introduced in SQL 
Server Version

Database 
Compatibility Level

CE Version

2008 and 2008 R2 100 70

2012 110 70

2014 120 120

2016 130 130

2017 140 140

2019 150 150

2022 160 160

Table 2.1: Database compatibility levels and their corresponding versions and CE versions

This mapping between database compatibility levels and CE versions is especially useful when the 
topic is application certification. For example, if a given application was written and optimized for 
SQL Server 2012 (CE 70) and later upgraded as-is to SQL Server 2017 (CE 140), then there’s a chance 
that a part of that application’s workload may be susceptible to the model changes of a higher CE 
version, and as a result, perform worse than it did in SQL Server 2012. These types of performance 
regressions can be handled easily, and the SQL Database Engine includes several features designed 
to assist in overcoming a number of these regressions.

SQL Server 2022 introduced a new feature named CE Feedback. As the name suggests, the SQL 
Database Engine has a feedback loop that allows it to detect whether a given query has encountered 
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a performance regression that aligns with the changes in CE assumptions we already mentioned: 
Independence versus Correlation, Simple Containment versus Base Containment, and another 
scenario we’ll discuss later in this book, which is Row Goal.

When a regression is detected, the SQL Database Engine uses a test-and-verify principle. It will 
automatically enforce the use of a contrary (CE70) assumption and in the next execution of that 
same query, determine whether the newly compiled plan has improved cardinality estimations. If 
the plan has improved, it remains as the cached plan for that query. If not, the SQL Database Engine 
recompiles that plan with default CE 160 assumptions. This feature automatically removes much of 
the risk in upgrading CE versions for application workloads that may be susceptible to the model 
changes of a higher CE version.

Note
At the time this book is written, CE Feedback is not yet generally available in Azure SQL 
Database. Also, in this first release, CE Feedback only handles SELECT queries..

If you are not using SQL Server 2022, we will discuss these later in this book, where we’ll discuss how 
to assemble our query troubleshooting toolbox.

Note
CE 120+ changes mainly target non-leaf-level operators that support logical operations such 
as JOIN, UNION, GROUP BY, and DISTINCT. Other T-SQL constructs that only exist at 
runtime still behave the same, such as Multi-Statement Table-Valued Functions (MSTVFs), 
table variables, local variables, and table-valued parameters. We will discuss these out-of-model 
constructs in Chapter 6, Discovering T-SQL Anti-Patterns in Depth.

The inverse is the more common case, though, where without refactoring a query, CE 120+ can do 
a better job of optimizing a query plan than CE 70. For example, the AdventureWorks sample 
database has several tables the contain employee data. To write a query that returns the employee 
name and details such as contacts, address, and job title, a series of inner joins are used. The query 
would look like this:

SELECT e.[BusinessEntityID], p.[Title], p.[FirstName], 
p.[MiddleName], p.[LastName],p.[Suffix], e.[JobTitle],           pp.
[PhoneNumber], pnt.[Name] AS [PhoneNumberType],    ea.[EmailAddress], 
p.[EmailPromotion], a.[AddressLine1], a.[AddressLine2], a.[City], 
sp.[Name] AS [StateProvinceName], a.[PostalCode], cr.[Name] AS 
[CountryRegionName], p.[AdditionalContactInfo]
FROM [HumanResources].[Employee] AS e
INNER JOIN [Person].[Person] AS p  ON RTRIM(LTRIM(p.
[BusinessEntityID])) = RTRIM(LTRIM(e.[BusinessEntityID]))
INNER JOIN [Person].[BusinessEntityAddress] AS bea  ON 
RTRIM(LTRIM(bea.[BusinessEntityID])) = RTRIM(LTRIM(e.
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[BusinessEntityID]))
INNER JOIN [Person].[Address] AS a ON RTRIM(LTRIM(a.[AddressID])) = 
RTRIM(LTRIM(bea.[AddressID]))
INNER JOIN [Person].[StateProvince] AS sp ON RTRIM(LTRIM(sp.
[StateProvinceID])) = RTRIM(LTRIM(a.[StateProvinceID]))
INNER JOIN [Person].[CountryRegion] AS cr ON RTRIM(LTRIM(cr.
[CountryRegionCode])) = RTRIM(LTRIM(sp.[CountryRegionCode]))
LEFT OUTER JOIN [Person].[PersonPhone] AS pp ON RTRIM(LTRIM(pp.
BusinessEntityID)) = RTRIM(LTRIM(p.[BusinessEntityID]))
LEFT OUTER JOIN [Person].[PhoneNumberType] AS pnt ON RTRIM(LTRIM(pp.
[PhoneNumberTypeID])) = RTRIM(LTRIM(pnt.[PhoneNumberTypeID]))
LEFT OUTER JOIN [Person].[EmailAddress] AS ea ON RTRIM(LTRIM(p.

[BusinessEntityID])) = RTRIM(LTRIM(ea.[BusinessEntityID]));

Note
We are using RTRIM(LTRIM()) functions around the join columns here to prevent the SQL 
Database Engine from being able to use indexes effectively and force a more complex cardinality 
estimation. Using functions like this is a T-SQL anti-pattern that we will cover in more detail 
in Chapter 5, Writing Elegant T-SQL Queries.

With CE 70, the elapsed execution time for this query is 101,975 ms. But with the same query on the 
same database on CE 140, the elapsed execution time is only 103 ms.

As shown in the following figure, the query execution plans are radically different in shape and, given 
the observed execution times, better optimized using newer versions of the cardinality estimator.

The following figure shows the query plan shape for CE 70:

Figure 2.1: Query plan shape for the example query under CE 70
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The query plan shape for CE 140 is as follows:

Figure 2.2 Query plan shape for the example query under CE 140

We will revisit the preceding query example in greater depth in Exploring Query Execution Plans, and 
Troubleshooting Live Queries.

Understanding the query optimization workflow
Now, it’s time to take a deeper look at how the SQL Database Engine creates optimized query execution 
plans. As referenced in Chapter 1, Understanding Query Processing, this is the second phase of query 
processing and for the most part, only Data Manipulation Language (DML) statements undergo 
query optimization. The query optimization process is defined by the following cumulative stages:

• Trivial Plan

• Exploration, which, in turn, includes three phases:

 � Transaction Processing

 � Quick Plan

 � Full Optimization
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In the Exploration stage, what differentiates between the several phases is the increasing sets of rules 
that apply to each one as the search for a good-enough query plan progresses. Users can learn about 
the optimization level of a given query execution plan by looking at the properties of that plan. The 
following sections include sample execution plans to illustrate the concepts covered here. Query 
execution plans will be discussed in much further detail in Chapter 3, Exploring Query Execution Plans.

The Trivial Plan stage

As mentioned in the Query optimization essentials section of Chapter 1, Understanding Query Processing, 
the SQL Database Engine does cost-based optimization. But this has an expensive startup cost, so the 
SQL Database Engine will try to avoid this cost for simple queries that may only have one possible 
query execution plan.

The Trivial Plan stage generates plans for which there are no alternatives that require a cost-based 
decision. The following examples can be executed in the AdventureWorks sample database:

• Using a SELECT … INTO or INSERT INTO statement over a single table with no conditions:

SELECT NationalIDNumber, JobTitle, MaritalStatus
INTO HumanResources.Employee2
FROM HumanResources.Employee;

This produces the following execution plan:

Figure 2.3: Execution plan for the SELECT … INTO query example

• Using an INSERT INTO statement over a single table with a simple condition covered by 
an index:

INSERT INTO HumanResources.Employee2
SELECT NationalIDNumber, JobTitle, MaritalStatus
FROM HumanResources.Employee
WHERE BusinessEntityID < 10;

This produces the following execution plan:
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Figure 2.4: Execution plan for the INSERT … INTO query example

• Using an INSERT statement with a VALUES clause:

INSERT INTO HumanResources.Employee2
VALUES (87656896, 'CIO', 'M');

This produces the following execution plan:

Figure 2.5: Execution plan for the INSERT … VALUES query example

The information on the optimization level is stored in the execution plan under the Optimization 
Level property, with a value of TRIVIAL:

Figure 2.6: The Properties window of an execution plan showing an Optimization Level value of TRIVIAL
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The Trivial Plan stage typically finds very inexpensive query plans that are not affected by 
cardinality estimations.

The Exploration stage

If the Trivial Plan stage doesn’t find a suitable plan, then it’s time to enter the cost-based optimization 
stage known as Exploration, whose goal is to find a good enough query execution plan based on 
the minimum estimated cost to access and join data. If this stage is used, the information on the 
optimization level is still stored in the execution plan under the same Optimization Level property, 
with a value of FULL.

Note
A good-enough plan refers to the search optimization space and how the SQL Database Engine 
may not iterate through all possible plan combinations, but rather look for a plan that meets its 
internal thresholds for a good-enough balance of estimated resource usage and execution times.

The Exploration stage is where the CE comes into play. The SQL Database Engine loads statistics and 
performs some tasks in preparation for cost-based optimization. These tasks are as follows:

• Simplification, which transforms some sub-queries into semi-joins and even detects if parts 
of the query can skip execution, such as avoiding empty tables or searching a table column for 
a NULL predicate when that table column has a trusted NOT NULL constraint

• Normalization, which uses the query’s filter predicates and some heuristics to reorder join 
operations, and predicates are pushed down to the algebrizer tree to eliminate non-qualifying 
rows as early as possible, making later joins more efficient

The cost-based optimization process itself is composed of three phases that we’ll discuss in the next 
sections: Transaction Processing, Quick Plan, and Full Optimization.

The Transaction Processing phase

This is phase zero and is suitable for OLTP-centric queries that are simple yet may have more than one 
possible query plan. When this phase is completed, the SQL Database Engine compares the estimated 
cost of the plan that was found with an internal cost threshold. If the cost of the plan that was found 
is cheaper than this internal threshold, the SQL Database Engine will stop further optimizations and 
use the plan found by the Transaction Processing phase.
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The Quick Plan phase

This is phase one and is used if the plan found by the Transaction Processing phase is still more 
expensive than the internal threshold. This phase expands the search for a good-enough plan to cover 
rule-based join reordering and spools that may benefit moderately complex queries. To determine if a 
good-enough plan has been found, since the Query Optimizer generates each potential query plan, it 
compares the cost of the plan that was just evaluated with the estimated cost of continuing to search 
for better plan alternatives. This effectively establishes a timeout so that we don’t spend more time 
optimizing the query than we would spend executing the current plan. If a plan has been found with a 
cost lower than the cost threshold for the Quick Plan phase and lower than the timeout, optimization 
is stopped, and that good-enough plan is used. This avoids incurring additional compilation costs.

Note
This timeout is not a fixed number, but rather a non-linear value that is related to the complexity 
of the incoming T-SQL statement. Complexity is translated into cost, so the higher the cost of 
the query plan, the higher the threshold will be for that plan.

If the plan cost that the Quick Plan phase found is greater than the server configuration for Cost 
Threshold for Parallelism and the server is a multi-processor machine, then parallelism is considered. 
However, if the plan cost from the Quick Plan phase is less than the configured Cost Threshold for 
Parallelism, only serial plans are considered going forward.

Note
Even if a parallel plan is produced, this doesn’t mean the query plan will be executed on multiple 
processors. If existing processors are too busy to withstand running a query on multiple CPUs 
– technically meaning that there aren’t enough available schedulers – then the plan will be 
executed on a single processor. If the Max Degree of Parallelism server configuration is set to 
1, parallelism is not considered at all in the optimization process.

The Full Optimization phase

This is phase two and is used for complex queries, where the plan produced by phase one is still 
considered more expensive than the cost of searching for more alternative plans – the timeout defined 
previously. All internal transformation rules are available for use at this point but scoped to the search 
space defined in the preparation tasks, and parallelism is also considered.

The Full Optimization phase can go through a comprehensive set of optimization alternatives, which 
can make it time-consuming, especially if a query plan was not found in any preceding phase – because 
phase two must produce a plan.
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The timeout defined in the Quick Plan section is the only condition that limits searching for a 
good-enough plan during Full Optimization. If a query plan was found before the timeout is hit, 
the execution plan will store information under the Reason For Early Termination Of Statement 
Optimization property about the outcome of the optimization stage, in this case showing a value of 
Good Enough Plan Found.

If the timeout is hit, the Query Optimizer will fall back on the lowest cost plan found so far. The 
execution plan will still store information under the Reason For Early Termination Of Statement 
Optimization property, in this case showing a value of Time Out.

This property can be seen in the following example of a query executed in the AdventureWorks 
sample database:

SELECT pp.FirstName, pp.LastName, pa.AddressLine1, pa.City, 
pa.PostalCode
FROM Person.Address AS pa
INNER JOIN Person.BusinessEntityAddress AS pbea ON pa.AddressID = 
pbea.AddressID
INNER JOIN Person.Person AS pp ON pbea.BusinessEntityID = 
pp.BusinessEntityID
WHERE pa.AddressID = 100;

See the following screenshot of the Reason For Early Termination Of Statement Optimization property:

Figure 2.7: The Properties window for the example query showing the Reason 

For Early Termination of Statement Optimization property
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The following figure shows the query optimization workflow that has been described in this chapter:

Figure 2.8: Flowchart illustrating the query optimization workflow

For reference, the undocumented dynamic management view, sys.dm_exec_query_optimizer_info, 
exposes some interesting statistics gathered by Query Optimizer, such as the number of optimizations 
that have been evaluated, as well as the drill-down of optimizations per stage, or the number of 
optimization-affecting hints have been used.

Knobs for query optimization
As advanced as the query optimization process is, inefficient plans are still a possibility, which is why 
a database developer can use hints in the T-SQL statement and guide the Query Optimizer toward 
producing an intended plan. There are several classes of thoroughly documented query hints that 
affect query optimization, and it is important to call out a few that can be useful when troubleshooting 
a query performance issue, some of which we will use in upcoming chapters.
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Note
Keep in mind that hints force certain behaviors with T-SQL statement optimization and 
execution. Microsoft recommends that hints are thoroughly tested and only used as a last resort. 
Hinted statements must be reviewed with every upgrade to a major version to determine if 
they are still needed since new versions may change behavior, rendering the hint unnecessary 
or even harmful.

Let’s look at some of the available hints for the Query Optimizer:

• FORCE ORDER: This is a hint that will prevent any join reordering optimizations, which 
has a tangible impact on the query optimization process. When joining tables or views, join 
reordering is driven by the goal of reducing the row count flowing through the operators in 
a query plan as early as possible. However, there are edge cases where join reordering may 
negatively affect the search for a good-enough plan, especially if estimations are based on 
skewed or outdated statistics. If the developer knows that the join order, as it was written in 
the T-SQL statement, should be efficient enough, because the smaller tables are already used 
upfront to limit the row count for subsequent table joins, then testing the use of this hint may 
yield good results in such scenarios.

• MAXDOP: This is the hint for overriding system-wide Max Degree of Parallelism (MAXDOP). 
Depending on its setting, this hint can affect parallel plan eligibility. For example, if a query 
has excessive waits on parallelism, using the MAXDOP hint to lower or remove parallelism may 
be a valid option.

• NOEXPAND: This is a hint that directs the Query Optimizer to skip access to underlying tables 
when evaluating an indexed view as a possible substitute for part of a query. When the NOEXPAND 
hint is present, the Query Optimizer will use the view as if it were a table with a clustered index, 
including automatically creating statistics if needed. For example, if a query uses an indexed 
view that is being expanded by the Query Optimizer and results in an inefficient query plan, 
a developer can include the NOEXPAND hint to make the Query Optimizer forcibly evaluate 
the use of an index on a view. Note that Azure SQL Database, while sharing the same Database 
Engine code, doesn’t require this hint to automatically use indexed views.

• USE HINT: This hint is not a single hint like the other query hints, but rather a new class of 
hints introduced in SQL Server 2016. Its goal is to provide knobs to purposefully guide the 
Query Optimizer and query execution toward an intended outcome set by the developer. Every 
version of SQL Server since 2016 has introduced new USE HINT hints, and the list of supported 
hints can be accessed using the sys.dm_exec_valid_use_hints dynamic management view. 
Hints that are included here can change some of the Query Optimizer model assumptions, 
disable certain default behaviors, or even force the entire Query Optimizer to behave as it would 
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under a given database compatibility level. There are many uses for these hints, depending on 
the query performance troubleshooting scenario that database professionals may face; we will 
look into some of these in upcoming chapters. In Chapter 12, Managing optimizer changes, we 
will also cover another feature which uses such hints.

Now, let’s summarize this chapter.

Summary
In this chapter, we explored the internals of the SQL Database Engine’s query optimization process 
and defined many important concepts that any database professional writing T-SQL queries will keep 
coming back to, especially when troubleshooting query performance issues. The CE is a fundamental 
part of the SQL Database Engine’s Query Optimizer: knowing how it uses statistics and the importance 
of keeping updated and relevant statistics for the overall query optimization process empowers database 
professionals to write good queries – queries that both drive and leverage good database schema 
designs. But also, understanding the main estimation model assumptions allows us to account for 
these when writing queries and avoid pitfalls that hurt query performance. We will see these pitfalls 
in much more detail in Chapter 5, Writing Elegant T-SQL Queries, and Chapter 6, Discovering T-SQL 
Anti-Patterns in Depth.

If, at the end of the optimization process, we still have a perceived inefficient plan, then some avenues 
of investigation are possible to determine what were the potential reasons for this inefficiency:

• Is it bad cardinality estimation? Analyze the execution plan to find the ratio between estimated 
and actual rows in costly operators. Perhaps statistics are stalled and need to be updated.

• Is it a parameter-sensitive plan? Is it a dynamic un-parameterized T-SQL statement? Or perhaps 
parameter-sniffing has caused a skewed query plan? The importance of parameters was discussed 
in Chapter 1, Understanding Query Processing, in the The importance of parameters section.

• Is it an inadequate physical database design? Are there missing indexes? Are data types for 
keys not adequate and leading to unwarranted conversions that affect estimations? Is referential 
integrity enforced by triggers instead of indexed foreign keys?

These are some of the aspects we must investigate regarding the potential source of plan inefficiency. 
In the next chapter, Chapter 3, Exploring Query Execution Plans, we will learn how to identify these 
inefficiencies by investigating the various aspects of query execution plans.





Part 2:  
Dos and Don’ts of T-SQL

This part serves as an introduction to query execution plans and how to leverage them for query 
troubleshooting. It also covers basic guidelines for writing efficient queries, and common T-SQL 
query patterns and anti-patterns.

This part has the following chapters:

• Chapter 3, Exploring Query Execution Plans

• Chapter 4, Indexing for T-SQL Performance

• Chapter 5, Writing Elegant T-SQL Queries

• Chapter 6, Discovering T-SQL Anti-Patterns in Depth





3
Exploring Query  
Execution Plans

In the previous chapters, we learned how to construct a Transact-SQL (T-SQL) query, how the SQL 
Database Engine processes a query, and how the query is optimized, which results in an execution 
plan that can be cached and reused by subsequent query executions. Now that we understand the 
steps the SQL Database Engine follows to produce a plan and execute a query, we can investigate an 
execution plan to examine the results of this process and begin analyzing how we can improve the 
performance of our queries.

In this chapter, we’re going to cover the following main topics:

• What is a query plan?

• Accessing a query plan

• Navigating a query plan

• Query plan operators of interest

• Query plan properties of interest

Technical requirements
The examples used in this chapter are designed for use on SQL Server 2022 and Azure SQL Database, 
but they should work on any version of SQL Server, 2012 or later. The Developer Edition of SQL Server 
is free for development environments and can be used to run all the code samples. There is also a free 
tier of Azure SQL Database that you can use for testing at https://aka.ms/freedb.

https://aka.ms/freedb
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You will need the AdventureWorks2016_EXT (referred to as AdventureWorks) and 
AdventureWorksDW2016_EXT (referred to as AdventureWorksDW) sample databases, which 
can be found on GitHub at https://github.com/Microsoft/sql-server-samples/
releases/tag/adventureworks. Code samples for this chapter can also be found on GitHub 
at https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-
Edition/tree/main/ch3.

What is a query plan?
Think of a query execution plan as a map that provides information on the physical operators that 
implement the logical operations discussed in the Understanding Query Processing chapter, as well as 
the execution context for that query that provides information about the system on which the query 
was executed. Each physical operator is identified in the plan with a unique node ID.

Note
Query execution plans are often referred to as a showplan, which is a textual, XML, or graphical 
representation of the plan.

So far, we’ve used the terms query plan and query execution plan interchangeably. However, in the 
SQL Database Engine, there is the notion of an “actual plan” and an “estimated plan.” These differ 
only in the fact that an “actual plan” has runtime data collected during actual execution (hence, query 
execution plan), whereas an “estimated plan” is the output of the Query Optimizer that is put in the 
plan cache (hence, query plan, without the execution moniker).

Note
Going forward, we will refer to plans in a more precise fashion, depending on whether these 
have runtime data or not.

The “estimated plan,” known simply as a query plan, includes the following:

• Methods used to retrieve data from a table or indexed view

• Sequence of data retrieval operations

• Order in which tables or indexed views are joined: refer to the Mechanics of the Query Optimizer 
chapter, where we discussed join reordering

• Use of temporary structures in tempdb (worktables and workfiles)

• Estimated row counts, iterations, and costs from each step

• How data is aggregated

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch3
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch3
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Additionally, an “actual plan,” also known as a query execution plan, includes the following:

• Use of parallelism

• Actual row counts and iterations

• Query execution warnings

• Query execution metrics such as elapsed time, CPU time, presence of trace flags, memory 
usage, version of the Cardinality Estimator (CE), top waits, and more

Note
Whether all this information is available or just a subset depends on the version of the SQL 
Database Engine on which the query execution plan was captured.

So, analyzing a query execution plan is a skill that allows database professionals to identify the following:

• High-cost operations in a single query or batch

• Indexing needs, for example, identifying when a scan is better than a seek or vice versa

• Outdated statistics that no longer accurately portray underlying data distributions

• Unexpected large row counts being passed from operator to operator

• Query or schema modification needs, for example, when a query references multiple levels of 
nested views: views that reference views that reference views that reference common tables at 
all levels

With this skill, developers and query writers in general can visually analyze how the queries they 
write actually perform beyond simply looking at elapsed time. For database administrators (DBAs) 
and database reliability engineers, this skill allows them to identify heavy hitters running in the SQL 
Database Engine that perhaps weren’t a problem during development time, analyze queries, and 
provide mitigations based on query execution plan analysis.

Accessing a query plan
To access estimated plans, which are a direct result of the optimization process, we can use either 
T-SQL commands or graphical tools. For the examples shown in this chapter, we use SQL Server 
Management Studio (SSMS).



Exploring Query Execution Plans50

Note
For most users, query plans in text format are harder to read and analyze; therefore, we will 
use graphical query plan examples throughout the book.

The SET command options SHOWPLAN_TEXT, SHOWPLAN_ALL, and SHOWPLAN_XML 
provide text-based information on query plans with different degrees of detail. Using any of 
these commands means the SQL Database Engine will not execute the T-SQL statements but 
show the query plan as produced by the Query Optimizer.

Take an example of a query that can be executed in the scope of the AdventureWorks sample database:

SELECT pp.FirstName, pp.LastName, pa.AddressLine1, pa.City, 
pa.PostalCode
FROM Person.Address AS pa
INNER JOIN Person.BusinessEntityAddress AS pbea ON pa.AddressID = 
pbea.AddressID
INNER JOIN Person.Person AS pp ON pbea.BusinessEntityID = 
pp.BusinessEntityID
WHERE pa.AddressID = 100;

Let’s see what each of the following options provides in terms of the query plan view:

• SHOWPLAN_TEXT: This option shows all the steps involved in processing the query, including 
the type of join that was used, the order in which tables are accessed, and the indexes used for 
each table:

Figure 3.1: Showplan in text format with all the plan operators

• SHOWPLAN_ALL: This option shows the same estimated plan as SHOWPLAN_TEXT – a text 
output tree – but adds details on each of the physical operations that would be executed, such 
as the estimated size of the result rows, the estimated CPU time, and the total cost estimations. 
Notice the amount of information produced here:
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Figure 3.2: Showplan in tabular format with all the plan operators

• SHOWPLAN_XML: This option produces the same estimated plan but as an XML output tree:

Figure 3.3: Showplan as clickable XML link

Because it is generated as a link when used in SSMS, it can be interpreted by SSMS as a graphical 
“estimated plan,” and clicking the link will display this graphical plan:

Figure 3.4: Graphical showplan rendered by SSMS
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Notice that because it is an estimated plan, the arrows are all the same width. This is because 
there’s no actual data movement between operators given that this plan was not executed. To 
access all the properties returned by SHOWPLAN_ALL, plus many more, right-click the SELECT 
operator and click on Properties. We will see these properties in greater detail in the Query 
plan properties of interest section.

SHOWPLAN_XML is the option used by SSMS when the Display Estimated Execution Plan 
(Ctrl+L) button is clicked:

Figure 3.5: SSMS button to enable SHOWPLAN_XML

To access actual plans, which are optimized plans after being executed, we can again use either 
T-SQL commands or graphical tools. The STATISTICS PROFILE and STATISTICS XML 
commands provide text-based information on query plans with different degrees of detail. Using 
either of these commands means the SQL Database Engine will execute the T-SQL statements 
and generate an actual plan or a query execution plan.

• STATISTICS PROFILE shows the same plan as SHOWPLAN_ALL, incremented with actual 
rows, and executes to display an actual plan or a query execution plan:

Figure 3.6: STATISTICS PROFILE enables SHOWPLAN_ALL
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• STATISTICS XML: This option is the “actual plan” counterpart of SHOWPLAN_XML. Next, 
we see what appears to be the same output as SHOWPLAN_XML:

Figure 3.7: Showplan as a clickable XML link

However, by expanding the XML (or if using SSMS, by clicking on the link), we see we have 
the “actual plan” or the query execution plan:

Figure 3.8: Graphical showplan rendered by SSMS

STATISTICS XML is the option used by SSMS when the Include Actual Execution Plan 
(Ctrl+M) button is clicked:

Figure 3.9: SSMS button to enable STATISTICS XML

To access all the properties already seen with SHOWPLAN_XML incremented with runtime statistics 
and warnings (if any), right-click the SELECT operator and click on Properties. Again, we will see 
these properties in greater detail in the Query plan properties of interest section.
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Navigating a query plan
Up until this point, we have mentioned query execution plans, and even shown simple examples to 
illustrate some points during the Mechanics of the Query Optimizer chapter. However, it is important 
for any database professional to understand how to read and analyze a query execution plan as a way 
to visually identify positive changes in a plan shape. The remaining chapters in the book will show 
query execution plans in more detail for different scenarios of T-SQL patterns and anti-patterns.

Query plans are like trees, where each join branch can represent an entirely separate query. To 
understand how to navigate a showplan or query plan, let’s use a practical example of a query executed 
in the AdventureWorks sample database:

SELECT p.Title + ' ' + p.FirstName + ' ' + p.LastName AS FullName, 
c.AccountNumber, s.Name AS StoreName
FROM Person.Person p
INNER JOIN Sales.Customer c ON c.PersonID = p.BusinessEntityID
INNER JOIN Sales.Store s ON s.BusinessEntityID = c.StoreID
WHERE p.LastName = 'Koski';

This query generates the execution plan seen in the following screenshot. For any graphical query 
execution plan, the flow of data is read from right to left and top to bottom:

• Result sets 1 and 2 are joined using a Nested Loops join, creating result set 3

• Then, result sets 3 and 4 are joined using a Hash Match join, creating result set 5

• Finally, result sets 5 and 6 are joined using a Nested Loops join, creating a result set for 
the SELECT clause:

Figure 3.10: Graphical showplan with several result sets
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In an actual plan, the width of the arrows provides an indication of the number of rows flowing 
through each operator, such as the thicker arrow seen coming from Clustered Index Scan 
on the Customer table (as seen in the following region of the preceding plan). This can often be a 
clue to high resource usage and a potential hotspot in the plan:

Figure 3.11: Detail of the actual plan

Also, notice how in the latest versions of SSMS, it becomes easier to distinguish an actual plan from 
an estimated plan. In an actual plan or query execution plan, each operator has information about the 
elapsed execution time and a comparison of the estimated and actual number of rows flowing through 
the operator. In the previous Clustered Index Scan instance, we see this operator read 19,820 
rows of 19,820 estimated rows, with a 100 percent match and a perfect estimation.

Tip
Recent versions of SSMS have greatly improved the navigation experience of a graphical query 
plan: Click + hold the mouse button anywhere inside the Execution Plan tab, and then drag 
the mouse to quickly navigate the query plan. Or, use Ctrl + the mouse wheel to zoom in and 
out easily.

For joins, how the showplan is read depends on the type of physical join: the top represents the outer 
table for Nested Loops and the build table for a Hash; the bottom represents the inner table for 
Nested Loops and the probe table for the Hash. Result sets are created from each join pair, which 
are then passed to the next join. We will further discuss join types, seeks, lookups, and other operators 
later in this chapter under the Query plan operators of interest section.
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The following screenshot shows a Nested Loops join with an Index Seek operator on the 
Person table as the outer table, and a Key Lookup operator on the Person table as the inner table:

Figure 3.12: Nested Loops join with different operators as the inner and outer sides of the join

In the preceding Index Seek operator, we see this operator read 1 row of 2 estimated rows, with 
a 50 percent match and a skewed estimation.

Tip
If the difference between estimated rows and actual rows is large, one or several orders of 
magnitude, for example, this means that the Query Optimizer may not have had good statistics 
on the table’s data distribution during query optimization. Usually, the first reaction to such a 
scenario is to update the relevant statistics on the table and verify whether estimations improved 
to be a near 100 percent match.

For any plan captured as text (actual or estimated), note that these are read top to bottom, with the 
“|--” characters indicating the nesting levels of the tree. For the same query we used to generate the 
graphical plan, STATISTICS PROFILE shows the following query tree:
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Figure 3.13: Reading order for showplan in text format

For this query’s plan, we apply the same approach to read the plan:

• Result sets 1 and 2 are joined using a Nested Loops join, creating result set 3

• Then, result sets 3 and 4 are joined using a Hash Match join, creating result set 5

• Finally, result sets 5 and 6 are joined using a Nested Loops join

Next, we will cover some query plan operators that are important to understand to write scalable 
T-SQL queries.

Query plan operators of interest
The different icons that are visible in a query execution plan are called operators. Logical operators 
describe a relational operation – for example, an INNER JOIN operation. Physical operators 
implement the logical operation with a specific algorithm. So, when we examine a query plan, we are 
looking at physical operators.

Each physical operator represents a task that needs to be performed to complete the query such as 
accessing data with a seek or a scan, joining data with a Hash Match join or a Nested Loops 
join, and sorting data. Some operators are especially relevant to understand while writing T-SQL that 
scales well. We will look at these operators, understand what they do and how they implement the 
physical operation behind the logical operation in T-SQL statements, and become familiar with aspects 
that will be important in the upcoming chapters where we explore T-SQL patterns and anti-patterns.
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Blocking versus non-blocking operators

We can think of an execution plan as a pipeline. Data from one operator flows to the next operator from 
right to left. A blocking operator is one where the entire input must be consumed and the operation 
completed before the first row can be output to the next operator. An example of a blocking operator 
is a Sort operator. When data is sorted, it is impossible to know what the first row output by the 
operator should be until the entire sort is complete. A non-blocking operator is one where data may be 
output to the next operator in the plan before the operation is complete. When there are no blocking 
operators in a plan, data can flow through the plan uninterrupted, and results will be returned from 
the query before execution is complete. With a blocking operator, anything past that operator in the 
query cannot be processed until the blocking operator is complete, which typically means that no 
results will be returned to the client until the entire query is complete.

Data access operators

Data access operators are used to retrieve data from tables and indexes in the SQL Database Engine. 
A rowstore is the traditional storage mechanism for most relational database management systems 
(RDBMSs). In a rowstore index, each page of data contains all the columns for one or more rows of 
data in the table, and so the entire row is stored contiguously across all columns. There are two types 
of rowstore indexes in the SQL Database Engine – clustered and non-clustered. Both index types are 
stored as a B+ tree data structure, but clustered indexes contain the entire data row at the leaf level 
while non-clustered indexes contain only the index columns and a pointer to the data row.

Note
Instead of treating all nodes equally like a B-Tree, the B+Tree structure has two types of nodes. 
The lowest-level nodes, also called leaf nodes, hold the actual data. All other nodes, including the 
root node, only hold key values and pointers to the next nodes. B+Trees are self-balancing tree 
data structures that tend to be wide rather than tall, although the specific structure depends on 
the definition of the index. We will discuss index structures in more detail later in this section.

There are two different ways to access data in an index – a seek or a scan. A seek is used when a 
predicate present in the query matches the key(s) of an index. In this case, SQL Database Engine can 
use the values of the predicate to limit the amount of data that must be searched by following the 
pointers within the index from the root to the leaf page to locate matching rows.

As mentioned previously, this applies to both clustered and non-clustered indexes; the only difference 
is that with a clustered index, the leaf level contains the actual data pages, while a non-clustered index 
contains index pages with pointers to the data pages. We will explore this data access operator in 
greater detail in Chapter 4, Indexing for T-SQL Performance.
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During optimization, the SQL Database Engine will decide how to access the data required to satisfy 
the query based on the columns referenced in the query, the available indexes, and the cost of the 
different operations using the estimated cardinality as a cost basis. On the surface, it may seem like a 
scan is more expensive than a seek, but depending on how many rows are returned, it may be more 
efficient to scan.

As we discussed earlier in the Mechanics of the Query Optimizer chapter, the SQL Database Engine uses 
statistics along with some basic assumptions to estimate cardinality. If the estimation is off by a large 
amount, the SQL Database Engine may choose an inefficient operator to access the data. If creating 
appropriate indexes and updating statistics does not correct the issue, it’s possible that an incorrect 
assumption is causing the cardinality estimate to be off. In this case, employing a hint may be the 
easiest way to improve the query. The following hints are helpful in influencing the Query Optimizer 
to choose a more efficient data access operator:

• INDEX (index name): This hint forces the SQL Database Engine to use an index that 
we specify.

• FORCESEEK (index name (column name)): This hint forces the SQL Database 
Engine to perform a seek operation. Optionally, we can specify the index and columns to be 
used in the seek. It can also be combined with the INDEX hint in order to supply an index for 
the seek without specifying columns.

• FORCESCAN: This hint forces the SQL Database Engine to perform a scan operation. It can 
also be combined with the INDEX hint to force a scan of a specific index.

Table Scan

The Table Scan operator represents a scan operation on a heap. We will explore heaps in greater 
detail in Chapter 4, Indexing for T-SQL Performance.

Table Scan is a non-blocking operator that reads every page of the object and scans them for 
the desired rows. A heap does not have any order or structure, so the rows will be output in random 
order. Here is an example of a query executed in the AdventureWorks sample database with a 
Table Scan operator:

SELECT * FROM DatabaseLog;

The query generates the following execution plan:

Figure 3.14: Execution plan for the SELECT * query
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While a table scan may generate a large amount of I/O depending on the size of the table, the operator 
itself does not require a large amount of additional memory or CPU, and the cost is generally based 
on the cost of the I/O.

Clustered Index Scan

The Clustered Index Scan operator is non-blocking and represents a scan operation on a clustered 
index. We will explore this index type in greater detail in Chapter 4, Indexing for T-SQL Performance.

A clustered index contains the data pages of the table, so this is effectively a table scan. Because the 
clustered index is organized into a tree structure, the data is logically ordered by the keys of the index. 
This doesn’t necessarily mean the data will be returned in order; if no ORDER BY clause is specified 
in the query, the data may be returned in random order. If there is an ORDER BY clause in the query 
that matches the clustered index key or there is some other benefit to outputting the data in order, the 
SQL Database Engine may choose to do an ordered scan of the clustered index. This is helpful because 
it may prevent the SQL Database Engine from having to sort the data later, which can be an expensive 
operation. As with a table scan, the cost of a clustered index scan is generally based on the cost of 
the I/O generated; there is no additional memory or CPU required. Here is an example of a query 
executed in the AdventureWorks sample database with a Clustered Index Scan operator:

SELECT * FROM Person.Person;

The query generates the following execution plan:

Figure 3.15: Execution plan for the SELECT * query

In this case, there was no ORDER BY clause in the query, so the SQL Database Engine performed an 
unordered scan. We can confirm this by looking at the properties of the operator, either by hovering 
over the icon with our mouse or by right-clicking it and choosing Properties from the pop-up menu, 
as in the next screenshot:
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Figure 3.16: Clustered Index Scan Properties window
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NonClustered Index Scan

A NonClustered Index Scan operator is effectively the same as a Clustered Index Scan 
operator. The difference is that the leaf level of a non-clustered index contains index pages rather than 
data pages, which means this is generally less I/O than a clustered index scan and is not analogous 
to a table scan. The following is an example of a query executed in the AdventureWorks sample 
database with a NonClustered Index Scan operator:

SELECT LastName, FirstName
FROM Person.Person
WHERE FirstName = N'Andrew';

The query generates the following execution plan:

Figure 3.17: Execution plan for the SELECT query

The SQL Database Engine will generally choose to do a non-clustered index scan when an index is 
present that contains all the columns in the query (also known as a covering index) but does not 
support the predicate. In this case, the index contains the FirstName column as a key column, but 
it is the second column in the index, so if we are searching for FirstName only, it cannot be used 
as a seek predicate in the index. This non-clustered index scan will be slightly cheaper than doing a 
clustered index scan because the non-clustered index is narrower (meaning it has fewer columns) 
and will take less I/O to scan.

Note
We may notice that there is a missing index suggestion in the execution plan in the previous 
example. This is generated when the SQL Database Engine would be able to benefit from an 
index that is not present. Looking for missing index suggestions is one way to help optimize 
our queries. We’ll be discussing more things to look for in execution plans later in the Query 
plan properties of interest section of this chapter.
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NonClustered Index Seek

A NonClustered Index Seek operator represents a seek operation against a non-clustered 
index. This is also a non-blocking operator, and again is based mainly on the cost of I/O, requiring 
no additional memory or CPU. An index seek is a quick way to locate rows that match a predicate 
in the WHERE clause of a query, if the keys of the index match the predicate. The following example 
shows a query executed in the AdventureWorks sample database with a NonClustered Index 
Seek operator:

SELECT LastName, FirstName
FROM Person.Person
WHERE LastName = N'Maxwell';

The query generates the following execution plan:

Figure 3.18: Execution plan for the SELECT query

A NonClustered Index Seek operator may also be used to return a contiguous range of rows 
based on the keys of the index. This is referred to as a range scan. This is different from a non-clustered 
index scan in that not every row of the index is scanned; the SQL Database Engine uses the values in 
the predicate to search only the range of matching keys in the index. The only way to know whether 
an index seek is a singleton seek or a range scan is to look at the properties of the index, as seen in the 
following screenshot. If the seek predicate is a single value, it’s a seek; if the seek predicate is a range 
of values, it’s a range scan:
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Figure 3.19: NonClustered Index Seek properties’ detail for lookup versus range scan operations

Clustered Index Seek

A Clustered Index Seek operator represents a seek operation against a clustered index. This 
is essentially the same as a NonClustered Index Seek operator, except that the leaf level 
contains data pages, so the entire row can be output in addition to the index columns. The following 
example shows a query executed in the AdventureWorks sample database with a Clustered 
Index Seek operator:

SELECT LastName, FirstName
FROM Person.Person
WHERE BusinessEntityID = 5;
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The query generates the following execution plan:

 

Figure 3.20: Execution plan for the SELECT query

Lookups

When a non-clustered index is used to locate rows, only the index columns are present at the leaf level 
of the index. If there are additional columns required from the underlying data pages because they are 
referenced in the SELECT list or elsewhere in the query, an additional step is required to retrieve this 
data. The leaf level of the non-clustered index contains a pointer to the data row that must be followed 
in order to retrieve the rest of the data in the row. This operation is called a lookup.

The format of the pointer in the non-clustered index depends on the underlying table storage. For 
heaps, we store a row ID, which is made up of the file ID, page ID, and slot ID (a slot is where the row 
is stored on the page) of the row. For clustered indexes, we can leverage the B+ Tree structure of the 
index to find the row instead, so the key of the clustered index is stored in the non-clustered indexes. 
Because of this difference, there are two different types of lookup operations: key lookups and row 
ID (RID) lookups. If the underlying table is stored as a heap, a RID lookup is used. If the underlying 
table is stored as a clustered index, a key lookup is used (note that a key lookup is simply a clustered 
index seek under the covers).

Note
If you’ve been working with the SQL Database Engine for a while, you may remember lookups 
being referred to as “bookmark lookups”. This is what they were called in SQL Server 2000. A 
bookmark lookup refers to lookups in general but doesn’t distinguish between a key lookup 
and an RID lookup. This distinction wasn’t made in the execution plan until SQL Server 2005.

The presence of a lookup operator in a query plan indicates that the query is not covered. A covered 
query means that all columns required to satisfy the query are present in a single index. Similarly, a 
covering index is an index that contains all the columns necessary to satisfy the query without accessing 
the base table. We will talk more about covering indexes in Chapter 5, Writing Elegant T-SQL Queries.
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RID Lookup

As mentioned previously, a RID Lookup operator represents a lookup from a non-clustered index 
into a heap. The following example shows a query executed in the AdventureWorks sample database 
with a RID Lookup operator:

SELECT *
FROM DatabaseLog
WHERE DatabaseLogID = 5;

The query generates the following execution plan:

 

Figure 3.21: Execution plan for the SELECT * query

Notice that the results of the RID Lookup operator are being joined to the non-clustered index seek 
via a Nested Loops join operator (we will discuss join operators later in this section).

Key Lookup

A Key Lookup operator represents a lookup from a non-clustered index into a clustered index. It is 
effectively a clustered index seek. The following example shows a query executed in the AdventureWorks 
sample database with a Key Lookup operator:

SELECT *
FROM Person.Person
WHERE LastName = N'Maxwell';

The query generates the following execution plan:
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Figure 3.22: Execution plan for the SELECT * query

Notice how the key lookup is joined to the non-clustered index seek in the same manner as the 
RID lookup.

Columnstore Index Scan

The indexes we’ve discussed so far are what are referred to as rowstore indexes. These perform well for 
online transaction processing (OLTP) workloads, but data warehousing (DW) or online analytical 
processing (OLAP) workloads often benefit from a different type of data storage called columnstore. 
In a columnstore index, a page of data contains a single column for one or more rows of data in the 
table. Columnstore indexes were introduced in SQL Server 2012 and provide a way to store large 
amounts of read-only or read-mostly data in a heavily compressed format with specialized operators 
that can process large amounts of data quickly. The only way to access data in a columnstore index is 
with the Columnstore Index Scan operator. The following example shows a query executed 
in the AdventureWorksDW sample database with a Columnstore Index Scan operator:

SELECT *
FROM FactResellerSalesXL_CCI
WHERE SalesAmount > 10000;

The query generates the following execution plan:

Figure 3.23: Execution plan for the SELECT * query
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Joins

Join operators are used to join the results of two previous operators in the query plan. They may be 
joining entire tables or indexes, or they may be joining the results of previous operators in the plan. 
When we think about joins, we may think of INNER, OUTER, and CROSS joins. These are logical 
joins that we would write in our T-SQL statement that tell the SQL Database Engine how to combine 
the rows of multiple tables and views. The join operators in a query plan define the algorithm that 
the SQL Database Engine will use to perform the join. The choice of which join algorithm to use is 
based on a cost estimate, not on the type of join being performed.

The physical join operators that the SQL Database Engine may choose from are Nested Loops, 
Adaptive, Merge, and Hash joins. The choice of which operation to perform is generally based 
on how many rows will be joined and whether there are appropriate indexes to support the join. As 
with data access operators, if the SQL Database Engine estimates this cost incorrectly, it may choose 
an inefficient join operation. If updating statistics and creating appropriate indexes does not solve 
the problem, hints can be used to force the SQL Database Engine to use the join operation that we 
specify. The following join hints are available:

• LOOP: Specifies that the SQL Database Engine should perform a Nested Loops join

• HASH: Specifies that the SQL Database Engine should perform a Hash join

• MERGE: Specifies that the SQL Database Engine should perform a Merge join

• REMOTE: Specifies that when joining with a table on a remote SQL Database Engine instance 
via a Linked Server connection, the SQL Database Engine should perform the join on the 
remote instance

There are two inputs to each join operator in an execution plan. While these inputs may be tables, 
indexes, or even the results of a previous join, they are generally referred to as the outer table and 
inner table. The outer table is the first input accessed in the join algorithm and will appear on the 
top of the join. The inner table is accessed second and appears at the bottom of the join. The choice 
of which input should be the inner table and which should be the outer table is relevant in the join 
because, depending on the algorithm, it may influence the cost of the overall join and the order in 
which rows are output.

Nested Loops joins

A Nested Loops join is a non-blocking operator. In a Nested Loops join, a row is fetched 
from the outer table, and the inner table is searched for a matching row. The SQL Database Engine 
loops on the inner table until no more rows are found, then it loops on the outer table. Because the 
number of iterations of the inner loop is determined by the number of rows in the outer table, the SQL 
Database Engine will generally choose the smaller of the two inputs to be the outer table in order to 
minimize the cost of the join. Also, since the outer table is the driver of the algorithm, the rows will 
be output from the Nested Loops join in the same order as they are input from the outer table.
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The following diagram depicts the operation of a Nested Loops join:

Figure 3.24: Representation of a Nested Loops join

If used correctly, the Nested Loops join is generally the most efficient join algorithm for joining 
a small number of rows with supporting indexes as it requires a small amount of memory and CPU.

Note
Two additional concepts are applicable to Nested Loops joins during execution:

Rewind: This concept is defined as an execution using the same value as the immediately 
preceding execution. In other words, while an inner table is being scanned for matches with the 
outer table, if a previously scanned value is found again, then it is said that the value is rewound.

Rebind: This concept is defined as an execution using a different value. In other words, when 
a new value is picked from the outer table to be scanned in the inner table, it is said that the 
value is rebound.

The following example shows a query executed in the AdventureWorks sample database with a 
Nested Loops operator:

SELECT p.LastName, p.FirstName, e.JobTitle
FROM Person.Person AS p
LEFT JOIN HumanResources.Employee AS e ON p.BusinessEntityID = 
e.BusinessEntityID
WHERE p.LastName = N'Maxwell';

The query generates the following execution plan:
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Figure 3.25: Execution plan for the SELECT query

Merge joins

A Merge Join operator represents a merge join in the execution plan. Merge joins are typically 
used to join two large input tables that have ordered indexes to support the join. In a Merge join, 
the size of the outer table and the inner table doesn’t affect the cost of the join, but both input tables 
must be sorted by the same keys in the same order for the join to work. A row is retrieved from the 
outer table, then matched with rows from the inner table and the results output. Once all matches 
have been exhausted on the inner table, the SQL Database Engine moves to the next row in the outer 
table. Since both the inner and outer tables are sorted in the same order going into the Merge join 
operation, the output is returned in the same order.

The following diagram depicts the operation of a Merge join:

Figure 3.26: Representation of a Merge join
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If there are indexes to support the join and the inputs are already sorted in the proper order, a merge 
operation is a very efficient way to join two large tables as it requires very little additional memory 
or CPU. This is often the method of choice when joining two tables on a primary key/foreign key 
relationship without a WHERE clause to limit the rows returned. The following example shows a query 
executed in the AdventureWorks sample database with a Merge Join operator:

SELECT h.AccountNumber, d.ProductID, d.OrderQty
FROM Sales.SalesOrderHeader AS h
INNER JOIN Sales.SalesOrderDetail AS d ON h.SalesOrderID = 
d.SalesOrderID;

The query generates the following execution plan:

 

Figure 3.27: Execution plan for the SELECT query

Hash Match joins

A Hash Match operator is a blocking operator that represents a Hash join operation in an execution 
plan. Hash joins are the most efficient way to join two large inputs that are not sorted and/or do not 
have any indexes that support the join. A Hash Match operation is expensive in that it consumes a 
significant amount of memory and CPU and may generate additional I/O if it does not fit in memory, 
but it is generally faster than both Nested Loops and Merge joins when joining a large number 
of unsorted rows.

With a Hash Match operator, the outer table is also referred to as the build table, and the inner 
table is referred to as the probe table. The smaller of the two inputs will be chosen as the build table, 
which will be used to build a hash table in memory. The SQL Database Engine will then apply a hash 
function to the join key of each row of the probe table, look it up in the hash table, and output the 
results if a match is found.
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The following diagram depicts the operation of a Hash Match join:

Figure 3.28: Representation of a Hash Match join

If the build table is too large for the entire hash table to fit in memory, intermediate results will be 
saved in a workfile in tempdb, and the operation will have to be done recursively. This is called hash 
recursion and will generate a hash warning in the execution plan. We can see this as a yellow caution 
symbol in the following screenshot, and viewing the properties will tell us that a spill has occurred. In 
extreme cases, a hash bailout may occur. This happens when the maximum recursion level is reached 
but the hash table still does not fit in memory. A hash bailout will also show up as a hash warning; 
we’ll need to look at the spill level specified in the properties of the plan to determine whether a hash 
bailout has occurred. There are two different spill levels:

• Spill level 1: This indicates hash recursion. This occurs when the build input does not fit into 
available memory, resulting in the split of input into multiple partitions that are processed 
separately. If any of these partitions still do not fit into available memory, they are split into 
sub-partitions, which are also processed separately. This splitting process continues until each 
partition fits into the available memory or until the maximum recursion level is reached.
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• Spill level 2 or higher: This indicates a hash bailout. This occurs when a hashing operation 
reaches its maximum recursion level and shifts to an alternate plan to process the remaining 
partitioned data.

The following query executed in the AdventureWorksDW database includes a Hash Match 
operator with a hash warning. For this example, the query memory is purposefully limited using the 
MAX_GRANT_PERCENT query hint to produce a spill:

SELECT s.*, c.AverageRate
FROM FactResellerSales AS s
INNER JOIN FactCurrencyRate AS c ON c.CurrencyKey = s.CurrencyKey AND 
c.DateKey = s.OrderDateKey
OPTION (MAX_GRANT_PERCENT = 0.01);

The query generates the following execution plan:

 

Figure 3.29: Execution plan for the SELECT query

Hovering over the Hash Match operator reveals the properties of the operator with details on 
the warning:
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Figure 3.30: Properties window of the Hash Match operator with a spill warning
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We will further describe warnings in this chapter, under the Query plan properties of interest section.

Adaptive joins

SQL Server 2017 introduced adaptive query processing, which includes, among other enhancements, 
Batch Mode Adaptive joins. Batch mode refers to the query processing method used to process 
many rows in bulk or batches. When first introduced, batch mode execution was closely integrated 
with the columnstore storage format. Starting with SQL Server 2019, traditional rowstore objects 
can also benefit from batch-mode processing. Whether used for columnstore or rowstore objects, 
batch-mode processing is best suited for analytical workloads because of its better parallelism and 
faster performance.

Note
Adaptive joins are only used if the outer side of a join can run in batch mode. Depending 
on the type of physical join selected later, this outer side becomes either the outer table of a 
Nested Loops join or the build table for a Hash Match join.

Normally, if cardinality estimations are skewed, the SQL Database Engine may choose an inadequate 
physical join based on wrong data, which results in performance degradation. To avoid this, Adaptive 
joins will defer the choice of using a Hash Match join or a Nested Loops join until after the 
first join input has been scanned.

This means that the Adaptive join implements both join types and then adapts to runtime conditions 
by only continuing to execute the appropriate join type on the fly. As discussed in the previous sections, 
Nested Loop joins are suitable for small inputs, and Hash Match joins for large inputs.

The SQL Database Engine starts the Adaptive join process by providing rows to a spool-like 
structure called the Adaptive Buffer and defines a dynamic threshold that is used to decide when to 
use a Hash Match or a Nested Loops plan:

• If the threshold is hit, the SQL Database Engine will use a Hash Match join and the Adaptive 
Buffer becomes the build table

• If the actual row count doesn’t exceed the threshold, then the SQL Database Engine uses a 
Nested Loops join and the Adaptive Buffer becomes the outer table

The following diagram illustrates the Adaptive join processing flow:
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Figure 3.31: Representation of an Adaptive join

The following query executed in the AdventureWorksDW database includes an Adaptive 
Join operator. Because adaptive joins are only available when the database compatibility level is 
mapped to SQL Server 2017 or higher, we need to set it to at least compatibility level 140 with the 
following command:

USE [master];
GO
ALTER DATABASE [AdventureWorksDW] SET COMPATIBILITY_LEVEL = 140;
GO

For this example, because the outer table of a join must run in batch mode for Adaptive Join to 
be eligible, we are forcing a table with a Clustered Columnstore Index operator to be on 
the outer side of the join using the FORCE ORDER query hint:

SELECT s.ProductKey,
SUM(s.OrderQuantity) AS SumOrderQuantity,
     AVG(s.UnitPrice) AS AvgUnitPrice,
AVG(s.DiscountAmount) AS AvgDiscountAmount,        c.AverageRate
FROM FactResellerSalesXL_CCI AS s
INNER JOIN FactCurrencyRate AS c ON c.CurrencyKey = s.CurrencyKey AND 
c.DateKey = s.OrderDateKey
GROUP BY s.ProductKey, c.AverageRate
OPTION (FORCE ORDER);

The query generates the following execution plan:
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Figure 3.32: Execution plan for the SELECT query

Hovering over the Adaptive Join operator reveals the properties of the operator with details on 
the adaptive threshold for this specific query, as well as the estimated and actual join type:

Figure 3.33: Adaptive Join Properties window
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In this query execution plan, we can see that because the actual number of rows was 434,626, which 
exceeds the 307 rows in the adaptive threshold, the SQL Database Engine uses a Hash join for this 
query. The second branch in the plan represents the probe phase of a standard Hash join. The third 
branch is the Clustered Index Seek operator that would be used by the Nested Loops 
join if the threshold had not been exceeded: notice the 0 of 11669631 (0%) row, which means 
the branch was unused.

Spools

Spools are expensive operators, but they are introduced in a query plan as an optimization, typically 
to compensate for inadequate indexes, or to optimize otherwise complex queries by significantly 
speeding up the overall runtime of a query. A spool operator reads data and saves it in a worktable 
in tempdb. This process is used whenever the Query Optimizer knows that the density of a column 
is high (therefore, having low selectivity) and the intermediate result is very complex to calculate. If 
this is the case, the SQL Database Engine computes the result once and stores it in a spool so that it 
can be searched later in the execution. Spools only exist while the query is being executed.

Conceptually, all physical spool operators function in the same way:

• Read all rows from an input operator downstream

• Store them in a worktable in tempdb

• Allow upstream operators to read from this cache

There are three types of physical spool operators:

• Table Spool: This spool opeator scans the input and places a copy of each row in a worktable. 
This is also called a Performance Spool operator, and it can be introduced to support a 
Nested Loops join upstream.

• Index Spool: A non-clustered index spool contains a seek predicate. The Index 
Spool operator scans the input rows, places a copy of each row in a worktable, and builds 
a non-clustered index on the rows. This allows the SQL Database Engine to use the seeking 
capability of indexes to output only those rows that satisfy the seek predicate and is usually 
introduced when a proper index doesn’t exist for the required predicates.

• Row Count Spool: This spool operator scans the input, counts how many rows are present, 
and then returns the row count without any data attached to it. This allows the SQL Database 
Engine to check for the existence of rows when the data contained in the rows is not required 
and can be introduced by certain T-SQL constructs such as an EXISTS clause dependent on 
a COUNT clause.

All the preceding spool operators can implement one of the following two logical operations:
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• Eager Spool: This spool operation causes the physical spool to become a non-blocking 
operator that will read all rows from the input operator at one time. It populates its worktable 
in an “eager” way. In other words, when the spool’s upstream operator asks for the first row, 
the spool operator consumes all rows from its input operator and stores them in the worktable.

• Lazy Spool: This spool operation causes the physical spool to become a blocking operator 
that reads and stores data only when individual rows are required. It populates the worktable 
in a “lazy” fashion. In other words, each time the spool’s upstream operator asks for a row, the 
spool operator gets a row from its input operator and stores it in the worktable, rather than 
consuming all rows at once. Because of this behavior, memory consumption for a Lazy Spool 
operation is smaller than the memory needed for an Eager Spool operation.

For both logical spools, if the operator is rewound (for example, by a Nested Loops operator) 
but no rebinding is needed, the spooled data is used instead of rescanning the input. If rebinding is 
needed, the spooled data is discarded, and the spool object is rebuilt by re-scanning the input.

Tip
If a spool is causing a bottleneck in a query, refactor it to try to eliminate the spool. Creating 
and populating a temp table can sometimes perform better than a spool, and it can be indexed. 
If the same spool is used several times, this method can yield better results.

The SQL Database Engine can introduce a Spool or Sort operation to enforce Halloween protection 
during a T-SQL statement that updates rows. We introduced Halloween protection in the Query 
optimization essentials section of Chapter 1, Understanding Query Processing.

Here is an example of a query executed in the AdventureWorks sample database with a Table 
Spool operator:

SELECT WO.WorkOrderID, WO.ProductID, WO.OrderQty, WO.StockedQty, 
WO.ScrappedQty, WO.StartDate, WO.EndDate, WO.DueDate, 
WO.ScrapReasonID, WO.ModifiedDate, WOR.WorkOrderID, WOR.ProductID, 
WOR.LocationID
FROM Production.WorkOrder AS WO
LEFT JOIN Production.WorkOrderRouting AS WOR ON WO.WorkOrderID = WOR.
WorkOrderID AND WOR.WorkOrderID = 12345;

The query generates the following execution plan:



Exploring Query Execution Plans80

Figure 3.34: Execution plan for the SELECT query

In the following screenshot, notice the difference between actual and estimated rows for the spool 
(72,591 of 107,588). The SQL Database Engine doesn’t hold statistics on worktables, so estimations are 
based on the estimated number of rows (1.48211) multiplied by the estimated number of executions 
(72,591). In turn, notice the number of rewinds and rebinds; these match the number of executions 
because executing a spool is the action of rewinding and rebinding values as the Nested Loops 
operator requires rows to process:

Figure 3.35: Table Spool Properties window
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In Chapter 6, Discovering T-SQL Anti-Patterns in Depth, we will discuss some methods for avoiding 
Spool operators in our queries.

The spool was included for performance reasons, to cache the result set from the inner side of the 
Nested Loops join. The idea is that if the next iteration of the Nested Loops join uses the same 
correlated parameters, the spool can “rewind” – replay the results from the prior execution. This saves 
the cost of evaluating the inner side subtree, at the cost of caching the result in a worktable. As such, 
the  NO_PERFORMANCE_SPOOL hint can apply to these scenarios to remove this type of spool. As 
always, hints should be used only as a last resort, as they limit the Query Optimizer search space and 
may preclude a query from leveraging future query optimization enhancements.

To prove that the spool was beneficial, we can add the hint to the query, like so:

SELECT WO.WorkOrderID, WO.ProductID, WO.OrderQty, WO.StockedQty, 
WO.ScrappedQty, WO.StartDate,       WO.EndDate, WO.DueDate, 
WO.ScrapReasonID, WO.ModifiedDate, WOR.WorkOrderID, WOR.ProductID, 
WOR.LocationID
FROM Production.WorkOrder AS WO
LEFT JOIN Production.WorkOrderRouting AS WOR ON WO.WorkOrderID = WOR.
WorkOrderID AND WOR.WorkOrderID = 12345
OPTION (NO_PERFORMANCE_SPOOL);

The query generates the following execution plan:

Figure 3.36: Execution plan for the SELECT query

Instead of a spool, the SQL Database Engine now accesses the clustered index for every single search 
on the inner table. We started this section by saying spools are expensive operators, but that they are 
also an optimization. That is proven here, whereby eliminating the spool degrades query performance 
by using much more CPU.

Sort and aggregation operators

Sort and aggregation operators are present in an execution plan when a query contains an ORDER 
BY and/or a GROUP BY clause. In some cases, the SQL Database Engine will introduce a Sort 
operator in order to optimize the execution of a query, such as to enable a Merge join or to improve 
the performance of a Nested Loops join. We may also see a Sort operator in an execution plan 
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that contains a SELECT DISTINCT clause. DISTINCT is effectively an aggregation as it requires 
grouping the rows and only returning one row per distinct set of values. A Sort operation is a simple 
way to perform this type of aggregation. As discussed in the Query optimization essentials section of 
Chapter 1, Understanding Query Processing, the SQL Database Engine may also add a Sort operator 
to an UPDATE plan in order to enforce Halloween protection.

Sort

Sort is a blocking operator that is used to order the input based on one or more columns. Sort 
operations can be expensive operations since they require additional memory to store intermediate 
results and CPU to perform the sort. If the intermediate results do not fit in memory, Sort operations 
may also generate I/O as the results will be saved in a worktable in tempdb.

If any of these happens, a sort warning will be visible in the execution plan. As with a hash warning, 
it will appear as a yellow caution symbol in the plan, and the properties will give more details on how 
much data was spilled. There are two spill levels:

• Spill level 1: This means one pass over the data was enough to complete the sort

• Spill level 2: This means multiple passes over the data are required to sort the data

The following query executed in the AdventureWorksDW database includes a Sort operation 
with a sort warning:

SELECT *
FROM FactResellerSalesXL_PageCompressed s
ORDER BY ProductKey;

The query generates the following execution plan:

 

Figure 3.37: Execution plan for the SELECT * query

Hovering over the Sort icon will pop up the Properties window, where we can see the sort warning 
details, as shown here:
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Figure 3.38: Properties window of the Clustered Index Scan operator with a spill warning

We will further describe warnings in this chapter, under the Query plan properties of interest section.
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Stream aggregation

As mentioned previously, aggregation is used to group rows together when a query contains a GROUP 
BY clause. With a GROUP BY clause, the SELECT list typically has one or more aggregate functions 
such as SUM, MIN, or MAX. If the input to the aggregation operation is already sorted by the GROUP 
BY columns, a Stream Aggregate operator can be used. Stream aggregation is the more efficient 
of the two aggregation operators in that it does not require much additional CPU or memory; the 
rows are processed as they pass through the operator. The following example shows a query executed 
in the AdventureWorks sample database with a Stream Aggregate operator:

SELECT SalesOrderID, COUNT(*) AS ItemCount
FROM Sales.SalesOrderDetail
GROUP BY SalesOrderID;

The query generates the following execution plan:

Figure 3.39: Execution plan for the SELECT query

Hash aggregation

The Hash Match (Aggregate) operator also performs aggregation to support a GROUP BY 
clause, but while stream aggregation requires the input to be sorted, hash aggregation does not. Hash 
aggregation is effectively the same as a Hash join; the difference is that there is only a single input to 
process. As with a Hash join, hash aggregation consumes additional CPU and memory to store the 
hash table and may be subject to hash recursion and additional I/O in the form of spills to tempdb. 
The following example shows a query executed in the AdventureWorks sample database with a 
Hash Match (Aggregate) operator:

SELECT p.Name AS ProductName, SUM(OrderQty) AS TotalProductSales
FROM Sales.SalesOrderDetail sod
INNER JOIN Production.Product p on p.ProductID = sod.ProductID
GROUP BY p.Name;

The query generates the following execution plan:
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Figure 3.40: Execution plan for the SELECT query

Query plan properties of interest
Each operator in a query execution plan has several properties that provide context and metrics around 
its compilation, optimization, and execution. The plans also have global properties to provide overall 
context. Examining some key properties for the overall plan and some operators is especially relevant 
to writing T-SQL that scales well. We will look at these properties, understand their meaning, and 
become familiar with their significance, which will be important in the chapters where we explore 
T-SQL patterns and anti-patterns.

Plan-level properties

The root node of a plan has a few properties that are important for understanding the context of 
execution. Different trace flags or SET options change execution context and may drive query 
optimization choices, so having this information persisted in the showplan is a valuable tool.

The following example shows a query executed in the AdventureWorks sample database that 
allows us to examine most of these properties:

SELECT *
FROM Sales.SalesOrderDetail AS sod
INNER JOIN Production.Product AS p ON sod.ProductID = p.ProductID
ORDER BY Style DESC
OPTION (MAXDOP 1);
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The query generates the following execution plan:

Figure 3.41: Execution plan for the SELECT * query

Right-click on the root node (SELECT) of the plan, open the context menu, and click on Properties:

Figure 3.42: Context menu on the plan’s root node

This opens the Properties window, as seen next:
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Figure 3.43: Plan’s Properties window

For each property selected, the lower part of the Properties window displays some informational text 
such as the size of the plan in the plan cache, as highlighted in Figure 3.43.

Note
The properties available depend on the version and build of the SQL Database Engine on 
which the plan was captured. As of the time this book was written, all the plan-level properties 
described here exist in SQL Server 2016 Service Pack 2 (SP2), SQL Server 2017 Cumulative 
Update 3 (CU3), SQL Server 2019, SQL Server 2022, and Azure SQL Database. A subset of 
these properties will also be available in SQL Server 2016 SP1 and higher builds, SQL Server 
2014 SP3, and SQL Server 2012 SP4.
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Not all properties are available with an estimated plan because this refers to a compiled plan 
that has not yet been executed. Some properties exist at runtime only and, therefore, are only 
available for an actual plan; however, all properties in an estimated plan are also available in an 
actual plan. In order to distinguish between compile-time and runtime properties in this book, if 
a property only exists at runtime, we will use one asterisk after the property name – for example, 
Degree of Parallelism *, as seen in the previous screenshot.

With this, let’s look at some of the most important properties as seen in the preceding Properties 
window screenshot.

CardinalityEstimationModelVersion

CardinalityEstimationModelVersion indicates the CE version with which the plan 
was compiled. In this case, we see 130, mapping to the CE released with SQL Server 2016. While 
this query is being executed in a SQL Server 2017 Database Engine, the compatibility level of the 
AdventureWorks database is set to 130, because it hasn’t been upgraded since being restored 
from a SQL Server 2016 system where it was first created. Because the CE version is a main driver for 
the query optimization process, it represents vital information when database professionals analyze 
query plans. For more information on CE and database compatibility, see the Mechanics of the Query 
Optimizer chapter.

Degree of Parallelism

Degree of Parallelism* indicates the number of CPUs actually used to process a query that 
was eligible to execute in parallel. In this case, we see the value is zero because the query was not 
executed in parallel. We have discussed how the query optimization process evaluates parallelism 
in the Mechanics of the Query Optimizer chapter. If the query had a cost that was high enough to 
go parallel but didn’t, an extra property named NonParallelPlanReason* is also shown. In 
this case, we can see the reason was MaxDOPSetToOne, and indeed notice the query used the 
MAXDOP 1 hint, forcing the Query Optimizer to not evaluate a parallel plan. Compare this with the 
EstimatedAvailableDegreeOfParalellism property: for example, if the actual parallelism 
was smaller than the estimated parallelism, this may indicate a CPU contention problem.

Memory Grant

Memory Grant* indicates the amount of memory in kilobytes (KB) that the SQL Database Engine 
had to acquire to even start executing this query. In this case, we see 57,544 KB, roughly 56 megabytes 
(MB). Being limited, memory is one of the most important resources for the SQL Database Engine. 
Even when our SQL Database Engine has terabytes (TB) of memory at its disposal, it is most likely 
still less than the overall storage taken by all our databases. This means that making sure the SQL 
Database Engine can properly estimate the amount of memory to use for a given query to execute 
and then use it without waste is a measure of scalability and enhanced concurrency in our database 
system. We will discuss this in more detail later in this chapter as we look at possible warnings output 
by the SQL Database Engine during execution.
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MemoryGrantInfo

MemoryGrantInfo can expand to show additional information on memory usage in KB, to 
report on all memory calculations accounted for during query optimization. Next is the detail for 
this property for the example query:

Figure 3.44: Memory grant information in the Properties window

The detailed elements of MemoryGrantInfo are the following:

• GrantedMemory* indicates the memory acquired by the Database Engine at runtime.

• GrantWaitTime* indicates the time in seconds the query had to wait for a successful 
memory grant. This translates into RESOURCE_SEMAPHORE waits. If no waits occur, the 
wait time will be zero.

• MaxQueryMemory* indicates the maximum memory allowed for a single query under 
the applicable Resource Governor pool’s MAX_MEMORY_PERCENT configuration. If there 
are operators spilling and estimations are mostly correct, the query may be running into 
memory starvation.

• MaxUsedMemory* indicates the maximum memory used by the query during execution. If 
there is a large skew between the granted memory and the used memory, the SQL Database 
Engine will generate warnings, which will be discussed later in this section.

• RequiredMemory* indicates the required memory for the chosen degree of parallelism 
when a query runs in parallel. If the query runs in serial mode, this is the same as 
SerialRequiredMemory. The query will not start without at least this much memory 
being available.

• SerialRequiredMemory indicates the required memory for a serial query plan to execute. 
The query will not start without at least this much memory being available.
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OptimizationLevel

OptimizationLevel refers to the Query Optimizer phase and can be either TRIVIAL or FULL. For 
more information on the Query Optimizer workflow, see the Mechanics of the Query Optimizer chapter.

OptimizerHardwareDependentProperties

OptimizerHardwareDependentProperties can expand to show additional information 
on system-reported conditions that are accounted for during query optimization. Next is the detail 
for this property for the example query:

Figure 3.45: Hardware-dependent optimizer information in the Properties window

The detailed elements of OptimizerHardwareDependentProperties are the following:

• EstimatedAvailableDegreeOfParallelism: This indicates the expected number 
of schedulers available for query processing. One means that no parallelism will be available; 
a number greater than one allows a parallel plan to be evaluated during query optimization. 
Compare this with the Degree of Parallelism* property: for example, if the actual 
parallelism was smaller than the estimated parallelism, this may indicate a CPU contention problem.

• EstimatedAvailableMemoryGrant: This indicates the expected amount of memory 
(in KB) available for a single query under the applicable Resource Governor pool’s MAX_
MEMORY_PERCENT configuration.

• MaxCompileMemory: This indicates the maximum Query Optimizer memory available (in KB) 
during compilation under the applicable Resource Governor pool’s MAX_MEMORY_PERCENT 
configuration. If the system is accumulating RESOURCE_SEMAPHORE_QUERY_COMPILE 
waits, then queries are waiting to be compiled long before they can execute. This then surfaces as 
a high compilation or recompilation scenario. We will further detail this scenario in Chapter 6, 
Discovering T-SQL Anti-Patterns in Depth.

OptimizerStatsUsage

OptimizerStatsUsage can expand to show additional information on which statistics objects 
were used by the Query Optimizer for a given compilation. When analyzing a query plan that has 
performance problems, a database professional can use this information to see which statistics were 
loaded for use during query optimization, and also, whether statistics need to be updated, which may 
be a root cause of performance problems grounded on CE issues. Next is the detail for this property 
for the example query:
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Figure 3.46: Statistics used by the optimizer in the Properties window

The detailed elements of OptimizerStatsUsage are the following, and are repeated for every 
statistic object loaded for this plan:

• Database, Schema, Table, and Statistics refer to the respective four-part name of 
the statistic object.

• LastUpdate refers to the date and time the statistic object was last updated.

• ModificationCount refers to the internal modification counter for each statistic that 
drives automatic updates. For more information on statistics, see the Mechanics of the Query 
Optimizer chapter.

• SamplingPercent refers to the sampling rate with which a statistic was last updated. It can 
reach 100 percent, meaning the statistic was updated as part of a full scan of the underlying 
table or indexed view.

QueryPlanHash

QueryPlanHash is a binary hash value calculated on the query plan and used to uniquely identify 
a query execution plan. In other words, this is a query plan fingerprint.

QueryHash

QueryHash is a binary hash value calculated on the query text and used to uniquely identify a query. 
In other words, this is a query fingerprint. We will see several examples of using the query hash in the 
Building diagnostic queries using DMVs and DMFs chapter.

Set Options

Set Options lists the SET options that were current as of compile time. These options determine the 
handling of specific information and may be different at runtime because they are based on the current 
session. The options tracked are ANSI_NULLS, ANSI_PADDING, ANSI_WARNINGS, ARITHABORT, 
CONCAT_NULL_YIELDS_NULL, NUMERIC_ROUNDABORT, and QUOTED_IDENTIFIER. These 
SET options affect estimations and query results, which means that if one option is changed inside of 
a batch, a recompilation must happen. Keep these options in mind when analyzing a query that may 
meet the expected performance in a development or pre-production system but performs poorly in 
a production system.
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For example, ANSI_NULLS specifies the ISO-compliant behavior for NULL equality and inequality 
comparison, which dramatically changes the resulting query plan. The following examples executed 
in the AdventureWorks sample database differ only in the ANSI_NULLS setting. First, set 
ANSI_NULLS to ON as recommended:

SET ANSI_NULLS ON
GO
SELECT *
FROM Sales.SalesOrderDetail AS sod
INNER JOIN Production.Product AS p ON sod.ProductID = p.ProductID
WHERE SellEndDate = NULL
ORDER BY Style DESC
OPTION (MAXDOP 1);

The query generates the following execution plan:

Figure 3.47: Execution plan for the SELECT * query

Then, set ANSI_NULLS to OFF:

SET ANSI_NULLS OFF
GO
SELECT *
FROM Sales.SalesOrderDetail AS sod
INNER JOIN Production.Product AS p ON sod.ProductID = p.ProductID
WHERE SellEndDate = NULL
ORDER BY Style DESC
OPTION (MAXDOP 1);

The query generates the following execution plan:
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Figure 3.48: Execution plan for the SELECT * query

The first query returns zero rows and the second returns 99,469 rows, which has an obvious impact 
on resource usage. The ISO-compliant statement for NULL equality should instead be the following:

SET ANSI_NULLS ON
GO
SELECT *
FROM Sales.SalesOrderDetail AS sod
INNER JOIN Production.Product AS p ON sod.ProductID = p.ProductID
WHERE SellEndDate IS NULL
ORDER BY Style DESC
OPTION (MAXDOP 1);

The query generates the same execution plan as the preceding ANSI_NULLS OFF example. This is 
because when ANSI_NULLS is on, a comparison to NULL must use the ISO convention that a NULL 
value evaluates to an unknown value, and as such is not equal to another NULL value. If SET ANSI_
NULLS is not specified for the session or statement, then the ANSI_NULLS database option stands.

Statement

Statement is the actual T-SQL statement that was executed. The statement captured in the plan is 
limited to the first 4,000 characters.

TraceFlags

TraceFlags can expand to show additional information on trace flags present during compilation 
and execution. Trace flags may change the behavior of the SQL Database Engine during query 
compilation and optimization, during query execution, or both. Therefore, during any query performance 
troubleshooting exercise, it’s important to know which trace flags were influencing a given query at 
any stage. Under the TraceFlags property, two lists can be expanded:

• [1] IsCompileTime | True: This returns a list of all trace flags active in the system 
when the query was undergoing the process of compilation and optimization

• [2] IsCompileTime | False*: This returns a list of all trace flags active in the system 
when the query was being executed
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In Figure 3.49, on the left side, we see two trace flags present at both compile and execution time: 
7412 and 4199.

Tip
These are documented trace flags. For more information, refer to the SQL Database Engine 
documentation page at http://aka.ms/traceflags.

On the right side of Figure 3.49, we see the same two trace flags present at compile time, but only one 
at execution time (7412). This means that between the time the query was compiled and the current 
query execution plan was captured, trace flag 4199 was disabled at the system level using the DBCC 
TRACEOFF (4199, -1) T-SQL command:

Figure 3.49: Trace flags information in the Properties window

Because trace flag 4199 enables Query Optimizer hotfixes, we immediately know that the plan to 
which the left side of Figure 3.49 belongs was compiled using a non-default set of query optimization 
options. Because trace flag 4199 was since disabled using the Database Console Command (DBCC) 
TRACEOFF, such options are not available for new incoming T-SQL queries that have not been 
compiled yet. This provides important context for the query performance troubleshooting exercise.

WaitStats

WaitStats* can expand to show additional information about the top 10 waits accrued while the 
query was executing in the scope of the current session, in ascending order of wait time in SQL Server 
2019, and descending order up to SQL Server 2017. For each wait, three properties are available:

http://aka.ms/traceflags
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• WaitCount* refers to the number of times that tasks associated with this request had to wait 
for a required resource to become available

• WaitTimeMs* refers to the overall wait time in milliseconds for the number of times a query 
had to wait during query execution

• WaitType* refers to the wait type as documented in the SQL Database Engine documentation 
under the sys.dm_os_wait_stats dynamic management view (DMV)

Next is the detail for this property for the example query:

Figure 3.50: Wait information in the Properties window

QueryTimeStats

QueryTimeStats* can expand to show additional information on time metrics for a given execution. 
The detailed elements in QueryTimeStats include CpuTime* and ElapsedTime* for the overall query 
and are available starting with SQL Server 2012 SP4, SQL Server 2014 SP3, SQL Server 2016 SP1, SQL 
Server 2017, and in Azure SQL Database. Both are measured in milliseconds and can replace the need 
to execute the query with SET STATISTICS TIME separately.

Next is the detail for this property for the example query:

Figure 3.51: Query time statistics information in the Properties window
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For queries that call User-Defined Functions (UDFs), the UdfCpuTime* and UdfElapsedTime* 
elements are also included under QueryTimeStats. These are available starting with SQL Server 2014 
SP3, SQL Server 2016 SP2, SQL Server 2017 CU3, and Azure SQL Database. Both are also measured in 
milliseconds and provide insight into the cost of executing a UDF, which can otherwise go unnoticed 
by simply looking at a plan. The following example creates a scalar UDF in the AdventureWorks 
sample database:

CREATE FUNCTION ufn_CategorizePrice (@Price money)
RETURNS NVARCHAR(50)
AS
BEGIN
     DECLARE @PriceCategory NVARCHAR(50)
IF @Price < 100 SELECT @PriceCategory = 'Cheap'
IF @Price BETWEEN 101 and 500 SELECT @PriceCategory = 'Mid Price'
IF @Price BETWEEN 501 and 1000 SELECT @PriceCategory = 'Expensive'
IF @Price > 1001 SELECT @PriceCategory = 'Unaffordable'
RETURN @PriceCategory
END;

And now for a query executed in the AdventureWorks sample database that uses the newly 
created UDF:

SELECT dbo.ufn_CategorizePrice(UnitPrice),  SalesOrderID, 
SalesOrderDetailID, CarrierTrackingNumber, OrderQty, ProductID, 
SpecialOfferID, UnitPrice, UnitPriceDiscount,  LineTotal, rowguid, 
ModifiedDate
FROM Sales.SalesOrderDetail;

In the generated execution plan, we can see the two additional properties under QueryTimeStats:

Figure 3.52: Query time statistics information in the Properties window

MissingIndexes

MissingIndexes refers to potentially missing indexes that may benefit the query’s performance, 
as identified by the Query Optimizer during query compilation. During the compilation process, 
which we discussed in the Query compilation essentials section of Chapter 1, Understanding Query 
Processing, the SQL Database Engine matches existing indexes where any of the columns required for 
the query predicates, aggregates, and output are present. Then, it chooses to access the existing index 
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or set of indexes that minimize the cost of access to the required columns; in other words, the index 
or set of indexes that are the cheapest to read data from.

As this matching process occurs, the SQL Database Engine can identify whether the current set of 
indexes already covers the query, partially or as a whole, or if a more optimized index could be created 
to lower the cost of accessing the required columns. For each table mentioned in the query, if the SQL 
Database Engine can find an index that might provide cheaper access to data, then it will store that 
missing index recommendation in the cached plan.

The missing index recommendation builds a recommendation based on the following criteria:

• Columns present in join or search equality predicates such as WHERE column = value, 
WHERE column IS NULL for a nullable column, or an ON column = column join

• Columns present in join or search inequality predicates such as WHERE column <> value, 
WHERE column > value, or WHERE column IS NOT NULL for a nullable column

• Columns present in the output such as those in the SELECT clause or an UPDATE … FROM

For all these conditions, the columns will be listed in the order that they appear in the underlying tables.

The query execution plan for which we have been examining all the previous properties doesn’t have 
missing index recommendations, so we need to use a different query. The following example is a 
query that executes in the AdventureWorks sample database with an existing NonClustered 
Index Scan operator and a Clustered Index Scan operator:

SELECT p.FirstName, p.LastName, c.AccountNumber
FROM Person.Person p
INNER JOIN Sales.Customer c ON c.PersonID = p.BusinessEntityID
WHERE p.FirstName = 'Robert';

The query generates the following execution plan:

Figure 3.53: Execution plan for the SELECT query
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Recall what we discussed in the previous section, Query plan operators of interest, under NonClustered 
Index Scan. In this case, the SQL Database Engine uses the following:

• An existing non-clustered index of the Person table that doesn’t contain the FirstName 
column as a leading key column, but it is the second column in the index. Because the query 
is searching for FirstName only, the SQL Database Engine cannot seek the index.

• The clustered index of the Customer table because none of the existing non-clustered indexes 
contains the PersonID as a key column. Because the query is joining on PersonID only, 
the SQL Database Engine cannot seek the index.

Note that in the graphical query plan, we can only see one index recommendation with an estimated 
impact of 29.4 percent. However, the query plan may have more than one index recommendation 
because the query uses several tables. To see all index recommendations, we need to look at the XML 
of the plan or open the Properties window by right-clicking the root node (SELECT), which we can 
see in the following screenshot:

Figure 3.54: Missing indexes information in the Properties window
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Now, we can see that two index recommendations exist in the screenshot. Based on the order in which 
the SQL Database Engine builds index recommendations, we need to look at EQUALITY columns, 
then INEQUALITY columns (if any), and finally, at any output columns (identified as INCLUDE). 
I can derive index creation statements from this information – in fact, that is what SSMS did in the 
graphical query plan:

• One index recommendation for the Person table, with the following index creation statement: 
CREATE INDEX IX_FirstName ON [Person].[Person] ([FirstName])

• One index recommendation for the Customer table, with the following index creation statement: 
CREATE INDEX IX_PersonID ON [Sales].[Customer] ([PersonID]) 
INCLUDE ([AccountNumber])

Because there aren’t any existing indexes that even closely match these definitions, we can create the 
indexes. Then, we can execute the query again, which generates the following execution plan without 
missing index recommendations:

Figure 3.55: Execution plan for the same SELECT query using the same indexes

However, notice the new index on the Person table was not used. We created the new index with the 
key on the FirstName column as recommended, so why was the previous index used? The answer 
is that the new index doesn’t include the other required column in the Person table – LastName. 
It was still cheaper to use the previous index than to use the new non-clustered index, which requires 
a lookup in the clustered index. Also, notice the SQL Database Engine changed the join type due 
to improved statistical information that became available after the index creation was executed. 
Recreating the index to include the LastName column should allow the new index to be used. The 
following index creation statement does this: CREATE INDEX IX_FirstName ON [Person].
[Person] ([FirstName]) INCLUDE ([LastName]).

Then, we can execute the query again, which generates the following execution plan:
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Figure 3.56: Execution plan for the same SELECT query using a new index

As expected, the revised index on the Person table is used. Look for missing index suggestions as 
one way to help optimize our queries. All index types and options mentioned will be discussed in 
Chapter 4, Indexing for T-SQL Performance.

In the Troubleshooting Common Scenarios with DMV Queries section of Chapter 7, Building Diagnostic 
Queries Using DMVs and DMFs, we will see examples of how to leverage DMVs to programmatically 
access missing index information that our the SQL Database Engine may be storing.

Parameter List

Parameter List can expand to show additional information on which parameters the current plan 
was compiled with and is available for parameterized queries only. This can be useful to troubleshoot 
issues such as parameter sniffing and data type conversion issues from within a showplan, without the 
need to access the database. That is very useful in case the user who’s analyzing the plan is working 
remotely or lacks permission to access the database schema. For each parameter, four elements 
are available:

• Column identifies the parameter name in the current plan

• Parameter Compiled Value refers to the first incoming value for the parameter that 
drove the process of query optimization

• Parameter Data Type refers to the data type of the first incoming value for the parameter

• Parameter Runtime Value* refers to the last used value for the parameter, for a plan 
that had been previously compiled and cached

Note
We will further detail implicit conversion issues in Chapter 6, Discovering T-SQL Anti-Patterns 
in Depth.



Query plan properties of interest 101

Take the following example of a stored procedure created and executed in the AdventureWorks 
sample database:

CREATE OR ALTER PROCEDURE usp_SalesProds (@P1 NVARCHAR(10))
AS
SELECT *
FROM Sales.SalesOrderDetail AS sod
INNER JOIN Production.Product AS p ON sod.ProductID = p.ProductID
WHERE SalesOrderID = @P1
ORDER BY Style DESC;
GO
EXEC usp_SalesProds @P1 = 49879;
GO
EXEC usp_SalesProds @P1 = 48766;
GO

In the generated execution plan, we can see the information under Parameter List:

Figure 3.57: Plan information on compile-time and runtime parameter usage

On the first execution of the stored procedure, the SQL Database Engine reads the incoming parameters 
and uses that information plus statistics to generate a plan that’s optimized to retrieve the required 
set of data. This is the reason we see Parameter Compiled Value equal to Parameter 
Runtime Value.

On the second execution, notice how Parameter Runtime Value changed but Parameter 
Compiled Value remained the same. This indicates that the query plan was reused from the cache.

Now, let’s see an example of a query using sp_prepare in the AdventureWorks sample database:

DECLARE @P1 int;
EXEC sp_prepare @P1 output, N'@P1 int',
N'SELECT *
FROM Sales.SalesOrderDetail AS sod
INNER JOIN Production.Product AS p ON sod.ProductID = p.ProductID
WHERE SalesOrderID = @P1
ORDER BY Style DESC
OPTION (MAXDOP 1);';
SELECT @P1;
GO
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This returns a handle with value 1, which applications can use by executing sp_execute, before 
evicting the plan from the cache with sp_unprepare:

EXEC sp_execute 1, N'49879';
GO
EXEC sp_execute 1, N'48766';
GO
EXEC sp_unprepare 1;
GO

In the generated execution plan, we can see the information under Parameter List:

Figure 3.58: Plan information on runtime parameter usage

Notice that Parameter Compiled Value is absent. This is because the prepared plan was not 
parameterized, and so the cached plan does not retain any parameter information. Furthermore, 
unlike a stored procedure where a DBA can ultimately see the parameter data type by opening the 
T-SQL definition, a prepared query is not an object inside a database. So, having the information on 
the parameter data type becomes valuable to troubleshoot conversion issues that could otherwise only 
be found by tracing workload activity to detect the sp_prepare statement.

Warnings

Warnings* can expand to show the type of warning and additional information that helps the 
troubleshooting process. Plan-level warnings will show as a yellow triangle sign in the graphical 
query execution plan at the root-node level (SELECT). Hovering over the operators that display such 
a triangle will also show details on the warning. As of the time this book was written, the existing 
plan-level warning types were the following.

PlanAffectingConvert

PlanAffectingConvert* happens when the Query Optimizer encounters the need to convert 
data types and the conversion operation affects the cardinality estimation process or the ability to 
seek an existing index. Because conversions occur at runtime and query optimization happens before 
execution, the Query Optimizer cannot account for such information during compilation. This is a 
direct result of the developers’ choices, either at the query or database schema level, but can usually 
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be remediated. The following example shows a query executed in the AdventureWorks sample 
database with a conversion warning about cardinality estimates:

CREATE TABLE #tmpSales (SalesOrderID CHAR(10) PRIMARY KEY CLUSTERED);
INSERT INTO #tmpSales
SELECT TOP 1000 SalesOrderID FROM Sales.SalesOrderHeader;
GO
SELECT * FROM #tmpSales WHERE SalesOrderID = 44360;

Next is the warning detail for the example query, where the two cardinality estimation warning types 
are present:

Figure 3.59: Plan warning on type conversion affecting estimations

Looking at the query predicate and the table schema, we see the converted expression happens because 
of a mismatch between data types: the query predicate is passed as an integer, while the table’s data type 
is a string. This affects the ability to do accurate estimations but also prevents seeking the clustered 
index for the same reason. All warnings can also be seen in the generated execution plan by hovering 
over the SELECT icon:

Figure 3.60: All applicable warnings for the execution plan
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To remediate this case, simply change either the base table data type to integer or the predicate to 
string. This eliminates both warnings because there will be no conversion, and therefore an index 
seek can be used rather than a scan.

WaitForMemoryGrant*

WaitForMemoryGrant* happens when a query waits more than 1 second to acquire a memory 
grant or when the initial attempt to get the memory fails. RESOURCE_SEMAPHORE waits may indicate 
an excessive number of concurrent queries or an excessive amount of memory grant requests that the 
current resources cannot handle. The warning reports the number of seconds the query had to wait 
for MemoryGrant during execution:

Figure 3.61: Plan warning on memory grant waits

MemoryGrantWarning*

MemoryGrantWarning* happens when the SQL Database Engine detects that memory grants 
were not estimated properly, as it relates to the comparison between the initial memory grant and 
the memory used throughout execution. This warning happens when one of three conditions occur:

• ExcessiveGrant is fired when the max used memory is too small when compared to 
the granted memory. This scenario can cause blocking and severely affect the SQL Database 
Engine’s ability to run concurrent workloads efficiently. For example, if the SQL Database 
Engine has 10 GB of memory, and each request is granted 1 GB of memory but only uses a 
small fraction of that, then, at most, only 10 queries can be active simultaneously, but looking 
at the actual used memory, this number could be far greater. Next is the warning detail where 
the ExcessiveGrant condition is present:

Figure 3.62: Plan warning on excessive memory grant size
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Memory estimations are directly related to the query optimization process and the estimated 
plan. There are several ways to attempt remediation, and updating statistics can usually help 
improve estimations. Recent versions of the SQL Database Engine can administratively address 
these with the use of the MIN_PERCENT_GRANT and the MAX_PERCENT_GRANT query hints.

• GrantIncrease is fired when the grant starts to increase too much, based on the ratio between 
the max used memory and the initial requested memory grant. Unlike row mode, where the 
initial memory grant is not dynamic, batch mode allows for the initial grant to be exceeded to 
a point before a spill occurs. This is done because spilling in batch mode has a greater cost than 
spilling in row mode. For example, consider the SQL Database Engine with 10 GB of memory, 
where each request is running in batch mode and granted 512 MB of memory. If around 20 
requests are executing simultaneously and can exceed that initial amount of memory, this can 
cause server instability and unpredictable workload performance.

• UsedMoreThanGranted is fired when the max used memory exceeds the initially granted 
memory. Much as with the GrantIncrease scenario, this can cause out-of-memory (OOM) 
conditions on the server.

SpatialGuess*

SpatialGuess* happens when the SQL Database Engine must use a fixed selectivity estimation 
(also called guess) when optimizing a query that uses spatial data types and indexes. Next is the 
warning detail where the SpatialGuess* condition is present:

Figure 3.63: Plan warning on a guess being used for cardinality estimation in a spatial query

UnmatchedIndexes*

UnmatchedIndexes* happens when the Query Optimizer cannot match an existing filtered index 
with a query predicate due to parameterization.

Note
The SQL Database Engine can use optimized non-clustered indexes that are defined using a WHERE 
clause. These are called filtered indexes and are especially suitable for narrow query coverage. 
Being defined on a subset of data, these indexes can significantly improve query performance.
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The following example creates a filtered index in the AdventureWorks sample database and then 
executes a query with an unmatched index warning:

CREATE NONCLUSTERED INDEX FIProductAccessories ON Production.
Product (ProductSubcategoryID, ListPrice) INCLUDE (Name) WHERE 
ProductSubcategoryID >= 27 AND ProductSubcategoryID <= 36;
GO
DECLARE @i int = 33
SELECT Name, ProductSubcategoryID, ListPrice
FROM Production.Product
WHERE ProductSubcategoryID = @i AND ListPrice > 25.00;

Next is the UnmatchedIndexes warning detail for the example query. Also, notice the extra 
element, UnmatchedIndexes:

Figure 3.64: Plan warning on a filtered index that could not be used due to an out-of-range predicate

It’s clear that the SQL Database Engine was able to identify an eligible filtered index but was unable 
to use it because, if a query is parameterized, that means that an incoming parameter with a value 
outside the defined filter would not produce a result. In the following example, the SQL Database 
Engine can leverage the filtered index:

SELECT Name, ProductSubcategoryID, ListPrice
FROM Production.Product
WHERE ProductSubcategoryID = 33 AND ListPrice > 25.00;

This is because the query is not parameterized, which means the SQL Database Engine can match the 
incoming predicate with an existing filtered index and use it to read only the relevant subset of data.
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One other alternative to make the SQL Database Engine leverage the filtered index is to build the 
variable into the string and then execute it, like so:

DECLARE @i int = 33, @sqlcmd NVARCHAR(500)
SELECT @sqlcmd = 'SELECT Name, ProductSubcategoryID, ListPrice 
FROM Production.Product WHERE ProductSubcategoryID = ' + CAST(@i AS 
NVARCHAR(5)) + ' AND ListPrice > 25.00;'
EXECUTE sp_executesql @sqlcmd;

This way, the SQL Database Engine executes a query that matches the non-parameterized version, 
and the filtered index predicate can be matched.

FullUpdateForOnlineIndexBuild*

FullUpdateForOnlineIndexBuild* happens when converting a partial index update to a 
full index update during an online index create or rebuild operation.

Operator-level properties

Analyzing plan-level properties provides context for the overall plan and the system in which the 
query plan is executed. After that step, it’s very important to keep in mind some of the key properties 
that can be found in the query plan operators of interest that we discussed earlier in this chapter.

The following example shows a query executed in the AdventureWorks sample database that 
allows us to examine most of these properties:

SELECT *
FROM Sales.SalesOrderDetail AS sod
INNER JOIN Production.Product AS p ON sod.ProductID = p.ProductID
WHERE p.ProductID BETWEEN 850 AND 860
ORDER BY Style DESC
OPTION (USE HINT('ENABLE_PARALLEL_PLAN_PREFERENCE'));
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The query generates the following execution plan:

Figure 3.65: Execution plan for the SELECT * query

Right-click on the most expensive operator in the plan, open the context menu, and click on Properties:

Figure 3.66: Opening the operator Properties window

Tip
To identify the most expensive operators, follow the thickest arrows from left to right, top to 
bottom. Note that the Cost label in every operator refers to the estimated cost, not the actual 
execution cost. Therefore, do not use this label as a method of finding the most expensive 
operators in an actual execution plan.
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This opens the Properties window:

Figure 3.67: Clustered Index Scan Properties window
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RunTimeCountersPerThread*

When troubleshooting query performance problems, having the right metrics available in the query 
plan avoids unnecessary roundtrips and delays that can be critical. The SQL Database Engine stores 
several runtime statistics per operator and per thread under RunTimeCountersPerThread*, 
providing great insights into the performance metrics of various data access operators.

Actual I/O Statistics

Optimizing I/O is usually the best tuning approach because with higher I/O comes higher memory 
consumption, as the SQL Database Engine needs to store more data pages in the buffer pool, and 
higher CPU, as cycles are spent processing I/O requests and data movement.

Actual I/O Statistics* provides information on Large Object (LOB), Physical, and Logical 
reads, allowing for immediate insight into the cost of an operator without the need to collect or interpret 
the information from SET STATISTICS IO.

If the query was executed in parallel, then we can see how many data pages were read by each thread. 
Next is the detail for the most expensive operator in the aforementioned plan, a clustered index scan:

Figure 3.68: Logical reads per thread in the Properties window
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Actual Number of Rows

Similarly, having information on the actual number of rows that flowed through the operators allows 
database professionals to track the most expensive areas of a plan. Actual Number of Rows 
(ActualRows* in the showplan XML) shows the number of rows output by an operator after any 
predicates were applied. Number of Rows Read (ActualRowsRead* in the showplan XML) 
shows the number of rows read before predicates were applied. Next is the detail for both properties 
in the same clustered index scan:

Figure 3.69: Rows per thread in the Properties window

Note
Thread zero is the coordinating thread and does not accumulate I/O, which is handled by all 
the other threads for the request.

Actual time statistics

Time is an important measurement, not only by itself but because these properties track the time in 
milliseconds an operator spent during execution. As such, comparing these with waits accrued during 
execution and the overall query elapsed execution time allows database professionals to pinpoint 
expensive areas of the plan with great accuracy.

Actual Elapsed CPU Time (ActualCPUms* in the showplan XML) shows the CPU time 
accumulated over all threads, with details on each thread for parallel queries. Actual Elapsed 
Time (ActualElapsedms* in the showplan XML) shows the elapsed time the operator took to 
execute. Although there is detail on each thread for parallel queries, the overall elapsed time is the 
same as the slowest thread time. Having this information in the showplan removes the need to collect 
or interpret information from SET STATISTICS TIME.

Next is the detail for both properties in the same clustered index scan:
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Figure 3.70: Time elapsed per thread in the Properties window

Estimated rows

When analyzing a plan retrieved from the plan cache, which is an estimated plan or query plan, only 
the estimations are available. In an actual plan or query execution plan, this information is present, 
and it becomes useful to compare it with the actual rows we just discussed. This is because significant 
differences between estimated and actual rows usually expose cardinality estimation issues and whether 
queries are using underlying indexes efficiently.

Note
We will further discuss remediation techniques for cardinality estimation issues in Chapters 
9 through 11 of the book.

Estimated Number of Rows (EstimateRows in the showplan XML) shows the estimated 
number of rows output by an operator after any predicates are applied. Estimated Number 
of Rows to be Read (EstimatedRowsRead in the showplan XML) shows the estimated 
number of rows read before predicates are applied. Next is the detail for both properties in the same 
clustered index scan:

Figure 3.71: Estimated rows information in the Properties window
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EstimateRowsWithoutRowGoal

The EstimateRowsWithoutRowGoal property is available starting with SQL Server 2016 SP2 
and SQL Server 2017 CU3 when the Query Optimizer uses an optimization technique called a Row 
Goal. If the Query Optimizer used a row goal, this property expresses the estimated number of rows 
that would be processed if the row goal hadn’t been used.

Normally, when the Query Optimizer estimates the cost of a query plan, it usually assumes that all 
qualifying rows from all tables must be processed. However, when a query uses a TOP, IN, or EXISTS 
clause, a FAST query hint, or a SET ROWCOUNT statement, this causes the Query Optimizer to 
search for a query plan that will quickly return a smaller number of rows. This makes a row goal a 
very useful optimization strategy for certain query patterns.

The following example shows a query executed in the AdventureWorks sample database that 
allows us to examine this property:

SELECT TOP (100) *
FROM Sales.SalesOrderHeader AS s
INNER JOIN Sales.SalesOrderDetail AS d ON s.SalesOrderID = 
d.SalesOrderID
WHERE s.TotalDue > 1000;

In the generated execution plan, we can see the EstimateRowsWithoutRowGoal property of 
the Clustered Index Scan operator on the SalesOrderDetail table:

Figure 3.72: Estimated row information in the Properties window, if a row goal was not used

These can be compared with the estimated rows we discussed in the previous section to determine 
whether the row goal is being used to the query’s advantage or not. If Estimated Number of 
Rows is significantly lower than Estimated Number of Rows to be Read and the row 
goal is used, it may be the case that the row goal is not improving the plan quality. We will see more of 
this property and how to use it for troubleshooting in the Query plan comparison section of Chapter 9, 
Comparative Analysis of Query Plans.

In Chapter 2, Mechanics of the Query Optimizer, we discussed the new SQL Server 2022 feature named 
CE Feedback, and how it can automatically remove much of the risk in upgrading CE versions for 
application workloads that may be susceptible to the model changes of a higher CE version. We 
mentioned that Row Goal is also a scenario handled by CE Feedback. The same test-and-verify 
principle is used: CE Feedback can detect whether a row goal is being used to the query’s advantage 
or not, and if not, disable the row goal for that query.
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Note
At the time this book is written, CE Feedback is not yet generally available in Azure SQL Database.

Warnings

Warnings* also surface on specific operators. These contain information that helps the troubleshooting 
process when drilling through a plan. As with plan-level warnings, operator-level warnings show as 
a yellow triangle sign in the graphical query execution plan. Again, hovering over the operators that 
display such a triangle will also show details on the warning. As of the time this book was written, 
the existing operator-level warning types were the following.

Columns With No Statistics

Columns With No Statistics* happens when the Query Optimizer needs to load statistics on 
any given column that’s relevant for the query, but none exist. If Auto-Create Statistics is disabled in 
the database, the SQL Database Engine cannot automatically create missing statistics, and this warning 
persists between executions. The following example shows a query executed in the AdventureWorks 
sample database with a Columns With No Statistics* warning:

USE [master]
GO
ALTER DATABASE [AdventureWorks]
SET AUTO_CREATE_STATISTICS OFF
GO
SELECT [CarrierTrackingNumber]
FROM Sales.SalesOrderDetail
WHERE [OrderQty] > 10
ORDER BY OrderQty;
GO
ALTER DATABASE [AdventureWorks]
SET AUTO_CREATE_STATISTICS ON
GO

In the generated execution plan, we can see the warning under the properties of the Clustered 
Index Scan operator that generated it:
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Figure 3.73: Plan warning on columns without statistics in the Properties window

If Auto-Create Statistics is enabled, as it is by default and as a best practice, then the SQL Database 
Engine will create a single-column statistic on the column that triggered the warning condition if 
the column is eligible.

Note
This warning is always present for the inner side of a Nested Loops join involving a spatial 
index. This is a by-design behavior.

Tip
Because statistics cannot be created on a non-persisted computed column, Auto-Create Statistics 
cannot automatically create a statistic object on these column types. Mark the computed column 
as persisted to allow Auto-Create Statistics.

Starting with SQL Server 2019 and in Azure SQL Database, the time spent creating the statistic 
triggered by this warning will also be visible as an accumulated wait with the WAIT_ON_SYNC_
STATISTICS_REFRESH type.

Spill To Tempdb*

Spill To Tempdb* happens when the available query memory (known as the memory grant) is 
not enough to run the required operation in memory and, rather than halting execution, the operation 
instead runs with the support of tempdb workfiles or worktables, depending on the type of spill. By 
resorting to I/O rather than being executed solely in memory, spills usually must be remediated as 
they can severely slow down query performance. We covered common Sort and Hash spills in the 
Query plan operators of interest section of this chapter; they include the following:

• Sort Spill*

• Hash Spill*

• Exchange Spill*
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No Join Predicate

No Join Predicate happens when the SQL Database Engine cannot identify a join predicate to 
apply to a join between two or more tables, and none has been specified in the T-SQL statement text. 
The following example shows a query executed in the AdventureWorks sample database with a 
No Join Predicate warning:

SELECT *
FROM Sales.SalesOrderHeader AS h,
     Sales.SalesOrderDetail AS d,
     Production.Product AS p
WHERE h.SalesOrderID = 49879;

Unlike all other warnings, the No Join Predicate warning is shown as a red circle with a white 
X in the graphical query execution plan:

Figure 3.74: Execution plan for the SELECT * query with a No Join Predicate warning

In the generated plan, we can see the warning under the properties of the Nested Loops operator 
that generated it:

Figure 3.75: No Join Predicate warning information in the Properties window

To remediate this case, rewrite the query to state the intended join operation and join predicates:

SELECT *
FROM Sales.SalesOrderHeader AS h
INNER JOIN Sales.SalesOrderDetail AS d ON h.SalesOrderID = 
d.SalesOrderID
INNER JOIN Production.Product AS p ON d.ProductId = p.ProductID
WHERE h.SalesOrderID = 49879;

The query then generates the following execution plan:
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Figure 3.76: Execution plan for the SELECT * query without the No Join Predicate warning

Summary
Hopefully, after reading this chapter, you have a good understanding of the various elements that make 
up a query execution plan in the SQL Database Engine. Nearly everything we need to understand 
and troubleshoot the performance of our T-SQL queries can be found somewhere in the plan, either 
in the visible part of the plan or in the Properties windows, which we can access by right-clicking 
the operators. In the next chapter and throughout the rest of this book, we will use query execution 
plans to illustrate various T-SQL patterns and anti-patterns so that we can identify and remediate 
them in our own code.





4
Indexing for T-SQL Performance

In the previous chapter, we explored execution plans and the various operators that the SQL Database 
Engine uses to retrieve the data requested by a query. While the Query Optimizer does most of the 
heavy lifting when choosing the best way to retrieve the data required to satisfy the query, it can only 
do so efficiently if the proper indexes are in place.

An index is a structure in the database that speeds up access to data by organizing it in a specific way 
based on the type of index. The data structure that works best for your application will depend on 
many factors, including the type of data being stored, the volatility of the data, and the data access 
patterns that will be used to retrieve the data. The SQL Database Engine offers a few different index 
types, such as rowstore, columnstore, XML, and others. Rowstore indexes are the most common 
indexes in the SQL Database Engine and are what most people think of when considering indexes 
for query tuning, so these are what we will be focusing on for this discussion.

In this chapter, we will dive deeper into how the SQL Database Engine uses rowstore indexes to access 
data more efficiently, and how you can develop an indexing strategy that will set you up for better 
query performance.

In this chapter, we’re going to cover the following main topics:

• Understanding predicate SARGability

• Data access using rowstore indexes

• Indexing strategy using rowstore indexes

• Index maintenance

Technical requirements
The examples used in this chapter are designed for use on SQL Server 2022 and Azure SQL Database, 
but they should work on any version of SQL Server, 2012 or later. The Developer Edition of SQL Server 
is free for development environments and can be used to run all the code samples. There is also a free 
tier of Azure SQL Database you can use for testing at https://aka.ms/freedb.

https://aka.ms/freedb
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You will need the AdventureWorks2016_EXT (referred to as AdventureWorks) and 
AdventureWorksDW2016_EXT (referred to as AdventureWorksDW) sample databases, which 
can be found on GitHub at https://github.com/Microsoft/sql-server-samples/
releases/tag/adventureworks. The code samples for this chapter can also be found on 
GitHub at https://github.com/PacktPublishing/Learn-T-SQL-Querying-
Second-Edition/tree/main/ch4.

Understanding predicate SARGability
A predicate is a filter that can be used to determine the set of conditions to apply to a query to 
trim the result set. As we have discussed in previous chapters, these are typically applicable to the 
following clauses:

• JOIN clauses, which filter the rows matching the type of join

• WHERE clauses, which filter source rows from a table or an index

• HAVING clauses, which filter the results

Most queries will make use of predicates, usually through a WHERE clause. When a predicate is 
serviceable by an index, it is said the predicate is SARGable, which is an acronym for Search ARGument-
able. Having SARGable predicates should be a goal for our T-SQL queries because it can reduce the 
number of rows that need to be processed by a plan earlier in the execution – that is, when the data 
is being read by the SQL Database Engine. The implementation of this early row count reduction is 
called predicate pushdown; it is the action of using the predicate directly in the seek or scan operation 
and reading only the rows that match the given predicate. When predicate pushdown is not used, the 
cost implications are high: the SQL Database Engine needs to read a larger number of rows from the 
source table or index and then filter down to the number of rows that match the predicate.

Note
The SQL Database Engine always optimizes for predicate pushdown, sometimes even when 
part of the predicate cannot be serviced by an index, meaning when part of the predicate is 
non-SARGable. Even when it results in a higher number of rows being read, this optimization 
can eliminate the need for filter operators in a query plan.

Let’s see how to identify whether predicate pushdown is used efficiently with two examples of queries 
executing in the scope of the AdventureWorks sample database:

SELECT FirstName, LastName
FROM Person.Person
WHERE LastName like 'S%'
AND FirstName = 'John';
SELECT FirstName, LastName

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch4
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch4
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FROM Person.Person
WHERE LastName = 'Smith'
AND FirstName like 'J%';

The queries generate the following result sets:

Figure 4.1: Result sets for the predicate pushdown example queries

Here are the respective execution plans:

Figure 4.2: Execution plans for the predicate pushdown example queries

Observe how the plans look the same. However, the estimated cost for Query 1 is much higher than 
Query 2 as it relates to the entire batch: 81% and 19%, respectively. This also translates into the time 
stats shown in the preceding plans – 64 ms and 1 ms, respectively.
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Why such a big difference? By looking at the OptimizerStatsUsage plan property, we know 
the plans loaded the same statistics objects:

Figure 4.3: The Properties window for the execution plans for the example 

queries showing the OptimizerStatsUsage property

The IX_Person_LastName_FirstName_MiddleName statistic has its histogram on the 
LastName column, and the _WA_Sys_00000005_7C4F7684 statistics has its histogram on 
the FirstName column. This makes sense because both queries have their predicates on those two 
columns, and the Query Optimizer requires this information to be able to produce an optimized query 
plan. Looking at the actual rows and estimated rows, we can see that Query 1 returned two rows out 
of 15 estimated rows, and Query 2 returned 14 rows out of 35 estimated rows. This is a low number 
of rows, and the absolute difference is not significant, so it does not appear that the cost difference 
can be explained by an incorrect estimation of the number of rows.

Tip
Statistics that are automatically generated by the Database Engine are always named with the 
_WA_Sys prefix. The Database Engine will automatically generate single-column statistics 
only when the auto-create statistics option is enabled, which is the default.

As we discussed in Chapter 3, Exploring Query Execution Plans, the Actual Number of Rows and 
Estimated Number of Rows properties refer to the number of rows output by an operator after 
any predicates were applied. While this can give us an indication of whether the Query Optimizer has 
accurately estimated the cost of the query, it is not an accurate measure of whether predicate pushdown 
was effective. Instead, comparing the Actual Number of Rows and Number of Rows Read 
properties for an actual plan, or the Estimated Number of Rows and Estimated Number 
of Rows to be Read properties for an estimated plan, is the correct approach.
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Those properties are available for the IX_Person_LastName_FirstName_MiddleName 
index in the seek operator:

Figure 4.4: Properties of the index seek operator from each of the example queries

For Query 1, we can see that 2,130 rows were read to return two rows after the seek predicate (also 
in Figure 4.4) was applied, so there is a significant difference. The predicate that was used for this 
query translates a seek condition where the LastName column values are greater than or equal to 
S, and LastName is smaller than T. We can also see that that the SQL Database Engine estimated 
that 2,118 rows would have to be read to return 14 rows, which is a similar ratio. This indicates that 
the SQL Database Engine worked with accurate statistics and came up with good estimates; it just so 
happens that the index is not optimal for the query.
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Note
The non-SARGable predicate on the FirstName column was also pushed down, for the 
condition when values equal John. Although no I/O was saved, this engine optimization 
avoided a filter operator to be applied after the seek, saving CPU cycles.

If this query is executed often, then creating a better index for this query may be required, namely 
making FirstName the first key column: a full name such as “John” is more selective than one 
character followed by a wildcard.

For Query 2, only 14 rows were read to return 14 rows, meaning predicate pushdown read only the 
required number of rows for our query, which is also visible in the estimations: both Estimated 
Number of Rows and Estimated Number of Rows to be Read match at 35.3287 rows.

The predicates used by queries determine the database index design and vice versa. Predicate pushdown, 
namely SQL Server’s ability to push down both SARGable and non-SARGable predicates to the Storage 
Engine, is an important performance feature that database professionals must be aware of when writing 
T-SQL queries that are expected to perform and scale well.

To summarize, the next time you see a query that returns only a few rows but comparatively takes 
a long time to execute and has relatively disproportionate CPU and I/O usage, investigate whether 
the query is making efficient use of our indexes. The next section discusses how data access using 
indexes works and how we can build more efficient indexes that allow our T-SQL queries to perform 
well from an I/O standpoint.

Data access using indexes
Now that we have discussed how the Query Optimizer uses indexes to facilitate predicate pushdown 
and make queries more efficient, let’s explore how indexes are structured and why they are so important 
for query performance.

Before we begin discussing the structure of indexes, it’s worth understanding how data is stored and 
accessed in the SQL Database Engine. Data is stored on 8 KB pages. An object such as a table or an 
index is essentially a collection of pages, along with metadata that maps out the structure of the object. 
The SQL Database Engine uses a special metadata page called an Index Allocation Map (IAM) page 
to locate the pages in an object. IAM pages contain a list of all the pages in a database file that belong 
to an object. Each object will have at least one IAM page but depending on the size of the object and 
the file structure of the database, there may be more than one IAM page, forming a chain.

Tables that do not have a clustered index are stored as heaps. Heaps do not have any sort of order or 
structure; they are simply a collection of pages. Figure 4.5 illustrates a heap in the SQL Database Engine:
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Figure 4.5: Illustration of a heap in the SQL Database Engine

The only way to locate all the pages that belong to a heap is to use the IAM page(s), so the SQL 
Database Engine stores a pointer to the first IAM page in the metadata for each object. If there is a 
chain of IAM pages, the first page will contain a pointer to the next IAM page, and so on. As you can 
imagine, using these IAM pages to return lists of random pages scattered throughout a database file 
is not the most efficient way to access data. This is where indexes come in.

Structure of a rowstore index

Rowstore indexes are stored as a special version of a B-tree known as a B+ tree. A B+ tree consists of a 
root node, one or more levels of intermediate nodes, and a leaf level. Figure 4.6 illustrates the structure 
of B+ trees in the SQL Database Engine:

Figure 4.6: Illustration of the B+ tree data structure that is used 

for rowstore indexes in the SQL Database Engine

Each node of the tree is a single page. The root and intermediate level pages contain rows that include 
ranges of index keys, along with a pointer to the page on the next level down that contains that range. 
Each page also includes a pointer to the previous page and the next page in the same level to allow 
for ordered scanning of any level of the index.
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The leaf level pages differ based on whether the index is clustered or non-clustered. In clustered indexes, 
the leaf level contains the actual data pages. When you create a clustered index on a table, the table is 
converted from a heap to a B+ tree and the table becomes a clustered index.

In non-clustered indexes, the leaf level contains index pages that store rows of index keys with pointers 
to the data rows. If the underlying table is a heap, the pointer is a row ID (RID) that is a physical pointer 
to the file number, page number, and row number where the row is located. If the underlying table is 
a clustered index, the pointer is the clustered index key, which provides a logical pointer to the data.

The B+ tree structure is designed to minimize I/O when accessing data, particularly when accessing 
a small number of rows in a large table. Each row on an index page contains only index keys and 
pointers to child pages, which means that a single index page can hold many rows (the exact number 
depends on the size of the index key). Each of these rows points to a child page, so indexes in the 
SQL Database Engine tend to fan out wide but do not typically get very deep. This is what leads to 
efficient data access.

Data access using rowstore indexes

There are two ways to access data in a rowstore index: a seek or a scan. A seek involves using the 
keys of the index to traverse from the root to the leaf to find the rows that match a given predicate. 
Figure 4.7 shows an illustration of an index seek:

Figure 4.7: Illustration of an index seek on a rowstore index

Assuming that the index is three levels deep, as Figure 4.7 shows, this index seek would require only 
three page reads. An index seek is generally the most efficient way to access data using a rowstore 
index, but it requires the predicate to be SARGable. If, for some reason, the index keys can’t be used 
to locate rows in the index, a scan may be required.

Scanning an index is usually slightly more efficient than scanning a heap. As we described at the 
beginning of this chapter, scanning a heap involves using the IAM pages to locate all the pages of the 
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table, which may be scattered throughout the data file(s). This leads to inefficient random I/O. While 
random I/O may not be an issue for modern storage systems, the SQL Database Engine has optimizations 
built around sequential I/O that may not be used when data is accessed randomly throughout the file.

Since rowstore indexes are stored in a B+ tree structure with pointers to the pages contained within 
the index itself, the IAM pages are not required. The metadata for the index contains a pointer to the 
root page, which serves as the entry point to the index. The Database Engine starts a scan operation 
at the root page, follows the pointers contained in the index pages to traverse from the root to the 
first leaf page, and then scans across the leaf level following the next page pointers in the leaf pages. 
Figure 4.8 shows an illustration of an index scan:

Figure 4.8: Illustration of an index scan on a rowstore index

Assuming we have the same three-level structure that’s illustrated in Figure 4.7, this index scan would 
require three page reads to get from the root to the first leaf level page, plus however many additional 
pages are contained at the leaf level. Since index pages are ordered, this generally lends itself to more 
efficient sequential I/O. The Query Optimizer also has the option of returning the rows in the order of 
the index keys, known as an ordered scan, which may help make the rest of the query more efficient, 
especially if there is an ORDER BY clause that matches the index keys, or if it can facilitate the use of 
a MERGE join downstream in the plan.

When accessing data using a non-clustered index, whether by a seek or a scan, one additional operation 
might be required – a lookup. A lookup is needed when the columns required to satisfy the query 
are not contained in the non-clustered index and must be retrieved from the data rows. To perform 
the lookup, the SQL Database Engine follows the pointer at the leaf level of the non-clustered index 
to find the underlying data row. If the underlying table is a heap, this results in a RID lookup since 
the pointer is a RID. If the underlying table is a clustered index, this results in a key lookup (which is 
effectively a seek on the clustered index) since the pointer is the clustered index key. When seeking a 
clustered index, lookups are never needed because the clustered index contains the actual data rows 
at the leaf level.
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Inserting and updating data in a rowstore index

B+ trees are not only efficient when returning data – they are also efficient when inserting and updating 
data as well. There is a common misconception that rowstore indexes need to be rebuilt periodically 
to rebalance the tree, but B+ trees are self-balancing. This means the path from the root to the leaf 
is always the same depth, no matter which leaf page you are accessing. So, the number of page reads 
required to perform an index seek can be predicted based on the depth of the index.

Building an upside-down tree

Self-balancing is achieved by building the index from the bottom up. When a table with a clustered 
index is small enough to fit on one page, the index will consist of only a single page that serves as 
both the root and the leaf. Once the first page fills up, a second page is added to the leaf level, which 
necessitates a third page be added to point to the original page and the new page. This third page 
becomes the new root page. As more pages are added to the leaf level, more rows will be added to the 
root page to point to these new pages until the root page eventually fills up and another page is added 
to this level, causing the SQL Database Engine to add a new root page to point to the original root 
page and the new page at this level. As the table grows, the SQL Database Engine continues pushing 
up new levels as needed, so when looking at the metadata for an index, you will notice that the leaf 
level is always level 0, the parent level (the level directly above the leaf) is always level 1, and so on 
until you reach the root. Thus, a B+ tree is upside down, with the leaves at the bottom and the root 
at the top, as illustrated in Figure 4.6.

Page splits

This practice of building the index from the bottom up ensures that the index structure remains 
balanced and the cost of an index seek operation remains consistent across the entire index. However, 
to avoid restructuring the tree every time a new page is added to the index, the new page must always 
be added to the end of the level.

The operation that adds a new page to an index is called a page split. If rows are inserted in the same 
order as the index key, new pages will naturally belong at the end of the level, so the SQL Database 
Engine simply adds an empty page and adds the new row to this empty page, along with the required 
pointers. This is sometimes referred to as an optimized page split. If rows are inserted out of order, or 
if updates to existing rows increase their size and cause them to be relocated to a new page, the SQL 
Database Engine must perform an out-of-order page split. In this case, a new empty page is added 
to the end of the level and half the rows from the original page are relocated to this new page, after 
which the pointers are adjusted so that the logical order of the index is maintained, even though the 
pages are now physically out of order. Figure 4.9 shows an example of the leaf level after an out-of-
order page split:
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Figure 4.9: Illustration of the leaf level of an index after an out-of-order page 

split. Note that for simplicity, only the forward pointers are shown

As Figure 4.9 shows, even though the pages are no longer physically ordered in the file, the pointers 
maintain the logical order of the index. This is what is known as logical fragmentation. Provided that 
the pages are in memory, logical fragmentation doesn’t typically cause performance issues because 
the data is accessed via the pointers within the index. If the pages are not in memory, index seeks will 
generally remain unaffected by logical fragmentation, but index scan performance may be impacted 
because accessing the various fragments of the index will generate additional non-sequential I/O. We 
will discuss index fragmentation and how to address it later in this chapter.

As you can see, the B+ tree structure of rowstore indexes provides an efficient way to access data not 
only for reading but for inserting and updating as well. They are ideal for traditional OLTP application 
patterns that deal with a small number of rows at a time.

Indexing strategy using rowstore indexes
Now that we’ve covered the basics of how rowstore indexes are structured and how they are used to 
access data, let’s move on to where and when they should be used, along with some best practices for 
efficient index design.

The goal of an indexing strategy is to minimize the amount of I/O required to satisfy the queries being 
generated against the database. This translates into a few simple guidelines:

• Keep indexes as small as possible. The more rows that fit on a page, the fewer page reads that 
are required to access the data.

• Avoid lookups – they add unnecessary I/O and can sometimes lead to suboptimal query plans.

• Choose index keys that support query predicates so that indexes can be used for seeks rather 
than scans.

• When creating indexes with multiple key columns, columns used for equality comparisons 
should be first, followed by columns used for inequality comparisons. The leading column 
should be the most selective column used for equality comparisons.

• Consider index overhead and index for database use. Do not over-index heavily updated tables.
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Best practices for clustered indexes

Typically, the first index you create on a table should be the clustered index. As we discussed in the 
Data access using rowstore indexes section, retrieving data from a clustered index is generally more 
efficient than a heap, so it is recommended to have a clustered index on every table.

Note
One case where heaps may be more efficient than clustered indexes is as an interim step when 
bulk loading data as part of an ETL process. Reading data from a heap is less efficient than a 
clustered index, so the ultimate destination of the data should be a clustered index structure.

Remember that the data pages are stored within the clustered index structure, so there can only be 
one clustered index on a table. Also, since the clustered index key serves as the pointer to the data 
rows in non-clustered indexes, the structure of the clustered index can have an impact on all the 
non-clustered indexes on the table.

When choosing which column or columns to create a clustered index on, there are a few guidelines 
to consider:

• Uniqueness: The key should be unique

• Size: The key should be as narrow as possible

• Volatility: The key should not be frequently updated (preferably not at all)

• Usability: The key should be created on a column that is frequently used to access the table, 
particularly if it’s used in wide queries (SELECT *)

• Order: The key should be on a column that is self-ordering

While these guidelines are not specifically required or enforced by the SQL Database Engine, following 
them will lead to more efficient data access.

Uniqueness

The SQL Database Engine needs to have a way to uniquely identify each of the rows in a table. When 
there is a clustered index on the table, the clustered index key serves as this unique identifier. If the 
key you choose for the clustered index is already unique, the SQL Database Engine can use the key 
as-is. If the key is not unique, the SQL Database Engine must make it unique by adding a uniqueifier. 
The uniqueifier is an integer stored in a hidden 4-byte column in the table and becomes part of the 
clustered index key, so it will increase the size of the key. By choosing an index key that is unique up 
front, you can avoid this overhead altogether and make the clustered index key smaller and more useful.
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Size

The size of data has an impact on query performance, and this is equally – if not more – important 
when it comes to index keys, particularly clustered index keys. The pages of an index are made up of 
rows that contain index keys, so the smaller the index key, the smaller the row, and the more rows 
will fit on a page. The smaller the index, the fewer page reads required to access the index, both for 
seeks and for scans. With a clustered index, this is even more critical because the clustered index key 
serves as the pointer to the data in a non-clustered index. This means that the size of the clustered 
index key will influence not only the size of the clustered index but the size of all the non-clustered 
indexes as well.

Volatility

The keys of a rowstore index provide the order and structure of the index. If the key values change, 
the structure of the index must change to accommodate this. Rows may need to be relocated at the 
leaf level, which triggers changes up the tree. With clustered indexes, the key is also part of all the 
non-clustered indexes, so changes to key values impact not only the clustered index structure but all 
the non-clustered indexes on the table as well. It’s important to choose index keys that are static to 
avoid unnecessary overhead.

Usability

Since the clustered index structures the entire table around the keys, it's a good idea to create the clustered 
index key from a column that is commonly used to access the table. This is particularly important if 
there are wide queries (queries that return a large number of columns) that can make use of the key. 
A clustered index seek is the most efficient way to return an entire row from a table, so think about 
how useful the column or columns may be to your application when choosing a clustered index key.

Order

As we discussed in the index structure section of this chapter, inserting data out of order causes 
unnecessary overhead in the form of out-of-order page splits. Using a column that is self-ordered, 
such as an identity column (which is integer-based), ensures that data is always inserted in order and 
keeps page split overhead at a minimum. This will also lead to less logical fragmentation and reduce 
the need for frequent index maintenance.

Tip
It’s become common practice to use globally unique identifiers (GUIDs) as primary keys (and 
thus as clustered index keys) in many databases. By their nature, GUIDs are not necessarily 
sequential, so their use can lead to out-of-order page splits, as discussed earlier. If you must use a 
GUID as a clustered index key, consider generating new GUIDs using the NEWSEQUENTIALID() 
function rather than NEWID(). This will generate a sequential GUID and avoid the problem 
of out-of-order inserts and page splits.
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Primary keys

If you’ve already been working with SQL Server or Azure SQL Database, you might have had a lightbulb 
go off after reading the best practices for clustered indexes. When you create a primary key on a table, 
by default, the SQL Database Engine creates a clustered index to support the key, also known as a 
clustered primary key. A primary key lends itself nicely to a clustered index – it’s unique, it typically 
does not change, it’s often an identity column that is small and self-ordering, and it’s one of the most 
common ways to return data from a table, either directly or through a join with another table.

In most cases, the primary key should be the clustered index on a table. There are a few exceptions to 
this rule where it might make sense to create a non-clustered primary key and a clustered index on a 
different column or columns in the table:

• Surrogate keys: If the primary key is a surrogate key that only exists in the database and is not 
used for filtering rows either as a predicate or a join condition, choosing the natural key as the 
clustered index key might make more sense. An example of a natural key versus a surrogate 
key might be a product UPC stored as a string versus a database-assigned identity column 
called ProductID.

• Dates: If the table contains a date column and data access is always done by date range (for 
example, where the table contains archive data but the most recent data is accessed more 
frequently), it might make sense to have the date column be the leading column of the clustered 
index, although it’s generally a good idea to keep the primary key column as a secondary column 
in the index to avoid the overhead of a unique identifier.

As with anything in the SQL Database Engine, there may be other exceptions to this rule, so use the 
guidelines discussed in this section to make the best choice for your application.

Best practices for non-clustered indexes

While the choice of columns for a clustered index is generally based on the structure and nature of 
the data, the choice of columns for non-clustered indexes depends on how the data is going to be 
accessed by the application. Generally, you want to create non-clustered indexes on any columns that 
will frequently be used to filter data, either as a predicate in a WHERE clause or as a join condition.
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Foreign keys

Unlike with primary keys, the SQL Database Engine does not automatically create an index on foreign 
key columns. As foreign keys are used to establish relationships between columns in different tables 
and to enforce referential integrity, it is important to have indexes on those columns, not only because 
they are frequently used for joins, but because they are needed to make referential integrity checks 
more efficient.

Note
While referential integrity can be enforced at the application level using coding techniques, it’s 
a best practice to use declarative referential integrity in the database (foreign keys).

Once you have your primary keys and clustered indexes in place, the next indexes to consider are 
non-clustered indexes on all your foreign key columns. After the indexes on foreign key columns are 
in place, you will need to begin analyzing the queries generated by your application to determine 
any further non-clustered index requirements. As you begin this analysis, it is usually preferable to 
add columns to an existing index that supports a foreign key rather than creating a whole new index, 
provided that the foreign key column remains the leading column of the index. If you need an index 
where the foreign key column is not the leading column of the index, it’s best to create a new index. 
We will discuss best practices for multi-column indexes in the next section.

Key column order

The leading column of an index determines the sort order of the index and is where a statistics 
histogram will be created as discussed in Chapter 1, Overview of Query Optimization. For the SQL 
Database Engine to use a predicate as a seek predicate against an index, the column in the predicate 
must match the leading column of the index since this is the column for which the data distribution 
is known. For example, consider the following query:

SELECT LastName, FirstName, MiddleName, BusinessEntityID
FROM Person.Person
WHERE LastName = N'Smith';

In the AdventureWorks database, there is a non-clustered index on the Person.Person 
table called IX_Person_LastName_FirstName_MiddleName that contains LastName, 
FirstName, and MiddleName as key columns in that order. Since LastName is the leading 
column of the index, the LastName = N'Smith' predicate can be used as a seek predicate against 
this index. Figure 4.10 shows the execution plan for this query:
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Figure 4.10: Screenshot of the execution plan for the example query showing the seek predicates

If we were to change the predicate of the query to FirstName, the index can still be used, but since 
FirstName is not the leading column, it can’t be used as a seek predicate and the index will have to 
be scanned. Here’s the example query using FirstName in the predicate:
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SELECT LastName, FirstName, MiddleName, BusinessEntityID
FROM Person.Person
WHERE FirstName = N'John';

Figure 4.11 shows the execution plan:

Figure 4.11: Screenshot of the execution plan for the example query 

showing an index scan, as well as a missing index suggestion

As shown in Figure 4.11, not only did the index get scanned, but the Query Optimizer suggested creating 
a new index on the FirstName column since there are no indexes on the table with FirstName 
as the leading column.

While the leading column is the most important key column, if the predicate contains more than one 
condition, additional key columns will make the key more selective and therefore more efficient. Let’s 
combine the two example queries into a single query:

SELECT LastName, FirstName, MiddleName, BusinessEntityID
FROM Person.Person
WHERE FirstName = N'John' and LastName = N'Smith';

Figure 4.12 shows the execution plan for this query:
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Figure 4.12: Screenshot of the execution plan for the example query showing the seek predicates, 

along with the Number of Rows Read and Actual Number of Rows for All Executions properties

Notice that the execution plan looks very similar to the one in Figure 4.10, but both conditions are 
being used in the seek predicate since both columns are in the index. This query now returns a single 
row, and only this one row had to be read because of the structure of the index. But do you need 
both columns in the index? Wouldn’t having the LastName column alone in the index also yield an 
index seek? Yes, it would, but it wouldn’t be quite as efficient. Let’s create a new index to test this out:

CREATE NONCLUSTERED INDEX IX_Person_LastName
ON Person.Person (LastName)
INCLUDE(FirstName, MiddleName);

Note
We’re using an INCLUDE clause to avoid having to do a lookup so that we can compare the 
results evenly with earlier queries. We will discuss INCLUDE columns in more detail in the 
next section.
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The Query Optimizer probably won’t choose this index on its own, so we’ll need to force it with a 
hint to see the execution plan:

SELECT LastName, FirstName, MiddleName, BusinessEntityID
FROM Person.Person
WITH (INDEX (IX_Person_LastName))
WHERE FirstName = N'John' AND LastName = N'Smith';

Figure 4.13 shows the execution plan for this query:

Figure 4.13: Screenshot of the execution plan for the example query showing 

the Predicate and Seek Predicates values, along with the Number of Rows 

Read and Actual Number of Rows for All Executions properties

As predicted, we still have an index seek, but if you look closer at the plan, you can see that this is 
not quite as efficient as the index that has both LastName and FirstName in the key columns. 
This query still returns one row, but 103 rows had to be read to find this one row. While the entire 
predicate was able to be evaluated within the index seek, only LastName was part of the seek predicate 
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because it’s the only key column in the index. FirstName does appear as a predicate, meaning that 
the rows were filtered within the index seek operation, but since FirstName isn’t one of the key 
columns, all 103 rows with LastName = N'Smith' had to be read to find all the rows that also 
had FirstName = N'John'.

Now that we’ve determined having multiple columns in a non-clustered index key can be useful, how 
do you know the order in which the columns should appear? There’s a simple rule for this that we 
mentioned at the beginning of this section: the most selective equality column should be first, followed 
by the rest of the equality columns, then the inequality columns.

As we discussed in Chapter 2, Mechanics of the Query Optimizer, selectivity refers to how distinct the 
data is. For example, the queries we’ve reviewed in this chapter so far have all been using an index on 
LastName, FirstName, and MiddleName. The order of this index isn’t arbitrary; it’s based on 
the selectivity of the columns. In Western cultures, LastName is more selective than FirstName 
because there are fewer duplicate last names than there are duplicate first names. In many Eastern 
cultures, the selectivity of last names and first names is reversed, with first names being more selective 
than last names. If your database contains names like these, it may make sense for an index on names 
to have a different column order. The most selective column needs to be listed first because it allows 
the Query Optimizer to make the most efficient use of predicate pushdown, narrowing down the set 
of rows it must read from the database and making the rest of the operations in the plan more efficient.

The rule also mentions equality versus inequality, which has to do with how the column is used in a 
query. An equality column is a column that is used in an equality predicate in a query. In our example 
query, both LastName and FirstName are being used as equality columns. An inequality column is 
a column that is used in an inequality comparison in a query. An example of an inequality comparison 
would be FirstName LIKE N'J%', which returns a range of names that all start with the letter J. 
You can think of this as predicate selectivity, an equality comparison is typically more selective than 
an inequality comparison.

Let’s look at a query example that shows the importance of column order:

SELECT LastName, FirstName, MiddleName, BusinessEntityID
FROM Person.Person
WHERE PersonType = N'SP'
AND LastName LIKE N'S%';

In this case, we’re using the PersonType column for an equality comparison and the LastName 
column for an inequality comparison. There’s no index on the PersonType column, so we’ll need 
to create one for this query. There are only six distinct values for PersonType in the table, but there 
are over 1,000 distinct values for LastName, meaning that LastName is much more selective than 
PersonType. Let’s see what happens if we only take selectivity into account and create an index 
with LastName first:

CREATE NONCLUSTERED INDEX IX_Person_LastName_PersonType
ON Person.Person (LastName , PersonType);
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When you’re doing index tuning in an isolated development environment with no other activity, it’s 
sometimes difficult to tell how efficient an index is because the query may run fast, even if the index 
isn’t efficient. Looking at the logical reads generated by a query is helpful when fine-tuning indexes. 
You can find this information by looking at the Actual Logical Reads property of an index 
operation in an execution plan, or you can use the following command before running the query:

SET STATISTICS IO ON;

This command turns on STATISTICS IO at the session level. Once this is on, every query run from 
the same session will report the I/O generated by the query on the Messages tab.

The plan for the example query is shown in Figure 4.14:

Figure 4.14: Screenshot of the execution plan from the example query showing the Seek 

Predicates, Number of Rows Read, and Actual Number of Rows for All Executions properties

As you can see, the Query Optimizer was able to seek an index, and both LastName and PersonType 
were used in the seek predicate. However, if you look closer at the properties of the index seek, you 
may notice that it wasn’t a particularly efficient seek. The query returns a single row, but it had to read 
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2,130 rows to find that one row. If you think back to how an index is structured, this makes sense. Since 
LastName is the leading column, the index is sorted first by LastName, then by PersonType. 
There are 2,130 rows in the Person.Person table that have a last name that begins with S, so the 
SQL Database Engine must traverse the index from the root to the leaf to find the first one, then scan 
across the leaf level until it finds the last one, ultimately keeping only the one row where PersonType 
is SP. The query generated 15 logical reads.

Let’s try this query again with the index created the correct way:

CREATE NONCLUSTERED INDEX IX_Person_PersonType_LastName
ON Person.Person (PersonType, LastName);

Figure 4.15 shows the execution plan for the same query with this new index in place:

Figure 4.15: Screenshot of the execution plan from the example query showing the Seek 

Predicates, Number of Rows Read, and Actual Number of Rows for All Executions properties

At first glance, the execution plan in Figure 4.15 might not look much different than the one in 
Figure 4.14, but if you look closely at the arrow between the Index Seek and Nested Loops join, you 
might notice that it’s much thicker in the first plan than it is in the second plan. This is because the 
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number of rows read in the first plan was higher than in the second plan. If you look at the index seek 
properties in Figure 4.15, you will see that Number of Rows Read was 1, the same as the number 
of rows returned by the query. Again, think back to the index structure. By changing the order of the 
columns, we change the way the index is accessed. Now, the SQL Database Engine can seek directly 
to the one row where PersonType is SP and LastName starts with S, there’s no need to scan an 
entire range of rows that don’t meet the predicate. For this run of the query, we can see that only five 
logical reads were generated rather than the 15 that were needed when the column order was reversed.

Covering indexes

One of the rules we highlighted at the beginning of this section is that you should avoid lookups when 
possible. The way you avoid lookups in your query plans is to use covering indexes. A covering index 
is a non-clustered index that contains all the columns required to satisfy the query without having to 
go to the base table. Similarly, a query that doesn’t have any lookups may be called a covered query.

Note
A clustered index is always a covering index because the leaf level contains the data pages, so 
the entire row is available.

Columns that are used for filtering, either in the WHERE clause or in a JOIN condition, should be 
key columns in the index, but what about columns in the SELECT list? It doesn’t make sense to have 
these as key columns because they would increase the size of the index unnecessarily, so the best way 
to add columns from the SELECT list to an index is by using an INCLUDE clause when creating the 
index. Included columns are columns that are included at the leaf level of the index, but are not part 
of the key, and therefore not used in the sorting and structuring of the index.

Let’s look at our example from the previous section once more:

SELECT LastName, FirstName, MiddleName, BusinessEntityID
FROM Person.Person
WHERE PersonType = N'SP'
AND LastName LIKE N'S%';

We created an index on PersonType and LastName, but we didn’t include any other columns from 
the SELECT list. BusinessEntityID is the clustered index key on the table, so this column is 
included by default (recall that the clustered index key is the pointer to the data row in a non-clustered 
index). This means that to avoid the lookup in the plan shown in Figure 4.15, we would need to add 
FirstName and MiddleName to the index. Let’s modify that CREATE INDEX statement accordingly:

CREATE NONCLUSTERED INDEX IX_Person_PersonType_LastName
ON Person.Person (PersonType, LastName)
INCLUDE (FirstName, MiddleName)
WITH (DROP_EXISTING = ON);
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Now, if we execute the query again, we’ll see the plan shown in Figure 4.16:

Figure 4.16: Screenshot of an execution plan for the example query showing the output list

As shown in Figure 4.16, the key lookup is gone, and the plan consists of only an index seek. Also, if 
you look at the properties of the index seek, you will see that the output list contains all the columns 
needed by the query, including the columns in the SELECT list. The index is now a covering index. You 
will also see that the number of logical reads has decreased from 5 to 2, simply by covering the query.
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Creating covering indexes for your queries makes them efficient, but there is a tradeoff. While included 
columns don’t increase the size of an index as much as key columns, they do increase the size, so 
you don’t want to add every column in the table. This refers not only to the number of columns but 
also to the size of the columns and how much of the total row size is being duplicated in each index. 
Keep in mind that indexes are creating duplicate copies of your data, so you want to carefully balance 
the storage overhead with the performance benefit. Be sure to consider how often the query is being 
executed, and how important the performance of that query is to your application. Also, if you include 
columns that are frequently updated, this can cause even more overhead since the columns will need 
to be updated in the base table and in any indexes that contain those columns. Covering a query 
that is executed frequently, particularly one whose performance is critical, may be worth the added 
overhead. It’s also worth mentioning that limiting the columns that are returned by a query can make 
it easier to cover the query. In other words, don’t use SELECT * if you can avoid it; returning only 
the columns that are needed can help avoid lookups.

Filtered indexes

A filtered index is a non-clustered index that is created on a subset of the data in a table. Filtered 
indexes can be useful if there is a subset of the data that is queried frequently for which you want to 
create specialized indexes and/or statistics. When you create a filtered index on a table, the statistics 
that are created to support the index are also filtered.

One common use case for filtered indexes is in a system that uses soft deletes where rows are marked 
as deleted but kept in the table, either for a short period or indefinitely. In systems such as these, 
nearly every query in the application will likely need to filter out all the deleted rows. If the deleted 
rows never get cleaned up because they are needed for historical purposes, over time, this can create 
a significant skew in data distribution. Queries that only need non-deleted data can get less and less 
efficient as the number of deleted rows outnumbers the number of non-deleted rows. In this case, 
filtered indexes will not only be smaller and more efficient to query, but the statistics that are created 
for these indexes are likely to be more accurate as they represent the distribution of only the active data.

In the AdventureWorks database, there is one table that uses a concept like soft deletes – 
BillOfMaterials. This table stores a hierarchical list of all the components that make up each 
of the products that AdventureWorks sells. Each component has a start date that indicates when 
the component began to be used in the assembly, and if the component is discontinued, an end date 
is also recorded. Since most of the components are still in use, the components that have a NULL end 
date far outnumber the components that have a non-NULL end date. In this case, a filtered index 
can come in handy if you want to do any sort of reporting on discontinued components. Take the 
following query as an example:

SELECT ProductAssemblyID, p.Name AS ProductName,
  ComponentID, comp.Name AS DiscontinuedComponent,
  StartDate, EndDate
FROM Production.BillOfMaterials AS bom
LEFT JOIN Production.Product AS p
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  ON bom.ProductAssemblyID = p.ProductID
LEFT JOIN Production.Product AS comp
  ON bom.ComponentID = comp.ProductID
WHERE EndDate IS NOT NULL
  AND StartDate BETWEEN '01/01/2010' AND '12/31/2010';

This query returns a list of 199 components that were introduced in 2010 that have been discontinued. 
Figure 4.17 shows the plan for this query:

Figure 4.17: Screenshot of the execution plan for the example query showing the 

Number of Rows Read, Actual Number of Rows for All Executions, and Predicate 

for the Clustered Index Scan properties on the BillOfMaterials table

As shown in Figure 4.17, the BillOfMaterials table is being accessed by a clustered index scan, 
which means the predicate wasn’t SARGable. The properties of the clustered index scan show that 
2,679 rows had to be read to return only 199 rows, resulting in 22 logical reads against this index.

Based on what we’ve learned so far about non-clustered indexes, we can try to add a covering index 
for this query:

CREATE NONCLUSTERED INDEX IX_BillOfMaterials_StartDate_EndDate
ON Production.BillOfMaterials (StartDate, EndDate);
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Tip
Since the clustered index on the BillOfMaterials table contains both ProductAssemblyID 
and ComponentID in the key, there’s no need to explicitly add these columns to the non-
clustered index as included columns – they will be part of the index by default.

With this new index in place, the query gets a bit more efficient. Figure 4.18 shows the plan:

Figure 4.18: Screenshot of the execution plan for the example query with the properties 

of the index seek on the new covering index showing the Number of Rows Read, Actual 

Number of Rows for All Executions, Predicate, and Seek Predicates properties

Now, there is a seek predicate, and the number of logical reads on the BillOfMaterials table has 
been reduced from 22 to 12, but the query is still reading 2,679 rows. Let’s try the filtered index instead:

CREATE NONCLUSTERED INDEX IX_BillOfMaterials_StartDate_Filtered
ON Production.BillOfMaterials (StartDate)
INCLUDE (EndDate)
WHERE (EndDate IS NOT NULL);

Figure 4.19 shows the execution plan for the query:
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Figure 4.19: Screenshot of the execution plan for the example query with the 

properties of the index seek on the filtered index showing the Number of Rows Read, 

Actual Number of Rows for All Executions, and Seek Predicates properties

Now, the number of rows read matches the number of rows returned – 199. Also, the logical reads on 
the BillOfMaterials table are reduced even further from 12 to 2.

There are a few caveats to using filtered indexes. It should be obvious that the filter condition in the 
index must be present somewhere in the predicate of the query for the index to be used, but keep in 
mind that it must match exactly. If any literal values from the filter condition are parameterized in the 
query, the index cannot be used. Also, it generally makes more sense to have a single non-clustered 
index with the filter column as a key column rather than to create multiple filtered indexes for different 
values in the same column.

Index maintenance
While index maintenance is more of a database administration topic than a developer topic, it’s worth 
discussing the importance of index maintenance. As we discussed in the section on index structure, 
over time, INSERT, UPDATE, and DELETE operations can cause an index to become fragmented. 
Once the data is in memory, fragmentation doesn’t cause a noticeable performance issue, so the 
main concern is I/O. The SQL Database Engine has a few I/O optimizations, such as the readahead 
mechanism that’s used when scanning an index, that rely on the data being stored contiguously. When 
the data is fragmented, I/O may not be as efficient.
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Another side effect of fragmentation is lower page density. A page is the smallest unit of I/O in the 
SQL Database Engine, so an index that contains a lot of partially empty pages will generate a lot more 
I/O than necessary. If the pages are full, it will take fewer of them to store the same amount of data. 
This is a problem that can impact performance, even if the data is in memory, because it will increase 
the number of logical reads needed to complete each query, and it will waste precious memory that 
can be used for other things. In short, this is a problem that is much more likely to cause performance 
issues than logical fragmentation alone.

Reducing fragmentation and increasing page density can be accomplished by periodically rebuilding or 
reorganizing indexes. How often index maintenance should be performed for a given system depends 
on many factors and requires a much larger conversation than would be appropriate for this book. So, 
for more information on maintaining indexes, consider reviewing the newly updated index maintenance 
documentation for SQL Server and Azure SQL at https://aka.ms/IndexMaintenance.

Summary
This chapter covered a lot of ground, so let’s review the overall indexing strategy guidance:

1. Clustered index data access is generally more efficient than heaps and every table in the database 
should have a clustered index, except for short-lived tables such as staging tables.

2. Create clustered indexes first based on the data structure. These should generally be primary 
keys unless there’s a specific reason to cluster a different column or columns (for example, 
surrogate versus natural keys).

3. Create non-clustered indexes on all foreign key columns.

4. Once you begin writing queries, create additional non-clustered indexes to support the application 
queries, or add additional columns to existing foreign key indexes.

5. Create covering indexes where practical, balancing overhead with performance.

6. Do not over-index heavily updated tables; balance the cost of index maintenance with the 
benefit to queries. Just because the SQL Database Engine allows you to create 999 non-clustered 
indexes per table doesn’t mean you should.

7. Keep indexes as small as possible – the more rows that fit on a page, the less I/O is required 
to read the data.

https://aka.ms/IndexMaintenance
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Writing Elegant T-SQL Queries

At this point, we should have a good understanding of how to build a T-SQL query, and the building 
blocks of writing T-SQL code such as query optimization fundamentals, reading and interpreting 
query plans, and some best practices around indexing and writing efficient T-SQL code. But how do 
we build an elegant T-SQL query? One that not only gets the job done but does so efficiently?

There are a few guidelines that are important to keep in mind when writing T-SQL queries to ensure 
that they perform and scale well while avoiding some common pitfalls that even experienced T-SQL 
developers can encounter that will make a query perform poorly.

In this chapter, we will examine some common T-SQL patterns and anti-patterns, specifically those 
that should be easily identified just by looking at the T-SQL code. We’re going to cover the following 
main topics:

• Best practices for T-SQL querying

• The perils of SELECT *

• Functions in our predicate

• Deconstructing table-valued functions

• Complex expressions

• Optimizing OR logic

• NULL means unknown

• Fuzzy string matching

• Inequality logic

• EXECUTE versus sp_executesql

• Composable logic
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Technical requirements
The examples used in this chapter are designed for use on SQL Server 2022 and Azure SQL Database, 
but they should work on any version of SQL Server, 2012 or later. The "Developer Edition" of SQL 
Server is free for development environments and can be used to run all the code samples. There is 
also a free tier of Azure SQL Database you can use for testing at https://aka.ms/freedb.

You will need the sample databases AdventureWorks2016_EXT (referred to as AdventureWorks) 
and AdventureWorksDW2016_EXT (referred to as AdventureWorksDW), which can be found 
on GitHub at https://github.com/Microsoft/sql-server-samples/releases/
tag/adventureworks. Code samples for this chapter can also be found on GitHub at https://
github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/
main/ch5.

Best practices for T-SQL querying
There are a number of best practices for writing good T-SQL that don’t constitute a pattern or anti-
pattern, which is something we will discuss next in this chapter, but are important enough to observe 
when we want to write good queries. This section covers those practices.

Referencing objects

Always reference objects by their two-part name (<schema>.<name>) in T-SQL code because not 
doing so has some performance implications.

Using two-part object names prevents name resolution delays during query compilation: if the default 
schema for a user connecting to the SQL Database Engine is HumanResources, and that user 
attempts to execute the stored procedure dbo.uspGetEmployeeManagers for which it also has 
permissions, but simply references uspGetEmployeeManagers, the SQL Database Engine first 
searches the HumanResources schema for that stored procedure before searching other schemas, 
thus delaying resolution and therefore execution. When that stored procedure is used at scale, it may 
introduce unwarranted overhead.

Two-part object names also provide more opportunities for plan reuse and reduce the likelihood of 
failed executions if multiple objects with the same name exist across schemas. For cached query plans 
to be reused, it is necessary that the objects referenced by the query don’t require name resolutions. 
For example, referencing the Sales.SalesOrderDetail table does not require name resolution, 
but simply SalesOrderDetail does because there could be tables named SalesOrderDetail 
in other schemas.

https://aka.ms/freedb
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch5
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch5
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch5
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Joining tables

When writing T-SQL queries, it’s important to distinguish between proper join predicates and 
search predicates.

For inner joins, it is best to keep only join arguments in the ON clause, and move all search arguments 
to a WHERE clause. Performance-wise there is no difference if the generated query plan is the same, 
but the T-SQL is more readable. The following query examples can be executed in the scope of the 
AdventureWorks sample database, and yield the same query plans:

SELECT p.ProductID, p.Name, wo.StockedQty, wor.WorkOrderID
FROM Production.WorkOrder AS wo
INNER JOIN Production.Product AS p ON wo.ProductID = p.ProductID
INNER JOIN Production.WorkOrderRouting AS wor ON wo.WorkOrderID = wor.
WorkOrderID
WHERE p.ProductID = 771 AND wor.WorkOrderID = 852;

SELECT p.ProductID, p.Name, wo.StockedQty, wor.WorkOrderID
FROM Production.WorkOrder AS wo
INNER JOIN Production.Product AS p ON wo.ProductID = p.ProductID
     AND p.ProductID = 771
INNER JOIN Production.WorkOrderRouting AS wor ON wo.WorkOrderID = wor.
WorkOrderID
      AND wor.WorkOrderID = 852;

In the first query, it’s immediately readable which conditions are join predicates and which are 
search predicates.

For LEFT JOIN, add any search predicates for the table on the right side of the join. This is because 
adding filters that eliminate the possibility of NULL values to the table on the right side of a join in the 
WHERE clause will convert the OUTER join to an INNER join." We also added a Note callout box after 
this sentence and before the next one that reads "Whenever possible we should optimize for INNER 
joins because they are inherently more selective than OUTER joins. The following query examples 
can be executed in the scope of the AdventureWorks sample database:

SELECT wo.StockedQty, wor.WorkOrderID
FROM Production.WorkOrder AS wo
LEFT JOIN Production.WorkOrderRouting AS wor ON wo.WorkOrderID = wor.
WorkOrderID
WHERE wor.WorkOrderID = 12345;
SELECT wo.StockedQty, wor.WorkOrderID
FROM Production.WorkOrder AS wo
LEFT JOIN Production.WorkOrderRouting AS wor ON wo.WorkOrderID = wor.
WorkOrderID
WHERE wo.WorkOrderID = 12345;
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These queries yield different query plans but the same result sets. In the first query, a reference to 
the Production.WorkOrderRouting table was added as a predicate. Since that table is on the 
right side of the join, this resulted in the LEFT OUTER JOIN becoming an INNER JOIN, as seen 
in the Nested Loops operator in the query plans:

Figure 5.1 – Execution plan for the two queries on the Production schema

In some cases, this can result in different choices for physical joins, and so impact I/O, memory, and 
CPU resources. This also applies in the inverse case – adding a reference to the table on the left side 
of a RIGHT JOIN.

Using NOLOCK

The SQL Database Engine uses isolation levels to preserve the logical order of all transactions, and to 
protect transactions from the effects of updates performed by other concurrent transactions. The goal is 
to uphold the ACID properties of relational databases: Atomicity, Consistency, Isolation, and Durability.

Tip
Read more about ACID at http://en.wikipedia.org/wiki/ACID.

Different isolation levels have trade-offs between concurrency and isolation requirements: using more 
restrictive isolation means fewer concurrent transactions. In a nutshell, the SQL Database Engine 
complies with ANSI-99 standard isolation levels:

http://en.wikipedia.org/wiki/ACID
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• In Read Uncommitted (lowest isolation level, maximum concurrency), statements can read 
rows that have been modified by other transactions but not yet committed

• In Read Committed (the default isolation level in the SQL Database Engine), statements cannot 
read data that has been modified but not committed by other transactions

• In Repeatable Read, statements cannot read data that has been modified but not yet committed 
by other transactions, and no other transactions can modify data that has been read by the 
current transaction

• In Serializable (highest isolation level, no concurrency), statements cannot read data that 
has been modified but not yet committed by other transactions, no other transactions can 
modify data that has been read by the current transaction, and other transactions cannot 
insert new rows with key values that would fall in the range of keys read by any statements in 
the current transaction

Note
The SQL Database Engine adds two isolation levels above the ANSI standard that are not 
discussed in this book: Snapshot and Read Committed Snapshot Isolation (RCSI).

The NOLOCK hint implements the same behavior as Read Uncommitted at the statement level. When 
this hint is used, it’s possible to read uncommitted modifications, which are called dirty reads. This 
means that by using NOLOCK, a developer is explicitly allowing uncommitted data to be used for 
other transactions. Allowing dirty reads allows higher concurrency at the cost of reading data that 
can still be rolled back by other transactions. In turn, this may generate application errors, present 
uncommitted data to users, or cause users to see duplicate records, or no records at all. This is the sort 
of hint that should not be used in queries that require operational precision such as banking or trade.

Using cursors

Cursor usage must be kept to a minimum. Depending on the cursor type, they may use tempdb 
worktables, which causes an I/O penalty. Because cursors operate in a row-by-row fashion, they force 
the SQL Database Engine to repeatedly fetch a new row, negotiate blocking, and manage locks, to 
then output each row result individually.

Consider whether set-based logic can be used. In some cases, cursors appear more straightforward, but 
using T-SQL constructs such as common table expressions (CTEs) or temporary tables may achieve 
the same results with less overhead. If a set-based approach is not possible, most cursors can be avoided 
by using a WHILE loop, namely if there is a Primary Key or Unique Key in the table. However, there 
are scenarios where cursors are not only unavoidable, but they are actually needed. If this is the case 
but tables don’t need to be updated based on the cursor position, then the recommendation is to use 
firehose cursors, meaning forward-only and read-only cursors.
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Now that we’ve covered some general T-SQL best practices, let’s move on to some common anti-
patterns, starting with SELECT *.

The perils of SELECT *
SELECT * should be avoided in stored procedures, views, and Multi-Statement Table-Valued 
Functions (MSTVFs) because our T-SQL code might break if there are any changes to the underlying 
schema. For example, applications that reference SELECT * may rely on the ordinal position rather 
than column names and may encounter errors if the underlying table definition is changed. Instead, 
fully qualify the names of columns that are relevant to our result set.

This also has important performance implications. Some application patterns may rely on reading an 
entire dataset and applying filters in the client layer only. For example, imagine a web application where 
a sales supervisor can see a report of orders registered for a given month, with details per product. 
The application connects to the AdventureWorks sample database and runs a query:

Dim myConnection As New SqlConnection("Our Connection String")
Dim cmd As New SqlCommand
Dim reader As SqlDataReader
cmd.CommandText = "SELECT *
     FROM Sales.SalesOrderHeader AS h
     INNER JOIN Sales.SalesOrderDetail AS d ON h.SalesOrderID = 
d.SalesOrderID
     INNER JOIN Production.Product AS p ON d.ProductId = p.ProductID
     WHERE h.OrderDate BETWEEN '2013-02-28 00:00:00.000'
AND '2013-03-30 00:00:00.000';"
cmd.CommandType = CommandType.Text
cmd.Connection = myConnection
myConnection.Open()
reader = cmd.ExecuteReader()
while (reader.Read())
{
     return reader["ProductLine"] as string;
     return reader["Name"] as string;
     return reader["OrderDate"] as DateTime;
     return reader["SalesOrderID"] as Int32;
     return reader["OrderQty"] as Int32;
     return reader["LineTotal"] as double;
     return reader["TotalDue"] as double;
}
reader.Close()
myConnection.Close()

Let’s observe the generated query execution plan:
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Figure 5.2 – Execution plan for the SELECT * query building the report of orders

Notice that the SQL Database Engine chose to scan all clustered indexes, even on the table where a 
predicate exists. Given that we are retrieving all columns, there is no missing index suggestion about 
creating non-clustered indexes because these would be similar in size to the clustered indexes.

Note the execution time statistics for the SELECT * query, and the amount of memory required to 
execute that query.

Figure 5.3 – QueryTimeStats for the query execution plan in Figure 5.2

Figure 5.4 – MemoryGrantInfo for the query execution plan in Figure 5.2

Also note in the application code that after getting the entire result set, only the relevant columns for 
our report are being used. So, instead of selecting all columns in the table to then trim the number of 
columns in the client layer, it is preferable to issue a query that only retrieves the required columns 
from the table:

SELECT p.ProductLine, p.[Name], h.OrderDate,
h.SalesOrderID, d.OrderQty, d.LineTotal, h.TotalDue
FROM Sales.SalesOrderHeader AS h
INNER JOIN Sales.SalesOrderDetail AS d ON h.SalesOrderID = 
d.SalesOrderID
INNER JOIN Production.Product AS p ON d.ProductId = p.ProductID
WHERE h.OrderDate BETWEEN '2013-02-28 00:00:00.000' AND '2013-03-30 
00:00:00.000';
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Let’s observe the new query execution plan:

Figure 5.5 – Execution plan for the narrower SELECT query

Now compare the execution time statistics for the new SELECT query, and the amount of memory 
required to execute that query:

Figure 5.6 – QueryTimeStats for the query execution plan in Figure 5.5

Figure 5.7 – MemoryGrantInfo for the query execution plan in Figure 5.5

Even though the plan shape hasn’t changed, we can clearly see a lower memory requirement (only 
1.3 MB instead of 2.4 MB) and lower CPU use and execution time. Reading all columns from a table 
usually means accessing the underlying heap or clustered index directly, rather than using narrower 
non-clustered indexes. Conversely, reading only the relevant subset of columns unlocks better usage 
of our existing index design, or allows for new covering indexes to be created, which can significantly 
improve read performance.

Precisely because we need fewer columns, the SQL Database Engine was able to identify an index 
suggestion that may yield even better results. This was not possible before because all the columns 
were being selected. Because there is no current index that would be useful to change even marginally, 
we can create this index suggestion as follows:

CREATE NONCLUSTERED INDEX IX_OrderDate_TotalDue ON [Sales].
[SalesOrderHeader] (
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      [OrderDate]
)
INCLUDE ([TotalDue]);

Although it was not suggested, keeping in mind the indexing guidelines we discussed in Chapter 4, 
Indexing for T-SQL Performance, we can create an additional covering index for the largest scan in 
the query execution plan:

CREATE NONCLUSTERED INDEX IX_SalesOrderID_ProductID_OrderQty_LineTotal 
ON [Sales].[SalesOrderDetail] (
      [SalesOrderID],
      [ProductID]
)
INCLUDE (
      [OrderQty],
      [LineTotal]
);

The new query execution plan looks much better, leveraging the two new indexes:

Figure 5.8 – Execution plan for the narrower SELECT query using new indexes

The QueryTimeStats for this query execution plan confirm this; CPU time dropped from 61 ms to 
24 ms (61 percent less), and execution time dropped from 299 ms to 57 ms (81 percent less):

Figure 5.9 – QueryTimeStats for the query execution plan in Figure 5.8
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If you use columnstore indexes, even without specifying any predicates, the same recommendation of 
not using SELECT * still applies. Selecting just the column names that are needed for the application 
can translate to significant I/O savings as well, because while you are still retrieving all the data in the 
columns without filters, being stored in columnar format means that only the columns required are 
read. Also, note that sending only the columns needed by the application to the client layer prevents 
unnecessary network I/O and reduces the memory footprint of the client. This can improve the overall 
performance and scalability of our application as well as the underlying T-SQL queries. Now that 
we’ve discussed the perils of SELECT *, let’s move on to another common anti-pattern – functions 
in the WHERE clause.

Functions in our predicate
Search predicates should only use deterministic function calls. Calls to non-deterministic functions 
with columns for parameters cause the SQL Database Engine to be unable to reference the selectivity 
of those columns, as the result of the function is unknown at compile time. Because of this, they cause 
unnecessary scans.

Keep in mind what was discussed in previous chapters: that the Query Optimizer uses statistics and 
some internal transformation rules and heuristics at compile time to determine a good enough plan 
to execute a query; and how the WHERE clause is one of the first to be evaluated during logical query 
processing. The Query Optimizer depends on the estimated cost to resolve the search predicates to 
choose whether to do seeks or scans over indexes.

The following example shows a query executed in the AdventureWorks sample database that uses 
non-deterministic function calls in the search predicate:

SELECT SalesOrderID, OrderDate
FROM Sales.SalesOrderHeader
WHERE YEAR(OrderDate) = 2013 AND MONTH(OrderDate) = 7;

Let’s observe the query execution plan:

Figure 5.10 – Execution plan for the query

We have a scan of the clustered index. Notice that while we have a non-SARGable predicate, it was 
pushed down to be resolved during the Clustered Index Scan to return 1,740 rows, but the full 31,465 
rows were still read.



Functions in our predicate 159

Figure 5.11 – Clustered index scan properties

Recall what we discussed in the chapter Indexing for T-SQL Performance, in the Understanding predicate 
SARGability section. What we have seen calls for a better index, and knowing more about index tuning 
recommendations now, I can identify that the following index could be useful:

CREATE NONCLUSTERED INDEX IX_OrderDate ON Sales.SalesOrderHeader (
     OrderDate
);

Executing the same query results in the following query execution plan:
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Figure 5.12 – Execution plan for the query using the new index

This is still an index scan, although on the newly created index. The new index is narrower, but the 
scan still reads 31,645 rows. This is because of the non-deterministic YEAR and DATE functions 
being used in the predicate. The same result set can be achieved by rewriting the query to avoid these 
function calls in the search predicate and enable the Query Optimizer to consider other options. The 
following is just a quick example of how to express the same condition without the use of functions:

DECLARE @start DATETIME = '07/01/2013', @end DATETIME = '07/31/2013'
SELECT SalesOrderID, OrderDate
FROM Sales.SalesOrderHeader
WHERE OrderDate BETWEEN @start AND @end;

Let’s observe the new query execution plan:

Figure 5.13 – Execution plan for the query using local variables

This is now a seek operation that only reads the 1,740 rows that match the search predicate because 
the query no longer needs to search based on non-deterministic functions. We could stop the rewrite 
here, but we are looking to write efficient T-SQL and one of the main goals is to ensure row estimations 
are always as close as possible to actual rows. Notice how the estimations are very skewed. The seek 
operation returned 1,740 rows of 5,170 estimated rows. The misestimation comes from the fact that 
the query uses local variables that prevent the Query Optimizer from using the statistics histogram 
to get accurate estimations.
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This can be addressed by using the RECOMPILE hint, or better yet, using sp_executesql. The 
following examples show both options; first, here’s the RECOMPILE hint:

DECLARE @start DATETIME = '07/01/2013', @end DATETIME = '07/31/2013'
SELECT SalesOrderID, OrderDate
FROM Sales.SalesOrderHeader
WHERE OrderDate BETWEEN @start AND @end
OPTION (RECOMPILE);

And here’s the sp_executesql method:

EXECUTE sp_executesql @stmt = N'SELECT SalesOrderID, OrderDate FROM 
Sales.SalesOrderHeader
WHERE OrderDate BETWEEN @start AND @end;'
                , @params = N'@start DATETIME, @end DATETIME'
                , @start = '07/01/2013', @end = '07/31/2013';

We can observe the new query execution plan:

Figure 5.14 – Execution plan for the query using sp_executesql

Notice the estimation now matches the actual rows, denoting accurate estimations, and a perfect 
example of Predicate Pushdown, as we discussed in Chapter 4, Indexing for T-SQL Performance. Now 
that we’ve covered the issues with functions in our predicates, let’s dig a little deeper into how table-
valued functions can impact query performance.

Deconstructing table-valued functions
A User-Defined Function (UDF) is like a stored procedure in that it is a block of T-SQL statements 
saved as an object, but it differs in that it does not generate a result set; it returns a value of a specified 
type. A scalar UDF is a function that returns a single value; a Table-Valued Function (TVF) is a 
function that returns a table.
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There are two types of TVFs in the SQL Database Engine:

• Multi-statement TVFs (MSTVFs): MSTVFs declare a return table type, populate the table, 
then return the table at the end of the function

• Inline TVFs: You can think of an inline TVF as a view that takes a parameter, the body of the 
function is a single query, and the return value is the result of that query

The following is an example of an MSTVF that we can create in the AdventureWorks sample database:

CREATE OR ALTER FUNCTION dbo.ufn_FindReports (@InEmpID INTEGER)
RETURNS @retFindReports TABLE
(
    EmployeeID int primary key NOT NULL,
    FirstName nvarchar(255) NOT NULL,
    LastName nvarchar(255) NOT NULL,
    JobTitle nvarchar(50) NOT NULL,
    RecursionLevel int NOT NULL
)
/*Returns a result set that lists all the employees who report to the 
specific employee directly or indirectly. */
AS
BEGIN
WITH EMP_cte(EmployeeID, OrganizationNode, FirstName, LastName, 
JobTitle, RecursionLevel) -- CTE name and columns
    AS (
        -- Get the initial list of Employees for Manager n
        SELECT e.BusinessEntityID, e.OrganizationNode, p.FirstName, 
p.LastName, e.JobTitle, 0
        FROM HumanResources.Employee e
INNER JOIN Person.Person p
ON p.BusinessEntityID = e.BusinessEntityID
        WHERE e.BusinessEntityID = @InEmpID
        UNION ALL
        -- Join recursive member to anchor
        SELECT e.BusinessEntityID, e.OrganizationNode, p.FirstName, 
p.LastName, e.JobTitle, RecursionLevel + 1
        FROM HumanResources.Employee e
            INNER JOIN EMP_cte
            ON e.OrganizationNode.GetAncestor(1) = EMP_cte.
OrganizationNode
INNER JOIN Person.Person p
ON p.BusinessEntityID = e.BusinessEntityID)

-- copy the required columns to the result of the function
   INSERT @retFindReports
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   SELECT EmployeeID, FirstName, LastName, JobTitle, RecursionLevel
   FROM EMP_cte
   RETURN
END;

Since this function returns a table, we can reference it in a T-SQL query just like we would a table. 
The following is a sample query that uses this function:

SELECT EmployeeID, FirstName, LastName, JobTitle, RecursionLevel
FROM dbo.ufn_FindReports(25);

The problem with MSTVFs is the cost of the function can’t be determined at compile time, so a fixed 
estimation of rows is used to create the query plan. Let’s look at the query execution plan for the 
previous example in the following screenshot:

Figure 5.15 – Execution plan for the query using an MSTVF

Notice that the TVF appears as an input to the join as if it were a table with an estimate of 100 rows, 
but an actual row count of 0.

Note
Prior to SQL Server 2014, the fixed estimate for MSTVFs was 1. In this case, it would have 
been a better estimate, but most MSTVFs return more than 1 row, so 100 is generally a better 
fixed estimate.

This inaccurate cardinality estimate could cause the plan to be inefficient, but since the true cardinality 
can’t be determined without executing the function, there is not much that can be done to improve 
this estimate.
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Figure 5.16 – QueryTimeStats for the query execution plan in Figure 5.15

The query took 468 ms to execute, with 261 ms of CPU time. Note the UdfElapsedTime is 117 ms 
and has to do with this query referencing the GetAncestor system function.

Starting with SQL Server 2017, a new feature called Interleaved Execution for MSTVFs was introduced. 
With interleaved execution, rather than using a fixed estimate, optimization is paused when an MSTVF 
is encountered, the function is materialized, and the actual row count is used to optimize the rest 
of the plan. The resulting plan is then cached, so this process will not be repeated when subsequent 
executions reuse the plan. Using the previous example, if we change the database compatibility to 
level 140, which maps to the SQL Server 2017 release, we get an accurate row count for our query, as 
in the following screenshot:

Figure 5.17 – Execution plan for the query using the Interleaved Execution feature

The QueryTimeStats for this query are improved from the non-interleaved version: CPU time dropped 
from 261 ms to 223 ms (~14 percent less), and execution time dropped from 468 ms to 224 ms (~51 
percent less), as seen in the following screenshot:
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Figure 5.18 – QueryTimeStats for the query execution plan in Figure 5.17

An even better way to do this would be to write the function as an inline TVF. As we mentioned 
earlier in this section, inline TVFs behave like views – they can be folded into the query, allowing their 
cardinality to be known at compile time, thus generating a more efficient query plan. In the following 
example, let’s look at how we can create an inline TVF that returns the same results as the MSTVF:

CREATE OR ALTER FUNCTION dbo.ufn_FindReports_inline (@InEmpID int)
RETURNS TABLE
AS
RETURN
WITH EMP_cte(EmployeeID, OrganizationNode, FirstName, LastName, 
JobTitle, RecursionLevel) -- CTE name and columns
    AS (
        -- Get the initial list of Employees for Manager n
        SELECT e.BusinessEntityID AS EmployeeID, e.OrganizationNode, 
p.FirstName, p.LastName, e.JobTitle, 0 AS RecursionLevel
        FROM HumanResources.Employee e
   INNER JOIN Person.Person p
   ON p.BusinessEntityID = e.BusinessEntityID
        WHERE e.BusinessEntityID = @InEmpID
        UNION ALL
        -- Join recursive member to anchor
        SELECT e.BusinessEntityID AS EmployeeID, e.OrganizationNode, 
p.FirstName, p.LastName, e.JobTitle, RecursionLevel + 1 AS 
RecursionLevel
        FROM HumanResources.Employee e
            INNER JOIN EMP_cte
            ON e.OrganizationNode.GetAncestor(1) = EMP_cte.
OrganizationNode
INNER JOIN Person.Person p
ON p.BusinessEntityID = e.BusinessEntityID)
SELECT EmployeeID, FirstName, LastName, JobTitle, RecursionLevel
FROM EMP_cte;

The plan shape for this query looks very different than the previous one:
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Figure 5.19 – Execution plan for the query using an inline TVF

This is because the function is not being referenced as an object in this plan. The inline TVF is folded into 
the query as a table or view would be, allowing for a better overall plan and opening new opportunities 
for adjusting the indexes for an even better result. In this case, the performance of the query is like the 
interleaved MSTVF – CPU time dropped from 261 ms to 220 ms (~16 percent less), and execution 
time dropped from 468 ms to 221 ms (~52 percent less), as seen in the following screenshot:

Figure 5.20 – QueryTimeStats for the query execution plan in Figure 5.19

The takeaway here is to write TVFs as inline TVFs rather than MSTVFs where possible. If the logic 
is too complex to make an inline TVF feasible, upgrading to SQL Server 2017 or higher to be able to 
leverage interleaved execution might improve query performance when leveraging TVFs. Now that 
we understand how proper use of TVFs can improve performance, let’s dig into another common 
anti-pattern – complex expressions in a WHERE clause.

Complex expressions
Search predicates should not use complex expressions. Much like the deterministic function calls we 
discussed in the Functions in our predicate section, complex expressions can also cause unnecessary scans.

As was discussed in previous chapters, the Query Optimizer uses statistics, internal transformation rules, 
and heuristics at compile time to determine a good enough plan to execute a query. This includes the 
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ability to fold expressions, which is the process of simplifying constant expressions at compile time. For 
example, a predicate such as WHERE Column = 320 * 200 * 32 is computed at compile time 
to its arithmetic result and, internally, the predicate is evaluated as WHERE Column = 2048000. 
But unlike constants, calculations that involve column values, parameters, non-deterministic functions, 
or variables are only evaluated at runtime – this is another example of how the Query Optimizer can’t 
accurately estimate row counts beforehand, resulting in an inefficient query plan.

The following example shows a query executed in the AdventureWorks sample database that uses 
a calculation with a table column in the search predicate. The query lists all ordered products where 
an additional 10 percent discount can be added if the final discount is less than or equal to 30 percent:

SELECT ProductID, [UnitPrice], [UnitPriceDiscount],
     [UnitPrice] * (1 - [UnitPriceDiscount]) AS FinalUnitPrice,
      [UnitPriceDiscount] + 0.10 AS NewUnitPriceDiscount,
      [UnitPrice] * (1 - 0.30) AS NewFinalUnitPrice
FROM Sales.SalesOrderDetail
WHERE [UnitPriceDiscount] + 0.10 <= 0.30
GROUP BY ProductID, [UnitPrice], [UnitPriceDiscount];

Let’s observe the query execution plan:

Figure 5.21 – Execution plan for the query

Much as we discussed in the Functions in our predicate section, we see a scan of the clustered index. 
The requirement for the query is to find ordered products where the company can add an additional 
10 percent and still not go above a 30 percent discount, and the predicate [UnitPriceDiscount] 
+ 0.10 <= 0.30 accomplishes that.

But the same requirement can be expressed using a search predicate that does not use a complex 
expression, such as seen in the following query:

SELECT ProductID, [UnitPrice], [UnitPriceDiscount],
      [UnitPrice] * (1 - [UnitPriceDiscount]) AS FinalUnitPrice,
      [UnitPriceDiscount] + 0.10 AS NewUnitPriceDiscount,
      [UnitPrice] * (1 - 0.30) AS NewFinalUnitPrice
FROM Sales.SalesOrderDetail
WHERE [UnitPriceDiscount] <= 0.20
GROUP BY ProductID, [UnitPrice], [UnitPriceDiscount];

Let’s observe the new query execution plan:
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Figure 5.22 – Execution plan for the query

Figure 5.23 – QueryTimeStats for the query execution plan in Figure 5.22

There is no discernible change, but that’s because there isn’t a better index to use in the current schema. 
However, the SQL Database Engine found an index suggestion that may yield better results, and this 
was possible because the search predicate could now be evaluated at compile time. We can create the 
index suggestion as follows:

CREATE NONCLUSTERED INDEX IX_UnitePriceDiscount ON [Sales].
[SalesOrderDetail] (
      [UnitPriceDiscount]
)
INCLUDE (
      [ProductID],
      [UnitPrice]

);

Tip
It’s a good idea to assess the current index design after getting an index suggestion to determine 
if an existing index is a subset of the suggested index. If such an index already exists, it is better 
to alter this index rather than create a new index that would be redundant and unnecessarily 
increase index overhead.

Executing the same query results in the following query execution plan:

 

Figure 5.24 – Execution plan for the query using the new index
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The new plan is much cheaper to execute, which is why it didn’t even qualify for parallelism. And in 
fact, if we compare the QueryTimeStats from before and after the index was created, the improvements 
are also obvious: CPU time dropped from 140 ms to 67 ms (52 percent less), and execution time 
dropped from 276 ms to 74 ms (73 percent less):

Figure 5.25 – QueryTimeStats for the query execution plan in Figure 5.24

Now that we understand the impact complex expressions can have on query performance, let’s move 
on to another potential anti-pattern – OR logic.

Optimizing OR logic
A common query pattern involves the need to express several conditions of which at least one must 
be true to filter the result set, usually with OR logic. Expressing these OR conditions can have serious 
performance drawbacks and can often be replaced with other constructs that provide better scalability 
and performance.

The following example shows a query executed in the AdventureWorks sample database that uses 
an OR condition in the search predicate. The query lists all rows for a specific product, or where the 
price is set at a predetermined value:

SELECT ProductID, [UnitPrice], [UnitPriceDiscount],
      [UnitPrice] * (1 - [UnitPriceDiscount]) AS FinalUnitPrice,
      [UnitPriceDiscount] + 0.10 AS NewUnitPriceDiscount,
      [UnitPrice] * (1 - 0.30) AS NewFinalUnitPrice
FROM Sales.SalesOrderDetail
WHERE ProductID = 770
     OR UnitPrice = 3399.99
GROUP BY ProductID, [UnitPrice], [UnitPriceDiscount];

With the following query execution plan:

Figure 5.26 – Execution plan for the query
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For reference, the QueryTimeStats for this query execution plan are as follows:

Figure 5.27 – QueryTimeStats for the query execution plan in Figure 5.26

Looking at the search predicates, they are not necessarily mutually exclusive. Still, they can effectively 
be expressed as two separate queries that are joined by a UNION operator, as in the following example:

SELECT ProductID, [UnitPrice], [UnitPriceDiscount],
      [UnitPrice] * (1 - [UnitPriceDiscount]) AS FinalnitPrice,
      [UnitPriceDiscount] + 0.10 AS NewUnitPriceDiscount,
      [UnitPrice] * (1 - 0.30) AS NewFinalUnitPrice
FROM Sales.SalesOrderDetail
WHERE ProductID = 770
GROUP BY ProductID, [UnitPrice], [UnitPriceDiscount]
UNION
SELECT ProductID, [UnitPrice], [UnitPriceDiscount],
      [UnitPrice] * (1 - [UnitPriceDiscount]) AS FinalUnitPrice,
      [UnitPriceDiscount] + 0.10 AS NewUnitPriceDiscount,
      [UnitPrice] * (1 - 0.30) AS NewFinalUnitPrice
FROM Sales.SalesOrderDetail
WHERE UnitPrice = 3399.99
GROUP BY ProductID, [UnitPrice], [UnitPriceDiscount];

Let’s observe the new query execution plan:

Figure 5.28 – Execution plan for the query using a UNION
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Since we now have separate queries, we see a missing index suggestion. The index being suggested is 
the following, which covers the second query in the union:

CREATE NONCLUSTERED INDEX IX_UnitPrice ON [Sales].[SalesOrderDetail] (
      [UnitPrice]
)
INCLUDE (
      [ProductID],
      [UnitPriceDiscount]
);

But I know we can also cover the first query in the union. There is already a non-clustered index 
on ProductID, but it does not cover IX_SalesOrderDetail_ProductID. However, I can 
change the existing index to make it a covering index with negligible effects on any query that was 
using the index before:

CREATE NONCLUSTERED INDEX IX_SalesOrderDetail_ProductID ON [Sales].
[SalesOrderDetail] (
      [ProductID]
)
INCLUDE (
      [UnitPrice],
      [UnitPriceDiscount]
)
WITH DROP_EXISTING;

The new query execution plan is the following:

Figure 5.29 – Execution plan for the query using the new index
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Tip
If we can verify that the predicates are mutually exclusive and that no repeated rows can exist 
in the result set, use UNION ALL instead of UNION and avoid the SORT operator seen in the 
plan. There’s more on this in the UNION ALL versus UNION section of Chapter 6, Discovering 
T-SQL Anti-Patterns in Depth.

The QueryTimeStats for this query execution plan confirm this improved performance: CPU time 
dropped from 42 ms to 23 ms (45 percent less), and execution time dropped from 287 ms to 2 ms 
(~99 percent less):

Figure 5.30 – QueryTimeStats for the query execution plan in Figure 5.29

The query execution plan shape now seeks non-clustered indexes. This is a more scalable and better-
performing plan than the one scanning the clustered index. Now that we’ve learned some techniques to 
optimize OR logic, let’s learn a little more about NULL and how it’s handled in the SQL Database Engine.

NULL means unknown
In the context of a database, if a column is set to NULL, it effectively means that the value is unknown. 
If we compare any other value with NULL, the result of that comparison is also unknown. In other 
words, a value can never be equal to NULL, as NULL is the absence of a value. This means the 
expression ColumnValue = NULL will never evaluate to true or false; even if ColumnValue is 
in fact NULL, it will always evaluate to unknown. To detect if a column value is NULL, we must use 
the special expressions IS NULL or IS NOT NULL rather than = or <>.

Note
This handling of NULL is not unique to the SQL Database Engine, it is based on the ANSI 
standard handling of NULL values.

Having NULL values in our database is not an anti-pattern in and of itself, but when we assign a 
meaning to the value NULL in our application, we may face some challenges when it comes to writing 
performant T-SQL due to the need for special handling of NULL comparisons.

Let’s look at an example like this in the AdventureWorks database. The Product table contains 
information about products that are sold in the shop, but it also contains information about parts 
that are kept in stock that are not goods for sale. These items will not have a category, so the 
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ProductSubcategoryID column is NULL for these rows. This makes sense if there truly is no category 
for these items, but what if we were to say that a value of NULL in the ProductSubcategoryID 
column really means that these items are in the Parts category because they are unfinished goods. 
If we want to build a query that returns a list of all the products and includes their category and 
sub-category, since the sub-category column is NULL for all the parts, we need to embed a function 
in the join condition in order to handle the special NULL case. In fact, we need to get a bit creative 
with the T-SQL:

SELECT p.ProductID,
p.Name AS ProductName,
c.Name AS Category,
s.Name AS SubCategory
FROM Production.Product p
LEFT JOIN Production.ProductSubcategory s
ON p.ProductSubcategoryID = s.ProductSubcategoryID
INNER JOIN Production.ProductCategory c
ON ISNULL(s.ProductCategoryID, 5) = c.ProductCategoryID
ORDER BY Category, SubCategory;

We need to perform a LEFT JOIN between the Product and ProductSubcategory tables in 
order to include the rows that have a NULL value for ProductSubcategoryID in the Product 
table, but if we still want to join these NULL rows with the ProductCategory table, we must 
handle these NULL values in the join condition by using the ISNULL() function. We’ve hardcoded 
the value of 5, which is the ProductCategoryID for the new Parts category we added for this 
example. This would be even more complicated if the value we want to join on is NULL on both sides. 
In that case, we would need to have a function on both sides of the join to convert the NULL values 
into something that can actually be compared. In this case, there’s a better way we could write this 
that would prevent NULL handling in the join. Since we know that all the rows with a NULL value 
for ProductSubcategoryID are in the Parts category, we can handle this in the SELECT list 
instead. Having an ISNULL() function in the SELECT list does not impact the performance as 
much because the function call does not interfere with the selectivity estimate, index usage, or plan 
selection; it’s simply executed on the results after they are retrieved:

SELECT p.ProductID,
p.Name AS ProductName,
ISNULL(c.Name, 'Parts') AS Category,
s.Name AS SubCategory
FROM Production.Product p
LEFT JOIN Production.ProductSubcategory s
ON p.ProductSubcategoryID = s.ProductSubcategoryID
INNER JOIN Production.ProductCategory c
ON s.ProductCategoryID = c.ProductCategoryID
ORDER BY Category, SubCategory;
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Let’s look at the query plan for these two queries and their estimated cost. Query 1 is the “bad” query 
with ISNULL() in the join condition, and Query 2 is the “good” query with ISNULL() in the 
SELECT list:

Figure 5.31 – Execution plan for Query 1 (the “bad” query) and Query 2 (the “good” query)

Looking at the QueryTimeStats for these two queries, we can see that Query 1 uses three times as 
much CPU as Query 2:

Figure 5.32 QueryTimeStats for the query execution plan in Figure 5.31

We might notice that there is a scan of the Product table in both plans, which leads to an expensive 
Hash Match. This is because there is no index on the ProductSubcategoryID column in the 
Product table. Let’s add a covering index to that column to see if we can get the plan to be a little better:
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CREATE NONCLUSTERED INDEX [IX_Product_ProductSubcategoryID] ON 
[Production].[Product] (
      [ProductSubcategoryID]
)
INCLUDE (
[Name]
);

Now if we run the queries again, we get the following plans and their estimated cost:

Figure 5.33 – Execution plan for Query 1 and Query 2 using the new index

Query 1 uses the covering index, but because the ISNULL() function prevents the SQL Database 
Engine from using the predicate as a seek predicate, it has to scan it. Query 2, on the other hand, 
gets much better with seeks and Nested Loops joins. This is reflected in the QueryTimeStats as well:

Figure 5.34 – QueryTimeStats for the query execution plan in Figure 5.33
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Query 1 goes down to 1 ms, whereas Query 2 stays the same at 1 ms. Keep this in mind when using 
NULL in our application. NULL means unknown or the absence of a value and requires special handling 
for comparisons; don’t rely on it to represent something concrete. Now that we understand how NULL 
works, let’s move on to another potential performance pitfall – fuzzy string matching.

Fuzzy string matching
When searching for strings in the SQL Database Engine using =, the strings must match exactly for 
the expression to evaluate to true. If we want to match only part of the string, however, we must use a 
LIKE operator with wildcards. If we want to search for a pattern anywhere within a string, we need 
both leading and trailing wildcards. The problem with this is that it prevents us from being able to 
use an index or accurately estimate the cardinality. An index with a string key is sorted starting with 
the first character of the string, but if we are searching for a pattern that may appear in the middle of 
the string, the SQL Database Engine must scan every value and search for the matching pattern in 
each string in the column. A LIKE operator with a leading wildcard (%a value or %a value%) 
almost always causes a scan operation.

Consider an example from the AdventureWorks database where we want to find all the Flat 
Washers in the Product table. We know they all start with “Flat Washer” but there are several 
different names in the table. If we’re not sure whether there are any characters before the words “Flat 
Washer,” we could write the following query:

SELECT ProductID, Name AS ProductName, ProductNumber
FROM Production.Product
WHERE Name LIKE '%Flat Washer%';

This query would yield the following execution plan:

Figure 5.35 – Execution plan for the query
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Notice there’s an Index Scan, which is the most expensive operator in the plan.

If we look at the result set, we can see that the words “Flat Washer” always appear at the beginning 
of the string:

Figure 5.36 – Result set for the query

In this case, we don’t really need the leading wildcard, so we could re-write the query as follows:

SELECT ProductID, Name AS ProductName, ProductNumber
FROM Production.Product
WHERE Name LIKE 'Flat Washer%';

And then we can examine the execution plan:

Figure 5.37 – Execution plan for the improved query
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The expensive scan is replaced by a more efficient Index Seek.

If you must use a LIKE expression, try to avoid using a leading wildcard if possible. LIKE expressions 
without a leading wildcard translate into a range scan. If it is not possible to avoid the leading wildcard, 
we might consider using full text indexes and their accompanying text functions such as CONTAINS 
to provide better performance for fuzzy string matching, particularly if this is the only filter condition 
on these queries. Now on to another similar potential query problem – inequality logic.

Inequality logic
Inequality logic is logic that involves negative comparisons such as !=, <>, NOT IN, and NOT LIKE. 
This type of predicate can be costly because it often results in evaluating each row, which translates 
to scan operations. Consider the following queries, 1 and 2, from the AdventureWorks database:

SELECT BusinessEntityID, FirstName, LastName
FROM Person.Person
WHERE PersonType NOT IN ('EM','SP','IN','VC','GC');
SELECT BusinessEntityID, FirstName, LastName
FROM Person.Person
WHERE PersonType = 'SC';

These queries are logically equivalent, since 'SC' is the only PersonType that is not listed in the 
first query. Out of the box, the execution plans look like this:

Figure 5.38 – Execution plan for Query 1 and Query 2

At this point, they appear to have the same estimated cost, but notice that both are doing a Clustered 
Index Scan and there is a missing index suggestion from the SQL Database Engine. This is because 
there is no index on the PersonType column to support the query. Let’s add the following covering 
index to support this query:
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CREATE NONCLUSTERED INDEX [IX_Person_PersonType] ON [Person].[Person] 
(
      [PersonType] ASC
)
INCLUDE (
      [BusinessEntityID],
      [FirstName],
      [LastName]
);

Once we add the index, the SQL Database Engine can leverage it for both queries, but notice that the 
first query results in a scan of the index, whereas the second query performs a seek. Also note the 
estimated cost difference between the plans, the first query is much more expensive than the second:

Figure 5.39 – Execution plan for Query 1 and Query 2 using the new index

As we can see, while both queries are logically the same and return the same results, the second query 
is much more efficient than the first once the proper indexes are in place. If we have the option of 
writing a filter condition using an equality comparison or an inequality comparison, using the equality 
comparison is generally better. Now that we’ve explored a few different ways we can rewrite queries to 
get better performance, let’s look at an anti-pattern related to how the query itself is executed.

EXECUTE versus sp_executesql
There are times when an application must build a T-SQL statement dynamically before executing 
it on the server. In order to execute a dynamically created T-SQL statement, we can use either the 
EXECUTE command or the sp_executesql stored procedure. The sp_executesql procedure 
is the preferred method for executing dynamic T-SQL because it allows us to add parameter markers 
and thus increases the likelihood that the SQL Database Engine will be able to reuse the plan and 
avoid costly query compilations.
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Here’s an example script from the AdventureWorks database that builds a dynamic T-SQL statement 
and executes it via the EXECUTE command:

DECLARE @sql nvarchar(MAX), @JobTitle nvarchar(50) = N'Sales 
Representative';

SET @sql = 'SELECT e.BusinessEntityID, p.FirstName, p.LastName
FROM HumanResources.Employee e
INNER JOIN Person.Person p ON p.BusinessEntityID = e.BusinessEntityID
WHERE e.JobTitle = N''' + @JobTitle + '''';

EXECUTE (@sql);

Notice that there is a variable for the JobTitle column, but the EXECUTE command does not 
allow parameters, so this variable is appended to the T-SQL string in order to include it in the 
resulting query. We can reuse the same script by changing 'Sales Representative' to 
'Accountant' and re-running it, but because the resulting query is not parameterized, the SQL 
Database Engine will have to compile and cache the query again. We can verify this by examining the 
sys.dm_exec_query_stats dynamic management view (DMV). Recall from the Query plan 
properties of interest section of Chapter 3, Exploring Query Execution Plans, that there is a property 
called QueryHash that contains a value that can identify a query in the cache and will return all the 
queries that are syntactically equivalent but have different query strings for some reason:

SELECT st.text, qs.sql_handle, qs.execution_count
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) st
WHERE qs.query_hash = 0x3A17ADF596F7D5C9;

This query returns the following results:

Figure 5.40 – Result set showing different SQL handles for the same query hash

We can see that there are two different queries here, one for each of the different JobTitle values, 
and each has a single execution. Each execution of the script resulted in a separate compilation and 
a separate cached query plan.
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Note
We will discuss sys.dm_exec_query_stats as well as other dynamic management views 
in more detail in Chapter 7, Building Diagnostic Queries Using DMVs and DMFs.

Let’s see how we can rewrite this script using sp_executesql instead:

DECLARE @sql nvarchar(MAX), @JobTitle nvarchar(50) = N'Sales 
Representative';

SET @sql = 'SELECT e.BusinessEntityID, p.FirstName, p.LastName
FROM HumanResources.Employee e
INNER JOIN Person.Person p ON p.BusinessEntityID = e.BusinessEntityID
WHERE e.JobTitle = @p1';

EXEC sp_executesql @sql, N'@p1 nvarchar(50)', @JobTitle;

Notice that in this case, we can use the @JobTitle variable as a parameter in the query. If we change 
the value of @JobTitle to 'Accountant' and run the query again, the SQL Database Engine 
can reuse the existing execution plan from the cache. We can verify this by running the same query 
against sys.dm_exec_query_stats with the QueryHash from this new query. This time, 
the results are different:

Figure 5.41 – Result set showing the same SQL handle for the same query hash and two executions

Notice that the query in the cache has a parameter marker, and the execution count is 2, indicating 
that the query plan has been reused.

Whenever our application requires dynamic T-SQL for any reason, using the sp_executesql 
procedure rather than the EXECUTE command is generally more efficient because it will increase 
the likelihood that the SQL Database Engine can reuse the query plan. Also recall that in the The 
importance of parameters section in the Understanding Query Processing chapter, we mentioned that 
parameters and the use of sp_executesql can also help prevent SQL injection attacks, so it is more 
secure than using EXECUTE. For these reasons, sp_executesql is the recommended method for 
executing dynamic T-SQL. Now that we know the proper way to execute dynamic T-SQL, let’s look 
at another common programming problem – composable logic – and how it might actually perform 
better if written as dynamic T-SQL.



Writing Elegant T-SQL Queries182

Composable logic
Composable logic is what some developers use to make a single T-SQL statement do more than one 
thing, which allows us to reuse the same code for multiple tasks. When writing procedural code, 
reusability is desired because it makes the code more concise and maintainable. It allows developers 
to create libraries of modules that can be reused in other areas of the application, or even in other 
applications altogether. In T-SQL, however, there can be a hefty performance penalty for writing 
generic reusable code.

For the SQL Database Engine to execute a query in the most efficient way, it needs to estimate the 
cost of the query and choose operators that will return the results in the cheapest way possible. This 
is all done at compile-time based on how the query is written. With composable logic, however, the 
true cost of the query cannot be known until runtime because it is based on variables that change 
whenever the query is run. This type of generic code causes the SQL Database Engine to generate 
a generic plan at compile time that will work no matter what the runtime values are. Typically, this 
plan will not perform well for any combination of runtime values, whereas a specific plan generated 
for the specific case that is being executed would likely perform much better. Writing T-SQL code for 
the specific case that it is needed may result in some code duplication and less maintainability, what 
developers sometimes refer to as spaghetti code, but it will almost always provide better performance 
and scalability.

Consider the following stored procedure, which can be executed in the AdventureWorks 
sample database:

CREATE OR ALTER PROCEDURE usp_GetSalesPersonOrders @SalesPerson INT 
NULL
AS
BEGIN
     SELECT SalesOrderID, p.FirstName AS SalesFirstName, p.LastName AS 
SalesLastName
     FROM Sales.SalesOrderHeader AS soh
     LEFT JOIN Person.Person AS p ON soh.SalesPersonID = 
p.BusinessEntityID
     WHERE @SalesPerson IS NULL OR SalesPersonID = @SalesPerson;
END;

This is an example of composable logic. If a value is sent for the @SalesPerson parameter, we are 
effectively executing this query:

SELECT SalesOrderID, p.FirstName as SalesFirstName, p.LastName as 
SalesLastName
FROM Sales.SalesOrderHeader AS soh
LEFT JOIN Person.Person AS p ON soh.SalesPersonID = p.BusinessEntityID
WHERE SalesPersonID = @SalesPerson;
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If NULL is sent for the @SalesPerson parameter, we are effectively executing this query:

SELECT SalesOrderID, p.FirstName as SalesFirstName, p.LastName as 
SalesLastName
FROM Sales.SalesOrderHeader AS soh
LEFT JOIN Person.Person p ON soh.SalesPersonID = p.BusinessEntityID;

Note that this second query has no WHERE clause. It will return the entire SalesOrderHeader 
table, including any matching rows from the Person table. This is naturally going to be much more 
expensive than the first query and should really have a different query plan. Let’s look at the query 
plans and see how the SQL Database Engine would perform each query if written separately:

Figure 5.42 – Execution plan for Query 1 and Query 2

As we can see, the estimated cost for Query 1, which uses the @SalesPerson variable in the 
WHERE clause, is much cheaper than the estimated cost for Query 2, which returns every row in the 
SalesOrderHeader table. Also, note that Query 1 uses Index Seeks and a Nested Loops join, 
whereas Query 2 uses Index Scans and a Hash Match. Here are the resulting QueryTimeStats:
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Figure 5.43 – QueryTimeStats for the query execution plans in Figure 5.42

Now let’s try executing Query 1 by using the stored procedure that we created earlier:

EXECUTE usp_GetSalesPersonOrders @SalesPerson = 279;

This yields the following query execution plan:

Figure 5.44 – Execution plan for Query 1 using the stored procedure for the first time

In this plan, the SQL Database Engine chooses to use a Nested Loops join, but one of the Index Seeks 
has become a scan. Also, if we look at the QueryTimeStats property of the plan, this plan used 5 ms 
of CPU time to execute – more than double the amount of time the standalone query used:

Figure 5.45 – QueryTimeStats for the query execution plan in Figure 5.44

We can also execute the equivalent of Query 2 using this stored procedure by sending a NULL value 
for @SalesPerson:

EXECUTE usp_GetSalesPersonOrders @SalesPerson = NULL;

This execution of the stored procedure will reuse the same plan from the cache, but the runtime is 
very different:
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Figure 5.46 – QueryTimeStats for the same query execution plan using a NULL parameter

While the difference isn’t as much as with Query 1, Query 2 used 28 ms of CPU time versus 27 ms 
when run as a standalone query. So, the plan generated by this generic stored procedure is worse for 
both queries than a plan generated for the specific queries.

The situation gets even worse if we happen to execute the stored procedure with @SalesPerson 
= NULL the first time. We introduced the concept of parameter sniffing in the The importance of 
parameters section in the Understanding Query Processing chapter. Composable logic in stored procedures 
leaves our application even more vulnerable to parameter sniffing issues. Let’s look at the plan that 
is generated if we execute the preceding stored procedure for the first time with a NULL parameter:

Figure 5.47 – Execution plan for the stored procedure compiled using a NULL parameter

This is effectively the same plan that was generated for Query 2 earlier, and the CPU time is similar 
at 29 ms. For Query 2, the impact of the composable logic is small, but what happens if we reuse this 
plan for the @SalesPerson = 279 case? First, the CPU time is even higher than with the first 
stored procedure plan – 8 ms versus 5 ms:

Figure 5.48 – QueryTimeStats for the same query execution plan using a non-NULL parameter

We can also see an excessive memory grant warning:
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Figure 5.49 – Execution plan for the same query execution plan using a non-NULL parameter

Because of parameter sniffing, the plan created the first time the procedure was run returned a 
much larger number of rows that necessitated an expensive Hash Match that used a large amount of 
memory. When using a specific parameter value rather than NULL, the number of rows returned is 
much smaller, and thus neither the Hash Match nor the memory grant make sense. At compile time, 
the SQL Database Engine must choose a plan that works for any parameter value that may be sent at 
runtime. Unfortunately, because of composable logic, the plan chosen is often the wrong one.

The best way to resolve this issue would be to have separate stored procedures for the two queries. 
The problem with this is that we can end up with many stored procedures that have similar queries 
and similar names, and code manageability can become an issue. One compromise is to have a single 
stored procedure with conditional logic outside the query in question. Here’s an example of how that 
would look for these queries:

CREATE OR ALTER PROCEDURE usp_GetSalesPersonOrders_better @SalesPerson 
INT NULL
AS
BEGIN
     IF @SalesPerson IS NULL
     BEGIN
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          SELECT SalesOrderID, p.FirstName AS SalesFirstName, 
p.LastName AS SalesLastName
          FROM Sales.SalesOrderHeader AS soh
          LEFT JOIN Person.Person AS p
ON soh.SalesPersonID = p.BusinessEntityID
     END
     ELSE
     BEGIN
          SELECT SalesOrderID,
p.FirstName AS SalesFirstName,
p.LastName AS SalesLastName
          FROM Sales.SalesOrderHeader AS soh
          LEFT JOIN Person.Person AS p
ON soh.SalesPersonID = p.BusinessEntityID
          WHERE SalesPersonID = @SalesPerson;
     END
END;

The code is slightly less readable, but we get the benefit of the right plan at runtime:

 

Figure 5.50 – Execution plan for the stored procedure with conditional logic outside the query
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This is reflected in the QueryTimeStats:

Figure 5.51 – QueryTimeStats for the query execution plan in Figure 5.50

Another way to solve this problem would be to use dynamic T-SQL. In the previous section, EXECUTE 
versus sp_executesql, we discussed using sp_executesql to execute dynamic T-SQL statements 
with parameter markers to allow the SQL Database Engine to cache and reuse the plans. If we have 
composable logic that involves many different options and would generate too many permutations 
to make conditional logic practical, leveraging dynamic T-SQL is likely the best option. Using the 
sp_executesql procedure allows us to programmatically generate code that is still reusable by 
the SQL Database Engine, so we get the right plan for the query every time without excessive compile 
time and cache bloat.

Summary
In this chapter, we reviewed a few T-SQL anti-patterns, such as SELECT * syntax, OR logic, and 
functions in our predicates, that are relatively easy to find simply by looking at our T-SQL code and 
how it is written. The scenarios covered in this chapter are some of the most common examples of 
patterns that prevent our T-SQL queries from scaling well and maintaining the expected level of 
performance throughout the lifetime of the application. All are easy to detect, and most have easy 
workarounds. Therefore, when writing queries, try to avoid these anti-patterns by leveraging some 
of the techniques we outlined here.

In the next chapter, we will investigate some T-SQL anti-patterns that are a bit more difficult to identify 
as they require some additional research beyond simply reading the code.



6
Discovering T-SQL Anti-  

Patterns in Depth

In Chapter 5, Writing Elegant T-SQL Queries, we covered some anti-patterns that may impact query 
performance that should be obvious just by reading the T-SQL code itself. Now we will move on 
to some anti-patterns that may require some more in-depth analysis to be identified. These often 
involve T-SQL that at first glance seems straightforward, but when we dig into the query plan, there 
may be hidden performance pitfalls such as expensive operations or hidden practices that prevent 
predicate SARGability.

In this chapter we will cover the following topics:

• Implicit conversions

• Avoiding unnecessary sort operations

• Avoiding UDF pitfalls

• Avoiding unnecessary overhead with stored procedures

• Pitfalls of complex views

• Pitfalls of correlated sub-queries

• Properly storing intermediate results

Technical requirements
The examples used in this chapter are designed for use on SQL Server 2022 and Azure SQL Database, 
but they should work on versions of SQL Server 2012 and later. The Developer Edition of SQL Server 
is free for development environments and can be used to run all the code samples. There is also a free 
tier of Azure SQL Database you can use for testing at https://aka.ms/freedb.

https://aka.ms/freedb
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You will need the sample databases AdventureWorks2016_EXT (referred to as AdventureWorks) 
and AdventureWorksDW2016_EXT (referred to as AdventureWorksDW), which can be found 
on GitHub at https://github.com/Microsoft/sql-server-samples/releases/
tag/adventureworks. The code used in this chapter can also be found on GitHub at https://
github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/
main/ch6.

Implicit conversions
We introduced the concept of implicit conversions in the chapter Exploring Query Execution Plans, 
particularly in the context of PlanAffectingConvert warnings. An implicit conversion happens 
when the SQL Database Engine needs to compare two values that are not of the same data type. At 
this point we should understand how to recognize an implicit conversion in our query plans, but what 
may not always be obvious is how they got there in the first place and how to correct them.

The most obvious cause of implicit conversions is to compare two columns that are not of the same data 
type. We can easily avoid this by making sure that columns that are related in our database, and thus 
may be joined, are of the same data type. A common mistake that can cause this situation is where we 
have some tables that have been created with NVARCHAR strings and some tables that have VARCHAR 
strings. This may happen because a database was upgraded at some point to support Unicode UTF-16 
strings so new tables have NVARCHAR strings, but old tables still have VARCHAR strings, or perhaps 
some of the old tables were missed when data types were changed. The best resolution in this case is 
to convert the VARCHAR columns to NVARCHAR so that the data types match.

Another cause of implicit conversions that is not so obvious, but is perhaps the most common, is 
mismatched parameter data types. This is particularly common when using an Object-Relational 
Mapper (ORM) such as Entity Framework (EF). EF sends queries to the SQL Database Engine as 
parameterized statements. By default, any strings that are sent as parameters are of NVARCHAR type. 
This is fine, as long as the strings in the database are stored as NVARCHAR, but if they are stored as 
VARCHAR, this will lead to implicit conversions of the type that will make any comparisons using 
these parameters non-SARGable.

Let’s look at an example from the AdventureWorks database that illustrates this situation. We will 
build a parameterized query using sp_executesql to simulate how an EF query would appear to 
the SQL Database Engine. All the strings in the AdventureWorks database are stored as NVARCHAR, 
so we’ll need to do some setup to create our scenario here. Using the following queries, let’s set up a 
table called Product_Narrow, which will contain a subset of the data in the Product table, but 
with VARCHAR strings instead of NVARCHAR:

 CREATE TABLE [Production].[Product_Narrow](
     [ProductID] [int] NOT NULL,
      [Name] [varchar](50) NOT NULL,
      [ProductNumber] [varchar](25) NOT NULL,
      [Color] [varchar](15) NULL,

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch6
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch6
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch6
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      [StandardCost] [money] NOT NULL,
      [ListPrice] [money] NOT NULL,
      [Size] [varchar](5) NULL,
      [SizeUnitMeasureCode] [char](3) NULL,
      [WeightUnitMeasureCode] [char](3) NULL,
      [Weight] [decimal](8, 2) NULL,
      [Class] [char](2) NULL,
      [Style] [char](2) NULL,
      [ProductSubcategoryID] [int] NULL,
      [ProductModelID] [int] NULL,
 CONSTRAINT [PK_Product_Narrow_ProductID] PRIMARY KEY CLUSTERED (
      [ProductID] ASC
));
GO

INSERT Production.Product_Narrow
           (ProductID, Name, ProductNumber, Color, StandardCost, 
ListPrice, Size, SizeUnitMeasureCode
          , WeightUnitMeasureCode, Weight, Class, Style, 
ProductSubcategoryID, ProductModelID)
SELECT ProductID, Name, ProductNumber, Color, StandardCost, ListPrice, 
Size, SizeUnitMeasureCode
          , WeightUnitMeasureCode, Weight, Class, Style, 
ProductSubcategoryID, ProductModelID
FROM Production.Product;
CREATE UNIQUE NONCLUSTERED INDEX [AK_Product_Narrow_Name] ON 
[Production].[Product_Narrow]
(
      [Name] ASC
);

First, let’s start with an implicit conversion example that would not trigger a PlanAffectingConvert 
warning. We’ll use the original Product table for this query:

EXEC sp_executesql N'SELECT ProductID, Name, ListPrice, StandardCost
FROM Production.Product
     WHERE Name = @ProductName'
          , N'@ProductName VARCHAR(50)', 'Long-Sleeve Logo Jersey, 
XL';

The Name column in the Product table is stored as a user-defined type called Name, which maps 
to NVARCHAR(50). Using sp_executesql, we sent VARCHAR(50) instead. Here’s the query 
execution plan:
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Figure 6.1 – Execution plan using sp_executesql with parameter conversion and no warning

Notice that there is an implicit conversion here, but it didn’t produce a warning. This is because the 
SQL Database Engine converted the parameter, rather than the column. This conversion happened 
only one time against the literal side of the comparison, so it doesn’t affect the plan at all. We can 
verify this by sending the correct parameter data type:

EXEC sp_executesql N'SELECT ProductID, Name, ListPrice, StandardCost
               FROM Production.Product
               WHERE Name = @ProductName'
               , N'@ProductName nvarchar(50)', N'Long-Sleeve Logo 
Jersey, XL';

Here’s the query execution plan – no implicit conversion this time:
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Figure 6.2 – Execution plan using sp_executesql without an implicit conversion

Now let’s use our new Product_Narrow table to illustrate an implicit conversion that will cause 
a warning. We’ll use the same query, but this time remember that the Name column is stored as 
VARCHAR(50) rather than NVARCHAR(50):

EXEC sp_executesql N'SELECT ProductID, Name, ListPrice, StandardCost
               FROM Production.Product_Narrow
               WHERE Name = @ProductName'
               , N'@ProductName nvarchar(50)', N'Long-Sleeve Logo 
Jersey, XL';

The following is our query execution plan, including a warning this time:



Discovering T-SQL Anti- Patterns in Depth194

Figure 6.3 – Execution plan using sp_executesql with a conversion warning

If we look at the properties of the scan, we’ll see there’s an implicit conversion, but this time the SQL 
Database Engine converted the column side of the comparison rather than the literal side as it did in 
the previous query against the Product table, making the predicate non-SARGable:

Figure 6.4 – Properties of the Scan operator in the execution plan with a conversion warning
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We might be wondering why the SQL Database Engine would choose to do this conversion when it 
is obviously more expensive than converting the literal side of the comparison. The reason is that the 
SQL Database Engine must follow the rules of data type precedence when performing an implicit 
conversion. The SQL Database Engine will convert all the data types involved in the comparison 
to the data type that has the highest precedence, if the conversion is possible at all. For example, a 
DATETIME2 type only implicitly converts to strings and other date- and time-related types. Here’s 
a list of the SQL Database Engine data types in order of their precedence:

1. user-defined data types 
(highest)

2. sql_variant

3. xml

4. datetimeoffset

5. datetime2

6. datetime

7. smalldatetime

8. date

9. time

10. float

11. real

12. decimal

13. money

14. smallmoney

15. bigint

16. int

17. smallint

18. tinyint

19. bit

20. ntext

21. text

22. image

23. timestamp

24. uniqueidentifier

25. nvarchar 
(including NVARCHAR(MAX))

26. nchar

27. varchar (including VARCHAR(MAX))

28. char

29. varbinary 
(including VARBINARY(MAX))

30. binary (lowest)

Notice that NVARCHAR has a higher precedence than VARCHAR. This means that no matter which 
side of the comparison the VARCHAR value is on, it will always be converted to NVARCHAR, even if it 
makes the predicate non-SARGable. The solution here is simple: send the correct parameter data type 
and the conversion will be unnecessary. See the following example with the correct parameter data type:

EXEC sp_executesql N'SELECT ProductID, Name, ListPrice, StandardCost
               FROM Production.Product_Narrow
               WHERE Name = @ProductName'
               , N'@ProductName varchar(50)', 'Long-Sleeve Logo 
Jersey, XL';
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When sending the correct data type of VARCHAR(50) for the parameter, no implicit conversion is 
needed and the SQL Database Engine is able to choose a better plan:

Figure 6.5 – Execution plan using sp_executesql without conversions

This problem is easy to see when the code is all in the database in the form of stored procedures, but 
when the database code is generated on the client, it may be more difficult to identify. If we see a 
conversion warning in a query execution plan, be sure to check the ParameterList property and 
verify that the data types of all the parameters are correct. See the Exploring Query Execution Plans 
chapter for more information on the ParameterList property.

EF is one example of a database code generator vulnerable to this problem, but it is not the only one. 
With the increasing popularity of code-first database design, this problem is becoming more and more 
common. It’s important to take the time to ensure that the data types chosen for the database match 
the needs of the application, and even more so that, when possible, the database code is strictly typed 
based on the actual data types rather than the defaults. Now that we understand how important data 
types are in avoiding the performance issues associated with implicit conversions, let’s move on to 
learning about sort operations and how to avoid them.

Avoiding unnecessary sort operations
Sort operations in a query plan are very expensive, so we need to avoid anything that might introduce 
a sort where it is not needed. Using ORDER BY in our query practically guarantees a sort unless we 
happen to be able to leverage an index and an ordered scan.
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Tip
If your query needs to produce an ordered result set and uses a covering index, ensure the 
index sort order is the same as the query’s desired order. This will increase the likelihood that 
the SQL Database Engine can leverage the index to order the rows rather than having to do a 
costly sort operation.

This may be necessary if we need our result set to be returned in a specific order, but if order is not 
important, this is just overhead.

In this section, we will look at a few examples that may introduce an unnecessary sort operation.

UNION ALL versus UNION

The UNION and UNION ALL syntax is used to combine the results of two separate queries into a 
single result set. If it is possible for rows to be duplicated between the two queries and we do not want 
to return duplicate rows, using the UNION syntax will cause the SQL Database Engine to filter out 
any duplicate rows in the two sets. Doing this requires a sort operation, however, so it is important to 
only use UNION when necessary. If duplicate values are allowed in the final result set, or if the source 
results sets cannot have duplicates to begin with – for example, both inputs have unique constraints 
or primary keys and the sets don’t overlap – then using a UNION ALL is more efficient. This avoids 
introducing implicit sort operations that increase the query cost.

Let’s look at an example from the AdventureWorks database. The store is going to have a friends 
and family sale and we’d like to invite all our customers and vendors to get a special discount on this 
day. We need to build an email list to send out the promotion, but the information about customers 
is stored separately from vendors. The easiest way to do this is to create two separate queries and join 
them using the UNION syntax.

Here’s what the query might look like:

SELECT 'Customer' AS ContactType, p.FirstName, p.LastName, 
e.EmailAddress
FROM Sales.Customer c
INNER JOIN Person.Person p ON c.PersonID = p.BusinessEntityID
INNER JOIN Person.EmailAddress e ON e.BusinessEntityID = 
p.BusinessEntityID
WHERE EmailPromotion > 0
UNION
SELECT 'Vendor' AS ContactType, v.FirstName, v.LastName, 
v.EmailAddress
FROM Purchasing.vVendorWithContacts v
WHERE EmailPromotion > 0;

If we use a UNION, as with the preceding query, this is what the plan looks like:
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Figure 6.6 – Execution plan using UNION and a concatenation operator

And here are the QueryTimeStats for this query:

Figure 6.7 – QueryTimeStats for the plan using UNION and a concatenation operator

There is obviously some opportunity for tuning here as we have several scans and hash matches, which 
can be eliminated with the addition of an index or two, but notice there is also a sort operation that 
makes up 95 percent of the estimated cost. This can be eliminated by simply changing the UNION 
operator to UNION ALL. Unlike UNION, UNION ALL assumes that there is no overlap between the 
result sets that are being combined – if there are overlaps, then the duplicates will not be eliminated as 
they would by using UNION. We know that there is no overlap between our vendors and customers, and 
even there were, we are fine with sending duplicate emails, especially because vendors may receive a 
different email than customers. Here’s the plan for the same query with UNION ALL instead of UNION:
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Figure 6.8 – Execution plan using UNION ALL, sort, and concatenation operators

Notice the sort operator is gone now, and the results are the same, but the QueryTimeStats have improved:

Figure 6.9 – QueryTimeStats for the plan using UNION ALL, sort, and concatenation operators

Both CPU and elapsed time were reduced from 61 ms to 45 ms (an improvement of ~26 percent). 
When we need to join two or more result sets together, leveraging UNION ALL rather than UNION 
wherever possible will make our queries more efficient with very little effort on our part.
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SELECT DISTINCT

Like the UNION syntax, using DISTINCT in our SELECT query directs the SQL Database Engine to 
filter out any duplicate rows that may be in the results, which it typically does by introducing a sort 
operation. If we already have an ORDER BY clause in the query, the sort may be necessary anyway 
so this would not be additional overhead, but if order is not important, and neither are duplicates, 
then DISTINCT is unnecessary and the query would likely be cheaper without it.

Rather than blindly applying a DISTINCT operator to our query, it’s worth taking some time to 
investigate why there are duplicate rows in the results. It may be expected and intentional, but getting 
duplicates in our results when they are not expected often indicates an error condition. It could be 
due to an incorrectly formed join condition, bad data in the table (for example, incorrect ETL causing 
duplicate or missing values, or the lack of a unique or primary key allowing duplicate rows), or selecting 
columns from a table that together are not unique. The outcome is that using DISTINCT can hide 
these conditions but doesn’t solve them. Even if the duplicates are expected, there may be a cheaper 
way to get the desired results than applying DISTINCT.

Going back to the AdventureWorks database, let’s assume that we want to get a list of all the 
categories and subcategories for products that haven’t been discontinued. The most basic way to do 
this would be the following query:

SELECT c.Name AS Category, s.Name AS SubCategory
FROM Production.Product p
INNER JOIN Production.ProductSubcategory s
ON p.ProductSubcategoryID = s.ProductSubcategoryID
INNER JOIN Production.ProductCategory c
ON s.ProductCategoryID = c.ProductCategoryID
WHERE p.DiscontinuedDate IS NULL;

Unfortunately, this query by itself will return a lot of duplicate rows because there are many products 
that have the same category and subcategory. The simplest way to fix this problem is to add DISTINCT 
to the query:

SELECT DISTINCT c.Name AS Category, s.Name AS SubCategory
FROM Production.Product p
INNER JOIN Production.ProductSubcategory s
ON p.ProductSubcategoryID = s.ProductSubcategoryID
INNER JOIN Production.ProductCategory c
ON s.ProductCategoryID = c.ProductCategoryID
WHERE p.DiscontinuedDate IS NULL;
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This solves the problem, but it also requires the SQL Database Engine to sort all the rows and keep 
only the unique category and subcategory combinations. Another way to do this is to use an IN or 
EXISTS predicate in the WHERE clause. Here’s an example of what that query might look like:

SELECT c.Name AS Category, s.Name AS SubCategory
FROM Production.ProductSubcategory s
INNER JOIN Production.ProductCategory c
ON s.ProductCategoryID = c.ProductCategoryID
WHERE s.ProductSubcategoryID IN (SELECT ProductSubcategoryID
                         FROM Production.Product
                         WHERE DiscontinuedDate IS NULL);

This may look more complicated and, on the surface, may seem more expensive, but if we examine 
the plans we can see that it’s cheaper:

Figure 6.10 – Plan comparison using DISTINCT and a sub-query with IN
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Query 1 with DISTINCT in the SELECT clause contains a Sort operator which accounts for 23 
percent of the estimated cost. Query 2 which uses the IN clause does not require a sort. This query 
returns the same results but does so with less effort. While it may be more effort for us to take the 
time to investigate the query plan and determine whether there’s an alternative to adding DISTINCT, 
we only need to spend that effort once, whereas the SQL Database Engine will have to spend it every 
time it executes the query.

SELECT TOP 1 with ORDER BY

A very common way to return the maximum or minimum row in a set is to perform a SELECT TOP 
1 query with an ORDER BY clause. The problem with this pattern is that it again may result in an 
unnecessary sort operation. The SQL Database Engine will need to sort all the rows to order them 
by the desired column, but then return only the first (or last) row in the set. In some cases, it is more 
efficient to find the minimum or maximum value first, then select the row that is equal to this value.

Let’s look at an example from the AdventureWorks database. The following query returns the row 
with the highest sub-total from the Sales.SalesOrderHeader table:

SELECT TOP 1 soh.CustomerID, SalesPersonID, SubTotal, OrderDate, cust.
LastName as CustomerLastName, cust.FirstName as CustomerFirstName
FROM Sales.SalesOrderHeader soh
INNER JOIN sales.Customer c ON c.CustomerID = soh.CustomerID
LEFT JOIN Person.Person cust ON cust.BusinessEntityID = c.CustomerID
ORDER BY SubTotal DESC;

Alternatively, for this sample database we could write the query the following way, when we know the 
sub-query can only return one row:

SELECT soh.CustomerID, SalesPersonID, SubTotal, OrderDate, cust.
LastName as CustomerLastName, cust.FirstName as CustomerFirstName
FROM Sales.SalesOrderHeader soh
INNER JOIN sales.Customer c ON c.CustomerID = soh.CustomerID
LEFT JOIN Person.Person cust ON cust.BusinessEntityID = c.CustomerID
WHERE SubTotal = (SELECT MAX(SubTotal) FROM Sales.SalesOrderHeader);

Examining the two query plans, we can see that Query 1 (the TOP 1 plan) is significantly more 
expensive than Query 2, and it includes a costly sort operator:
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Figure 6.11 – Plan comparison using TOP with a sort operator and a sub-query

Notice there is a missing index suggestion for Query 2 in the preceding plan. If we add this index it can 
be leveraged by both plans and will eliminate the sort in Query 1, but Query 2 will still be significantly 
cheaper because it can perform the TOP operation earlier in the plan. The following query plan does 
not include the expensive sort operator:
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Figure 6.12 – Same plan comparison as in the preceding figure, after creating a supporting index

Keep in mind that not all queries will benefit from removing the TOP 1, but it’s worth looking into, 
especially if the query in question is already very expensive and/or runs frequently. Now that we’ve 
discovered some techniques to avoid sorts when using TOP 1 with ORDER BY in our queries, let’s 
learn about user-defined functions and how they influence query performance.
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Avoiding UDF pitfalls
Scalar User-Defined Functions (UDFs) are a very useful T-SQL programming artifact because they 
allow a specific routine to be reused very easily. However, these seemingly harmless constructs can 
be detrimental to performance, because the Query Optimizer does not account for any T-SQL logic 
inside a UDF, and UDFs are executed for every row in the result set just like a cursor. When using 
scalar UDFs, there are specific recommendations that apply to UDFs that access system or user data, 
and recommendations that apply to all UDFs.

An example of a scalar UDF that does not access data was referenced in the chapter Exploring Query 
Execution Plans, in the Query plan properties of interest section, as seen in the following code block:

CREATE FUNCTION ufn_CategorizePrice (@Price money)
RETURNS NVARCHAR(50)
AS
BEGIN
     DECLARE @PriceCategory NVARCHAR(50)
     IF @Price < 100 SELECT @PriceCategory = 'Cheap'
     ELSE IF @Price BETWEEN 101 and 500 SELECT @PriceCategory = 'Mid 
Price'
     ELSE IF @Price BETWEEN 501 and 1000 SELECT @PriceCategory = 
'Expensive'
     ELSE IF @Price > 1001 SELECT @PriceCategory = 'Unaffordable'
     RETURN @PriceCategory
END;

An example of a query that uses that UDF in the AdventureWorks sample database looks like 
the following:

SELECT dbo.ufn_CategorizePrice(UnitPrice),
     SalesOrderID, SalesOrderDetailID, CarrierTrackingNumber,
     OrderQty, ProductID, SpecialOfferID, UnitPrice, 
UnitPriceDiscount,
     LineTotal, rowguid, ModifiedDate
FROM Sales.SalesOrderDetail;

And note the resulting query execution plan:

Figure 6.13 – Execution plan using a scalar UDF
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Evaluating the performance impact of running a UDF in our T-SQL code was not an easy task until 
the recent versions of the SQL Database Engine. We see that the UDF execution is identified only by 
the presence of the Compute Scalar operator, and its logic is obfuscated from the query plan. We also 
observe that it took almost 4 times as much time to execute the UDF (931 ms) than to read the data 
from the table (275 ms).

Also note that the plan above is not being executed in parallel. This is because by-design, UDFs inhibit 
the use of parallelism, which may also add to performance problems with certain queries that would 
be otherwise eligible for parallelism.

We know this scalar UDF doesn’t access data by looking at its definition, but the SQL Database Engine 
doesn’t expand the UDF definition at compile time, so the assumption is that the UDF does access 
data. This adds overhead to UDF execution.

The following query example allows us to see the UDF properties:

-- Object accesses system data, system catalogs or virtual system 
tables, in the local instance of SQL Server?
SELECT OBJECTPROPERTYEX(OBJECT_id('dbo.ufn_CategorizePrice'), 
'SystemDataAccess') AS AccessesSystemData
-- Object accesses user data, user tables, in the local instance of 
SQL Server?
SELECT OBJECTPROPERTYEX(OBJECT_id('dbo.ufn_CategorizePrice'), 
'UserDataAccess') AS AccessesUserData
-- The precision and determinism properties of the object can be 
verified by SQL Server?
SELECT OBJECTPROPERTYEX(OBJECT_id('dbo.ufn_CategorizePrice'), 
'IsSystemVerified') AS HasBeenSystemVerified
GO

Executing the preceding query yields the following resultset:

Figure 6.14 – Properties of the scalar UDF
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We see the SQL Database Engine takes a pessimistic approach and assumes the scalar UDF we created 
might access both system and user data, and it has not been system-verified. Especially for UDFs that 
do not access data (such as the case in this example), always specify the SCHEMABINDING option 
during the UDF creation, as seen in the following example:

CREATE OR ALTER FUNCTION ufn_CategorizePrice (@Price money)
RETURNS NVARCHAR(50)
WITH SCHEMABINDING
AS
BEGIN
     DECLARE @PriceCategory NVARCHAR(50)
     IF @Price < 100 SELECT @PriceCategory = 'Cheap'
     ELSE IF @Price BETWEEN 101 and 500 SELECT @PriceCategory = 'Mid 
Price'
     ELSE IF @Price BETWEEN 501 and 1000 SELECT @PriceCategory = 
'Expensive'
     ELSE IF @Price > 1001 SELECT @PriceCategory = 'Unaffordable'
     RETURN @PriceCategory
END;

This will make the UDF schema-bound and mark the UDF as a deterministic object in the system, 
allowing the SQL Database Engine to verify the UDF and properly derive its data-access properties.

Note
For UDFs that are schema-bound, any attempt to change the underlying schema that depends 
on the UDF will result in an error. But the schema binding option ensures that the UDF will 
not inadvertently break due to schema changes.

We can use the preceding query example to see the new UDF properties, which now yields the 
following resultset:

Figure 6.15 – Properties of the schema-bound scalar UDF
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In the previous screenshot we can see that the new schema-bound UDF has been system-verified and 
does not access neither system nor user data. When schema-binding scalar UDFs, the SQL Database 
Engine can determine in advance whether the UDF accesses system catalogs or virtual system tables, 
and whether the UDF accesses user tables. In turn, this ensures that the Query Optimizer does not 
generate any unnecessary operations for query plans involving UDFs that don’t access data and avoids 
having to derive the underlying schema properties for each execution of the UDF.

This schema-bound UDF was verified to not access user tables, and notice the resulting query 
execution plan:

Figure 6.16 – Execution plan using a schema-bound scalar UDF

In the chapter Exploring Query Execution Plans, in the Query plan properties of interest section, we 
referenced an improvement introduced in the SQL Database Engine in SQL Server 2016 SP2 and SQL 
Server 2017 CU3, where showplan started to include UDF runtime stats in the QueryTimeStats property.

Looking at those UDF runtime stats, we see the UDF still has a significant cost (500 ms of elapsed 
time), although smaller than the non-schema-bound UDF.

Note that the aforementioned object properties can be determined using the following sample query:

SELECT OBJECTPROPERTY(object_id, 'IsDeterministic'),
     OBJECTPROPERTY(object_id, 'IsSystemVerified'),
     OBJECTPROPERTY(object_id, 'SystemDataAccess'),
     OBJECTPROPERTY(object_id, 'UserDataAccess'),
     OBJECTPROPERTY(object_id, 'IsSystemVerified')
FROM sys.objects WHERE name = 'ufn_CategorizePrice';

When a scalar UDF accesses data, the potential performance implications on SQL Server 2017 
or an earlier version are considerable. The following example can be executed in the scope of the 
AdventureWorks sample database:

CREATE OR ALTER FUNCTION dbo.ufn_GetTotalQuantity (@SalesOrderID INT)
RETURNS INT
WITH SCHEMABINDING
AS
BEGIN
DECLARE @Qty INT
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SELECT @Qty = SUM(OrderQty)
FROM Sales.SalesOrderDetail
WHERE SalesOrderID = @SalesOrderID
RETURN (@Qty)
END;
GO

SELECT TOP 5000 *,
     dbo.ufn_GetTotalQuantity (SalesOrderID) AS TotalQty
FROM Sales.SalesOrderHeader;

The query generates the following execution plan:

Figure 6.17 – Execution plan using a schema-bound scalar UDF

We can make similar observations regarding the obfuscation of the T-SQL logic inside the UDF. The 
QueryTimeStats for this query execution plan are the following:

Figure 6.18 – QueryTimeStats for the plan using schema-bound scalar UDF

The recommended action to attempt to improve the plan is to surface the expressions inside the 
UDF to the query itself, in an exercise called inlining the expression. Doing this across all queries 
that reference the scalar UDF may be hard work, but the effort may be warranted if the performance 
gains are considerable.

Starting with SQL Server 2019 however, and starting with database compatibility level 150, the SQL 
Database Engine can automatically inline certain UDF expressions, and account for the UDF logic 
during query optimization to yield better query plans.

The goal of the Scalar UDF inlining feature is to improve performance for queries that invoke scalar 
UDFs, where the UDF execution is a bottleneck, without any code changes.
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Note
A team of researchers at Microsoft’s Gray Systems Lab developed the Froid framework for 
inlining UDF constructs into parent queries. The Froid paper can be accessed at http://
www.vldb.org/pvldb/vol11/p432-ramachandra.pdf.

An object property can be used to determine whether a scalar UDF is can be made inline (inlineable) 
for any given version of the SQL Database Engine, using the following sample query:

SELECT is_inlineable, inline_type
FROM sys.sql_modules
WHERE object_id = OBJECT_ID('ufn_CategorizePrice');

The full list of requirements for a scalar UDF to be inlined is available in the documentation page for 
the feature and has grown throughout several Cumulative Updates for SQL Server 2019.

By simply changing the AdventureWorks database compatibility level from 130 to 150, notice the 
resulting query execution plan where all the scalar UDF logic is now visible:

 

Figure 6.19 – Execution plan showing the scalar UDF was inlined

The QueryTimeStats for this inlined execution plan are considerably better than before, both in CPU 
time and elapsed time:

Figure 6.20 – QueryTimeStats for the plan using schema-bound scalar UDF

Now that we’ve learned some techniques to make our user-defined functions more efficient, let’s move 
on to a similar discussion about stored procedures.
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Avoiding unnecessary overhead with stored procedures
In stored procedures, use the SET NOCOUNT ON notation even when there’s a requirement to return 
the current row count during execution, as in the following example:

CREATE OR ALTER PROCEDURE [dbo].[uspStocksPerWorkOrder] @WorkOrderID 
[int]
AS
BEGIN
SET NOCOUNT ON;
     SELECT wo.StockedQty, wor.WorkOrderID
     FROM Production.WorkOrder AS wo
     LEFT JOIN Production.WorkOrderRouting AS wor
ON wo.WorkOrderID = wor.WorkOrderID
     WHERE wo.WorkOrderID = @WorkOrderID;
END;

When SET NOCOUNT is ON, the count indicating the number of rows affected by a T-SQL statement 
is not returned to the application layer, which provides a performance boost.

Note
The @@ROWCOUNT function will still be incremented even with SET NOCOUNT ON.

To put this to a test, we can use the ostress utility and simulate a client application executing the 
same stored procedure 1,000 times over 10 concurrent connections, as seen in the following command:

ostress.exe -S<my_server_name> -E -dAdventureWorks -Q"EXEC [dbo].

[uspStocksPerWorkOrder] 117" -n10 -r1000

Note
ostress is a free command line tool that is part of the Replay Markup Language (RML) 
Utilities for SQL Server. This tool can be used to simulate the effects of stressing a SQL instance 
by using ad hoc queries or pre-saved .sql script files.

Executing the preceding command three times yields the following elapsed time information:

OSTRESS exiting normally, elapsed time: 00:00:31.057

OSTRESS exiting normally, elapsed time: 00:00:31.484

OSTRESS exiting normally, elapsed time: 00:00:31.476
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We can see a stable elapsed time between executions. Now if we recreate the stored procedure to 
remove the SET NOCOUNT ON and execute the same command three times, it yields the following 
elapsed time information:

OSTRESS exiting normally, elapsed time: 00:00:33.771

OSTRESS exiting normally, elapsed time: 00:00:33.824

OSTRESS exiting normally, elapsed time: 00:00:34.097

Again, we get consistent results but higher elapsed time throughout the test runs. For stored procedures 
that do not return large datasets such as the case here, or for stored procedures that contain T-SQL 
loops, setting NOCOUNT to ON can provide a significant performance boost: network traffic is reduced 
because the SQL Database Engine doesn’t send the DONE_IN_PROC token stream for each statement 
in the code. This may not be noticeable in singleton executions, but when a stored procedure is executed 
multiple times, the scale effect is usually measurable.

Also, strive to validate input parameters early in the T-SQL code. Doing this allows early determination 
of whether data access operations can run, instead of encountering issues after much work has already 
been done, wasting resources. Using the previous example, adding an IF condition prevents data 
access if the incoming parameter is null for a column that doesn’t accept null values by design:

CREATE OR ALTER PROCEDURE [dbo].[uspStocksPerWorkOrder] @WorkOrderID 
[int]
AS
BEGIN
SET NOCOUNT ON;
     IF @WorkOrderID IS NOT NULL
     BEGIN
          SELECT wo.StockedQty, wor.WorkOrderID
          FROM Production.WorkOrder AS wo
          LEFT JOIN Production.WorkOrderRouting AS wor
ON wo.WorkOrderID = wor.WorkOrderID
          WHERE wo.WorkOrderID = @WorkOrderID;
     END;
END;

While these simple changes may seem small, they can add up to a lot across an application that relies 
heavily on stored procedures, especially on a busy production system. Another place where small 
changes can add up to big gains is with views. In the next section, we’ll examine some best practices 
around complex views.
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Pitfalls of complex views
Views are often used with the same intent as User-Defined Functions (UDFs) – to allow easy re-use 
of what could otherwise be a complex expression to inline in our T-SQL query. Often developers build 
a view that will serve multiple queries, and then just select from that view with different SELECT 
statements and different filters, be those joins or search predicates. However, what may look like a 
seemingly harmless T-SQL construct may be detrimental for query performance if the underlying 
view is complex.

Imagine that in the AdventureWorks sample database, a developer built an all-encompassing view 
that gets data on all company employees, as in the following example:

CREATE OR ALTER VIEW [HumanResources].[vEmployeeNew]
AS
SELECT e.[BusinessEntityID], p.[Title], p.[FirstName], p.[MiddleName],
     p.[LastName], p.[Suffix], e.[JobTitle], pp.[PhoneNumber],
     pnt.[Name] AS [PhoneNumberType], ea.[EmailAddress], 
p.[EmailPromotion],
     a.[AddressLine1], a.[AddressLine2], a.[City], sp.[Name] AS 
[StateProvinceName],
     a.[PostalCode], cr.[Name] AS [CountryRegionName]
FROM [HumanResources].[Employee] AS e
INNER JOIN [Person].[Person] AS p
ON p.[BusinessEntityID] = e.[BusinessEntityID]
INNER JOIN [Person].[BusinessEntityAddress] AS bea
ON bea.[BusinessEntityID] = e.[BusinessEntityID]
INNER JOIN [Person].[Address] AS a
ON a.[AddressID] = bea.[AddressID]
INNER JOIN [Person].[StateProvince] AS sp
ON sp.[StateProvinceID] = a.[StateProvinceID]
INNER JOIN [Person].[CountryRegion] AS cr
ON cr.[CountryRegionCode] = sp.[CountryRegionCode]
INNER JOIN [Person].[PersonPhone] AS pp
ON pp.BusinessEntityID = p.[BusinessEntityID]
INNER JOIN [Person].[PhoneNumberType] AS pnt
ON pp.[PhoneNumberTypeID] = pnt.[PhoneNumberTypeID]
INNER JOIN [Person].[EmailAddress] AS ea
ON p.[BusinessEntityID] = ea.[BusinessEntityID];

This view may have been built as an encapsulation for a recurrent query, making it just an easily 
referenceable artifact. But later, another developer needs to build a report with a simplified org chart, 
and the following query is executed using the preexisting view:

SELECT Title, FirstName, MiddleName, LastName, Suffix, JobTitle
FROM [HumanResources].[vEmployeeNew];
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Notice the resulting query execution plan:

Figure 6.21 – Execution plan using the view previously created

And its QueryTimeStats property:

Figure 6.22 – QueryTimeStats for the plan using the view previously created

Also notice the information concerning how the Query Optimizer got to this plan (seen in the Reason 
for Early Termination Of Statement Optimization property in showplan): a timeout means that the 
best available plan found before the Query Optimizer timeout hit was used. The immediate conclusion 
is that the query is probably too complex and the optimization space too wide to run through it all 
before the internal timeout is reached.

The fact is the plan accesses five tables to retrieve data from each one, even though the columns in 
the SELECT clause are present in a small subset of the tables (just two, in this case). Each table in the 
query execution plan outputs 290 rows, therefore incurring I/O for each table.
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What if we could simplify the query, having the report query only the required data? To do this, we 
replace the query referencing the view with a query that only accesses the required tables:

SELECT Title, FirstName, MiddleName, LastName, Suffix, JobTitle
FROM HumanResources.Employee AS e
INNER JOIN [Person].[Person] AS pp ON e.BusinessEntityID = 
pp.BusinessEntityID;

Note the resulting query execution plan:

Figure 6.23 – Execution plan accessing only the required tables instead of the view

And its QueryTimeStats property:

Figure 6.24 – QueryTimeStats for the plan accessing only the required tables instead of the view

The result is a simpler and faster plan. Also notice the information seen in the Reason for Early 
Termination Of Statement Optimization showplan property: the optimization search space was 
smaller and so was covered inside the internal timeout period, resulting is the good-enough plan 
seen earlier.
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This is an example of how our workload may be incurring higher costs because certain shortcuts 
were used at development time – in this case, using an all-encompassing view that doesn’t fit all 
usage scenarios – which may even limit the Query Optimizer ability to search for a more optimal 
plan. Simplification is the key action in these cases – only query for what we want to query, and no 
more. The performance and scalability of our workload will speak for itself. This is similar to what 
we discussed in the Composable logic section of Chapter 5, Writing Elegant T-SQL Queries – writing 
generic code saves development time, but the potential trade-off is poor performance during execution.

Another less efficient but valid option is to create a unique clustered index on the view and ensure 
the SQL Database Engine accesses the view itself, rather than expanding it.

Note
Expanding the view is the action of opening the view definition and using the tables defined 
inside the view, rather than accessing the view itself. This is done for every view but can be 
optionally skipped for indexed views, also known as materialized views.

To create an indexed view, we must first recreate the view as schema-bound by adding the WITH 
SCHEMABINDING keyword to the view definition:

CREATE OR ALTER VIEW [HumanResources].[vEmployeeNew]
WITH SCHEMABINDING
AS
(…)

And then create the following index:

CREATE UNIQUE CLUSTERED INDEX IX_vEmployeeNew
ON [HumanResources].[vEmployeeNew] (
      [BusinessEntityID]

);

Note
A view without an index contains no data, it’s simply the definition of a query stored as an 
object. Once an index is created on the view, however, the results of the view are physically 
stored as a database object, as if we had created a new table. This results in additional storage 
requirements and overhead when updating data in the base tables that are referenced by the view.

To ensure the view is used directly by the Query Optimizer, we can add the NOEXPAND table hint, 
as seen as in the following example:

SELECT Title, FirstName, MiddleName, LastName, Suffix, JobTitle
FROM [HumanResources].[vEmployeeNew] WITH (NOEXPAND);
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Notice the resulting query execution plan and QueryTimeStats:

Figure 6.25 – Execution plan using the view using NOEXPAND

Figure 6.26 – QueryTimeStats for the plan using the view using NOEXPAND

While this is not as optimal as querying only for the data we need for the report, creating an indexed 
view is a valid strategy for improving query performance, as we can see by comparing the preceding 
QueryTimeStats with the QueryTimeStats in the first query using the non-indexed view: CPU time 
dropped from 6 ms to 1 ms (~84 percent less), and execution time dropped from 56 ms to 27 ms (~52 
percent less). The estimated cost for each plan is also clearly different as seen next, whereby using the 
indexed view in Query 1 is significantly more efficient than Query 2:

Figure 6.27 – Comparison of execution plans using the view with and without NOEXPAND

While in this case we used the NOEXPAND table hint, if a view is indexed then the Query Optimizer 
may choose to do indexed view matching automatically, a process whereby the view is used directly 
rather than expanding it to access the underlying tables. This process can also be forced by using the 
NOEXPAND table hint as we did in this example.
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Note
Before SQL Server 2016 Service Pack 1, only Enterprise Edition could do indexed view matching: 
the NOEXPAND hint was required to use indexed views in Standard Edition. Azure SQL Database 
doesn’t require the NOEXPAND hint to make use of indexed view matching.

The SQL Database Engine will automatically create statistics on an indexed view when the NOEXPAND 
table hint is used. If we see a plan that is using indexed views and notice a plan warning about missing 
statistics, then either use the hint or manually create the missing statistics.

Now that we understand how complex views can impact performance and how to make them more 
efficient, let’s move on to another common but sometimes problematic pattern, correlated sub-queries.

Pitfalls of correlated sub-queries
It is not uncommon to use sub-queries to express certain predicates inline in queries, but developers 
must keep in mind that joins are frequently better than correlated sub-queries. The following query 
examples can be executed in the scope of the AdventureWorks sample database:

SELECT wo.StockedQty, wo.WorkOrderID, wor.ActualCost
FROM Production.WorkOrder AS wo
INNER JOIN Production.WorkOrderRouting AS wor ON wo.WorkOrderID = wor.
WorkOrderID
WHERE wor.WorkOrderID = 12345;
SELECT wo.StockedQty, wo.WorkOrderID,
      (SELECT wor.ActualCost
          FROM Production.WorkOrderRouting AS wor
          WHERE wor.WorkOrderID = 12345)
FROM Production.WorkOrder AS wo
WHERE wo.WorkOrderID IN
      (SELECT wor.WorkOrderID
          FROM Production.WorkOrderRouting AS wor
          WHERE wor.WorkOrderID = 12345);

These yield different query plans but the same resultsets, where the plan with the correlated sub-queries 
is more expensive:
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Figure 6.28 – Comparison of execution plans where one uses a sub-query

The estimated cost for each plan is clearly different, and use of the join emerges as the favorite as it is 
significantly more efficient than the correlated sub-query.

This is another pattern that is often encountered when using database code generation tools such as 
Entity Framework. With these tools it may not be a simple task to change the code that is generated, 
but in some cases, you may be able to introduce a stored procedure or view to influence the generated 
code. While it may take some extra time and understanding of the data model to express the logic as 
joins rather than sub-queries, the effort often pays off, especially for queries that are executed frequently. 
Another area where some extra effort can pay big dividends is using intermediate result sets to simplify 
complex business logic. Let’s examine some ways we can make this technique more efficient.

Properly storing intermediate results
There are times when a query can become very complex, either because of a complicated database 
schema or because of complex business logic in the query, or both. In these cases, it may be easier to 
write the query in parts and store intermediate query results so that they can be used in a later query. 
This can make the query more readable, but it can also help the SQL Database Engine create a better 
query execution plan. There are different ways to store intermediate query results – this section will 
look at a few different options along with some of the considerations for when and where to use them.
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Using table variables and temporary tables

Table variables and temporary tables serve the same basic principle: to store an intermediate resultset 
to be used by a subsequent query. Database developers use these to break down complex joined queries 
that typically are not very efficient.

Tip
We have mentioned before about how the way a query is written can severely compromise the 
SQL Database Engine’s ability to optimize the query efficiently in the little time it has to do it.

This means that a complex T-SQL query can be broken down into simpler T-SQL statements that 
store intermediate results before being used to join with other tables. Imagine a developer needs to 
build a query in the AdventureWorks sample database that returns the sales quota data by year 
for each salesperson. This requires intermediate calculations that cannot be easily expressed with a 
joined query. Instead, a developer can use table variables to store intermediate results and then use a 
simple joined query, as seen in the following example:

DECLARE @Sales_TV TABLE (
     SalesPersonID int NOT NULL,
     TotalSales money,
     SalesYear smallint
);
-- Populate the first Table Variable
INSERT INTO @Sales_TV
SELECT SalesPersonID, SUM(TotalDue) AS TotalSales,
     YEAR(OrderDate) AS SalesYear
FROM Sales.SalesOrderHeader
WHERE SalesPersonID IS NOT NULL
GROUP BY SalesPersonID, YEAR(OrderDate);
-- Define the second Table Variable, which stores sales quota data by 
year for each salesperson.
DECLARE @Sales_Quota_TV TABLE (
     BusinessEntityID int NOT NULL,
     SalesQuota money,
     SalesQuotaYear smallint
);
INSERT INTO @Sales_Quota_TV
SELECT BusinessEntityID, SUM(SalesQuota) AS SalesQuota,
     YEAR(QuotaDate) AS SalesQuotaYear
FROM Sales.SalesPersonQuotaHistory
GROUP BY BusinessEntityID, YEAR(QuotaDate)
-- Define the outer query by referencing columns from both Table 
Variables.
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SELECT CONCAT(FirstName, ' ', LastName) AS SalesPerson, SalesYear,
 FORMAT(TotalSales,'C','en-us') AS TotalSales, SalesQuotaYear,
 FORMAT (SalesQuota,'C','en-us') AS SalesQuota,
 FORMAT (TotalSales -SalesQuota, 'C','en-us') AS Amt_Above_or_Below_
Quota
FROM @Sales_TV AS Sales_TV
INNER JOIN @Sales_Quota_TV AS Sales_Quota_TV
     ON Sales_Quota_TV.BusinessEntityID = Sales_TV.SalesPersonID
     AND Sales_TV.SalesYear = Sales_Quota_TV.SalesQuotaYear
INNER JOIN Person.Person
     ON Person.BusinessEntityID = Sales_Quota_TV.BusinessEntityID
ORDER BY SalesPersonID, SalesYear;

Notice the resulting query execution plan with three queries:

Figure 6.29 – Execution plan using table variables

Alternatively, temporary tables can be used, as seen in the following example:

DROP TABLE IF EXISTS #Sales_TT;
CREATE TABLE #Sales_TT (
     SalesPersonID int NOT NULL,
     TotalSales money,
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     SalesYear smallint
);
-- Populate the first Temp Table
INSERT INTO #Sales_TT
SELECT SalesPersonID, SUM(TotalDue) AS TotalSales,
     YEAR(OrderDate) AS SalesYear
FROM Sales.SalesOrderHeader
WHERE SalesPersonID IS NOT NULL
GROUP BY SalesPersonID, YEAR(OrderDate);
-- Define the second Temp Table, which stores sales quota data by year 
for each sales person.
DROP TABLE IF EXISTS #Sales_Quota_TT;
CREATE TABLE #Sales_Quota_TT (
     BusinessEntityID int NOT NULL,
     SalesQuota money,
     SalesQuotaYear smallint
);
INSERT INTO #Sales_Quota_TT
SELECT BusinessEntityID, SUM(SalesQuota) AS SalesQuota,
     YEAR(QuotaDate) AS SalesQuotaYear
FROM Sales.SalesPersonQuotaHistory
GROUP BY BusinessEntityID, YEAR(QuotaDate)
-- Define the outer query by referencing columns from both Temp 
Tables.
SELECT CONCAT(FirstName, ' ', LastName) AS SalesPerson, SalesYear,
 FORMAT(TotalSales,'C','en-us') AS TotalSales, SalesQuotaYear,
 FORMAT (SalesQuota,'C','en-us') AS SalesQuota,
 FORMAT (TotalSales -SalesQuota, 'C','en-us') AS Amt_Above_or_Below_
Quota
FROM #Sales_TT AS Sales_TT
INNER JOIN #Sales_Quota_TT AS Sales_Quota_TT
     ON Sales_Quota_TT.BusinessEntityID = Sales_TT.SalesPersonID
     AND Sales_TT.SalesYear = Sales_Quota_TT.SalesQuotaYear
INNER JOIN Person.Person
     ON Person.BusinessEntityID = Sales_Quota_TT.BusinessEntityID
ORDER BY SalesPersonID, SalesYear;

Notice the resulting query execution plan with three queries. Comparing Query 1 and Query 2 from 
the table variable and temporary table examples, we see the plan is the same on both, except for the 
type of object where the data is inserted.



Properly storing intermediate results 223

Figure 6.30 – Execution plan using temporary table

However, notice how the plans for Query 3 in both examples are different. Notice especially the 
differences in the information of how many actual rows versus estimated rows flowed through the 
operators in each plan. In the table variable case, we see the estimations are always 1, whereas in the 
temporary table case they are either completely accurate (i.e., the actual rows and estimated rows 
match) or are much closer to each other (3,364 actual of 1,977 estimated rows).

Figure 6.31 – Comparison of Query 3 in two plans, using a table variable or a temporary table
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This is because the SQL Database Engine supports automatic statistics creation on temporary tables, 
as well as manual statistics creation and update, which the Query Optimizer can use. Up to and 
including SQL Server 2017, table variables are runtime objects only and are compiled together with 
all other statements, before any of the statements that populate the table variables even execute. For 
this reason, the Query Optimizer uses a default estimation of one row for table variables since the 
row count is not available at compile time.

However, in SQL Server 2019 and under database compatibility level 150, the Table Variable Deferred 
Compilation feature is available. With this feature, the compilation of a statement that references a 
table variable that doesn’t exist is deferred until the first execution of the statement, just as is done for 
temporary tables. In effect, this means that table variables are materialized on their first use, and the 
Query Optimizer uses the row count in the first materialization of the table variable to create a query 
plan. See the following example of Query 3 running in SQL Server 2017, and then in SQL Server 2019.

Figure 6.32 – Comparison of Query 3 in two plans using either the table 

variable deferred compilation feature versus a temporary table

While in this case the plan doesn’t materially change, the estimated and actual rows match when 
using SQL Server 2019’s deferred compilation of Table Variables, providing the Query Optimizer the 
opportunity to create a query plan with better estimate memory requirements, which translates into 
improved resource usage.
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Using Common Table Expressions (CTEs)

Common Table Expressions (CTEs) are runtime constructs to derive an inline intermediate result 
set from a query. This means that a complex T-SQL query can be broken down into simpler T-SQL 
statements that store intermediate results before joining with other tables or other CTEs that had been 
previously defined in the T-SQL statement. For example, take the two following queries that can be 
executed in the AdventureWorks sample database:

WITH Sales_CTE (SalesPersonID, SalesOrderID, SalesYear)
AS
(
 SELECT SalesPersonID, SalesOrderID, YEAR(OrderDate) AS SalesYear
 FROM Sales.SalesOrderHeader
 WHERE SalesPersonID IS NOT NULL
)
SELECT SalesPersonID, COUNT(SalesOrderID) AS TotalSales, SalesYear
FROM Sales_CTE
GROUP BY SalesYear, SalesPersonID
ORDER BY SalesPersonID, SalesYear;
GO
SELECT SalesPersonID, COUNT(SalesOrderID) AS TotalSales,
YEAR(OrderDate) AS SalesYear
FROM Sales.SalesOrderHeader
WHERE SalesPersonID IS NOT NULL
GROUP BY YEAR(OrderDate), SalesPersonID
ORDER BY SalesPersonID, SalesYear;
GO

The queries generate the following execution plans:

Figure 6.33 – Execution plans for queries listing the total sales per year and by salesperson
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These yield matching query plans because they express the same set of conditions and were optimized 
the same way. However, CTEs can be very useful to express conditions that become impossible to 
express with a joined query, such as recursive queries or queries that reference nested result sets.

The following example is a different way of building a query that can be executed in the AdventureWorks 
sample database and builds a CTE that is then referenced by another CTE before being joined with 
the Person.Person table:

WITH Sales_CTE (SalesPersonID, TotalSales, SalesYear)
AS
-- Define the first CTE query.
(
 SELECT SalesPersonID, SUM(TotalDue) AS TotalSales,
          YEAR(OrderDate) AS SalesYear
 FROM Sales.SalesOrderHeader
 WHERE SalesPersonID IS NOT NULL
 GROUP BY SalesPersonID, YEAR(OrderDate)
)
,
-- Define the second CTE query, which returns sales quota data by year 
for each sales person.
Sales_Quota_CTE (BusinessEntityID, SalesQuota, SalesQuotaYear)
AS
(
     SELECT BusinessEntityID, SUM(SalesQuota) AS SalesQuota,
          YEAR(QuotaDate) AS SalesQuotaYear
     FROM Sales.SalesPersonQuotaHistory
     GROUP BY BusinessEntityID, YEAR(QuotaDate)
)
-- Define the outer query by referencing columns from both CTEs and a 
Table.
SELECT CONCAT(FirstName, ' ', LastName) AS SalesPerson, SalesYear,
 FORMAT(TotalSales,'C','en-us') AS TotalSales, SalesQuotaYear,
 FORMAT (SalesQuota,'C','en-us') AS SalesQuota,
 FORMAT (TotalSales -SalesQuota, 'C','en-us') AS Amt_Above_or_Below_
Quota
FROM Sales_CTE
INNER JOIN Sales_Quota_CTE
ON Sales_Quota_CTE.BusinessEntityID = Sales_CTE.SalesPersonID
     AND Sales_CTE.SalesYear = Sales_Quota_CTE.SalesQuotaYear
INNER JOIN Person.Person
ON Person.BusinessEntityID = Sales_Quota_CTE.BusinessEntityID
ORDER BY SalesPersonID, SalesYear;
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Notice the resulting query execution plan with one single query, unlike the table variable and temporary 
table variants:

Figure 6.34 – Execution plan for a single query listing the total sales per year and by salesperson

CTEs can be a very efficient alternative for driving Query Optimizer choices that improve performance. 
In the chapter Exploring Query Execution Plans in the Query plan operators of interest section, we had 
the following example of a query executed in the AdventureWorks sample database:

SELECT WO.WorkOrderID, WO.ProductID, WO.OrderQty, WO.StockedQty,
WO.ScrappedQty, WO.StartDate, WO.EndDate, WO.DueDate,
WO.ScrapReasonID, WO.ModifiedDate, WOR.WorkOrderID,
     WOR.ProductID, WOR.LocationID
FROM Production.WorkOrder AS WO
LEFT JOIN Production.WorkOrderRouting AS WOR
ON WO.WorkOrderID = WOR.WorkOrderID AND WOR.WorkOrderID = 12345;

The query generates the following execution plan:

Figure 6.35 – Execution plan for the query listing orders

Where we can see its QueryTimeStats property:

Figure 6.36 – QueryTimeStats for the plan
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Notice the Table Spool operator, which we know at this point is something developers must attempt to 
avoid. We can’t always avoid these, for example a spool that enforces Halloween protection is unlikely to 
be removable. But in this case, refactoring the query to move the part that required the spool to a CTE 
and including the join predicate seeking on the scalar value 12345 allows us to eliminate the spool:

;WITH cte AS (
SELECT WorkOrderID, ProductID, LocationID
FROM Production.WorkOrderRouting WHERE WorkOrderID = 12345
)
SELECT WO.WorkOrderID, WO.ProductID, WO.OrderQty, WO.StockedQty,
WO.ScrappedQty, WO.StartDate, WO.EndDate, WO.DueDate,
WO.ScrapReasonID, WO.ModifiedDate, WOR.WorkOrderID,
     WOR.ProductID, WOR.LocationID
FROM Production.WorkOrder AS WO LEFT JOIN cte AS WOR
ON WO.WorkOrderID = WOR.WorkOrderID
GO

Verify the new execution plan:

Figure 6.37 – Execution plan for the query listing orders now using a CTE

Its QueryTimeStats property is as follows:

Figure 6.38 – QueryTimeStats for the plan using a CTE

Because of the CTE use, the Query Optimizer found that a Merge Join is a good-enough join 
algorithm, and better than a Nested Loops, which is why the Spool is eliminated in this case. And 
the plan becomes cheap enough to avoid exceeding the cost threshold for parallelism configuration, 
which means it is executed in serial.
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Let’s compare the preceding QueryTimeStats with the QueryTimeStats in the first query using the 
non-indexed view: the CPU time dropped from 247 ms to 46 ms (~81 percent less), and execution 
time dropped from 713 ms to 46 ms (~93 percent less). For such a simple query, this means we not 
only improved the singleton execution and CPU time, but also removed any use of tempdb. This 
in turn improved the scalability of the workload by using fewer resources and reducing the overall 
concurrency in the workload.

Summary
This chapter covered some performance pitfalls that are not always obvious when writing T-SQL queries. 
Using the knowledge and tools covered in earlier chapters together with the anti-patterns discussed in 
this chapter, we should now be able to dig deeper into our query execution plans and uncover issues 
that have the potential to impact performance and scalability before they reach production. Up to 
now, we have been focusing on how to write efficient, performant T-SQL code, but what if the code 
is already written and we are faced with identifying these issues in an existing system?

In the next and final part of the book, we will investigate some of the tools available to us that help 
identify and troubleshoot issues with our T-SQL query performance.





Part 3:  
Assembling Our Query 

Troubleshooting Toolbox

This part introduces all the diagnostics artifacts and tools that ship with the SQL Database Engine 
and SQL Server Management Studio for query performance troubleshooting.

This part has the following chapters:

• Chapter 7, Building Diagnostic Queries Using DMVs and DMFs

• Chapter 8, Building XEvent Profiler Traces

• Chapter 9, Comparative Analysis of Query Plans

• Chapter 10, Tracking Performance History with Query Store

• Chapter 11, Troubleshooting Live Queries

• Chapter 12, Managing Optimizer Changes





7
Building Diagnostic Queries 

Using DMVs and DMFs

Dynamic management views (DMVs) and dynamic management functions (DMFs) expose relevant 
real-time information that can unlock the secrets of T-SQL execution and SQL Database Engine health, 
even on a live production server. There are hundreds of DMVs and DMFs (collectively referred to as 
DMVs) available in the SQL Database Engine, and while they are mostly documented, it may not be 
obvious how they can be used by database developers and administrators to troubleshoot performance 
both in production systems and during the development process.

In this chapter, we will start by enumerating some of the DMVs that are most relevant for both T-SQL 
developers and database administrators alike to troubleshoot T-SQL query performance. Building on 
this information, we will provide real-world examples to explore how to use DMVs to troubleshoot 
different poor-performance scenarios, as well as give us the information needed to begin building 
our own DMV scripts. This chapter covers the following topics:

• Introducing DMVs

• Exploring query execution DMVs

• Exploring query plan cache DMVs

• Troubleshooting common scenarios with DMV queries

Technical requirements
The examples used in this chapter are designed for use on SQL Server 2022 and Azure SQL Database, 
but they should work on any version of SQL Server, 2012 or later. The Developer edition of SQL Server 
is free for development environments and can be used to run all the code samples. There is also a free 
tier of Azure SQL Database you can use for testing at https://aka.ms/freedb.

https://aka.ms/freedb
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You will need the sample databases AdventureWorks2016_EXT (referred to as AdventureWorks) 
and AdventureWorksDW2016_EXT (referred to as AdventureWorksDW), which can be found 
on GitHub at https://github.com/Microsoft/sql-server-samples/releases/
tag/adventureworks. Code samples for this chapter can also be found on GitHub at https://
github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/
main/ch6.

Introducing DMVs
SQL Server 2005 introduced a new concept in the Database Engine – the SQL Operating System 
(SQLOS). The SQLOS is an abstraction layer that encapsulates all the low-level resource management 
and monitoring tasks that the SQL Database Engine must perform while providing an application 
programming interface (API) for other components of the Database Engine to leverage these services. 
Not only does this centralization of resource management code make the SQL Database Engine more 
efficient, but it also provides a central location for monitoring various aspects of Database Engine 
performance. DMVs take advantage of this centralized architecture by providing the user with a 
mechanism to view this information in a way that is lightweight and accurate.

DMVs allow the user to query memory structures in SQLOS. Some DMVs show information that 
is only relevant for the specific point in time at which they are queried, while other DMVs show 
cumulative information that goes back to the last time the SQL Database Engine service was started. 
Because they are querying in-memory structures, most DMVs do not retain any information between 
restarts of the SQL Database Engine service.

Hundreds of DMVs can be used to monitor everything from memory consumption to query performance, 
as well as features of the SQL Database Engine such as replication, Resource Governor, and availability 
groups. In this chapter, we will be focusing on DMVs that are relevant for troubleshooting T-SQL 
query performance, as well as some other performance issues that are relevant when monitoring 
query execution.

Exploring query execution DMVs
Several different DMVs may be relevant when analyzing the activity that is currently happening in 
a SQL Database Engine. In this section, we will cover a few of the most common DMVs, along with 
some examples of the information that they can provide.

sys.dm_exec_sessions

The sys.dm_exec_sessions DMV lists information about all the sessions that are currently 
active on the server. This includes both user sessions and system sessions, and it also includes idle 
sessions that are connected but are not currently executing any queries.

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
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Tip
Idle sessions can be identified by looking for rows that have a status of sleeping. When using 
connection pooling especially, it is common to have several user sessions in a sleeping status.

This DMV can be used to view information that is relevant to the session, such as login_name, 
host_name, program_name, and other properties that would be set at the session level. This can 
be helpful when trying to identify which applications might be connected to the server, and which 
databases those applications are connected to. It shows current information only, so once a session is 
no longer active, it will not be visible in the view.

Here is a sample query that can be executed against sys.dm_exec_sessions:

SELECT session_id, login_time, host_name, program_name, login_name, 
status, last_request_start_time, db_name(database_id) AS [db_name]
FROM sys.dm_exec_sessions
WHERE session_id = 93;

The following screenshot shows an example of the results when running this query from SQL Server 
Management Studio (SSMS):

Figure 7.1 – Results of a query on sys.dm_exec_sessions

There are a few interesting things to note here. The first is session_id. This is important because 
it will help identify this session in other DMVs.

Tip
We can use the is_user_process column of sys.dm_exec_sessions to determine 
whether a session is generated by the system (is_user_process = 0) or by a user 
(is_user_process = 1), but most system sessions have a session ID less than 50. This 
is a shortcut that can help us distinguish between user and system sessions in other views that 
contain session_id. In newer versions of the SQL Database Engine, there may be system 
sessions with an ID greater than 50, but they will typically have a status of background.
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When we run a query in SSMS, we might notice that the status bar at the bottom contains information 
such as our login name, the server we are connected to, and the database name. The number in 
parentheses next to our login name is our session_id. We can see this same information in sys.
dm_exec_sessions, along with the program_name Microsoft SQL Server Management 
Studio – Query, indicating the session is coming from a query window in SSMS. If we are investigating 
a long-running query in a production SQL Database Engine, this information can help us identify 
where that query is coming from and who is executing it.

sys.dm_exec_requests

When we execute a T-SQL statement or batch on the server, it is called a request. This DMV lists 
all the requests that are currently active on the server. Once a batch completes and the results have 
been consumed by the client who made the request, it will no longer appear in this view, even if the 
session that generated it is still active. We can join this view to sys.dm_exec_sessions through 
the session_id column to obtain information about the session such as program_name and 
login_time, as well as information about the query execution such as cpu_time, total_
elapsed_time, and logical_reads. This DMV displays information that is current for the 
moment in time at which it was queried, so the results returned will likely be different each time it is run.

For example, the following query will give us information about queries that are currently executing:

SELECT r.session_id, r.start_time, s.program_name, r.status, 
r.command, r.sql_handle, r.statement_start_offset, r.statement_end_
offset, r.database_id
FROM sys.dm_exec_requests r
INNER JOIN sys.dm_exec_sessions s ON s.session_id = r.session_id
WHERE r.session_id > 50
   AND r.status IN ('running', 'runnable', 'suspended');

As we can see in the following screenshot, there are two queries currently executing from SSMS:

Figure 7.2 – Results of a query on sys.dm_exec_requests and sys.dm_exec_sessions
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Note
Refer to Chapter 1, Understanding Query Processing, for a discussion of the various states that a 
query will cycle through during execution. Filtering out sessions that have a status other than 
running, runnable, or suspended will allow us to focus on user sessions only.

We can gain a lot of information from this view about the performance of a request as well, such as 
CPU consumption, elapsed time in milliseconds, and I/O. The following query shows some of the 
relevant performance-related columns:

SELECT session_id, status, cpu_time, total_elapsed_time, logical_
reads, reads, writes
FROM sys.dm_exec_requests
WHERE session_id > 50
   AND status IN ('running', 'runnable', 'suspended');

The following screenshot shows the results of this query:

Figure 7.3 – Results of a query on sys.dm_exec_requests

sys.dm_exec_sql_text

The sys.dm_exec_sql_text DMF is a helper function that can be used in conjunction with 
any DMV that contains the sql_handle column to retrieve the text of a query. We can select from 
this system table-valued function by passing a valid sql_handle as a parameter, but it is most 
commonly used via the CROSS APPLY operation in combination with queries against either sys.
dm_exec_requests or sys.dm_exec_query_stats.

Building on our example from the previous section, we can use the CROSS APPLY operator to 
retrieve the text of the queries that are running, as in the following query:

SELECT r.session_id, r.start_time, s.program_name, r.status, r.st.text 
AS statement_text, r.statement_start_offset, r.statement_end_offset, 
r.database_id
FROM sys.dm_exec_requests r
INNER JOIN sys.dm_exec_sessions s ON s.session_id = r.session_id
CROSS APPLY sys.dm_exec_sql_text(r.sql_handle) st
WHERE r.session_id > 50
   AND r.status IN ('running', 'runnable', 'suspended');
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This query yields the results illustrated in the following screenshot:

Figure 7.4 – Results of a query using sys.dm_exec_sql_text

Alternatively, we can copy one of the values for sql_handle that we obtained from the first sample 
query in the sys.dm_exec_requests section and execute this DMF as a standalone query:

SELECT *
FROM sys.dm_exec_sql_
text(0x020000002EED8B2B6539C6D9CB85FAAA57145FECF54E1DA 
70000000000000000000000000000000000000000);

This query yields the following results:

Figure 7.5 – Results of a query on sys.dm_exec_sql_text for a specific handle

As we can see, the text column contains the text of the first sample query we executed in the sys.
dm_exec_requests section.

sys.dm_os_waiting_tasks

Every request that is submitted to the SQL Database Engine is broken down into one or more tasks, 
depending on whether parallelism is involved. As we mentioned previously in the Query execution 
essentials section of Chapter 1, Understanding Query Processing, each task that is involved in processing 
the query is assigned to a worker thread, and these threads are used to complete the work of the query 
on the CPUs. Throughout the execution of a query, the various threads will cycle through the statuses 
running, runnable, and suspended as they process the different operations required to complete 
the query. When a task needs to wait for a resource, it goes into the suspended state. This is relevant 
information when troubleshooting query performance because it indicates contention for a resource 
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of some kind. The sys.dm_os_waiting_tasks DMV lists all the tasks that are active within 
the server, but are in the suspended state, meaning they are waiting for a resource. This view contains 
information such as wait_type, which is helpful when analyzing what is contributing to a query’s 
execution time. This information is also available at the request level via sys.dm_exec_requests 
as we discussed earlier in this chapter, but when a query is running in parallel, the information listed 
at the request level may not be giving us a full picture of what is going on at the individual thread level.

Let’s change the columns we select from sys.dm_exec_requests to show more information 
about the current status of the queries that are executing:

SELECT r.session_id, r.start_time, r.status, r.sql_handle,
     r.wait_type, r.wait_time, r.wait_resource
FROM sys.dm_exec_requests r
WHERE r.session_id > 50
   AND r.status IN ('running', 'runnable', 'suspended')

The following screenshot illustrates the results of this query:

Figure 7.6 – Results of query getting requests from user sessions and their current request state

Note that session_id 101 is currently in the suspended state, which means it is waiting for 
a resource. The wait_type column contains the value CXPACKET. This wait type indicates that 
the query is running in parallel, but we’re only getting information from one of the threads in sys.
dm_exec_requests, the coordinator thread. If we want to know what all the suspended threads that 
are involved in this query execution are doing, we need to join the sys.dm_os_waiting_tasks 
DMV to get the task-level detail:

SELECT r.session_id, t.exec_context_id, t.blocking_exec_context_id, 
r.start_time, r.status, r.sql_handle, t.wait_type, t.wait_duration_ms
FROM sys.dm_exec_requests r
LEFT JOIN sys.dm_os_waiting_tasks t ON r.session_id = t.session_id
WHERE r.session_id > 50
   AND r.status IN ('running', 'runnable', 'suspended')
ORDER BY t.exec_context_id

Note that a left join is used in this query because it is possible to have rows in sys.dm_exec_
requests that have no waiting tasks, but we still want them to appear in our results. This yields 
the following results:
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Figure 7.7 – Results of a query getting requests from user sessions including thread detail

We can see that session 93 was in the running state, so the fields from sys.dm_os_waiting_
tasks are NULL for this row. For session 101, the parallel query, there are several rows returned with 
different values for exec_context_id and blocking_exec_context_id. These show the 
various tasks that make up the request, and which tasks are blocking them, along with wait_type 
and wait_duration_ms. Note that while sys.dm_exec_requests showed only CXPACKET 
for the wait type, there are in fact several tasks waiting on CXCONSUMER as well. The task with 
exec_context_id = 0 is the coordinator thread; the rest of the tasks are the ones doing actual work.

Tip
A detailed discussion about waits is beyond the scope of this book, but if we would like more 
information about wait types, search the SQL Database Engine documentation for the sys.
dm_os_wait_stats DMV. This DMV shows cumulative wait information since the server 
was last started. The documentation for this DMV contains a reference for the various wait 
types and what they mean.
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Exploring query plan cache DMVs
Another set of DMVs that are helpful when troubleshooting T-SQL query performance is the query 
plan cache-related DMVs. While the execution DMVs we discussed in the previous section contain 
point-in-time information that changes frequently, these DMVs contain information about queries 
that are currently in the plan cache, which can contain information back to when the server was last 
restarted, depending on how long the query plans remain in the cache.

Note
The amount of time a plan remains in the cache depends on several factors such as memory 
pressure, recompilation, and schema changes. Provided that the server has been online for 
some time and no cache-flushing events have occurred, such as changing max degree of 
parallelism, or manually clearing the plan cache by running ALTER DATABASE SCOPED 
CONFIGURATION CLEAR PROCEDURE_CACHE, these plan cache DMVs should give you 
a good idea of the overall query performance on the server.

Before describing the DMVs in more detail, it’s important to understand how query execution plans 
are stored. Query execution plans are stored as a batch, which means that all the statements that were 
submitted to the server as a single request are stored as a single plan object. An example of a batch 
might be a single stored procedure or a group of T-SQL queries submitted in a single request.

Tip
If running a query from SSMS, the GO command serves as a batch separator. All the T-SQL 
statements between GO commands make up a single batch. Note that GO is not a T-SQL 
statement itself; it simply directs SSMS to submit the preceding statements to the Database 
Engine as a batch.

A plan object will have a plan_handle, which is a hexadecimal value that uniquely identifies 
the object. The text of the batch will also have a handle called sql_handle, which can be used to 
identify the T-SQL query itself and retrieve the batch text. Within that batch, there will be one or more 
statements. Each statement is identified by a statement_start_offset and statement_
end_offset which are byte offsets from the beginning of the batch text that point to the beginning 
and end of the statement within the batch. We can use these offsets to extract the individual queries 
from a batch, typically by using a SUBSTRING function. Keep these concepts in mind as we explore 
the various plan cache DMVs.

sys.dm_exec_query_stats

The sys.dm_exec_query_stats DMV displays cumulative query execution statistics for all 
the queries that are currently in the cache. As we observed in the previous section, the sys.dm_
exec_requests DMV shows query performance while the query is executing. Once the query is 
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complete, sys.dm_exec_query_stats is incremented with this new execution information. 
While query execution plans are stored as a batch, this DMV lists one row per statement, so there 
may be multiple rows with the same plan_handle and sql_handle. These rows will have a 
different statement_start_offset and statement_end_offset to distinguish between 
the statements in the same batch.

Many different query performance metrics can be gathered with this DMV. This sample query highlights 
a few of the more common ones:

SELECT st.text, qs.plan_handle, qs.last_execution_time, qs.execution_
count, qs.total_worker_time AS total_cpu_time,
qs.total_worker_time/qs.execution_count AS average_cpu_time, 
qs.total_logical_reads, qs.total_logical_reads/qs.execution_count AS 
average_logical_reads, qs.total_elapsed_time, (qs.total_elapsed_time/
qs.execution_count)/1000000 AS average_elapsed_time_sec
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) st
WHERE qs.sql_handle = 
0x0200000022D4D930BD648A1C5BA9320D2448C8F7CFCEF3D 
60000000000000000000000000000000000000000;

In this case, we’ve used the instance of sql_handle that we retrieved earlier from the sample query 
against sys.dm_exec_requests. This query yields the following results:

Figure 7.8 – Results of query getting query performance metrics for a specific sql_handle

Based on the execution_count value in the results, we can see that this query plan has been 
executed six times since it entered the cache. The columns that start with total_ are cumulative for 
all six executions, so we can calculate the average by dividing by execution_count. Also, note that 
all times are in microseconds, so in order to get the average execution time in seconds, we calculated 
the average first by dividing total_elapsed_time by execution_count, then we divided 
by 1,000,000 to convert microseconds to seconds. In addition to totals, each metric also has columns 
for minimum and maximum values across all executions, as well as the value for the last execution.

Tip
In the Troubleshooting common scenarios with DMV queries section, we will cover some 
additional columns that are specific to certain performance scenarios, but a comprehensive 
list of the columns returned by this DMV can be found by searching for the sys.dm_exec_
query_stats documentation page.
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sys.dm_exec_procedure_stats

The sys.dm_exec_procedure_stats DMV is like sys.dm_exec_query_stats in that 
it contains cumulative execution statistics for query plans in the cache, but at the stored procedure 
level rather than the query level. Stored procedures may contain T-SQL code constructs other than 
queries such as conditional logic, variable assignments, and function calls. These constructs consume 
resources, but they aren’t accounted for in sys.dm_exec_query_stats because they aren’t 
queries. This DMV can be used to determine the total resource consumption of the procedure as a 
whole, including code that is not accounted for in sys.dm_exec_query_stats.

The following example shows a stored procedure that contains some conditional logic as well as 
a WAITFOR command that causes the execution to wait for the specified amount of time before 
proceeding to the next statement in the procedure:

CREATE OR ALTER PROCEDURE uspGetEmployeeByDepartment @Department 
nvarchar(50)
AS
SELECT *
FROM HumanResources.vEmployeeDepartment
WHERE Department = @Department
IF @Department = N'Engineering'
     WAITFOR DELAY '00:00:10'
GO

We can execute this stored procedure a few times in the AdventureWorks sample database with a 
few different values for @Department, and then use the following query to see the execution statistics:

SELECT object_name(object_id, database_id) AS proc_name, plan_handle, 
execution_count, min_elapsed_time, max_elapsed_time
FROM sys.dm_exec_procedure_stats
WHERE object_id = object_id('uspgetEmployeeByDepartment')

This query returns the following results:

Figure 7.9 – Results of a query getting query performance metrics for a specific stored procedure

Notice the difference between the minimum and maximum elapsed time. This is because the WAITFOR 
command only executes when @Department = N'Engineering' so these executions take 
over 10 seconds, whereas other parameter values take much less time, only about the time it takes to 
execute the query. We can confirm this by using the value from the plan_handle column to look 
up the statements in sys.dm_exec_query_stats:

SELECT st.text, qs.statement_start_offset, qs.statement_end_offset, 
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qs.execution_count, qs.min_elapsed_time, qs.max_elapsed_time
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) st
WHERE plan_handle = 0x05001E008116D84AA0BC768B1F0 
2000001000000000000000000000000000000000000000000000000000000;

This query returns the following results:

Figure 7.10 – Results of a query getting performance metrics for statements in a specific stored procedure

Notice that while the minimum elapsed time for the query alone is close to the minimum elapsed time 
of the entire procedure, the maximum elapsed time is an order of magnitude smaller. This is because 
the WAITFOR command is not part of the query, and thus its execution time is not included here.

There are two other DMVs that are like sys.dm_exec_procedure_stats called sys.
dm_exec_trigger_stats and sys.dm_exec_function_stats. These DMVs can be 
used to view execution statistics for triggers and functions respectively, in the same way sys.
dm_exec_procedure_stats is used for stored procedures.

sys.dm_exec_query_plan

The sys.dm_exec_query_plan DMF is another helper function like sys.dm_exec_sql_
text that retrieves the estimated execution plan based on a plan_handle. We can call sys.
dm_exec_query_plan on its own with a valid plan_handle, or we can leverage CROSS 
APPLY with views such as sys.dm_exec_query_stats that contain a plan_handle column.

The value that is returned in the query_plan column is in XML format but querying this view in 
SSMS will show the XML as a link. When clicked, the link will open as a graphical plan in a new tab.

We can use the instance of plan_handle we found earlier in the sys.dm_exec_procedure_
stats section to retrieve the estimated plan for the uspGetEmployeeByDepartment stored 
procedure, as in the following example:

SELECT query_plan
FROM sys.dm_exec_query_plan(0x05001E008116D84AA0BC768B1F0 
2000001000000000000000000000000000000000000000000000000000000);

The following screenshot shows the results of this query:

Figure 7.11 – Results of query getting the plan for a specific plan_handle
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If we click the link displayed in the results, the following query execution plan opens in a new window:

Figure 7.12 – Query plan for the uspGetEmployeeByDepartment stored procedure

There are some cases where even if the plan is still in the cache and we have a valid plan_handle, 
sys.dm_exec_query_plan returns a NULL value for the plan. In most cases, the reason for this 
is that the query that generated the plan is very complex and has many nested elements within it. Due 
to a limitation with the XML data type that only allows for 128 levels of nested elements, these complex 
plans cannot be returned via sys.dm_exec_query_plan. If we face this situation, we can attempt 
to use the sys.dm_exec_text_query_plan function instead. This function returns the plan as 
NVARCHAR(max) rather than XML. The text returned is XML data, but since the NVARCHAR(max) 
datatype doesn’t have any formatting, it isn’t affected by the nesting limitation. Query plans retrieved 
this way will not be clickable, so we will need to copy the XML data from the column, paste it into a 
new window (either SSMS or some other text editor), and save it as a .sqlplan file. Once we have 
this file, we can double-click it and SSMS will open it as a graphical plan.

The following query can be used to retrieve the same plan using sys.dm_exec_text_query_plan:

SELECT query_plan
FROM sys.dm_exec_text_query_plan(0x05001E008116D84AA0BC768B1F0 
2000001000000000000000000000000000000000000000000000000000000, 152, 
316);

Note that this function takes two additional parameters, which are statement_start_offset 
and statement_end_offset. These values can also be obtained from sys.dm_exec_query_
stats. This query returns the following results:

Figure 7.13 – Results of query getting the plan for a specific statement 

inside the uspGetEmployeeByDepartment stored procedure
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As we can see, the results are essentially the same as sys.dm_exec_query_plan, except there 
is no hyperlink.

sys.dm_exec_cached_plans

The sys.dm_exec_cached_plans DMV can be used to view all the query execution plans that 
are currently in the cache. Unlike sys.dm_exec_query_stats, which contains information about 
the execution of the query, this DMV contains information about the plan object itself, including things 
such as the size of the plan, the type of plan (for example, stored procedure, prepared statement, ad 
hoc query, and so on), and the number of times the plan has been used. Also, since plans are stored 
as a batch, this DMV will have only one row per plan, rather than one row per statement as in sys.
dm_exec_query_stats.

Here’s an example of a query against sys.dm_exec_cached_plans:

SELECT TOP 10 plan_handle, usecounts, size_in_bytes, objtype, query_
plan
FROM sys.dm_exec_cached_plans
CROSS APPLY sys.dm_exec_query_plan(plan_handle)
ORDER BY size_in_bytes DESC;

Note in the preceding query example that we can CROSS APPLY the sys.dm_exec_query_plan 
DMF with this DMV in order to retrieve the plan. This query yields the following results, ordered by 
the size of the plan, largest first:

Figure 7.14 – Results of a query getting the top 10 largest plans in a cache

This is just a simple example that returns the 10 largest plans in the cache. In the next section, we will 
look at a few more comprehensive queries that leverage sys.dm_exec_cached_plans.
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Troubleshooting common scenarios with DMV queries
Now that we have reviewed some of the DMVs that are relevant for examining query performance, we 
can look at how to combine these views into larger queries that target specific troubleshooting scenarios.

Note
Many of the examples in this chapter are derived from queries on the Tiger Toolbox on GitHub 
(https://aka.ms/tigertoolbox). For more examples and comprehensive DMV 
scripts, be sure to download and explore this repository.

Investigating blocking
Blocking is a very common scenario in many database systems. This is what happens when one query 
holds exclusive access to a resource that another query also requires. It is normal for some blocking 
to occur, but severe blocking can cause major performance issues and should be investigated. When 
troubleshooting query performance, it’s a good idea to check for blocking first to see if queries are 
slow because they are expensive, or because they are being blocked by some other workload.

The key DMVs for investigating blocking are sys.dm_exec_requests and sys.dm_os_
waiting_tasks. As we discussed previously, these DMVs show us which queries are currently 
running and what state they are in. They also have columns that will indicate which sessions may be 
causing blocking.

The following example shows a simple query that can be used to look for blocking on the system:

SELECT s.session_id, s.last_request_end_time, ISNULL(r.status,s.
status) AS status, s.database_id, r.blocking_session_id, r.wait_type, 
r.wait_time, r.wait_resource, s.open_transaction_count
FROM sys.dm_exec_sessions s
LEFT JOIN sys.dm_exec_requests r ON r.session_id = s.session_id
WHERE s.is_user_process = 1;

The following screenshot shows an example of the results this query might generate on a system that 
has blocking:

https://aka.ms/tigertoolbox
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Figure 7.15 – Results of a query getting current blocked sessions

Notice that session 99 has a status of suspended, which indicates it’s waiting for something. The 
wait_type column shows a value of LCK_M_S, which means the session is waiting on a shared lock. 
The wait_resource column gives some information about what resource the session is trying to 
lock – it’s a key (as in a key of an index), in database 30, with hobt_id of 72057594048086016.

Note
The hobt_id identifier stands for Heap or B-Tree ID. This is the identifier for a single partition 
of an object, either a table, an index, or column store segments.

We can reference system catalog views in the database to determine which object the lock request is 
for. The following query will return the index that is causing this blocking situation:

SELECT object_name(p.object_id) AS [object_name], p.index_id, i.name 
AS index_name, partition_number
FROM sys.partitions p
INNER JOIN sys.indexes i ON i.object_id = p.object_id AND i.index_id = 
p.index_id
WHERE p.hobt_id = 72057594048086016;

This will return the following results in the AdventureWorks sample database:

Figure 7.16 – Results of the example query showing the index where blocking is occurring
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The blocking_session_id column shows a value of 109, which means that session 109 is 
the session that is currently holding this resource and therefore blocking session 99. Interestingly, 
session 99 has a status of sleeping, which means it is not currently executing a query, but open_
transaction_count is 1, which means it started a transaction but hasn’t committed or rolled 
back the transaction. This is what is sometimes referred to as an orphaned session; it can happen when 
an application generates an unhandled exception, and the transaction doesn’t get cleaned up. In this 
case, there’s not much we can do to resolve the blocking situation naturally, so we typically need to kill 
the orphaned session (session 109), which should allow the blocked session (session 99) to proceed.

Tip
Other wait types may cause blocking, such as PAGELATCH_EX, which can be seen in the 
previous screenshot. These wait types are not user objects such as tables and indexes, they are 
pages that are an internal resource.

We can still get more information about these resources using a new DMF in SQL Server 2019 called 
sys.dm_db_page_info. Using wait_resource 26:1:157921 from the previous screenshot, 
we can generate the following query to determine which page this resource references:

SELECT *
FROM sys.dm_db_page_info (26,1,157921,'LIMITED');

In this case, the blocking scenario was quite simple, one session was blocking one other session. In 
some cases, blocking can be very complex and form what’s called a blocking chain. A blocking chain 
is hierarchical, one session blocks another session, and that session in turn blocks another session, and 
so forth. In this case, the session that starts the blocking chain is called the head blocker. This complex 
blocking is difficult to diagnose using a simple query such as the one we referenced here. In this case, 
we can use a more comprehensive query such as can be found in the Tiger Toolbox (http://aka.
ms/uspWhatsUp), or by using a tool such as Activity Monitor in SSMS. We can read more about 
Activity Monitor in Chapter 11, Troubleshooting Live Queries.

We may notice in the preceding screenshot showing a blocking situation, that there are other sessions 
that are suspended but have a value of 0 for blocking_session_id. These sessions are waiting 
for a resource, but it’s not considered blocking because the resource is not one that is owned by 
another session. These are typically system resources such as the disk, memory, or CPU. In this case, 
wait_type is WRITELOG, which means the session is waiting to write to the transaction log on disk.

http://aka.ms/uspWhatsUp
http://aka.ms/uspWhatsUp
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Cached query plan issues
As we discussed earlier in the sys.dm_exec_query_stats section, the SQL Database Engine maintains 
execution statistics for all the queries that are currently in the cache. There is a wealth of information 
in this DMV that we can use to troubleshoot several different query performance-related issues. 
We will cover a few issues here, but be sure to reference the BPCheck script in the Tiger Toolbox 
(https://aka.ms/bpcheck) for a more comprehensive example of queries to identify these 
scenarios and others.

Single-use plans (query fingerprints)

In the EXECUTE vs. sp_executesql section of Chapter 5, Writing Elegant T-SQL Queries, we discussed 
how to send ad hoc T-SQL queries to the SQL Database Engine in a way that allows for plan reuse (also 
see the Plan caching and re-use section in Chapter 1, Understanding Query Processing, for the importance 
of plan reuse). If we are not sure whether or not our application is successfully parameterizing queries 
and leveraging plan reuse, we can use the query_hash column in sys.dm_exec_query_stats 
(known as the query fingerprint) to identify queries that are logically equivalent but have different 
entries in the cache. Queries that have the same query_hash but different values for the sql_handle 
column are stored as separate objects but are effectively the same query.

The following sample query can be used to identify single-use or low-use plans:

SELECT qs.query_hash, Query_Count = COUNT(DISTINCT sql_handle), 
Executions = SUM(execution_count), CPU = SUM(qs.total_worker_time), 
Reads = SUM(qs.total_logical_reads), Duration = SUM(qs.total_elapsed_
time), Sample_Query = MAX(st.text)
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) st
GROUP BY qs.query_hash
HAVING COUNT(DISTINCT sql_handle) > 5 --> Can be any number, depending 
on our tolerance for duplicate queries
ORDER BY Query_Count DESC;

The results of this query are shown in the following screenshot:

Figure 7.17 – Results of a query getting single-use or low-use plans

https://aka.ms/bpcheck
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The results show a single row where Query_Count is 8. This means that the cache currently contains 
eight different queries that have the same query_hash and therefore are effectively the same query. 
If we look at the Sample_Query column, we’ll find the following query:

SELECT p.BusinessEntityID, p.FirstName, p.LastName, e.EmailAddress
FROM Person.Person p
INNER JOIN Person.EmailAddress e ON p.BusinessEntityID = 
e.BusinessEntityID
WHERE PersonType = 'IN' AND EmailPromotion = 1;

As we can see, this query does not have any parameter markers. There are three different ways we 
can fix this:

• Create a stored procedure and have the application call that instead.

• Parameterize the query by using sp_executesql or parameter objects from the database 
connection library.

• Turn on Forced Parameterization.

If there are only one or two queries like this, it may be easy enough to fix them by modifying the code 
using either method 1 or 2. If there are hundreds of queries that need to be parameterized, it might 
be worth turning on Forced Parameterization to temporarily correct the issue until the application 
can be re-written, using the following T-SQL command:

ALTER DATABASE CURRENT SET PARAMETERIZATION FORCED WITH NO_WAIT;

It may also be worth enabling the Optimize for Ad hoc Workloads server setting to prevent plan 
cache bloating for workloads that contain many single-use ad hoc batches, using the following 
T-SQL command:

EXEC sys.sp_configure N'optimize for ad hoc workloads', N'1';
GO
RECONFIGURE WITH OVERRIDE;
GO

These are also useful if the application is developed by a third-party software vendor, and we do not 
have the ability to change the code.

Finding resource-intensive queries

If the SQL Database Engine is experiencing resource contention such as high CPU consumption or 
heavy I/O, or we simply want to find queries that are resource intensive, we can use sys.dm_exec_
query_stats to list out the top resource-consuming queries that are currently in the cache. There 
are several different metrics available via sys.dm_exec_query_stats, such as CPU, logical 
reads, and elapsed time, which we can sort to obtain a list of queries that consume large amounts of 
these resources.
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The following query will list out the top 10 queries by average CPU consumption in the cache:

 WITH queries AS
(SELECT TOP 10 [execution_count],
[total_worker_time]/[execution_count] AS [Avg_CPU_Time],
[total_elapsed_time]/[execution_count] AS [Avg_Duration],
[total_logical_reads]/[execution_count] AS
[Avg_Logical_Reads],
ISNULL([Total_grant_kb]/[execution_count], -1) AS [Avg_Grant_KB],
ISNULL([Total_used_grant_kb]/[execution_count], -1) AS [Avg_Used_
Grant_KB],
plan_handle, sql_handle
FROM sys.dm_exec_query_stats
ORDER BY [Avg_CPU_Time] DESC)
SELECT st.[text], qp.query_plan, queries.*
FROM queries
OUTER APPLY sys.dm_exec_query_plan(queries.plan_handle) AS qp
OUTER APPLY sys.dm_exec_sql_text(queries.sql_handle) AS st;

This query yields the following results:

Figure 7.18 – Results of a query getting the top 10 queries by average CPU use in cache
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Notice that many of the queries in the results have only a single execution. Tuning these queries 
would make them faster, but if they’re only executed occasionally, this may not have a large impact 
on the overall server performance. If we want to reduce CPU consumption on the server as a whole, 
we might consider changing the query to sort by total_worker_time rather than the calculated 
Avg_CPU_Time column. This would bring queries to the top that are both high-CPU consumers 
and are executed frequently.

We can use this same query to examine other aspects of server performance. If we want to find slow 
queries, sort by Avg_Duration. If we want to find I/O intensive queries, sort by Avg_Logical_
Reads or total_logical_reads. If we want to find queries that use a large amount of memory, 
sort by Avg_Grant_KB or total_grant_kb. We can find more queries like these in the BPCheck 
script in the Tiger Toolbox (https://aka.ms/bpcheck), or we can experiment with our own 
queries using the example in this section as a starting point.

Queries with excessive memory grants

In Chapter 3, Exploring Query Execution Plans, we covered a few different topics regarding memory 
grants, particularly in the Query plan properties of interest section. It is important for the SQL Database 
Engine to get memory grants correct. If a query asks for more memory than it needs, other queries may 
be stuck waiting for a memory grant even though this memory is not actually being used. Similarly, if 
the query asks for less memory than it needs, it could end up spilling to disk, which will slow it down 
significantly. In the previous section, Finding resource intensive queries, we explored the different ways 
to sort results from sys.dm_exec_query_stats to surface queries that consume a large amount 
of resources. We can also use these columns to do more complex computations that will allow us to 
identify queries that have an excessive memory grant.

The following query is a modification of the example we showed in the Finding resource intensive 
queries section:

 WITH queries AS
     (SELECT TOP 10 [execution_count],
     [total_worker_time]/[execution_count] AS [Avg_CPU_Time],
      [total_elapsed_time]/[execution_count] AS [Avg_Duration],
      [total_logical_reads]/[execution_count] AS [Avg_Logical_Reads],
     ISNULL([total_grant_kb]/[execution_count], -1) AS [Avg_Grant_KB],
     ISNULL([total_used_grant_kb]/[execution_count], -1) AS [Avg_Used_
Grant_KB],
     COALESCE((([total_used_grant_kb] * 100.00) / NULLIF([total_grant_
kb],0)), 0) AS [Grant2Used_Ratio],
     plan_handle, sql_handle
     FROM sys.dm_exec_query_stats
     WHERE total_grant_kb/execution_count > 1024 AND execution_count > 
1
     ORDER BY [Grant2Used_Ratio])

https://aka.ms/bpcheck
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SELECT st.[text], qp.query_plan, queries.*
FROM queries
OUTER APPLY sys.dm_exec_query_plan(queries.plan_handle) AS qp
OUTER APPLY sys.dm_exec_sql_text(queries.sql_handle) AS st;

In this query, we added a new column called Grant2Used_Ratio, which is a calculation of the 
percent of the memory grant that was actually used. The lower this ratio, the further off the memory 
grant estimate was, which means a large amount of memory is being wasted. Looking at the WHERE 
clause in the example, we can see that we are filtering out single execution queries and queries that 
have a very small memory grant (1 KB or less).

The following screenshot shows sample results from this query:

Figure 7.19 – Results of a query getting the top 10 queries by average grant size in cache

The top query in this result has Grant2Used_Ratio of 0, which is the worst it can possibly be. 
In this case, the query requested 1.5 GB of memory and didn’t use any of it! This is a query that we 
would want to tune as soon as possible. The rest of the queries in the list have low percentages, but 
their Avg_Grant_KB values are not very high, so they may not be as big of a problem as the first 
query. We can experiment with different predicates in the WHERE clause and different sorting columns 
to find different issues with memory grants using the sample query in this section as a starting point.



Mining XML query plans 255

Mining XML query plans
As we mentioned in the sys.dm_exec_query_plan section, query execution plans are stored as XML, 
and the sys.dm_exec_query_plan DMV returns them as a proper XML data type. This allows 
us to leverage XML Path Language (XPath) to generate queries that can search for elements and 
attributes within the query execution plans. Using these XPath queries, or XQueries, we can search for 
common query performance issues across all the query execution plans in the cache, rather than having 
to examine each graphical plan individually. In this section, we will cover a few common scenarios, 
but be sure to reference the Mining-PlanCache section of the Tiger Toolbox (https://aka.
ms/tigertoolbox) for more examples.

Tip
The queries shown in this section can be used individually to search for specific issues, but 
running the entire BPCheck script from the Tiger Toolbox (https://aka.ms/bpcheck) 
will gather all this information and more in a single resultset.

Plans with missing indexes

In the Query plan properties of interest section of Chapter 3, Exploring Query Execution Plans, we 
discussed the MissingIndexes property. If this property exists in a query execution plan, it 
means that there is at least one index that the SQL Database Engine could have benefitted from that 
does not exist.

The following query uses DMVs to list all the missing index suggestions since the last restart:

SELECT DB_NAME(d.database_id) as [database_name], OBJECT_NAME(d.
object_id, d.database_id) AS object_name, total_cost_savings = 
ROUND(s.avg_total_user_cost * s.avg_user_impact * (s.user_seeks + 
s.user_scans),0) /100, s.avg_total_user_cost, s.avg_user_impact, 
s.user_seeks, s.user_scans, d.equality_columns, d.inequality_columns, 
d.included_columns
FROM sys.dm_db_missing_index_groups g
INNER JOIN sys.dm_db_missing_index_group_stats s on s.group_handle = 
g.index_group_handle
INNER JOIN sys.dm_db_missing_index_details d on d.index_handle = 
g.index_handle
ORDER BY total_cost_savings DESC;

Sample results for this query can be seen in the following screenshot:

https://aka.ms/tigertoolbox
https://aka.ms/tigertoolbox
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Figure 7.20 – Results of query listing all the missing index suggestions

This is useful for getting an overall idea of all the missing index suggestions across all the queries on 
the server, but on a busy server with many applications and databases, this may be overwhelming. 
Also, while this gives us the ability to sort the index suggestions by potential impact, there is no way 
to determine which queries may benefit from these indexes. Also, in some cases, the index suggestion 
may not be practical. Looking at the query execution plan that generated the missing index suggestion 
may reveal an even better index that would improve the query performance even more, and perhaps 
be useable by multiple queries.

Tip
Use the BPCheck script from the Tiger Toolbox (https://aka.ms/bpcheck) to learn 
about missing indexes that may be required in a database. BPCheck can optionally generate 
the index creation scripts for the missing indexes that are expected to have a very high impact 
using a scoring method. BPCheck can warn if two missing indexes would be redundant if 
created; for example, if one suggested index is already a subset of another suggested index.

https://aka.ms/bpcheck


Mining XML query plans 257

The following query can be used to look for any query execution plans that have the 
MissingIndex property:

WITH XMLNAMESPACES (DEFAULT 'http://schemas.microsoft.com/
sqlserver/2004/07/showplan'),
PlanMissingIndexes AS (SELECT query_plan, cp.usecounts, cp.refcounts, 
cp.plan_handle
FROM sys.dm_exec_cached_plans cp WITH (NOLOCK)
CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) tp
WHERE cp.cacheobjtype = 'Compiled Plan' AND tp.query_plan.exist('//
MissingIndex')=1)
SELECT c1.value('(//MissingIndex/@Database)[1]', 'sysname') AS 
database_name,
c1.value('(//MissingIndex/@Schema)[1]', 'sysname') AS [schema_name],
c1.value('(//MissingIndex/@Table)[1]', 'sysname') AS [table_name],
c1.value('@StatementText', 'VARCHAR(4000)') AS sql_text,
c1.value('@StatementId', 'int') AS StatementId, pmi.usecounts, pmi.
refcounts,
c1.value('(//MissingIndexGroup/@Impact)[1]', 'FLOAT') AS impact,
REPLACE(c1.query('for $group in //ColumnGroup for $column in $group/
Column where $group/@Usage="EQUALITY" return string($column/@Name)').
value('.', 'varchar(max)'),'] [', '],[') AS equality_columns,
REPLACE(c1.query('for $group in //ColumnGroup for $column in $group/
Column where $group/@Usage="INEQUALITY" return string($column/@
Name)').value('.', 'varchar(max)'),'] [', '],[') AS inequality_
columns,
REPLACE(c1.query('for $group in //ColumnGroup for $column in $group/
Column where $group/@Usage="INCLUDE" return string($column/@Name)').
value('.', 'varchar(max)'),'] [', '],[') AS include_columns, pmi.
query_plan, pmi.plan_handle
FROM PlanMissingIndexes pmi
CROSS APPLY pmi.query_plan.nodes('//StmtSimple') AS q1(c1)
WHERE pmi.usecounts > 1
ORDER BY c1.value('(//MissingIndexGroup/@Impact)[1]', 'FLOAT') DESC
OPTION(RECOMPILE, MAXDOP 1);

The following screenshot shows sample results for this query:

Figure 7.21 – Results of a query showing plans that have the MissingIndex property
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As the results show, this query allows us to gather the same information that the DMVs provide, but 
include the query execution plan so that further analysis can be done before we create any of the 
indexes suggested.

Tip
Executing XQueries can be very expensive, particularly on a busy server that has a very large 
procedure cache. Avoid running this type of query directly on a production server. If we would 
like to analyze a production workload, it is best to dump the XML query plans into a table on 
the production server, and then backup or detach the database and restore or attach it on a 
test server for analysis. Also note that this is why the OPTION(RECOMPILE, MAXDOP 1) 
clause has been added to each of these queries.

Plans with warnings

In the Query plan properties of interest section of Chapter 3, Exploring Query Execution Plans, we 
covered warnings, which can occur in a query execution plan at either the plan level or the operator 
level. We can leverage XQueries to identify plans with warnings as well.

The following query will find query execution plans that have a plan-level warning:

WITH XMLNAMESPACES (DEFAULT 'http://schemas.microsoft.com/
sqlserver/2004/07/showplan'),
WarningSearch AS (SELECT qp.query_plan, cp.usecounts, cp.objtype, 
wn.query('.') AS StmtSimple, cp.plan_handle
FROM sys.dm_exec_cached_plans cp WITH (NOLOCK)
CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) qp
CROSS APPLY qp.query_plan.nodes('//StmtSimple') AS p(wn)
WHERE wn.exist('//Warnings') = 1 AND wn.exist('@QueryHash') = 1)
SELECT StmtSimple.value('StmtSimple[1]/@StatementText', 
'VARCHAR(4000)') AS sql_text,
StmtSimple.value('StmtSimple[1]/@StatementId', 'int') AS StatementId,
CASE WHEN c2.exist('@UnmatchedIndexes[. = "1"]') = 1 THEN 
'UnmatchedIndexes'
WHEN (c4.exist('@ConvertIssue[. = "Cardinality Estimate"]') = 1 OR 
c4.exist('@ConvertIssue[. = "Seek Plan"]') = 1) THEN 'ConvertIssue_' 
+ c4.value('@ConvertIssue','sysname') END AS warning, ws.objtype, 
ws.usecounts, ws.query_plan, ws.plan_handle
FROM WarningSearch ws
CROSS APPLY StmtSimple.nodes('//QueryPlan') AS q1(c1)
CROSS APPLY c1.nodes('./Warnings') AS q2(c2)
CROSS APPLY c1.nodes('./RelOp') AS q3(c3)
OUTER APPLY c2.nodes('./PlanAffectingConvert') AS q4(c4)
OPTION(RECOMPILE, MAXDOP 1);
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The following screenshot shows sample results for this query:

Figure 7.22 – Results of a query showing plans that have a plan-level warning

We can also use a similar query to find warnings at the operator level. The following query will find 
query execution plans that have an operator-level warning:

WITH XMLNAMESPACES (DEFAULT 'http://schemas.microsoft.com/
sqlserver/2004/07/showplan'),
WarningSearch AS (SELECT qp.query_plan, cp.usecounts, cp.objtype, 
wn.query('.') AS StmtSimple, cp.plan_handle
FROM sys.dm_exec_cached_plans cp WITH (NOLOCK)
CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) qp
CROSS APPLY qp.query_plan.nodes('//StmtSimple') AS p(wn)
WHERE wn.exist('//Warnings') = 1 AND wn.exist('@QueryHash') = 1)
SELECT StmtSimple.value('StmtSimple[1]/@StatementText', 
'VARCHAR(4000)') AS sql_text,
StmtSimple.value('StmtSimple[1]/@StatementId', 'int') AS StatementId,
c1.value('@PhysicalOp','sysname') AS physical_op,
c1.value('@LogicalOp','sysname') AS logical_op,
CASE WHEN c2.exist('@NoJoinPredicate[. = "1"]') = 1 THEN 
'NoJoinPredicate'
WHEN c3.exist('@Database') = 1 THEN 'ColumnsWithNoStatistics' END AS 
warning, ws.objtype, ws.usecounts, ws.query_plan, ws.plan_handle
FROM WarningSearch ws
CROSS APPLY StmtSimple.nodes('//RelOp') AS q1(c1)
CROSS APPLY c1.nodes('./Warnings') AS q2(c2)
OUTER APPLY c2.nodes('./ColumnsWithNoStatistics/ColumnReference') AS 
q3(c3)
OPTION(RECOMPILE, MAXDOP 1);

The following screenshot shows sample results for this query:

Figure 7.23 – Results of a query showing plans that have an operator-level warning

Use these queries to start experimenting with finding different warnings in our query plans. We can 
change the predicates in these queries to look for any of the warnings outlined in Chapter 3, Exploring 
Query Execution Plans.
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Plans with implicit conversions

In the previous section, Plans with warnings, we looked at an XQuery that will find plans that have 
conversion warnings at the plan level. If we want to find query execution plans that have implicit 
conversions anywhere in the plan, whether or not they generate a PlanAffectingConvert 
warning, we can use an XQuery that looks specifically for implicit conversions.

The following query will find query execution plans that have implicit conversions in any of the 
operators within the plan:

WITH XMLNAMESPACES (DEFAULT 'http://schemas.microsoft.com/
sqlserver/2004/07/showplan'),
Convertsearch AS (SELECT qp.query_plan, cp.usecounts, cp.objtype, 
cp.plan_handle, cs.query('.') AS StmtSimple
FROM sys.dm_exec_cached_plans cp WITH (NOLOCK)
CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) qp
CROSS APPLY qp.query_plan.nodes('//StmtSimple') AS p(cs)
WHERE cp.cacheobjtype = 'Compiled Plan'
AND cs.exist('@QueryHash') = 1
AND cs.exist('.//ScalarOperator[contains(@ScalarString, "CONVERT_
IMPLICIT")]') = 1
AND cs.exist('.[contains(@StatementText, "Convertsearch")]') = 0)
SELECT c2.value('@StatementText', 'VARCHAR(4000)') AS sql_text,
c2.value('@StatementId', 'int') AS StatementId,
c3.value('@ScalarString[1]','VARCHAR(4000)') AS expression,
ss.usecounts, ss.query_plan, ss.plan_handle
FROM Convertsearch ss
CROSS APPLY query_plan.nodes('//StmtSimple') AS q2(c2)
CROSS APPLY c2.nodes('.//ScalarOperator[contains(@ScalarString, 
"CONVERT_IMPLICIT")]') AS q3(c3)
OPTION(RECOMPILE, MAXDOP 1);

The following screenshot shows sample results for this query:

Figure 7.24 – Results of a query showing plans that have implicit conversion warnings

Leveraging this query will help us identify queries that are comparing two values with different data types, 
either because of incorrect parameter types, or mismatched data types in the database schema itself.
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Plans with lookups

One of the quickest ways to tune a query is to add a covering index. As we discussed in Chapter 3, 
Exploring Query Execution Plans, the presence of a lookup in a query execution plan indicates that a 
query is not covered. We can leverage this same XQuery method to find query execution plans that 
contain a lookup anywhere in the plan.

The following query will find query execution plans that have a lookup:

WITH XMLNAMESPACES (DEFAULT 'http://schemas.microsoft.com/
sqlserver/2004/07/showplan'),
Lookupsearch AS (SELECT qp.query_plan, cp.usecounts, ls.query('.') AS 
StmtSimple, cp.plan_handle
FROM sys.dm_exec_cached_plans cp (NOLOCK)
CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) qp
CROSS APPLY qp.query_plan.nodes('//StmtSimple') AS p(ls)
WHERE cp.cacheobjtype = 'Compiled Plan'
AND ls.exist('//IndexScan[@Lookup = "1"]') = 1
AND ls.exist('@QueryHash') = 1)
SELECT StmtSimple.value('StmtSimple[1]/@StatementText', 
'VARCHAR(4000)') AS sql_text,
StmtSimple.value('StmtSimple[1]/@StatementId', 'int') AS StatementId, 
c1.value('@NodeId','int') AS node_id,
c2.value('@Database','sysname') AS database_name,
c2.value('@Schema','sysname') AS [schema_name],
c2.value('@Table','sysname') AS table_name,
'Lookup - ' + c1.value('@PhysicalOp','sysname') AS physical_
operator, c2.value('@Index','sysname') AS index_name, c3.value('@
ScalarString','VARCHAR(4000)') AS predicate, ls.usecounts, ls.query_
plan, ls.plan_handle
FROM Lookupsearch ls
CROSS APPLY query_plan.nodes('//RelOp') AS q1(c1)
CROSS APPLY c1.nodes('./IndexScan/Object') AS q2(c2)
OUTER APPLY c1.nodes('./IndexScan//ScalarOperator[1]') AS q3(c3)
-- Below attribute is present either in Index Seeks or RID Lookups so 
it can reveal a Lookup is executed
WHERE c1.exist('./IndexScan[@Lookup = "1"]') = 1
AND c2.value('@Schema','sysname') <> '[sys]'
OPTION(RECOMPILE, MAXDOP 1);

The following screenshot shows sample results from this query:
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Figure 7.25 – Results of a query showing plans that have a lookup

While we can’t add covering indexes to all queries, this sample XQuery can help us identify areas 
where our index strategy can be improved, and hopefully reveal targeted indexes that may benefit 
multiple queries.

Summary
While the examples in this chapter are only a small sample, hopefully at this point, we can see 
how DMVs and DMFs can be a powerful troubleshooting tool when it comes to diagnosing query 
performance issues. They are lightweight, easy to use, and provide a breadth of information that is 
useful for zeroing in on the performance issues that were covered in Chapter 5, Writing Elegant T-SQL 
Queries, and Chapter 6, Discovering T-SQL Anti-Patterns in Depth.

While DMVs are great for point-in-time and cumulative analysis, there are some issues that can only 
be diagnosed by catching queries and related data in real time. This is where tracing with Extended 
Events (XEvents) is useful. In the next chapter, we will introduce XEvents and discuss how to set up the 
new XEvent profiler trace that can capture all the queries that are executed against a server in real time.
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Building XEvent Profiler Traces

In Chapter 7, Building Diagnostic Queries Using DMVs and DMFs, we learned how to gain insights 
into query performance using the built-in system views. This information is valuable, but because 
these views mostly represent the current point in time, they are not always sufficient to answer every 
question we have about the performance of our queries. In this chapter, we will introduce Extended 
Events (XEvents), the lightweight infrastructure that exposes relevant just-in-time information from 
every component of the SQL Database Engine, focusing on those related to T-SQL execution. We will 
explore real-world examples of how to use these XEvents to troubleshoot different poor performance 
scenarios, leverage collection and analysis tools such as the XEvent Profiler, SQL LogScout and Replay 
Markup Language (RML) utilities for event analysis, and drop a note on the infamously deprecated 
SQL Server Profiler.

In this chapter, we’re going to cover the following main topics:

• Introducing XEvents

• Getting up and running with the XEvent Profiler

• Remote collection with SQL LogScout

• Analyzing traces with RML Utilities

Technical requirements
The examples used in this chapter are designed for use on SQL Server 2022 and Azure SQL Database, 
but they should work on any version of SQL Server, 2012 or later. The Developer Edition of SQL Server 
is free for development environments and can be used to run all the code samples. There is also a free 
tier of Azure SQL Database you can use for testing at https://aka.ms/freedb.

https://aka.ms/freedb
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You will need the AdventureWorks2016_EXT (referred to as AdventureWorks) and 
AdventureWorksDW2016_EXT (referred to as AdventureWorksDW) sample databases, which 
can be found on GitHub at https://github.com/Microsoft/sql-server-samples/
releases/tag/adventureworks. Code samples for this chapter can also be found on GitHub 
at https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-
Edition/tree/main/ch8.

Introducing XEvents
When we connect to the SQL Database Engine and run a query, it fires a series of events – a user 
logs in, a connection is established, a query begins executing, a plan is found in the cache, a plan is 
recompiled, and a query completes execution (these are just a few examples). Virtually everything 
that happens within the Database Engine is an event.

While Dynamic Management Views (DMVs) are powerful tools, they don’t always give a complete 
picture of what is going on within the engine. Most DMVs provide a snapshot in time, a picture of 
what is going on the moment they are queried. They may have some history that goes back to the last 
time the server was restarted, but even then, the information is typically cumulative; they can’t tell us 
what the server looked like a few minutes before, and they can’t tell us the events that led up to the 
current state. This is where tracing comes in. Tracing allows us to capture all the occurrences of one 
or more events on the server over a period of time, and store that data in a target location, typically 
a file on disk, for later analysis.

The XEvents engine provides a mechanism to consume events, collect related data, and direct them to 
a target for later analysis. The events themselves are defined at various points in the Database Engine 
code that are significant for some reason.

Using XEvents to trace these significant database events can give you a much greater level of detail 
than DMVs, but the cost to the server is higher. While the XEvents engine is relatively lightweight 
compared to other tracing mechanisms such as SQL Trace, it still generates overhead on the server 
and should only be used when this level of detail is required.

There are a few terms that are important to understand before we begin creating XEvent traces:

• A package is a container for a group of XEvents objects (events, actions, filters, etc.) that are 
related in some way. There are three packages in the SQL Database Engine – package0 (the 
default package), sqlserver, and sqlos.

• An event is a point of interest in the SQL Database Engine code. When an event fires, it means 
that the code in question was reached, and any information that is relevant to that event is 
captured. There are hundreds of events in the SQL Database Engine, far too many to list here, 
but we will cover some T-SQL performance-related events in this chapter and a few of the 
remaining chapters in the book.

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch8
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch8
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• A channel is a categorization of events by intended audience. There are four channels in the 
SQL Database Engine:

 � Admin – General events that are targeted to administrators, such as cpu_threshold_
exceeded and xml_deadlock_report.

 � Operational – Events used to diagnose a problem, such as blocked_process_report 
and server_memory_change.

 � Analytic – Events that are used in performance investigations, such as sql_batch_
completed and rpc_completed.

 � Debug – Events that are used for deep troubleshooting and debugging such as inaccurate_
cardinality_estimate. These events are generally reserved for use when working 
with Microsoft Support. They can be especially expensive to consume and should be used 
with caution.

• A category (also known as a keyword) is a finer-grain categorization used to identify events 
that pertain to a specific component or area of the Database Engine.

• A target is where the event output is directed. The SQL Database Engine supports six targets:

 � Event file – A file on disk. This is the most common, and the one we will use most often 
when creating XEvent traces.

 � Ring buffer – This is a circular in-memory buffer, meaning when the buffer is full, the oldest 
events are overwritten.

 � Event counter – This target simply counts the occurrences of an event, rather than capturing 
the data for the event.

 � Histogram – This is like the event counter target in that it counts occurrences, but the 
histogram target allows us to sort events into buckets based on data available in the event. 
This is useful for something like the wait_info event where we might want to count the 
number of waits by the wait_type event field.

 � Event pairing – This target allows us to pair events such as login and logout so that we can 
identify events that don’t occur as a matched set.

 � Event Tracing for Windows (ETW) – ETW is a common framework that is used to correlate 
traces across applications running on Windows or with the operating system itself.
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• An action is a response to an event firing. Typically, this is additional data that we want to 
collect that’s not a part of the event data itself.

• A session is the definition of the XEvent collection that we want to perform. In a session, we 
define the events we want to collect, the target, the actions, and any predicates we might want 
to apply to filter the events that are captured.

• 

Figure 8.1: Hierarchy of XEvents objects

Now that we’ve got our terms defined, let’s look at an example of how we can use XEvents to analyze 
database activity. Assume that a group within our company is about to release a new application that 
they want us to validate. The developers have used some sort of database code generator, so there are 
no stored procedures in the database for us to review. To get an idea of the queries that the application 
generates and the performance of those queries, we want to trace all the query activity against the 
server while the application is being tested in pre-production.
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For this example, we’ll use SQL Server Management Studio (SSMS) to create and analyze an XEvent 
session. To get started, expand the Extended Events section under the Management folder in Object 
Explorer. Right-click on Sessions and choose New Session…, as shown in the following screenshot:

Figure 8.2: SSMS Object Explorer window showing the Extended Events > Sessions context window

In the New Session window, type in a name for our session, as shown in the following screenshot:
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Figure 8.3: SSMS XEvents New Session window

Click on the Events page to add events, and then optionally add actions and filter predicates. Since 
we want to capture all the queries that are executing against the server, we’ll need two events at a 
minimum: rpc_completed and sql_batch_completed. RPC stands for Remote Procedure 
Call. When an application executes a stored procedure using a procedure object, it comes through as 
an RPC. This is also the event we would see if we ran a query via sp_executesql, or if we built a 
parameterized query from client code using a database connectivity library such as Open Database 
Connectivity (ODBC). If we send an ad hoc query to the server using EXECUTE, or by sending a 
text query string, the query will be a SQL batch rather than an RPC. There are events for both starting 
and completing a batch or an RPC, but if all we want to know are the queries that are executing and 
the performance metrics for those queries, the completed events are enough.

In the following screenshot, we are typing completed into the search box to find the desired events:
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Figure 8.4: SSMS XEvents New Session window showing the Events selection page

In this screenshot, we can see the following:

1. The search box used to locate events that contain the search term in the name – this is where 
we typed completed.

2. The name and description of the selected event.

3. The event fields that the selected event collects by default, including a description of each field.

After we select the events we want, we then click the right arrow to add them to the session. Once we 
have added all the events, we can click the Configure button to add any actions and filter predicates 
that we might want.

In the event configuration window, we can add any additional fields that we’d like to collect (actions) 
when the event fires. Since we are not familiar with the applications working on the server, it might be 
worthwhile to collect client_app_name so we can see the various applications that are running 
queries against the server. Each event is configured separately, so if we want to collect the same 
actions for all the events, we need to select all the events in the Selected events box, as shown in the 
following screenshot:
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Figure 8.5: SSMS XEvents New Session window showing the Events configuration page

In most cases, the event fields that are part of the event are enough to provide the data needed for 
analysis. Try to avoid adding a large number of actions if possible. Gathering this data is extra work 
that must be done for each event whenever it fires, so adding too many actions can cause extra 
overhead on the server.

Once we have added the desired actions, click the Filter (Predicate) tab to add any predicates. This 
allows us to filter the events that will be passed to the target. While filtering out events can keep the size 
of our target down, it does not reduce the overhead of the session as each event must be processed to 
apply the filter. In this case, we’re only interested in the queries that are coming from the application, 
not system sessions. To keep system sessions out of our trace, we can add a filter to both events to 
capture only events where is_system = 0. Again, the events are configured separately, so we can 
apply different filters to each event. In this case, we want the same filter for both so we will select both 
events, as shown in the following screenshot:
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Figure 8.6: SSMS XEvents New Session window showing the Events filter configuration page

As we can see here, we’ve added our filter to both events. The lightning bolt column indicates actions, 
and the funnel column indicates filters. Each event has one action configured and a filter applied.

At this point, we could click OK and start the session, but then the only way to view the events would 
be to watch the session live in real time. This wouldn’t allow us to do much analysis of the data, so 
we want to add a target to the session before we create it. We will add a file target so that we can save 
the event data and then analyze it on another server later. To do this, click the Data Storage page in 
the Select a page window, then click Click here to add a target, and finally, choose event_file 
from the target Type drop-down list. Once we choose event_file, several configurable properties 
appear below the Targets window. We can choose the file name and location, maximum size, whether 
a new file should be created when the file is full (file rollover), and the maximum number of files. 
In this case, we will keep the default values and the files will be created in the default log directory 
for SQL Server, for example, C:\Program Files\Microsoft SQL Server\MSSQL14.
SQL2017\MSSQL\Log. This is shown in the following screenshot:
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Figure 8.7: SSMS XEvents New Session window showing the Data Storage page

With a maximum file size of 1 GB and a maximum number of 5 files, we will retain up to 5 GB of 
event data. Once the maximum of five files is reached, if the trace is still running, the oldest trace file 
will be removed when a new file is created to maintain the maximum of five files.

Note
You can use an event file target in Azure SQL Database by creating a storage container in Azure 
and creating a database-scoped credential to allow the SQL Database Engine to connect to the 
storage container. Specific instructions for creating XEvent sessions in Azure SQL Database 
can be found at https://aka.ms/AzureSQLDBXEvents.

As we can see from the previous screenshot, all the required elements have been configured so the 
session is marked as Ready and will be created once we click OK. Before we do that, it’s worth clicking 
the Script button so we can see what the equivalent T-SQL is to create this session. Using T-SQL to 
configure a session is another option that allows us to save the definition of the session for use on 
other servers. The following code block shows the T-SQL script that will create this event session:

CREATE EVENT SESSION [NewApplicationQueryTrace] ON SERVER
ADD EVENT sqlserver.rpc_completed(

https://aka.ms/AzureSQLDBXEvents
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    ACTION(sqlserver.client_app_name)
    WHERE ([sqlserver].[is_system]=(0))),
ADD EVENT sqlserver.sql_batch_completed(
    ACTION(sqlserver.client_app_name)
    WHERE ([sqlserver].[is_system]=(0)))
ADD TARGET package0.event_file(SET 
filename=N'NewApplicationQueryTrace')
GO

At this point, we can either run the script or click OK on the New Session window to create the 
session. Since we did not check the Start the event session immediately after session creation box 
when we configured the event session, we’ll now need to manually start and stop it once we’re ready 
to test the application. Again, we can do this either via T-SQL or through SSMS. From SSMS, find the 
session in the Management | Extended Events | Sessions folder, right-click, and choose Start Session, 
as shown in the following screenshot:

 

Figure 8.8: SSMS Object Explorer window showing the Extended Events | Sessions context window

The following script will start the session via T-SQL:

ALTER EVENT SESSION NewApplicationQueryTrace ON SERVER
STATE = start;
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Once the session has started, we can instruct the testing team to begin testing the application. Once the 
team has notified us that they have completed their test, we can stop the session in a similar manner; 
right-click on the session and click Stop Session or run the following T-SQL script:

ALTER EVENT SESSION NewApplicationQueryTrace ON SERVER
STATE = stop;

At this point, we are ready to do some analysis of the data collected. Expand the NewApplicationQueryTrace 
session and there should be a single target, package0.event_file. Right-click on this file and click View 
Target Data…, as shown in the following screenshot:

 

Figure 8.9: SSMS Object Explorer window showing the Extended Events | Sessions 

| NewApplicationQueryTrace | package0.event_file context window

This opens the event file as a new tab in SSMS. The tab has a summary view at the top that shows the 
list of events ordered by their timestamp. Clicking any of the events in the summary view displays the 
details of that event in the Details tab below. By default, only the name (event name) and timestamp 
columns are displayed in the summary view, but you can right-click on any of the fields in the Details 
tab and click Show Column in Table to display the field as a column in the summary view above. 
This is all shown in the following screenshot:
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Figure 8.10: SSMS event_file tab showing both summary and Details windows 

along with the context menu for the cpu_time event field

Once you have the desired fields displayed, you can use either the Extended Events menu or the 
toolbar to filter, group, aggregate, and search for data within the XEvent results, as shown in the 
following screenshot:
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Figure 8.11: Extended Events menu and toolbar in SSMS

In the preceding screenshot, we can see the following:

1. The Extended Events menu that appears when an XEvent data viewer tab is opened.

2. The XEvents toolbar that appears when an XEvent data viewer tab is opened.

3. Additional fields that were added from the Details tab.

Tip
Depending on the screen resolution and the width of the SSMS window, we may or may not 
be able to see the entirety of the XEvents toolbar. If only one or two buttons are visible, we can 
use the mouse to pull the toolbar down to a new line so that the entire bar is visible.

While SSMS has a rich set of features that allows you to analyze XEvents data within the UI, when 
there are many events or we need to do more extensive analysis on the trace as a whole, it may be 
easier and more efficient to use another tool to do the analysis for us. In the Analyzing traces with 
RML Utilities section later in this chapter, we will introduce such a tool.
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In this section, we have done a very high-level introduction to tracing with XEvents. Many of the 
scenarios we have described throughout the book can be detected and analyzed by collecting events 
such as query_post_execution_showplan to retrieve an actual execution plan, statement_
recompile to detect statements that are recompiling frequently, blocked_process_report 
to detect blocking, and many, many more. We will cover a few more events in the remainder of the 
book, but a great way to get started is to open the New Session window in SSMS and begin browsing 
the available events along with their descriptions, to get an idea of the breadth of information that 
can be collected using this method.

Getting up and running with XEvent Profiler
Those of us who have been working with SQL Server for some time are likely to have experience with 
SQL Server Profiler. Profiler is a tool that has been around since the early versions of SQL Server and 
leverages the SQL Trace infrastructure to provide event-based monitoring of SQL Server. While it 
has been deprecated since SQL Server 2012, many users still prefer it over XEvents due to its ease of 
use, familiarity, and the rich set of tools that have been built over the years to capture, analyze, and 
replay trace data.

While SQL Server Profiler is still available in the product, its use has declined over the years as XEvents 
gained feature parity. Starting with SQL Server 2012, all the events that can be captured with Profiler 
can also be captured with XEvents, and with less overhead on the server. In fact, XEvents have a much 
wider range of events than Profiler and a rich set of actions that can be captured along with the events 
to provide much more detail than Profiler. Also, XEvents have more flexibility in configuration with 
the ability to apply filters at the event level, more complex targets, and the ability to support multiple 
targets in a single session.

Given that XEvents are a more powerful and lighter-weight way to monitor SQL Server, why are 
users still using SQL Server Profiler? The answer is most often either ease of use or lack of knowledge 
about XEvents. Since Profiler has been available for much longer, the tools that go along with it have 
been as well, so users have become familiar with them. The good news is that most of these tools now 
support XEvents as well, so we can continue to use all the tools we are familiar with, but still leverage 
the power and performance of XEvents. In the last few sections of this chapter, we will discuss some 
of the complementary tools that help us work with XEvents to profile our applications and servers.

One of the benefits of SQL Server Profiler was that it was very easy to get a trace going quickly. With 
all its built-in templates, we can open the tool, click Start, and we’re up and running. This is very 
handy if there’s an ongoing problem that we need to diagnose quickly.

All the templates that were available in Profiler are available in XEvents, and we can access them from 
the New Session window, as shown in the following screenshot:
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Figure 8.12: SSMS XEvents New Session window showing the Profiler Equivalents templates

The only problem with setting up an XEvent session is that it requires a few more steps than creating a 
live Profiler trace. Once we add the template, we then need to check the box for Start the event session 
immediately after session creation and Watch live data on screen as it is captured or add a target. 
Once the session is running, only the name and timestamp fields will be visible in the viewer, so 
we’ll need to select the events and add any additional fields we want to view. This can take quite a bit 
of time, so if we’re trying to catch something quickly, by the time we get this set up, we could miss it.

By leveraging the XEvent Profiler in SSMS, with a few clicks, we can be up and running with a live 
XEvent trace that gives us a similar experience to SQL Server Profiler. At the bottom of Object Explorer 
in SSMS, we’ll see a folder called XEvent Profiler. Expanding this folder will show us two options 
for traces – Standard and TSQL – which map to the Profiler templates with the same names. Simply 
right-click the desired template and click Launch Session, as shown in the following screenshot:
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Figure 8.13: SSMS Object Explorer window with the XEvent Profiler | Standard context menu

This will start up the session using the selected template, open a live data XEvent viewer that contains the 
same columns we would see in Profiler, and start displaying events, as shown in the following screenshot:

Figure 8.14: Sample results from a Standard XEvent Profiler trace

In short, XEvent Profiler gives us a quick and easy way to see what’s happening on a server in real 
time, with less overhead than SQL Server Profiler.
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Remote collection with SQL LogScout
While configuring an XEvent session is simple enough when you have access to the server, if you 
find yourself in a situation where you need to analyze server or application performance remotely, 
XEvents can be a challenge. As we discussed in the Introducing XEvents section, we can save the XEvent 
session as a script file and send it to someone to run, but to analyze the data, we’ll need a file target, 
and configuring one requires knowledge of the disk layout of the system. Also, we would need to 
ensure that the person we send the script to has at least basic SQL Database Engine knowledge such 
as how to open, edit, and execute a T-SQL script along with the rights to create an XEvent session. 
If the person who has access to the server is not a database professional, this might be a challenge.

This is the type of troubleshooting that Microsoft Support must do every day. To make the job easier, 
they created a tool called SQL LogScout, which is available to the public on GitHub. If you open a 
case with Microsoft Support, you may be asked to download and run this tool, but it’s also a useful 
tool to use for your own troubleshooting. You can find everything you need to get started with SQL 
LogScout at https://aka.ms/sqllogscout, but we’ll cover some of the basics here.

Note
SQL LogScout is specifically designed to collect data from a server (virtual or physical) hosting 
one or more SQL Server instances, so this section applies to SQL Server only. You can collect 
similar data from Azure SQL Database using the built-in diagnostics; learn more at https://
aka.ms/AzureSQLDBMonitorTune.

SQL LogScout is a configurable tool that can collect various diagnostic information from SQL Server 
and from the server on which it is running (either Windows or Linux). It can be used to collect things 
such as Performance Monitor (Perfmon), DMV output, SQL error logs, Windows event logs, custom 
T-SQL scripts, and more – including XEvents. The tool is based on PowerShell and can be run from the 
command line, from PowerShell, or even with a graphical user interface (GUI). Like its predecessor, 
PSSDiag, everything it collects is written to a folder called output in the same directory it runs 
from. This folder can then be zipped and sent to Microsoft Support for analysis.

Tip
SQL LogScout can be downloaded from https://aka.ms/get-sqllogscout, but if 
you happen to be running SQL Server on an Azure VM using a SQL Server Marketplace image, 
the tool will already be available on the VM by default in the C:\SQLServerTools folder.

https://aka.ms/sqllogscout
https://aka.ms/AzureSQLDBMonitorTune
https://aka.ms/AzureSQLDBMonitorTune
https://aka.ms/get-sqllogscout
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The download for SQL LogScout consists of a .zip file that contains a bin folder with all the supporting 
files and scripts, and the main SQL_LogScout.cmd script file. These files need to be placed on 
the local machine where SQL Server is running. XEvent traces can become large depending on how 
busy the server is, so be sure you are running SQL LogScout from a folder that has several gigabytes 
of space available. It is not a good idea to put the collector on a drive that hosts SQL Server data or 
transaction log files, as we do not want to generate unnecessary I/O on these drives and potentially 
cause a performance issue on the server.

The easiest way to run the collector is to open an elevated Command Prompt and run the SQL_
LogScout command. There are several parameters that you can use, which are all documented 
in the Readme.htm file in the bin folder and at https://aka.ms/sqllogscout, but for 
our purposes, we will use the GUI to view the main options. After running the SQL_LogScout 
command, you will be asked whether you would like to use GUI mode; type Y to launch GUI mode, 
as shown in the following screenshot:

Figure 8.15: Elevated Command Prompt running the SQL LogScout script showing the GUI mode prompt

After hitting Enter, the GUI window will open on the screen, as shown here:

https://aka.ms/sqllogscout
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Figure 8.16: The SQL LogScout GUI

Let’s examine the various options that can be configured using this tool:

1. The SQL Instance dropdown is populated with the SQL Server instances found on the local 
machine. Choose the instance you wish to monitor here; you can only monitor one instance 
at a time.

2. The Scenario(s) list allows us to choose one or more troubleshooting scenarios that will enable 
various collectors in the tool. General Performance will get what is needed to troubleshoot the 
most common scenarios. Light Performance will configure a very lightweight XEvent trace, like 
the one we collected in the Introducing XEvents section of this chapter. Detailed Performance 
will configure a much heavier trace that includes the query_post_execution_showplan 
event. This gives us everything we need to troubleshoot a query performance issue, but it can 
consume a large amount of resources on the server and shouldn’t be run for more than a few 
minutes at a time.



Remote collection with SQL LogScout 283

3. On the right side of the window are two tabs that contain configuration options for the Perfmon 
and XEvent collectors. The scenario(s) chosen will determine which counters and events are 
collected, but you can use these tabs to customize the collection according to your needs.

4. Once everything is configured as desired, click the Ok button to return control to the command 
window and begin collection.

After clicking Ok, SQL LogScout will begin collecting the requested data and you will see the following 
output in the command window:

Figure 8.17: Command window showing the output generated by the SQL LogScout tool

A couple of things to note about this window are as follows:

1. If you choose the Detailed Performance collector, you will get a warning about the potential 
performance impact on the server. You must type Y to acknowledge this warning before SQL 
LogScout will continue collecting.

2. After the green line that states Please type ‘STOP’ to terminate the diagnostics collection… 
is shown, the collector is gathering data.

Once the issue has been reproduced or the required data is collected, type STOP to stop the collector. 
When the collector is stopped, some additional data will be gathered, then the script will complete, 
and the SQL LogScout command window should look like the following screenshot:
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Figure 8.18: Command window showing the output of the SQL LogScout tool after it has been stopped

Once the collector has stopped, you can then go to the location of the collector and find the folder 
named output; zip the folder and move the results to another machine for analysis or to upload to 
Microsoft Support. We can then manually review the data by opening the XEvent trace files in SSMS 
and the other various files in a text editor, or we can use a tool such as RML Utilities to automatically 
analyze the XEvent data and produce a report that we can review instead. In the next section, we 
will explore RML Utilities and see how we can use it to analyze XEvent trace files quickly and easily.

Tip
A great tool for analyzing SQL LogScout data is SQL Nexus. This is another tool created and 
maintained by Microsoft Support that can not only run and display results for RML Utilities 
but also has some great reports for other output files that SQL LogScout generates. You can 
find SQL Nexus on GitHub at https://aka.ms/SQLNexus.

https://aka.ms/SQLNexus
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Analyzing traces with RML Utilities
RML Utilities is a suite of tools that can be used to analyze and replay SQL Database Engine workloads. 
We first introduced the RML Utilities in Chapter 6, Discovering T-SQL Anti-Patterns in Depth, in the 
Avoiding unnecessary overhead with stored procedures section where we used the ostress tool to simulate 
a multithreaded workload on the server. The input to ostress can be a single query or T-SQL script, 
but ostress can also take a prepared trace file (either SQL Trace or XEvents) as input. This allows you 
to capture a workload from a production server, and then replay that workload on a test server so that 
you can experiment with various settings or performance tuning options – or even test how a new 
version of the SQL Database Engine would perform with the same workload.

Another tool that is part of RML Utilities is ReadTrace. The ReadTrace tool is used to analyze and 
prepare traces for replay via ostress, but it can also be used to do a general analysis of an XEvent trace. 
Together with its native Reporter tool, RML Utilities can be used to extract and aggregate relevant 
data from the trace, and then present it in a way that allows you to quickly zero in on poor-performing 
queries, or other potential performance issues on the server and/or with the application.

In this section, we will explore using ReadTrace and Reporter to analyze the XEvent trace we captured 
via SQL LogScout in the previous section, Remote collection with SQL LogScout.

The first thing we need to do to begin the analysis is to run the ReadTrace tool with the XEvents 
output from our SQL LogScout collection. Once we have downloaded and installed RML Utilities 
from https://aka.ms/RMLUtilities, we find some helpful shortcuts in the Start menu, as 
shown in the following screenshot:

Figure 8.19: Windows Start menu showing the RML Utilities for SQL Server program group

https://aka.ms/RMLUtilities
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ReadTrace is a command-line tool, but there is a shortcut called RML Cmd Prompt that will automatically 
open a Command Prompt in the correct location. From here, you can run the ReadTrace /? 
command to get some information about the various commands and switches that are available, as 
well as some examples of how to run the tool. We are doing a basic analysis of XEvent data for the 
purpose of performance troubleshooting, not to replay the trace, so the following sample command 
can be used:

ReadTrace -S<servername>\<instancename> -E -IC:\PSSDIAG\
output\SERVERNAME_20231008T1545148475_xevent_LogScout_
target_0_133412787193700000.xel -f -dNewApplicationPerf -T28 -T29

Let’s look at the switches used in the example:

• -S is the SQL Server that ReadTrace will connect to for the purposes of loading and aggregating 
the trace data.

• -E indicates we should connect to the server with a trusted connection (Windows authentication).

• -I<filename> is the first .xel trace file to be imported. If the trace rolled over and multiple 
files were generated, ReadTrace will automatically read all the .xel files in the same sequence.

• -f indicates that individual session-level RML files should not be created. These are required 
for replay, but not for analyzing the trace for performance.

• -d is the database name that will be created and will contain the trace analysis data once the 
process is complete.

• -T28 and -T29 are trace flags that disable validation of events collected. As long as we are 
using SQL LogScout to collect the traces, we should have the events we need for performance 
analysis, and using these trace flags can help avoid some validation errors that may prevent a 
successful import of the files.

Note
RML Utilities can be installed on any Windows machine, client, or server, but it needs to connect 
to either a local or remote SQL Server database to perform and save its analysis. Installing on 
a production server is not recommended.

Depending on the size of the trace file(s), this may take several minutes to complete. Once it is 
complete, review the output to look for any errors that may have occurred, then close the RML Cmd 
Prompt window.
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If the trace files were successfully processed, the Reporter tool will automatically open and display the 
Performance Overview report. If it does not open for some reason, or to view reports for a collection 
that was done in the past, we can open Reporter from the Start menu. When it is opened this way, 
the first screen is a configuration screen where we can enter connection information.

In the Server Name and Baseline Database fields, we enter the SQL Database Engine instance name 
and database name where we had directed the ReadTrace output, as shown in the following screenshot:

Figure 8.20: RML Utilities Reporter tool window showing the Properties tab

When we click OK, the Reporter tool will open the Performance Overview report, as shown in the 
following screenshot:
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Figure 8.21: RML Utilities Reporter tool window showing the Performance Overview report

This report gives us some overall statistics about the workload, such as the number of batches started 
and batches completed, along with resource consumption. This information is graphed over time so 
we can get an idea of the overall workload pattern. At the top, there are several hyperlinks that will 
open other more detailed reports in new tabs. This allows us to switch between the reports as we 
analyze the data.

Tip
If the links do not work, you may need to install a hotfix for the Visual Studio Report Viewer, 
which is one of RML’s dependencies. This hotfix can be found at https://support.
microsoft.com/kb/2549864.

https://support.microsoft.com/kb/2549864
https://support.microsoft.com/kb/2549864
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Exploring the various reports will give us a good picture of what was happening on the server while the 
trace was running. Covering all the reports is out of scope for this book, but one worth mentioning, 
and perhaps the most useful one, is the Top Unique Batches report. This report presents the top 
unique batches that ran during the trace, along with several metrics for each query. The following 
screenshot shows an example of this report:

Figure 8.22: RML Utilities Reporter tool window showing the Top Unique Batches report

The graphs at the top of the report show the top queries by each metric: CPU, Duration, Reads, and 
Writes. The list of queries is first sorted by CPU and assigned a number based on their position in the 
list. Query Number 1 has the highest total CPU, Query Number 2 the next, and so on.
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The other three graphs sort the list by their respective metrics using the numbers assigned based on 
the CPU ranking. As you can see in the previous screenshot, Query Number 1 had the highest total 
CPU and total duration but did not have the highest reads or writes. Also note that these metrics are 
a total across all executions of the query. The number of executions is also indicated in the graph.

Each of the queries is listed below the graphs ordered by CPU ranking, and as we can see at the bottom 
of the previous screenshot, the text of the query is a hyperlink. Clicking this hyperlink opens a detailed 
report for that query, as shown in the following screenshot:

Figure 8.23: RML Utilities Reporter tool window showing the 

Unique Batch Details report for the selected query
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This report allows us to see more detailed metrics for the query in question, including average, 
minimum, and maximum numbers for each of the various metrics, as well as the performance of the 
query graphed over the time of the collection. The Query Editor hyperlink at the top of the report 
allows us to open the query in an SSMS query editor window so we can examine the T-SQL and begin 
tuning the query using the knowledge we have gained in this book.

Tip
In the GitHub Tiger Toolbox (http://aka.ms/tigertoolbox) in the SQL Nexus 
and ReadTrace Analysis Scripts folder, we can find scripts that allow us to 
extract interesting information from the ReadTrace database that is not available through the 
default reports.

As we can see, RML Utilities provides us with a few simple tools that make the work of analyzing 
XEvent traces quick and easy. Together with SQL LogScout, we can easily gather the data we need to 
diagnose any number of T-SQL performance issues, even without direct access to the server where 
the queries are running.

Summary
In this chapter, we reviewed the Extended Events engine in the SQL Database Engine and how you 
can leverage XEvent traces to gather detailed data about query execution and performance. We also 
discussed the various free tools from Microsoft that can be used to configure, capture, and analyze 
XEvent traces quickly and easily. Together with DMVs, we now have several tools in our toolbelt that 
can be used to diagnose and troubleshoot the various issues covered throughout the book.

In the next chapter, we will review yet another tool that is part of SQL Server designed to help diagnose 
query performance issues – using SSMS for the analysis of query plans.

http://aka.ms/tigertoolbox
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Comparative Analysis of  

Query Plans

In Chapter 3, Exploring Query Execution Plans, we discussed how to access query plans, how to navigate 
a query plan, and what properties we can look for when analyzing query performance issues. SQL 
Server Management Studio (SSMS) has rich UI features to make query plan analysis easier. This 
chapter will introduce the query plan comparison and query plan analysis functionalities in SSMS 
to help streamline the process of troubleshooting certain classes of issues with query performance.

In this chapter, we will cover the following topics:

• Query plan comparison

• Query plan analysis

Technical requirements
The examples used in this chapter are designed for use on SQL Server 2022 and Azure SQL Database, 
but they should work on any version of SQL Server that is 2012 or later. The Developer edition of SQL 
Server is free for dev environments and can be used to run all the code samples. There is also a free 
tier of Azure SQL Database you can use for testing at https://aka.ms/freedb.

https://aka.ms/freedb
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You will need the sample databases AdventureWorks2016_EXT (referred to as AdventureWorks) 
and AdventureWorksDW2016_EXT (referred to as AdventureWorksDW), which can be found 
on GitHub at https://github.com/Microsoft/sql-server-samples/releases/
tag/adventureworks. Code samples for this chapter can also be found on GitHub at https://
github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/
main/ch9.

Query plan comparison
Throughout their careers, database professionals are likely to encounter some of the following scenarios:

• Troubleshooting point-in-time performance regressions. In other words, the scenario where 
a query was meeting performance expectations, but after an incident it started to slow down. 
Finding the root cause may uncover opportunities to tune queries that prevent regressions 
from reoccurring.

• Determine what the impact of rewriting a T-SQL query is. For example, when tuning a query, 
it may be required to rewrite it in part or as a whole. Does it actually perform better?

• Determine the impact of changing or adding a schema object such as an index.

For all these scenarios, typically we must compare query plans to determine what differences may help 
explain what changed between the plans. For example, what are the differences between plan A – a 
plan from a query that has regressed in the production system – and plan B – a plan from the same 
query that was tuned in a development (dev) machine using a copy of the same database?

In the following example, we captured the plan for a query that was not performing as expected in 
production – when compared to dev tests. The plan was captured using one of the methods described 
in the Exploring query plan cache DMVs section of Chapter 7, Building Diagnostic Queries Using DMVs 
and DMFs. That query plan was saved as a .sqlplan file, and we can open it with SSMS in the dev 
environment. The following screenshot shows the captured query plan:

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch9
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch9
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch9


Technical requirements 295

 

Figure 9.1: Query execution plan as captured from a plan cache DMV

In the following screenshot, we can see more details of the queries inside the stored procedure:

 

Figure 9.2: Close-up of the query section of the execution plan shown in Figure 9.1
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The stored procedure in the preceding query plan is executing in the AdventureWorks sample 
database, and is created as in the following example:

CREATE OR ALTER PROCEDURE usp_GetSalesOrderDetailToDate @FromDate 
DATETIME
AS
SET NOCOUNT ON;
SELECT TOP 1500 h.SalesOrderID, h.RevisionNumber, h.OrderDate,
     h.OnlineOrderFlag, h.PurchaseOrderNumber, h.DueDate,
     h.ShipDate, h.Status, h.AccountNumber, h.CustomerID
FROM Sales.SalesOrderHeader AS h
INNER JOIN Sales.SalesOrderDetail AS d ON h.SalesOrderID = 
d.SalesOrderID
WHERE h.OrderDate >= @FromDate;
SELECT TOP 100 h.SalesOrderID, h.RevisionNumber, h.OrderDate,
     h.OnlineOrderFlag, h.PurchaseOrderNumber, h.DueDate,
     h.ShipDate, h.Status, h.AccountNumber, h.CustomerID
FROM Sales.SalesOrderHeader AS h
INNER JOIN Sales.SalesOrderDetail AS d ON h.SalesOrderID = 
d.SalesOrderID
WHERE h.TotalDue > 1000;

Only the first query in the stored procedure depends on parameters. We can see the parameter with 
which this stored procedure was compiled in the Parameter List section of the plan’s properties. This 
provides us with our first hypothesis to test: is this issue related to parameter sniffing? And if so, would 
updating statistics provide a different plan?

Figure 9.3: Properties window of the example execution plan showing Parameter List

Note
We discussed the topic of parameter sniffing in the The importance of parameters section in 
Chapter 1, Understanding Query Processing, and Query plan properties of interest in Chapter 3, 
Exploring Query Execution Plans.
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In a production-like dev machine, we can execute the stored procedure with the compiled value 
'2014-3-28 00:00:00' using the following T-SQL command:

EXECUTE usp_GetSalesOrderDetailToDate '2014-3-28 00:00:00'

This yields the following query execution plan:

Figure 9.4: Execution plan for the example stored procedure

We want to compare this query execution plan (an actual execution plan) with the query plan from 
production (an estimated execution plan). We need to determine whether this was a valid execution 
as it relates to production. Are the plans in both environments being compiled in the same way? The 
plan shapes are similar, but we need to have more evidence than that.

In the past, we would need two monitors for this comparison, but not in more recent versions of SSMS. 
To compare the plan we just got with the previously saved .sqlplan file, right-click anywhere in 
the query execution plan, and the following menu pops up:
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Figure 9.5: Query execution plan with context menu showing the Compare Showplan option

Clicking the Compare Showplan menu option opens an Open file dialog, where we can search for 
and open the required .sqlplan file. In turn, this opens the new Showplan Comparison tab:

 

Figure 9.6: SSMS Showplan Comparison tab
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Tip
The SSMS query plan comparison feature can open .sqlplan files from any version of the 
SQL Database Engine, starting with SQL Server 2008. Also, this feature can be used completely 
disconnected from any instance of the SQL Database Engine, when comparing two previously 
saved .sqlplan files.

What are the components of query plan comparison we see on the screen? We will go through each one.

First, there’s the split window with the compared plans. At the top, we have the query execution plan 
(the actual execution plan), identified as Execution plan, and at the bottom, we have the ProdPlan.
sqlplan file that had been previously saved (the estimated execution plan).

Figure 9.7: Split execution plan window showing the current query 

execution plan along with the saved plan from disk
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Normally, when two query execution plans are compared, the same region on each plan is highlighted 
with the same color and outline pattern. When we click on one colored region in any compared plan, 
the UI will center the other plan on the matching region. In this case, we can’t see that behavior just 
yet. We’ll see why further ahead.

Also, depending on whether we use a tall/vertical monitor instead of a wide/horizontal monitor, right-
clicking any area of a plan shows the following menu, where the split comparison tab can be toggled 
from the default top/bottom to left/right:

Figure 9.8: Query execution plan context menu showing the Toggle Splitter Orientation 

option to toggle between top/bottom and left/right comparison windows

Second, the Showplan Analysis window will open in the scope of the Multi Statement tab. Here, 
we can select which statement pair to compare. By default, each plan opens in the scope of Query 1. 
The default nomenclature of the plans is Top Plan and Bottom Plan, signifying their position in the 
comparison tab. If the comparison window orientation has been toggled from the default, then this 
will be displayed as Left Plan and Right Plan.

 

Figure 9.9: Showplan Analysis window showing the Multi Statement tab
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The Statement Options tab allows us to configure the plan comparison experience, such as whether 
to ignore the database names when comparing plans, which is useful when comparing plans between 
a production environment and dev, where the dev database has a different name, for example, if 
the production database is called AdventureWorks, and AdventureWorksDev in the dev 
environment, but the schema of both databases is the same.

Third, the Properties comparison window opens in the scope of the root node for the compared 
statements. The nomenclature of the plans here is also Top Plan and Bottom Plan, or Left Plan and 
Right Plan if the comparison window orientation has been toggled from the default. Each property on 
either side that is either not matched to a counterpart on the other side, or whose existing counterpart 
has a different value, will show the mathematical symbol for difference (≠). Only top-level and first-
level nested properties are compared. Beyond the first nesting level, properties are not compared and 
must be manually expanded and compared.

 

Figure 9.10: Query execution plan properties window showing both 

Top Plan and Bottom Plan from the plan comparison
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Notice that in the preceding screenshot, hardly any property is actually comparable because the starting 
point for any plan comparison – the root node of the first query in both plans – is different in both 
plans. In the top plan, the root node is a SELECT statement, and in the bottom plan, the root node 
is an EXECUTE PROC statement. Why?

That is because the query plan captured in production is a cached plan from a stored procedure and 
as such it has extra elements, as compared to the actual execution plan for the stored procedure we 
got from the dev environment.

Take a look at the following screenshot: the top plan shows the two query statements separately as 
Query 1 and Query 2, whereas the bottom plan has both query statements consolidated under Query 
2 and the execute command under Query 1. The latter is what we see for cached plans from stored 
procedures or user-defined functions.

Figure 9.11: Comparison of execution plans when captured from a live 

exeuction versus being saved from a cached plan DMV
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To compare the correct statements – in this case, comparing the estimated plan and the actual plan 
for a stored procedure – we need to use a multi-step process. First, we need to go back to the Multi 
Statement tab and select Query 1 from the top plan, and Query 2 from the bottom plan, as seen in 
the following screenshot:

Figure 9.12: Showplan Analysis window showing the Multi Statement 

tab with the desired statement comparison chosen

This resets the comparison window to highlight similar areas in both plans, so we can start comparing 
what has happened in the same context for both plans. Only data processing operators such as seeks, 
scans, and joins are accounted for when searching for similar regions. Also, the same table must be 
used in the matching region of the plan.

In the following screenshot, we can see the matched regions between the compared plans. In the 
top plan, we selected Query 1 to compare. In the bottom plan, we selected Query 2, which actually 
contains two separate queries, and thus has two matching regions. We know these two regions don’t 
belong to the same query in this example – only one relates to the first query in the stored procedure 
– but they both have a join with two inputs on the same tables (remember, plan comparison ignores 
Compute Scalar), making them similar enough to be matched.



Comparative Analysis of Query Plans304

Figure 9.13: Query plan comparison showing highlighting of related regions
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If we wanted to compare the second queries in each batch, we would need to return to the Multi 
Statement tab and choose Query 2 from the top plan and Query 2 again from the bottom plan.

We’ll focus on comparing the highlighted regions of both plans, as shown in the previous screenshot. 
But before doing that, we want to know whether there are any compilation differences between 
production and dev that can lead us down the wrong investigation path. To do that, we compare the 
root nodes (SELECT) on both plans. Click on the root node (SELECT) of the Top Plan, and manually 
click on the corresponding SELECT statement of the Bottom Plan, as seen in the previous screenshot.

Looking at the following Properties window, we can compare properties that can help answer our 
question: are we looking at equivalent query plans?

Figure 9.14: Properties window showing relevant regions highlighted for both the top and bottom plans



Comparative Analysis of Query Plans306

Both plans have the same CardinalityEstimationModelVersion (130) and Estimated Number of Rows. 
The TraceFlags property is signaled as being different between plans. Expanding them reveals that’s 
not the case, it’s just that the top plan is an actual execution plan, and thus it has both IsCompileTime 
| True and IsCompileTime | False, whereas the bottom plan – a cached plan or estimated execution 
plan – only has IsCompileTime | True. But the actual trace flags are the same on both environments 
(showing only trace flag 7412 in the preceding screenshot) and none impact the Query Optimizer.

Tip
Refer to the Query plan properties of interest section of Chapter 3, Exploring Query Execution 
Plans, for a run-down of most of the relevant showplan properties.

More importantly, the QueryHash and QueryPlanHash values are the same. This means that the 
plan we are analyzing in dev is equivalent to production, which helps attest that the dev environment 
is good enough to dig deeper into the standing hypothesis: are we experiencing a parameter sniffing 
issue? And are statistics outdated?

A quick look in the OptimizerStatsUsage property in both plans shows that both plans used the 
same set of statistics objects (only three statistics are expanded in the following screenshot) and that 
no statistics require updating – notice the ModificationCount value is 0 and SamplingPercent is 
100 – so in principle, we can rule out outdated statistics as a problem.
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Figure 9.15: Properties window showing the OptimizerStatsUsage 

property highlighted in both the top and bottom plans
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Now we are confident that whatever investigations and recommendations we do in the dev environment 
are likely to be applicable to production. Looking back at the actual execution plan, it’s evident that 
the clustered index scan on the SalesOrderDetail table has skewed estimations – it returned 103,128 
of 7,915 rows, which is over 1,300 percent of what had been estimated.

Figure 9.16: Query plan comparison highlighting the SalesOrderDetail clustered index scan operator

This may very well be a parameter sniffing issue. So, next, we clear the plans from the plan cache, and 
try with different parameters, as seen in the following examples:

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;
GO
EXEC usp_GetSalesOrderDetailToDate '2014-5-28 00:00:00'
GO
ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;
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GO
EXEC usp_GetSalesOrderDetailToDate '2013-5-28 00:00:00'
GO

These examples yield the following query execution plans, which do not differ from the query plan 
we saved from the production environment, nor from the query execution plan produced for the 
first compiled value:

Figure 9.17: Query plan comparison for the example procedure 

after recompiling to check for parameter sniffing

It is not parameter sniffing. But the answer lies somewhere in the query plan. Focus on the overly 
skewed clustered index scan and its properties. As seen in the following screenshot, the bottom plan 
(production) has a severe skew between the Estimated Number of Rows and the Estimated Number 
of Rows to be Read (7,915 of 121,317 rows) values. The top plan (dev) has the same estimation skews, 
but these are not confirmed by runtime data: comparing Actual Number of Rows with Number of 
Rows Read shows these are equal. We have seen this pattern in the Understanding predicate SARGability 
section of Chapter 4, Indexing for T-SQL Performance. Could this be a predicate pushdown-related 
problem? Notice there aren’t seek predicate properties in the clustered index scan, so there isn’t any 
predicate involved here.
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Figure 9.18: Properties window showing various estimated row properties 

highlighted, including EstimateRowsWithoutRowGoal

However, notice another property: EstimateRowsWithoutRowGoal. We discussed this property in 
the Query plan properties of interest section of Chapter 3, Exploring Query Execution Plans.

EstimateRowsWithoutRowGoal shows that if a row goal wasn’t used, the Query Optimizer would 
account for 103,128 rows to be processed rather than just 7,915. That would be much closer to the 
121,317 rows that were actually read.
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Note
When a query uses a TOP, IN, or EXISTS clause, the FAST query hint, or a SET ROWCOUNT 
statement, this causes the Query Optimizer to search for a query plan that will quickly return 
a smaller number of rows – this is called row goal optimization.

When the row goal is very low and a join is required, the Query Optimizer will use nested loop joins 
because its initial cost (the cost to produce the first row) is relatively low. However, when the row goal 
is larger, other types of joins might be preferred. For example, a Hash Match join is usually a good 
choice when the SQL Database Engine needs to join larger inputs. Although it has a higher initial 
cost because it must build a hash table before any rows can be returned, once the hash table is built, 
the Hash Match join is generally cheaper. But if the two join inputs are sorted on their join predicate, 
a Merge join is usually the cheapest.

We can disable the Query Optimizer row goal technique and see whether that has a positive effect. Starting 
with SQL Server 2016 SP1, this can be done at the query level using the DISABLE_OPTIMIZER_
ROWGOAL use hint, or trace flag 4138 for earlier versions.

Tip
Starting with SQL Server 2022, the Cardinality Estimation (CE) Feedback feature will 
automatically evaluate whether disabling the Query Optimizer row goal technique will have a 
positive effect on the given query. We touched on the CE Feedback feature in the Understanding 
the query optimization workflow section of Chapter 2, Mechanics of the Query Optimizer.

Before we change the stored procedure to add the hint, save the actual execution plan from the 
stored procedure execution in the dev environment to a .sqlplan file. We will need it to do a final 
comparison. Then change the stored procedure, as seen in the following example:

ALTER PROCEDURE usp_GetSalesOrderDetailToDate @FromDate DATETIME
AS
SET NOCOUNT ON;
SELECT TOP 1500 h.SalesOrderID, h.RevisionNumber, h.OrderDate,
     h.OnlineOrderFlag, h.PurchaseOrderNumber, h.DueDate,
     h.ShipDate, h.Status, h.AccountNumber, h.CustomerID
FROM Sales.SalesOrderHeader AS h
INNER JOIN Sales.SalesOrderDetail AS d ON h.SalesOrderID = 
d.SalesOrderID
WHERE h.OrderDate >= @FromDate
OPTION (USE HINT('DISABLE_OPTIMIZER_ROWGOAL'));
SELECT TOP 100 h.SalesOrderID, h.RevisionNumber, h.OrderDate,
     h.OnlineOrderFlag, h.PurchaseOrderNumber, h.DueDate,
     h.ShipDate, h.Status, h.AccountNumber, h.CustomerID
FROM Sales.SalesOrderHeader AS h



Comparative Analysis of Query Plans312

INNER JOIN Sales.SalesOrderDetail AS d ON h.SalesOrderID = 
d.SalesOrderID
WHERE h.TotalDue > 1000;

Then we execute the stored procedure again as in the following example:

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;
GO
EXECUTE usp_GetSalesOrderDetailToDate '2014-3-28 00:00:00';

We now need to compare the resulting query execution plan with the DevPlan.sqlplan file we 
saved earlier. The Plan Comparison window opens, as seen in the following screenshot, in the scope 
of Query 1 and the first occurrence of a similar region or operator.

 

Figure 9.19: Query plan comparison with the new stored procedure 

showing both similarities and differences highlighted
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Note that for this comparison, we also want to highlight differences, not only the default similar regions 
or operators. For that purpose, we can go to the Statement Options tab in the Showplan Analysis 
window and check the Highlight operators not matching similar segments box, after which the 
operators that don’t match between plans are highlighted in yellow.

Figure 9.20: Showplan Analysis Statement Options window showing the 

Highlight operators not matching similar segments checkbox checked

Back to the previous Plan Comparison window, we see the execution plans for Query 1 are different. 
The join type between both tables has changed from a Merge join to a Hash Match join, which executes 
much faster (9 ms instead of 28 ms). Hash Matches are usually a good choice when the SQL Database 
Engine needs to join larger inputs, which, now that we have removed the row goal optimization, we 
can verify here.

The only similar region between plans is the clustered index scan on the SalesOrderHeader table, 
but where before it was the outer table for a Merge join, it’s now the Build table for the Hash Match 
join. While this operator returns fewer rows in the bottom plan (the original query) than in the top 
plan (the hinted query), it also takes longer to execute (10 ms instead of 3 ms). This can be explained 
by looking at the compared properties of both operators in the following screenshot:
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Figure 9.21: Properties window showing relevant properties highlighted in both the top and bottom plans

In the preceding screenshot, we can see the following:

• The Actual Number of Rows value after the [h].[OrderDate]>=[@FromDate] predicate 
is applied changed from 284 in the bottom plan to 5,963 in the top plan

• The Number of Rows Read (before the predicate is applied) value changed from 25,786 in the 
bottom plan to 31,465 in the top plan (this is the full TableCardinality)
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• Yet we see in Actual Time Statistics that the scan is faster in the top plan. Why?

• Both the Actual Number of Rows and Estimated Number of Rows values in the top plan 
match the EstimateRowsWithoutRowGoal value in the bottom plan. This was expected when 
we purposefully hinted at the row goal optimization.

The scan of the bottom plan is slower because it has the Ordered property set to True, which 
indicates that the scan needs to enforce an explicit order to guarantee that the Merge join has 
the required sorted input. At the Storage Engine level, this means enforcing that all rows are 
read in their logical order, following a linked list of index leaf level pages ordered by index key 
order – rather than their physical order, the page allocation order.

The scan of the top plan has the Ordered property set to False, which indicates the rows are 
read by following the index leaf level pages physical order. This explains that while the scan 
in the top plan reads more rows than the bottom plan, it is faster by reading all pages in order 
of physical allocation.

And what about the other index that is now identified as a difference? The clustered index scan on 
the SalesOrderDetail table was replaced by a non-clustered index scan. In the following plan 
comparison screenshot, we can see the following:

• While the bottom plan (the original query) has a big underestimation of the actual number 
of rows (103,128 compared to 7,915 estimated rows), the top plan (the hinted query) has an 
overestimation (9,049 actual rows compared to121,317 estimated rows)

• However, the scan in the top plan executed in 1 ms, whereas the scan in the bottom plan 
executed in 13 ms
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Figure 9.22: Query plan comparison with the new stored procedure showing the non-

clustered index scan in the top plan versus the clustered index scan in the bottom plan

But even if the SQL Database Engine had to scan the entire non-clustered index as it did with the 
clustered index in the previous plan, it would still be faster with the new plan. Why? We can see 
information about the indexes in SalesOrderDetail using the following T-SQL query example:

SELECT t.name AS TableName, i.name AS IndexName,
     i.type_desc, p.rows, a.total_pages, a.used_pages,
     CONVERT(DECIMAL(19,2),ISNULL(a.used_pages,0))*8/1024 AS 
DataSizeMB,
     ips.index_depth, ips.avg_record_size_in_bytes
FROM sys.allocation_units AS a
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INNER JOIN sys.partitions AS p ON p.hobt_id = a.container_id AND 
a.type = 1
INNER JOIN sys.indexes AS i ON i.object_id = p.object_id
     AND i.index_id = p.index_id
INNER JOIN sys.tables AS t ON t.object_id = p.object_id
CROSS APPLY sys.dm_db_index_physical_stats (DB_ID(), p.object_id, 
i.index_id, NULL, 'SAMPLED') AS ips
WHERE t.name = 'SalesOrderDetail';

The following screenshot shows the resultset for the query example:

Figure 9.23: Results of the example metadata query showing the indexes of the SalesOrderDetail table

When compared to the clustered index, we can see that even if the SQL Database Engine had to scan 
the full non-unique, non-clustered index IX_SalesOrderDetail_ProductID, that would 
amount to 2.4 MB of I/O instead of 10 MB for a full scan of the clustered index, which would be 
consistently better. The size difference is explained by the average record size for the non-clustered 
index being 16 bytes versus 80 bytes for the clustered index. Now that we’ve learned how to use the 
plan comparison tool in SSMS to help troubleshoot query performance by comparing two plans with 
each other, let’s look at another helpful tool that can guide our query performance troubleshooting 
– the query plan analyzer.

Query plan analyzer
So far, we have had to analyze query plans by correlating information in plan and operator properties 
to create working hypotheses on how to solve query performance issues. One constant throughout all 
these troubleshooting scenarios has to do with comparing estimated rows with actual rows flowing 
through the operators in a query plan. This is because significant differences between estimated and 
actual rows usually expose cardinality estimation issues, which speak to several possible causes, 
from outdated statistics to parameter sniffing or even out-of-model constructs such as User-Defined 
Functions (UDFs) or Multi-Statement Table-Valued Functions (MSTVFs).

Depending on the query performance problem, it may not be easy to even start troubleshooting, 
especially in complex plans. This is exactly why SSMS has a plan analysis tool, and this can jump-start 
our query performance troubleshooting efforts.

In the following example, we will examine a query that was not performing as expected in production. 
Specifically, one stored procedure that’s executed many times a minute was thought to be abnormally 
slow, because the application that used it was not responding properly.



Comparative Analysis of Query Plans318

First, we tried running the stored procedure in the dev environment using sample data and couldn’t 
find any major issues with the resulting query plan, nor its performance. This must mean that whatever 
is happening can only be found in production. What is needed to proceed with troubleshooting is an 
actual execution plan, and so we used Extended Events (XEvents) to capture the query execution plan 
for the offending stored procedure using the query_post_execution_showplan XEvent – not 
an easy proposition given collecting this XEvent itself generates overhead. We will discuss several 
other ways of collecting the actual execution plan in a much more lightweight fashion in Chapter 11, 
Troubleshooting Live Queries.

The captured query execution plan is the following:

Figure 9.24: Query execution plan of the problem stored procedure

The stored procedure in the preceding query execution plan is in the AdventureWorks sample 
database, and is created as follows:

CREATE OR ALTER PROCEDURE usp_SalesTracking @UpdatedOn datetime
AS
SET NOCOUNT ON;
SELECT *
FROM Sales.SalesOrderHeader AS soh
INNER JOIN Sales.OrderTracking AS ot ON ot.SalesOrderID = soh.
SalesOrderID
WHERE ot.EventDateTime >= @UpdatedOn;
GO

With the plan open, right-click anywhere in the query execution plan, and the following menu pops up:
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Figure 9.25: Query execution plan context menu showing the Analyze Actual Execution Plan menu option

Clicking the Analyze Actual Execution Plan menu option opens a new window docked on the 
bottom – Showplan Analysis:

Figure 9.26: Scenarios tab of the Showplan Analysis window

Inside the window, there is a Scenarios tab – a placeholder for future scenarios if there’s user demand 
for them – on which we find the Inaccurate Cardinality Estimation tab.

Note
At the time of this revision, Microsoft is no longer investing in this feature in favor of the 
new CE Feedback feature introduced in SQL Server 2022. We touched on CE Feedback in the 
Understanding the query optimization workflow section of Chapter 2, Mechanics of the Query 
Optimizer. You can read more about CE Feedback at https://aka.ms/CEFeedback.

If we click on the link to the right under Finding Details, we get a popup that explains what this 
scenario is all about:

“One of the most important inputs for the Query Optimizer to choose an optimal execution plan is the 
estimated number of rows to be retrieved per operator. These estimations model the amount of data to 

https://aka.ms/CEFeedback
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be processed by the query, and therefore drive cost estimation. Changes in the estimated number of rows 
is one of the most frequent reasons for the Query Optimizer to pick different query plans.

This scenario helps you to find differences in estimated number of rows between two execution plans, 
scoped to the operators that perform similar data processing, and suggests possible causes for those 
differences, as well as possible workarounds to improve the estimates. Note that this automation may not 
identify all operators, their differences, or all possible root causes. So while the information displayed here 
is a tentative mitigation opportunity to resolve an issue identified by this scenario, it should still help in 
analyzing root causes of plan difference.”

As it suggests, it will try to find hotspots in the query execution plan that have to do with patterns of 
inaccurate cardinality estimation and two such findings are already on the left side of the window. As 
shown in the following screenshot, selecting any of the findings will center the plan on the offending 
operator – in this case, the clustered index scan:

Figure 9.27: Scenarios tab of the Showplan Analysis window showing one of the findings 

highlighted in both the analysis window and the corresponding query plan
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We should always start by analyzing findings that are related to data reading operators such as seeks 
and scans, and then move up the query plan tree to aggregates and joins. The clustered index scan 
in the plan has a 56,000 percent difference between the actual and estimated row numbers (332 
compared to 186,280). Notice the Finding Details section to the right. Two possible reasons for the 
misestimation are as follows:

• The plan analyzer found a predicate in this scan that depends on a parameter whose runtime 
value is different from the compile-time value, or that the compile-time value is NULL. This 
constitutes a case of bad parameter sniffing.

• Clicking the link at the end of the finding (the word here) opens a pop-up window with detailed 
background information about bad parameter sniffing and how to mitigate it.

Because it’s common to have misestimations based on wrong or outdated statistics, the query plan 
analyzer suggests we need to look at whatever statistics are loaded for this plan and verify whether 
they need to be updated. Again, clicking the link at the end of the finding (the word here) opens a 
pop-up window with background information.

We can start with suggestion 2 because it’s very easy to determine using an actual execution plan. On the 
plan root node (SELECT), open the properties window to analyze the OptimizerStatsUsage property. 
As seen in the following screenshot, no statistics require updating – notice the ModificationCount value 
is 0; however, several statistics related to the OrderTracking table have only 30 percent sampling. 
This may be an issue – if it’s possible to update statistics with a higher sampling ratio, especially for 
tables whose data distribution is not uniform, that is always a good choice.
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Figure 9.28: Properties window of the query plan showing the OptimizerStatsUsage property

If updating statistics with a larger sample is not doable for now (maybe the tables have millions of rows 
and updating with a larger sample could cause problems), we can move on to suggestion 1, where it 
points to bad parameter sniffing.
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Note
We discussed the topic of parameter sniffing in the The importance of parameters section in 
Chapter 1, Understanding Query Processing, and Query plan properties of interest in Chapter 3, 
Exploring Query Execution Plans.

This is also easy enough to investigate: open the properties window to analyze the Parameter List 
property. As seen in the following screenshot, the parameter with which the stored procedure was 
compiled and optimized is not the same as the parameter runtime value.

Figure 9.29: Properties window of the query plan showing the Parameter List property

This means that at its first execution, the plan was optimized for the '2011-07-31 00:00:00.000' 
data value and that the plan was cached for subsequent use.

Note
Before moving on, we save the current plan to a .sqlplan file because we may need it later 
to compare with other plans.

Executing the stored procedure with the compiled value yields the following query execution plan:

Figure 9.30: Query plan for the stored procedure when executed with the compiled value of the parameter
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A quick analysis shows that all operators have perfect estimations – the actual rows are the same as 
the estimated rows. This confirms that the currently cached plan is optimized for the first incoming 
parameter, which is an older date. But if the parameter used in the first compilation wasn’t the most 
used, but instead more recent dates are often used as parameters, the reasonable hypothesis is that 
compiling the stored procedure and executing it for the first time using a common parameter will 
yield a different plan.

We can test this using the following example, which creates a new test stored procedure that is not 
called by the application:

CREATE OR ALTER PROCEDURE usp_SalesTracking_Test @UpdatedOn datetime
AS
SET NOCOUNT ON;
SELECT *
FROM Sales.SalesOrderHeader AS soh
INNER JOIN Sales.OrderTracking AS ot ON ot.SalesOrderID = soh.
SalesOrderID
WHERE ot.EventDateTime >= @UpdatedOn;
GO
EXECUTE usp_SalesTracking_Test '2014-6-30 00:00:00'
GO

Executing the new stored procedure with the common value yields the following query execution plan:

Figure 9.31: Query plan for the test stored procedure executed with the more common parameter value

This is a very different plan that also executed faster. We can use the plan comparison feature we 
discussed in the previous section to quickly find the main differences between the plan we just got 
and the previously saved ParamSniffingInvestigation.sqlplan file. The comparison 
window looks like the following:
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Figure 9.32: Query plan comparison between the original plan and the new test stored procedure plan

The plans are similar, with a couple of interesting observations to be made:

• The clustered index scan on the OrderTracking table has accurate estimations that match the 
common case of returning fewer records – the estimated rows match the actual rows returned

• The previous Hash Match join (the bottom plan compiled with a parameter value of '2011-
7-31 00:00:00') turned to a Merge join (the top plan compiled with a parameter value 
of '2014-6-30 00:00:00'), due to the corrected estimations

Opening the properties of the root nodes (SELECT) shows additional relevant information that speaks 
to the need to optimize for the common case, as seen in the following screenshot:

• The QueryTimeStats value for each query shows that optimizing for the common value (the 
top plan) executes faster than reusing the plan from production (the bottom plan), compiled 
with an older date: 32 ms instead of 81 ms.

• The Memory Grant value is also much lower in the top plan (1.9 MB) than in the bottom 
plan (76 MB). Expanding the MemoryGrantInfo section would reveal that of the 76 MB, the 
bottom plan only used 7 MB.
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Figure 9.33: Properties window for the query plan comparison between 

the original plan and the test stored procedure plan

We discussed the effects on concurrency of having memory grant misestimations in the Query plan 
properties of interest section of Chapter 3, Exploring Query Execution Plans, and how to mine the plan 
cache for other such concurrency inhibitors in the Troubleshooting common scenarios with DMV 
queries section of Chapter 7, Building Diagnostic Queries Using DMVs and DMFs.
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Having proven that this is a case of bad parameter sniffing, a few options are available to remediate 
the issue in production:

• Rewrite the stored procedure to add the OPTION (RECOMPILE) hint. With this hint, a 
plan is calculated every time the stored procedure is executed and optimized for the current 
incoming parameter value.

• Rewrite the stored procedure to add the OPTION (OPTIMIZE FOR (@UpdatedOn = 
'2014-6-30 00:00:00')) hint. With this hint, even after recompiling, the stored 
procedure will be optimized for the common value – a recent date that we chose.

• Rewrite the stored procedure to add the OPTION (OPTIMIZE FOR UNKNOWN) hint. This 
will create a generic plan that may not be necessarily optimized for any incoming parameter.

Tip
This currently has the same effect as rewriting the stored procedure to assign the parameter 
value to a local variable and using that within the query rather than the parameter directly. 
However, this is simply a side effect of the way local variables affect the optimization process, 
and not explicitly directing the Query Optimizer to turn off parameter sniffing.

• If most queries in a database had a bad parameter sniffing issue, then disabling parameter sniffing 
may be a mitigation when hinting all the code is not feasible. To do this at the database level, use 
the database-scoped PARAMETER_SNIFFING configuration in the following T-SQL command:

ALTER DATABASE SCOPED CONFIGURATION SET PARAMETER_SNIFFING = 
OFF;

To do this at the system level, use the DBCC TRACEON (4136, -1) T-SQL command to enable 
trace flag 4136 globally. Note that enabling a global trace flag requires sysadmin privileges and can’t 
be used on Azure.

Summary
In the Query plan comparison section, we were able to take a query plan from the production 
environment that was not performing as expected and validate that when running the same query in 
the dev environment with a production-like database we were able to get a consistent reproduction of 
the issue. Then, through comparative analysis of the cached query plan from production (an estimated 
execution plan) and the actual execution plan from dev, we could create hypotheses from the data we 
observed until we found the root cause. Last, we tested a fix for the root cause of the issue by hinting 
at queries, which again, by comparing plans, determined that the new plan was better than the old 
plan, which should now be implemented in production.
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In the Query plan analyzer section, we were able to take a query plan that had been captured in the 
production environment through an XEvent trace and get started on finding what could be negatively 
affecting performance by using this new feature. This allowed us to find significant differences between 
estimated and actual rows in the affected query execution plan and directed us to investigate a bad 
parameter sniffing problem, which turned out to be confirmed. After that, we were given several 
strategies to deal with the problem to bring back to production and definitively mitigate the issue.

In the next chapter, we will look at a tool called the Query Store that can help capture query plans and 
identify query performance regressions.
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Tracking Performance  

History with Query Store

This chapter will introduce the Query Store, which is effectively a flight recorder for the SQL Database 
Engine T-SQL executions, allowing performance tracking over time and analysis of workload trends 
through rich-UI reports that are included with SQL Server Management Studio (SSMS).

We will also see how Query Store integrates with Query Plan Comparison, which was covered in 
Chapter 9, Comparative Analysis of Query Plans, for a complete user interface (UI)-driven workflow 
for query performance insights. This chapter covers the following topics:

• Introducing the Query Store

• Tracking expensive queries

• Fixing regressed queries

• Features that rely on the Query Store

Technical requirements
The examples used in this chapter are designed for use on SQL Server 2022 and Azure SQL Database, 
but they should work on any version of SQL Server 2012 or later. The Developer Edition of SQL Server 
is free for development environments and can be used to run all the code samples. There is also a free 
tier of Azure SQL Database that you can use for testing at https://aka.ms/freedb.

You will need the AdventureWorks2016_EXT (referred to as AdventureWorks) and 
AdventureWorksDW2016_EXT (referred to as AdventureWorksDW) sample databases, which 
can be found on GitHub at https://github.com/Microsoft/sql-server-samples/
releases/tag/adventureworks. Code samples for this chapter can also be found on GitHub 
at https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-
Edition/tree/main/ch10.

https://aka.ms/freedb
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch10
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch10
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Introducing the Query Store
The requirement to track query performance statistics over time has been a longtime request by 
SQL Database Engine users because it unlocks the ability to go back in time and understand trends 
and point-in-time occurrences. Maybe a point-in-time issue with the database caused our company 
website to glitch, or a critical application slows down periodically without a predictable pattern, or 
we noticed that part of our workload is much slower after an upgrade to a new version of the SQL 
Database Engine. Barring any hardware problems, all these scenarios can usually be boiled down to 
one common cause – query plan optimization choices. This led to the creation of the Query Store – 
an effective flight recorder for our databases that’s available in SQL Server (starting with SQL Server 
2016) and Azure SQL Database, including Managed Instance.

Recall what we discussed on the process of query optimization in Chapter 1, Understanding Query 
Processing, and specifically the role of cardinality estimation discussed in Chapter 2, Mechanics of the 
Query Optimizer: the SQL Database Engine can consider many plans during the query optimization 
process and so, when a problem happens, being able to backtrack historical information to understand 
whether there were changes to the query plans of slow queries is fundamental.

We have seen queries that allow us to mine the plan cache to get all types of important information 
in the Exploring query plan cache DMVs section of Chapter 7, Building Diagnostic Queries Using 
DMVs and DMFs, but those alone are not enough to help answer three pressing questions during a 
performance troubleshooting exercise:

• Which query or set of queries slowed down from a previous moment in time?

• What was the previous query plan that worked better than the current plan in the cache?

• Is there a way I can force the plan to look more like the “good” plan? Can I use a plan guide, 
for example? We will see how a plan guide can be used in Chapter 11, Troubleshooting Live 
Queries, in the Activity Monitor gets new life section.

To answer these questions, the Query Store captures query plans and runtime execution statistics in the 
user database. Storing information on disk means that, unlike most DMVs, its information is available 
after a restart, database upgrade, and query plan recompilations. With all of this, Query Store makes 
it easier to find performance regressions and mitigate them literally with one click of a button – we’ll 
show this later in this chapter in the Fixing regressed queries section – which is a process that can take 
hours or days with other means, such as collecting traces and analyzing them manually. Query Store 
also unlocks the ability to identify top resource-consuming queries and analyze performance trends 
across workloads, putting database professionals in the driving seat when it comes to learning about 
recurring patterns and finding tuning opportunities to optimize our T-SQL queries.

Inner workings of the Query Store

When a query is compiled, its query text and plan (the same plan that gets stored in the plan cache) 
are captured in Query Store’s memory structures to minimize I/O overhead. When the query’s first 
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execution completes (and any subsequent execution), runtime execution statistics are also stored 
in memory. In the background, an asynchronous process runs to bucketize the information in time 
interval aggregates and stores all this data in internal tables that reside in the user database. Both the 
aggregation time intervals and storage for on-disk tables are configurable, and we will cover them in 
the next section of this chapter.

Storing internal tables in the user database means that the QS is a single-database performance 
tracking system that stays with database backups and database clones. This is a powerful capability 
because we can get a database backup that includes its Query Store from one system and analyze the 
performance data in another system.

Note
Database clones refer to schema-only databases created with the DBCC CLONEDATABASE 
command. This operation creates a database with empty tables and indexes but maintains all 
programmability objects such as stored procedures and functions, as well as statistics objects 
and the Query Store. This becomes a powerful tool during cases of remote assistance for query 
optimization-related issues.

On top of Query Store’s memory and disk tables, there are system views to access all the information 
that is stored on both dimensions of data that’s collected: query compilation and query execution time 
information. The QS system views exist in Azure SQL Database and SQL Server.

The SQL Server 2022 QS system views can be seen in the following screenshot, which we will use 
throughout this chapter:

Figure 10.1: SSMS IntelliSense window showing some of the SQL Server 2022 QS system views

In turn, SSMS has a rich UI experience on Query Store that’s built on top of the system views. The 
available SSMS Query Store reports can be accessed under each database in the Query Store 
folder, as seen in the following screenshot:
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Figure 10.2: SSMS Object Explorer showing the built-in Query Store reports

The following diagram outlines the Query Store architecture discussed in this section:

Figure 10.3: Diagram depicting the Query Store architecture

Configuring the Query Store

Azure SQL Database has the Query Store enabled by default. In SQL Server 2022, the Query Store is 
enabled by default for new databases, but any databases that were migrated from older systems will 
maintain the Query Store state from the version from which they migrated. In SQL Server 2016, 2017, 
and 2019, it must be enabled manually. This can be done in two different ways:
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• Using T-SQL, as seen in the following example for the AdventureWorks2016 sample database:

USE [master]
GO
ALTER DATABASE [AdventureWorks2016]
SET QUERY_STORE = ON;
GO
ALTER DATABASE [AdventureWorks2016]
SET QUERY_STORE (OPERATION_MODE = READ_WRITE);

• Using SSMS, when we right-click on a database name in Object Explorer, select Properties, 
select the Query Store page, and change Operation Mode from Off to Read Write, as seen 
in the following screenshot:

Figure 10.4: SSMS Database Properties window showing the Query Store properties
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In the previous screenshot, we can see the full size of the database (743.6 MB) and how much of that 
size is used by Query Store (3.0 MB). From the current Query Store size limit (1024.0 MB), we can 
also see how much is used (3.0 MB).

While the Query Store is disabled by default in older versions of SQL Server, it can be enabled via 
the model database. This will ensure that each new database will inherit the enabled Query Store 
settings from the model database. However, QS options cannot be set for the model database via 
SSMS. T-SQL must be used, as seen in the following example:

USE [master]
GO
ALTER DATABASE [model] SET QUERY_STORE = ON;
GO
ALTER DATABASE [model] SET QUERY_STORE (OPERATION_MODE = READ_WRITE);

As for the settings to control the QS behavior through SSMS, they are as follows:

• Operation Mode: Defines the current operational status of QS, such as whether it is currently 
collecting data. It can be disabled (Off), disabled but not cleared (Read only), and enabled for 
data collection (Read write).

• Data Flush Interval (Minutes): Defines the frequency to persist collected runtime statistics 
from memory to disk tables. The default is 15 minutes (900 seconds internally), which is what 
Microsoft recommends for most systems.

• Statistics Collection Interval: Defines the time interval buckets for aggregation. The default is 
1 hour (60 minutes internally). Microsoft doesn’t recommend a lower value for 24x7 operation.

• Max Plans per Query: Defines the maximum number of plans maintained for each query. The 
default is 200, and when the limit is reached, QS stops capturing new plans for that query. This 
can be the case for stored procedures that recompile often for example.

Tip
If you choose to change the default value of Max Plans per Query, keep in mind that it will have 
a direct impact on the effectiveness of features that rely on the Query Store, such as Automatic 
Plan Correction (APC) and Parameter Sensitive Plan Optimization (PSPO).

• Max Size (MB): Defines the maximum size up to which the Query Store can grow inside the 
user database before it starts to clean up older information. The Max Size (MB) limit isn’t 
strictly enforced. The storage usage is checked only when the QS writes data to disk, which is 
set by the Data Flush Interval (Minutes) option. If the cleanup process cannot keep up before 
the QS space is full, then the QS operation mode will change to Read only. The default up to 
SQL Server 2017 is 100 MB, increased to 1 GB in SQL Server 2019.
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• Query Store Capture Mode: Defines the amount of query information collected. Query Store 
can collect information on all queries (All), only queries that execute regularly (Auto), or no 
queries whatsoever (None). The default is All up to SQL Server 2017 (but highly recommended 
to use Auto instead), and changes to Auto in SQL Server 2019 – the same as Azure SQL 
Database. The All setting can be used sporadically for point-in-time troubleshooting, but we 
have other methods of collecting query plan information that don’t aggregate data, which we 
discuss in Chapter 11, Troubleshooting Live Queries.

• Size Based Cleanup Mode: Defines whether the internal cleanup task removes the oldest 
queries and their related runtime statistics from the Query Store using a least recently used 
(LRU) algorithm. The cleanup task wakes up when the size of QS on-disk tables reaches 90 
percent of the defined maximum. The cleanup task stops when approximately 20 percent of 
the defined maximum is free. The default is Auto but can also be Off, in which case the QS 
operation mode will change to Read only when the size limit is reached.

• Stale Query Threshold (Days): Defines the duration that runtime statistics must be kept per 
collected query. For queries that haven’t been executed over the defined time, its runtime 
statistics are evicted. The default is 30 days. Consider the time that we need to reasonably keep 
query execution history. For example, if our workload roughly repeats itself every other week, 
we can lower this configuration value to 15 days because we should only need to keep about 
2 weeks of data to investigate any issues.

• Wait Stats Capture Mode: Defines whether wait stats should be captured (On) or not (Off). The 
default is On. A detailed discussion about waits is outside the scope of this book, but if more 
information about the various wait types is needed, the SQL Database Engine documentation 
about waits is on the page for the sys.dm_os_wait_stats DMV. This DMV shows 
cumulative wait information since the server was last started.

However, QS does not collect detailed information per individual wait type name. Instead, QS 
groups wait types per category, such as Lock, CPU, Tran Log IO, Network IO, Buffer IO, Latch, 
and numerous others. The mapping between Query Store wait categories and real wait type 
names is available in the SQL Database Engine documentation page for the system view, sys.
query_store_wait_stats.

Microsoft also recommends enabling two global trace flags that improve QS behavior on typical 
production systems:

• Trace flag 7745: Used to prevent QS data from having to be written to disk in case of a failover or 
shutdown, which would otherwise delay the failover or shutdown. However, this causes QS data 
that has not been persisted to disk yet to be lost (up to the time that was defined by Data Flush 
Interval), but typically, this is not critical. This is the default behavior in Azure SQL Database.
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• Trace flag 7752: Up to SQL Server 2017, this trace flag is used to allow asynchronous load of the 
Query Store during database startup operations. The default synchronous load can delay database 
startup until the Query Store is fully available, which may not be warranted for production 
databases where uptime is more valuable than synchronous availability of monitoring data. 
Starting with SQL Server 2019, this trace flag is not needed because asynchronous load becomes 
the default behavior. This is also the default behavior in Azure SQL Database.

We can see the options in the following screenshot, where the defaults were changed to the recommended 
values, just after we changed Operation Mode to Read write:

Figure 10.5: SSMS Database Properties window showing Query 

Store settings with their recommended values
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We can also use T-SQL, as shown in the following example:

USE [master]
GO
ALTER DATABASE [AdventureWorks2016] SET QUERY_STORE = ON;
GO
ALTER DATABASE [AdventureWorks2016] SET QUERY_STORE (
     OPERATION_MODE = READ_WRITE,
     DATA_FLUSH_INTERVAL_SECONDS = 900,
     INTERVAL_LENGTH_MINUTES = 60,
     MAX_STORAGE_SIZE_MB = 1000,
     QUERY_CAPTURE_MODE = AUTO,
     SIZE_BASED_CLEANUP_MODE = AUTO,
     MAX_PLANS_PER_QUERY = 200,
     WAIT_STATS_CAPTURE_MODE = ON,
     CLEANUP_POLICY = (STALE_QUERY_THRESHOLD_DAYS = 90)
     );

SQL Server 2019 introduced a new Operation Mode called Custom. When it's enabled, you can fine-
tune data collection in a server by specifying additional Query Store configurations using the Query 
Store Capture Policy setting. The new Custom settings define what happens during the internal capture 
policy time threshold: a time boundary during which the configurable conditions are evaluated and, 
if any are true, the query is eligible to be captured by Query Store. The new settings are as follows:

• Stale Capture Policy Threshold: Defines the time window for which one or more of the other 
Query Store capture policy OR conditions need to occur for a query to be captured in the 
Query Store. While the default is 1 day, it can be set as low as 1 hour, and up to 7 days. As you 
evaluate changes from the default value, it’s important to be mindful that lowering the value 
will increase the load on Query Store, because it is likely that more queries will be captured.

• Execution Count: Defines the number of times a query must be executed within the time 
window configured in Stale Capture Policy Threshold for the query to be considered for 
capture. The default is 30, which means that if using all default configurations, a query must 
execute at least 30 times in one day to be captured in the Query Store.

• Total Compile CPU Time (ms): Defines the total cumulative CPU time a query must spend 
during compilation within the time window configured in Stale Capture Policy Threshold 
for the query to be considered for capture. The default is 1000, which means that if using all 
default configurations, a query must accumulate at least one second of CPU time during query 
compilation in one day to be captured in the Query Store.

• Total CPU Time (ms): Defines the total cumulative CPU time a query must spend in execution 
within the time window configured in Stale Capture Policy Threshold for the query to be 
considered for capture. The default is 100, which means that if using all default configurations, 
a query must accumulate at least 100 ms of CPU time during query execution in one day to 
be captured in the Query Store.
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From the T-SQL example we used previously, the full syntax available in SQL Server 2019 and later 
becomes the following:

USE [master]
GO
ALTER DATABASE [AdventureWorks2016] SET QUERY_STORE = ON
GO
ALTER DATABASE [AdventureWorks2016] SET QUERY_STORE (
     OPERATION_MODE = READ_WRITE,
     DATA_FLUSH_INTERVAL_SECONDS = 900,
     INTERVAL_LENGTH_MINUTES = 60,
     MAX_STORAGE_SIZE_MB = 1000,
     QUERY_CAPTURE_MODE = CUSTOM,
     SIZE_BASED_CLEANUP_MODE = AUTO,
     MAX_PLANS_PER_QUERY = 200,
     WAIT_STATS_CAPTURE_MODE = ON,
     CLEANUP_POLICY = (STALE_QUERY_THRESHOLD_DAYS = 90),
     QUERY_CAPTURE_POLICY = (
          EXECUTION_COUNT = 30
          TOTAL_COMPILE_CPU_TIME_MS = 1000
          TOTAL_EXECUTION_CPU_TIME_MS = 100
          )

     );

Note
If using SQL Server 2016, ensure that Cumulative Update 2 of Service Pack 2 is installed at a 
minimum. This update included several scalability fixes for Query Store that are part of SQL 
Server 2017 and later.

When Query Store is configured according to the best practices we discussed in this chapter, it can be 
enabled 24x7. When QS is always enabled, it can start providing value to every database professional 
who ever had to invest countless hours in query performance troubleshooting resulting from plan 
changes related to data distribution changes, or even configuration changes with SQL Server. We’ll 
discuss some of the ways database professionals can make use of the valuable information stored in 
the QS later in this chapter, but first, let’s learn about some of the ways the database engine itself can 
use the QS.
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Tracking expensive queries
Query Store only collects plans for Data Manipulation Language (DML) statements such as SELECT, 
INSERT, UPDATE, DELETE, MERGE, and BULK INSERT, as these are the T-SQL statements that will 
be responsible for most of our SQL Database Engine’s resource usage. Most database administrators 
(DBAs) and database reliability engineers are constantly looking for ways to optimize resource usage; 
after all, if T-SQL queries are using just the resources they need (CPU, I/O, and memory), then the 
SQL Database Engine is operating at peak efficiency and allows for maximum concurrency with its 
current hardware resources.

This brings us to one of the main benefits of Query Store: tracking our workload heavy hitters – the 
most resource-consuming queries. With this exercise, we may be able to uncover tuning opportunities 
that, if successful, further improve the efficiency of the server’s resource usage.

To generate enough workload in our AdventureWorks database, we will be using an application 
called QueryStoreSimpleDemo.exe, available in the Microsoft GitHub sample repository at 
https://github.com/Microsoft/sql-server-samples/blob/master/samples/
features/query-store. When this executable is started, we are prompted to enter the SQL 
Database Engine instance we want to connect to and one of several sample workloads that are available, 
as seen in the following screenshot. For now, we will use the L option.

Figure 10.6: Command window showing the QueryStoreSimpleDemo.exe application running

To have relevant data for our exercise, we leave the workload executing for about one hour at least, to 
allow considerable resources to be used and tracked and have a production-like data collection available 
in Query Store. Then, we can start by using some of the reports and system views to understand the 
behavior of the workload over our AdventureWorks sample database. We will start by double-
clicking on the Top Resource Consuming Queries SSMS report, highlighted in the following screenshot:

https://github.com/Microsoft/sql-server-samples/blob/master/samples/features/query-store
https://github.com/Microsoft/sql-server-samples/blob/master/samples/features/query-store
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Figure 10.7: SSMS Object Explorer showing the Top Resource Consuming Queries report

This opens the report in a new window tab, as seen in the following screenshot:

Figure 10.8: Top Resource Consuming Queries Query Store report in SSMS

Let’s explore what this report can show us. The top-left quadrant (marked as 1 in the preceding screenshot) 
displays the top 25 resource consumers for our database. Just above it, we see two dropdowns that 
allow us to change the following:
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• Metric: The setting by which the charts are drawn (marked as 1.1 in the preceding screenshot), 
from the default Duration (ms) to any other metric available, as seen in the following 
screenshot detail.

• Statistic: The aggregation used for the chosen metric (marked as 1.2 in the preceding screenshot) 
with the default being Total, but others are available such as average (Avg), maximum (Max), 
minimum (Min), and standard deviation (Std Dev).

Figure 10.9: Top Resource Consuming Queries Query Store report detail showing 

the Metric dropdown with the default Duration (ms) highlighted

For example, assume our server is CPU-bound: it makes sense to change the metric to CPU Time 
(ms) so we can see those queries and analyze them for tuning opportunities. Other scenarios are 
possible; for example, if we’ve detected waiting queries and suspect parallelism may be misused in 
the workload, then we change the metric to DOP to find queries that operate with a high degree of 
parallelism and may be waiting too much. Or maybe memory is the concern, and so using the Memory 
Consumption (KB) metric is the starting point.

The top-right quadrant (marked as 2 in Figure 10.8) displays the plan summary for the chosen 
query – namely, its distribution throughout the timeline. If more than one plan exists for the query 
in scope, we’ll see different colors for each Plan Id number. We will explore other options available 
here later in this section.

The bottom (marked as 3 in Figure 10.8) displays the query plan – the same as the cached query 
plan. Given that we know query plan choices drive resource usage, this is an important resource to 
have available. There are no runtime metrics in the query plan – this is not an actual execution plan, 
but we can explore runtime information about this plan by playing with the top-left quadrant view.
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The top-left quadrant can also be displayed in a tabular format organized by the chosen metric, which 
makes it easier to see actual numbers to correlate with the query plans. To change the view, we click 
the button highlighted in the following screenshot:

Figure 10.10: Detailed view of the Top Resource Consuming Queries Query Store 

report displaying the menu bar with the grid format view button highlighted

This changes the report to the following view (notice we also changed the metric to CPU Time (ms)):

Figure 10.11: Top-left quadrant of the Top Resource Consuming 

Queries Query Store report displaying grid view

Notice that query ID 20 is the heaviest in terms of total CPU time. We can also see the same information 
programmatically, using the system views that the report also leverages, as shown in the following 
sample query:

SELECT TOP 25 q.query_id, qt.query_sql_text,
     SUM(rs.count_executions) AS total_execution_count,
     AVG(rs.avg_rowcount) AS avg_rowcount,
     CAST(AVG(rs.avg_duration/1000) AS decimal(8,2)) AS avg_duration_
ms,
     CAST(AVG(rs.avg_cpu_time/1000) AS decimal(8,2)) AS avg_cpu_time_
ms,
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     CAST(AVG(rs.avg_query_max_used_memory/8) AS decimal(8,2)) AS avg_
query_max_used_memory_KB,
     CAST(AVG(rs.avg_physical_io_reads/8) AS decimal(8,2)) AS avg_
physical_io_reads_KB,
     CAST(AVG(rs.avg_logical_io_reads/8) AS decimal(8,2)) AS avg_
logical_io_reads_KB,
     CAST(AVG(rs.avg_logical_io_writes/8) AS decimal(8,2)) AS avg_
logical_io_writes_KB
FROM sys.query_store_query_text AS qt
INNER JOIN sys.query_store_query AS q ON qt.query_text_id = q.query_
text_id
INNER JOIN sys.query_store_plan AS p  ON q.query_id = p.query_id
INNER JOIN sys.query_store_runtime_stats AS rs ON p.plan_id = rs.plan_
id
WHERE execution_type = 0
GROUP BY q.query_id, qt.query_sql_text
ORDER BY avg_cpu_time_ms DESC;

This returns the following result set ordered by average CPU time. Not surprisingly, query ID 20 is 
the heaviest:

Figure 10.12: Results of the sample query showing top CPU queries from the Query Store DMVs
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We can also see the top 25 queries by their average wait time using the following sample query:

SELECT TOP 25 q.query_id, qt.query_sql_text, wait_category_desc,
     SUM(ws.total_query_wait_time_ms) AS total_query_wait_time_ms,
     AVG(ws.avg_query_wait_time_ms) AS avg_query_wait_time_ms
FROM sys.query_store_query_text AS qt
INNER JOIN sys.query_store_query AS q ON qt.query_text_id = q.query_
text_id
INNER JOIN sys.query_store_plan AS p ON q.query_id = p.query_id
INNER JOIN sys.query_store_wait_stats AS ws ON p.plan_id = ws.plan_id
WHERE ws.wait_category_desc NOT IN ('Unknown', 'Idle')
AND ws.execution_type = 0
GROUP BY q.query_id, qt.query_sql_text, ws. wait_category_desc
ORDER BY avg_query_wait_time_ms DESC;

This returns the following result set, where query ID 20 is the second query with the most wait time. 
Notice it is a parallelism-related wait:

Figure 10.13: Results of the sample query showing queries with 

the most wait time from the Query Store DMVs

While using the system view can prove to be a powerful tool, if the rich UI experience that’s available 
in SSMS reports is preferred, a Query Wait Statistics report is also available. Opening it provides the 
view seen in the following screenshot, where we confirm that parallelism waits are the most prevalent 
in the workload:
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Figure 10.14: Query Wait Statistics Query Store report in SSMS

Clicking in the first bar (Parallelism) opens a second view with the details for that wait category, as 
seen in the following screenshot. It confirms what we’d seen in the waits DMV – query ID 20 is the 
second highest in wait times:

Figure 10.15: Query Wait Statistics drilldown report showing queries with the most parallelism waits
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Now, we have a clear notion of the heavy hitters that need investigation, and the working hypothesis 
that tuning these will drive down CPU usage and alleviate my CPU-bound server. Back in the QS 
report, let’s take the first query (20) and investigate. In the bottom section, we have the query plan; 
we can click the magnifier button, as shown in the following screenshot, to open the query text:

Figure 10.16: Detailed view of the Top Resource Consuming Queries Query Store 

report displaying the menu bar with the investigate query button highlighted

We can click the ellipsis (…) button on the right side, as shown in the following screenshot, for the 
same purpose:

Figure 10.17: Query plan view of the Top Resource Consuming Queries 

Query Store report displaying the ellipsis button

Once the query opens in a new session window, we can execute to get the following actual execution plan:

Figure 10.18: Execution plan for the query retrieved by clicking the investigate query button in Query Store

We can also get the QueryTimeStats values for this plan:

Figure 10.19: QueryTimeStats for the example query
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Now that we have the query execution plan, in the WaitStats property, we confirm that this query 
waited mostly on CXPACKET, which is a parallelism wait, just like it was reported in Query Store:

Figure 10.20: WaitStats for the example query showing CXPACKET waits

We also have a Clustered Index Scan on the SalesOrderDetail table. The query only needs 
three columns from this table so it is a relevant subset, but there’s no index that can cover the query. 
However, we see that the existing IX_SalesOrderDetail_ProductID index already covers 
the join predicate on the ProductID column. Given that there are no other predicates on the query, 
and we need three extra columns just for SELECT, we can add them to this index as INCLUDE 
columns. The hypothesis is that if the SQL Database Engine uses a narrower index, it can optimize 
I/O, which in turn has tangible effects on CPU usage as well. And given that the new columns are 
not interfering with the key of the existing index, any other queries that need it won’t be too affected 
and we should be able to address our current heavy hitter query. The index can be changed using the 
following query example:

CREATE NONCLUSTERED INDEX IX_SalesOrderDetail_ProductID ON [Sales].
[SalesOrderDetail] (
      [ProductID] ASC
)
INCLUDE (
      [OrderQty],
      [UnitPrice],
      [UnitPriceDiscount]
) WITH DROP_EXISTING;

After creating the index, we execute the query again to get the following actual execution plan, using 
the new index. Notice the plan no longer executes in parallel because it became cheap enough not to 
exceed the Cost Threshold for Parallelism configuration. And because of the lower cost to access 
data in both tables, Hash Match was replaced with Nested Loops, which is cheaper, and Sort has gone 
now because both indexes are sorted on the required key order:
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Figure 10.21: Execution plan for the example query after the new index was created

The QueryTimeStats values for this plan reflect the lower resource usage: CPU time dropped from 514 
ms to 265 ms (~49 percent less), and execution time dropped from 704 ms to 570 ms (20 percent less):

Figure 10.22: QueryTimeStats for the execution plan with the new index

And without parallelism, there are no more parallelism waits for this query. By cutting CPU usage in 
half, we were successful in tuning this query. The next step would be to continue with the other heavy 
hitters until the CPU is reduced to an acceptable level.

Fixing regressed queries
Parameters are fundamental drivers of the query optimization process. We discussed the topic of 
parameter sensitivity, known as parameter sniffing, in the The importance of parameters section 
in Chapter 1, Understanding Query Processing, and the Query plan properties of interest section in 
Chapter 3, Exploring Query Execution Plans.

This brings us to the other main benefit of Query Store: tracking plan changes over time – in other 
words, regressions from parameter-sensitive plans. With this exercise, we want to make sure the 
volatility that can come with parameter-sensitive plans is addressed, and that the plan that is used 
is the one that’s best for most uses, if not all. If successful, we will address the complaints we’ve been 
getting that sometimes the application just slows down for a few minutes and then recovers.

To generate enough workload in our AdventureWorks database, again, we will use the 
QueryStoreSimpleDemo.exe application, available in the Microsoft GitHub sample repository at 
https://github.com/Microsoft/sql-server-samples/blob/master/samples/
features/query-store. When this executable is started, we are prompted to enter the SQL 
Database Engine instance we want to connect to, and one of several sample workloads that are available, 
as shown in the following screenshot. For now, we will use the S option.

https://github.com/Microsoft/sql-server-samples/blob/master/samples/features/query-store
https://github.com/Microsoft/sql-server-samples/blob/master/samples/features/query-store
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Figure 10.23: Command window showing the QueryStoreSimpleDemo.exe application running

To have relevant data for our exercise, we leave the workload executing for about 15 to 20 minutes at 
least – although less than that already produces visible results. Then, we can start to understand the 
behavior of the workload over the AdventureWorks sample database. We can start by double-
clicking on the Queries With High Variation SSMS report, highlighted in the following screenshot:

Figure 10.24: SSMS Object Explorer showing the Queries With High Variation built-in Query Store report

Then, the report opens in a new window, as shown in the following screenshot, in which we changed 
to the standard deviation (Std Dev) statistic:
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Figure 10.25: Queries With High Variation Query Store report in SSMS

Immediately we see that query ID 1 has two plans being tracked (top-right quadrant) with widely 
different performance. Query ID 1 is the query with the widest variance between executions (top-left 
quadrant) running in our SQL Server.

We can click on each plan (4 and 1) but we can also use Plan Comparison for the job. We discussed 
this tool as a standalone in Chapter 9, Comparative Analysis of Query Plans, but it can also be used 
from within Query Store. To do that, hold down the Shift key and click on both IDs in the Plan Id 
legend; after they’re selected, as shown in the following screenshot, click the Plan Comparison button:

Figure 10.26: Top-right quadrant of the Queries With High Variation Query Store report showing the 

plan summary for query 1 with the two Plan IDs selected and the Plan Comparison button highlighted
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The comparison window appears as shown in the following screenshot:

Figure 10.27: Plan Comparison window showing the two selected Plan IDs

Notice that the only similarity between the plans is a Clustered Index Scan on the SalesOrderHeader 
table. Everything else is different: the data reader on the SalesOrderDetail tables changes from 
Clustered Index Scan in Plan ID 1 to Clustered Index Seek in Plan ID 4, which affects the type of 
join. Plan ID 1 has a Merge Join that changes to Nested Loops on Plan ID 1. Looking at the compared 
Properties window, we can see why the plans are different: the plans were compiled with different 
parameters, so this is a case of parameter sensitivity.

Figure 10.28: Properties for the two plans from the Plan Comparison window
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And because we have ParentObjectId in the query plan, the following example tells us the queries 
in the comparison are executed in the context of the usp_SalesFromDate stored procedure:

SELECT OBJECT_NAME(1913109906);

We have covered several techniques to deal with this scenario in the Query Plan Comparison section 
of Chapter 9, Comparative Analysis of Query Plans, but in the meantime, the application is unstable. 
This is where Query Store proves its worth again. We can select Plan ID 1, which is consistently better, 
as seen in the report, and click the Force Plan button, as shown in the following screenshot:

Figure 10.29: Menu bar on the plan window of the Queries With High 

Variation Query Store report highlighting the Force Plan button

With just one click, we stabilized the application by forcing the better plan, and minutes later, we 
refreshed the report to see that Plan ID 4 is no longer used. Notice in the following screenshot that 
the forced plan shows a checkmark to signal it’s been forced. Also notice that the Unforce Plan button 
became available in case we ever need to let the query optimization process run again – for example, 
if we applied one of the mitigation techniques by making code changes with a CREATE OR ALTER 
PROCEDURE.

Figure 10.30: Plan summary for query 1 window with the forced Plan 

ID selected and the Unforce Plan button highlighted
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If we had to force several plans in our work to minimize application issues over time, it could be easy 
to lose track of which plans are forced. That’s why SSMS also includes a Queries With Forced Plans 
report, which looks like the following screenshot:

Figure 10.31: Queries With Forced Plans report in SSMS

This report will allow you to track all the queries that have plans forced by the Query Store.

Features that rely on the Query Store
When the QS was first introduced in SQL Server 2016, it was turned off by default to avoid potential 
impact on production workloads, as Microsoft just didn’t know how it would behave with the millions 
of workload permutations executing out in the wild. Over time, there have been numerous scalability 
improvements, and better default settings were introduced in Azure and SQL Server 2019, both from 
customer input and Microsoft Engineering’s own experience with the QS. This resulted in the ability 
to have QS turned on by default for new databases, starting with SQL Server 2022.

Having the QS enabled by default is great for database professionals, but perhaps more importantly, 
it becomes part of an entire feedback system that gives the SQL Database Engine rich information 
about query performance. Some of that information can be used to ensure the Query Optimizer can 
shortcut certain decisions, learn from past performance degradation patterns, and make queries more 
efficient over time. In this section, we’re going to cover a few of these innovations that are available 
in Azure SQL Database and SQL Server 2022.

Query Store for readable secondary replicas

With the advent of Always On availability group read-scaleout replicas, it’s become common to run 
different workloads against read-only replicas of a database. However, the QS was only tracking 
workloads executing on the primary replica. This means that the QS was essentially blind to the wealth 
of data specific to read-only workloads, and users blind to the insights it could provide. With SQL 
Server 2022, the QS can be enabled on secondary replicas. Query data is captured on the secondary, 
shipped to the primary’s QS, and persisted there with the scope of the replica it applies to. It also means 
that plan forcing becomes available for the scope of secondary replicas, including the ability to force 
or unforce a plan for all replicas, or only for read-only replicas in an Availability Group.
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Query Store hinting

SQL Server 2022 introduces the ability to hint queries through the QS, which replaces plan guides as 
a way to shape query plans without changing application code. Plan guides have always been a useful 
but not easily managed nor easily implemented method to apply hints.

But why apply hints to queries in the Database Engine rather than source code? Query hints can be 
used to enforce certain behaviors upon a given query when that behavior can’t be changed through 
a query rewrite. There are scenarios where there’s no source code access to make changes to a query, 
such as the case of a vendor application. Or there’s dynamically generated code via an object-relational 
mapper (ORM). Therefore, the ability to still force certain behaviors at compile time or even at execution 
time in a targeted manner is an invaluable method to mitigate some classes of performance issues.

With hints, we can limit the maximum degree of parallelism (MaxDOP) for specific queries, force a 
Hash Match oin instead of a Nested Loops join, or limit the memory grant size for a bulk operation.

Because the QS is enabled by default for new databases in SQL Server 2022 and enabled for several 
years now in Azure SQL Database, this feature is readily available for shaping query plans and behavior 
without changing application code, with the improved manageability of the QS. Hints applied through 
the QS hints are persisted, which means they survive restarts.

To use hints through the QS, we must find the query_id of the query to modify, execute the sp_
query_store_set_hints stored procedure with the query ID and new USE HINT query hint 
string to apply to the query, and that’s it. The list of supported hints can be accessed using the sys.
dm_exec_valid_use_hints DMV.

Here’s an example of finding and setting a hint to limit the MaxDOP for a query referencing the 
Sales.SalesOrderDetail table in AdventureWorks:

SELECT query_sql_text, q.query_id
FROM sys.query_store_query_text qt
INNER JOIN sys.query_store_query q ON qt.query_text_id = q.query_text_
id
WHERE query_sql_text like N'%FROM Sales.SalesOrderDetail%';
GO
EXEC sp_query_store_set_hints 46006, N'OPTION(MAXDOP 1)';

If I later need to also force a specific Query Optimization compatibility level for the same query and 
keep the MAXDOP hint, then the full set of hints must be set for the query:

EXEC sp_query_store_set_hints 46006, N'OPTION(MAXDOP 1, USE 
HINT(''QUERY_OPTIMIZER_COMPATIBILITY_LEVEL_120''))';
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And removing all hints for the query is simple enough with this example:

EXEC sp_query_store_clear_hints 46006;

You can use the example queries to create a wrapper and automate QS hinting throughout your SQL 
environment for well-known queries that you previously determined must be hinted.

Note
Query Store hints are also the visible implementation artifact of the CE Feedback feature, which 
we discussed in Chapter 2, Mechanics of the Query Optimizer. CE Feedback uses documented 
query hints to force a given CE model assumption when a regression is detected, and the SQL 
Database Engine tests its applicability through a test-and-verify principle.

Parameter Sensitive Plan Optimization

We introduced the Parameter Sensitive Plan Optimization (PSPO) feature in Chapter 1. While 
PSPO is not dependent on the QS for its common use cases, when QS is enabled, plan variants are 
captured and have their own query_id. This means the QS is required to force a plan for a query 
variant and to use hints for plan variants.

Automatic Plan Correction

Automatic Plan Correction (APC), previously named Automatic Plan Regression Correction 
(APRC), was introduced in SQL Server 2017. APC automatically identifies query execution plans that 
have regressed – for example, when CPU use for the query changed by orders of magnitude – and 
fixes the regression by forcing the last known good plan, the plan that existed before the regression 
occurred. This means that DBAs and database reliability engineers can avoid a middle-of-the-night 
call about some query that regressed due to a plan change.

And what if you need to know when APC made some change while you were sleeping or otherwise 
occupied? The list of detected plan choice regressions, and whether APC acted on them, can be 
accessed using the sys.dm_db_tuning_recommendations DMV. While data in this DMV is 
not persisted and, therefore, is not available after a restart, forced plans are persisted in the QS, which 
means they survive restarts. So, in this scenario, you might not know why the plan was reverted, but 
you can still see the various plans that exist for a given query_id and determine when the plan 
change happened.

Note
The forcing mechanism is through the execution of the sp_query_store_force_plan 
stored procedure, which can be used manually as well.
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APC can be enabled using T-SQL, as seen in the following example for the AdventureWorks 
sample database:

USE [master]
GO
ALTER DATABASE [AdventureWorks2016]
SET AUTOMATIC_TUNING (FORCE_LAST_GOOD_PLAN = ON);

APC’s most common use case is the correction of a parameter-sensitive query scenario that originated 
a plan flip: a recompilation leads to caching and reuse of a query plan that’s not deemed good for 
most of the use cases of that parameterized query, causing a perceived regression. In this case, the 
last known good plan is forced to fix the regression. Note that APC doesn’t negate PSPO though; it 
merely changes the scope of its action to cover plan variants, as these are standalone queries for the 
context of the Query Store.

Degree of parallelism feedback

The use of parallel processing is very useful for many queries, especially those reading large amounts of 
data and doing different types of data aggregations or sorting. While there is a documented Parallelism 
physical operator in showplan – the Exchange Iterator – internally in the SQL Database Engine, 
parallelism is implemented as if it were two operators: producers that push data to consumers, and 
consumers that may have to wait for data from producers. That is important to know because, with 
perfect parallelism, all threads would read the same number of rows, and there should be no waits 
between producer and consumer threads, as each thread produces its rowset.

However, in the real world, we can observe several parallelism waits, which occur when the Database 
Engine is trying to synchronize the Exchange Iterator as it handles data streams (as stated in the product 
documentation, it can “distribute streams, gather streams, and repartition streams logical operations”), 
or getting a required buffer such as when fetching rows from an Index Scan.

Tip
Starting with SQL Server 2022 and in Azure SQL Database, CXPACKET and CXCONSUMER waits 
are accrued by data reading operators only, such as Index Scan or Sort, whereas CXSYNC_PORT 
and CXSYNC_CONSUMER are accrued specifically for Exchange Iterator synchronization tasks.

For example, for an Index Scan producing one million rows executing in parallel, when there are 
four CPUs available, it is said the query is executing with a degree of parallelism (DOP) of four. 
Each thread reading rows would be expected to read 250,000 rows, and if there is no blocking, finish 
almost simultaneously.



Features that rely on the Query Store 357

Note
For any operator executing in parallel, the number of threads spawned is the same as DOP + 
1: the threads reading their part of the rowset, plus the coordinating thread that is responsible 
for coordinating the data stream from each individual thread doing the reads.

Therefore, the use of parallelism becomes inefficient when the imbalance between threads leads to 
wait times that are so high that they offset the benefits of parallel execution. In other words, if 1 of the 
4 threads actually reads 700,000 rows while each of the other threads only reads 100,000 rows, this 
imbalance means that the coordinating thread (producer) has to wait for the longer running thread 
to complete, accruing CXPACKET waits.

And so, it becomes easier to understand how producer waits are the ones that may require attention, 
while consumer waits are inevitable as a passive consequence of longer-running producers. A leading 
cause is inaccurate cardinality estimations, which can be observed in a query execution plan when the 
number of estimated and actual rows processed has a significant difference. One of the most common 
strategies to address excess CXPACKET waits if inaccurate cardinality estimations are present is to 
update statistics. Otherwise, forcing a specific (lower) MaxDOP value through a query hint is the other 
common approach. If inefficient parallelism is widespread in a given database workload, a database 
engineer may be tempted to just reduce the MaxDOP server or database configuration, which affects 
all workloads: your queries suffering from inefficient parallelism will likely improve, at the cost of 
some analytical queries that would benefit from higher parallelism becoming less efficient.

Note
Before SQL Server 2019, the default value for MaxDOP is set to 0 in both Server and Database 
configurations. This means using all available schedulers if a query is eligible for parallelism. 
Starting with SQL Server 2019, the default MaxDOP is calculated at setup time based on available 
processors and NUMA configuration and is set to 8 in Azure SQL Database.

Inefficient parallelism, where one size doesn’t fit all, is precisely the scenario where DOP Feedback 
becomes a fundamental feature to ensure optimal parallelism for most queries. The goal of the feature 
is to increase overall concurrency and reduce waits significantly, even if it slightly increases elapsed 
time for a given query.

DOP Feedback will identify parallelism inefficiencies for repeating queries, based on CPU time, elapsed 
time, and waits. If parallelism usage is deemed inefficient, DOP Feedback will lower DOP for the query 
from whatever is the configured DOP for the next execution, down to a minimum of two, and verify 
whether it helps. In its current implementation, DOP will be adjusted using a stepped approach where 
the steps are multiples of 4, picking the next closest DOP from the current DOP. Verified feedback is 
persisted in the QS, so the optimal DOP for a given query survives restarts.
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What if lowering the DOP does more harm? DOP Feedback will detect regressions and revert to the 
last known good DOP for the query. If an application or user cancels a query, it will also be deemed 
a regression.

So, is DOP Feedback using a QS hint? No, the MAXDOP query hint is not used because using query 
hints would force a plan recompilation, but adjusting DOP through DOP Feedback doesn’t recompile 
plans. It uses an internal mechanism not accessible or usable otherwise.

What if data distribution changes and the previously optimal DOP value for a query is no longer valid? 
DOP Feedback’s current stable feedback is re-verified upon plan recompilation. It may be readjusted 
back to a higher DOP value, or continue to be lowered from the last stable value, but the Server and 
Database MaxDOP setting will always be upheld as the ceiling.

Optimized plan forcing

As we discussed in Chapter 1, Understanding Query Processing, query compilation and optimization 
is a multi-phased process of quickly generating a “good-enough” query execution plan. The overall 
query execution time always includes time spent in compilation, which can at times be time and 
resource-consuming in terms of CPU and memory.

The SQL Database Engine caches query plans for reuse, which reduces much of the compilation 
overhead for repeating queries. However, query plans can be evicted from the plan cache due to 
restarts or memory pressure, which means subsequent calls to the same query will require a full new 
compilation, meaning the benefit is no longer present.

Sometimes “compile storms” may happen, which are occasions when a SQL Database Engine is 
restarted, and when application database calls resume, they cause numerous plans to be simultaneously 
compiled within a short period of time. This concurrent compilation activity drives up CPU usage, 
memory, and even compile blocking: all can impact query execution time.

With SQL Server 2022 and in Azure SQL Database, Optimized Plan Forcing (OPF) reduces compilation 
overhead for repeating queries, although in its current version, it works only for queries forced through 
the QS, either by the user or by APC.

After a plan is compiled and stored for a forced query, a compilation replay script (CRS) will persist 
key compilation steps to shortcut a recompilation of that plan whenever needed, at a fraction of the 
cost of a would-be full new compilation.
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Note
The CRS is not user-visible. Also, OPF is compatible with Query Store hints and supports Query 
Store secondary replicas (a preview feature).

While OPF doesn’t solve compile storms scenarios for SQL Server 2022 or in Azure SQL Database at 
the time this book is written, the feature does show promise that compile storms may be solvable in 
a future iteration of this feature.

Summary
This chapter covered the important topic of storing query performance statistics in the flight recorder, 
which is the Query Store, which allows us to access query plans and their runtime statistics, along 
with how they change over time. With what we’ve learned so far in all the previous chapters of this 
book (especially in Chapter 3, Exploring Query Execution Plans, about what information lies inside 
query plans), we can now more easily find resolutions for performance problems. We can easily 
identify plans that must be tuned, or for quick mitigation, just return to a known good plan that had 
been stored in Query Store. We also learned how the Query Store enables several helpful features that 
allow the Query Optimizer to automatically detect and correct common query performance issues.

Finally, we covered how to use either system views or SSMS to uncover the highest resource-consuming 
queries executing in our databases and help us quickly find and fix query performance issues that 
are related to plan changes, which greatly simplifies query performance troubleshooting. But it also 
provides performance stability across SQL Database Engine upgrades when following the recommended 
database compatibility level upgrade process, which we will discuss in the Understanding where QTA 
is needed section of Chapter 12, Managing Optimizer Changes.

In the next chapter of the book, we will investigate how to troubleshoot a different kind of query 
performance issue for which the tools and methods we have covered so far may not be helpful: 
long-running queries.
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Troubleshooting Live Queries

During our career as a database professional, we likely encounter cases where a runaway query 
takes hours to complete or doesn’t even complete by any reasonable time measurement. How do we 
troubleshoot cases such as this?

A query execution plan can help provide a conclusive explanation of query performance issues. 
But to get a query execution plan there is one requirement a long-running query can’t easily meet: 
query completion.

If the query takes a long time to complete or never actually does, then how can we troubleshoot these 
cases? And what happens if we take that production query back to our development server and it runs 
fine? That means there is a set of conditions that can only be reproduced in the production server, be 
that the size of the database, the data distribution statistics, or even the availability of resources such as 
memory or CPU. Therefore, the ability to analyze a query execution plan while the query is executing 
is something many SQL Server professionals have been requesting for a long time.

This chapter will introduce the Query Profiling Infrastructure that exposes real-time query execution 
plans, which enable scenarios such as production systems troubleshooting. We will explore real-world 
examples of how to leverage rich-UI tools for query performance troubleshooting: Live Query Statistics 
as a standalone case, or as part of the Activity Monitor functionality of SQL Server Management 
Studio (SSMS).

In this chapter, we’re going to cover the following main topics:

• Using Live Query Statistics

• Understanding the need for lightweight profiling

• Activity Monitor gets new life
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Technical requirements
The examples used in this chapter are designed for use on SQL Server 2022 and Azure SQL Database, 
but they should work on any version of SQL Server, 2012 or later. The Developer Edition of SQL Server 
is free for development environments and can be used to run all the code samples. There is also a free 
tier of Azure SQL Database that you can use for testing at https://aka.ms/freedb.

You will need the sample databases AdventureWorks2016_EXT (referred to as AdventureWorks) 
and AdventureWorksDW2016_EXT (referred to as AdventureWorksDW), which can be found 
on GitHub at https://github.com/Microsoft/sql-server-samples/releases/
tag/adventureworks. Code samples for this chapter can also be found on GitHub at https://
github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/
main/ch11.

Using Live Query Statistics
To meet the need to analyze a query execution plan while the query is executing, Live Query Statistics 
(LQS) was introduced with the SQL Server 2016 release of SSMS, adding rich visuals by animating 
the in-flight execution plan to allow more immediate and precise identification of hot spots in a plan 
during query execution.

To see LQS in action, open a new query window in SSMS, in which we can use the following example 
query from Chapter 2, Mechanics of the Query Optimizer. This could be a previously identified long-
running query that was created to troubleshoot and tune:

SELECT e.[BusinessEntityID], p.[Title], p.[FirstName],
     p.[MiddleName], p.[LastName], p.[Suffix], e.[JobTitle],
     pp.[PhoneNumber], pnt.[Name] AS [PhoneNumberType],
     ea.[EmailAddress], p.[EmailPromotion], a.[AddressLine1],
     a.[AddressLine2], a.[City], sp.[Name] AS [StateProvinceName],
     a.[PostalCode], cr.[Name] AS [CountryRegionName], 
p.[AdditionalContactInfo]
FROM [HumanResources].[Employee] AS e
INNER JOIN [Person].[Person] AS p
     ON RTRIM(LTRIM(p.[BusinessEntityID])) = RTRIM(LTRIM(e.
[BusinessEntityID]))
INNER JOIN [Person].[BusinessEntityAddress] AS bea
     ON RTRIM(LTRIM(bea.[BusinessEntityID])) = RTRIM(LTRIM(e.
[BusinessEntityID]))
INNER JOIN [Person].[Address] AS a
     ON RTRIM(LTRIM(a.[AddressID])) = RTRIM(LTRIM(bea.[AddressID]))
INNER JOIN [Person].[StateProvince] AS sp
     ON RTRIM(LTRIM(sp.[StateProvinceID])) = RTRIM(LTRIM(a.
[StateProvinceID]))
INNER JOIN [Person].[CountryRegion] AS cr

https://aka.ms/freedb
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch11
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch11
https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-Edition/tree/main/ch11
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     ON RTRIM(LTRIM(cr.[CountryRegionCode])) = RTRIM(LTRIM(sp.
[CountryRegionCode]))
LEFT OUTER JOIN [Person].[PersonPhone] AS pp
     ON RTRIM(LTRIM(pp.BusinessEntityID)) = RTRIM(LTRIM(p.
[BusinessEntityID]))
LEFT OUTER JOIN [Person].[PhoneNumberType] AS pnt
     ON RTRIM(LTRIM(pp.[PhoneNumberTypeID])) = RTRIM(LTRIM(pnt.
[PhoneNumberTypeID]))
LEFT OUTER JOIN [Person].[EmailAddress] AS ea
     ON RTRIM(LTRIM(p.[BusinessEntityID])) = RTRIM(LTRIM(ea.
[BusinessEntityID]));

To see the query progress for the query while it executes on the AdventureWorks sample database, 
click on the Include Live Query Statistics button, as shown in the following screenshot:

Figure 11.1: SQL Server Management Studio toolbar with the 

Include Live Query Statistics button highlighted

When the query execution starts, the Live Query Statistics tab appears, showing the in-flight query 
execution plan.

As the query execution progresses in the following plan, we can see the following:

1. Solid lines connecting two operators, indicating areas of the plan that are complete.

2. Dotted and animated lines connecting two operators, indicating areas of the plan that are 
still in flight.

3. Operators with their elapsed time stopped, indicating they have finished processing rows.

4. Operators with their elapsed time continuing to tick, indicating they are still processing rows.

5. The overall query elapsed time.

6. The estimated query progress displayed as a percentage. This is an on-the-fly calculation based 
on the estimated rows versus the actual rows that have already been processed. This calculation 
is just an indicator that can be accurate enough if the plan doesn’t have severe skew between 
the estimated and actual number of rows. However, for severely skewed estimations, this can 
be inaccurate, and will not show the expected linear progress.
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Figure 11.2: Live Query Statistics window for the example query

For all query plan operators, we can also see the actual number of rows processed versus the estimated 
number of rows, together with the percentage of actual rows versus estimated rows.

For example, the Index Scan of the previous plan reads 19,972 of 19,972 rows (100%), which means that 
estimations were completely accurate compared to the actual rows processed by that operator. But for the 
Clustered Index Scan, we see it is currently in progress, and reading row 89 of 1,371,849,433,900,000,256 
estimated rows (yes, over one quintillion rows). Given that the PhoneNumberType table has only 
290 rows and the scan happens once, the misestimation is obvious.

Tip
Even though LQS was released with SQL Server 2016’s SSMS, we can use any modern version of 
SSMS, such as version 17 or later, to connect to any SQL Server instance and use LQS, starting 
with SQL Server 2014.

LQS is an SSMS UI feature that provides visualization over data stored in the sys.dm_exec_query_
profiles DMV. The following query is an example that allows programmatic access to the same 
information SSMS rendered as a graphical showplan. Note the long-running query was executing in 
session ID 97, therefore the predicate on session_id = 97.

SELECT node_id, physical_operator_name, SUM(row_count) AS row_count,
     SUM(estimate_row_count) AS estimate_row_count,
     CAST(SUM(row_count)*100 AS float) /
SUM(estimate_row_count) AS operator_progress
FROM sys.dm_exec_query_profiles
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WHERE session_id = 97
GROUP BY node_id, physical_operator_name
ORDER BY node_id;

The result set for the query shows the following information:

• Each individual operator in the plan (node IDs) that processes rows of data. This excludes 
operators such as Compute Scalar. Note that node ID 0 corresponds to the top left operator 
(Merge Join) just before the root node (SELECT) in the graphical query plan, node ID 1 is 
the Sort at the outer side of the Merge join, node ID 2 is the NonClustered Index Scan leading 
up to that Sort, node ID 3 is the Nested Loops join at the inner side of the Merge Join, and so 
on and so forth.

• A snapshot of the current row count for the moment the DMV was invoked.

• The estimated row count for each operator.

• A calculation that provides the current operator progress.

The following screenshot shows the resultset for the sys.dm_exec_query_profiles example:

Figure 11.3: Resultset for the sys.dm_exec_query_profiles example query
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In summary, using the LQS feature is extremely useful for a scenario where we have a previously 
identified query that runs with poor performance in a production very large database (VLDB) but 
has no issues running in a development machine with a smaller dataset. Often, restoring a VLDB 
outside a production environment is a non-starter, and so troubleshooting in production is the only 
viable option.

Understanding the need for lightweight profiling
If you are asking yourself why you would want to know about an obscure Database Engine component 
named Query Profiling Infrastructure, then read on. Not many database professionals know it by 
name, but most have dealt with it when they need to troubleshoot query performance issues in a 
production environment. When a SQL Server performance issue occurs, one of the first requirements 
is to understand which queries are being executed and how system resources are being used, and one 
of the most important artifacts anyone can use to find out more about queries that are executing is 
query plans.

Analyzing a query plan, also known as an estimated execution plan, means that we’re only looking 
at what SQL Server estimated should be a good-enough plan to return the intended results efficiently. 
But since an estimated plan is missing runtime data for analysis, it can’t truly provide a conclusive 
explanation for many query performance issues. Recall what we covered about the query compilation 
and optimization process in Chapter 1, Understanding Query Processing, and more specifically how 
SQL Server estimates work, as discussed in Chapter 2, Mechanics of the Query Optimizer: estimations 
drive optimizer choices, and when these estimations are wrong, then the generated plans are inefficient.

So, what is needed is a query execution plan, also known as an actual execution plan. These allow 
us to see runtime data that is crucial to uncover hot spots in the plan, such as the actual number of 
rows processed by a query operator.

This runtime information has been accessible for many years and many different versions of SQL 
Server, but at a very high cost. Collecting runtime data on queries adds overhead to the query execution 
itself – the SQL Server team measured a 75 percent overhead with a TPC-C-like workload – which 
is why this information is not readily available all the time.

Note
TPC-C is a standard Online Transaction Processing (OLTP) workload that is used to benchmark 
database systems. You can find out more about TPC-C at http://www.tpc.org/tpcc.

The high cost of this data collection is grounded in the need to enable the standard version of the 
Query Profiling Infrastructure, the Standard Query Execution Statistics Profile Infrastructure, or 
Standard Profiling for short, which must be enabled to collect information about query execution 
plans, namely the number of actual rows flowing through operators, as well as CPU and I/O usage. 
Standard Profiling can be enabled globally to collect information for all queries, or for a single session 
and query.

http://www.tpc.org/tpcc


Understanding the need for lightweight profiling 367

To collect query execution plans for a single query using Standard Profiling, the following methods 
are available:

• Use SET STATISTICS XML ON or SET STATISTICS PROFILE ON before a T-SQL 
query is executed – we covered these commands in the Accessing a query plan section of 
Chapter 4, Exploring Query Execution Plans

• Live Query Statistics – this feature was covered in the previous section of this chapter

To collect query execution plans for all queries using Standard Profiling, one of the following methods 
can be used:

• Using the query_post_execution_showplan Extended Event (XEvent or XE) in an XEvent 
trace. We discussed XEvents in Chapter 9, Building XEvent Profiler Traces.

• Using the Showplan XML trace event in SQL Trace and SQL Server Profiler. However, these 
methods are deprecated and should not be used in SQL Server 2012 or newer versions, where 
the more complete and less intrusive XEvents are available.

SQL Server 2014 SP2 and SQL Server 2016 introduced a lightweight version of the Query Profiling 
Infrastructure that exists side-by-side with Standard Profiling, the new Lightweight Query Execution 
Statistics Profiling Infrastructure, or Lightweight Profiling (LWP) for short. LWP has evolved 
over time to hold true to its name and concentrate on the fundamental task of democratizing access 
to the equivalent of an actual execution plan – which is an essential artifact for query performance 
troubleshooting. The SQL Server team measured a 1.5 to 2 percent overhead with a TPC-C-like 
workload – a significant improvement from Standard Profiling. Lightweight Profiling can also be 
enabled globally to collect information for all queries, or for a single session and query.

To collect query execution plans for a single query using Lightweight Profiling, use the QUERY_
PLAN_PROFILE query hint in conjunction with a trace that captures the query_plan_profile 
XEvent. We will show how this XEvent can be used in more detail later in this section.

Note
Clicking the Live Query Statistics button in SSMS enables Standard Profiling for that single 
query, irrespective of whether Lightweight Profiling is enabled globally and already populating 
the sys.dm_exec_query_profiles DMV. In this case, the DMV is populated using 
Standard Profiling for that query only, and Lightweight Profiling is used for all other queries.
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To collect query execution plans for all queries using Lightweight Profiling, one of the following 
methods can be used:

• Enable trace flag 7412 globally in SQL Server 2016 and SQL Server 2017. If our SQL Server 
instance is not already CPU-bound and can withstand the 1.5-to-2 percent overhead as a 
trade-off to having always available runtime data for every query in every session, then it is a 
recommended best practice to enable this trace flag at startup. To enable the trace flag globally, 
but not at startup, use the following T-SQL command: DBCC TRACEON (7412, -1). 
When Lightweight Profiling is enabled globally, the sys.dm_exec_query_profiles 
DMV is populated for all queries that are being executed.

• Using the query_thread_profile or query_post_execution_plan_profile 
XEvents in an XEvent trace. We will discuss how to use these XEvents in more detail later in 
this section.

Starting with SQL Server 2019, LWP is enabled by default, and trace flag 7412 is not needed. However, 
LWP can be disabled at the database level setting the database scoped configuration LIGHTWEIGHT_
QUERY_PROFILING to OFF using the following T-SQL command: ALTER DATABASE SCOPED 
CONFIGURATION SET LIGHTWEIGHT_QUERY_PROFILING = OFF;

So, what is available in a query execution plan that is obtained through LWP? How is that plan different 
from one obtained using Standard Profiling? Why is the term “equivalent of an actual execution plan” 
being used here? These are all pertinent questions that we will answer in this chapter.

From SQL Server 2014 through SQL Server 2017, the noticeable difference between Standard Profiling 
and Lightweight Profiling is that LWP did not collect per-operator CPU runtime information because 
tracking CPU usage across queries is one of the aspects that added so much overhead to Standard 
Profiling. Per-operator CPU usage isn’t necessarily fundamental information when we are troubleshooting 
a query performance issue. For these SQL Server versions, LWP still collects per-operator I/O usage 
information and actual row counts – this is the important information. At the query level, LWP still 
collects information about overall CPU and elapsed time, memory grant usage, runtime warnings, 
and actual Degree of Parallelism (DOP).

Note
If both Query Profiling Infrastructures are enabled simultaneously, then Standard Profiling takes 
precedence over Lightweight Profiling, for the scope in which each is enabled. For example, if 
LWP is enabled globally, but then we use SET STATISTICS XML ON for a specific query, 
that query’s execution plan will use Standard Profiling instead.

Starting with SQL Server 2019, LWP was revised to specifically exclude per-operator I/O runtime 
information by default – only per-operator row counts are reported. This was done after finding that 
in very extreme cases, even tracking I/O could introduce overhead that would make LWP not stay 
true to its principle of being lightweight. LWP still collects the same query-level information as it did 
in previous versions.
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Tip
If we require per-operator I/O information to be collected with LWP and have tested its impact 
on our SQL Server, we can enable trace flag 7415 to restore per-operator I/O metrics as available 
in SQL Server 2016 and SQL Server 2017.

Diagnostics available with Lightweight Profiling

Because it became cheaper to collect information about query execution plans with LWP, this allowed 
several diagnostics artifacts to be added to SQL Server: XEvents and Dynamic Management Functions 
(DMFs). We will discuss all these new diagnostics and how to use them for the remainder of this section.

The query_thread_profile XEvent

SQL Server 2016 Service Pack 1 introduced a new XEvent named query_thread_profile. 
Unlike the query_post_execution_showplan XEvent that uses only Standard Profiling, 
query_thread_profile uses Lightweight Profiling by default. Also, unlike query_post_
execution_showplan, query_thread_profile doesn’t output a query execution plan as 
a single showplan XML file – it outputs one event per operator and thread with the same execution 
statistics that are expected in a query execution plan. This means that it can be quite verbose, but since 
it’s based on Lightweight Profiling rather than Standard Profiling, it can be used for a longer period 
of time than was possible with query_post_execution_showplan.

The following example shows a session that uses this XEvent:

CREATE EVENT SESSION [PerfStats_Node] ON SERVER
ADD EVENT sqlserver.query_thread_profile(
     ACTION(sqlos.scheduler_id, sqlserver.database_id, sqlserver.is_
system,
sqlserver.plan_handle, sqlserver.query_hash_signed, sqlserver.query_
plan_hash_signed,
sqlserver.server_instance_name,sqlserver.session_id, sqlserver.
session_nt_username, sqlserver.sql_text)
     )
     ADD TARGET package0.event_file(
          SET filename=N'C:\Temp\PerfStats_Node.xel',
max_file_size=(50), max_rollover_files=(2)
     )
WITH (MAX_MEMORY=4096 KB, EVENT_RETENTION_MODE=ALLOW_SINGLE_EVENT_
LOSS,
MAX_DISPATCH_LATENCY=30 SECONDS, MAX_EVENT_SIZE=0 KB, MEMORY_
PARTITION_MODE=NONE,
     TRACK_CAUSALITY=OFF,STARTUP_STATE=OFF);
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To see the output this XEvent produces, execute the following query in the AdventureWorks 
sample database:

ALTER EVENT SESSION [PerfStats_Node] ON SERVER STATE = start;
GO
SELECT COUNT(*)
FROM Sales.SalesOrderDetail AS sod
INNER JOIN Sales.SalesOrderHeader AS soh ON soh.SalesOrderID = sod.
SalesOrderID
GROUP BY soh.Status;
GO
ALTER EVENT SESSION [PerfStats_Node] ON SERVER STATE = stop;
GO

The resulting file can be opened using SSMS as seen in the following screenshot. Note that the same 
XEvent session and query were executed in SQL Server 2017 and SQL Server 2019 for comparison 
between the versions:

Figure 11.4: Example query_thread_profile xEvent
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Note
The examples in this chapter compare SQL Server 2017 with SQL Server 2019 as this is when 
the relevant Lightweight Profiling changes were made. SQL Server 2022 has some additional 
fields, such as actual_page_server_ra_reads, actual_page_server_reads, 
and several hpc_* fields. These new event fields reference Azure SQL Database Hyperscale 
and HPC architectures are not relevant for the discussions in this chapter, so we have elected 
to keep the SQL Server 2019 examples.

Notice that for one single query execution, this XEvent fired four times, once for each operator that 
processes data in the query plan. Let’s focus on the last XEvent fired for this session. In it, we can find 
the following information:

• Runtime data that includes the number of actual rows read by this operator (node ID) that matches 
the RunTimeCountersPerThread showplan element we discussed in the Operator-level 
properties section of Chapter 4, Exploring Query Execution Plans. Notice that the CPU time is 
zero because LWP doesn’t collect per-operator CPU metrics. As expected in the SQL Server 
2019 example, the per-operator I/O metrics are also not populated.

• The io_reported action indicates whether I/O is reported in the XEvent or not. As expected, it’s 
True for SQL Server 2014 through SQL Server 2017 and False starting with SQL Server 2019.

• The current node ID in this case is 4. This information will be used to map this node ID when 
we look at a graphical query plan.

• As mentioned, this XEvent fires once per operator and thread. In this example trace, we only 
have one XEvent per node ID, and each node ID shows a thread ID zero. When an operator 
only fires one XEvent, this thread ID will always be zero, and this means the operator executed 
in serial, meaning on a single scheduler. If an operator executes in parallel, for example, with a 
DOP of 4, then five such XEvents are fired for a single operator: one for the coordinator thread 
and one per each of the four child threads.

• The query plan hash that is needed to retrieve the query plan from the cache is useful for 
mapping the text-only XEvent data to a graphical query plan.

Tip
Starting with SQL Server 2014 SP2 and SQL Server 2016, use the query_hash_signed 
and query_plan_hash_signed actions instead of the query_hash and query_
plan_hash actions to correlate data from XEvent collections with DMVs such as sys.
dm_exec_requests and sys.dm_exec_query_stats. The query_hash and 
query_plan_hash actions are not the same data types as the respective columns in the 
DMVs, which doesn’t allow the expected correlation.



Troubleshooting Live Queries372

The node IDs can be searched in the graphical execution plan so we can get more clarity on all the 
operator types in this plan. We can use the query plan hash to get the graphical plan from the cache 
using the following query in SSMS:

SELECT qp.query_plan
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp
WHERE CAST(qs.query_plan_hash AS BIGINT) = -4407577682464253461;

This returns the following result set:

Figure 11.5: Results of the example query showing a link to the graphical query execution plan

Clicking on the link in the results tab opens the graphical plan, and now it’s time to start mapping 
the XEvent session runtime information with the cached plan. To do this, we use the Node Search 
feature in SSMS. Right-click anywhere in the plan and click on Find Node:

Figure 11.6: Graphical query plan retrieved by the example query

This feature allows me to search for any property that exists in the showplan XML file, as shown in 
the following screenshot:
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Figure 11.7: The Node Search feature in SSMS

Searching for NodeId = 4 immediately focuses on the Non-Clustered Index Scan that represents 
node ID 4 in the following query plan:

Figure 11.8: Results of the node search showing the Index Scan (NodeId = 4) highlighted

Correlating this with the data in the XEvent, I now know this Index Scan read 121,317 rows, in 1,266 
logical reads, and 1,375 read-aheads. This XEvent is very useful for collecting runtime query data at 
scale, which may be worth the time-consuming task of doing this correlation exercise.
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The query_plan_profile XEvent

SQL Server 2016 SP2 CU3 and SQL Server 2017 CU11 introduced a new XEvent named query_
plan_profile. This XEvent outputs the equivalent of a query execution plan like the query_
post_execution_showplan XEvent. Unlike the query_post_execution_showplan 
Xevent, which uses Standard Profiling, query_plan_profile uses Lightweight Profiling by default.

The query_plan_profile XEvent allows a very targeted plan collection that can be used for a 
longer period of time to gather data for a specific query execution and doesn’t require any object or 
statement filtering in the XEvent session. This is because the XEvent only fires for a query or queries 
that are using the USE HINT ('QUERY_PLAN_PROFILE') hint. The following is an example 
session that uses this XEvent:

CREATE EVENT SESSION [PerfStats_LWP_Plan_Single] ON SERVER
ADD EVENT sqlserver.query_plan_profile(
     ACTION(sqlos.scheduler_id, sqlserver.database_id, sqlserver.is_
system,
sqlserver.plan_handle, sqlserver.query_hash_signed, sqlserver.query_
plan_hash_signed,
sqlserver.server_instance_name,sqlserver.session_id, sqlserver.
session_nt_username, sqlserver.sql_text)
     )
     ADD TARGET package0.event_file(
          SET filename=N'C:\Temp\PerfStats_LWP_Plan_Single.xel',
max_file_size=(50), max_rollover_files=(2)
     )
WITH (MAX_MEMORY=4096 KB, EVENT_RETENTION_MODE=ALLOW_SINGLE_EVENT_
LOSS,
MAX_DISPATCH_LATENCY=30 SECONDS, MAX_EVENT_SIZE=0 KB, MEMORY_
PARTITION_MODE=NONE, TRACK_CAUSALITY=OFF,STARTUP_STATE=OFF);

To see the output this XEvent produces, we need to set up our example. Creating the following stored 
procedure in the AdventureWorks sample database allows us to later use this XEvent as we would 
probably do in a production environment:

CREATE OR ALTER PROCEDURE [Sales].[CountSalesOrderByStatus]
AS
SELECT COUNT(*)
FROM Sales.SalesOrderDetail AS sod



Understanding the need for lightweight profiling 375

INNER JOIN Sales.SalesOrderHeader AS soh
     ON soh.SalesOrderID = sod.SalesOrderID
GROUP BY soh.Status;

In a production system, most likely we will not be able to alter the existing stored procedure to add the 
required hint. The same would happen if a query we want to track is generated by an application and 
we can’t change the query at its origin. The solution is to use a plan guide to add the hint, as shown in 
the following example created for the Sales.CountSalesOrderByStatus stored procedure:

EXEC sp_create_plan_guide
@name = N'Guide1',
@stmt = 'SELECT COUNT(*)
FROM Sales.SalesOrderDetail AS sod
INNER JOIN Sales.SalesOrderHeader AS soh
     ON soh.SalesOrderID = sod.SalesOrderID
GROUP BY soh.Status;',
@type = N'OBJECT',
@module_or_batch = N'Sales.CountSalesOrderByStatus',
@params = NULL,
@hints = N'OPTION (USE HINT (''QUERY_PLAN_PROFILE''))';

Now we can execute the following example query in the AdventureWorks sample database:

ALTER EVENT SESSION [PerfStats_LWP_Plan_Single] ON SERVER STATE = 
start;
GO
EXEC Sales.CountSalesOrderByStatus;
GO
ALTER EVENT SESSION [PerfStats_LWP_Plan_Single] ON SERVER STATE = 
stop;
GO

The resulting file can be opened using SSMS, as shown in the following screenshot:
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Figure 11.9: Example of the query_plan_profile xEvent

The XEvent contains runtime data for the overall query, including the duration in microseconds, 
memory grant information, and the actual DOP that was used: 1, meaning the query executed in serial.

To see the plan itself, click on the Query Plan tab. Note that the same XEvent session and query was 
executed in SQL Server 2017 and SQL Server 2019 for comparison between the versions:
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Figure 11.10: Graphical query plans accessed via the Query Plan tab within the xEvent viewer

Notice that the plans don’t have any reference to the statement text that was executed: this is already 
present in the XEvent itself, and so this information can be removed from the captured plan to make 
the collection more lightweight. Furthermore, the SQL Server 2019 plan contains one extra operator – 
the Cost root node – which has information that is usually found in a root node of a query execution 
plan, which was discussed in the Query plan properties of interest section in Chapter 3, Exploring 
Query Execution Plans.

When we look at the properties for node ID 4 – the Non-Clustered Index Scan – they include the 
number of actual rows read by this operator (node ID), which can also be seen below the operator 
icon as the number of actual rows versus the number of estimated rows that flowed through the 
operator (121,317 of 12,1317). However, in the SQL Server 2019 example we see the I/O metrics are 
not present because LWP in SQL Server 2019 doesn’t collect I/O information by default, as shown in 
the following screenshot:



Troubleshooting Live Queries378

Figure 11.11: Properties window for the Non-Clustered Index Scan in the example query plan

The query_post_execution_plan_profile XEvent

SQL Server 2017 Cumulative Update 14 and SQL Server 2019 introduced a new XEvent named 
query_post_execution_profile that can be used to collect the equivalent of an actual 
execution plan for all queries, much like the query_post_execution_showplan XEvent. 
Unlike the query_plan_profile XEvent, query_post_execution_profile is not 
bound to a query hint, but it also uses Lightweight Profiling by default. The following is an example 
session that uses this XEvent:

CREATE EVENT SESSION [PerfStats_LWP_Plan_All] ON SERVER
ADD EVENT sqlserver.query_post_execution_plan_profile(
     ACTION(sqlos.scheduler_id, sqlserver.database_id, sqlserver.is_
system,
sqlserver.plan_handle, sqlserver.query_hash_signed, sqlserver.query_
plan_hash_signed,
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sqlserver.server_instance_name,sqlserver.session_id, sqlserver.
session_nt_username, sqlserver.sql_text)
     )
     ADD TARGET package0.event_file(
          SET filename=N'C:\Temp\PerfStats_LWP_Plan_All.xel',
max_file_size=(50), max_rollover_files=(2)
     )
WITH (MAX_MEMORY=4096 KB, EVENT_RETENTION_MODE=ALLOW_SINGLE_EVENT_
LOSS,
MAX_DISPATCH_LATENCY=30 SECONDS, MAX_EVENT_SIZE=0 KB, MEMORY_
PARTITION_MODE=NONE,
     TRACK_CAUSALITY=OFF,STARTUP_STATE=OFF);

To see the output this XEvent produces, execute the following example query in the AdventureWorks 
sample database:

ALTER EVENT SESSION [PerfStats_LWP_Plan_All] ON SERVER STATE = start;
GO
SELECT COUNT(*)
FROM Sales.SalesOrderDetail AS sod
INNER JOIN Sales.SalesOrderHeader AS soh
     ON soh.SalesOrderID = sod.SalesOrderID
GROUP BY soh.Status;
GO
ALTER EVENT SESSION [PerfStats_LWP_Plan_All] ON SERVER STATE = stop;
GO

The resulting file can be opened using SSMS, as shown in the following screenshot:
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Figure 11.12: XEvent viewer showing the query_post_execution_plan_profile xEvent

The XEvent contains the same runtime data we had observed for the query_plan_profile 
XEvent. This makes sense because these XEvents are very close implementations, minus the binding 
to a query hint on query_plan_profile. Therefore, as expected when we click in the Query 
Plan tab, the observations for SQL Server 2017 and SQL Server 2019 query execution plans are also 
the same as in the previous chapter for the query_plan_profile XEvent.

The sys.dm_exec_query_statistics_xml DMF

SQL Server 2016 SP1 introduced a new DMF named sys.dm_exec_query_statistics_xml 
that uses Lightweight Profiling by default, but also works if Standard Profiling is enabled. This DMF 
outputs the query execution plan as a snapshot of the current in-flight request. As such, this query 
execution plan will have transient runtime statistics captured at the moment the DMF was invoked.
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The ability to programmatically access the query execution plan for any running request is a leap 
forward for scenarios where we must troubleshoot a long-running query. In this case, we can use this 
DMF, or Live Query Statistics – which we discussed in the first section of this chapter.

Let’s look at a practical example of using this new DMF. The following example was used in Chapter 2, 
Mechanics of the Query Optimizer, and was saved into a file named ProblemQuery.sql:

SELECT e.[BusinessEntityID], p.[Title], p.[FirstName],
     p.[MiddleName], p.[LastName], p.[Suffix], e.[JobTitle],
     pp.[PhoneNumber], pnt.[Name] AS [PhoneNumberType],
     ea.[EmailAddress], p.[EmailPromotion], a.[AddressLine1],
     a.[AddressLine2], a.[City], sp.[Name] AS [StateProvinceName],
     a.[PostalCode], cr.[Name] AS [CountryRegionName], 
p.[AdditionalContactInfo]
FROM [HumanResources].[Employee] AS e
INNER JOIN [Person].[Person] AS p
     ON RTRIM(LTRIM(p.[BusinessEntityID])) = RTRIM(LTRIM(e.
[BusinessEntityID]))
INNER JOIN [Person].[BusinessEntityAddress] AS bea
     ON RTRIM(LTRIM(bea.[BusinessEntityID])) = RTRIM(LTRIM(e.
[BusinessEntityID]))
INNER JOIN [Person].[Address] AS a
     ON RTRIM(LTRIM(a.[AddressID])) = RTRIM(LTRIM(bea.[AddressID]))
INNER JOIN [Person].[StateProvince] AS sp
     ON RTRIM(LTRIM(sp.[StateProvinceID])) = RTRIM(LTRIM(a.
[StateProvinceID]))
INNER JOIN [Person].[CountryRegion] AS cr
     ON RTRIM(LTRIM(cr.[CountryRegionCode])) = RTRIM(LTRIM(sp.
[CountryRegionCode]))
LEFT OUTER JOIN [Person].[PersonPhone] AS pp
     ON RTRIM(LTRIM(pp.BusinessEntityID)) = RTRIM(LTRIM(p.
[BusinessEntityID]))
LEFT OUTER JOIN [Person].[PhoneNumberType] AS pnt
     ON RTRIM(LTRIM(pp.[PhoneNumberTypeID])) = RTRIM(LTRIM(pnt.
[PhoneNumberTypeID]))
LEFT OUTER JOIN [Person].[EmailAddress] AS ea
     ON RTRIM(LTRIM(p.[BusinessEntityID])) = RTRIM(LTRIM(ea.
[BusinessEntityID]));

We can use the ostress utility and simulate a client application executing the same long-running 
query over 10 concurrent connections, as seen in the following command:

ostress.exe -S<my_server_name> -E -dAdventureWorks -iProblemQuery.sql 
-n10 -r1000
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Note
ostress is a free command line tool that is part of the Replay Markup Language (RML) 
utilities for SQL Server. This tool can be used to simulate the effects of stressing a SQL Server 
instance by using ad hoc queries or .sql script files.

While the workload is executing, we can join sys.dm_exec_query_statistics_xml with 
other DMVs, such as sys.dm_exec_requests, sys.dm_exec_sessions, and sys.
dm_exec_connections. The following query uses the sys.dm_exec_requests DMV as a 
starting point, since I’m looking to get the current state of the execution plan for an in-flight request:

SELECT er.session_id, er.start_time, er.status, er.database_id,
     er.wait_type, er.last_wait_type, er.cpu_time, er.total_elapsed_
time,
     er.logical_reads, er.granted_query_memory, er.dop,
     st.text, qsx.query_plan
FROM sys.dm_exec_requests AS er
CROSS APPLY sys.dm_exec_sql_text(plan_handle) AS st
CROSS APPLY sys.dm_exec_query_statistics_xml(session_id) AS qsx;

This query returns the following results:

Figure 11.13: Results of the example DMV query

Each row is an in-flight request. To see a snapshot of the ongoing query execution plan, click the link 
in the query_plan column:
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Figure 11.14: Graphical query plan as accessed through the example DMV query

If we zoom into the bottom right quadrant of the query execution plan, as shown in the following 
screenshot, we see some slow progress in building two Table Spools. We discussed Spools in in the 
Query plan operators of interest section of Chapter 3, Exploring Query Execution Plans, and the focus of 
analysis should be this section of the plan we made in the Using live query statistics section of this chapter.

Figure 11.15: Zoomed in view of the section of the query plan highlighted in Figure 11.14
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Tip
In the GitHub Tiger Toolbox (http://aka.ms/tigertoolbox), we can find a comprehensive 
script that can quickly help us diagnose performance issues with in-flight requests and blocking 
scenarios (http://aka.ms/uspWhatsUp). This script uses a combination of DMVs that 
includes sys.dm_exec_query_statistics_xml.

The sys.dm_exec_query_plan_stats DMF

SQL Server 2019 introduced a new DMF named sys.dm_exec_query_plan_stats that uses 
Lightweight Profiling by default, and like the DMF in the previous section, also works if Standard 
Profiling is enabled. This DMF outputs the last known equivalent of a query execution plan for any given 
query whose query plan can still be found in the plan cache. In other words, every data professional 
can now have the last actual execution plan always available for any query.

Note
This DMF only maintains a subset of what is available through XEvents using Lightweight 
Profiling. The available information for plans accessed through this DMF are operator-level 
row count, spill warnings (without I/O detail), and query-level CPU time and elapsed time. 
Wait statistics and operator-level I/O statistics are not included due to the potential overhead.

There are two methods to enable this DMF to be populated:

• Enable trace flag 2451 (at the session level or globally by adding the -1 parameter) using the 
following T-SQL command:

DBCC TRACEON(2451, -1);

• Set the database scoped configuration LAST_QUERY_PLAN_STATS to ON using the following 
T-SQL command:

ALTER DATABASE SCOPED CONFIGURATION SET LAST_QUERY_PLAN_STATS = 
ON;

The concept of always having the last known query execution plan available is a game-changer for 
troubleshooting just-in-time scenarios where a query’s performance has suddenly regressed, and we 
are the database professional that gets a call informing us that the application has poor performance 
as a result and that we must provide root-cause analysis.

If it’s a long-running query, then we can use Live Query Statistics or the DMF in the previous section. 
But if it’s a case of a query that has been executing (to completion) repeatedly in the last few minutes, 
then accessing the last known actual execution plan allows us to start troubleshooting immediately, 
without needing to set up any kind of tracing.

http://aka.ms/tigertoolbox
http://aka.ms/uspWhatsUp
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Note
SQL Trace and SQL Server Profiler are deprecated and should not be used in modern versions 
of SQL Server because more complete and less intrusive XEvents are available.

If we are familiar with Query Store (QS), which we discussed in Chapter 10, Tracking Query Performance 
History with the Query Store, then that may be our first go-to feature to troubleshoot our current 
scenario. However, QS aggregates performance data in configurable time periods, which is excellent 
for performance troubleshooting over time (analogous to a time series) and analyzing workload 
trends, but for just-in-time scenarios where the requirement is to get the query’s execution plan that 
just executed, then this DMF is a welcome diagnostic.

Note
If any Query Profiling Infrastructure is enabled, the DMF captures and saves the query execution 
plan data for all query plans in the cache. If the query is canceled, the query execution plan 
will have data up to the point when the query was canceled.

Let’s look at a practical example of using this new DMF. The following sample query can be executed 
in the scope of the AdventureWorks sample database:

SELECT TOP 1000 *
FROM [dbo].[DimProduct] AS dp
INNER JOIN [dbo].[DimProductCategory] AS dpc ON 
dp.ProductSubcategoryKey = dpc.ProductCategoryKey;

We can then join with other DMVs, such as sys.dm_exec_cached_plans, sys.dm_exec_
query_stats, sys.dm_exec_requests, sys.dm_exec_procedure_stats, and sys.
dm_exec_trigger_stats. Next, we have examples of queries that can retrieve information 
on the specific query, including the last known equivalent of a query execution plan from sys.
dm_exec_query_plan_stats.

The following query uses the sys.dm_exec_cached_plans DMV as a starting point, since 
the sys.dm_exec_query_plan_stats DMF can only report on query plans that are cached:

SELECT qps.dbid, st.text, qps.query_plan,
     cp.refcounts, cp.usecounts, cp.cacheobjtype, cp.objtype
FROM sys.dm_exec_cached_plans AS cp
CROSS APPLY sys.dm_exec_sql_text(plan_handle) AS st
CROSS APPLY sys.dm_exec_query_plan_stats(plan_handle) AS qps
WHERE st.text LIKE '%SELECT TOP 1000%';

This query returns the following results:
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Figure 11.16: Results of the example query

Note
If the corresponding runtime plan information is not available, the query_plan column 
shows NULL.

The following query uses the sys.dm_exec_query_stats DMV as a starting point in order to 
see performance metrics for all queries that have executed since the last SQL Server startup, where 
the query plan is still in the plan cache:

SELECT qps.dbid, st.text, qps.query_plan,
     qs.last_dop, qs.last_elapsed_time, qs.last_execution_time,
     qs.last_grant_kb, qs.last_used_grant_kb, qs.last_logical_reads,
     qs.last_logical_writes, qs.last_physical_reads,
     qs.last_rows, qs.last_spills, qs.last_worker_time
FROM sys.dm_exec_query_stats AS qs
OUTER APPLY sys.dm_exec_sql_text(plan_handle) AS st
OUTER APPLY sys.dm_exec_query_plan_stats(plan_handle) AS qps
WHERE st.text LIKE '--%';

This query returns the following results:

Figure 11.17: Results of the example query

Again, if the corresponding runtime plan information is not available, the query_plan column 
is NULL. On both results, click the link in the query_plan column to open the last known query 
execution plan, as shown in the following screenshot:
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Figure 11.18: Graphical query execution plan as accessed from the link in the results shown in Figure 11.17

Tip
In the GitHub Tiger Toolbox (http://aka.ms/tigertoolbox), we can find a comprehensive 
script that can quickly help us diagnose performance issues with in-flight requests and blocking 
scenarios (http://aka.ms/uspWhatsUp). This script uses a combination of DMVs that 
includes sys.dm_exec_query_plan_stats.

Activity Monitor gets new life
Live Query Statistics (LQS) has a viable use case, as we discussed in the Using Live Query Statistics 
section of this chapter: a previously identified long-running query. But what if we haven’t identified 
an offending query yet? What if we are the database professional that got that middle-of-the-night call 
asking us to solve an issue with a business-critical ETL process that runs every night, but is unusually 
slow today?

Note
ETL is an acronym for Extract-Transform-Load, which is the name given to a process that 
extracts data from a data source, enacts transformations in that data such as aggregations or 
calculations, and loads the result into a destination such as a database. A typical example of an 
ETL process is a SQL Server Agent job that schedules the execution of a SQL Server Integration 
Services (SSIS) package.

http://aka.ms/tigertoolbox
http://aka.ms/uspWhatsUp
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That is where Activity Monitor (AM) comes in. AM is an SSMS feature that’s been there for a long 
time and has probably gone unnoticed by many SSMS users. AM can be enabled by right-clicking 
the instance name in Object Explorer, and then clicking on Activity Monitor, as shown in the 
following screenshot:

Figure 11.19: Screenshot depicting how to access Activity Monitor from the Object Explorer in SSMS

A new tab will be displayed which contains the following information sections:

• An Overview section showinga few key performance counters: CPU usage, number of waiting 
tasks, database I/O measured in MB/sec, and number of batch requests/sec. Notice the CPU 
is running at 80 percent now that the ETL is executing. I’m also doing six batch requests/sec, 
which is a very low number.
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Figure 11.20: Overview section of Activity Monitor

• The current Processes or sessions active in SQL Server, including useful information such as 
the login and database that set the context for that session, the current task state (Running, 
Runnable, or Suspended) as defined in the Query execution essentials section of Chapter 1, 
Understanding Query Processing, wait information which shows details if the task is in the 
Suspended state, the calling application and host machine, and whether the current session is 
a head blocker of a blocking chain. All this information is coming from DMVs, which were 
thoroughly discussed in Chapter 7, Building Diagnostic Queries Using DMVs and DMFs.

Figure 11.21: Processes section of Activity Monitor
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• The current Resource Waits, including the wait category and metrics such as the cumulative 
wait time accrued for the wait type.

Figure 11.22: Resource Waits section of Activity Monitor

• The Data File I/O related to the read and write I/O, including access latency for each file.

Figure 11.23: Data File I/O section of Activity Monitor

• And the Recent and Active Expensive Queries, allowing us to pinpoint queries with long 
elapsed times and CPU usage.
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Figure 11.24: Recent and Expensive Queries sections of Activity Monitor
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Here is the interesting part about why AM should be part of our toolbox: when one of the Query 
Profiling Infrastructures we discussed in the previous chapter is enabled globally, the sys.dm_exec_
query_profiles DMV is populated for every query that is executing, which means that unlike LQS, 
which can only show the live plan for the query running in my own session, AM can show live plans 
for queries in any session.

Tip
When the query_post_execution_showplan XEvent is in use, the sys.dm_exec_
query_profiles DMV is populated for all queries using Standard Profiling. This means 
that using AM or directly querying the DMV has a higher impact than when LWP is used. In 
the previous chapter, we covered the many ways in which LWP can be enabled.

So, when I got the middle-of-the-night call, I accessed the ETL process and looked at which queries 
were being used. Then I used AM to easily pinpoint the query being executed by the ETL process and 
see its live plan. How? By using the Active Expensive Queries tab in AM, right-clicking a long-running 
query, and selecting the Show Live Execution Plan option, as shown in the following screenshot:

Figure 11.25: Context menu for a query in the Active Expensive Queries section 

of Activity Monitor showing the Show Live Execution Plan option

Tip
If the Show Live Execution Plan menu option is grayed out, this means that neither Standard 
Profiling nor Lightweight Profiling are enabled globally. To enable LWP globally for all queries, 
see the Understanding the need for Lightweight Profiling section.

For this query, which has been executing for over 100 seconds now, a new tab will display the live 
execution plan, as shown in the following screenshot:
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Figure 11.26: An example of Live Query Statistics for a currently running query

Tip
Notice that this is the same query we used in the previous section on Live Query Statistics 
(LQS), but when it’s displayed in AM, the operator times are missing. Why? Remember that 
LQS leverages Standard Profiling, which tracks operator-level information such as CPU and 
elapsed time. However, in this example, we are using Lightweight Profiling, which does not 
include that per-operator information.

As the database professional who got the middle-of-the-night call, how can I analyze and possibly solve 
the ongoing performance issue? Start by opening the plan properties by right-clicking the root node 
and selecting Properties – refer to the Plan-level properties and Operator-level properties sections of 
Chapter 3, Exploring Query Execution Plans for more information on the available showplan properties 
that are useful for troubleshooting query performance.

It’s best to first try to understand if there are any server-wide configurations that may be impacting 
query execution. One good place to start is trace flags. Are there trace flags impacting this query’s 
execution? If I look at the trace flag information in the plan, I notice two trace flags, as shown in the 
following screenshot:

Figure 11.27: Properties window of the example query plan showing trace flag information
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I can extract two data points from here:

• There were global (server-wide) trace flags present at the time this query was compiled.

• Of the two trace flags, we know now that 7412 enables Lightweight Query Profiling (LWP) by 
default, which allows me to use AM to troubleshoot in the first place. So, we need to research 
trace flag 9481 to see if it’s impacting query optimization choices that could affect the plan.

If we look at the documentation about trace flags (http://aka.ms/traceflags), here is 
the explanation for what trace flag 9481 does: it enables us to “set the query optimizer cardinality 
estimation model to the SQL Server 2012 (11.x) and earlier versions, irrespective of the compatibility 
level of the database”.

This is a good starting point: although this ETL is executing in a SQL Server 2017 instance and the 
AdventureWorks database is in database compatibility level 130, which maps to using CE 130, 
the query was optimized with CE 70 instead, as shown in the following screenshot:

Figure 11.28: Properties window of the example query plan showing CardinalityEstimationModelVersion

So, here is a working hypothesis: using CE 130 most likely will yield a different query plan. Will it 
improve the query performance over the current plan?

Note
Refer to the Introducing the Cardinality Estimator section of Chapter 3, Mechanics of the Query 
Optimizer, for further context on the potentially enormous impact this CE change carries for 
the query optimization process.

http://aka.ms/traceflags
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Let’s experiment with overriding the global trace flag at the query level in order to work out the 
effect of using the default CE model for database compatibility level 130. To do that, I will take 
the query from the execution plan, open a new query window in SSMS, add the OPTION (USE 
HINT('FORCE_DEFAULT_CARDINALITY_ESTIMATION')) hint to my query, and execute it 
in AdventureWorks:

SELECT e.[BusinessEntityID], p.[Title], p.[FirstName],
     p.[MiddleName], p.[LastName], p.[Suffix], e.[JobTitle],
     pp.[PhoneNumber], pnt.[Name] AS [PhoneNumberType],
     ea.[EmailAddress], p.[EmailPromotion], a.[AddressLine1],
     a.[AddressLine2], a.[City], sp.[Name] AS [StateProvinceName],
     a.[PostalCode], cr.[Name] AS [CountryRegionName], 
p.[AdditionalContactInfo]
FROM [HumanResources].[Employee] AS e
INNER JOIN [Person].[Person] AS p
     ON RTRIM(LTRIM(p.[BusinessEntityID])) = RTRIM(LTRIM(e.
[BusinessEntityID]))
INNER JOIN [Person].[BusinessEntityAddress] AS bea
     ON RTRIM(LTRIM(bea.[BusinessEntityID])) = RTRIM(LTRIM(e.
[BusinessEntityID]))
INNER JOIN [Person].[Address] AS a
     ON RTRIM(LTRIM(a.[AddressID])) = RTRIM(LTRIM(bea.[AddressID]))
INNER JOIN [Person].[StateProvince] AS sp
     ON RTRIM(LTRIM(sp.[StateProvinceID])) = RTRIM(LTRIM(a.
[StateProvinceID]))
INNER JOIN [Person].[CountryRegion] AS cr
     ON RTRIM(LTRIM(cr.[CountryRegionCode])) = RTRIM(LTRIM(sp.
[CountryRegionCode]))
LEFT OUTER JOIN [Person].[PersonPhone] AS pp
     ON RTRIM(LTRIM(pp.BusinessEntityID)) = RTRIM(LTRIM(p.
[BusinessEntityID]))
LEFT OUTER JOIN [Person].[PhoneNumberType] AS pnt
     ON RTRIM(LTRIM(pp.[PhoneNumberTypeID])) = RTRIM(LTRIM(pnt.
[PhoneNumberTypeID]))
LEFT OUTER JOIN [Person].[EmailAddress] AS ea
     ON RTRIM(LTRIM(p.[BusinessEntityID])) = RTRIM(LTRIM(ea.
[BusinessEntityID]))
OPTION (USE HINT('FORCE_DEFAULT_CARDINALITY_ESTIMATION'));

This hinted query executed in 291ms, while the original query is still running at almost 3 minutes' 
elapsed time.

Note
The shape for the ETL original plan and the new plan using the hint can be seen in the Introducing 
the Cardinality Estimator section in Chapter 3, Mechanics of the Query Optimizer.
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At this point, I have several possible actions:

• Disable the trace flag globally, unless the trace flag had been enabled as a result of workload 
tests that showed most queries benefit from CE 70. Even so, it’s recommended to not use the 
trace flag, but rather the corresponding database-scoped configuration to set that behavior at 
the database level, using the following T-SQL command:

ALTER DATABASE SCOPED CONFIGURATION SET LEGACY_CARDINALITY_
ESTIMATION = ON;

• If the decision to disable the trace flag warrants further system-wide tests, then at least for the 
offending query, we know that using CE 130 yields better results. Change the ETL to add the 
USE HINT('FORCE_DEFAULT_CARDINALITY_ESTIMATION') hint.

• If changing the ETL code is not possible now, consider creating a plan guide that adds the 
required hint on the fly for any incoming execution of that query, as shown in the following 
example. This allows new incoming execution to use the new optimized plan, while not making 
any immediate changes to the ETL code:

EXEC sp_create_plan_guide
@name = N'Guide1',
@stmt = 'SELECT e.[BusinessEntityID], p.[Title], p.[FirstName],
     p.[MiddleName], p.[LastName], p.[Suffix], e.[JobTitle],
     pp.[PhoneNumber], pnt.[Name] AS [PhoneNumberType],
     ea.[EmailAddress], p.[EmailPromotion], a.[AddressLine1],
     a.[AddressLine2], a.[City], sp.[Name] AS 
[StateProvinceName],
     a.[PostalCode], cr.[Name] AS [CountryRegionName], 
p.[AdditionalContactInfo]
FROM [HumanResources].[Employee] AS e
INNER JOIN [Person].[Person] AS p
     ON RTRIM(LTRIM(p.[BusinessEntityID])) = RTRIM(LTRIM(e.
[BusinessEntityID]))
INNER JOIN [Person].[BusinessEntityAddress] AS bea
     ON RTRIM(LTRIM(bea.[BusinessEntityID])) = RTRIM(LTRIM(e.
[BusinessEntityID]))
INNER JOIN [Person].[Address] AS a
     ON RTRIM(LTRIM(a.[AddressID])) = RTRIM(LTRIM(bea.
[AddressID]))
INNER JOIN [Person].[StateProvince] AS sp
     ON RTRIM(LTRIM(sp.[StateProvinceID])) = RTRIM(LTRIM(a.
[StateProvinceID]))
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INNER JOIN [Person].[CountryRegion] AS cr
     ON RTRIM(LTRIM(cr.[CountryRegionCode])) = RTRIM(LTRIM(sp.
[CountryRegionCode]))
LEFT OUTER JOIN [Person].[PersonPhone] AS pp
     ON RTRIM(LTRIM(pp.BusinessEntityID)) = RTRIM(LTRIM(p.
[BusinessEntityID]))
LEFT OUTER JOIN [Person].[PhoneNumberType] AS pnt
     ON RTRIM(LTRIM(pp.[PhoneNumberTypeID])) = RTRIM(LTRIM(pnt.
[PhoneNumberTypeID]))
LEFT OUTER JOIN [Person].[EmailAddress] AS ea
     ON RTRIM(LTRIM(p.[BusinessEntityID])) = RTRIM(LTRIM(ea.
[BusinessEntityID]));',
@type = N'SQL',
@module_or_batch = NULL,
@params = NULL,
@hints = N'OPTION (USE HINT (''FORCE_DEFAULT_CARDINALITY_
ESTIMATION''))';

After making this change, look at AM’s Overview section:

Figure 11.29: Overview section of the Activity Monitor after the plan guide has been put in place

Notice the CPU is now running at 20 percent and the ETL is still executing. I’m also doing 60 batch 
requests/sec, which is significantly better than my starting point of 6 batch requests/sec.

Summary
This chapter covered the important topic of tracking query progress, and how to use either Live 
Query Statistics to see the live progress of a single query in SSMS, or Activity Monitor to access the 
live progress of any running query. We also covered how these tools and underlying Database Engine 
features are invaluable to troubleshoot and solve query performance issues, namely for those queries 
that take hours to complete, or never do.
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The Query Profiling Infrastructures available in SQL Server depend on the Database Engine version. 
The following table summarizes the options to enable either of the Query Profiling Infrastructures 
and the minimum required version for each option:

Standard Profiling Lightweight Profiling
Globally XEvent session with query_post_

execution_showplan XE; starting with 
SQL Server 2012

Trace Flag 7412; starting with 
SQL Server 2016 SP1

Showplan XML trace event in SQL Trace 
and SQL Server Profiler; starting with SQL 
Server 2000

XEvent session with query_
thread_profile XE; 
starting with SQL Server 
2014 SP2

–

XEvent session with query_
post_execution_plan_
profile XE; starting with 
SQL Server 2019

Single session

Use SET STATISTICS XML ON; starting 
with SQL Server 2000

QUERY_PLAN_PROFILE 
query hint + XEvent session 
with query_plan_
profile XE; starting with 
SQL Server 2016 SP2 CU3 and 
2017 CU11

Use SET STATISTICS PROFILE ON; 
starting with SQL Server 2000 –

Click LQS button in SSMS; starting with SQL 
Server 2014 SP2 –

This analysis was possible because at this point, we know how to create reasonable hypotheses about 
potential query performance issues by analyzing query plan properties, and what they say about the 
query optimization choices during compilation time.

In the next and final chapter of the book, we will investigate a tool available to us in SSMS that will 
help identify and remediate issues with our T-SQL query performance that arise due to changes in 
the Cardinality Estimator, specifically when upgrading our database compatibility level. This tool is 
invaluable when upgrading our database to a new version of SQL Server.
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Managing Optimizer Changes

In this chapter, we will discuss how users can manage Query Optimizer changes throughout versions 
of the SQL Database Engine. We will cover a client-side feature in SQL Server Management Studio 
(SSMS) – the Query Tuning Assistant (QTA) – and a new feature for the SQL Server 2022 release – CE 
Feedback. Both features aim at addressing some of the most common causes of cardinality estimation 
(CE)-related performance regressions that may affect our T-SQL queries after an upgrade from an 
older version of SQL Server to a newer version, namely SQL Server 2016 and above.

At the time of writing, SQL Server 2014 is months away from completing its 10-year life cycle and 
reaching end of support. Also, SQL Server 2016 and SQL Server 2017 no longer have mainstream 
support. This can raise concerns for all those still running applications supported by these legacy 
SQL Server versions.

However, modernizing the database platform (a synonym for upgrading in this context) is not a risk-
free proposition. The risk that, after upgrading and leaping so many years and versions, a part of an 
application’s workload can experience performance regressions due to CE changes is very real. This is 
why Microsoft has invested over the years in building features that can greatly mitigate much of this 
regression risk  Query Store, Automatic Plan Correction (APC), QTA, and CE Feedback.

This chapter covers the following topics:

• Understanding where QTA and CE Feedback are needed

• Understanding QTA fundamentals

• Exploring the QTA workflow

Technical requirements
The examples used in this chapter are designed for use on SQL Server 2022 and Azure SQL Database, 
but they should work on any version of SQL Server, 2012 or later. The Developer edition of SQL Server 
is free for development environments and can be used to run all the code samples. There is also a free 
tier of Azure SQL Database that you can use for testing at https://aka.ms/freedb.

https://aka.ms/freedb
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You will need the AdventureWorks2016_EXT (referred to as AdventureWorks) and 
AdventureWorksDW2016_EXT (referred to as AdventureWorksDW) sample databases, which 
can be found on GitHub at https://github.com/Microsoft/sql-server-samples/
releases/tag/adventureworks. Code samples for this chapter can also be found on GitHub 
at https://github.com/PacktPublishing/Learn-T-SQL-Querying-Second-
Edition/tree/main/ch12.

Understanding where QTA and CE Feedback are needed
The CE version that our databases use directly influences how query plans are created for queries that 
will be executed in those databases. And we have seen first-hand the effects of the CE every time we 
compared estimated number of rows with actual number of rows throughout the book – for example, 
in the Query plan comparison section of Chapter 9, Comparative Analysis of Query Plans, where we 
dealt with the Row Goal optimization scenario.

When upgrading from older versions of the SQL Database Engine to newer versions (for example, an 
older SQL Server version to Azure SQL Database or SQL Server 2022), we need to be conscious of how 
upgrading from an older CE version to a newer CE can affect our workloads – benefits are expected 
for the most part, but regressions can happen. For example, we discussed in Chapter 6, Discovering 
T-SQL Anti-Patterns in Depth, how the latest versions of the SQL Database Engine solve classic anti-
patterns with little to no code changes – and these are overall welcomed changes.

Additionally, we also need to be conscious of the difference between upgrading the SQL Database 
Engine as platform binaries and upgrading the Database Compatibility Level setting of the user 
databases. For the sake of what we’re discussing in this chapter, upgrading database compatibility 
means upgrading to a more recent CE version, and unlocking some newer engine features that we’ve 
discussed throughout this book.

Note
For example, the features Degree of Parallelism (DOP) Feedback and Parameter Sensitive 
Plan Optimization (PSPO) – both of which we discussed in previous chapters – require the 
latest 160 compatibility level to work.

The CE version doesn’t change just by upgrading the SQL Database Engine version itself. In other 
words, upgrading the SQL Database Engine binaries doesn’t necessarily mean we must upgrade the 
database compatibility – in fact, we shouldn’t – at least not immediately after we upgrade the binaries. 
Decoupling the two upgrade moments – SQL Database Engine and the Database Compatibility 
Level – allows us to keep workloads stable after the SQL Database Engine upgrade because the Query 
Optimizer still works, with the rules mapping to the compatibility level. How can we do that? How 
do we take charge of upgrade risks?

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
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Tip
We discussed how the CE version is tied to the concept of the database compatibility level, and 
we show their version mapping in the Introducing the Cardinality Estimator section of Chapter 2, 
Mechanics of the Query Optimizer.

The following diagram summarizes Microsoft’s recommended steps to minimize risk with CE upgrades:

Figure 12.1: Recommended steps to minimize risk with CE upgrades

These detailed steps, which are based on the difference between upgrading the SQL Database Engine 
platform and upgrading a database’s compatibility level, are outlined here:

1. Upgrade SQL Server from any older version (for example, SQL Server 2012 to SQL Server 
2022), and keep databases in the same database compatibility level as the source SQL Server 
version. This step only applies to SQL Server, whether running in your own data center or in 
a VM hosted by a public cloud vendor. In the most common upgrade scenarios, the database 
compatibility level will not change on user databases after the upgrade:

 � If we do an in-place upgrade, all user databases keep the same database compatibility level 
as before the upgrade, 110 – this was the highest and native compatibility level in SQL 
Server 2012.

 � If we do a side-by-side upgrade (a migration), then all databases that are moved through 
attach/detach or backup/restore also keep the same database compatibility level as before 
the upgrade.

Note
If you are using Azure SQL Database, the in-place upgrade of the SQL Database Engine is a 
continuous, roll-forward process that is handled by Microsoft Azure. For existing user databases, 
much like as would happen with a SQL Server in-place upgrade, their database compatibility 
level is kept as-is.

2. Enable the Query Store, as we discussed in Chapter 10, Tracking Performance History with 
the Query Store.
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3. Let Query Store collect a baseline for the workload that represents the typical business cycle for 
your applications. If we are going through this process in production, this means allowing the 
production workload to just execute. If we are doing this in a pre-production or development 
(dev) environment, then we need to ensure that whatever test workload we have is a valid 
representation of the production workload.

4. Once we know enough time has passed and the Query Store has accrued enough information 
about our workloads, plan to change the database compatibility level to our chosen target level; in 
this case, it will be 160, which is the highest compatibility level in the SQL Server 2022 release. 
This is a per-database operation.

We can do this by using the ALTER DATABASE CURRENT SET COMPATIBILITY_LEVEL 
= 160; T-SQL command or by using the database Options menu in SSMS, as shown in the 
following screenshot:

Figure 12.2: Database Properties showing the available compatibility levels

5. Monitor the Regressed Queries report in Query Store to quickly find and fix regressions with 
the Force Plan feature, as shown in the following screenshot.

Figure 12.3: The Force Plan button in the Regressed Queries Query Store report

This becomes possible precisely because a baseline collection of query plans that were produced 
using CE 110 – the same that drove Query Optimizer choices in SQL Server 2012 – was 
collected. From there, any regressions that occur due to the change in the CE version become 
trackable and actionable.

In our current scenario, because we have upgraded to SQL Server 2022 in this case, we can 
enable the Automatic Plan Correction (APC) feature, and this last step of forcing the plan 
becomes automated. We can enable APC using the ALTER DATABASE CURRENT SET 
AUTOMATIC_TUNING ( FORCE_LAST_GOOD_PLAN = ON ); T-SQL command.
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Note
Automatic tuning is a database feature that was released with SQL Server 2017 and is also in 
Azure SQL Database. One of its functionalities is APC, which identifies query execution plan 
regressions based on CPU time. In the scope of CE upgrades, APC will revert to the last known 
good query plan, provided the recommended baseline with the source database compatibility level 
was collected. We discussed APC in Chapter 10, Tracking Performance History with Query Store.

At this point, we might ask, if the Query Store and APC can mitigate query regression problems when 
I upgrade the database compatibility level, why would Microsoft create the QTA tool, or invest in the 
newer CE Feedback feature?

The main challenge is that too many database professionals skip the recommended process and 
somewhat recklessly upgrade to the latest database compatibility level, immediately after the SQL 
Database Engine is upgraded. They become exposed to the risk of finding that a part of the database’s 
workload has regressed, caused by not having a baseline that enables Query Store and APC to help 
with any plan change that resulted in performance degradation.

Therefore, QTA was released back in 2019 and provides a wizard-like experience to guide the user 
through the recommended process, from a single entry point in SSMS.

As Microsoft has continued to invest in this space, with the most recent release of the SQL Database 
Engine in SQL Server 2022, the CE Feedback feature has become available and largely addresses 
performance regression scenarios tied to CE version upgrades (changes to the CE assumptions) 
without the need for a previous-version baseline collection.

Note
We discussed CE assumption changes in Chapter 2, Mechanics of the Query Optimizer, and how 
the CE Feedback feature can detect and attempt to correct cardinality estimation inferences 
tied to those changes, when they prove to be detrimental to query performance. At the time of 
writing, CE Feedback is not yet generally available in Azure SQL Database.

While CE Feedback can automatically detect these scenarios, it will only apply feedback to queries 
where the skew between estimated and actual rows is orders of magnitude off, and that skew results 
in performance drops. This is a reasonably conservative approach, given that the feature doesn’t 
require user input to make decisions, and therefore, it must be certain that the changes it enacts are 
indeed worth it.

In contrast, queries with a much lower skew between estimated and actual rows are reported by QTA 
because it is driven by the user, and we are in control of which queries are in scope.

Also, CE Feedback is only available if you upgrade the compatibility level to 160, and therefore, if 
your target version for upgrade is SQL Server 2019, only QTA is an option to manage the risk of 
compatibility level upgrades.
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Now that we understand what QTA and CE Feedback are and why they are important, let’s dive deeper 
into the QTA and how it works.

Understanding QTA fundamentals
While guiding us through the recommended process, QTA doesn’t follow it exactly. The very last step, 
step 5, will not have the same outcome we saw in the previous section; instead of providing options 
to revert to a last known good plan, QTA helps to find a new state that is not the pre-CE upgrade 
or post-CE upgrade plan but a new plan that will hopefully outperform both of the previous plans.

The following diagram summarizes the recommended steps to minimize risk with CE upgrades using 
QTA, which replaces the very last step of the process described in the previous Understanding where 
QTA and CE Feedback are needed section:

Figure 12.4: The recommended steps to minimize risk with CE upgrades using QTA

How does QTA find a better query plan for regressed queries? Starting with the same data that’s 
available in Query Store’s Regressed Queries report, QTA will look for query patterns that may be 
affected by changes in CE, specifically from CE 70 to CE 120 and higher.

Note
QTA only handles SELECT queries, both ad hoc and parameterized. For parameterized queries, 
QTA can only experiment on those where the compiled parameter is available in the Parameter 
List property of the query plan. We discussed this query plan property in Chapter 3, Exploring 
Query Execution Plans, in the Query plan properties of interest section.
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QTA will then experiment with those queries, executing them with query hints that adjust several 
CE model choices, and those that result in alternate query plans. After the analysis is complete, who 
decides which plans are better and should be used? The user does. As we reach the end of the process, 
we will be able to see the alternatives that exist for each plan and easily pick the one that’s either faster 
or uses less CPU, for example. We will describe the workflow in the next section, as we upgrade our 
AdventureWorksDW database to SQL Server 2022’s native database compatibility level, 160.

Just like the newer CE Feedback feature, QTA can handle the following CE model changes:

• Predicate independence versus correlation. We discussed this CE assumption in the Introducing 
the Cardinality Estimator section of Chapter 2, Mechanics of the Query Optimizer. If the 
experiments indicate that using CE 70’s independence assumption yields better estimations 
than the default correlation assumption, then the resulting query plan is added to the list of 
recommendations. Under the covers, QTA was able to switch the default CE assumption for 
the specific query being experimented on, by applying the USE HINT ('ASSUME_MIN_
SELECTIVITY_FOR_FILTER_ESTIMATES') query hint. This hint causes SQL Server to 
create a query plan that accounts for the cardinality of each column in an AND filter predicate, 
rather than the cardinality of all columns combined by the AND predicate.

• Simple Join Containment versus Base Join Containment: We also discussed this CE assumption 
in the Introducing the Cardinality Estimator section of Chapter 2, Mechanics of the Query Optimizer. 
Like the previous bullet regarding independence versus correlation, if the experiments indicate 
that using the legacy simple containment assumption yields better estimations than the default 
base containment assumption, the resulting query plan is added to the list of recommendations. 
The hint applied by QTA to include this consideration is USE HINT ('ASSUME_JOIN_
PREDICATE_DEPENDS_ON_FILTERS'). This hint causes the SQL Database Engine to 
create a query plan that assumes the estimated cardinality needs to be calculated by accounting 
for filter predicates applicable to tables, rather than calculating only by using the base tables 
(without any filter predicates). In simpler terms, first estimate the non-join filter predicates, 
and then the join predicates.

• Multi-Statement Table Valued Function (MSTVF) fixed estimations: As we discussed in 
the Deconstructing table-valued functions section of Chapter 5, Writing Elegant T-SQL Queries, 
the Query Optimizer uses a default estimation of 100 rows for MSTVFs, since the row count 
is not available at compile time – this is a runtime structure. This has always been the case in 
SQL Server, but in older versions, the default estimation was just 1 row, whereas starting from 
SQL Server 2014, this assumption was increased to 100 rows. It may not look like much on its 
own, but this estimation is used throughout the query optimization process and drives other 
optimizations on top of this assumption. The change back in CE 120 can be enough to impact 
query plans that heavily depended on the previous version’s combination of optimizations based 
on one row. Under the covers, QTA was able to switch the default CE assumption of 100 rows 
back to 1 row for the specific query being experimented on, by applying the QUERYTRACEON 
9488 query hint.
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Note
Performance issues tied to MSTVF-fixed estimations became obsolete with the interleaved 
execution for MSTVFs feature, introduced in SQL Server 2017. We discussed this feature in 
Chapter 5, Writing Elegant T-SQL Queries.

• If all the listed scenarios fail to improve the query plan, then, as a last resort, QTA will consider 
reverting to CE 70 in full, by applying the USE HINT ('FORCE_LEGACY_CARDINALITY_
ESTIMATION') query hint. This extreme catch-all approach is not a consideration for CE 
Feedback. In this regard, QTA can go to the extreme of using a “hammer” approach, whereas 
CE Feedback always uses a very targeted “scalpel” approach.

Exploring the QTA workflow
We’ve briefly described what QTA does and, in greater depth, how QTA works internally. But now, 
it’s time to actually run through the recommended database compatibility upgrade we discussed in 
the Understanding QTA fundamentals section.

QTA is a session-based tool, which means we can open and close it at will while the database compatibility 
upgrade process progresses. This is useful, given that the recommended database compatibility upgrade 
process can run for days, depending on the business cycle that our workload serves.

Tip
QTA doesn’t need to run from an SSMS installed on the server. It can execute the workflow 
against the server from our laptop, desktop, or another designated management machine that 
you have available.

The way QTA stores our session’s state and analysis data is by creating a few tables in the targeted user 
database in the msqta schema, as shown in the following screenshot. This schema will remain in the 
database, and it’s not recommended to remove it.
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Figure 12.5: msqta schema objects in the AdventureWorksDW database

Tip
Multiple tuning sessions can be created on a single database over time, but only one active 
session can exist for any given database.

Before we start a database compatibility upgrade process, some housekeeping tasks are needed, such 
as configuring Query Store if it’s not already running in the database. QTA can do this for us as part 
of the Create Session wizard.

For this example, we installed a SQL Server 2022 instance where we restored our database, 
AdventureWorksDW. Given this database was restored, it keeps the same database compatibility 
level, 110, that it had in the source SQL Server 2012 instance.

To start a new session, we go to SQL Server Management Studio (SSMS), connect to our new SQL 
Server 2022, right-click the database name, select Tasks, select Database Upgrade, and click on New 
Database Upgrade Session, as shown in the following screenshot:
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Figure 12.6: Starting the database upgrade session from SSMS

This action opens the session configuration window, where the first step is to enter some information 
that will drive the upgrade process:

• The expected Workload duration (days) to capture (the minimum is 1 day), which is used 
to configure Query Store in the next step: For our example, the business cycle we’ve identified 
is 5 days – meaning it can take up to five days for Query Store to capture all the application 
workload and some ETL processes we execute every night. We need to ensure we capture 
a representative baseline so that after we complete the database compatibility upgrade, any 
regressed queries can be found and analyzed by QTA.

• The intended target database compatibility level that the database should be set to after 
the QTA workflow completes: Given that the database is now at database compatibility level 
110 and we are working in SQL Server 2022, all higher compatibility levels are available in the 
dropdown. For this example, we’ll select 160.
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The following screenshot displays the QTA window where we configured the session:

Figure 12.7: The QTA session configuration Setup screen

While QTA guides us through the recommended upgrade process, let’s keep in mind that Query Store 
is storing all the information. This is especially relevant for the point in time after we upgrade the 
database compatibility. For any query that may not be eligible for QTA to deal with, we are free to use 
Query Store’s Regressed Queries report to find other ways of handling regressed queries, such as forcing 
a previously known good plan, while we fix the query to work natively in the new CE – in this case, 
160. The following screenshot shows the Regressed Queries report under the Query Store in SSMS:
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Figure 12.8: Query Store reports in SSMS

The next step is to configure Query Store. In the Settings window, we can see two columns. The 
following screenshot displays the QTA window where we configured the Query Store:

Figure 12.9: The QTA Query Store configuration setup screen
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From the screenshot, we can see the following:

• In the Current state of the Query Store for our database, note that Operation Mode is set to Off 
because we have not enabled Query Store manually. If we had enabled Query Store previously, 
we would be able to change its settings here, editing any configuration if the Current radio 
button is selected.

• In the Recommended settings for Query Store, note the proposed Stale Query Threshold (days) 
setting is twice the number we entered for the workload duration on the previous screen (refer 
to the explanation prior to Figure 12.7). This is because we had selected 5 days, and Query Store 
needs to be able to collect our five-days baseline, plus five days’ worth of workload after we 
change to compatibility level 160. Only then do we compare the same business cycle across CE 
70 and CE 160, allowing Query Store to identify regressed queries that span the relevant time 
window. We can opt to accept the recommended settings by clicking on the Recommended 
radio button.

After clicking Next, we get a new screen with some information on how we’ve configured the session, 
instructing us to start running our workload (QTA does not generate any workload for us). If we’re 
running QTA in a test server, then we are responsible for generating our test workload.

Alternatively, let’s say I have gone through the recommended upgrade process in production manually 
(as we discussed in the Understanding where QTA is needed section). Then, we could restore the 
production database backup to a test server, and the Query Store for that database would allow us to 
jump to the analysis and experimentation step later in the QTA workflow.

In our example, we’re running this process in production, which means we can just let our normal 
business cycle happen normally as application workloads execute. On this new screen, click Finish 
to exit the session setup – this completes step 1 of the QTA workflow.

To start running through the upgrade process itself, we return to SSMS, right-click the database 
name, select Tasks, select Database Upgrade, and click on Monitor Sessions, as shown in the 
following screenshot:



Managing Optimizer Changes412

Figure 12.10: Monitoring QTA sessions in SSMS

A new window tab opens in SSMS, in the scope of QTA’s session management page. In the following 
screenshot, we can see our current session. Click on the session name, and then click on Details to 
open it:

Figure 12.11: The QTA session currently active
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Note in the previous screenshot that we are in step 1 of five steps of the upgrade process – Setup. When 
we open the session, we enter step 2, Data Collection, in Substep 1 of 3 - Baseline Data Collection, 
as shown in the following screenshot:

 Figure 12.12: The QTA baseline data collection step

As we can see on the QTA screen, it asks us to start our workload if not already started. We’re running 
our upgrade process in a production server, so the workload is already executing. We can close this 
screen and go away for five days while our baseline populates – but, for example, if we decide that after 
just three days we have enough data collected and don’t need the full five days, we can come back to 
QTA via the Monitor Sessions task, and we’ll be right where we left off.

After our baseline is complete, we return to QTA in step 2 and check the Done with workload run 
box, as shown in the following screenshot:

Figure 12.13: Ending the QTA baseline data collection step

This signals to QTA that it’s time to move forward with the upgrade process, and when we click Next, 
the following prompt appears, asking us to upgrade the database compatibility level to our chosen 
target, 160:
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Figure 12.14: Confirming the compatibility level upgrade step

When we click Yes, QTA enters Substep 2 of 3 - Upgrade Database and upgrades the database 
compatibility level, as shown in the following screenshot. Then, we click Next to move on to the last 
data collection step:

Figure 12.15: QTA upgrade database step

Substep 3 of 3 - Observed Data Collection is similar to substep 1 of 3 – we are asked to run the same 
workload that constitutes the baseline so that it can compare the proverbial apples to apples and, 
through Query Store, find all regressed queries. Again, we can close the QTA window and go away 
for the next five days until we have a full comparison available.

We have a Refresh button available, that we can use during those five days to keep track of what’s 
been found so far. Clicking on it refreshes the list of top regressed queries – note that some queries 
already executed over 150 times in mere seconds.
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Figure 12.16: The QTA post upgrade data collection step

As we can see in the preceding screenshot, the default settings list the top 20 regressed queries, but we 
can change the number of queries to show – from 20 to whatever number is relevant to us. The list is 
built on the default metric, which is the overall query duration, but this can be changed to CpuTime. 
The default Aggregation setting for the chosen metric is an average (Avg), but others are available, 
as shown in the preceding screenshot. If we change any of these settings, we need to click Refresh.

In the query table, we can see that the query text is limited to the first 100 characters, which is still 
enough for us to recognize the query. If not, click the ellipsis button (…), and the query text will 
appear in a different tab, as shown in the following screenshot:

Figure 12.17: The details of a captured query

We also see the number of executions, or runs, the baseline metric, and the observed metric – in this 
case, the duration in milliseconds for both the pre-upgrade and post-upgrade collections, as well as 
the % change and whether the query is tunable – meaning whether QTA can experiment on the query. 
Note that Query ID 1 is not tunable, as indicated by the False value in the Tunable column. It is a 
parameterized query, and the compile-time parameters are not available.
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After our post-upgrade data collection is complete, we return to QTA, still on step 2, and check the 
Done with workload run box, as shown in the following screenshot:

Figure 12.18: Both data collections completed in QTA

This signals QTA to move forward to the Analysis phase. When we click Next, QTA enters step 3 – 
View Analysis. Here, we look at what queries we want to submit for analysis. We look at the queries 
using different metrics and aggregations, and we can see a few queries that got slower or had no change 
after the upgrade, as shown in the following screenshot:
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Figure 12.19: The QTA data analysis step

This is a one-time selection process, and for the sake of this exercise, I selected all queries to be 
analyzed. By clicking Next, we enter the Analysis process, which we must agree to, as shown in the 
following screenshot:

Figure 12.20: Confirmation that the QTA data analysis step can start

On the next screen, while the analysis process is ongoing, the Status column displays a Initial value 
for all queries. After a few minutes, the status updates to Test complete, which leads to step 4 – View 
Findings, as shownn in the following screenshot, and we can see what improvements were found:
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Figure 12.21: The QTA data analysis step completed

We can see the baseline metric – the workload as it executed before the database compatibility upgrade 
– and the new observed metric, which is the result of the analysis process. % Change shows us all 
queries, and query 7 improved by up to 67 percent. If we click on one of the links in the Query Option 
column, it will open the product documentation in the scope of the proposed hint.

After we select which queries we want to deploy the recommendations for, based on the improvement 
percentage (we have selected all but one), we click the Deploy button, as shown in the following screenshot:

Figure 12.22: Selecting improved queries in QTA

This creates a plan guide with the required query hint that will improve the query performance, 
based on the analysis that was done, which consisted of actually executing the queries and collecting 
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runtime metrics. After deployment of the plan guides, all queries will show a Deployed status, and 
we reach step 5 – Verification – as shown in the following screenshot:

Figure 12.23: Deploying plan guides to force optimized queries

The upgrade is successfully complete, and we managed to improve the regressed queries and restore 
good performance to the part of our workload that had regressed after upgrading from CE70 to CE160.

Note
QTA uses plan guides and was not updated to use Query Store plan forcing with Query Store 
hints, which is a new feature in SQL Server 2022 and Azure SQL Database, as discussed in 
Chapter 10, Tracking Performance History with Query Store.

If, in the next few days, we notice that the improvement for one or more tuned queries is not as beneficial 
as the analysis showed, we can resume the session in the Verification step, select the offending query, 
and click the Rollback button to remove the respective plan guide.

Summary
From the set of regressed workloads that the SQL Database Engine team has handled over the years, 
the initial scenarios covered by QTA and CE Feedback are some of the most common after a database 
compatibility level upgrade (and, therefore, a CE upgrade), which can make users question whether 
to upgrade. But that is just because when upgrading from an old version, such as SQL Server 2008 
or 2012, our T-SQL queries were fully tuned to the only CE model set that existed at the time. When 
some aspects of cardinality estimation changed, there was a possibility that some queries would have 
to be tuned for the new models. Fortunately, the SQL Database Engine team believes that backward 
compatibility is an asset in the SQL Database Engine and included these hints, which allow selective 
tuning opportunities for the scenarios covered by QTA and CE Feedback, as well as others less common 
not covered by QTA nor CE Feedback.
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Whether you choose to use QTA or not, following the recommended CE upgrade process we detailed 
here is the only way we can ensure control over our workloads, as they naturally evolve and progress 
throughout the years of use and Database Engine versions. Even without QTA, running through the 
CE upgrade process by interacting directly with Query Store, APC and CE Feedback is a strong step 
toward ensuring our T-SQL queries remain scalable, delivering the level of performance that’s expected 
for the applications they serve.

If you have gotten this far, congratulations – you are now an expert T-SQL developer! We hope that 
this book has helped unlock some of the mysteries of T-SQL query performance in the SQL Database 
Engine, illustrating that how a query is written can and does impact how it will perform.

In this book, we learned the following:

• How the SQL Database Engine processes queries and the various building blocks of a T-SQL query

• How the Query Optimizer estimates the cost of a query and identifies the cheapest query plan

• How plans are cached and reused to save time and resources

• How to analyze a query plan to identify areas that may cause the query to perform poorly

• Some best practices to write efficient T-SQL queries that can use indexes effectively

• Several anti-patterns that can cause the Query Optimizer to choose an inefficient query plan 
or make the query perform poorly

• Some of the free tools and features available from Microsoft to help you identify and troubleshoot 
poor-performing queries in your environment

The knowledge gained from reading this book will help identify and troubleshoot existing query 
performance issues, as well as avoid anti-patterns when writing T-SQL code in the future. Most 
importantly, you should now have the skills to write efficient and elegant T-SQL code for all your SQL 
Database Engine querying needs.
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