

Learn SQL Database
Programming

Query and manipulate databases from popular relational
database servers using SQL

Josephine Bush

BIRMINGHAM - MUMBAI

Learn SQL Database Programming
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Brandon D'Abreo
Acquisition Editor: Reshma Raman
Content Development Editor: Nazia Shaikh
Senior Editor: Ayaan Hoda
Technical Editor: Utkarsha S. Kadam
Copy Editor: Safis Editing
Project Coordinator: Aishwarya Mohan
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Jyoti Chauhan

First published: May 2020

Production reference: 1290520

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83898-476-2

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Josephine Bush has over 10 years of experience as a Database Administrator. Her
experience is extensive and broad-based, including in financial, business, and energy data
systems using MySQL, SQL Server, Oracle, and PostgreSQL. She is a Microsoft Certified
Solutions Expert: Data Management and Analytics. She holds a BS in Information
Technology, an MBA in IT Management, and an MS in Data Analytics.

I would like to acknowledge my husband, Jim, who provided support and encouragement
at every step, and gave me especially useful baseball insights.

About the reviewers
Starting out with the Microsoft stack, Frank Solomon gradually focused on SQL Server and
database development. He then extended to writing and technical writing. He writes for
SQL Shack, he blogs at Bit Vectors, and he had the lead co-author role for The SQL
Workshop, a Packt book. Find Frank at LinkedIn, and reach out to him with writing /
technical writing/development opportunities. He levers sharp software development and
writing skills to build awesome products. He has plenty of remoting experience, and he
uniquely relies on the active voice to build high-quality writing products.

Awni Al Saqqa is a Microsoft Technology Specialist in MS SQL Server and a certified
solutions developer since 2007. He has over a decade of experience with database
development and administration on SQL Server, Oracle, and MySQL. He is a solutions
architect, who is hands-on in many enterprise projects for different business sectors, such as
education, hospitality, retail, manufacturing, marketing, and more, which has given him
the perfect combination between business and technical experience. Awni is also the Lead
Author for The SQL Workshop book which is published by Packt

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Database Fundamentals
Chapter 1: Introduction to Relational Database Management Systems 9

Understanding SQL 9
Elements of SQL 10

Understanding databases 11
Tables 12
Fields 12
Records or rows 13
Columns 13

Understanding data integrity 13
Types of integrity 14

Entity integrity 14
Unique constraints 14
Not null constraints 16
The primary key 16

Referential integrity 18
Domain integrity 20

Database normalization 22
The first normal form 23
The second normal form 26
The third normal form 27

Types of RDMS 30
Oracle 30
MySQL 31
SQL Server 31
PostgreSQL 32
RDMS SQL differences 32

Summary 32
Questions 33

Chapter 2: Installing and Using MySQL Workbench 34
Technical requirements 34
Installing MySQL Workbench 34

Installing on Windows 35
Installing MySQL on Windows 35
Configuring MySQL on Windows 44

Installing on Mac 54
Installing MySQL Server on Mac 54

Table of Contents

[ii]

Checking the status of MySQL Server on Mac 58
Installing MySQL Workbench on Mac 59

Using MySQL Workbench 60
Connecting to your local instance 61
Connecting to another instance or setting up your local instance 62

Restoring a database 64
Summary 69
Questions 70

Chapter 3: Understanding Data Types 71
Understanding string data types 71

String data types in MySQL 72
MySQL string data type table summary 74
String data types in other RDMS 75

Oracle 75
PostgreSQL 76
SQL Server 76

String data types RDMS table comparison 76
Understanding numeric data types 77

Numeric data types in MySQL 78
MySQL numeric data type table summary 80
Numeric data types in other RDMSes 81

SQL Server 82
Oracle 82
PostgreSQL 82

Numeric data types table comparison 83
Understanding date and time data types 83

Date and time data types in MySQL 84
MySQL date and time data type table summary 84
Date and time data types in other RDMSes 85

Oracle 85
PostgreSQL 86
SQL Server 86

Date and time data types table comparison 87
Understanding other data types 88

Other data types in MySQL 88
Other data types in other RDMSes 89

Oracle 89
PostgreSQL 90
SQL Server 90

Choosing the right data type 91
Examples of choosing a data type 91

Summary 92
Questions 93

Chapter 4: Designing and Creating a Database 94
Technical requirements 94

Table of Contents

[iii]

Creating a database 94
Guidelines for naming conventions 95

Avoiding keywords 95
Avoiding spaces 96
Descriptive and accurate naming 96
Case and separating words 97
Allowed characters when naming database objects 98

Learning how to create a database 99
Creating a database via the MySQL Workbench interface 99
Creating a database via MySQL Workbench with a SQL script 103

Understanding SQL code errors 105
Understanding table relationships 107

Understanding entity-relationship diagrams 107
Understanding one-to-one table relationships 108
Understanding one-to-many table relationships 109
Understanding many-to-many table relationships 109

Creating a table in the database 116
Understanding how to apply data types and data integrity to your table 117
Learning to create a database table 117

Natural and surrogate primary keys 121
Creating a database table via MySQL Workbench 122
Creating a database table via MySQL Workbench with SQL scripts 129

Learning how to format SQL code for readability 131
Commenting SQL code 131

Understanding indexes 132
Understanding how indexing relates to data integrity 133

Types of indexes 133
Understanding how indexing impacts performance 135
Understanding naming conventions for indexes 137

Summary 138
Further reading 139
Questions 139

Chapter 5: Importing and Exporting Data 140
Technical requirements 140
Understanding table data import and export 141

Importing CSV files with table data import 141
Exporting to CSV files with table data export 148

Understanding SQL data import and export 153
Importing via data import in MySQL Workbench 153
Exporting via data export in MySQL Workbench 158

Understanding result data export 162
Exporting data directly from a result set 162

Understanding SQL syntax for importing and exporting data 164
Importing with a SQL script 164
Exporting with a SQL script 165

Table of Contents

[iv]

Summary 166
Further reading 167
Questions 167

Section 2: Basic SQL Querying
Chapter 6: Querying a Single Table 169

Technical requirements 169
Using the SELECT statement and FROM clause 169

Understanding the SELECT statement and the FROM clause 170
Learning the correct order of other clauses you can use with SELECT 171
Understanding the different ways to query with a SELECT statement 171
Learning how to use column aliases 174
Using the USE statement 176
Learning how to use the DISTINCT clause 176
Learning how to use the LIMIT clause 178

Limiting results on other Relational Database Management Systems (RDMSes) 180
Learning how to save a SQL query to a file 181
Learning how to open a SQL file 182
Learning how to add comments to your SQL code 183

Commenting code on other RDMSes 185
Using the WHERE clause 185

Understanding how and when to use the WHERE clause to limit query
results 185
Learning how to use the AND and OR operators 186
Learning how to use the NOT, IN, and BETWEEN operators 187
Learning how to use the LIKE operator and wildcards 188

Using the percent (%) wildcard 189
Using the underscore (_) wildcard 191
Escaping wildcard values 194
Differences between LIKE in other RDMSes 195

Learning how to filter on NULL values 196
Using the ORDER BY clause 197

Learning how to use the ORDER BY clause to order query results 198
Learning how to use the ORDER BY clause to sort by one or more columns 199

Using indexes with your queries 202
Learning how to see what indexes your query is using 202

Summary 212
Questions 212
Further reading 213

Chapter 7: Querying Multiple Tables 214
Technical requirements 214
Understanding joins 215

Understanding results returned with an inner join 215
Understanding results returned with a left outer join 216

Table of Contents

[v]

Understanding results returned with a right outer join 217
Understanding results returned with a full outer join 218

Using INNER JOIN 218
Learning INNER JOIN syntax 219
Learning how to use table aliases 222

Using OUTER JOIN 223
Learning LEFT OUTER JOIN syntax 223
Learning RIGHT OUTER JOIN syntax 226
Exploring differences in other relational data models 230

Using FULL OUTER JOIN 230
Using advanced joins 231

Understanding what a CROSS JOIN is and how to use it 231
Understanding what a NATURAL JOIN is and how to use it 233
Understanding what a SELF JOIN is and how to use it 234

Understanding set theory 235
Understanding what a UNION join is and learning how to use it in a SQL
query 235

UNION 237
UNION ALL 240

Understanding what an intersect is and learning how to use it in a SQL
query 241

Looking at intersection in other RDMS 242
Understanding what difference is and learning how to use it in a SQL query 243

Exploring differences in other RDMS 243
EXCEPT 244
MINUS 244

Using indexes with your queries 244
Summary 250
Questions 250
Further reading 251

Chapter 8: Modifying Data and Table Structures 252
Technical requirements 252
Inserting data into tables 252

Gathering information to insert, update, or delete data 253
Using the INSERT statement 254

Single-row inserts 254
Multiple row inserts 259
Differences in other Relational Database Management Systems 259

Inserting data from one table into another table 260
Differences to other RDMSes 262

Deleting data from tables 263
Using the DELETE statement with a WHERE clause 263
Deleting all the data from a table 265
Learning an alternative way to delete data with the TRUNCATE statement 265

Updating data in tables 266

Table of Contents

[vi]

Using the UPDATE statement with a WHERE clause 266
Updating all the data in a table 267
Updating table data from another existing table 268

Using transactions to save or revert changes 269
Understanding a SQL transaction 270
Learning the SQL syntax for SQL transactions 271

Differences in RDMS transaction syntax 275
Modifying the table structure 275

Adding a column 277
Dropping a column 278
Renaming a column 279
Changing the data type of a column 280
Adding or changing a column constraint 282
Dropping a constraint, key, or index 283

Differences to other RDMS 283
Dropping a table 284

Summary 284
Questions 284
Further reading 285

Section 3: Advanced SQL Querying
Chapter 9: Working with Expressions 287

Technical requirements 287
Using expressions 287

Literal values 288
Operators 289

Comparison operators 289
Logical operators 289
Mathematical operators 290

Operator precedence 291
Column values 291
Built-in functions 292

String built-in functions 292
Differences in RDMS (Relational Database Management Systems) 295

Numeric built-in functions 295
Differences in RDMS 298

Datetime built-in functions 298
Working with time zones 301
Differences in RDMS 302

Advanced built-in functions 303
Working with NULL values 306
Differences in advanced built-in functions in RDMS 307

Built-in functions and indexing 309
Using statistical functions 310

Learning how to use built-in statistical functions 310
Exploring differences in RDMS 311

Using generated columns 311

Table of Contents

[vii]

Types of generated columns 311
Creating a generated column 312

Differences in RDMSes 313
Summary 314
Questions 315
Further reading 315

Chapter 10: Grouping and Summarizing Data 317
Technical requirements 317
Understanding aggregate functions 318

Numeric aggregate functions 318
Statistical aggregate functions 319

Using the GROUP BY clause 320
Understanding how GROUP BY works without aggregate functions 321

Using WHERE with GROUP BY 322
Using ORDER BY with GROUP BY 324

Learning how to use the GROUP BY clause to group query results using
aggregate functions 324
Learning how to use the ROLLUP modifier 325

Differences in RDBMSes 326
Using the HAVING clause 327

Learning how to use the HAVING clause to limit query results 327
Understanding the difference between the HAVING and WHERE clauses 330

Understanding SQL query order of execution 330
Summary 331
Questions 332

Chapter 11: Advanced Querying Techniques 333
Technical requirements 333
Using subqueries 334

Understanding the different types of subqueries and their usage 334
Using non-correlated subqueries 335

Using a non-correlated subquery in the WHERE clause 337
Using a non-correlated subquery in the SELECT clause 342
Using a non-correlated subquery in the FROM clause 343
Using INSERT, UPDATE, and DELETE with non-correlated subqueries 346
Differences between non-correlated subqueries in other relational database
management systems (RDMSes) 348

Using correlated subqueries 348
Using a correlated subquery in the WHERE clause 349
Using a correlated subquery in the SELECT clause 351

Using common table expressions 352
Using non-recursive CTEs 353

Non-recursive CTE with the SELECT statement 354
Using recursive CTEs 354

Differences between CTEs in other RDMSes 356
Using query hints and transaction isolation levels 356

Table of Contents

[viii]

Understand the concepts of locking, blocking, and deadlocking 356
Learning how to use index hints to improve queries 357
Learning how to use transaction isolation levels 359

Summary 362
Questions 362
Further reading 362

Chapter 12: Programmable Objects 363
Technical requirements 363
Creating and using views 364

Learning how to create and query a view 364
Learning how to modify data returned in a view 366

Updating data using a view 367
Updating data using a view that has multiple tables 368

Inserting data using a view 371
Inserting data using a view that has multiple tables 372

Deleting data using a view 375
Deleting data using a view that has multiple tables 376

Learning how to update or delete a view 376
Differences between views in other relational database management
systems (RDBMSes) 377

Creating and using variables 377
Learning how to create and assign values to variables 377
Learning how to use variables in SQL statements 378
Differences between variables in other RDBMSes 378

Creating and using stored procedures 379
Creating a stored procedure 379
Learning how to alter and drop stored procedures 381
Using variables and parameters in stored procedures 382

IN parameter 382
OUT parameter 384

Using flow control statements 385
Understanding the different types of flow control statements 385
Understanding the difference between the IF and CASE statements and how to
use them 386
Understanding how to loop through statements 388

Using error handling 392
Understanding error handling syntax and how to implement error handling 392

Differences between stored procedures in other RDBMSes 394
Oracle 394

Creating and calling a stored procedure in Oracle 394
Flow control in Oracle 395
Error handling in Oracle 395

PostgreSQL 396
Creating a stored procedure in PostgreSQL 396
Flow control in PostgreSQL 397
Error handling in PostgreSQL 397

SQL Server 398

Table of Contents

[ix]

Creating and calling a stored procedure in SQL Server 398
Flow control in SQL Server 400
Error handling in SQL Server 400

Creating and using functions 401
Understanding the difference between a function and a stored procedure 401
Learning how to create and use functions 402
Learning how to alter or delete functions 404
Differences between functions in other RDBMSes 405

Oracle 405
PostgreSQL 406
SQL Server 406

Creating and using triggers 407
Learning how to create and use a trigger 408

Creating and using a trigger with one statement 408
Creating and using a trigger with multiple statements 410
Creating and using multiple triggers on the same table 411
Deleting a trigger 412

Differences between triggers in other RDBMSes 412
Creating and using temporary tables 413

Learning how to create and use a temporary table 414
Learning how to delete a temporary table 415
Differences between temporary tables in other RDBMSes 416

Summary 418
Questions 419
Further reading 419

Section 4: Presenting Your Findings
Chapter 13: Exploring and Processing Your Data 422

Technical requirements 422
Exploring your dataset 422

Getting to know your data using statistical identities 423
Detecting rare and outlier values 426
Detecting missing values 427
Detecting duplicate and erroneous values 428
Consulting with experts or becoming the expert 430

Creating a data dictionary 430
Using regular expressions 435

Combining regular expression characters 437
Processing your dataset 438

Fixing rare and outlier values 438
Fixing missing values 440
Removing or fixing duplicates 442

Removing duplicates 442
Fixing duplicates 444

Fixing erroneous data 447
Summary 448

Table of Contents

[x]

Questions 449

Chapter 14: Telling a Story with Your Data 450
Technical requirements 450
Finding a narrative 451

Types of data stories 451
Asking questions to find your narrative 452
Using the statistical identity of your data to determine a narrative 452

Knowing your audience 454
Determining who your audience is 454
Creating a compelling presentation for your audience 454

Determining a presentation framework 455
Explaining the question 455
Explaining the answer 455
Explaining your methodology 456

Using visualizations 456
Common mistakes to avoid in visualizations 456
Using data visualization tools 457

Summary 465
Questions 466

Section 5: SQL Best Practices
Chapter 15: Best Practices for Designing and Querying 468

Technical requirements 468
Best practices for database design 468

Understanding data integrity 469
Naming conventions of database objects 471
Understanding what data types to use 472

Best practices for indexing 474
Understanding when to create indexes 474

Best practices for querying and modifying data 476
Understanding how to write clean code 476
Understanding query optimization 478
Understanding best practices when querying data 481
Understanding best practices when modifying data 484

Summary 485
Questions 485

Chapter 16: SQL Appendix 486
SQL for designing databases 486

Syntax for creating a database 487
Syntax for creating and altering tables 487
Syntax for creating and altering indexes 489

SQL for selecting data 489
Syntax for selecting data 489

Table of Contents

[xi]

Syntax for filtering data 490
Syntax for ordering results 491
Syntax for joining tables 492
Syntax for grouping results 493
Syntax for filtering grouped results 493
Syntax for using aggregate functions 493

SQL for modifying data 494
Syntax for inserting data 494
Syntax for updating data 495
Syntax for deleting data 495
Syntax for SQL transactions 495

SQL expressions 496
Types of expressions 496
Syntax for using generated columns 500

Advanced query techniques 500
Syntax for subqueries 501
Syntax for common table expressions 502
Syntax for query hints 503
Syntax for transaction isolation level 503

Programmable objects 503
Syntax for views 503
Syntax for variables 504
Syntax for stored procedures 504

Syntax for flow control statements 505
Syntax for error handling 506

Syntax for functions 506
Syntax for triggers 507
Syntax for temporary tables 507

Summary 508

Appendix A: Assessments 509
Chapter 1 509
Chapter 2 509
Chapter 3 510
Chapter 4 510
Chapter 5 511
Chapter 6 512
Chapter 7 512
Chapter 8 513
Chapter 9 513
Chapter 10 514
Chapter 11 515
Chapter 12 515
Chapter 13 516
Chapter 14 517

Table of Contents

[xii]

Chapter 15 517

Other Books You May Enjoy 519

Index 522

Preface
SQL is a powerful querying language used to store, manipulate, and retrieve data, and is
one of the most popular languages used by developers to query and analyze data
efficiently. If you're looking for a comprehensive introduction to SQL, Learn SQL Database
Programming will help you to get up to speed with using SQL to streamline your work in no
time. Starting with an overview of relational database management systems, this book will
show you how to set up and use MySQL Workbench and design a database using practical
examples. You'll also discover how to query and manipulate data with SQL programming
using MySQL Workbench. As you advance, you'll create a database, query single and
multiple tables, and modify data using SQL querying. This SQL book covers advanced SQL
techniques, including aggregate functions, flow control statements, error handling, and
subqueries, and helps you process your data to present your findings. Finally, you'll
implement best practices for writing SQL and designing indexes and tables.

By the end of this SQL programming book, you'll have gained the confidence to use SQL
queries for retrieving and manipulating data.

Who this book is for
This book is for business analysts, SQL developers, database administrators, and students
learning SQL. If you want to learn how to query and manipulate SQL data for database
administration tasks or to simply extract and organize relevant data for analysis, you'll find
this book useful. No prior SQL experience is required.

What this book covers
Chapter 1, Introduction to Relational Database Management Systems, introduces the concepts
required to understand the basics of relational database management systems. It introduces
foundational topics such as understanding SQL, the relational model, data integrity,
database normalization, and the various types of relational database management systems.
It gives you fundamental knowledge about SQL and databases that will be required
throughout the book.

Preface

[2]

Chapter 2, Installing and Using MySQL Workbench, covers how to install MySQL
Workbench on Windows and Mac, including step-by-step instructions to help you walk
through each part of the installation process. The instructions also include the configuration
of MySQL Workbench on both Windows and Mac. We will walk through some examples of
connecting to your local MySQL and also setting up connections to other MySQL servers.
We conclude with a step-by-step explanation of how to restore a database to MySQL.

Chapter 3, Understanding Data Types, covers what data types are and how they are used.
You will learn about specific data types and what data can be stored in each of them. The
data types include string, numeric, and date and time. String data types include char
and varchar, binary and varbinary, blob, enum, and text. Numeric data types include
bit, int, float, double, and decimal. Date and time data types include date, time,
datetime, timestamp, and year. You will learn from the perspective of MySQL data
types, but where there are differences versus SQL Server, Oracle, and PostgreSQL, those
differences will be noted. We will also go through some examples of types and values of
data to see how to assign them correctly to data types, including an explanation of why you
need to be careful when selecting a data type and how it can impact database performance.

Chapter 4, Designing and Creating a Database, introduces you to designing and creating a
database. We'll walk through the guidelines for naming conventions and understand SQL
code errors. You will learn how to format SQL code for readability and apply data types
and data integrity to our tables. You will also learn about the different types of table
relationships and how to build entity-relationship diagrams. Going further, we will discuss
the concept and usage of indexing. You will gain an understanding of how indexing helps
database performance. Finally, you will learn how to create a table in a database.

Chapter 5, Importing and Exporting Data, introduces you to importing and exporting data.
There are many ways to import and export data in MySQL. You will learn how to import
and export data using MySQL Workbench via table data from/to CSV files. We will also
cover importing and exporting via SQL data with SQL scripts. An additional way to export
data via result data and query results will also be covered. The final topic discussed is using
SQL syntax to import and export data.

Chapter 6, Querying a Single Table, covers how to use the basic SQL SELECT statement and
the FROM, WHERE, and ORDER BY clauses. This chapter also covers how to tell which index
your query is using and whether you may need additional indexes. By the end of this
chapter, you will understand how to query data using the SELECT statement and the FROM
clause. You will also learn how to limit results with a WHERE clause, how to use ORDER BY
to return results in a specified order, and how to see information about what indexes are
being used or may be needed.

Preface

[3]

Chapter 7, Querying Multiple Tables, covers how to use SQL joins to join two or more tables
together, including INNER, OUTER (LEFT, RIGHT, and FULL), and advanced joins (the cross
and self joins). You will learn about set theory and how to combine queries using UNION
and UNION ALL, and how to get the differences and intersections of different queries.
Lastly, you will learn how to optimize queries when they contain multiple tables.

Chapter 8, Modifying Data and Table Structures, goes through how to modify data in tables.
This includes learning how to use INSERT, UPDATE, and DELETE statements. You will also
learn about SQL transactions, which help to control the modification of data. Finally, you
will learn how to modify a table structure.

Chapter 9, Working with Expressions, covers how to use literals, operators, columns, and
built-in functions to create expressions. You will learn about the different types of built-in
functions, including string, numeric, date and time, and advanced functions, which include
casting and converting to other data types. You will learn how to use statistical functions,
including how to get and use variance and standard deviation. Finally, you will learn how
to create a generated column based on an expression.

Chapter 10, Grouping and Summarizing Data, covers how to use aggregate functions to
group and summarize data. Aggregate functions include math functions such as AVG, SUM,
COUNT, MIN, and MAX. You will also learn how to use the GROUP BY and HAVING clauses in
conjunction with the aggregate functions. Finally, you will learn how MySQL executes your
query clauses.

Chapter 11, Advanced Querying Techniques, covers how to use two different kinds of
subqueries, correlated and non-correlated. Then, you will learn about two different types of
common table expressions, recursive and non-recursive. You will learn about query hints
and how to choose which index your query will use. Finally, you will learn about isolation
levels and concepts relating to how data is read from and written to tables.

Chapter 12, Programmable Objects, covers how to create and use views, which includes
selecting data from views, and inserting, updating, and deleting data using views. You will
learn how to create and use variables, which includes how to declare and assign values to
variables. You will also learn how to create and use stored procedures, including how to
use variables and parameters in stored procedures, as well as how to control flow and error
handling. In addition to all that, you will learn how to create and use functions, triggers,
and temporary tables.

Preface

[4]

Chapter 13, Exploring and Processing Your Data, covers how to explore and process data. By
the end of this chapter, you will understand how to get to know data by creating a
statistical identity, you will have learned how to detect and fix anomalous and missing
values, and will know how to use regular expressions to match data value patterns.

Chapter 14, Telling a Story with Your Data, teaches you how to find a narrative, including
what types of stories you can tell with data and how to use the statistical identity of your
data to determine a story. You will also learn about knowing your audience, including
deciding who they are and what would be a compelling presentation for them. Then, you
will learn how to identify a presentation framework, including explaining the question,
answer, and methodology. Finally, you will learn how to use visualizations in your
presentations.

Chapter 15, Best Practices for Designing and Querying, covers database best practices for
database design, indexing, and querying and modifying data. You learned about these
topics in the previous chapters, and this chapter will summarize and give additional tips
for best practices. This chapter will also provide a way for the more experienced among
you to quickly reference best practices instead of having to go through each chapter.

Chapter 16, SQL Appendix, covers the SQL commands discussed, which are outlined for
quick reference. It includes the syntax for querying data, modifying data, and designing
databases and tables. This chapter will help you by providing a quick reference guide, so
you won't have to go back through all the chapters to check the syntax, but if you require
more details about how the syntax works, you can refer to the specific chapter for that
information.

To get the most out of this book
For this book to be useful, you either need access to MySQL Workbench and the ability to
query a MySQL Server, or the ability to install them. To install them yourself, you will need
elevated permissions. Installations for MySQL Workbench are found at https:/ ​/ ​dev.
mysql.​com/​downloads/ ​workbench/ ​ and installations for MySQL server are found at
https:/​/​dev.​mysql. ​com/ ​downloads/ ​mysql/ ​. If you don't want or don't have MySQL
installed, you can follow along in most chapters with SQL code that will work in Oracle,
PostgreSQL, or SQL Server, as well.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying and pasting of code.

https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/

Preface

[5]

Download the example code files
You can download the example code files for this book from your account
at www.packt.com. If you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/learn-sql-database-programming. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​static. ​packt- ​cdn. ​com/​downloads/
9781838984762_​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "BINARY is like CHAR, but stores byte strings instead of character strings."

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781838984762_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984762_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984762_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984762_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984762_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984762_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984762_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984762_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984762_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984762_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984762_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984762_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984762_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984762_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984762_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984762_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984762_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984762_ColorImages.pdf

Preface

[6]

A block of code is set as follows:

<books>
 <book>
 <name>Learn SQL Programming</name>
 <author>Josephine Bush</author>
 </book>
</books>

Any command-line input or output is written as follows:

SELECT * FROM lahmansbaseballdb.appearances;

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Click Download on the DMG Archive."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

https://www.packtpub.com/support/errata

Preface

[7]

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Database

Fundamentals
The objective of this section is to introduce you to relational database management systems,
how to set up and use MySQL Workbench, how to use data types, how to design and create
a database, and how to import and export data.

This section comprises the following chapters:

Chapter 1, Introduction to Relational Database Management Systems
Chapter 2, Installing and Using MySQL Workbench
Chapter 3, Understanding Data Types
Chapter 4, Designing and Creating a Database
Chapter 5, Importing and Exporting Data

1
Introduction to Relational

Database Management
Systems

This chapter introduces the concepts required to understand the basics of relational
database management systems (RDMS). It will introduce foundational topics such as SQL,
the relational model, data integrity, database normalization, and the types of relational
database management systems. It will provide you with fundamental knowledge about
SQL and databases that will be required throughout this book.

In this chapter, we will cover the following topics:

Understanding SQL
Understanding databases
Understanding data integrity
Understanding database normalization
Types of RDMS

Understanding SQL
Structured Query Language, or SQL (pronounced see-quel), is the language that is used for
querying and manipulating data and defining structures in databases. Initially developed
at IBM in the early 1970s, SQL became an ANSI and ISO standard in 1986.

SQL is a powerful, yet simple language, and can do many things, such as execute queries,
retrieve, insert, update, and delete data, create databases and tables, and much more.

Introduction to Relational Database Management Systems Chapter 1

[10]

These types of activities can be grouped into different subdivisions of SQL: Data Definition
Language (DDL), Data Manipulation Language (DML), and Data Control Language
(DCL):

Use DDL commands to specify database schema:
CREATE: This is used to create a new database or objects in a database.
ALTER: This is used to alter a database or objects in a database.
DROP: This is used to delete a database or objects in a database.
TRUNCATE: This is used to remove all data from a table instantaneously.

Use DML commands to query and modify data:
SELECT: This is used to retrieve data from a database.
INSERT: This is used to insert data into a database.
UPDATE: This is used to update data in a database.
DELETE: This is used to remove data from a database.

Use DCL commands to control permissions and translations:
GRANT: This is used to give access to a user.
REVOKE: This is used to take access away from a user.
COMMIT: This is used to save changes in a transaction.
ROLLBACK: This is used to remove the saved changes in a transaction.

You won't learn about GRANT and REVOKE in this book. To get more
information on granting and denying permissions, please visit https:/ ​/
dev.​mysql. ​com/ ​doc/ ​refman/ ​8. ​0/​en/ ​grant. ​html and https:/ ​/​dev.
mysql. ​com/ ​doc/ ​refman/ ​8. ​0/​en/ ​revoke. ​html.

Elements of SQL
The SQL language comprises several elements that will be explained in more depth in
subsequent chapters. These elements include the following:

Queries that retrieve data based on specific criteria.
Clauses that are components of statements or queries.
Predicates that are logical conditions that evaluate to true or false. These help
you to narrow down the results of your queries.
Expressions that produce either scalar values or tables of columns and rows.
Expressions are a part of predicates.

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html

Introduction to Relational Database Management Systems Chapter 1

[11]

Statements that are queries run against a database, comprised of clauses and,
optionally, expressions and predicates.
White space that is generally ignored in SQL statements and queries, making it
easier to format for readability because you don't have to worry so much about
particular spacing for the SQL to run correctly.

The following diagram shows you the components of a SQL statement, which is also called
a SQL query:

In the preceding diagram, you can see the different elements of a SQL statement. Each line
in the preceding statement is considered a clause. Clauses use SQL keywords. Keywords
are reserved words that have special significance in the SQL language—SELECT, FROM, and
WHERE are just some of the keywords that are used. More information on keywords is
provided in Chapter 4, Designing and Creating a Database. The preceding diagram also
shows an expression and predicate. A predicate helps you to narrow down your query
results. The expression is a piece of a predicate that sets the value. The diagram also helps
to illustrate the use of white space. You could write out your entire query on one line, but
it's much easier to read when you add carriage returns and spaces. The details of the
different elements of queries will be covered more in future chapters of this book.

Understanding databases
A database is a collection of data. You store databases in a relational database
management system (RDMS). The RDMS is the basis for modern database systems like
MySQL, SQL Server, Oracle, PostgreSQL, and others. These will be covered in more detail
later in this chapter.

Introduction to Relational Database Management Systems Chapter 1

[12]

Tables
In an RDMS, objects called tables store data. Tables are a collection of related data stored in
columns and rows. The following screenshot is a cross-section of a table that contains data
about baseball players' appearances in all-star games:

A NULL value in a table is a value that appears to be blank. It doesn't represent a string of
blank spaces, zero, or a zero-length character string: it's a missing or unknown value.

The data has been sourced from http:/ ​/​www. ​seanlahman. ​com/ ​baseball-
archive/ ​statistics/ ​ with a CC BY-SA 3.0 license.

Fields
A field is an intersection of a row and a column. This field could be any type of data,
including a yearID, teamID, or a playerID field (using our example). Each red arrow in
the following screenshot points to a value in a column that is considered a field:

http://www.seanlahman.com/baseball-archive/statistics/
http://www.seanlahman.com/baseball-archive/statistics/
http://www.seanlahman.com/baseball-archive/statistics/
http://www.seanlahman.com/baseball-archive/statistics/
http://www.seanlahman.com/baseball-archive/statistics/
http://www.seanlahman.com/baseball-archive/statistics/
http://www.seanlahman.com/baseball-archive/statistics/
http://www.seanlahman.com/baseball-archive/statistics/
http://www.seanlahman.com/baseball-archive/statistics/
http://www.seanlahman.com/baseball-archive/statistics/
http://www.seanlahman.com/baseball-archive/statistics/
http://www.seanlahman.com/baseball-archive/statistics/
http://www.seanlahman.com/baseball-archive/statistics/
http://www.seanlahman.com/baseball-archive/statistics/
http://www.seanlahman.com/baseball-archive/statistics/

Introduction to Relational Database Management Systems Chapter 1

[13]

Records or rows
A row contains values in a horizontal division of data. In this example case, it's a row or
record from a table:

Columns
A column contains values in a vertical division of data. In this example case, it's the gameID
column from a table:

To ensure that the data in your tables is consistent and accurate, you will need to
understand data integrity. You will learn about data integrity in the next section.

Understanding data integrity
Data integrity refers to the consistency and accuracy of the data. It is typically enforced by
the procedures and guidelines in the database design phase. In RDMS, keys enforce data
integrity. A key is user-defined and forces values in a table to conform to a specified
standard. This standard will allow only certain kinds of values to be in the database.

Introduction to Relational Database Management Systems Chapter 1

[14]

Types of integrity
Data integrity refers to the consistency and accuracy of data and table relationships. The
following table lists the types of integrity you can use:

Entity integrity Referential integrity Domain integrity
Unique constraint Foreign key Check constraint
Not null constraint Default constraint

Primary key

Each type of integrity and how each relates to one another is discussed in the following
sections.

Entity integrity
To ensure that each row in a table is identifiably unique, you use entity integrity. This is
done with a few different types of keys or constraints, including unique, not null, and
primary key constraints.

Unique constraints
To ensure that all values in a column or columns are different from each other, you use
a unique constraint. This type of key can be applied to any data type and is used to avoid
duplicate data. You can apply a unique constraint to multiple columns so that it creates a
unique value across those multiple columns. It can contain null values.

If you create a unique constraint on one column, it will force the table to have unique
values in that specific column. If they are not unique, then the row will not be able to be
inserted or updated.

Introduction to Relational Database Management Systems Chapter 1

[15]

In the following screenshot, the parkkey constraint is unique. All the other fields can have
duplicate information as long as the parkkey unique constraint isn't violated:

If you create a unique constraint on a combination of columns in a table, it will force the
table to have unique values in the combination of those columns in the unique constraint. If
they are not unique, the row will not be able to be inserted or updated.

The following screenshot shows an example of a composite, unique constraint. In this case,
playerID, yearID, and teamID would need to be unique for the row to be acceptable:

Introduction to Relational Database Management Systems Chapter 1

[16]

Not null constraints
To ensure that all values in a column are not null, you use a not null constraint. This type of
key can be applied to any data type and is used to avoid missing data. If you create a not
null constraint on a column, it will force the table to have values in that specific column. If
the values are null, then the row will not be inserted or updated.

In the following screenshot, you can see that the birthYear constraint is set to not null.
The deathYear constraint would allow nulls since not all people have a year of death:

The primary key
The primary key is used to ensure that all values in a column are not null and unique. This
key combines the unique and not null constraint properties into one key. This type of key
can be applied to any data type and is used to avoid missing and duplicate data. You can
only have one primary key per table.

If you create a primary key on a table, it will force the table to have unique, not null values
in that specific column. If the values don't comply, then the row will not be able to be
inserted or updated. You can also create a primary key on multiple columns. This is
considered a composite key. In this case, the composite key would have to be unique for
each row, otherwise the row could not be inserted or updated.

Introduction to Relational Database Management Systems Chapter 1

[17]

In the following screenshot, the playerID constraint would be the primary key because
it's unique and not null for every row in the table:

In the following screenshot, the playerID, yearID, and teamID constraints could be the
composite primary key because the combination of those three columns is unique and not
null for every row in the table:

Introduction to Relational Database Management Systems Chapter 1

[18]

Referential integrity
Referential integrity refers to the consistency and accuracy between tables that can be
linked together. By having a primary key on the parent table and a foreign key on the child
table, you achieve referential integrity. A foreign key on the child table creates a link
between one or more columns in the child table and the primary key on the parent
table. When a foreign key is present, it must reference a valid, existing primary key in the
parent table. This way, the data in both tables can maintain a proper relationship. You will
learn more about this in the following example.

If you don't set up referential integrity, you wind up with orphaned records. For example,
let's say that you delete a player from the first table here:

Now let's say that you didn't delete the corresponding record in the second table here. In
this case, the second table's records would be orphaned:

If there was a foreign key constraint on the salary column, then the player could not be
deleted from the parent table without first deleting the corresponding salary rows in the
salary table. By having a foreign key constraint, we will also prevent users from adding
rows to the child table without a corresponding parent row or changing values in a parent
table that would result in orphaned child table records.

Introduction to Relational Database Management Systems Chapter 1

[19]

You won't get an error if there is incomplete data when you lack referential integrity
constraints. It's basically like your records are lost in the database since they may never
show up in reports or query results. This can cause all kinds of problems, such as strange
results, lost orders, and potentially life-and-death situations where (for example) patients
don't receive proper treatments.

When creating a foreign key constraint, the foreign key must reference a column in another
table that is the primary key. It can be any data type and accept duplicate and null values
by default. The foreign key constraint can maintain three types of table relationships
(covered in more detail in Chapter 7, Querying Multiple Tables):

One-to-one: This type of relationship is when one table has just one
corresponding row in another table. An example of this could be a table with
employees and computers. Each employee has one computer.
One-to-many: This type of relationship is when one table has none, one, or many
corresponding rows in another table. An example of this could be a table with
adults and children. An adult table row may have none, one, or many rows in the
child table.
Many-to-many: This type of relationship is when many rows in one table
correspond to many rows in another table. An example of this could be the
customers and products tables. Customers can purchase many products.

In the following screenshots, the primary key would be on the first table as playerID. The
second table would have a foreign key reference to playerID on the first table. In this case,
there would be a one-to-many relationship between the first and second tables because
there is one player in the first table and none, one, or many rows corresponding to that
player in the second table.

Introduction to Relational Database Management Systems Chapter 1

[20]

If you had a foreign key setup on playerID in the second table, then you would not be able
to delete the playerID value from the first table unless you deleted it in the second table
beforehand. This key setup maintains the referential integrity and ensures that you won't
have orphaned records in the second table:

Domain integrity
To ensure that data values follow defined rules for formatting, range, and value using
check and default constraints, you use domain integrity.

The check constraint is used to ensure that all values in a column are within a range of
values. This type of key can be applied to any data type and is used to ensure that values
aren't invalid. A check constraint is enforced with user-defined conditions and evaluates as
either true or false. You can define a check constraint on a single column or a combination
of columns in a table.

Introduction to Relational Database Management Systems Chapter 1

[21]

Since null doesn't evaluate as false, it can be inserted or updated into a
field with a check constraint. So, because null evaluates to unknown, it
can bypass a check constraint. If you want the column with a check
constraint to not allow null, you need to also set a not null constraint on
the column.

The following screenshot shows an example of a table where a check constraint would
make sense on the inducted column. A player can either be inducted into the hall of fame or
not. In this case, you could create a check constraint that only allows Y or N in that field. If
the value isn't Y or N, then the row can't be updated or inserted:

The following screenshot shows an example of a table where a check constraint can be
applied to multiple columns. For instance, you wouldn't want deathYear to be a year
before the birthYear, so you can set a check constraint that will only allow you to add or
update a birthYear or deathYear that follows a check constraint like birthYear <
deathYear:

Introduction to Relational Database Management Systems Chapter 1

[22]

To ensure that all rows in a column have a value, you use a default constraint. This type of
key can be applied to any data type. A default constraint assigns a default value to a
field. This is used to avoid having a null value for a field if a user doesn't specify a value.

The following screenshot shows an example of a table where a default constraint could
make sense on the ab column:

A player can be in a game without having any at-bats. In this case, you could create a
default constraint that sets the ab column to 0 if the user provides no value.

Database normalization
Database normalization is the process of putting your raw data into tables using rules to
avoid redundant data, optimize database performance, and ensure data integrity.

Without proper normalization, not only can you have data redundancy, which uses
additional storage space, but it can be more difficult to update and maintain the database
without data loss.

Normalization requires forms. Forms are sets of rules to follow to normalize your data into
database tables. There are three forms that we will discuss: the first normal form, the
second normal form, and the third normal form. Each of these forms has a set of rules to
ensure that your database complies with the form. Each of the forms builds on the previous
forms.

Introduction to Relational Database Management Systems Chapter 1

[23]

The first normal form
The first normal form (1NF) is the first level of database normalization. You will need to
complete this step before proceeding to other database normalization forms. The primary
reason to implement 1NF is to eliminate repeating groups. This ensures that you can use
simple SQL statements to query the data. It also ensures that you aren't duplicating data,
which uses additional storage and computing time. This step will ensure that you are doing
the following:

Defining data, columns, and data types and putting related data into columns
Eliminating repeating groups of data:

This means that you will not have repeating columns, such as Year1,
Year2, Year3, but instead will have a column that is named Year, and
each row in the table will be a different year.
Another example of this is not having multiple values in the same field,
such as 1985, 1987, 1989, but instead placing each year in a row.
This means that there are no exact duplicate rows. The example
following this bullet list will explain this concept in more depth.

Creating a primary key for each table

In the following example, you could make the first column the primary key in the people
table and the foreign key in the salaries table. In the salaries table, you could create a new
primary key or create a composite key that is an amalgamation of multiple fields.

Here is a denormalized sample table:

Name birthYear Salary SalaryYear
Jim Jones 1981 2750000, 4500000 2010, 2011
Joe Smith 1974 10600000 2014

There is a right way and wrong way to normalize this table. Let's go over the wrong way
first:

Name birthYear Salary1 Salary2 SalaryYear1 SalaryYear2
Jim Jones 1981 2750000 4500000 2010 2011
Joe Smith 1974 10600000 2014

Introduction to Relational Database Management Systems Chapter 1

[24]

The preceding design has introduced new problems. Even though it doesn't have groups of
repeating data in one column, the salary is limited to two values. What if a player has more
than two salaries? You don't have anywhere to put another salary without adding a third
column. This also wastes space for those players that only have one salary, and searching
through this table for a player with a specific salary becomes difficult. The same goes for
the SalaryYear columns.

The right way to normalize the denormalized table to the first normal form is to ensure that
there aren't repeating groups, as shown in the following table. The people table with player
information would look like the following:

playerID nameFirst nameLast birthYear
jjones01 Jim Jones 1981
jsmith01 Joe Smith 1974

The Salary value has been removed and placed in another table with the playerID field
linking them to each other; therefore, the salaries table will look like the following:

salaryID playerID salary year
1 jjones01 2750000 2010
2 jjones01 4500000 2011
3 jsmith01 10600000 2014

Let's go through a denormalization example by looking at the following table:

playerID namefirst namelast birthYear franchID franchname teamID RBI rank yearID
abbotpa01 Paul Abbott 1967 PHI Philadelphia Phillies PHI 2 2 2004
abreubo01 Bobby Abreu 1974 PHI Philadelphia Phillies PHI 79 1 2000
abreubo01 Bobby Abreu 1974 PHI Philadelphia Phillies PHI 110 3 2001
alcanar01 Arismendy Alcantara 1991 CHI Chicago Cubs CHI 1 8 2015
almoral01 Albert Almora 1994 CHI Chicago Cubs CHI 14 8 2016
almoral01 Albert Almora 1994 CHI Chicago Cubs CHI 46 6 2017
alvarpe01 Pedro Alvarez 1987 PIT Pittsburg Pirates PIT 77 17 2015
alvarto01 Tony Alvarez 1979 PIT Pittsburg Pirates PIT 2 9 2002
alvarto01 Tony Alvarez 1979 PIT Pittsburg Pirates PIT 8 1 2004

Introduction to Relational Database Management Systems Chapter 1

[25]

To meet the requirements of 1NF, you would need to split this table into multiple tables.
Depending on the table you are trying to normalize, you might not need to split it if it's
already following the rules of 1NF.

This table only contains the information about the player and has a primary key of
playerID:

playerID namefirst namelast birthYear
abbotpa01 Paul Abbott 1967
abreubo01 Bobby Abreu 1974
alcanar01 Arismendy Alcantara 1991
almoral01 Albert Almora 1994
alvarpe01 Pedro Alvarez 1987
alvarto01 Tony Alvarez 1979

The other table would contain the rest of the fields from the denormalized table. The
following table has a foreign key relationship to the preceding table regarding playerID:

playerID franchID franchname teamID RBI rank yearID
abbotpa01 PHI Philadelphia Phillies PHI 2 2 2004
abreubo01 PHI Philadelphia Phillies PHI 79 1 2000
abreubo01 PHI Philadelphia Phillies PHI 110 3 2001
alcanar01 CHI Chicago Cubs CHI 1 8 2015
almoral01 CHI Chicago Cubs CHI 14 8 2016
almoral01 CHI Chicago Cubs CHI 46 6 2017
alvarpe01 PIT Pittsburg Pirates PIT 77 17 2015
alvarto01 PIT Pittsburg Pirates PIT 2 9 2002
alvarto01 PIT Pittsburg Pirates PIT 8 1 2004

Introduction to Relational Database Management Systems Chapter 1

[26]

The second normal form
The second normal form (2NF) is the second level of database normalization. You will
need to complete 1NF before beginning this step. The primary reason to implement 2NF is
to narrow tables down to a single purpose, which makes it easier to use and design tables.
This step will ensure that you do the following:

Meet the requirements of 1NF: You will need to implement 1NF before you can
use 2NF.
Remove partial dependencies: This will entail narrowing tables down to a single
purpose where possible.

Starting with the tables from our 1NF example, you can break these down further into
additional tables. You will still have the same player table from 1NF since it serves a single
purpose of giving us player information. The franchise table has multiple purposes with
RBI and rank, so since RBI isn't related to the franchise, you will split the franchise table
into two.

The franchise table has all the franchise and team information in it now, and the RBI
columns and related columns can be split out into a batting table. The franchise table still
has a primary key of franchID and playerID with a foreign key referring back to the
player table on playerID:

playerID franchID franchname teamID rank yearID
abbotpa01 PHI Philadelphia Phillies PHI 2 2004
abreubo01 PHI Philadelphia Phillies PHI 1 2000
abreubo01 PHI Philadelphia Phillies PHI 3 2001
alcanar01 CHI Chicago Cubs CHI 8 2015
almoral01 CHI Chicago Cubs CHI 8 2016
almoral01 CHI Chicago Cubs CHI 6 2017
alvarpe01 PIT Pittsburg Pirates PIT 17 2015
alvarto01 PIT Pittsburg Pirates PIT 9 2002
alvarto01 PIT Pittsburg Pirates PIT 1 2004

Introduction to Relational Database Management Systems Chapter 1

[27]

The batting table has a primary key of playerID and teamID and has a foreign key
of playerID to the player table and a foreign key of teamID to the franchise table:

playerID teamID RBI yearID
abbotpa01 PHI 2 2004
abreubo01 PHI 79 2000
abreubo01 PHI 110 2001
alcanar01 CHI 1 2015
almoral01 CHI 14 2016
almoral01 CHI 46 2017
alvarpe01 PIT 77 2015
alvarto01 PIT 2 2002
alvarto01 PIT 8 2004

Since you split the franchise table into two tables—one table with franchise information and
one table with batting information—these tables now comply with 2NF because each table
is serving a single purpose.

The third normal form
The third normal form (3NF) is the second level of database normalization. You will need
to complete 2NF before beginning this step. The primary reason to implement 3NF is to
ensure that your tables aren't created so that dependencies between columns may cause
inconsistency. Generally, if a database is described as normalized, then it's normalized
according to the third normal form. This step will ensure that you are doing the following:

Meeting the requirements of 2NF: You will need to make sure that your tables
comply with 2NF before proceeding with 3NF.
No attributes depend on other non-key attributes: This means that you will
need to look at your tables and see whether more fields can be split into other
tables since they aren't dependent on a key.

Introduction to Relational Database Management Systems Chapter 1

[28]

Working from our 2NF example, you can further split the franchise table into a franchise
table and a team table. The rank of the team isn't dependent on the primary key of the
franchise table.

In 3NF, our franchise table becomes the following two tables.

franchID becomes the primary key in the franchise table:

franchID franchname
PHI Philadelphia Phillies
CHI Chicago Cubs
PIT Pittsburg Pirates

The team table has a primary key of teamID and a foreign key of franchID referring to
the franchise table:

franchID teamID rank yearID
PHI PHI 2 2004
PHI PHI 1 2000
PHI PHI 3 2001
CHI CHI 8 2015
CHI CHI 8 2016
CHI CHI 6 2017
PIT PIT 17 2015
PIT PIT 9 2002
PIT PIT 1 2004

Introduction to Relational Database Management Systems Chapter 1

[29]

To summarize the process of taking data from denormalized to the third normal, here's a
diagram of the changes that are made:

The preceding diagram shows how you went from denormalized to 3NF. Following the
rules of the normal forms, you took a single table and turned it into four tables. To begin
with, you split up one denormalized table into two tables as part of 1NF. 1NF ensured that
you didn't have duplicate data and repeating groups. This resulted in a player and
franchise table. Next, you split the tables out into three tables as part of 2NF. 2NF resolved
the issue of not giving each table a specific purpose, resulting in a player, franchise, and
batting table. For the final step, you split the tables into four tables as part of 3NF. 3NF
ensured that you didn't have any fields in a table that weren't dependent on the primary
key, resulting in a player, franchise, batting, and team table.

Introduction to Relational Database Management Systems Chapter 1

[30]

By going from a denormalized table to 3NF, you accomplished several things,
including ensuring that you don't have duplicate data, that you have keys linking data to
each other in the tables, that you have a single purpose for each table, and that you have
minimized the storage and compute costs for your queries.

Even adhering to the third normal form can be taken to extremes, so while the third normal
form is desirable, it's not always required. For instance, with zip codes, you could create a
table with just zip codes since they may be duplicated in a table with users' addresses, but
this may degrade performance instead of helping performance.

Types of RDMS
An RDMS is a database that stores data in tables using rows and columns. The values in the
tables are related to one other, and the tables may also be related to one another, hence the
term relational. This relationship makes it possible to access data across multiple tables with
a single query.

In this section, we will review the top four relational database management systems. The
top four are Oracle, MySQL, SQL Server, and PostgreSQL.

According to the DB-Engines Ranking, here are the scores for the top RDMSes at the time of
writing this book:

The preceding screenshot can be found at https:/ ​/​db- ​engines. ​com/​en/ ​ranking.

Oracle
Oracle was first released in 1979. Oracle was the first commercially available SQL-based
RDMS. It does have one free version, Oracle Database XE, which has some limitations
compared to its licensed versions. Oracle runs best on Linux, but can be installed on
Windows. Oracle is a great choice for organizations that need an RDMS and can handle
very large databases and a variety of features.

https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking

Introduction to Relational Database Management Systems Chapter 1

[31]

The advantages of Oracle are that it offers a lot of functionality for system and database
administrators, it's fast and stable, and it has lots of support and documentation.

The disadvantages of Oracle are that licensing is expensive and it may require significant
database administrator resources to maintain it after installation.

MySQL
MySQL is a free, open source SQL database that started in 1995. It also has proprietary
licensing available, which includes support and maintenance. Sun Microsystems bought
MySQL in 2008, which was then acquired by Oracle in 2010. MySQL is commonly used in
conjunction with PHP web applications. MySQL is a great choice for organizations that
need a good RDMS but have a tight budget.

The advantages of MySQL are that it's available for free, it offers a lot of functionality for
system and database administrators, it's easy to use and implement, and it's fast and stable.

The disadvantages of MySQL are that while support is available, it's not free. Also, since it's
under Oracle, not all features are free, including paid-for options, such as enterprise
monitoring, backup, high availability, scalability, and security.

SQL Server
Initially released in 1989, SQL Server is available with a commercial license. It does have
one free version, SQL Server Express, with a limitation of 10 GB per database, along with
other resource limitations. SQL Server is usually installed on Windows, but can also be
installed on Linux. SQL Server is a great choice for organizations that need a good RDMS,
and use a lot of other Microsoft products.

The advantages of SQL Server are that it offers a lot of functionality, including replication,
and high availability and partitioning works very well with other Microsoft products, such
as .NET Framework and Visual Studio. It is also fast and stable.

The disadvantages of SQL Server are that licensing is expensive, especially for the
Enterprise edition, and not all features are included in all editions, such as some high-
availability options and partitioning.

Introduction to Relational Database Management Systems Chapter 1

[32]

PostgreSQL
The first release of PostgreSQL was in 1989. This indefinitely and doesn't enforce any limits
at all. PostgreSQL is usually installed on Linux machines and can be used to store
structured and unstructured data. PostgreSQL is a great choice for organizations that need
a good RDMS, already use Linux, and don't want to spend a lot of money on licensing.

The advantages of PostgreSQL are that it offers a lot of functionality, such as high
availability and partitioning, it's scalable and can handle terabytes of data, and it's fast and
stable.

The disadvantages of PostgreSQL are that documentation may be harder to come by and
configuration can be confusing. It also runs on Linux, and you need to know how to run
commands from Command Prompt.

RDMS SQL differences
Even though there is an ANSI/ISO standard, there are different versions of SQL. Still, to be
compliant, they all similarly support the major commands, so SELECT, WHERE, INSERT,
UPDATE, and DELETE would all have a syntax that matches.

Each subsequent chapter of this book will also note differences in the language or
functionality of SQL where there are differences between MySQL and SQL Server,
PostgresSQL, and Oracle.

Summary
This chapter introduced the concepts required to understand the basics of relational
database management systems. It introduced you to foundational topics such as
understanding SQL, what SQL can do, and its basic components. You learned that there are
three subdivisions of SQL called DML, DDL, and DCL, and that the SQL language is
comprised of several elements that make up a statement. We walked through a description
of the relational model, what a database is, and what is in a database, including what a
table, row, column, and field are.

We followed with an explanation of data integrity, including the different types of data
integrity, such as entity, referential, and domain integrity, and looked at how to use keys
and constraints. This understanding of data integrity helped you understand database
normalization, including the different forms of normalization, 1NF, 2NF, and 3NF.

Introduction to Relational Database Management Systems Chapter 1

[33]

Lastly, you learned about the types of relational database management systems, including
Oracle, MySQL, SQL Server, and PostgreSQL, and their advantages and disadvantages.
You also learned what makes these RDMS different from each other in terms of SQL
syntax.

In the next chapter, we will look at how to install MySQL Workbench on Windows and
Mac, and go through step-by-step instructions to help you walk through each part of the
installation process. The instructions will also include the configuration of MySQL
Workbench on both Windows and Mac. We will walk through some examples of how to
connect to your local MySQL and set up connections to other MySQL servers. We'll
conclude with a step-by-step explanation of how to restore a database to MySQL.

Questions
What is SQL?1.
What are the different subdivisions of SQL?2.
What are the elements of a SQL statement?3.
What are the reasons to normalize a database?4.
What are the levels of database normalization?5.
What is data integrity?6.
What are the different ways you can enforce data integrity?7.
What types of RDMS exist?8.
What is the main advantage of MySQL? 9.
What is the main disadvantage of Oracle and SQL Server? 10.

2
Installing and Using MySQL

Workbench
In this chapter, we will discuss how to install MySQL Workbench on Windows and Mac,
including step-by-step instructions to help you walk through each part of the installation
process. The instructions will also show you how to configure MySQL Workbench on both
Windows and Mac. We will walk through some examples of connecting to your local
MySQL server and also setting up connections to other MySQL servers. We'll conclude
with a step-by-step explanation of how to restore a database to MySQL.

In this chapter, we will cover the following topics:

Installing MySQL Workbench
Using MySQL Workbench
Restoring a database

Technical requirements
Installing MySQL on any platform will require that you have elevated privileges on your
system. For Windows, you will need either Administrator or Power User privileges. For
Mac, you will need Administrator privileges. The code files of this chapter can be found at
https:/​/​github.​com/ ​sqlkitty/ ​Learn- ​SQL- ​Database- ​Programming/ ​tree/ ​master/
baseball-​database.

Installing MySQL Workbench
MySQL Workbench can be installed on various operating systems. In this section, we will
cover the installation steps for the Windows and Mac operating systems.

https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database

Installing and Using MySQL Workbench Chapter 2

[35]

Installing on Windows
The installer process involves several steps, some of which are repeating and non-
repeating. The following diagram shows the steps that are repeating and non-repeating
during the MySQL installation process:

Installing MySQL on Windows
This section provides step-by-step instructions on how to install MySQL Server on
Windows. To begin, go to https:/ ​/ ​dev. ​mysql. ​com/ ​downloads/ ​windows/ ​installer/ ​:

Click Download on the installer of your choice. You can choose either the web1.
community or community version, as shown in the following screenshot. The
final setup procedures will be the same. The web community download will
download all the files from online while the installer runs. The community
download includes all the files needed to install MySQL, including MySQL
Workbench. It's just a decision as to whether you want to be online during
installation (web community install) or offline during installation (community
install). I prefer to download the larger community file to ensure that if my
internet connection fails midway through, I don't have to worry about the
installation failing, but it's up to you:

https://dev.mysql.com/downloads/windows/installer/
https://dev.mysql.com/downloads/windows/installer/
https://dev.mysql.com/downloads/windows/installer/
https://dev.mysql.com/downloads/windows/installer/
https://dev.mysql.com/downloads/windows/installer/
https://dev.mysql.com/downloads/windows/installer/
https://dev.mysql.com/downloads/windows/installer/
https://dev.mysql.com/downloads/windows/installer/
https://dev.mysql.com/downloads/windows/installer/
https://dev.mysql.com/downloads/windows/installer/
https://dev.mysql.com/downloads/windows/installer/
https://dev.mysql.com/downloads/windows/installer/
https://dev.mysql.com/downloads/windows/installer/
https://dev.mysql.com/downloads/windows/installer/
https://dev.mysql.com/downloads/windows/installer/
https://dev.mysql.com/downloads/windows/installer/

Installing and Using MySQL Workbench Chapter 2

[36]

Installing and Using MySQL Workbench Chapter 2

[37]

If you aren't interested in logging in or signing up, choose No thanks, just start2.
my download:

Install the file you just downloaded by clicking on it from your browser3.
downloads or by double-clicking on the file in Windows Explorer.

Installing and Using MySQL Workbench Chapter 2

[38]

You may or may not have products to upgrade. If you aren't prompted to4.
upgrade, you may be able to skip to the section where you can configure MySQL,
as shown in the following screenshot:

Click Next.5.

Installing and Using MySQL Workbench Chapter 2

[39]

Leave everything checked and click Next. Note that your list of products to6.
upgrade may look different than the ones shown in the following screenshot:

Review the list to make sure everything was successful and click Next.7.

Installing and Using MySQL Workbench Chapter 2

[40]

Click Finish. This will bring you to the MySQL Installer page. It will list the8.
products you have installed and allows you to Add, Modify, Upgrade, or
Remove products. You will see the products that you were just required to
upgrade listed here:

Click Add.9.

Installing and Using MySQL Workbench Chapter 2

[41]

On the License Agreement page, accept the license terms and click Next:10.

This will bring you to a page called Select Products and Features. If you already11.
have a MySQL database server to connect to, you can just install MySQL
Workbench. If you don't have a MySQL database server, MySQL Server install
will allow you to connect to a database server to create and work with a MySQL
database. This will be very beneficial to you if you plan to restore the database
later in this chapter as this will help you walk through the exercises throughout
this book.

Installing and Using MySQL Workbench Chapter 2

[42]

The following screenshot shows the options for installing both MySQL Server
and MySQL Workbench, so this way, you can have a local instance of MySQL to
work on for the examples throughout this book:

Click Next.12.

Installing and Using MySQL Workbench Chapter 2

[43]

When the installer has completed successfully, click Next:13.

This will bring you to the configuration section of the installer, which we will cover in the
next section.

Installing and Using MySQL Workbench Chapter 2

[44]

Configuring MySQL on Windows
This section provides information on how to configure MySQL on Windows. Your
installation may or may not need product upgrades, so your installation may start at this
point. Let's get started:

On the Product Configuration page, click Next:1.

The Product Configuration page will only display if you chose to install
MySQL Server in addition to MySQL Workbench.

Installing and Using MySQL Workbench Chapter 2

[45]

Choose Standalone MySQL Server / Classic MySQL Replication and click Next:2.

Installing and Using MySQL Workbench Chapter 2

[46]

Leave all the defaults as is for Type and Networking and click Next:3.

Installing and Using MySQL Workbench Chapter 2

[47]

Choose Use Strong Password Encryption for Authentication4.
(RECOMMENDED) and click Next:

Installing and Using MySQL Workbench Chapter 2

[48]

Enter a strong password on the Accounts and Roles page:5.

At this point, you can choose to add additional users or wait until after the
installation is complete. You can add a user by clicking the Add User button.

Installing and Using MySQL Workbench Chapter 2

[49]

You can then add a user by filling out the fields:6.

The following fields have to be filled:

User Name: This can be up to 32 characters long.
Password: The strength of the password is assessed as you type.
Host: You can use localhost if only local connections will be made, or
you can choose <All Hosts (%)> if remote connections will be made.
I recommend selecting <All Hosts (%)> if you aren't sure.
Role: There are multiple predefined roles available. Each role is set up
with a predefined set of permissions. They are described when you
click the dropdown:

Installing and Using MySQL Workbench Chapter 2

[50]

Then, click OK.7.
Click Next.8.
On the Windows Service page, leave the defaults as they are and click Next:9.

Installing and Using MySQL Workbench Chapter 2

[51]

On the Apply Configuration page, click Execute:10.

Installing and Using MySQL Workbench Chapter 2

[52]

When the configuration operation has finished, click Finish:11.

Installing and Using MySQL Workbench Chapter 2

[53]

Click Next on the page that shows that the configuration is complete:12.

On the Installation Complete page, make sure Start MySQL Workbench after13.
Setup is checked and click Finish:

Installing and Using MySQL Workbench Chapter 2

[54]

This brings you to a page that shows the MySQL products you have installed.14.
You can Add, Modify, Upgrade, or Remove products from this page. In the
following screenshot, you can see the products you've upgraded and installed:

Installing on Mac
The installer process for Mac is slightly different than it is for Windows. There are separate
installers for MySQL Server and MySQL Workbench. There are various ways to configure
MySQL, all of which we will cover in this chapter.

Installing MySQL Server on Mac
If you already have a MySQL database server to connect to, you can skip to the instructions
later in this chapter regarding how to install MySQL Workbench.

If you don't have a MySQL database server, the MySQL Server installation will allow you
to connect to your database server to create and work with a MySQL database. This will be
very beneficial to you if you plan to restore the database later in this chapter so that you can
walk through the exercises throughout this book with ease.

Installing and Using MySQL Workbench Chapter 2

[55]

To install MySQL Server on Mac, go to https:/ ​/​dev. ​mysql. ​com/ ​downloads/ ​mysql/ ​ and
follow these steps:

Click Download on the DMG archive.1.
If you are not interested in logging in or signing up, choose No thanks, just start2.
my download.
Choose Save File:3.

Install the file you just downloaded by double-clicking on it from your4.
Download folder.
Double-click on the .pkg file:5.

https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/

Installing and Using MySQL Workbench Chapter 2

[56]

Click Continue on the This package will run a program to determine if the6.
software can be installed popup:

Click Continue on the Welcome to the MySQL 8.0.17-community installer page.7.
Click Continue on the Software License Agreement page.8.
Click Agree on the agree to the terms popup.9.
Click Install on the Standard Install page.10.
Enter your username and password on the popup window and click Install11.
Software.

Installing and Using MySQL Workbench Chapter 2

[57]

Choose Use Strong Password Encryption on the Configure MySQL Server page12.
and click Next:

Enter a password for the "root" user on the Configure MySQL Server page and13.
make sure Start MySQL Server once the installation is complete is checked.
Then, click Finish:

Installing and Using MySQL Workbench Chapter 2

[58]

Enter your username and password on the popup window and click OK.14.
Click Close on the The installation was completed successfully page.15.
Click Move to Trash on the Do you want to move the installer to the trash?16.
popup.

Checking the status of MySQL Server on Mac
This section provides information on how to check the status of MySQL Server. This is not a
required step in the installation process, but this section provides you with details in case
you need to troubleshoot your MySQL Server:

Open System Preferences.1.
Click MySQL. By doing this, you can view the status and configuration options2.
available to you.

Installing and Using MySQL Workbench Chapter 2

[59]

The following screenshot shows the status of MySQL Server. It indicates that
MySQL Server is running. If this showed a message stating that MySQL Server
wasn't running, you would click the Start MySQL Server button, which would be
in place instead of the Stop MySQL Server button. It should be running after the
installation process, and you shouldn't have to start it. This gives you an idea of
where to go if you have to troubleshoot connection problems:

Installing MySQL Workbench on Mac
This section provides step-by-step instructions on how to install MySQL Workbench on
Mac. To begin, go to https:/ ​/ ​dev. ​mysql. ​com/ ​downloads/ ​workbench/ ​. Then, follow these
steps:

Click Download on the DMG archive.1.
If you are not interested in logging in or signing up, choose No thanks, just start2.
my download.
Choose Save File.3.

https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/

Installing and Using MySQL Workbench Chapter 2

[60]

Install the file you just downloaded by double-clicking it in your Download4.
folder.
Drag MySQLWorkbench to Applications, as shown in the following screenshot.5.
This step will copy the MySQL Workbench application to the Applications
folder:

With that, MySQL Workbench will have been installed in your Applications folder. In
the next section, we will cover how to use MySQL Workbench.

Using MySQL Workbench
This section will show you how to use MySQL Workbench on both Windows and Mac.
These steps include connecting to your local instance and creating a connection to a
different MySQL server than the one installed on your local computer.

Installing and Using MySQL Workbench Chapter 2

[61]

Let's begin by launching MySQL Workbench.

To launch MySQL Workbench on Windows, do the following:

Select Start and begin typing MySQLWorkbench.1.
Click on MySQL Workbench to open it.2.

To launch MySQL Workbench on Mac, do the following:

Navigate to the Applications folder.1.
Double-click on MySQL Workbench.2.
If prompted, click Open on the "MySQLWorkbench" is an app downloaded3.
from the Internet. Are you sure you want to open it? popup:

Next, we will cover connecting to your local instance.

Connecting to your local instance
In MySQL Workbench, click on your local instance of MySQL to connect to it. Yours may be
named differently than mine, but it will have a connection to the localhost configured in it:

Enter your password and choose Save password in vault.

Installing and Using MySQL Workbench Chapter 2

[62]

If you have no local connection set up, then don't worry – instructions on how to create
new MySQL connections have been included in the next section.

Connecting to another instance or setting up
your local instance
If you want to connect to a different MySQL instance other than the one we just installed
together, then you can click the + sign next to MySQL Connections in MySQL Workbench:

Then, fill in your connection information, including Connection Name, Hostname, Port
(3306 by default in MySQL), Username, and Password. Afterward, click Test Connection
to make sure it will connect successfully before clicking OK.

To set up the local instance, use the settings shown in the following screenshot:

Installing and Using MySQL Workbench Chapter 2

[63]

MySQL Workbench should look something like the following when you open it for the first
time:

You can change the layout of MySQL Workbench by using the View menu, as shown in the
following screenshot:

Installing and Using MySQL Workbench Chapter 2

[64]

You can choose to hide the navigator (the Hide Sidebar option), hide the SQL additions
(the Hide Secondary Sidebar option), and hide the output (the Hide Output Area option).

Restoring a database
In this section, we will walk through how to restore a database to a MySQL Server instance.
Restoring is the process of taking a backup (or copy) of a database and turning it back into a
database on the same database server with a different database name or on a separate
database server with the same database name as the original database. You can also restore
over a database on a server – in other words, replacing the current database with a backup
of the database – but be cautious with this because you will lose data if the database has
changed since the last backup. When you back up a MySQL database, the backup process
creates SQL files of the entire structure and data of the database. When you restore a
database backup, MySQL runs these scripts to recreate the database so that you have an
exact copy of the database you backed up. Restoring the database outlined in this section
will allow you to use the examples provided throughout this book.

Installing and Using MySQL Workbench Chapter 2

[65]

To begin with, download the baseball database from GitHub, which can be found at
https:/​/​github.​com/ ​sqlkitty/ ​Learn- ​SQL- ​Database- ​Programming/ ​tree/ ​master/
baseball-​database. Now, follow these steps:

Connect to your local instance or the instance of your choosing in MySQL1.
Workbench.
In the Navigator panel, from the Administration/Management tab, click Data2.
Import/Restore:

Choose Import from Dump Project Folder and navigate to the folder where the3.
files you downloaded from GitHub live.

https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database
https://github.com/sqlkitty/Learn-SQL-Database-Programming/tree/master/baseball-database

Installing and Using MySQL Workbench Chapter 2

[66]

Click Load Folder Contents.4.
Select Database Objects to Import.5.
This will display a list of schema objects to import. Leave them all checked.6.
Click Start Import:7.

Progress is updated in the Import Progress tab.8.

Installing and Using MySQL Workbench Chapter 2

[67]

Click on the SCHEMAS tab and the refresh icon at the top of the SCHEMAS tab9.
area:

You will now see the database you imported:10.

Installing and Using MySQL Workbench Chapter 2

[68]

To run a query against lahmansbaseballdb, you will need to do the following:

Click the down arrow next to lahmansbaseballdb.1.
Click the down arrow next to Tables.2.
In Windows, right-click appearances and choose Select Rows – Limit 1000:3.

In Mac, right-click appearances and choose Select Rows. You will learn how to4.
limit query results in Chapter 6, Querying a Single Table:

Installing and Using MySQL Workbench Chapter 2

[69]

This will query the table and return 1,000 rows. The following screenshot shows you the
results and outputs of the query we just ran:

It will display the results, information about the table, and information about the output,
such as the time the action started, the action statement, messages about the output, and the
duration of the query.

Summary
In this chapter, we covered installing MySQL Workbench on Windows and Mac. This
included step-by-step instructions to help you walk through each part of the installation
process. The guidelines also included how to configure MySQL Workbench on both
Windows and Mac. We walked through some examples of connecting to your local MySQL
and also setting up connections to other MySQL servers. We concluded with a step-by-step
explanation of how to restore a database to MySQL.

Installing and Using MySQL Workbench Chapter 2

[70]

In the next chapter, we will cover what data types are and how to use them. We will learn
about specific data types and what data can be stored in each. Data types include string,
numeric, and date and time, as well as other types such as JSON. String data types include
char and varchar, binary and varbinary, blob, enum, and text. Numeric data types
include bit, int, float, double, and decimal. Date and time data types include date,
time, datetime, timestamp, and year. We will be learning about these from the
perspective of MySQL data types, but where there are differences versus Oracle,
PostgreSQL, and SQL Server, we will take note of them.

Questions
What operating systems can you install MySQL Workbench on? 1.
How do you check the status of the MySQL service on Mac? 2.
How do you connect to your or another instance of MySQL in MySQL3.
Workbench?
How do you restore a database in MySQL Workbench? 4.
How can you view the duration/fetch time for a query? 5.
How can you view the column names and types for a table in MySQL6.
Workbench?
How do you hide the secondary sidebar in MySQL Workbench? 7.
Where can you find a history of the queries you've executed in MySQL8.
Workbench?
How can you see how many rows a query returned in MySQL Workbench? 9.
How do you select 1,000 rows from a table in MySQL Workbench? 10.

3
Understanding Data Types

In this chapter, we will learn what data types and their usage. We will go through the
specific data types and understand what data can be stored in each of them. The data types
include string, numeric, date and time, and other data types. String data types
include char and varchar, binary and varbinary, blob, enum, set, and text. Numeric
data types include bit, int, float, double, and decimal. Date and time data types
include date, time, datetime, timestamp, and year.

We will learn from the perspective of MySQL data types, and will keep noting the
differences between Oracle, PostgreSQL, and SQL Server wherever needed. We will also go
through some examples of types and values of data to see how to assign them correctly to
data types, including an explanation of why you need to be careful when selecting a data
type and how it can impact database performance.

In this chapter, we will cover the following topics:

Understanding string data types
Understanding numeric data types
Understanding date and time data types
Understanding other data types
Choosing the right data type

Understanding string data types
String data types can hold plain text and binary data. This section walks you through the
different string data types in MySQL. This section also shows you the differences
between Oracle, PostgreSQL, and SQL Server string data types.

Understanding Data Types Chapter 3

[72]

String data types in MySQL
Let's discuss the string data types in MySQL:

CHAR: It is a fixed-length string, which can contain letters, numbers, and special
characters. This type is blank-padded and contains trailing blanks in the field.
This field can range from 0 to 255, and the default (if nothing is specified, that is,
just using CHAR instead of CHAR(10)) is 1. The size in parenthesis denotes the
maximum length of the char specified by the user when creating the data field
with this type. The storage requirement for CHAR is size * n, where n <= size <=
255, where n is the number of bytes required for the max length character.
VARCHAR: It is a variable-length string, which can contain letters, numbers, and
special characters. This field can range from 0 to 65535.

When deciding whether to use CHAR or VARCHAR, CHAR is an excellent
choice for storing strings that are always, or very close to, the same length.
This is because it will take less storage and be slightly faster upon
querying versus VARCHAR. VARCHAR is better when the length of the field
will vary significantly, like in first names.

The following table shows the difference in how values are stored between CHAR and
VARCHAR:

Example text CHAR(5) Field Size VARCHAR(5) Field Size
'' ' ' 5 bytes '' 1 byte
'as' 'as ' 5 bytes 'as' 3 bytes
'asdf' 'asdf ' 5 bytes 'asdf' 5 bytes

'asdfghj' 'asdfg' 5 bytes 'asdfg' 7 bytes

BINARY: BINARY is like CHAR, but stores byte strings instead of character
strings. This field can range from 0 to 255, and the default size is 1. For example,
'b' in a BINARY column becomes 'b\0' when inserted.
VARBINARY: VARBINARY is like VARCHAR, but stores binary byte data instead of
character data. This field can range from 0 to 65535.
BLOB: BLOB stands for binary large objects, and treats values like they are binary
strings. They can hold a variable amount of data. There are four types of BLOB
values: TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB. The only difference
between them is the amount of data they can hold.

Understanding Data Types Chapter 3

[73]

The BLOB type can have a size specified up to 65,535 bytes. BLOB doesn't have a
default value, so a value must be specified. TINYBLOB can store up to 255 bytes,
MEDIUMBLOB can store up to 16,777,215 bytes, and LONGBLOB can store up
to 4,294,967,295 bytes.

Avoid BLOB data types since they make your database much larger and
hurt database query performance. Instead, store BLOB information in a file
on disk, then store a path in the database to the file on disk.

TEXT: TEXT values are stored in a text field and treated as character strings
instead of binary strings. They can hold a variable amount of data. There are four
types of TEXT values: TINYTEXT, TEXT, MEDIUMTEXT, and LONGTEXT. The only
difference between them is the amount of data they can hold.

The TEXT type can have a size specified up to 65,535 bytes. TEXT doesn't have a
default value, so a value must be specified. TINYTEXT can store up to 255 bytes,
MEDIUMTEXT can store up to 16,777,215 bytes, and LONGTEXT can store up
to 4,294,967,295 bytes.

ENUM: ENUM stands for an enumerated list. With ENUM(val1, val2, val3,
...), you put your values in place of val1, val2, val3, and so on with values
separated by commas. When inserting a value into this data type, you are
allowed to insert one value from the list of enumerated values. You can have up
to 65,535 values in an ENUM list. For example, if the ENUM list includes red, green,
blue, then you can insert one of those values into the field, and not multiple
values in one field. If you insert a value that isn't in the list, then you will receive
an error. The following screenshot shows you a table with an enumerated
column:

Understanding Data Types Chapter 3

[74]

SET: As with ENUM, SET(val1, val2, val3, ...) allows you to put your
values in place of val1, val2, val3, and so on. However, this string object can
have zero or more values chosen from a list of specified values. You can have up
to 64 values in a SET list. For example, if the SET list includes red, green, blue,
then you can insert one or more of those values into the field, which allows you
to have multiple values in a field. If you insert a value that isn't in the list, then a
blank value will be inserted. The following screenshot shows you a table with a
set column:

The SET data type generally isn't used because it doesn't follow proper data normalization.

MySQL string data type table summary
The following table lists the string data types available in MySQL. When the syntax shown
in the following table includes square brackets ([]), this indicates an optional part of the
syntax. For example, in CHAR[(size)], the square brackets indicate that the size is
optional:

Data Type Description Storage Used

CHAR[(size)]
Fixed-length string with size from

0-255 allowed; default of 1 if size not
specified

Size in bytes

VARCHAR(size)
Variable-length string with size from

0-65535 allowed

Length of string + 1 byte if less
than 255 bytes + 2 bytes if

greater than 255 bytes

BINARY[(size)]
Binary fixed-length string with size

from 0-255 allowed; default of 1 if size
not specified

Size in bytes

VARBINARY(size) Binary variable-length string with size
from 0-65535 allowed

Size in bytes + 1 byte if less than
255 bytes + 2 bytes if greater

than 255 bytes

BLOB(size) Binary large objects with up to 65,535
bytes Size in bytes + 2 bytes

Understanding Data Types Chapter 3

[75]

TINYBLOB Binary large objects up to 255 in size Size in bytes + 1 bytes

MEDIUMBLOB
Binary large objects up to
16,177,215 in size Size in bytes + 3 bytes

LONGBLOB
Binary large object up to
4,294,967,295 in size Size in bytes + 4 bytes

TEXT(size) Character strings with up to 65,535
bytes Size of string + 2 bytes

TINYTEXT Character strings up to 255 in size Size of string + 1 bytes

MEDIUMTEXT
Character strings up to 16,177,215

in size Size of string + 3 bytes

LONGTEXT
Character strings up to

4,294,967,295 in size Size of string + 4 bytes

ENUM(val1, val2,val3,
...)

String object that allows one value from
a chosen list. The chosen list can be up

to 65,535 values.

1 or 2 bytes depending on the
number of enumerated values

SET(val1, val2,val3,
...)

String object that allows zero or more
values from a chosen list. The chosen

list can be up to 64 values.

1,2,3,4, or 8 bytes depending on
number of set members

The preceding table lists the string data types available in MySQL. It's important to note the
storage used because the less storage you use, the better it is for performance. The Choosing
the Right Data Type section covers the reasons behind this.

String data types in other RDMS
MySQL doesn't have all the same data types as other popular RDBMSes. This section will
outline some of the string data types that exist in others, but not in MySQL. It also outlines
the differences where they exist.

Oracle
The additional string data types in Oracle include the following:

NCHAR: Oracle supports Unicode data types, including NCHAR and NVARCHAR2.
You can store different languages in Unicode data types.
VARCHAR2: Oracle has an additional VARCHAR type called VARCHAR2, which
doesn't distinguish between a null and empty string value.

Understanding Data Types Chapter 3

[76]

PostgreSQL
There are no additional string data types in PostgreSQL compared with MySQL.

SQL Server
SQL Server uses VARBINARY(MAX) instead of a BLOB to store BLOB data.

The additional string data types in SQL Server include the following:

VARCHAR(MAX): Like VARCHAR in MySQL, this is a variable-length string, which
can contain letters, numbers, and special characters. The size in parenthesis
denotes the maximum length of the varchar specified by the user when creating
the data field with this type. This field can range from 0 to 8,000 characters. The
main difference in SQL Server is a MAX option used like this: VARCHAR(MAX). The
MAX option allows up to 1,073,741,824 characters.
VARBINARY(MAX): SQL Server supports an IMAGE type field to hold binary data.
Future releases will not include IMAGE, so use VARBINARY(MAX) instead.
Unicode data types: SQL Server supports Unicode data types, including
NVARCHAR, NVARCHAR(max), NCHAR, and NTEXT. You can store different
languages in Unicode data types.

String data types RDMS table comparison
The following table lists the string data types available in MySQL and shows whether or
not they are available in Oracle, PostgreSQL, and SQL Server:

NOTE: The size allowances on SQL Server, PostgreSQL, and Oracle may
be different even if the data type name is the same.

String data types in MySQL Also available in

Data Type SQL Server PostgreSQL Oracle

CHAR Yes Yes Yes

VARCHAR Yes Yes Yes

Understanding Data Types Chapter 3

[77]

BINARY Yes No No

VARBINARY Yes No No

BLOB No No No

TINYBLOB No No No

MEDIUMBLOB No No No

LONGBLOB No No No

TEXT Yes Yes No

TINYTEXT No No No

MEDIUMTEXT No No No

LONGTEXT No No No

ENUM No No No

SET No No No

Understanding numeric data types
Numeric data types can hold integers, which include positive and negative whole numbers.
Numeric data types can also contain fixed-point and floating-point numbers, which store
fractions of whole numbers. This section walks you through the different numeric data
types in MySQL. This section also shows you where Oracle, PostgreSQL, and SQL Server
numeric data types are different.

Understanding Data Types Chapter 3

[78]

Numeric data types in MySQL
The numeric data types in MySQL include the following:

INT: An INT value can range from -2147483648 to 2147483647. An INT can
only store whole numbers. It can't store numbers with decimal places. Any value
you try to place with decimal places will be rounded up or down depending on
the decimal value. If you try to store a number outside the range, the number
won't be stored, and you will receive an error.

Value to insert INT value
12.34 12
12.76 13

INT values can be signed or unsigned. Unsigned only stores positive numbers and signed
ones can store both positive and negative numbers.

Unsigned doesn't affect the size of the column, but just shifts the range to
only positive numbers. Use unsigned when you are concerned about the
upper bounds of the range on your INT value.

With INT, there are different varieties from which to choose. They are BIGINT, SMALLINT,
MEDIUMINT, INT, and TINYINT. The following table outlines the range of values that each
can store:

Types Signed Range Unsigned Range
TINYINT -128 to 127 0 to 255

SMALLINT -32768 to 32767 0 to 65535

MEDIUMINT -8388608 to 8388607 0 to 16777215

INT -2147483648 to 2147483647 0 to 4294967295

BIGINT
-9223372036854775808 to
9223372036854775807

0 to 18446744073709551615

Understanding Data Types Chapter 3

[79]

When choosing an INT data type, it's vital to select the smallest size INT value that will
accommodate your data to reduce storage space:

FLOAT: FLOAT is a floating-point number. A floating-point number means that
there isn't a fixed number of digits before and after the decimal place so that the
decimal point can float. To use the FLOAT data type, you use FLOAT(size, p),
where size is the total number of digits, and p is the number of digits after the
decimal place. The maximum size is 24. If your value's size is above 24, use
DOUBLE (see below) instead. FLOAT is accurate up to approximately 7 decimal
places.

To store a number like 1234.5678, you would create the data type as
FLOAT(8,4). FLOAT is useful for scientific kinds of calculations where extra
decimal places are helpful. Don't use FLOAT for financial data since FLOAT isn't as
accurate as DECIMAL.

DOUBLE: DOUBLE is a floating-point number. To use the DOUBLE data type, you
use DOUBLE(size, d), where size is the total number of digits, and d is the
number of digits after the decimal place.

DOUBLE is accurate up to approximately 14 decimal places. To store a number like
1234567890123456789012345.1234567, you would create the data type as
DOUBLE(33,7). DOUBLE is useful for scientific kinds of calculations where extra
decimal places are helpful. Don't use DOUBLE for financial data since FLOAT isn't
as accurate as DECIMAL.

DECIMAL: DECIMAL is an exact fixed-point number. To use the DECIMAL data
type, you use DECIMAL(size, d), where size is the total number of digits, and
d is the number of digits after the decimal place. The maximum size is 65, and
the maximum d is 30. If size and d aren't specified, the default size is 10, and
the default d is 0.

To store a number like 1234567.89, you would create the data type as
DECIMAL(9,2). DECIMAL is suitable for financial data because it more
accurately represents all numbers, whereas FLOAT and DOUBLE aren't as accurate.
The storage usage of a DECIMAL data type varies based on the size of the value
stored.

Understanding Data Types Chapter 3

[80]

BIT: The BIT data type stores binary values. The syntax is BIT(size), where
size is the number in bits a value can have. The value range is 1 to 64. If you
leave off the size on BIT, the default size will be 1. Generally, BIT stores 0 and 1
boolean values, where 0 is false, and 1 is true. There are other edge use cases,
such as storing values as binary, such as months that have 30 days in them, like
so: 000101001010. The 1's in this BIT represent the months that have 30 days,
and the 0's represent the months that don't. The following table shows you what
the 0's and 1's correspond to in the bit value 000101001010:

Month Number of days Bit stored
January 31 days 0

February 28 or 29 days 0
March 31 days 0
April 30 days 1
May 31 days 0
June 30 days 1
July 31 days 0

August 31 days 0
September 30 days 1

October 31 days 0
November 30 days 1
December 31 days 0

MySQL numeric data type table summary
The following table lists the numeric data types available in MySQL. When the syntax
shown in the following table includes square brackets ([]), this indicates an optional part of
the syntax. For example, in BIT[(size)], the square brackets indicate that the size is
optional:

Data Type Description Storage
Used

INT(size)
Stores whole numbers. Ranges

from -2147483648 to 147483647 for signed and 0
to 4294967295 for unsigned.

4 bytes

INYINT(size)
Stores whole numbers. Ranges from -128 to 127 for signed and 0 to

255 for unsigned. 1 byte

Understanding Data Types Chapter 3

[81]

SMALLINT(size)
Stores whole numbers. Ranges from -32768 to 32767 for signed and

0 to 65535 for unsigned. 2 bytes

MEDIUMINT(size)
Stores whole numbers. Ranges from -8388608 to 8388607 for

signed and 0 to 16777215 for unsigned. 3 bytes

BIGINT(size)
Stores whole numbers. Ranges

from -9223372036854775808 to 9223372036854775807 for
signed or 0 to 8446744073709551615 for unsigned.

8 bytes

FLOAT(size, d)
Floating-point number. Where size is the digits in total, and d is the

digits after the decimal place. The size ranges
from 0 to 23. FLOAT(8,4) would display as 1234.5678

4 bytes

DOUBLE(size, d)

Floating point number. Where size is the digits in total, and d is the
digits after the decimal place. The size ranges

from 24 to 53. FLOAT(24,3) would display
as 123456789012345678901.123

8 bytes

DECIMAL(size,
d)

Exact fixed-point number. Maximum size is 65, and
maximum d is 30. The default size is (10,0). Variable

BIT[(size)] The range is 1 to 64. The default size is 1. (Size+7)/8
bytes

For more information on DECIMAL storage requirements, visit https:/ ​/
dev.​mysql. ​com/ ​doc/ ​refman/ ​8. ​0/​en/ ​storage- ​requirements. ​html.

The preceding table lists the numeric data types available in MySQL. It's important to note
the storage used because the less storage you use, the better it is for performance.
The Choosing the right data type section covers the reasons behind this.

Numeric data types in other RDMSes
MySQL doesn't have all the same data types as other popular RDMSes. This section will
outline some of the numeric data types that exist in others, but not in MySQL. This section
will also outline any differences between other RDMSes and MySQL.

https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html

Understanding Data Types Chapter 3

[82]

SQL Server
There aren't unsigned versions of INT in SQL Server. BIT exists in SQL Server, but you can
only store 0, 1, or null.

Additionally, SQL Server has the data types MONEY and SMALLMONEY. These two data types
represent monetary values. MONEY holds monetary values that are accurate to ten-
thousandths. SMALLMONEY has a smaller range than MONEY. In MySQL, you can use
DECIMAL for money values.

Oracle
Oracle has the NUMBER data type and it's used like the INT, FLOAT, DOUBLE, or DECIMAL
data types in MySQL. Instead of having a lot of different numeric types, like in MySQL,
Oracle handles all numeric types in one data type. Depending on the value you are storing,
you would use INT, FLOAT, DOUBLE, or DECIMAL in MySQL for the NUMBER data type in
Oracle. There aren't unsigned versions of NUMBER in Oracle.

PostgreSQL
PostgreSQL uses INTEGER in place of INT. It works the same as INT in MySQL, except there
is no unsigned version in PostgreSQL.

PostgreSQL uses DOUBLE PRECISION instead of the DOUBLE data type.

PostgreSQL uses REAL instead of the FLOAT data type.

Additionally, PostgreSQL has a data type called BOOLEAN. It can have a value of true,
false, or null. A true value includes true, yes, on, or 1. A false value includes false,
on, off, or 0. In MySQL, there isn't a BOOLEAN type. Use TINYINT(1) instead. MySQL
Workbench will provide you with a type listed as Boolean, but it immediately converts it
to TINYINTX. You can also store Boolean values in a BIT field.

Understanding Data Types Chapter 3

[83]

Numeric data types table comparison
The following table lists the numeric data types available in MySQL and shows whether or
not they are available in Oracle, PostgreSQL, and SQL Server.

The size allowances on Oracle, PostgreSQL, and SQL Server may be
different even if the data type name is the same.

Numeric data types in MySQL Also available in
Data Type SQL Server PostgreSQL Oracle

INT Yes Use INTEGER instead Use NUMBER instead
TINYINT Yes No No
SMALLINT Yes Yes No
MEDIUMINT No No No
BIGINT Yes Yes No
FLOAT Yes No Use NUMBER instead

DOUBLE Use FLOAT instead Use DOUBLE PRECISION
instead

Use NUMBER instead

DECIMAL Yes Yes Use NUMBER instead
BIT Yes No No

The preceding table lists the numeric data types available in MySQL and shows whether or
not they are available in Oracle, PostgreSQL, and SQL Server.

Understanding date and time data types
Date and time data types can hold dates, times, and combinations of dates and time,
timestamps, and years. This section walks you through the different date and time data
types in MySQL. This section also shows you where Oracle, PostgreSQL, and SQL Server
date and time data types are different.

Understanding Data Types Chapter 3

[84]

Date and time data types in MySQL
The date and time data types in MySQL include:

DATE: This data type can hold a date in the format of YYYY-MM-DD. The range is
from '1000-01-01' to '9999-12-31'. For example, December 15, 1997, would
be stored as 1997-12-15.
TIME: This data type holds time values in the format of hh:mm:ss. The range is
from '-838:59:59' to '838:59:59'.
DATETIME: This data type can hold a combination of date and time in the format
of YYYY-MM-DD hh:mm:ss. The range is from '1000-01-01 00:00:00' to
'9999-12-31 23:59:59'. For example, January 19, 2003, at 3:30 p.m. would be
stored as 2003-01-19 15:30:00.
TIMESTAMP: This data type can hold values that contain both date and time parts.
This has a range of '1970-01-01 00:00:00' UTC to '2038-01-19
03:14:07' UTC (Coordinated Universal Time; formerly Greenwich Mean Time).
The value is stored in the number of seconds since '1970-01-01 00:00:00'.

The significant difference between DATETIME and TIMESTAMP is that
TIMESTAMP values are stored in UTC and converted to the current
timezone when a query returns the values. In contrast, DATETIME data
type values are stored in the current time zone.

YEAR: This data type can hold the values of a year in four-digit format. The range
is 1901 to 2155, and 0000.

MySQL date and time data type table summary
The following table lists the date and time data types available in MySQL:

Data Type Description Storage Used

DATE
Stores dates in the format 'YYYY-MM-DD'

Ranges from '1000-01-01' to '9999-12-31' 3 bytes

TIME
Stores time in format: hh:mm:ss

Ranges from '-838:59:59' to '838:59:59' 3 bytes

DATETIME
Stores date and time combination in format YYYY-MM-DD hh:mm:ss

Ranges from '1000-01-01 00:00:00' to '9999-12-31
23:59:59'

8 bytes

Understanding Data Types Chapter 3

[85]

TIMESTAMP
Stores time in number of seconds since '1970-01-01 00:00:00' UTC

Ranges from '1970-01-01 00:00:01' UTC to '2038-01-09
03:14:07' UTC

4 bytes

YEAR
Stores year in four-digit format

Ranges from 1901 to 2155, and includes 0000 1 byte

The preceding table lists the date and time data types available in MySQL. It's important to
note the storage used because the less storage you use, the better it is for performance.
The Choosing the right data type section covers the reasons behind this.

Date and time data types in other RDMSes
MySQL doesn't have all the same data types as other popular RDMSes. This section will
outline some of the date and time data types that exist in others, but not in MySQL.

Oracle
Listed here are the additional date and time data types for Oracle:

TIMESTAMP WITH TIME ZONE: This data type in Oracle is a variation on
TIMESTAMP and includes the time zone and time zone offset. The time zone offset
shows the difference from UTC to the local time zone in hours and
minutes. MySQL doesn't allow for time zone awareness with data types, so you
will need to store the date in the DATETIME field without time zone information.
TIMESTAMP WITH LOCAL TIME ZONE: This data type in Oracle is a variation on
TIMESTAMP, but doesn't include the time zone and time zone offset. The time
zone offset shows the difference from UTC to the local time zone in hours and
minutes. In this data type, the data is stored in the database time zone. When the
data is returned to a user, it is returned in the user's local session time
zone. MySQL doesn't allow time zone awareness with data types, so you will
need to store the date in the DATETIME field without time zone information.
INTERVAL YEAR TO MONTH: This Oracle data type stores a time period using the
YEAR and MONTH datetime fields. This data type is useful for showing differences
between two datetime values when only using Year and Month. MySQL doesn't
allow storing intervals, so there is no equivalent for this, for example:

INTERVAL '100' YEAR(3) is an interval of 100 years and 0 months.
INTERVAL '50' MONTH is an interval of 50 months. This is the same as
INTERVAL'4-2' YEAR TO MONTH.

Understanding Data Types Chapter 3

[86]

INTERVAL DAY TO SECOND: This Oracle data type stores a time period using
days, hours, minutes, and seconds. This data type is useful for showing the
differences between two datetime values to the second. MySQL doesn't allow
storing intervals, so there is no equivalent for this:

INTERVAL '200 20' DAY(3) TO HOUR is an interval of 200 days and
20 hours.
INTERVAL '555' DAY(3) is an interval of 555 days.
INTERVAL '10 09:08:07.456' DAY to SECOND(3) is the interval
10 days, 9 hours, 8 minutes, 7 seconds, and 456 thousands of a second.

PostgreSQL
Listed here are the additional date and time data types available in PostgreSQL:

TIMESTAMP WITH TIME ZONE: This PostgreSQL data type shows both the date
and time of day with the time zone. MySQL doesn't allow time zone awareness
with data types, so you will need to store the date in the DATETIME field without
time zone information.
INTERVAL: This PostgreSQL data type sets a time interval. It allows you to store
and manipulate a time period in years, months, days, hours, and
seconds. MySQL doesn't allow storing intervals, so there is no equivalent for
this.

SQL Server
Listed here are the additional SQL Server date and time data types:

DATETIME2: This data type in SQL Server is very similar to DATETIME, in that it
holds a date with a time of day based on the 24-hour clock, but DATETIME2
allows a larger date range and larger default fractional precision for seconds. The
date range for this type is 0001-01-01 through 9999-12-31, and the time range
is 00:00:00 through 23:59:59.9999999. In MySQL, use DATETIME for this
data type.

Understanding Data Types Chapter 3

[87]

SMALLDATETIME: This data type in SQL Server is similar to DATETIME, in that it
holds a date with a time of day based on the 24-hour clock, but SMALLDATETIME
doesn't allow fractional seconds. The date range for this type is 1900-01-01
through 2079-06-06, and the time range is 00:00:00 through 23:59:59. If
you don't need fractional seconds stored, then you can save storage space when
using this data type versus DATETIME or DATETIME2. In MySQL, use DATETIME
for this data type.
DATETIMEOFFSET: This data type in SQL Server is similar to DATETIME, in that it
holds a date with a time of day based on the 24-hour clock, but DATETIME2 has
time zone awareness, allowing you to store data that preserves the local time
zone time. The time zone offset allows you to specify how much the date/time
differs from UTC. The date range for this type is 0001-01-01 through
9999-12-31, and the time range is 00:00:00 through 23:59:59.9999999,
with a time zone offset range of -14:00 through +14:00. MySQL doesn't allow
time zone awareness with data types, so you will need to store the date in the
DATETIME field without time zone information.

Date and time data types table comparison
The following table lists the date and time data types available in MySQL and shows
whether or not they are available in Oracle, PostgreSQL, and SQL Server:

NOTE: The size allowances on Oracle, PostgreSQL, and SQL Server may
be different even if the data type name is the same.

Date and time data types in MySQL Also available in
Data Type SQL Server PostgreSQL Oracle
DATE Yes Yes Yes
TIME Yes Yes No

DATETIME No No No
TIMESTAMP Yes Yes Yes

YEAR No No No

The preceding table lists the date and time data types available in MySQL and shows
whether or not they are available in Oracle, PostgreSQL, and SQL Server.

Understanding Data Types Chapter 3

[88]

Understanding other data types
MySQL supports some other types of data beyond string, numeric, and date and time data
types. The following sections cover these data types in more detail, including JSON and
spatial data types.

Other data types in MySQL
We will briefly cover some other data types in MySQL. These will be high-level
explanations since we won't be using these types throughout the book, but this will show
you that other types do exist and may be in use in databases you are using:

JSON: This data type holds values in the native JSON (JavaScript Object
Notation) language. Use curly braces to surround JSON key/value pairs. Here is
an example of JSON syntax:

{"Author":"Josephine Bush", "book": "Learn SQL Programming"}

MySQL provides automatic validation of a JSON document and the optimal
storage format. Storing JSON in a field with a type of JSON ensures you have
well-formed JSON data. This is opposed to storing it in a character field, which
offers no guarantee that your JSON is well-formed.

For more information on JSON data, visit https:/ ​/​dev. ​mysql. ​com/ ​doc/
refman/ ​8.​0/ ​en/ ​json. ​html

Spatial data types: These data types hold data that represents two-dimensional
spatial objects. The GEOMETRY data type can store geometry values of any type.
There are a few geometry data types that require specific values relating to
particular geometry types, such as POINT, LINESTRING, and POLYGON. The
POINT data type allows you to store the data for one point, like POINT (10
15). LINESTRING allows you to store points related to a line like LINESTRING
(1 2, 3 4, 8 6) where each of the value pairs correspond to a point on the
line. The POLYGON data type allows you to store points related to a polygon like
POLYGON ((1 2, 3 4, 7 6, 9 8, 4 3, 1 2)) where each value pair
corresponds to a point on the polygon.

https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html

Understanding Data Types Chapter 3

[89]

For more information on MySQL spatial types, visit https:/ ​/ ​dev.​mysql.
com/​doc/ ​refman/ ​5. ​7/​en/ ​spatial- ​type- ​overview. ​html

MySQL comes with over 5,000 different supportable coordinate systems to help
support spatial data in the geometric data types referenced in the previous
paragraph, such as NAD 1927 and NAD 1983.

For more information on coordinate systems, visit https:/ ​/ ​desktop.
arcgis. ​com/ ​en/ ​arcmap/ ​latest/ ​map/ ​projections/ ​about- ​projected-
coordinate- ​systems. ​htm

Other data types in other RDMSes
MySQL doesn't have all the same data types as other popular RDMSes. This section will
outline some of the other data types that exist in other RDMSes, but not in MySQL. The
differences are also outlined, if they exist.

Oracle
In Oracle, we use VARCHAR2 for JSON. PostgreSQL also supports the JSON data type. For
more information about how to use JSON in PostgreSQL, visit https:/ ​/ ​www.​postgresql.
org/​docs/​11/​functions- ​json. ​html.

Oracle can support geometric data via the SDO_GEOMETRY data type. This type allows you
to define points, lines, and polygons but works a bit differently than MySQL. For more
details, visit https:/ ​/ ​docs. ​oracle. ​com/ ​en/ ​database/ ​oracle/ ​oracle- ​database/ ​18/ ​sqlrf/
Data-​Types.​html#GUID- ​022A5008- ​1E15- ​4AA4- ​938E- ​7FD75C594087.

XML: Oracle supports XML data type using XMLTYPE. XMLTYPE implicitly stores the data in
a CLOB data type column. A CLOB data type stores large character data up to 2 GB in size.

https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-type-overview.html
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://www.postgresql.org/docs/11/functions-json.html
https://www.postgresql.org/docs/11/functions-json.html
https://www.postgresql.org/docs/11/functions-json.html
https://www.postgresql.org/docs/11/functions-json.html
https://www.postgresql.org/docs/11/functions-json.html
https://www.postgresql.org/docs/11/functions-json.html
https://www.postgresql.org/docs/11/functions-json.html
https://www.postgresql.org/docs/11/functions-json.html
https://www.postgresql.org/docs/11/functions-json.html
https://www.postgresql.org/docs/11/functions-json.html
https://www.postgresql.org/docs/11/functions-json.html
https://www.postgresql.org/docs/11/functions-json.html
https://www.postgresql.org/docs/11/functions-json.html
https://www.postgresql.org/docs/11/functions-json.html
https://www.postgresql.org/docs/11/functions-json.html
https://www.postgresql.org/docs/11/functions-json.html
https://www.postgresql.org/docs/11/functions-json.html
https://www.postgresql.org/docs/11/functions-json.html
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087
https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/Data-Types.html#GUID-022A5008-1E15-4AA4-938E-7FD75C594087

Understanding Data Types Chapter 3

[90]

PostgreSQL
XML: PostgreSQL supports the XML data type and checks whether it is well-formed upon
insertion. For more information on the PostgreSQL XML data type, visit https:/ ​/ ​www.
postgresql.​org/​docs/ ​11/ ​datatype- ​xml. ​html.

Network Address Types: PostgreSQL offers some data types to hold IP and MAC
addresses. The following table shows examples of what values can be placed in each of
these data types:

CIDR INET MACADDR MACADDR8
192.168.0.7 192.168.0.7/24 '07:01:3b:02:05:01' '07:01:3b:02:05:01:07:08'

These data types are not available in SQL Server or Oracle either. You would need to store
these types of values in a VARCHAR, BINARY, or INT data type instead.

SQL Server
SQL Server supports JSON through the data type NVARCHAR(MAX).

XML: SQL Server supports the XML (Extensible Markup Language) data type. This data
type allows you to store XML in a table column. XML documents contain one root that is
the parent of all elements. The following is an example of XML syntax:

<books>
 <book>
 <name>Learn SQL Programming</name>
 <author>Josephine Bush</author>
 </book>
</books>

For more information about the SQL Server XML data type, visit https:/ ​/
docs. ​microsoft. ​com/ ​en- ​us/​sql/ ​relational- ​databases/ ​xml/ ​xml- ​data-
type- ​and- ​columns- ​sql- ​server? ​view= ​sql- ​server- ​ver15.

XML doesn't exist in MySQL; use the BLOB data type instead. See the String Data Types
section for more information on the BLOB data type.

https://www.postgresql.org/docs/11/datatype-xml.html
https://www.postgresql.org/docs/11/datatype-xml.html
https://www.postgresql.org/docs/11/datatype-xml.html
https://www.postgresql.org/docs/11/datatype-xml.html
https://www.postgresql.org/docs/11/datatype-xml.html
https://www.postgresql.org/docs/11/datatype-xml.html
https://www.postgresql.org/docs/11/datatype-xml.html
https://www.postgresql.org/docs/11/datatype-xml.html
https://www.postgresql.org/docs/11/datatype-xml.html
https://www.postgresql.org/docs/11/datatype-xml.html
https://www.postgresql.org/docs/11/datatype-xml.html
https://www.postgresql.org/docs/11/datatype-xml.html
https://www.postgresql.org/docs/11/datatype-xml.html
https://www.postgresql.org/docs/11/datatype-xml.html
https://www.postgresql.org/docs/11/datatype-xml.html
https://www.postgresql.org/docs/11/datatype-xml.html
https://www.postgresql.org/docs/11/datatype-xml.html
https://www.postgresql.org/docs/11/datatype-xml.html
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-type-and-columns-sql-server?view=sql-server-ver15

Understanding Data Types Chapter 3

[91]

Choosing the right data type
It's essential to understand how storage usage affects your database. Most databases are
stored on disk (with some exceptions that allow data to be stored in memory). When the
database needs to fetch data for you, it needs to read from the disk and return results to
you. This is where disk I/O comes into play. I/O stands for input/output, and it's the
communication between a system or computer and a person or another system/computer.
Disk I/O is the reads and writes that are happening against a disk, and its rate is dependent
on the speed at which the data can be transferred from disk to memory. This is the time it
will take to return the data for your query. The more data you request, the longer it's going
to take, and if you have a lot of people requesting a lot of data, then it may take much
longer than is acceptable. This is why it's vital to choose the right data type for your data.

Here are some reasons why you need to choose wisely:

If you choose a data type that is too large for the data it will hold, it will cause
extra stress for your database because you will be using additional storage. The
less storage you use, the more data you can have in memory (RAM). This will
increase your database performance.
If you choose a data type that is too small for the data, this will cause your data
to be truncated upon insert, or to have failures upon insertion because the data
type won't allow those sizes of data to be inserted.

Examples of choosing a data type
The following table takes you through some examples of how to choose data types. It also
helps you understand the reasoning behind why you would choose the recommended data
type.

Value(s) or type of data Type in MySQL
State abbreviations that are always two letters, such as CA, CO –

we would use CHAR here instead of VARCHAR because these values will
always be the same length.

CHAR(2)

States names like California or Colorado –
we would use VARCHAR here because there is a variable length, and we
would set the VARCHAR value to the longest length string, which in this

case would be South or North Carolina.

VARCHAR(14)

Understanding Data Types Chapter 3

[92]

Large amounts of text –
consider putting TEXT columns in a separate table to optimize table

performance. Database and table design will be covered more in Chapter
4, Designing and Creating a Database.

TEXT

Storing files including images – for the most part, you should use the
filesystem for what it was intended, storing files, and don't store them in

the database.
BLOB

Enumerated and set values –
you should avoid these data types because if you ever decide you want to
add something else to the ENUM or SET declaration, MySQL has to rebuild

the table, and if you have a lot of rows, this could be very time-consuming.
Plus, developers can use logic on the application side to handle this much

better than a MySQL table can.

ENUM or SET

Storing 0 and 1 values, such as whether a value is true or false. BIT

Storing zip codes (11155) TINYINT

Storing money values ($115.25) DECIMAL

Social security numbers (123-45-6789) –
these are numbers, but you won't be doing calculations on them, and you

may want to store the hyphens for proper formatting.
VARCHAR

Dates with time –
don't use string types to store dates.

DATETIME

Scientific data or data where you don't need exact precision. FLOAT or
DOUBLE

The preceding table took you through some examples of how to choose data types. It also
helped you understand the reason for choosing the recommended data type.

Summary
In this chapter, we covered what data types are and how they are used. We learned about
specific data types and what data can be stored in each. Data types include string,
numeric, date and time, and other types such as JSON and spatial types. String data
types include char and varchar, binary and varbinary, blob, enum, set, and text.
Numeric data types include bit, int, float, double, and decimal. Date and time data
types include date, time, datetime, timestamp, and year. We learned from the
perspective of MySQL data types, but where there were differences versus Oracle,
PostgreSQL, and SQL Server, those differences were noted.

Understanding Data Types Chapter 3

[93]

We also went through some examples of types and values of data to see examples of how to
assign them correctly to data types. This section included an explanation of why you need
to be careful when selecting a data type and how it can impact database performance.

In the next chapter, we will cover designing and creating a database. The chapter will
discuss indexing, what it is, how to use it, and what it means for database performance. The
chapter will also explain how to create a database and table. This includes guidelines for
naming conventions, understanding SQL code errors, formatting SQL code for readability,
and how to apply data types and integrity to your tables.

Questions
Which data types are available for you to use when dealing with string data1.
types?
Why would you not want to use blob or text data types? 2.
What types of data types are available for you to use when dealing with numeric3.
data types?
Why would you want to use an unsigned versus a signed int? 4.
What types of data types are available for you to use when dealing with date and5.
time data types?
What types of RDMS support time zone awareness when storing datetime6.
values?
What types of other data types are available in MySQL? 7.
Why do you need to be careful when choosing data types? 8.
What data type would you use to store zip codes? 9.
What data type can you use to store social security numbers? 10.

4
Designing and Creating a

Database
This chapter introduces you to the process of designing and creating a database. We'll walk
through the guidelines for the naming conventions and learn about the SQL code errors.
You will learn how to format SQL code for readability, apply data types, and apply data
integrity in your tables. You will also learn about the different types of table relationships
and how to build entity-relationship diagrams. You will also learn how to create a database
and a table in a database. Going further, we will discuss the concept and usage of indexing.
Then, you will gain an understanding of how indexing helps database performance.

In this chapter, we will cover the following topics:

Creating a database
Understanding table relationships
Creating a table in the database
Understanding indexes

Technical requirements
The code files of this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
learn-​sql-​database- ​programming/ ​tree/ ​master/ ​chapter- ​4.

Creating a database
In Chapter 1, Introduction to Relational Database Management Systems, we learned what a
database is and its essential parts, such as tables, columns, rows, and fields. In this section,
we will learn how to create a database. We'll also go through the guidelines for naming
conventions and discuss SQL code errors.

https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-4

Designing and Creating a Database Chapter 4

[95]

Guidelines for naming conventions
Naming conventions are essential for multiple reasons. You must ensure that you name
things accurately and descriptively, but, at the same time, avoid keywords that will create
confusion. You should avoid spaces, choose the proper case, and stick to one convention.
You should make sure that you use only permitted characters when naming a database
object. Each of these guidelines will be covered in more detail throughout this section.

Avoiding keywords
A keyword in MySQL is a word that has a special meaning and is reserved for specific uses,
such as SELECT, which is covered more in Chapter 6, Querying a Single Table. There are lots
of keywords or reserved words in MySQL. You should avoid naming your database and
database objects with keywords.

For the entire list of keywords in MySQL, visit https:/ ​/ ​dev.​mysql. ​com/
doc/​refman/ ​8. ​0/ ​en/ ​keywords. ​html.

For instance, you wouldn't want to name your table DATETIME because this is a keyword
reserved for the DATETIME data type. If you inadvertently did name a table with a
keyword, you would need to use backticks or double quotes around it every time you
query it or you would receive an error. As another example, if you named a column in a
table select, then you would need to use backticks or double quotes around it each time
you queried it.

The following code block would return Error Code: 1064. You have an error in
your SQL syntax; check the manual that corresponds to your MySQL server
version for the right syntax to use near '[select] FROM

databasename.tablename' at line 1:

SELECT select FROM databasename.tablename;

The queries would run successfully with the corrections in the following sample syntax.
This is just an example code to show you what you can do in this scenario:

SELECT `select` FROM databasename.tablename;
SELECT "select" FROM databasename.tablename;

https://dev.mysql.com/doc/refman/8.0/en/keywords.html
https://dev.mysql.com/doc/refman/8.0/en/keywords.html
https://dev.mysql.com/doc/refman/8.0/en/keywords.html
https://dev.mysql.com/doc/refman/8.0/en/keywords.html
https://dev.mysql.com/doc/refman/8.0/en/keywords.html
https://dev.mysql.com/doc/refman/8.0/en/keywords.html
https://dev.mysql.com/doc/refman/8.0/en/keywords.html
https://dev.mysql.com/doc/refman/8.0/en/keywords.html
https://dev.mysql.com/doc/refman/8.0/en/keywords.html
https://dev.mysql.com/doc/refman/8.0/en/keywords.html
https://dev.mysql.com/doc/refman/8.0/en/keywords.html
https://dev.mysql.com/doc/refman/8.0/en/keywords.html
https://dev.mysql.com/doc/refman/8.0/en/keywords.html
https://dev.mysql.com/doc/refman/8.0/en/keywords.html
https://dev.mysql.com/doc/refman/8.0/en/keywords.html
https://dev.mysql.com/doc/refman/8.0/en/keywords.html
https://dev.mysql.com/doc/refman/8.0/en/keywords.html
https://dev.mysql.com/doc/refman/8.0/en/keywords.html
https://dev.mysql.com/doc/refman/8.0/en/keywords.html
https://dev.mysql.com/doc/refman/8.0/en/keywords.html
https://dev.mysql.com/doc/refman/8.0/en/keywords.html
https://dev.mysql.com/doc/refman/8.0/en/keywords.html

Designing and Creating a Database Chapter 4

[96]

In Oracle, PostgreSQL, and SQL Server, you can enclose objects, such as
tables, with spaces in double quotes, as in SELECT "select" FROM
databasename.tablename;.

Avoiding spaces
If you use spaces in a database name or database object, then you will always need to use
backticks around that name when querying.

The following code block would return Error Code: 1146. Table
'databasename.table' doesn't exist:

SELECT column1 FROM databasename.table name;

The queries would run successfully with the corrections in the following sample syntax:

SELECT column1 FROM databasename.`table name`;

In Oracle, PostgreSQL, and SQL Server, you can enclose objects with
spaces in double quotes, as in SELECT column1 FROM databasename.
"table name";.

In SQL Server, you can also use square brackets around an object name
that has spaces, as in SELECT column1 FROM databasename.[table
name];.

Descriptive and accurate naming
Since abbreviations can be misunderstood, try to use full words as much as possible. Name
a table as accurately as possible, and describe its purpose as much as you can so that it's
easy to understand what's in the table just by looking at its name.

For example, the table name tblName may make it hard to understand what's inside it. It
uses the abbreviation tbl for table and Name, which doesn't help you know what's inside it.
If the table contains cat breeds, then you could name the table CatBreeds, and that will
make it clear what is contained in the table.

Designing and Creating a Database Chapter 4

[97]

Something important to bear in mind when naming database objects is whether you should
name them so that you know whether it is a table, view, or stored procedure (more on these
types of objects in Chapter 12, Programmable Objects). You could name a table with
tblCatBreeds, but I don't recommend using the tbl part. You may want to change the
table to another type of database object later and would not want the name to imply that it's
a table. Instead, you could name the table CatBreeds.

Case and separating words
There are different ideas behind how to use case and how to separate words in database
object names. You shouldn't use spaces to separate words, but you can use cases or
underscores.

Depending on the configuration of the MySQL server, it may not be
possible to use anything but lowercase naming, so the following
information is more generalized to apply to all RDMS.

The different types of case naming are as follows:

lowercase naming: This means that the entire object name is lowercase. For
example, catbreeds and dogbreeds are table names with a lowercase naming
convention.
UPPERCASE naming: This means that the entire object name is uppercase. For
example, CATBREEDS or DOGBREEDS are table names with an uppercase naming
convention.
camelCase naming: This means that the name starts with lowercase, and each
new word starts with an uppercase letter. For example, catBreeds and
dogBreeds are table names with a camelCase naming convention.
PascalCase naming: This means that the first letter in each word is capitalized.
For example, CatBreeds and DogBreeds are table names with a PascalCase
naming convention.

By default, MySQL doesn't support anything but lowercase naming, so I
would recommend using underscores (_) between words in a database
object's name if the name is long to avoid confusion with all lowercase
naming.

Designing and Creating a Database Chapter 4

[98]

The different ways to separate words in database objects are as follows:

Separating by case as outlined previously: With lowercase, UPPERCASE,
camelCase, or PascalCase.
Separating the words with an underscore: Like cat_breeds or dog_breeds.
Separating the words with spaces: Don't use this method since it creates issues
with errors and SQL querying syntax.

There are many opinions on whether to name a table as singular or plural (for example,
CatBreed or CatBreeds) and plenty of opinions around case and separation. Ultimately,
it's good to stick with the same convention throughout, especially a convention that makes
it easy to read the name. For instance, if you had a long table name such
as citiesinamerica, it would be kind of hard to read in all lowercase or uppercase, so
you might want to pick camelCase or PascalCase since it would be easier to read names
such as CitiesInAmerica. You could also insert underscores to make it more readable if
you prefer, and with underscore spacing, you can use any of the case choices. I like
camelCase or PascalCase because they are the easiest to read, and I prefer not to use
underscores in naming database objects:

lowercase UPPERCASE camelCase PascalCase underscore spacing
catbreeds CATBREEDS catBreeds CatBreeds cat_breeds

The most important thing is to pick a convention for the case and separation of database
object naming and stick with it.

Allowed characters when naming database objects
When creating a database object, you can't use any character. You need to use the permitted
characters, which include numbers (0–9), lowercase letters (a–z), uppercase letters (A–Z),
the dollar sign ($), and underscore (_).

You can use characters other than these permitted ones, but then you will find yourself
with the same problem regarding what happens when you put a space in a name. You have
to use backticks (`) in MySQL when creating it or using the object if you use non-permitted
characters. It's best to steer away from non-permitted characters.

To summarize this section, you want to ensure that you avoid keywords and spaces, and
make sure that you use descriptive and accurate naming. You also want to choose your case
and method for separating words and stick to one convention, and make sure that you use
only permitted characters when naming a database object.

Designing and Creating a Database Chapter 4

[99]

Learning how to create a database
We'll go through a couple of different ways to create a database in this section. The first
way is with the MySQL Workbench interface, and the second way is with SQL scripts only.

Creating a database via the MySQL Workbench
interface
Creating a database using MySQL Workbench is fairly straightforward. Simply go through
the following steps:

Open MySQL Workbench.1.
Connect to your local instance or a dev/test instance. Don't perform any of these2.
steps on a live production server. Connecting to a MySQL instance is covered in
more detail in Chapter 2, Installing and Using MySQL Workbench.
Click the button for creating a new schema, which is highlighted in the following3.
screenshot. The word schema is synonymous with database in MySQL:

In Oracle, PostgreSQL, and SQL Server, 'schema' is not synonymous with
'database', and these two things are distinctly different. In these other
RDMSes, a schema is contained within a database.

Designing and Creating a Database Chapter 4

[100]

Type in the database (schema) name, as shown in the following screenshot,4.
remembering to follow the naming conventions outlined in the previous section:

Click on Apply.5.
If your MySQL is configured only to use lowercase table names, you will get the6.
following error message if you name it with more than lowercase letters. The
lowercase letters setting is unchangeable after the MySQL server is initialized:

Click on OK.7.

Designing and Creating a Database Chapter 4

[101]

The following screenshot shows you what script MySQL Workbench will run for8.
you to create the new database:

Click on Apply.9.
On the next screen, click on Finish if the script was successfully applied. If it was10.
not successfully applied, you can click Back to fix any issues or Show Logs to see
additional error information:

Designing and Creating a Database Chapter 4

[102]

You will see your database listed in the SCHEMAS panel in MySQL Workbench,11.
as shown in the following screenshot:

Now, you will be able to add database objects, such as tables, to your new database. We
will do a walkthrough of this in the Creating a database table section later in this chapter.

Designing and Creating a Database Chapter 4

[103]

Creating a database via MySQL Workbench with a SQL
script
Creating a database using MySQL Workbench with a SQL script is relatively
straightforward. Simply go through the following steps:

Open MySQL Workbench.1.
Connect to your local instance or a dev/test instance. Don't perform any of these2.
steps on a live production server.
Click the new SQL script button, which is highlighted in the following3.
screenshot:

Copy or type the following script into the script window in MySQL Workbench:4.

CREATE DATABASE yourschema;

Click the execute script button, highlighted in the following screenshot:5.

Designing and Creating a Database Chapter 4

[104]

Once the script is done executing, the Output panel will show that it is6.
successful:

You don't need the backticks (`) around yourschema in the preceding
script, but MySQL puts them there by default whenever you script an
object. We will walk through how to script objects later in this chapter.

Once you click the refresh button on your SCHEMAS panel, you will see your7.
new database, as shown in the following screenshot:

Now, you will be able to add database objects, such as tables, to your new database. We
will do a walkthrough of this in the Creating a table in the database table section later in this
chapter.

Designing and Creating a Database Chapter 4

[105]

Understanding SQL code errors
When MySQL encounters errors with your script or actions in MySQL Workbench, it puts a
message for you in the Output panel.

By default, the Output panel is at the bottom of the MySQL Workbench application. You
can resize it by clicking on the divider between the script file area and the Output panel.

I changed the script that we ran in the previous section so that there is a space in the
schema name that isn't allowed unless you have backticks around it (because it is a MySQL
keyword). MySQL will show an error in the Output panel when I run it, as shown in the
following screenshot:

The Output window will show you the time, the action, the message, and the
duration/fetch:

The Time column tells you the time of the day that you ran the query.
The Action column shows you what query was executed.
The Message column shows you whether the action was successful and also tells
you the number of rows that a query returned, if any.
The Duration/Fetch column shows you how long the action took to complete.

Designing and Creating a Database Chapter 4

[106]

To see the entire error message, right-click it, and select Copy Response, as shown in the
following screenshot:

You can then paste this response information into a query window or a text editor of your
choosing. The important thing is to see the entire message. The whole message is Error
Code: 1064. You have an error in your SQL syntax; check the manual that corresponds to
your MySQL server version for the right syntax to use near 'schema' at line 1.

The error message will show any information it can tell you about the error you and the
line in which you have the problem. Sometimes the errors are cryptic, but you can usually
tell where the problem is on the line because MySQL Workbench will put red squiggly lines
under the problem area. In the preceding screenshot with the script in it, you can see that
MySQL Workbench has a red squiggly line under the schema. We know that we can't have
spaces in a schema name (without using backticks), so MySQL Workbench is warning us
that this won't work, and sure enough, when we run the script, it gives us an error. You
will either need to make your schema one word in the script or put your schema in
backticks—for example, `your schema`. I highly advise against using spaces in a
database (schema) name.

Designing and Creating a Database Chapter 4

[107]

The Output panel will show you any errors that you have, and they will accumulate there
over time. If you want to clear out the errors, then you can right-click in the Output panel
and select Clear, as shown in the following screenshot. This will clear all your messages
from the Output window, so only use this if you want to clear everything out:

The Output window is a useful panel. As described in Chapter 2, Installing and Using
MySQL Workbench, the Output window also shows you successful queries, and it's where
you can go to look for success and failure messages.

Understanding table relationships
As we covered in Chapter 1, Introduction to Relational Database Management Systems,
relational databases contain tables that are related to one another. Once you need to query
more than one table, you can rely on these relationships to join the tables together. There
are three types of table relationships: one-to-one, one-to-many, and many-to-many. First,
let's go over how to display these relationships in a diagram.

Designing and Creating a Database Chapter 4

[108]

Understanding entity-relationship diagrams
You can use entity-relationship diagrams to visualize table relationships. This is sometimes
referred to as an E-R diagram, or an ERD. In MySQL Workbench, the entity-relationship
diagram, is referred to as an enhanced entity-relationship diagram or EER diagram. This
just means that it's an entity-relationship diagram with enhanced features, such as being
able to see object properties and constraints more easily. The lines that connect the tables to
each other help you to determine what kind of relationships exists between the tables. The
following table shows the connector lines and a description of what they mean:

Connector Description

Zero or one row matches between tables

One, and only one, row matches between tables

Zero to many rows match between tables

One to many rows match between tables

Many rows match between tables

You can mix the line connectors to make both ends show the relationship between the
tables. Let's now look at some examples of table relationships and their associated
connectors.

Understanding one-to-one table relationships
In a one-to-one relationship, one table has just one corresponding row in another table. An
example of this could be two tables, one with employees and one with computers. Each
employee has one computer. A one-to-one relationship is not a common table relationship.
You might separate a table's data into multiple tables for security purposes—for example,
you could have a table of employees, but want the pay in a separate table so that only
certain people can access the employee pay information.

Designing and Creating a Database Chapter 4

[109]

The following screenshot shows an example of a one-to-one relationship:

Understanding one-to-many table relationships
In a one-to-many relationship, one table has none, one, or many corresponding rows in
another table. An example of this could be two tables, one with adults and one with
children. An adult table row may have none, one, or many rows in the child table. One-to-
many is a common table relationship. In the case of the baseball database, an example of a
one-to-many relationship is the people table to the appearance table. There is one playerid
per row in the people table and there are many appearances for each of those playerids in
the appearances table. In addition, a one-to-many relationship can be viewed as a many-to-
one relationship depending on the direction from which you are looking at it. The
following screenshot shows an example of a one-to-many relationship:

Understanding many-to-many table relationships
In a many-to-many relationship, one table corresponds to many rows in another table. In
addition, one item from one table can correspond to multiple rows in the other. An example
of this could be tables of customers and products. Customers could purchase many
products, and many products can be purchased by many customers. In the case of the
baseball database, an example of a one-to-many relationship is the appearances table's
relationship to the batting table. There are many rows per playerid in the appearances table
and there are many rows for each of those playerids in the batting table.

Designing and Creating a Database Chapter 4

[110]

The following screenshot shows an example of a many-to-many relationship:

The following screenshot shows you an example of an entire ERD:

In the preceding screenshot, the people table has a one-to-many relationship with the
salaries table, a one-to-zero or many relationship with the collegeplaying table, and a
one-to-zero or many relationship with the appearances table. In addition, the
collegeplaying table has a many-to-one relationship with the schools table.

You can reverse engineer an entity-relationship diagram in MySQL Workbench. It works
best if all the tables have foreign key references, but if they don't, then you can add them
via the diagram.

Designing and Creating a Database Chapter 4

[111]

To reverse engineer a diagram in MySQL Workbench, you can go through the following
steps:

Select Database in the menu, and then select Reverse Engineer:1.

Set the parameters for connecting to the DBMS—in this case, it's my local2.
instance—and then click Continue:

Designing and Creating a Database Chapter 4

[112]

Click on Continue on the Connect to DBMS and Fetch Information page after it3.
shows Execution Completed Successfully and Fetch finished:

Designing and Creating a Database Chapter 4

[113]

Select a schema and then click on Continue. In this case, I'm selecting the schema4.
we created in a previous chapter of this book (yourschema):

Click on Continue on the Retrieve and Reverse Engineer Schema Objects page5.
after it shows Execution Completed Successfully and Fetch finished.

Designing and Creating a Database Chapter 4

[114]

On the Select Objects to Reverse Engineer page, click the Show Filter button to6.
see all the objects that it will reverse engineer. You can exclude objects by
clicking the arrows between the boxes that show Objects to Process and
Excluded Objects. Click Execute when you have included the objects that you
want:

Click Continue on the Reverse Engineer Progress page after it shows Operation7.
Completed Successfully.

Designing and Creating a Database Chapter 4

[115]

Click Close on the Reverse Engineering Results page, which shows you the8.
summary of the reverse-engineered objects:

This will bring you the EER diagram. As you can see in the following screenshot,9.
there is a one-to-one or many relationship between the teams table and the
managers table:

Designing and Creating a Database Chapter 4

[116]

The EER diagram can be very useful right after it is generated if the proper foreign key
constraints have been set up. If your database doesn't have these, you will have to manually
map table relationships inside the EER diagram.

Creating a table in the database
Now that we've created a database, we can walk through how to create a table in the
database. We need to remember what we learned in Chapter 3, Understanding Data Types,
regarding how to correctly apply data types. We also need to remember what we covered
in Chapter 1, Introduction to Relational Database Management Systems, about data integrity.
This information will form a vital part of our method when we properly create a table.

Designing and Creating a Database Chapter 4

[117]

Understanding how to apply data types and data
integrity to your table
Let's briefly review what we covered about data integrity in Chapter 1, Introduction to
Relational Database Management Systems.

Database integrity refers to the consistency and accuracy of data. It is typically enforced by
the procedures and guidelines in the database design phase. In RDMS, data integrity is
enforced by using keys. A key forces values in a table to conform to a specified standard.
There are many types of key to ensure data integrity and enforce table relationships:

Entity integrity Referential integrity Domain integrity
Unique constraint Foreign key Check constraint
Not null constraint Default constraint

Primary key

You need to remember to use these keys and constraints while designing and creating your
database tables.

Learning to create a database table
We'll go through a couple of different ways to create a database table in this section. We
will use MySQL Workbench for both methods, but one method will not require
scriptwriting and the other one will.

First, let's download and analyze the data that will be used for creating the tables:

Download the CSV files from https:/ ​/​github. ​com/ ​PacktPublishing/ ​learn-1.
sql-​database- ​programming/ ​tree/ ​master/ ​baseballdatabank- ​csv/ ​csv- ​files.
The files we will be using in this section are in the baseballdatabank-
csv/csv-files folder. You will set up just a couple of small tables from this
data so that you can have an idea of how the data integrity and keys will work on
tables.
Working with the Managers.csv file, the columns we will be using2.
in Managers.csv are playerID, yearID, teamID, G, W, L, and plyrMgr. The
following screenshot shows some of the data in this file:

https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming
https://github.com/PacktPublishing/learn-sql-database-programming

Designing and Creating a Database Chapter 4

[118]

Working with the Teams.csv file, we can see that this file has many columns,3.
but we will set up a table with yearID, lgID, teamID, and rank. The following
is a screenshot of some of the data in this file:

We need to determine how these tables relate to each other and how we can set4.
up data integrity with keys and constraints. One thing that will be very helpful is
to see the distinct values in each of the columns that we want to add to our
database tables. Using an advanced filter in Excel shows the distinct values in
each column. To learn how to use the advanced filter in Excel, visit https:/ ​/
support. ​office. ​com/ ​en- ​us/ ​article/ ​Filter- ​for- ​unique- ​values- ​or-​remove-
duplicate- ​values- ​ccf664b0- ​81d6-​449b- ​bbe1- ​8daaec1e83c2. This will show
you the values that you need to account for when choosing data types,
remembering that we want to use the smallest data type for the data we will be
storing. More details on this were provided in Chapter 3, Understanding Data
Types.

https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2
https://support.office.com/en-us/article/Filter-for-unique-values-or-remove-duplicate-values-ccf664b0-81d6-449b-bbe1-8daaec1e83c2

Designing and Creating a Database Chapter 4

[119]

A quick recap of data types will remind you that most databases are stored on
disk (with some exceptions that allow data to be stored in memory). When the
database needs to fetch data for you, it needs to read from the disk and return
results to you. This is where disk I/O comes into play. I/O stands for input/output,
and it's the communication between a system or computer and a person or
another system or computer. Disk I/O is the reads and writes that are happening
against a disk, and its rate is dependent on the speed with which the data can be
transferred from disk to memory. This is the time that it will take to return the
data for your query. The more data you request, the longer it will take, and if you
have a lot of people requesting a lot of data, then it may take much longer than is
acceptable. This is why it's imperative to choose the right data type for your data.
For more information about data types and choosing the right data type, visit
Chapter 3, Understanding Data Types.

Let's continue with our analysis of the managers and teams CSV files.

By getting the distinct values in each of the columns that we want to add to our5.
table, we can see the following things that are outlined in the following table for
the Managers.csv file. In this case, I also got the max length of the playerID
column to be sure of what the longest value is. It's also good to note how many
rows are in each file. In the managers.csv file, there are 3,504 rows, and in the
teams.csv file, there are 2,895 rows. This information will be important when
we are deciding on an autoincrementing primary key for the tables:

Column Value range
playerID All the values are alphanumeric codes with up to 9 characters.
yearID 1871 to 2018.
teamID All the values are alphanumeric codes with 3 characters.

G Integers ranging from 1 to 165.
W Integers ranging from 0 to 116.
L Integers ranging from 0 to 116.

plyrMgr Y or N.

Designing and Creating a Database Chapter 4

[120]

Also, by getting the distinct values in each of the columns that we want to add to6.
our table, we can see the following things that are outlined in the following table
for the Teams.csv file:

Column Value range
yearID 1871 to 2018.
lgID All the values are alphanumeric codes with 2 characters.
teamID All the values are alphanumeric codes with 3 characters.
Rank Numeric ranking from 1 to 12.

Now that we know what each of these columns contains, we can decide on the7.
data types for them, choose the keys and constraints, and choose a proper name.
For the Managers.csv file, the following table shows the naming, data type, and
any keys or constraints:

Original
column name

Table column
name Data type Key or constraint

doesn't exist in
CSV

managerkey SMALLINT(5) Primary key autoincrementing

playerID playerid VARCHAR(9)
Part of unique composite key

Not null constraint

yearID yearid YEAR
Check constraint for range 1871–2155

Part of unique composite key
Not null constraint

teamID teamid CHAR(3)

Part of unique composite key
Foreign key to the teams table on

teamid

Not null constraint

G games TINYINT(3)
Check that constraint is between 0 and

165
Not null constraint

W wins TINYINT(3)
Check that constraint is between 0 and

165
Not null constraint

L losses TINYINT(3)
Check that constraint is between 0 and

165
Not null constraint

plyrMrg alsoplayer CHAR(1)
Check that constraint is only Y or N

Not null constraint

Designing and Creating a Database Chapter 4

[121]

For the Teams.csv file, the following table shows the naming, data type, and any
keys or constraints:

Original column
name

Table column
name Data type Key or constraint

doesn't exist in
csv

teamkey SMALLINT(5) Primary key autoincrementing

yearID yearid YEAR
Part of unique composite key

Not null constraint

lgID leagueid CHAR(2)
Part of unique composite key

Not null constraint

teamID teamid CHAR(3)
Part of unique composite key

Not null constraint

rank teamrank TINYINT(2)
Check that constraint is between 0 and

12
Not null constraint

The rationale behind the naming changes was to make it a bit more obvious as to what the
columns contain. If you didn't know about baseball, then you might not know that lgID is
the league ID, or that G is games. We want all naming to be descriptively accurate. Also,
'rank' is a keyword in SQL, so we had to change it to 'teamrank' to avoid any
confusion.

The rationale behind the check constraints is to ensure that there isn't any data that is going
into fields that aren't inside the proper range for those fields. We also want to ensure that
none of the fields are null so that we can analyze the data in each row properly.

The rationale behind the unique composite keys in each table is that no field column is
distinct on its own, so you can create a unique composite key for those combinations of
fields that are unique when combined. As for the primary key with autoincrementing, we
want to have a column that is the smallest column for uniquely identifying a row of data.

Natural and surrogate primary keys
Now let's talk a little bit more about choosing a primary key. There are two types of
primary keys: natural and surrogate. With a natural key, you are using unique columns,
and the data in those columns exists outside the database (that is, in the business world).
With a surrogate key, you are creating a column to hold a unique value for each row, and
that value isn't used anywhere outside the database.

Designing and Creating a Database Chapter 4

[122]

If there was an obvious choice for a primary key (remembering that this is unique and not
null), we could use that column. For instance, we could use an obvious primary key if one
of these tables contained information about books. Each book has a unique, not null ISBN.
This natural key would be an excellent choice for a primary key. When your tables contain
multiple columns that are unique and not null to make a composite primary key, it may be
better to have one column that uniquely identifies each row. You can then still have a
unique, not null composite key on those columns that uniquely identify rows, but you must
still always ensure that the easiest way to identify a row with one column is with a
surrogate primary key.

Creating a database table via MySQL Workbench
Creating a database table using MySQL Workbench is relatively straightforward. Let's go
through the following steps:

Open MySQL Workbench.1.
Connect to your local instance or a dev/test instance by clicking on it in MySQL2.
Workbench. Don't perform any of these steps on a live production server:

Click the down arrow next to the new schema that you created in the previous3.
section:

Designing and Creating a Database Chapter 4

[123]

Right-click Tables and select Create Table...:4.

This will bring up a tab to allow you to fill in the details of your table; there will5.
be a lot of blank areas for you to fill in and it will have the default table name of
new_table.
We will fill in these details with information from the following table: 6.

Table column name Data type Key or constraint
teamkey SMALLINT(5) Primary key autoincrementing

yearid YEAR
Part of unique composite key

Not null constraint

leagueid CHAR(2)
Part of unique composite key

Not null constraint

teamid CHAR(3)
Part of unique composite key

Not null constraint

teamrank TINYINT(2)
Check that constraint is between 0 and 12

Not null constraint

First, we fill out the Columns tab so that it matches the following screenshot.7.
Before hitting Apply, we need to use a couple more tabs; go through the
following steps to see the information that we need for these tabs, along with the
screenshots showing you the relevant information:

Designing and Creating a Database Chapter 4

[124]

Click on the Indexes tab so that we can add the Unique index on the teamid,8.
leagueid, and yearid columns. Refer to the following screenshot for details:

Designing and Creating a Database Chapter 4

[125]

Click on Apply.9.
Review the script to apply.10.
Click on Apply.11.
Click on Finish.12.
Click the down arrow on the schema that you created in this chapter and click13.
the down arrow on Tables. You should see the teams table in the list now:

Click the New SQL script button:14.

Run the following script to add the CHECK constraints:15.

ALTER TABLE yourschema.teams ADD CONSTRAINT check_year CHECK
(yearid >=1871 and yearid <=2155) enforced;
ALTER TABLE yourschema.teams ADD CONSTRAINT check_teamrank CHECK
(teamrank >=0 and teamrank <=12) enforced;

Click the New SQL script button.16.
Right-click on the teams table and click on Send to SQL Editor and then Create17.
Statement:

Designing and Creating a Database Chapter 4

[126]

This will show you the following script for your table:

Designing and Creating a Database Chapter 4

[127]

You can go through some similar steps to create the managers table, or you can proceed to
the section on how to run the scripts to create the tables, since this will also include
information on how to create the scripts for both tables. The following screenshots show
how to set up the managers table, including the foreign key association for the teams
table.

We will set up the managers table in much the same way as the teams table, but we will
add a foreign key reference from the managers table to the teams table.

The following screenshot shows the setup for the columns in the managers table:

Designing and Creating a Database Chapter 4

[128]

The following screenshot shows the setup for the indexes in the managers table:

The following screenshot shows the setup for the foreign key reference for the teamid from
the managers table to the teams table on teamid. Note that under Foreign Key Options,
we are going to set On Update and On Delete to RESTRICT. This means that you won't be
allowed to delete a team from the teams table unless you delete or update the
corresponding manager record first:

Designing and Creating a Database Chapter 4

[129]

Once the managers table is set up, add the check constraints with the following script:

ALTER TABLE yourschema.managers
ADD CONSTRAINT check_year CHECK (yearid >=1871 and yearid <=2155) enforced;

ALTER TABLE yourschema.managers
ADD CONSTRAINT check_games CHECK (games >= 0 and games <= 165) enforced;

ALTER TABLE yourschema.managers
ADD CONSTRAINT check_wins CHECK (wins >=0 and wins <=165) enforced;

ALTER TABLE yourschema.managers
ADD CONSTRAINT check_losses CHECK (losses >=0 and losses <=165) enforced;

ALTER TABLE yourschema.managers
ADD CONSTRAINT check_alsoplayer CHECK (alsoplayer = 'N' or alsoplayer =
'Y') enforced;

The next section will show you how to run the scripts to create both of the tables.

Creating a database table via MySQL Workbench with
SQL scripts
This section will show you how to create the tables that we discussed earlier in the section
via scripts:

Open MySQL Workbench.1.
Connect to your local instance or a dev/test instance. Don't perform any of2.
these steps on a live production server.
Click the New SQL script button:3.

Designing and Creating a Database Chapter 4

[130]

Copy or type the following script into the script window and click the run4.
button:

CREATE TABLE yourschema.`teams3` (
`teamkey` smallint NOT NULL AUTO_INCREMENT,
`teamid` char(3) NOT NULL,
`yearid` year(4) NOT NULL,
`leagueid` char(2) NOT NULL,
`teamrank` tinyint NOT NULL,
PRIMARY KEY (`teamkey`),
UNIQUE KEY `teamkey_UNIQUE` (`teamkey`),
KEY `teamid_yearid_leagueid_UNIQUE` (`teamid`,`yearid`,`leagueid`),
CONSTRAINT `check_teamrank` CHECK (((`teamrank` >= 0) and
(`teamrank` <= 12))),
CONSTRAINT `check_year` CHECK (((`yearid` >= 1871) and (`yearid` <=
2155))));

Once the teams table is successfully created, run the following script to create the5.
managers table:

CREATE TABLE yourschema.`managers` (
`managerkey` smallint NOT NULL AUTO_INCREMENT,
`playerid` varchar(9) NOT NULL,
`yearid` year(4) NOT NULL,
`teamid` char(3) NOT NULL,
`games` tinyint NOT NULL,
`wins` tinyint NOT NULL,
`losses` tinyint NOT NULL,
`alsoplayer` char(1) NOT NULL,
PRIMARY KEY (`managerkey`),
UNIQUE KEY `managerkey_UNIQUE` (`managerkey`),
UNIQUE KEY `playerid_yearid_teamid_UNIQUE`
(`playerid`,`yearid`,`teamid`),
KEY `FK_teamid_idx` (`teamid`),
CONSTRAINT `FK_teamid` FOREIGN KEY (`teamid`) REFERENCES `teams`
(`teamid`) ON DELETE RESTRICT ON UPDATE RESTRICT,
CONSTRAINT `check_alsoplayer` CHECK ((`alsoplayer` in
(_utf8mb4'Y',_utf8mb4'N'))),
CONSTRAINT `check_games` CHECK (((`games` >= 0) and (`games` <=
165))),
CONSTRAINT `check_losses` CHECK (((`losses` >= 0) and (`losses` <=
165))),
CONSTRAINT `check_manager_year` CHECK (((`yearid` >= 1871) and
(`yearid` <= 2155))),
CONSTRAINT `check_wins` CHECK (((`wins` >= 0) and (`wins` <=
165))));

Designing and Creating a Database Chapter 4

[131]

Now, you have the teams and the managers tables set up as per the specifications outlined
in the previous section.

Creating databases and tables is slightly different in each of the other
RDMSes. The interfaces are different in Oracle, PostgreSQL, and SQL
Server, and the SQL used to create databases and tables could also be
slightly different.

Learning how to format SQL code for readability
Formatting your SQL code for readability is vital so that you and others can quickly
understand your SQL code. SQL ignores whitespace, making it easy to format for
readability. You can write SQL code all on one line, but it's much easier to read if you place
different parts of the SQL on separate lines.

For example, you could write code as shown in the following example, which has all the
code on one line and wraps around:

CREATE TABLE `managerstest` (`managerkey` smallint NOT NULL,`playerid`
varchar(9) NOT NULL,`yearid` year(4) NOT NULL,`teamid` char(3) NOT NULL);

Instead, think about writing it so that it is easier to read, like the following code:

CREATE TABLE `managerstest`
(`managerkey` smallint NOT NULL,
`playerid` varchar(9) NOT NULL,
`yearid` year(4) NOT NULL,
`teamid` char(3) NOT NULL);

Commenting SQL code
Commenting is essential for writing SQL scripts. You need to use comments so that others
can understand why your code works the way it does. If you don't include comments, it
will be difficult to use and modify the code later.

Commenting helps you make clear what you are trying to accomplish with each piece of
your code. There is an optimal amount of commenting that you should use. For instance,
you don't want to not include any comments, but you probably don't want to include
comments for every single line. In the preceding CREATE TABLE code sample, you could
add a comment at the top that explains why you are creating this table, what it contains,
who you are, and when you created it.

Designing and Creating a Database Chapter 4

[132]

To create a single-line comment, use #, and to create a multiline comment, use /* */. The
following code sample shows you how to use each of the comments:

this is single line comment

/*
this is a
multi line
comment
*/

The following is a code sample without comments:

CREATE TABLE `managerstest`
(`managerkey` smallint NOT NULL,
`playerid` varchar(9) NOT NULL,
`yearid` year(4) NOT NULL,
`teamid` char(3) NOT NULL);

The following is a code sample with comments:

/*
creating managers table for data relating to baseball team manager data
*/
CREATE TABLE `managerstest`
(`managerkey` smallint NOT NULL,
`playerid` varchar(9) NOT NULL,
`yearid` year(4) NOT NULL,
`teamid` char(3) NOT NULL);

Commenting will be covered in more detail in Chapter 6, Querying a Single Table.

Understanding indexes
This section will take the reader through an explanation of what indexing is, how it relates
to data integrity, and how it impacts performance.

Indexing is a method of optimizing database performance to boost the speed of database
queries. Indexes are placed on column(s) in a table. Tables can have more than one index,
but there tends to be an optimal number of indexes before indexes impair performance
instead of helping it. The optimal number can vary depending on the table. This is why
index tuning can be an art as well as a science. To properly index a table, you need an
understanding of how to streamline the process of query results that are returned to a user.

Designing and Creating a Database Chapter 4

[133]

It's good to plan out the indexing that you will need before adding data, if possible. When
you add an index to an empty table, it adds it pretty much instantaneously. It can take quite
a while to add an index later—depending on how much data you have in the
table—because of the way that indexes may have to sort or add pointers to data.

Understanding how indexing relates to data
integrity
Whenever you create a primary key, unique constraint, or foreign key, MySQL stores them
as indexes. These indexes will be directly related to data integrity since they are related to
keys and constraints that ensure data integrity. Not all indexes relate to data integrity, but
the indexes created as part of primary keys, foreign keys, and unique constraints do.

Types of indexes
There are two types of indexes:

Clustered: Clustered indexes store the data in order, so whatever columns you
choose in a clustered index, that's the way the data will be sorted in a table. The
data is stored physically on disk in the order of the clustered index. A clustered
index can be viewed as a tree built on top of a table. The columns (key) that you
place in the clustered index determines the order of the rows in the table. The
following diagram shows an example of how a clustered index is structured:

Designing and Creating a Database Chapter 4

[134]

Non-clustered: Nonclustered indexes don't sort the data. They instead use
pointers to the physical data to quickly locate the data when the index is used to
query data. You can have multiple nonclustered indexes on a table, but you need
to be careful not to create too few or too many because your queries can be
slowed down either way. The following diagram shows an example of how a
nonclustered index is structured:

Designing and Creating a Database Chapter 4

[135]

Looking back at the two tables that we created in the previous section, we can see that the
primary key, foreign key, and unique constraints all have indexes associated with them, as
shown in the following screenshot:

The primary key (PRIMARY and managerkey_UNIQUE) will be your clustered
index, and it will have the primary key field in ascending order in the table. This
will be the managerkey for the managers.
The unique key (playerid_yearid_teamid_UNIQUE) will be a nonclustered
index. The unique key will enforce the uniqueness of the columns in the key, but
it will also allow you to use the nonclustered index that exists as part of the
unique key to speed up queries concerning those fields.
The foreign key (FK_teamid_idx) will also be a nonclustered index. This will
speed up queries when you query the field that is in the foreign key.

Further details regarding how you should use these fields in a query to speed up query
performance can be found in the next section.

Understanding how indexing impacts
performance
When you run a query, MySQL has to decide how to get the data from the table(s). If your
table has no index, then the query will need to scan through the entire table to find the data
in much the same way that you would have to scan through an entire book if it didn't have
an index in the back. That would be very time-consuming, depending on how long the
book is. The same thing goes for an index on a table. You might not notice any issue with
your query running long if the table is small, but once the table is large, scanning the entire
table to get the results could take quite a while. Plus, if other people are also running
queries on the same table, then the results may never return since queries may block each
other or deadlock.

Designing and Creating a Database Chapter 4

[136]

Locking happens when you run a query. Locking isn't bad in and of itself, but it becomes an
issue when different queries interfere with each other and cause blocking. Blocking
happens when more than one query is trying to read or write the same data. Sometimes
blocking happens, and it's just for a short period, so blocking isn't necessarily bad. If two or
more queries are requesting the same data, creating locks that won't be resolved, then
MySQL will decide which is easiest to kill (usually based on how long it will take to roll
back any given query), and this is what is referred to as a deadlock. MySQL will need to
roll back a query if it hasn't finished inserting, updating, or deleting data to keep the data in
a consistent state. Rolling back, locking, blocking, and deadlocking will be discussed in
greater detail in Chapter 11, Advanced Querying Techniques.

If you create indexes and use them properly with your queries, then you will have less
blocking and deadlocking to deal with because the index will allow you to query data more
quickly.

The main way that indexes can speed up a query is by using the columns in the index when
joining tables, when filtering results (for example, yearid = 2017), and when ordering
results (for example, order by year).

If we look back at the mangers table, we can see that we can use the unique index to query
the managerid, teamid, and yearid. When I say use the index, it doesn't mean that you
will specify the index in a query, but that MySQL will use the index when you write a
query correctly. For example, if you want to get back the managerid, yearid, games,
wins, and losses for the year 2017, you would build a query that searches the table for
yearid = 2017. It could use the index that you created as part of the unique key, so
instead of having to scan the entire table, it could search for a specific location in the read-
only parts of the table.

In SQL Server, there is an additional way in which you can implement
indexing using something called filtered indexes. This enables you to
create an index that filters results in the index. As an example, if you only
wanted to index one year of baseball data, then you could set the index to
yearid = 2018, and it will then filter the index accordingly.

Designing and Creating a Database Chapter 4

[137]

Here are some important things to note regarding indexing:

Indexing doesn't speed up everything that happens in a database table. It won't
speed up writes (the inserting, updating, and deleting of data). It only speeds up
reading (querying data from the database), so you need to be careful that you
don't add an index for reads that then slows down writes too much. Indexing
slows down writes because the index has to be updated each time data is
written.
The order of the columns in indexes matters. If you wanted to sort your query
data only on yearid, but your index is ordered by managerid and then yearid,
then your query won't be as performant. If you need to sort using yearid most
of the time, then you should have an index that has yearid as the first column in
the index.
Indexes can take up a lot of storage. A clustered index shouldn't take up space on
disk since it's an ordering of the data already sitting on disk, but nonclustered
indexes can take up quite a bit of room depending on the size of the table and the
number of columns in the index.
When adding columns, be careful that you don't have too many columns in your
index. For instance, adding all of the columns in your table to an index won't
make it faster, especially if the table has many columns. If your table only has a
few columns, then adding them all to an index may be a correct implementation.
Indexing columns that contain a lot of non-unique values may not provide much
performance improvement. If you have to decide which columns you need to
index, choose a column with more variability in its values, such as first names as
opposed to state names.

In Chapter 6, Querying a Single Table, and Chapter 7, Querying Multiple Tables, we will go
over how to see what indexes your query is using and how to change your query to ensure
that you are getting the best performance you can have.

Understanding naming conventions for indexes
When naming indexes, much the same as naming other database objects, it's important to
name them so that they are descriptive enough that you can easily see what they are
indexing.

As we can see from the keys that we created for the managers table, they tend to get
default names. We changed the ones that needed more descriptive naming. The PRIMARY
key naming isn't changeable in MySQL.

Designing and Creating a Database Chapter 4

[138]

When adding an index, you should name it so that you can tell what kind of index it is and
what columns are in the index. The naming of indexes will be similar to the naming
conventions for naming database objects that we looked at earlier in this chapter. The most
important thing is to pick a naming convention and stick to it.

The big difference with indexing is that it's good to include a prefix (or suffix) in the
name describing what it's for. The following table gives some suggestions for naming
indexes:

Sample index name What it contains
cix_firstname_lastname Clustered index of first and last names
ix_firstname_lastname Nonclustered index of first and last names
ncix_firstname_lastname Nonclustered index of first and last names
idx_firstname_lastname Nonclustered index of first and last names

By now, you should have developed a good understanding of indexing and its types.

Summary
This chapter covered how to design and create a database. We discussed the guidelines
regarding naming conventions, understanding SQL code errors, formatting SQL code for
readability, and how to apply data types and integrity to your tables.

You learned about the types of table relationships, including one-to-one, one-to-many, and
many-to-many relationships. You also learned about entity relationship diagrams,
including how to create them and how to understand table relationships in them.

We also discussed indexing, and learned about what it is, how to use it, and what it means
for database performance. We also went through the steps of creating a database and table
using MySQL Workbench and SQL scripts.

In the next chapter, you will be introduced to importing and exporting data. There are
many ways to import and export data in MySQL. You will learn how to import and export
data via MySQL Workbench using Table Data, SQL Data, and Result Data. You will also
learn how to import and export data via SQL syntax.

Designing and Creating a Database Chapter 4

[139]

Further reading
For more information:

For more information on SQL Server, visit https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/
sql/​t- ​sql/ ​lesson- ​1- ​creating- ​database- ​objects? ​view= ​sql- ​server- ​ver15.
For more information on Oracle, visit ;https:/ ​/​docs. ​oracle. ​com/​en/ ​database/
oracle/​oracle- ​database/ ​18/ ​cncpt/ ​tables- ​and- ​table- ​clusters. ​html#GUID-
F845B1A7- ​71E3- ​4312- ​B66D- ​BC16C198ECE5.
For more information on PostgreSQL, visit https:/ ​/​www. ​postgresql. ​org/ ​docs/
11/​ddl- ​basics. ​htm.
For more information on filtered indexes, visit https:/ ​/​docs. ​microsoft. ​com/
en-​us/ ​sql/ ​relational- ​databases/ ​indexes/ ​create- ​filtered- ​indexes? ​view=
sql-​server- ​ver15. In PostgreSQL, this is called a partial index. For more
information on this, visit https:/ ​/ ​www.​postgresql. ​org/​docs/ ​11/ ​indexes-
partial. ​html.

Questions
What things should you avoid when naming database objects? 1.
What characters are allowed when naming database objects?2.
What is the SQL syntax to create a new database? 3.
Where can you find SQL error codes in MySQL Workbench? 4.
What are natural and surrogate primary keys? 5.
How do you make a single-line comment? 6.
How do you make a multiline comment? 7.
What's the difference between a clustered and a nonclustered index?8.
What is deadlocking? 9.
Does the order of columns in an index matter? 10.

https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/lesson-1-creating-database-objects?view=sql-server-ver15
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://docs.oracle.com/en/database/oracle/oracle-database/18/cncpt/tables-and-table-clusters.html#GUID-F845B1A7-71E3-4312-B66D-BC16C198ECE5
https://www.postgresql.org/docs/11/ddl-basics.htm
https://www.postgresql.org/docs/11/ddl-basics.htm
https://www.postgresql.org/docs/11/ddl-basics.htm
https://www.postgresql.org/docs/11/ddl-basics.htm
https://www.postgresql.org/docs/11/ddl-basics.htm
https://www.postgresql.org/docs/11/ddl-basics.htm
https://www.postgresql.org/docs/11/ddl-basics.htm
https://www.postgresql.org/docs/11/ddl-basics.htm
https://www.postgresql.org/docs/11/ddl-basics.htm
https://www.postgresql.org/docs/11/ddl-basics.htm
https://www.postgresql.org/docs/11/ddl-basics.htm
https://www.postgresql.org/docs/11/ddl-basics.htm
https://www.postgresql.org/docs/11/ddl-basics.htm
https://www.postgresql.org/docs/11/ddl-basics.htm
https://www.postgresql.org/docs/11/ddl-basics.htm
https://www.postgresql.org/docs/11/ddl-basics.htm
https://www.postgresql.org/docs/11/ddl-basics.htm
https://www.postgresql.org/docs/11/ddl-basics.htm
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://www.postgresql.org/docs/11/indexes-partial.html
https://www.postgresql.org/docs/11/indexes-partial.html
https://www.postgresql.org/docs/11/indexes-partial.html
https://www.postgresql.org/docs/11/indexes-partial.html
https://www.postgresql.org/docs/11/indexes-partial.html
https://www.postgresql.org/docs/11/indexes-partial.html
https://www.postgresql.org/docs/11/indexes-partial.html
https://www.postgresql.org/docs/11/indexes-partial.html
https://www.postgresql.org/docs/11/indexes-partial.html
https://www.postgresql.org/docs/11/indexes-partial.html
https://www.postgresql.org/docs/11/indexes-partial.html
https://www.postgresql.org/docs/11/indexes-partial.html
https://www.postgresql.org/docs/11/indexes-partial.html
https://www.postgresql.org/docs/11/indexes-partial.html
https://www.postgresql.org/docs/11/indexes-partial.html
https://www.postgresql.org/docs/11/indexes-partial.html
https://www.postgresql.org/docs/11/indexes-partial.html
https://www.postgresql.org/docs/11/indexes-partial.html

5
Importing and Exporting Data

 This chapter introduces you to importing and exporting data. There are many ways to
import and export data in MySQL. You will learn how to import and export data from and
to comma-separated values (CSV) files using MySQL Workbench via table data. We will
also cover importing and exporting via Structured Query Language (SQL) data with SQL
scripts. An additional way to export data via result data and query results will also be
covered. The final topic discussed is using SQL syntax to import and export data.

In this chapter, we will cover the following topics:

Understanding table data import and export
Understanding SQL data import and export
Understanding result data export
Understanding SQL syntax for importing and exporting data

Technical requirements
The code files of this chapter can be found at the following GitHub link: https:/ ​/ ​github.
com/​PacktPublishing/ ​learn- ​sql- ​database- ​programming/ ​tree/ ​master/ ​chapter- ​5.

The CSV files required for this chapter can be found on the following GitHub link: https:/
/​github.​com/​PacktPublishing/ ​learn- ​sql- ​database- ​programming/ ​tree/ ​master/
baseballdatabank-​csv/ ​csv- ​files.

https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-5
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/baseballdatabank-csv/csv-files

Importing and Exporting Data Chapter 5

[141]

Understanding table data import and export
In this section, you will learn how to import and export data with the table data import and
export processes in MySQL Workbench. Table data import and export allows you to import
and export both CSV and JavaScript Object Notation (JSON) files via MySQL Workbench.
It provides you with many configuration options—for example, column separator types
such as a comma or a semicolon—and it allows you to map columns in the file to columns
in the table.

Importing CSV files with table data import
Using the database (schema) and the tables you created in the last chapter, we will add data
to those tables via table data import. I named that schema yourschema, so the directions
will reflect that naming convention. Swap out that name for whatever name you called
your database. We will be using the GitHub CSV files that are referenced in the Technical
requirements section of this chapter. Follow these steps:

Open MySQL Workbench.1.
Connect to your local or dev/test instance where you created your database2.
in the last chapter.
Open the database you created in the previous chapter (yourschema, in the3.
following example) by clicking the down arrow.
Open Tables by clicking the down arrow.4.
Right-click the table you want to import data into and choose the Table Data5.
Import Wizard option. In this step, we will be using the teams table and the
teams.csv file since teams has a foreign key to managers (in that managers rely
on a key in the teams table). The following screenshot shows the selection of
Table Data Import Wizard on the teams table:

Importing and Exporting Data Chapter 5

[142]

As shown in the following screenshot, browse to the path of the teams.csv file,6.
then click Next >. This file is in the GitHub repository you downloaded in the
Technical requirements section of this chapter. Use the Browse... button to navigate
to the file so that the wizard will apply the correct path with slashes or
backslashes, depending on your operating system. The following screenshot path
shows a Mac path to files:

On the next screen, leave the default of Use existing table selected, then proceed7.
as follows:

If the table already exists and you don't want to keep the data that
exists in it, choose Truncate table before import. Since this table is
empty already, we don't need to truncate, as shown in the following
screenshot:

Importing and Exporting Data Chapter 5

[143]

If the table didn't already exist, you can choose Create new table. This
will also give you the option to drop the table if it already exists, as
shown in the following screenshot:

After clicking Next > in the previous step, you will see a listing of all the columns8.
in the CSV file. Since we don't want to import most of them into the teams table,
first click the Source Column checkbox to unselect all the fields in the CSV file,
then select the fields you want to import that have existing columns in the table.
If you were creating a table instead of populating an existing table, it would
create the columns for you. Also, make sure to map the source columns to the
existing columns in the table. The following table shows the Source Column (the
columns in the CSV file) and the Dest Column (the columns in the MySQL table).
Make sure to match the mapping to that shown in the following table to ensure
the CSV data is correctly imported into the table:

Source Column Dest Column
yearID yearid

lgID leagueid

teamID teamid

Rank teamrank

Importing and Exporting Data Chapter 5

[144]

The following screenshot shows you the right configuration for the Configure
Import Settings setting. Click Next >:

Importing and Exporting Data Chapter 5

[145]

If you are creating a table from the CSV file, you will instead need to choose the9.
data types for the columns instead of mapping the CSV columns to the table
columns, as shown in the following screenshot (note that you don't get as many
choices of data types when importing to a new table, so it's recommended to
create the table first with the data types you want, and then import the CSV file
to the existing table):

Importing and Exporting Data Chapter 5

[146]

On the next screen, review the information and click Next >, as illustrated in the10.
following screenshot:

Importing and Exporting Data Chapter 5

[147]

When it's finished (it will show progress as it's completing and green check11.
marks next to the task when it's done), click Next >. If you want or need to view
the logs, click the Show Logs button. The logs can help you determine the kind
of error that happened if an error occurs. You can also click Show Logs (shown
in the preceding screenshot) while it's in progress if you want to see the current
process as it executes, as shown in the following screenshot:

Once you are done reviewing the logs or don't need to review the logs, click Next12.
>.

Importing and Exporting Data Chapter 5

[148]

Click Finish to exit the Table Data Import Wizard feature.13.

If you select from the teams table, as shown in the following screenshot, you will
see that the data has been imported:

You can follow the same steps to import the managers table data from the CSV file.

Exporting to CSV files with table data export
Using the teams table that you imported data into in the last section, let's walk through
how to export data via the Table Data Export Wizard feature, as follows:

Open MySQL Workbench.1.
Connect to your local or dev/test instance where you created your database2.
in the last chapter.
Open the database that you created in the previous chapter by clicking the down3.
arrow.

Importing and Exporting Data Chapter 5

[149]

Open Tables by clicking the down arrow.4.
Right-click the teams table and choose Table Data Export Wizard, as shown in5.
the following screenshot:

This will bring you to the Select data for export box. This is where you can select6.
which columns to export, how many rows to offset, and the count of the rows
exported. If you choose Row Offset: 500 and Count: 1000, as shown in the
following screenshot, the results exported will start at row 500 and include 1,000
rows:

Importing and Exporting Data Chapter 5

[150]

If you click Advanced >>, you can see the following associated query, or write7.
your own query to export data and click on Next >:

Importing and Exporting Data Chapter 5

[151]

The next screen will allow you to select the file location, the file type (csv or8.
json), a Line Separator option, an Enclose Strings in option, a Field Separator
option, and a null and NULL word as SQL keyword option. There may also be
an option for Export to local machine. Choose the file path, and you can leave
the rest of the fields with the default values. Click on Next >. For the csv option,
you have this configuration:

For the json option, you have this configuration:

On the next screen, review the execution information and click Next >. 9.
When it's finished (it will show progress as it's completing and green check10.
marks next to the task when it's done), click Next >.

Importing and Exporting Data Chapter 5

[152]

The next screen will display the results of the export. Click Finish. 10.

When you open the CSV file, you can see in the following screenshot that it starts
with row 500 and contains 1,000 rows:

When you open the JSON file, you can see in the following screenshot that it
begins with row 500 and contains 1,000 rows:

Importing and Exporting Data Chapter 5

[153]

You can change the options for how it exports the data. For instance, if you want
comma-separated values instead of semicolon-separated values between columns
on your CSV file, change the Field Separator value when exporting, as in the
following screenshot:

You can also enclose the strings in a different character instead of double quotes, as well as
change the line separator.

Understanding SQL data import and export
In this section, we will walk through how to import and export data with the SQL data
import and export processes in MySQL Workbench.

Importing via data import in MySQL Workbench
Let's walk through how to import data via the Management or Administration tab in the
left navigation area. This is what we did in Chapter 2, Installing and Using MySQL
Workbench, in the Learning how to restore a database section. Importing using data import is
the same process as restoring a database in MySQL Workbench. Follow these steps:

Open MySQL Workbench. 1.
Connect to your local or dev/test instance where you created your database2.
in the last chapter.

Importing and Exporting Data Chapter 5

[154]

Click Administration or Management (depending on whether you are using a3.
Mac or a PC) in the navigation panel on the left side of MySQL Workbench.
Click Data Import/Restore, shown in the following screenshot. Clicking this will4.
bring up the Data Import tab:

Importing and Exporting Data Chapter 5

[155]

Navigate to the location that you just exported to in the previous section. This5.
will load the folder's contents into the bottom part of the tab, as illustrated in the
following screenshot:

Click New... under Default Target Schema: and name it newschema. This will6.
create a new database with the imported schema objects.
Click on the schema listed under the Schema area. This will then populate the7.
Schema Objects panel. There should be two tables checked in this panel.

Importing and Exporting Data Chapter 5

[156]

Keep the default option of Dump Structure and Data, as shown in the following8.
screenshot, then click Start Import:

Importing and Exporting Data Chapter 5

[157]

The Import Progress tab will show you the progress of the import and when it's9.
completed.

Refresh the schema list. You will see that the tables weren't imported into the new
schema because the old schema exists, and the old schema is associated with the
exported (dump) files. In other words, it imported (or restored) over the existing
schema. If the database didn't already exist, it would create a new database and
populate it with the objects you selected in the preceding steps.

Additionally, you can just dump the structure of particular objects, as in the
following screenshot:

You can also dump only the data of particular objects, as in the following
screenshot:

Importing and Exporting Data Chapter 5

[158]

Also, you can import data from a self-contained SQL file. With this option, you
can specify which objects you want to be imported. The process will just import
everything in the SQL file, as shown in the following screenshot:

The import process has many options and is quite powerful to use when you need to
import data.

Exporting via data export in MySQL Workbench
Let's walk through how to export data via the Management or Administration tab in the
left navigation area, as follows:

Open MySQL Workbench.1.
Connect to your local or dev/test instance where you created your database2.
in the last chapter.

Importing and Exporting Data Chapter 5

[159]

Click Administration or Management (depending on whether you are using a3.
Mac or a PC) in the navigation panel on the left side of MySQL Workbench.
Click the Data Export option highlighted in the following screenshot:4.

Importing and Exporting Data Chapter 5

[160]

This will open a Data Export tab, and allows you to export any number of5.
databases and tables in those databases. Also, you can choose to dump (export)
the data; the data and the structure; or just the structure of the objects you want
to export. You can also choose how the files are created, either into a folder
where each object has its own script or as one script that contains all the objects
you want to export. For this export, you will choose just the two tables we
created together in the last chapter, with their data exported to a folder on your
local machine, as shown in the following screenshot:

Click Start Export after choosing the settings for your export. 6.

Importing and Exporting Data Chapter 5

[161]

The Export Progress screen will show you the progress and let you know when it7.
is complete, as illustrated in the following screenshot:

Much the same as the information outlined in the Importing via data import in MySQL
Workbench section, you can choose to export only data, structure, or both for one or more
objects. You can also export to a self-contained file instead of a dump folder.

In the following screenshot, you will now see files in the folder to which you exported.
MySQL Workbench will export them as .sql files. You should have one for each table we
selected when following the preceding steps:

The .sql files will have the script to recreate the tables and insert data if the table
contained any data.

Importing and Exporting Data Chapter 5

[162]

Understanding result data export
In this section, we will walk through how to export data with the result data export process
in MySQL Workbench. It's best to use the two previous sections to import data, table data,
and SQL data, because importing isn't available via a result set in MySQL Workbench.

Exporting data directly from a result set
Let's walk through how to export data directly from a result set, as follows:

Open MySQL Workbench.1.
Connect to your local or dev/test instance where you created your database2.
in the last chapter.
Expand the yourschema database with the down arrow and expand the tables3.
with the down arrow, as illustrated in the following screenshot:

Right-click the teams table and choose the Select Rows option, as illustrated in4.
the following screenshot:

Importing and Exporting Data Chapter 5

[163]

On the results of the query shown as follows, click the Export recordset to an 5.
external file button:

Choose a location to save the CSV file. You can also choose other file types from6.
the Format: drop-down field shown in the following screenshot if you want to
save it in another file format. Then, click on Save:

This will save the CSV file to disk with whatever data was returned from the query you
executed.

Importing and Exporting Data Chapter 5

[164]

Understanding SQL syntax for importing
and exporting data
To import and export data via SQL scripts, the --secure_file_priv option must be
properly configured. The secure_file_priv option may be disabled by default, or it may
require you to place your file in a specific folder. You may be able to change this setting on
your local instance, but you most likely won't have this level of permissions on a server,
especially in a production environment.

Be VERY careful if you decide to change the ini file on your local
instance of MySQL. The ini file contains essential configuration
information required to run MySQL Server. You can damage the MySQL
installation, for which the only solution may be to uninstall and reinstall
MySQL. Do not make any ini file changes on a server without
consulting a system or database administrator.

To check the secure_file_priv configuration, execute the following script:

select @@secure_file_priv

Depending on the results you receive with the previous query, you may need to
reconfigure the secure-file-priv option to run the scripts in the following sections. For
more information on secure-file-priv, visit the Further reading section.

Importing with a SQL script
To import with a SQL script, you can run this code:

LOAD DATA INFILE '/pathtoyourfiles/baseballdatabank-csv/csv-
files/Teams.csv'
INTO TABLE yourschema.teams
FIELDS TERMINATED BY ',';

Importing and Exporting Data Chapter 5

[165]

Once the import is done, you can select the rows from the teams table to see the rows, as
shown in the following screenshot:

As long as your secure-file-priv option is not disabled, your script will import data
into the managers table.

If you want more details on LOAD DATA, visit the Further reading section.

Exporting with a SQL script
To import with a SQL script, you can run this code:

SELECT * INTO OUTFILE 'teams-export.csv'
 FIELDS TERMINATED BY ';' OPTIONALLY ENCLOSED BY '"'
 LINES TERMINATED BY '\n'
 FROM yourschema.teams;

When your export is done, you will have a CSV file on disk that will look like the following
screenshot when it's opened:

Importing and Exporting Data Chapter 5

[166]

As long as your secure-file-priv option is not disabled, your script will appear in the
folder configured in secure-file-priv.

Summary
In this chapter, you were introduced to importing and exporting data. You learned how to
import and export data with the table data import and export functionality in MySQL
Workbench. You also learned how to import and export data with the SQL data import and
export functionality in MySQL Workbench. In the Understanding result data export section,
you learned how to export data directly from MySQL Workbench. Finally, you learned how
to use SQL syntax to import data with LOAD DATA INFILE, and how to export data with
SELECT INTO OUTFILE.

In the next chapter, you will learn how to query a single table. This includes learning how
to use the SQL SELECT statement, and FROM, WHERE, and ORDER BY clauses. This will also
include how to tell which index your query is using and if you may need additional
indexes.

Importing and Exporting Data Chapter 5

[167]

Further reading
For more information, see the following list:

Refer to this link for more information on the secure-file-priv
option: https:/ ​/ ​dev. ​mysql. ​com/ ​doc/ ​refman/ ​8.​0/ ​en/​server- ​system-
variables. ​html#sysvar_ ​secure_ ​file_ ​priv

Refer to this link for more details on LOAD DATA syntax: https:/ ​/​dev. ​mysql.
com/​doc/ ​refman/ ​5. ​7/ ​en/ ​load- ​data. ​html

Refer to this link to learn more about importing and exporting in SQL
Server: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​sql/ ​integration- ​services/
import-​export- ​data/ ​start- ​the- ​sql- ​server- ​import- ​and-​export- ​wizard? ​view=
sql-​server- ​ver15

Refer to this link to learn more about importing and exporting in PostgreSQL:
https:/​/ ​www. ​postgresql. ​org/ ​docs/ ​11/​sql- ​copy. ​html

Refer to this link to learn more about importing and exporting in Oracle: https:/
/​docs.​oracle. ​com/ ​en/ ​cloud/ ​saas/​applications- ​common/ ​19c/ ​oafsm/ ​manage-
setup-​using- ​csv- ​file- ​packages. ​html#OAFSM3573446

Questions
What are the different ways that you can import and export data in MySQL1.
Workbench?
How do you import data with the Table Data Import Wizard feature?2.
How do you ensure you accurately map columns with the Table Data Import3.
Wizard feature?
How do you export data with the Table Data Import Wizard feature?4.
How do you import data with the SQL data import wizard feature?5.
How do you export data with the SQL Data Import Wizard feature?6.
How do you export data with result data export? 7.
What SQL syntax do you use to import data? 8.
What SQL syntax do you use to export data? 9.
What MySQL ini file setting will prevent you from being able to use SQL scripts10.
to import and export data?

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://www.postgresql.org/docs/11/sql-copy.html
https://www.postgresql.org/docs/11/sql-copy.html
https://www.postgresql.org/docs/11/sql-copy.html
https://www.postgresql.org/docs/11/sql-copy.html
https://www.postgresql.org/docs/11/sql-copy.html
https://www.postgresql.org/docs/11/sql-copy.html
https://www.postgresql.org/docs/11/sql-copy.html
https://www.postgresql.org/docs/11/sql-copy.html
https://www.postgresql.org/docs/11/sql-copy.html
https://www.postgresql.org/docs/11/sql-copy.html
https://www.postgresql.org/docs/11/sql-copy.html
https://www.postgresql.org/docs/11/sql-copy.html
https://www.postgresql.org/docs/11/sql-copy.html
https://www.postgresql.org/docs/11/sql-copy.html
https://www.postgresql.org/docs/11/sql-copy.html
https://www.postgresql.org/docs/11/sql-copy.html
https://www.postgresql.org/docs/11/sql-copy.html
https://www.postgresql.org/docs/11/sql-copy.html
https://www.postgresql.org/docs/11/sql-copy.html
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446
https://docs.oracle.com/en/cloud/saas/applications-common/19c/oafsm/manage-setup-using-csv-file-packages.html#OAFSM3573446

2
Section 2: Basic SQL Querying

Now that you have learned how to create a database and its tables, imported some data,
and restored a database, you will learn how to query a single table, query multiple tables,
and modify the data in them.

This section comprises the following chapters:

Chapter 6, Querying a Single Table
Chapter 7, Querying Multiple Tables
Chapter 8, Modifying Data and Table Structures

6
Querying a Single Table

In this chapter, you will learn how to query a single table. This includes learning how to use
the SQL SELECT statement and the FROM, WHERE, and ORDER BY clauses. You will also learn
how to tell which index your query is using and if you may need additional indexes. By the
end of this chapter, you will be able to understand how to query data using the SELECT
statement and the FROM clause. You will also learn how to limit the results with a WHERE
clause, how to use an ORDER BY clause to return results in a specified order, and how to see
information about what indexes are being used or may be needed.

In this chapter, we will cover the following topics:

Using the SELECT statement and FROM clause
Using the WHERE clause
Using the ORDER BY clause
Using indexes with your queries

Let's get started!

Technical requirements
The code files for this chapter can be found at the following GitHub link: https:/ ​/​github.
com/​PacktPublishing/ ​learn- ​sql- ​database- ​programming/ ​tree/ ​master/ ​chapter- ​6.

Using the SELECT statement and FROM
clause
To extract data from a table, you need to use a SQL SELECT query. The SELECT query
allows you to specify what data you want from a table using a simple query structure.

https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-6

Querying a Single Table Chapter 6

[170]

Understanding the SELECT statement and the
FROM clause
At a minimum, every SELECT statement on a table needs the SELECT and FROM keywords.
If you want to select all the rows and columns from the appearances table in
lahmansbaseballdb, you should execute the following query:

SELECT * FROM lahmansbaseballdb.appearances;

Make sure to add a semicolon (;) to the end of your SQL statements. The
semicolon marks the end of a query. The query may execute without it,
but it is good practice to ensure that the SQL code will execute properly.

This query will give you the results shown in the following screenshot:

What we are telling MySQL when we execute the preceding query is to select everything
from the appearances table.

When writing SQL statements, keywords such as SELECT and FROM (and
any other keywords) don't have to be capitalized, but it can make it easier
to read the SQL statements if they are. For example, SELECT * FROM
lahmansbaseballdb.appearances is the same as select * from
lahmansbaseballdb.appearances.

Querying a Single Table Chapter 6

[171]

Learning the correct order of other clauses you
can use with SELECT
When writing a SELECT statement, you need to place the keywords in the correct order for
the query to work right. For instance, you can't place the FROM keyword in front of the
SELECT statement and get results:

FROM SELECT * lahmansbaseballdb.allstarfull;

If you execute the previous query, you will get an error such as Error Code: 1064. You
have an error in your SQL syntax; check the manual that corresponds to
your MySQL server version for the right syntax to use near FROM SELECT

* lahmansbaseballdb.allstarfull at line 1.

Understanding the different ways to query with a
SELECT statement
Generally, you should select the minimum amount of data that you need from a table.
When selecting data from a table, you can retrieve a single column, multiple columns, or all
columns.

Avoid using SELECT * in a query. Since this selects all columns in a table,
it is considered more expensive than if you specify the columns you need.
Expensive means that it takes more server resources to return your query
results, and when you have many queries executing on a server, you want
them to use the minimum resources required.

To retrieve data from just one column, execute the following query:

SELECT playerid FROM lahmansbaseballdb.appearances;

Querying a Single Table Chapter 6

[172]

The preceding query will give the results displayed in the following screenshot. As you
can see, only the playerid column is in the results, and the results still include the total
number of rows in the table, just like when we use SELECT *:

If you want to return multiple columns of all the rows in a table, you should execute this
query:

SELECT playerid, g_all, g_batting, g_defense FROM
lahmansbaseballdb.appearances;

The preceding query will give the results displayed in the following screenshot. As you can
see, the playerid, g_ll, g_batting, and g_defense columns are in the results, and the
results still include the total number of rows in the table, just like when we use SELECT *:

Querying a Single Table Chapter 6

[173]

When writing SQL statements, you can place different statements on different lines and
give them different spacing, and it won't affect the execution of the script. Just don't put
spaces or line breaks in SQL keywords.

For example, this script executes the same as the following script:

SELECT playerid FROM lahmansbaseballdb. appearances;

The following script executes the same as the previous script:

SELECT playerid
FROM lahmansbaseballdb.appearances;

However, the following script produces an error because there is a break in the SQL
keyword:

SEL
ECT playerid FROM lahmansbaseballdb.appearances;

Querying a Single Table Chapter 6

[174]

Formatting SQL code for readability is essential when you are writing a longer script, if you
need to reuse the script, or if you need to share the script with others. With this simple
script, it may not seem important, but it is always good to maintain an easily readable SQL
format.

You don't have to capitalize SQL keywords such as SELECT and FROM, but it helps the
readability of the code. For example, SELECT playerid FROM lahmansbaseballdb.
appearances produces the same query results as select playerid from
lahmansbaseballdb. appearances. I tend to write in all lowercase because it's faster,
but it's important to put in the proper whitespace characters so that the code is still
readable, as shown in the following example:

select playerid
from lahmansbaseballdb. appearances

Learning how to use column aliases
Column aliases allow you to assign a different name to a column in your query. You might
be able to see that the columns haven't been named descriptively enough in the original
table, or maybe you just want to name them differently in your query results. For example,
the g_defense and H columns in the batting table may not be descriptive enough for you
to understand what they mean in your results if you aren't familiar with baseball. We can
make an alias for these column's names to make them more descriptive, as shown in the
following query:

SELECT playerid,
 G_defense AS GamesPlayingDefense
FROM lahmansbaseballdb.appearances;

In the previous query, we added an alias to one of the columns, as shown in the following
code snippet:

G_defense AS GamesPlayingDefense

The AS clause is optional, and the following code snippet will run the same as the previous
code snippet:

G_defense GamesPlayingDefense

Querying a Single Table Chapter 6

[175]

The previous query will give the results shown in the following screenshot:

You can see that the column headings in the query results match the aliases used in the
query instead of the table column name, so GamesPlayingDefense shows instead of
G_defense.

You can use a space in an alias name as long as you use quotes around the alias name. This
allows you to place spaces in the alias names, as shown in the following code snippet:

G_defense 'Games Playing Defense'

This will produce the results shown in the following screenshot:

The clauses where you can also use the column aliases are in the ORDER BY, GROUP BY, and
HAVING clauses. You can't use column aliases in the WHERE clause. The WHERE and ORDER
BY clauses will be covered in more detail later in this chapter. The GROUP BY and HAVING
clauses will be covered in more detail in Chapter 10, Grouping and Summarizing Data.

Querying a Single Table Chapter 6

[176]

Using the USE statement
Note that in the preceding queries, we are referencing the database in front of the table
name, like so:

 lahmansbaseballdb.appearances

Another way you can set the database name is by using a USE statement instead. This
means that you wouldn't have to prefix the table name with the database name, but instead
have a USE statement that sets the database at the top of the query, as shown in the
following query:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense FROM appearances;

The preceding query will give you the same results as the following query:

SELECT playerid, g_all, g_batting, g_defense FROM
lahmansbaseballdb.appearances;

The USE statement will set the database name for all subsequent queries, or until another
USE statement is used.

Learning how to use the DISTINCT clause
DISTINCT is a keyword that, when added to a SELECT statement, will return only distinct
(or different) values within a column. Sometimes, you may want to see what values are
contained in a column, and getting the distinct values will help you see this. For example, if
you want to see the distinct player IDs in the appearances table, you should execute the
following query:

USE lahmansbaseballdb;
SELECT DISTINCT playerid FROM appearances;

Querying a Single Table Chapter 6

[177]

The following screenshot shows the results of the preceding query. Note that the rows
returned are far fewer than in the previous section. This list only shows the distinct player
IDs, and there are 19,429 of them:

You can also select multiple columns in DISTINCT. For instance, if you want to select
distinct teams and players on those teams, you can execute the following query:

USE lahmansbaseballdb;
SELECT DISTINCT teamid, playerid FROM appearances;

Querying a Single Table Chapter 6

[178]

The previous query will give you the results shown in the following screenshot:

The previous screenshot shows that you are getting distinct teams and players on those
teams and that 45,825 rows have been returned.

Learning how to use the LIMIT clause
LIMIT is a keyword that, when added to a SELECT statement, will return only a specified
number of rows. Sometimes, you may want to see a cross-section of data, so the LIMIT
clause, along with OFFSET, will help you accomplish this. For example, if you want to only
see the first 500 rows in the appearances tables, you can execute this query:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense FROM appearances
LIMIT 500;

Querying a Single Table Chapter 6

[179]

This query will return the first 500 rows with the specified columns in the appearances
table, as shown in the following screenshot:

If you want to display the rows starting at a specific row and limit the count of rows
returned from there, you can add the OFFSET clause to the query, as shown in the following
example, which will retrieve 500 rows, starting at row 1,000:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense FROM appearances
LIMIT 500 OFFSET 1000;

Querying a Single Table Chapter 6

[180]

In the following screenshot, you can see the results of the previous query. It returns 500
rows, but they show different results than the last query because we used the OFFSET
clause:

You aren't able to use OFFSET without the LIMIT clause.

Limiting results on other Relational Database
Management Systems (RDMSes)
For Oracle, you can do the following:

You can limit rows as follows:

SELECT playerid, g_all, g_batting, g_defense FROM appearances
OFFSET 0 ROWS
FETCH NEXT 500 ROWS ONLY;

Querying a Single Table Chapter 6

[181]

If you would also like to offset rows, you can execute the following query:

SELECT playerid, g_all, g_batting, g_defense FROM appearances
OFFSET 500 ROWS
FETCH NEXT 1000 ROWS ONLY;

There are a couple of ways you can limit rows returned in SQL Server. You can use TOP, as
shown in the following query:

SELECT TOP 500 playerid, g_all, g_batting, g_defense
FROM appearances;

You can also limit rows like so:

SELECT playerid, g_all, g_batting, g_defense FROM appearances
ORDER BY playerid
OFFSET 0 ROWS
FETCH NEXT 500 ROWS ONLY;

If you would also like to offset rows, you can execute the following query:

SELECT playerid, g_all, g_batting, g_defense FROM appearances
ORDER BY playerid
OFFSET 500 ROWS
FETCH NEXT 1000 ROWS ONLY;

PostgreSQL works the same way as MySQL for limiting rows.

Learning how to save a SQL query to a file
In this section, we will learn how to save a SQL query to a file. The following steps will help
you save a file:

To save a SQL query to a file, click the save button in MySQL Workbench. The1.
following screenshot shows the save button:

Querying a Single Table Chapter 6

[182]

Once you've clicked the save button, you will be prompted to save it to a location2.
on disk. Name the file and choose a location for the file and click Save, as shown
in the following screenshot:

When you have multiple SQL queries in one SQL file, and you want to execute just one of
the queries, you can highlight that query and then click the run (lightning bolt) button to
run just that one query:

To stop a query when it's running, click the stop button:

Learning how to open a SQL file
Follow these steps to learn how to open a SQL file:

To open a SQL query from a file, click the open button in MySQL Workbench.1.
The following screenshot shows the open button with a red box around it:

Querying a Single Table Chapter 6

[183]

After clicking the open button, you will be shown a dialog box so that you can2.
navigate to the file you want to open.

You can also open a SQL file from a SQL file tab that is already open. To do so, click the
folder icon, as shown in the following screenshot, and choose the file to open:

Either way will allow you to open a SQL file.

Learning how to add comments to your SQL code
It's important to add comments to your SQL code to ensure it's clear to you and others what
is in the script. You may want to save this script for later or share it with others, and it will
make a lot of difference if you comment your code with explanations. For straightforward
scripts like we've been running in this chapter, it might not make much difference, but for
larger and more complex queries, it will be beneficial.

When creating comments, it's important to note a few things, such as who created the code,
when the code was created, who last modified the code, the date of the modification, and
an explanation of why it was created or modified.

We briefly covered commenting on your code in Chapter 4, Designing and Creating a
Database. To create a single-line comment, use #. To create a multi-line comment, place your
comment between /* and */. The following code sample shows you how to use each of
these comments:

this is single line comment

/*
this is a multi line comment
*/

Querying a Single Table Chapter 6

[184]

To comment properly in a SQL script, you should put something like this at the top of your
script:

/*
Created by: Josephine Bush
Created on: November 15, 2019
Purpose: Selecting distinct rows in appearances table to provide in a
report

Modified by Modified on Modification notes
JBush 11/16/19 Changed distinct to include teams and
playerids
*/

You can set whatever format you want in the comments at the top of the file. The previous
code example is just that, an example, but it's good to be as thorough as possible for future
reference.

It's also good to make other comments along the way with either single- or multi-line
comments, especially if your script file contains a lot of SQL statements.

You can place comments anywhere in your code, as long as it won't cause the code to fail or
cause an error. For example, if you want to comment out a section of the SELECT clause,
you can do that like this:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, /*g_defense*/ FROM appearances
LIMIT 500 OFFSET 1000;

In the previous query, g_defense was commented out. The g_defense column will no
longer be returned in the results of the query. However, there's a problem here – I didn't
comment out the comma before the field I commented out. This syntax will cause an error
such as Error Code: 1064. You have an error in your SQL syntax; check the
manual that corresponds to your MySQL server version for the right

syntax to use near 'FROM appearances LIMIT 500 OFFSET 1000' at line 1.
We can fix this like so:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting/*, g_defense*/ FROM appearances
LIMIT 500 OFFSET 1000;

By making this fix, the script will run correctly. It won't include the g_defense column in
the results.

Querying a Single Table Chapter 6

[185]

Commenting code on other RDMSes
The other RDMSes allow commenting as well, but they may have slightly different syntax
for accomplishing this. In Oracle, PostgreSQL, and SQL Server, a multi-line comment is the
same as in MySQL, but the single-line comment is different. A single-line comment
should look as follows in Oracle, PostgreSQL, and SQL Server:

-- this is a single line comment

To make a single-line comment in Oracle, PostgreSQL, and SQL Server, you start the
comment with two dashes (--).

Using the WHERE clause
The WHERE clause helps limit the results of your queries. For example, if you only wanted to
see players with more than 40 appearances in games, you can create a WHERE clause to
include only those players that meet the criteria.

Understanding how and when to use the WHERE
clause to limit query results
The WHERE clause is placed after the FROM clause in a SELECT query. Using the example of
players with more than 40 appearances in games, you can execute the following query:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense FROM appearances
WHERE g_all > 40;

The criterion we are setting in the WHERE clause (for example, g_all > 40) is called an
expression. There are different expression operators you can use.

The following are the comparison operators:

Symbol Description Examples

= Equal to
column = 'text'

column = 1

>= Greater than or equal to column >= 1

> Greater than column > 1

<= Less than or equal to column <= 1

< Less than column < 1

Querying a Single Table Chapter 6

[186]

<> Does not equal
column <> 'text'

column <> 1

!= Does not equal
column != 'text'

column != 1

Expressions will be covered in more detail in Chapter 9, Working with Expressions.

Learning how to use the AND and OR operators
Some additional expression operators that you can use in MySQL include AND and OR.
These are considered logical operators.

You can add additional WHERE clauses as needed using the AND clause. If you want to see all
records where g_all is greater than 40 and g_all didn't equal g_batting, you can
execute the following query:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense FROM appearances
WHERE g_all > 40
AND g_all <> g_batting;

You can also add additional WHERE clauses as needed using the OR clause. If you want to
see all records where g_all is greater than 40 OR g_defense is greater than 30, you can
execute the following query:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense FROM appearances
WHERE g_all > 40
OR g_defense > 30;

Using parenthesis may become important when filtering results with the WHERE clause. You
may only want to see something where both things are true, and something else is false. For
example, in the following query, you will get results that are either g_all greater than 60
or the combination of g_all greater than 40 and g_batting less than 30:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense FROM appearances
WHERE (g_all > 40 AND g_defense < 30)
OR g_all > 60;

The previous query may give you unexpected results since that combination of data may or
may not be useful to what you are trying to query. Still, it gives you an example of how to
use parenthesis.

Querying a Single Table Chapter 6

[187]

Learning how to use the NOT, IN, and BETWEEN
operators
Some additional logical operators are NOT, IN, and BETWEEN:

IN allows you to list the values that you want to return in your query results. For
instance, if you want to return any values in g_all (all games played) that are in
40, 50, or 60, you could run the following query:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense FROM appearances
WHERE g_all IN (40, 50, 60);

BETWEEN allows you to list two values, and your query will return all the values
between and including those values. For instance, if you want to return any
values in g_all that are between 40 and 60, you could run the following query:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense FROM appearances
WHERE g_all BETWEEN 40 and 60;

NOT allows you to exclude values from your query. For instance, if you want to
return any values in g_all that are NOT between 40 and 60, you can execute the
following query:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense FROM appearances
WHERE g_all NOT BETWEEN 40 and 60;

The previous query will give you the results shown in the following screenshot:

Querying a Single Table Chapter 6

[188]

You can also use NOT with IN. For instance, if you want to return any values in g_all that
are NOT IN 40, 50, or 60, you can execute the following query:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense FROM appearances
WHERE g_all NOT IN (40, 50, 60);

You can also use NOT in multiple clauses of the WHERE clause, as shown in the following
query:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense FROM appearances
WHERE g_all NOT IN (40, 50, 60)
OR g_batting NOT BETWEEN 30 and 40;

You can also combine it with AND, as shown in the following query:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense FROM appearances
WHERE g_all NOT IN (40, 50, 60)
AND g_batting NOT BETWEEN 30 and 40;

As you can see, there are many ways to use IN, BETWEEN, and NOT.

Learning how to use the LIKE operator and
wildcards
You may not be able to match on the entire string in a field. To match on partial values, you
can use the LIKE operator with wildcards. A wildcard is put in place of one or more
characters in a string. It is used along with the LIKE operator.

When you use wildcards in your WHERE clause, the query may not be
using the indexes, depending on how you use the wildcard characters.
More information on this will be provided in the Using indexes with your
queries section, later in this chapter. It's essential to use as few wildcards as
possible in any queries you write.

Querying a Single Table Chapter 6

[189]

The following table shows the types of wildcards that are available in MySQL:

Wildcard
character Character description How it works

% Percent sign Represents zero or more characters
_ Underscore Represents one character

Using the percent (%) wildcard
There a few ways you can use the % wildcard, which represents zero or more characters.
You can use it to find a value at the beginning, end, or middle of a string. For example, the
following query will find all player IDs that start with the letter a:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense
FROM appearances
WHERE playerid LIKE 'a%';

The previous query will return the rows shown in the following screenshot:

If you move the % sign in front of the letter a, you are filtering on anything that ends in a. In
this case, it will find no rows since playerid always ends in a number:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense
FROM appearances
WHERE playerid LIKE '%a';

Querying a Single Table Chapter 6

[190]

The previous query will return no rows, as shown in the following screenshot:

If you add a % sign to the end as well, then you will be filtering on any rows that have the
letter a somewhere in the playerid value, as shown in the following query:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense
FROM appearances
WHERE playerid LIKE '%a%';

The results of the previous query will provide the rows shown in the following screenshot:

Querying a Single Table Chapter 6

[191]

Avoid using wildcards at the beginning of a string, such as '%a' or
'%a%'. Wildcards at the beginning of a string slows down the query
processing.

You can also place multiple characters before, after, or in-between percent wildcard.

This query will return rows where playerid starts with the letters wr:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense
FROM appearances
WHERE playerid LIKE 'wr%';

This query will return rows where playerid contains the letters ds:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense
FROM appearances
WHERE playerid LIKE '%ds%';

To summarize, you can use the % wildcard to search for strings at the beginning, middle, or
end of strings.

Using the underscore (_) wildcard
There a few ways you can use the underscore (_) wildcard, which represents one character.
You can use it to find a value at the beginning, end, or middle of a string. For example, the
following query will find all rounds that end with LCS:

USE lahmansbaseballdb;
SELECT playerid, yearid, teamid, round, pos
FROM fieldingpost
WHERE round LIKE '_LCS';

Querying a Single Table Chapter 6

[192]

The previous query will give us the results shown in the following screenshot:

As shown in the preceding results, the underscore wildcard returned all rows that ended in
LCS. Now, you can see just those results, instead of the many other values that are in the
round column.

Filtering with LIKE is not case-sensitive in MySQL, so LIKE '_LCS'
would be considered the same as LIKE '_lcs'.

The following query will find all rounds that begin with W:

USE lahmansbaseballdb;
SELECT playerid, yearid, teamid, round, pos
FROM fieldingpost
WHERE round LIKE 'W_';

The previous query will give us the results shown in the following screenshot:

Querying a Single Table Chapter 6

[193]

As shown in the previous results, the underscore wildcard returned all rows that began in
W. Now, you can see just those results, instead of the many other values that are in the
round column.

The following query will find all rounds that begin with AL and have two characters after
AL using two underscores:

USE lahmansbaseballdb;
SELECT playerid, yearid, teamid, round, pos
FROM fieldingpost
WHERE round LIKE 'AL__';

The previous query will give us the results shown in the following screenshot:

As shown in the previous results, the underscore wildcard returned all rows that begin
with AL. We placed two underscores after AL so that we only see results that start with AL
and have two characters after AL.

The following query will find all rounds that begin with one character, have L, then one
character, then S in the middle, and then end with one character:

USE lahmansbaseballdb;
SELECT playerid, yearid, teamid, round, pos
FROM fieldingpost
WHERE round LIKE '_L_S_';

Querying a Single Table Chapter 6

[194]

The previous query will give you the results shown in the following screenshot:

As shown in the previous results, the underscore wildcard returned all rows that begin
with one character, have L, then one character, then S in the middle, and then end with one
character.

Avoid using wildcards at the beginning of a string, such as '_a' or
'_a_'. Wildcards at the beginning of a string slow query processing
down. If you must use a wildcard at the beginning of a string, then the
underscore will perform better than the percent sign.
You can also use NOT LIKE in a similar manner to LIKE by adding NOT. In
the case of NOT LIKE, you will get results that are NOT LIKE the
expression you wrote instead of LIKE it.

Escaping wildcard values
If the string you are searching for with your wildcard expression has a wildcard in it, you
will need to escape it for the wildcard expression to work as expected. Escaping means to
allow a special character in a filter string. For example, if the string you want to filter on has
a percent sign or an underscore in the string, you will need to escape these characters so that
the SQL query doesn't fail or doesn't work as expected.

Querying a Single Table Chapter 6

[195]

Let's say your field contains an underscore and you want to filter on those values that have
an underscore; you need to escape the underscore to find these values. You can't just use
WHERE fieldname LIKE '%_%' in your query because MySQL would think you were
filtering on a set of characters (%), then one character (_), then another set of characters (%).
Instead, you should use WHERE fieldname LIKE '%_%'. The backslash (\) means that
you want the filter to use the underscore as a character instead of a wildcard.

You can also specify a different escape character if you don't want to use the backslash. You
should do this with the LIKE clause by using the ESCAPE operator, like this:

WHERE fieldname LIKE '%=_%' ESCAPE '='

In this case, you can see we've changed the backslash to an equals sign for escaping
purposes.

Escape sequences for common characters used in LIKE have been outlined in the following
table:

Character Description Escape sequence
' Single quote \'

" Double quote \"

\ Backslash \\

% Percent sign \%

_ Underscore _

Differences between LIKE in other RDMSes
The percent (%) and underscore (_) are supported in all RDMSes. It's important to note the
case sensitivity of LIKE in the various RDMSes since they are not all alike in their support
of it:

Oracle is case-sensitive by default. To search for both lower and uppercase, you
will need to use the UPPER function, so you use WHERE UPPER(fieldname)
like 'AD%'. This syntax will return the results of anything starting with ad and
AD because we've converted all strings in the fieldname column into
uppercase. String functions, including UPPER, will be covered more in Chapter
9, Working with Expressions.

Querying a Single Table Chapter 6

[196]

PostgreSQL is case-sensitive by default. If you need support for searching with
LIKE for case-insensitive searching, you need to use ILIKE instead. In other
words, if you use LIKE 'ad%' in PostgreSQL, it will return results that begin
with ad and not AD. If you wanted to find both ad and AD, you need to use ILIKE
'ad%'.
SQL Server is case-insensitive by default, so when you use LIKE 'ad%', it will
return results that begin with ad and AD.

SQL Server supports two additional wildcard operators:

Square brackets ([]): This will match any value in the specified set. If you use
[ab], you will get results of any string starting with a and b, which includes A
and B. Additionally, you can use a range in square brackets; for example, [a-c],
which will return the results of any string that starts with a, b, c, A, B, and C.
Caret (^): This will match anything that is not in the specified set. This is like
adding NOT to the square brackets wildcard operator, so if you used [^a-c],
then you are getting results showing everything that doesn't start with
a, b, c, A, B, and C

Learning how to filter on NULL values
You can't filter for NULL values the same way you can filter on other values. For instance,
you can't use comparison operators, which were covered earlier in this chapter. These
include =, >, < , and <>. You need to filter NULL values with IS NULL or IS NOT NULL.

The following query will return the results for NULL values in g_defense:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense
FROM appearances
WHERE g_defense IS NULL;

The previous query will return the results shown in the following screenshot. All the
g_defense values will be NULL:

Querying a Single Table Chapter 6

[197]

The following query will return the results for NOT NULL values in g_defense:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense
FROM appearances
WHERE g_defense IS NOT NULL;

The previous query will return the results shown in the following screenshot. All the
g_defense values will not be NULL:

You can use the WHERE clause operators we covered in this chapter together, depending on
what query results you may need.

Using the ORDER BY clause
The ORDER BY clause helps you sort your results. You can sort your results in a few
different ways, all of which will be covered in the following sections.

Querying a Single Table Chapter 6

[198]

Learning how to use the ORDER BY clause to
order query results
The ORDER BY clause is placed after FROM, as well as after WHERE, if you have a WHERE
clause. You can order columns by ascending or descending order. Ascending is the default
sort order, so you don't need to specify ascending explicitly.

Do not depend on the order of the rows in a result set, unless you have
specified an ORDER BY clause. The order in which rows are returned may
or may not be the same without an ORDER BY explicitly defined in your
query.

To sort the columns in ascending order, use the ASC keyword, and to order them in
descending order, use the DESC keyword. To sort a table by g_all in the appearances table,
you can execute the following query:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense
FROM appearances
ORDER BY g_all;

The previous query will give you the results shown in the following screenshot:

The previous query doesn't have a WHERE clause, but if it required one, then you
should place it between the FROM and ORDER BY clauses, as shown in the following query:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense
FROM appearances
WHERE playerid LIKE 'a%'
ORDER BY g_all;

Querying a Single Table Chapter 6

[199]

To sort in descending order instead, you can add the DESC keyword to your ORDER BY
clause, as shown in the following query:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense
FROM appearances
ORDER BY g_all DESC;

The previous query will give you the results shown in the following screenshot. You can
see that g_all has the highest game total at the top of the results now:

You can also ORDER BY columns that aren't specified in your SELECT
clause. You need to specify them in the ORDER BY clause by the exact
column name in the table.

Next, we will learn how to sort by one or more columns.

Learning how to use the ORDER BY clause to
sort by one or more columns
Let's say you wanted to sort on more than one column. To do this, you should place the
columns you want to order by in the ORDER BY clause in the order in which you want them
ordered. For instance, if you wanted to order by playerid, then g_all, you can
execute the following query:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense
FROM appearances
ORDER BY playerid, g_all;

Querying a Single Table Chapter 6

[200]

The previous query will give you the results shown in the following screenshot:

As shown in the previous screenshot, the results are now ordered by ascending playerid,
then g_all.

You can also change the order of either column to descending by adding DESC to one or
both columns, as shown in the following query:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense
FROM appearances
ORDER BY playerid DESC, g_all DESC;

The previous query will give you the results shown in the following screenshot:

Querying a Single Table Chapter 6

[201]

As shown in the previous screenshot, the results are now ordered descending by
playerid, then g_all.

If you want to, you can order by all the columns in the table, but there will
be a performance impact on your query. You need to be careful with
choosing which and how many columns to use in your ORDER BY clause.
More on this topic will be covered in the Using indexes with your
queries section, later in this chapter.

Another way to use the order in an ORDER BY clause is to use the column position. In the
case of the previous queries, you would use a number to denote the column instead of the
column name. This number corresponds to its place in the SELECT clause. For example, in
the following query, playerid is 1, g_all is 2, g_batting is 3, and g_defense is 4, so we
can order the results by their position in the SELECT clause, as shown in the following
query:

USE lahmansbaseballdb;
SELECT playerid, g_all, g_batting, g_defense
FROM appearances
ORDER BY 1 DESC, 2 DESC;

The previous query will give the results shown in the following screenshot, which is the
same as the results we got when we used the column names instead:

Querying a Single Table Chapter 6

[202]

I prefer to explicitly specify column names in the ORDER BY clause to avoid confusion. If
you change the order of the columns in the SELECT clause, and you've used column
position numbers instead of the column names in the ORDER BY clause, you will need to
change your ORDER BY clause. Also, it's more confusing to read column position numbers
in the ORDER BY clause because you have to correlate them back to the SELECT clause
columns. Additionally, you may mistakenly specify the wrong column using the column
position number. The last drawback of using column position numbers is that you can't
order by a column that isn't specified in your SELECT clause.

Using indexes with your queries
To make sure your queries have been optimized and can run as quickly as they can, you
want to ensure they are using the indexes on the table you are querying properly. As you
learned in Chapter 4, Designing and Creating a Database, locking, blocking, and deadlocking
play a role in your queries. If you use indexes properly with your queries, you will have
less blocking and deadlocking to deal with because the index will allow you to query data
faster.

Learning how to see what indexes your query is
using
There is a simple way to see how MySQL will run your query, and that is to append
EXPLAIN to the front of your query. For example, you can see EXPLAIN being used in the
following query:

USE lahmansbaseballdb;
EXPLAIN SELECT playerid, g_all, g_batting, g_defense
FROM appearances;

What EXPLAIN will do is give you a table of information about how it's going to run the
query. The previous query will give you the results shown in the following screenshot:

Querying a Single Table Chapter 6

[203]

Let's go through what each of these columns means:

id: This is the sequential number of the query this row belongs to. In this case,
we have a simple query with only one table, so there is only one row that is
associated with the one table we are querying.
select_type: This tells us what kind of query this is. In this case, it's SIMPLE
because there is only one table, which is a straightforward query. Many other
types may show up here with more complicated queries, such as UNION,
SUBQUERY, or DERIVED. These will be covered in more detail in Chapter 7,
Querying Multiple Tables, and Chapter 11, Advanced Querying Techniques.
table: This refers to the table that is being queried.
partitions: This is NULL for nonpartitioned tables, so since our tables are not
partitioned, this will be NULL. Partitioning is not covered in this book. If you
want to learn more about partitioning, please refer to the Further reading section.
type: This refers to the type of join in the query. Joins will be covered in Chapter
7, Querying Multiple Tables.
possible_keys: This refers to possible indexes that your query could use. Since
this is NULL, there are no relevant indexes that this query can use.
key: This refers to the index that was chosen. Since this is NULL, no index was
chosen to run this query.
key_len: This refers to the length of the key that was used. Since the key is NULL,
key_len is NULL.
ref: This shows what columns or constraints were compared to the key column.
Since the key is NULL, this is also NULL.
rows: This shows the estimated number of rows that MySQL thinks it will have
to read to return the query results.
filtered: This shows the number of rows unfiltered by the WHERE clause. Since
we didn't use a WHERE clause, it's not filtering, so it shows up as 100.00. When
the value is less than 100.00, we know that some filtering was done on the
query.
Extra: This gives you additional information about the query, such as if a WHERE
clause was used, if the query used filesort, or if it used temporary tables.
Those last two are important for improving performance. If you see using
filesort, this means that MySQL had to do an extra pass to retrieve rows in
sorted order. If you see using temporary, this means MySQL had to use a
temporary table to store values.

Querying a Single Table Chapter 6

[204]

Let's look at an example query that uses some more clauses to see some more information
in our EXPLAIN results:

USE lahmansbaseballdb;
EXPLAIN SELECT distinct playerid, g_all, g_batting, g_defense
FROM appearances
WHERE playerid LIKE 'a%'
ORDER BY playerid;

The previous query gives us the results shown in the following screenshot:

Here, you can see some more interesting information that we attained with our EXPLAIN
results. First, you can see that filtered shows that we are only getting approximately
11.11% of the rows returned. It also shows that you are using a WHERE clause, that the query
needs a temporary table, and that MySQL had to use an extra pass to sort the records. In
this specific case, since it's such a small table, and it won't be growing quickly, you could
get away with not changing anything, but if this table were to grow much larger, then
you'd need to account for these issues.

Let's say you knew this table would grow much larger shortly. How can you fix the issues
you are seeing? Let's take a step back and examine how this query could be changed to use
an index. Let's say you execute the following query instead:

USE lahmansbaseballdb;
EXPLAIN SELECT distinct playerid
FROM appearances
WHERE playerid LIKE 'a%'
ORDER BY playerid;

The following screenshot shows the query results that were obtained from running the
previous query:

Querying a Single Table Chapter 6

[205]

Since we removed the g_all, g_batting, and g_defense columns from the SELECT
clause, you can see that the query is now using the PRIMARY key (which is the clustered
index on this table), so this will make the query faster, but it doesn't have all the columns
we may need in our query. This is when you need to think about if you need those columns
we've removed, and if so, you may need to add a new index to account for this. This is
called adding an index to cover a query, or in other words, adding an index to cover it. This
is similar to what we did earlier since this is a small table that isn't going to grow, so it may
not be necessary to change anything. Still, if you were going to account for a table growing,
and you are planning to run this query frequently, you could add a nonclustered index to
cover the additional columns in the query. You also need to keep in mind that when you
add indexes, you will affect other queries, possibly making them less efficient, and you will
slow down inserts, updates, and deletes. We will talk about inserting, updating, and
deleting more in Chapter 8, Modifying Data and Table Structures.

You can add a nonclustered index in a couple of ways via MySQL Workbench – either with
the interface or via a SQL script. First, let's walk through how to alter a table with the
MySQL Workbench interface in order to add a nonclustered index:

Right-click the appearances table.1.
Click Alter Table...:2.

Querying a Single Table Chapter 6

[206]

Click the Indexes tab. You will see that there is the PRIMARY index currently:3.

Click on <click to edit>. This will allow you to enter an index name for the new4.
index we are creating.

Querying a Single Table Chapter 6

[207]

Name the nonclustered index NC_playerid_g_cols, select the playerid,5.
g_all, g_batting, and g_defense columns, and then click Apply:

Querying a Single Table Chapter 6

[208]

This will bring you to a screen where you can review the query that MySQL will6.
run to create the nonclustered index:

Click Apply.7.
Click Close. With that, the nonclustered index has been added. 8.

If you want to run the script to add the nonclustered index, you can execute the following
in a new query window:

ALTER TABLE `lahmansbaseballdb`.`appearances`
ADD INDEX `NC_playerid_g_cols` (`playerID` ASC, `G_all` ASC, `G_batting`
ASC, `G_defense` ASC) VISIBLE;
;

Querying a Single Table Chapter 6

[209]

Let's execute our EXPLAIN for the query again:

USE lahmansbaseballdb;
EXPLAIN SELECT distinct playerid, g_all, g_batting, g_defense
FROM appearances
WHERE playerid LIKE 'a%'
ORDER BY playerid;

This will give you the results shown in the following screenshot:

Here, you can see that the query is using the nonclustered index we just created, and it's no
longer using filesort or temporary, thereby making your query much more efficient.

Here are some important things to note about query performance:

Avoid wildcards at the beginning of the search pattern because they are the
slower to process. For example, in the preceding query, you put % at the end of
the LIKE filter. If we had put this at the beginning, it could make the query
slower. Again, this is a small table, so it's hard to get the feeling for when things
are substantially larger, but it will be slower on a much larger table. The same
goes for the underscore (_) in the LIKE operator. Try to avoid putting it at the
front of the string.
The underscore will be faster than the percent sign because the parser only has to
perform one operation before moving on to the next character. With percent, it
has to do more parsing to resolve because it may have to match on more
characters.

One last thing to cover is viewing a graphical interface for the query execution plan. To do
this, you will need to run your query first:

USE lahmansbaseballdb;
SELECT distinct playerid, g_all, g_batting, g_defense
FROM appearances
WHERE playerid LIKE 'a%'
ORDER BY playerid;

Querying a Single Table Chapter 6

[210]

Now, click Query in the MySQL Workbench menu, and then Explain Current Statement,
as shown in the following screenshot:

This will bring up a visually explain plan panel below the query window and above the
output window, as shown in the following screenshot:

The previous screenshot shows that the query is using the NC_playerid_g_cols index
and that it only has to use a range of the index, which is good since it does not have to scan
the entire index. This gives you the approximate row count and the time it will take to
return the query, which is 3.28K rows and 697.26 milliseconds, respectively. It also tells you
it will be using the appearances table. You can see that it checks for distinct values and
orders them, and then returns the query results.

Querying a Single Table Chapter 6

[211]

Let's say you didn't have that nonclustered index that you added earlier before looking at
the visual explain plan. You can drop the index by running this query:

ALTER TABLE `lahmansbaseballdb`.`appearances`
DROP INDEX `NC_playerid_g_cols`;

You can rerun the query to see the new visual explain plan, as shown in the following
screenshot:

Here, you can see that the entire table has to be scanned when we don't have that
nonclustered index. You can see the row count went up from approximately 3,000 rows to
over 100,000 rows and that the time went from around 700 milliseconds to over 10,000
milliseconds. Also, note the query cost. In the query that used the nonclustered index, the
cost was almost the same as the time to run the query (697.5), but in the query without the
nonclustered index, the cost has gone up quite dramatically to over 22,000. Query cost is
based on how much CPU and I/O MySQL thinks it will need to use, so these numbers show
how beneficial proper indexing is for running queries efficiently.

Differences in other RDMSes for examining what indexes your queries
are using: Oracle, PostgreSQL, and SQL Server have different ways of
seeing what indexes your queries are using. Please refer to the Further
reading section to find links that provide more information on this.

Querying a Single Table Chapter 6

[212]

Summary
In this chapter, you learned how to query a single table. This included learning how to use
the SQL SELECT statement and the FROM, WHERE, and ORDER BY clauses.

With the SELECT and FROM clauses, you learned how to select distinct records with the
DISTINCT keyword, how to limit results with the LIMIT keyword, how to save a SQL
query to a file, and how to add proper comments to SQL code.

With the WHERE clause, you learned how and when to use the WHERE clause, along with
AND, OR, NOT, IN, and BETWEEN, and how to use with the percent sign (%) and underscore
(_) wildcards.

With the ORDER BY clause, you learned how to order query results by one or more
columns.

Finally, you learned how to tell which index your query is using and if you need additional
indexes by using EXPLAIN or the visual explain tool in MySQL Workbench. You also
learned how to add an index to make the query more efficient.

In the next chapter, you will learn how to query multiple tables. This includes learning how
to use SQL joins. You will learn about INNER, OUTER (LEFT, RIGHT, and FULL), and
advanced joins (cross and self joins). Finally, you will learn about set theory, including
unioning queries.

Questions
What character is required at the end of all SQL statements? 1.
What two clauses are required to select data from a single table? 2.
Why should you avoid using SELECT * in a query? 3.
What does the WHERE clause do to your query results? 4.
What two wildcard operators can you use with LIKE? 5.
What does an ORDER BY clause do to your query results?6.
What options do you have for sorting results in your ORDER BY clause? 7.
What SQL clause can you use to see the explanation of your query, and what8.
indexes will it use?
How do you add an index to an existing table? 9.
How do you see the explanation of a query plan using MySQL Workbench? 10.

Querying a Single Table Chapter 6

[213]

Further reading
For more information:

Refer to this link for more information on Oracle execution plans: https:/ ​/
docs.​oracle. ​com/ ​en/ ​database/ ​oracle/ ​oracle- ​database/ ​19/ ​tgsql/
generating- ​and- ​displaying- ​execution- ​plans. ​html#GUID- ​60E30B1C- ​342B-
4D71-​B154- ​C26623D6A3B1

Refer to this link for more information on PostgreSQL execution
plans: https:/ ​/ ​www. ​postgresql. ​org/ ​docs/ ​11/ ​sql- ​explain. ​html

Refer to this link for more details about SQL Server execution plans: https:/ ​/
docs.​microsoft. ​com/ ​en- ​us/ ​sql/ ​relational- ​databases/ ​performance/ ​display-
an-​actual- ​execution- ​plan? ​view= ​sql- ​server- ​ver15

Refer to this link for more details about MySQL partitioning: https:/ ​/​dev.
mysql.​com/ ​doc/ ​refman/ ​8. ​0/​en/ ​partitioning. ​html

https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/generating-and-displaying-execution-plans.html#GUID-60E30B1C-342B-4D71-B154-C26623D6A3B1
https://www.postgresql.org/docs/11/sql-explain.html
https://www.postgresql.org/docs/11/sql-explain.html
https://www.postgresql.org/docs/11/sql-explain.html
https://www.postgresql.org/docs/11/sql-explain.html
https://www.postgresql.org/docs/11/sql-explain.html
https://www.postgresql.org/docs/11/sql-explain.html
https://www.postgresql.org/docs/11/sql-explain.html
https://www.postgresql.org/docs/11/sql-explain.html
https://www.postgresql.org/docs/11/sql-explain.html
https://www.postgresql.org/docs/11/sql-explain.html
https://www.postgresql.org/docs/11/sql-explain.html
https://www.postgresql.org/docs/11/sql-explain.html
https://www.postgresql.org/docs/11/sql-explain.html
https://www.postgresql.org/docs/11/sql-explain.html
https://www.postgresql.org/docs/11/sql-explain.html
https://www.postgresql.org/docs/11/sql-explain.html
https://www.postgresql.org/docs/11/sql-explain.html
https://www.postgresql.org/docs/11/sql-explain.html
https://www.postgresql.org/docs/11/sql-explain.html
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan?view=sql-server-ver15
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html

7
Querying Multiple Tables

In this chapter, you will learn how to query multiple tables. You will learn how to use SQL
joins to join two or more tables together, including INNER and OUTER (LEFT, RIGHT, and
FULL) joins, and advanced joins (cross, natural, and self joins). You will learn about set
theory and how to combine queries using UNION and UNION ALL, and how to get the
differences and intersections of different queries. Lastly, you will learn how to optimize
queries when they contain multiple tables.

In this chapter, we will cover the following topics:

Understanding joins
Using INNER JOIN
Using OUTER JOIN
Using advanced joins
Understanding set theory
Using indexes with your queries

Technical requirements
You can refer to the code files of this chapter at the following GitHub link: https:/ ​/
github.​com/​PacktPublishing/ ​learn- ​sql- ​database- ​programming/ ​tree/ ​master/ ​chapter- ​7

https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-7

Querying Multiple Tables Chapter 7

[215]

Understanding joins
Before we begin a discussion on the types of joins, let's go over what a join is and why you
would use one. A join refers to when you connect two or more tables in a query. Joining
tables in a query requires you to join them on a related column that is in each table you
want to join together. There are a couple of different types of joins, including the following
ones:

Inner join: This type of join returns only matching records from each joined
table.
Outer join: This type of join has a few types of joins that can be used, including
the following:

Left outer join: This type of join includes all rows from the left table
and any matching rows between the left and right tables.
Right outer join: This type of join includes all rows from the right table
and any matching rows between the right and left tables.
Full outer join: This type of join includes all rows from both the left
and right tables. This type of join is not available in MySQL.

Additionally, there are some more advanced joins, including the following ones:

Cross join: This type of join will return a combination of every row from two
tables.
Natural join: This type of join will associate columns of the same name in the
joined tables with each other. It's similar to an inner join or left outer join, but you
don't specify the join columns.
Self join: This type of join is used to join a table to itself.

Understanding results returned with an inner
join
The Venn diagram in the following screenshot shows you which records would be returned
if you joined Table A to Table B in an inner join:

Querying Multiple Tables Chapter 7

[216]

The Venn diagram shows that only records that match in Table A and Table B would be
returned with an inner join.

Understanding results returned with a left outer
join
A left outer join includes all rows from the left table and any matching rows between the
left and right tables. The following Venn diagram shows in gray the rows that would be
returned with two tables:

If there are no rows in Table B that match Table A, only rows from Table A will be
returned. Rows returned from Table A that don't have any matching rows in Table B will
show null values for the columns in Table B.

Querying Multiple Tables Chapter 7

[217]

Additionally, you can use a left excluding join. This would include all rows from the left
table that don't match records in the right table, as shown in the Venn diagram depicted in
the following image:

Understanding results returned with a right outer
join
A right outer join includes all rows from the right table and any matching rows between the
right and left tables. The Venn diagram depicted in the following screenshot shows in gray
the rows that would be returned with two tables:

If there are no rows in Table A that match Table B, only rows from Table B will be
returned. Rows returned from Table B that don't have any matching rows in Table A will
show null values for the columns in Table A.

Querying Multiple Tables Chapter 7

[218]

Additionally, you can do a right excluding join. This would include all rows from the right
table that don't match records in the left table, as shown in the Venn diagram depicted in
the following image:

Understanding results returned with a full outer
join
A full outer join includes all rows from both the left and right tables. The Venn diagram
depicted in the following screenshot shows in gray the rows that would be returned with
two tables:

Rows returned from Table A that don't have any matching rows in Table B will show null
values for the columns in Table B. Rows returned from Table B that don't have any
matching rows in Table A will show null values for the columns in Table A.

Using INNER JOIN
If you want to only return records that have matching rows in each table you join, use
an INNER JOIN. The syntax of INNER JOIN and examples will be outlined in this section.

Querying Multiple Tables Chapter 7

[219]

Learning INNER JOIN syntax
To inner join two tables, use the following syntax:

SELECT column(s)
FROM table1
INNER JOIN table2
ON table1.column = table2.column
WHERE conditions
ORDER BY column(s);

The preceding syntax shows you how to join two tables together with an INNER JOIN. You
join a column in table1 that matches a column in table2. The WHERE and ORDER
BY clauses are optional. They are there to show you that the INNER JOIN syntax goes
between the FROM and WHERE clauses.

The following example will help you to understand how to use the INNER JOIN:

SELECT lahmansbaseballdb.people.playerid, birthyear, yearid, teamid
FROM lahmansbaseballdb.appearances
INNER JOIN lahmansbaseballdb.people
ON lahmansbaseballdb.people.playerid =
lahmansbaseballdb.appearances.playerid
WHERE yearid = 2017;

In the preceding code example, you will see that you list your columns as usual, but where
the column exists in both tables, you will need to specify the table you want the column to
be queried from; otherwise, you will get an error. For example, if you didn't preface
playerid with lahmansbaseballdb.people, then you would receive this error message:

Error Code: 1052. Column 'playerid' in field list is ambiguous

In this case, you could preface playerid with either table in the inner join since that field
exists and is NOT NULL in either table.

Also, you place a table you want to query FROM the same as in querying a single table. In
the case of an INNER JOIN, it doesn't matter which order you place the tables in the INNER
JOIN.

Next, you will see the INNER JOIN clause. This clause is where you place the table you
want to join to the table in the FROM clause.

Querying Multiple Tables Chapter 7

[220]

Then, you will see the ON clause. This clause tells the query which column you want to join
the tables on. In this case, the only column that exists in both is the playerid column, so
it's the natural choice for joining.

You will see a WHERE clause to limit the results; otherwise, the query takes a long time to
run without the WHERE clause to restrict it.

In the following screenshot, you will see the results returned with the preceding query:

You can also leave off the INNER on an INNER JOIN. The following query will run the same
as the preceding query:

SELECT lahmansbaseballdb.people.playerid, birthyear, yearid, teamid
FROM lahmansbaseballdb.appearances
JOIN lahmansbaseballdb.people
ON lahmansbaseballdb.people.playerid =
lahmansbaseballdb.appearances.playerid
WHERE yearid = 2017;

For clarity's sake, it's best to use the INNER JOIN syntax, especially if you are joining more
tables using other joins besides INNER JOIN.

In MySQL, you can join up to 61 tables in a query. The best practice is to
use the fewest joins possible to avoid issues with computer resources.
In Oracle, PostgreSQL, and SQL Server, the only limit on table joins is
computer resources.

In the following query, you will be joining three tables to each other:

SELECT lahmansbaseballdb.people.playerid, birthyear,
 lahmansbaseballdb.appearances.yearid,
 lahmansbaseballdb.appearances.teamid, G_defense, H
FROM lahmansbaseballdb.appearances
INNER JOIN lahmansbaseballdb.people
ON lahmansbaseballdb.people.playerid =

Querying Multiple Tables Chapter 7

[221]

lahmansbaseballdb.appearances.playerid
INNER JOIN lahmansbaseballdb.batting
ON lahmansbaseballdb.people.playerid = lahmansbaseballdb.batting.playerid
WHERE lahmansbaseballdb.batting.yearid = 2017
 AND H <> 0
ORDER BY lahmansbaseballdb.people.playerid,
 lahmansbaseballdb.appearances.yearid,
 lahmansbaseballdb.appearances.teamid, G_defense, H;

In the preceding query, you can see that you are now joining another table,
lahmansbaseballdb.batting, to the query. You use the same syntax as joining
the lahmansbaseballdb.appearances table. The preceding query will return the rows
where the people, batting, and appearances tables have matching rows. The following
screenshot shows the results of the previous query:

The following screenshot shows the Venn diagram of which rows would be returned:

Querying Multiple Tables Chapter 7

[222]

What the query will return is illustrated by the gray area where people, appearances, and
batting overlap in the preceding image.

Learning how to use table aliases
Table aliases allow you to assign a different name to a table in your query. As you can see
from the queries in the previous section, the naming of columns for joined tables can get
long and make your query hard to read. This is where table aliases come in. You can use an
alias for your tables in the join and make it easier to read and reference which table your
columns belong to. Taking a query from the previous section and putting on aliases, you
get the following query:

SELECT p.playerid, birthyear,
 a.yearid, a.teamid, G_defense, H
FROM lahmansbaseballdb.appearances AS a
INNER JOIN lahmansbaseballdb.people AS p
ON p.playerid = a.playerid
INNER JOIN lahmansbaseballdb.batting AS b
ON p.playerid = b.playerid
WHERE b.yearid = 2017
AND H <> 0
ORDER BY p.playerid, a.yearid, a.teamid, G_defense, H;

The preceding query has an alias on the table names in the FROM and INNER JOIN clauses.
For the appearances table, you are using a; for the people table, you are using p; and for
the batting table, you are using b. Also, you will see the AS keyword between the table
name and the alias, as shown in the following code snippet:

lahmansbaseballdb.appearances AS a

The AS keyword is optional, so the following code snippet works the same as the preceding
one:

lahmansbaseballdb.appearances a

You can apply this alias naming to the columns in the SELECT, WHERE, and ORDER BY
clauses. For example, instead of using lahmansbaseballdb.appearances.yearid, you
use a.yearid, thereby making it much cleaner and easier to read. You can also use longer
aliases if you choose, such as using batting instead of b for the batting table.

Querying Multiple Tables Chapter 7

[223]

You can't use table aliases with spaces as the batting table does. This
will cause an error in your code.

Using OUTER JOIN
There are three types of outer joins: LEFT, RIGHT, and FULL joins. Each is described in more
detail in the following sections. The LEFT OUTER JOIN includes all rows from the left table
and any matching rows between the left and right tables. The RIGHT OUTER JOIN includes
all rows from the right table and any matching rows between the right and left tables. The
FULL OUTER JOIN includes all rows from both the left and right tables.

Learning LEFT OUTER JOIN syntax
To LEFT OUTER JOIN two tables, use the following syntax:

SELECT column(s)
FROM table1
LEFT OUTER JOIN table2
ON table1.column = table2.column
WHERE conditions
ORDER BY column(s);

The preceding syntax shows you how to join two tables together with a LEFT OUTER JOIN.
You join a column in table1 that matches a column in table2. The WHERE and ORDER
BY clauses are optional. They are there to show you that the LEFT OUTER JOIN syntax goes
between the FROM and WHERE clauses.

The following example will help you to understand how to use the LEFT OUTER JOIN:

SELECT p.playerid, birthyear, schoolid, yearid
FROM lahmansbaseballdb.people p
LEFT OUTER JOIN lahmansbaseballdb.collegeplaying c
ON p.playerid = c.playerid
WHERE birthyear = 1985;

Querying Multiple Tables Chapter 7

[224]

You can see in the preceding query that you are joining the people table to the
collegeplaying table with a LEFT OUTER JOIN. This will return all rows from the
people table and only corresponding rows from the collegeplaying table when a row in
the people table has a birthyear of 1985. In the following screenshot, you will see the
results of the preceding query:

As you can see in the preceding screenshot, the results show NULL for the rows in the
people table that don't have a corresponding row in the collegeplaying table, and the
rows that do match between people and collegeplaying have a complete row of data in
the results.

You can also leave off OUTER in the join, and it will run the same as if it were there. For
example, the following code snippet will run a LEFT OUTER JOIN:

LEFT OUTER JOIN lahmansbaseballdb.collegeplaying c

This code snippet will work the same way and return the same results as the preceding
code snippet:

LEFT JOIN lahmansbaseballdb.collegeplaying c

You can use either LEFT JOIN or LEFT OUTER JOIN with the same results.

Querying Multiple Tables Chapter 7

[225]

As with INNER JOIN, you can join up to 61 tables in your query. You can LEFT OUTER
JOIN three tables, as shown in the following SQL query:

SELECT p.playerid, birthyear, schoolid, asf.yearid, gameid
FROM lahmansbaseballdb.people p
LEFT OUTER JOIN lahmansbaseballdb.collegeplaying c
ON p.playerid = c.playerid
LEFT OUTER JOIN lahmansbaseballdb.allstarfull asf
ON asf.playerid = p.playerid
WHERE birthyear = 1985;

The preceding query will result in rows that have all the people table rows, but only the
rows matching in the collegeplaying table and the allstarfull table that match the
people table rows. The following screenshot shows the results of the previous query:

Note that in the preceding screenshot, you see NULL values in the yearid and
gameid fields for many rows because those playerids didn't have a corresponding row in
the allstarfull table. You will also see some schoolids that are NULL because those
playerids didn't have corresponding rows in the collegeplaying table.

Additionally, you can use a left excluding join. This would include all rows from the left
table that don't match records in the right table.

To use a left excluding join, use the following syntax:

SELECT column(s)
FROM table1
LEFT OUTER JOIN table2
ON table1.column = table2.column
WHERE table2.column IS NULL;

Querying Multiple Tables Chapter 7

[226]

The previous syntax shows you how to join two tables together with a left excluding join.
This is a modified LEFT OUTER JOIN. You join a column in table1 that matches a column
in table2.

The WHERE clause is not optional in this case, and needs to be set to IS
NULL for a column in table2.

The following example will help you to understand how to use the left excluding join:

SELECT p.playerid, birthyear, schoolid, yearid
FROM lahmansbaseballdb.people p
LEFT OUTER JOIN lahmansbaseballdb.collegeplaying c
ON p.playerid = c.playerid
WHERE birthyear = 1985
AND c.playerid IS NULL;

The previous query will return the results in the following screenshot:

As you can see in the preceding screenshot, you are only getting rows from the left table
(people) where the playerid in the right table (collegeplaying) is NULL. You can
combine the results of the LEFT OUTER JOIN and the left excluding join with a set
operator, which is covered later in this chapter.

Learning RIGHT OUTER JOIN syntax
To RIGHT OUTER JOIN two tables, use the following syntax:

SELECT column(s)
FROM table1
RIGHT OUTER JOIN table2
ON table1.column = table2.column

Querying Multiple Tables Chapter 7

[227]

WHERE conditions
ORDER BY column(s);

The previous syntax shows you how to join two tables together with a RIGHT OUTER join.
You join a column in table1 that matches a column in table2. The WHERE and ORDER
BY clauses are optional. They are there to show you that the RIGHT OUTER JOIN syntax
goes between the FROM and WHERE clauses.

The following example will help you to understand how to use the RIGHT OUTER JOIN:

SELECT p.playerid, asf.yearid, gameid, startingpos
FROM lahmansbaseballdb.allstarfull asf
RIGHT OUTER JOIN lahmansbaseballdb.people p
ON p.playerid = asf.playerid;

You can see in the preceding query that you are joining the allstarfull table to the
people table with a RIGHT OUTER JOIN. This will return all rows from the people table
and only corresponding rows from the allstarfull table. In the following screenshot,
you will see the results of the previous query:

As you can see in the preceding screenshot, the results show NULL for the rows in the
people table that don't have a corresponding row in the allstarfull table, and the rows
that correspond between people and allstarfull have a complete row of data in the
results.

Querying Multiple Tables Chapter 7

[228]

You can also leave off OUTER in the join, and it will run the same as if it were there. For
example, the following code snippet will run RIGHT OUTER JOIN:

RIGHT OUTER JOIN lahmansbaseballdb.people p

This code snippet will work the same way and return the same results as the previous code
snippet:

RIGHT JOIN lahmansbaseballdb.people p

You can use either RIGHT JOIN or RIGHT OUTER JOIN, with the same results.

As with INNER JOIN, you can join up to 61 tables into your query. You will RIGHT OUTER
JOIN with three tables, as shown in the following SQL query:

SELECT m.playerid, m.yearid, h.votedBy, s.salary
FROM lahmansbaseballdb.managers m
RIGHT OUTER JOIN lahmansbaseballdb.halloffame h
ON m.playerid = h.playerid
RIGHT OUTER JOIN lahmansbaseballdb.salaries s
ON m.playerid = s.playerid;

The preceding query will result in rows that have all the salary table rows, but only the
rows matching in halloffame and managers that match the salary table rows. The
following screenshot shows the results of the previous query:

Note that in the preceding screenshot, you see many NULL values in the playerid, yearid,
and votedBy rows because those playerids didn't have a corresponding row in the salary
table.

Querying Multiple Tables Chapter 7

[229]

Additionally, you can do a right excluding join. This join will include all rows from the
right table that don't match records in the left table. To execute a right excluding join, use
the following syntax:

SELECT column(s)
FROM table1
RIGHT OUTER JOIN table2
ON table1.column = table2.column
WHERE table1.column IS NULL;

The previous syntax shows you how to join two tables together with a right excluding join.
This is a modified RIGHT OUTER JOIN. You join a column in table1 that matches a
column in table2.

The WHERE clause is not optional in this case, and needs to be set to IS
NULL for a column in table1.

The following example will help you to understand how to use the right excluding join:

SELECT p.playerid, asf.yearid, gameid, startingpos
FROM lahmansbaseballdb.allstarfull asf
RIGHT OUTER JOIN lahmansbaseballdb.people p
ON p.playerid = asf.playerid
WHERE asf.playerid IS NULL;

The previous query will return the results in the following screenshot:

As you can see in the preceding screenshot, you are only getting rows from the right table
(people) where the playerid in the left table (allstarfull) is NULL. You could combine
the results of the RIGHT OUTER JOIN and right excluding join with a set operator, which is
covered later in this chapter.

Querying Multiple Tables Chapter 7

[230]

Exploring differences in other relational data
models
In other relational data models (RDMs), you can also use the full outer join. In Oracle,
PostgreSQL, and SQL Server, you can use the FULL OUTER JOIN syntax to return rows
from both tables.

Using FULL OUTER JOIN
To join a table with FULL OUTER JOIN, execute the following SQL code:

USE lahmansbaseballdb
SELECT p.playerid, asf.yearid, gameid, startingpos
FROM allstarfull asf
FULL OUTER JOIN people p
ON p.playerid = asf.playerid;

You can see in the preceding query that you are joining the allstarfull table to the
people table with a FULL OUTER JOIN. This query will return all rows from the people
table and all rows from the allstarfull table. Where there isn't a matching row in either
table, you will see NULL values, as illustrated in the following screenshot:

As you can see in the previous screenshot, the results show NULL values for the rows in the
people table that don't have a corresponding row in the allstarfull table, and the rows
that correspond between people and allstarfull have a complete row of data in the
results.

You can also leave off the OUTER in the join, and it will run the same as if it were there. For
example, the following code snippet will execute a FULL OUTER JOIN:

FULL JOIN lahmansbaseballdb.people p

Querying Multiple Tables Chapter 7

[231]

The following code snippet will work the same way and return the same results as the
previous code snippet:

FULL OUTER JOIN lahmansbaseballdb.people p

You can use either FULL JOIN or FULL OUTER JOIN, with the same results.

Using advanced joins
MySQL includes some more advanced joins such as cross, natural, and self joins. These will
be discussed in the following sections.

Understanding what a CROSS JOIN is and how to
use it
A CROSS JOIN is like an INNER JOIN without the ON clause. It winds up producing results
that are like multiplying each table with the other table. This is also referred to as a
Cartesian result. A CROSS JOIN will return a combination of every row from two tables.
This join will result in a lot of rows returned. It may result in your query never returning
results because it's too intensive for the database system to return the results.

To CROSS JOIN two tables, use the following syntax:

SELECT column(s)
FROM table1
CROSS JOIN table2
WHERE condition(s);

The previous syntax shows you how to join two tables together with a CROSS JOIN. You
join a column in table1 that matches a column in table2.

The WHERE clause is optional but highly recommended to avoid a very
long-running query.

The following example will help you to understand how to use CROSS JOIN:

SELECT c.playerid, c.schoolid, c.yearid, city, state, country
FROM lahmansbaseballdb.collegeplaying c

Querying Multiple Tables Chapter 7

[232]

CROSS JOIN lahmansbaseballdb.schools s
WHERE s.schoolid = 'akron';

The previous query gives you results of every row in collegeplaying that matches every
row in schools, so it gives you the Cartesian product of those tables, as in the following
screenshot:

As you can see in the preceding screenshot, the schoolid, city, state, and
country fields from the schools table was placed in every row from the collegeplaying
table, whereas the schoolid from the school table was equal to akron. Not a useful query
in this case, but this is just done to illustrate how the cross joins work. This type of join
could be useful for some queries—for example, if you want to know all the colors with sizes
of a clothing item.

Also, you can use just the word JOIN, and leave off CROSS, to return the same results. This
following query will return the same results as the query earlier in this section:

SELECT c.playerid, c.schoolid, c.yearid, city, state, country
FROM lahmansbaseballdb.collegeplaying c
JOIN lahmansbaseballdb.schools s
WHERE s.schoolid = 'akron';

The main thing to keep in mind with cross joins is that they can be very intensive for the
database system, and it's best to use the other joins discussed earlier in this chapter if
possible, and always use a WHERE clause if you are using a CROSS JOIN.

Querying Multiple Tables Chapter 7

[233]

Understanding what a NATURAL JOIN is and how
to use it
A NATURAL JOIN will associate columns of the same name in the joined tables with each
other. It's similar to an INNER JOIN or a LEFT OUTER JOIN.

To NATURAL JOIN two tables, use the following syntax:

SELECT column(s)
FROM table1
NATURAL JOIN table2;

The previous syntax shows you how to join two tables together with NATURAL JOIN. You
explicitly set the columns to be joined.

The following example will help you to understand how to use NATURAL JOIN:

SELECT c.playerid, c.schoolid, c.yearid, s.schoolid, city, state, country
FROM lahmansbaseballdb.collegeplaying c
NATURAL JOIN lahmansbaseballdb.schools s;

You will receive the results from the previous query, as shown in the following screenshot:

These results will be from NATURAL JOIN finding the common column names in schools
and collegeplaying, which in this case will be schoolid. It returns the results where the
rows in each table match on schoolid.

Querying Multiple Tables Chapter 7

[234]

Understanding what a SELF JOIN is and how to
use it
A SELF JOIN is used to join a table to itself. This join would be useful in the case of a table
containing hierarchical data such as employees and managers. Here, we have a table
named Employees containing the following columns and rows:

EmployeeID FirstName LastName ManagerID
1 Jane Smith NULL
2 Peter Jones 1
3 Jessica Lewis 2
4 Donna Nickols 2
5 Joel Rogers 3
6 Joseph Edwards 7
7 Ruth Chapman 3
8 Theodore Clark 6
9 Adam Berry 6
10 Lucy Slater 5

You can use a query such as this to self-join on the preceding table, as follows:

SELECT e.FirstName + ' ' + e.LastName AS EmployeeName,
 m.FirstName + ' ' + m.LastName AS ManagerName
FROM Employees AS e
LEFT OUTER JOIN Employees m
ON e.ManagerID = m.EmployeeID
ORDER BY ManagerName;

The previous query will return these results:

EmployeeName ManagerName
Jane Smith NULL
Peter Jones Jane Smith
Joel Rogers Jessica Lewis

Ruth Chapman Jessica Lewis
Lucy Slater Joel Rogers

Theodore Clark Joseph Edwards
Adam Berry Joseph Edwards

Querying Multiple Tables Chapter 7

[235]

Jessica Lewis Peter Jones
Donna Nickols Peter Jones

Joseph Edwards Ruth Chapman

If you used an INNER JOIN on the previous query, you wouldn't get the row for Jane
Smith because she doesn't report to anyone.

Understanding set theory
Set theory is the underlying concept of SQL. A set is a collection of zero or more objects.
Each object in a set is called an element. In MySQL, a table corresponds to a set, and a
record corresponds with an element. You can get a subset from a set. A subset is a smaller
set of elements from the set. In SQL, you can get a subset by using a WHERE clause. A cross
product is a set created from two or more sets. In SQL, a cross product is a join. To create
different sets of data in SQL, you can use the intersection, difference, and union joins. Each
of these is explained in more detail in the following sections.

Understanding what a UNION join is and learning
how to use it in a SQL query
UNION allows you to combine two or more result sets into a single result set. There are a
few rules that need to be followed to avoid errors, listed as follows:

The number of columns in the SELECT statements must be the same.
The order of the columns in the SELECT statements must be the same.
The data types of the columns must be the same or of a compatible type.
The ORDERBY clause can only be used on the final SELECT statement.

There are also a couple of things to keep in mind when reviewing your results, as follows:

The names of the final columns are generated from the column names you use in
the first SELECT statement.
GROUP BY and HAVING clauses can only be used in each query, but can't be used
to affect the final results (Chapter 10, Grouping and Summarizing Data, goes into
more detail on GROUP BY and HAVING).

Querying Multiple Tables Chapter 7

[236]

You have two choices when using UNION, as follows:

UNION: This removes duplicate rows without using DISTINCT in the SELECT
statements.
UNION ALL: This does not remove duplicate rows, and they will remain in the
final result. This will perform faster than UNION because it doesn't have to
remove duplicates.

The UNION operators both combine results vertically as opposed to a join, which combines
results horizontally. The following screenshot shows you the difference between UNION,
UNION ALL, and INNER JOIN, and the resulting output from each:

We will walk through how to use UNION and UNION ALL in queries in the next sections.

Querying Multiple Tables Chapter 7

[237]

UNION
To form a union between two tables, use the following syntax:

SELECT column(s)
FROM table1
WHERE conditions(s)
UNION
SELECT column(s)
FROM table2
WHERE condition(s)
ORDER BY column(s);

The previous syntax shows you how to UNION two queries together. The WHERE clause in
each query is optional. The ORDER BY clause is also optional, and can only appear after the
last query in the UNION join.

If you want to get all the awards for both managers and players in 1994, execute this
query:

SELECT am.playerid, namegiven, awardid, yearid FROM
lahmansbaseballdb.awardsmanagers am
INNER JOIN lahmansbaseballdb.people p
ON p.playerid = am.playerid
WHERE yearid = 1994
UNION
SELECT ap.playerid, namegiven, awardid, yearid FROM
lahmansbaseballdb.awardsplayers ap
INNER JOIN lahmansbaseballdb.people p
ON p.playerid = ap.playerid
WHERE yearid = 1994
ORDER BY awardid;

The previous query will give you the results shown in the following screenshot:

Querying Multiple Tables Chapter 7

[238]

The previous results are the UNION of the manager awards and the player awards for 1994.

Note that you need to use the WHERE clause on each query, but the ORDER BY clause can
only be used on the final query. If you didn't have the same number, order, and type on
your columns, it would give you an error. Run the following code on the first SELECT
statement:

SELECT am.playerid, awardid, yearid FROM lahmansbaseballdb.awardsmanagers
am

This results in the following error:

Error Code: 1222. The used SELECT statements have a different number of
columns

This is because you don't have the same number of columns.

Instead, run the following code on the first SELECT statement:

SELECT am.playerid, awardid, yearid, namegiven FROM
lahmansbaseballdb.awardsmanagers am

You wouldn't get an error in this case, but instead, MySQL would implicitly convert
yearid to the same column type as the namegiven column. There are two types of
conversion in MySQL: explicit and implicit. Explicit conversion refers to when you
explicitly change a data type. Explicit conversion is covered more in Chapter 9, Working
with Expressions. Implicit conversion happens when MySQL needs to match data types. In
the case of the UNION join, if you use a column with a data type of VARCHAR in the first
SELECT statement, and then select a column with a data type of SMALLINT in the second
statement, MySQL will implicitly convert the SMALLINT data type to VARCHAR. This
conversion happens because the data type of the first SELECT statement is used throughout.

Querying Multiple Tables Chapter 7

[239]

You will get some strange results with an implicit conversion, as shown in the following
screenshot:

You can see in the previous results that now, you have yearid and namegiven mixed in
each of the yearid and namegiven columns. This example impresses on you the
importance of the order of the columns specified in the SELECT statements. If MySQL
couldn't convert the columns to the same type, then it would give you an error. This brings
up an important point in general with query writing, which is that just because you don't
get an error, this doesn't mean you got what you wanted.

You may want to know whether the playerid is associated with a manager or an actual
player. To do this, you can add a static column value to your query to note whether the row
is a manager or player. You can execute the following query to see how this works:

SELECT am.playerid, namegiven, awardid, yearid, "Manager" as playeridType
FROM lahmansbaseballdb.awardsmanagers am
INNER JOIN lahmansbaseballdb.people p
ON p.playerid = am.playerid
WHERE yearid = 1994
UNION
SELECT ap.playerid, namegiven, awardid, yearid, "Player"
FROM lahmansbaseballdb.awardsplayers ap
INNER JOIN lahmansbaseballdb.people p
ON p.playerid = ap.playerid
WHERE yearid = 1994
ORDER BY awardid;

Querying Multiple Tables Chapter 7

[240]

The previous query will give the results shown in the following screenshot:

You can see that by adding a static column in each SELECT statement, you wind up with a
column that has that static value for each row. For example, on the awardsmanagers table,
you added Manager as a playeridType value, and on the awardsplayer table, you
added Player. These values show up as a column in the results.

UNION ALL
If you run the same query from the last section on UNION with UNION ALL instead, you will
get the same results because there weren't any duplicates to filter out.

You can use the following new query to see how UNION ALL works by removing
duplicates:

SELECT playerid, yearid, teamid, G AS gamesbatted FROM
lahmansbaseballdb.batting
WHERE yearid = 2005
UNION ALL
SELECT playerid, yearid, teamid, g_batting FROM
lahmansbaseballdb.appearances
WHERE yearid = 2005
ORDER BY yearid, playerid, gamesbatted;

Querying Multiple Tables Chapter 7

[241]

The previous query will give us the results shown in the following screenshot:

From the preceding screenshot, we can make the following observations:

In the query results, you see two rows for each playerid based on the yearid,
teamid, and gamesbatted fields, regardless of whether the gamesbatted field
has the same value in the batting and appearances tables.
If you execute this same query as UNION, you would only see one row for each
playerid, yearid, teamid, and gamesbatted combination.
The results with UNION ALL bring up an interesting question, though. If the
appearances table has the number of games batted in any given year and the
batting table also has this value, you would think they would match one
another. UNION ALL becomes a good way of seeing what discrepancies may lie in
different tables in your database.

Understanding what an intersect is and learning
how to use it in a SQL query
An intersect allows you to combine two or more results sets that contain the distinct values
of each set. The following screenshot shows you what results from an intersect:

Querying Multiple Tables Chapter 7

[242]

MySQL doesn't support the INTERSECT SQL operator, but there is a workaround with a
join. This can be done with DISTINCT and INNER JOIN. The following query shows you
how to do this:

SELECT DISTINCT a.playerid
FROM lahmansbaseballdb.batting b
INNER JOIN lahmansbaseballdb.appearances a
ON a.playerid = b.playerid
ORDER BY a.playerid;

The previous query gives you the results shown in the following screenshot:

The preceding results are the intersection of batting and appearances under playerid.
The list of results contains only values that are in both tables. The DISTINCT operator
removes duplicates, and the INNER JOIN returns the rows from both tables.

Looking at intersection in other RDMS
To run queries that intersect in Oracle, PostgreSQL, and SQL Server, you can use the
INTERSECT operator. The following screenshot shows you the output resulting from
INTERSECT:

Querying Multiple Tables Chapter 7

[243]

The previous query from MySQL would be rewritten like this for the other RDMS:

USE lahmansbaseballdb
SELECT playerid
FROM batting
INTERSECT
SELECT playerid
FROM appearances
ORDER BY playerid;

The previous query will return rows where the two tables have overlap.

Understanding what difference is and learning
how to use it in a SQL query
To find the difference in MySQL, you can use the right excluding join or left excluding join,
since MySQL doesn't support the EXCEPT or MINUS keywords. Please refer to the sections
on right outer joins and left outer joins earlier in this chapter, which include information on
right excluding joins and left excluding joins in MySQL.

Exploring differences in other RDMS
MINUS and EXCEPT (depending on the RDMS, as outlined here) are the equivalent of right
and left excluding joins. The following screenshot shows you the output resulting from a
MINUS or EXCEPT join:

The following is a code example of a right excluding join in MySQL:

SELECT p.playerid
FROM lahmansbaseballdb.allstarfull asf
RIGHT OUTER JOIN lahmansbaseballdb.people p
ON p.playerid = asf.playerid
WHERE asf.playerid IS NULL;

Querying Multiple Tables Chapter 7

[244]

In the previous query, you are only getting rows from the right table (people) where
playerid in the left table (allstarfull) is NULL.

EXCEPT
PostgreSQL and SQL Server use the EXCEPT operator to accomplish what MySQL does
with a right or left excluding join. You can rewrite the code from earlier in this section in
PostgreSQL and SQL Server, like this:

USE lahmansbaseballdb
SELECT playerid
FROM people
EXCEPT
SELECT playerid
FROM allstarfull;

The previous query will return all rows from the people table that don't appear in the
allstarfull table.

MINUS
Oracle uses the MINUS operator to accomplish what MySQL does with a right or left
excluding join, and what PostgreSQL and SQL Server accomplish with the EXCEPT
operator. You can rewrite the code from earlier in this section in Oracle, like this:

USE lahmansbaseballdb
SELECT playerid
FROM people
MINUS
SELECT playerid
FROM allstarfull;

The previous query will return all rows from the people table that don't appear in the
allstarfull table.

Using indexes with your queries
In this section, we will go over how to see which indexes your multiple tables query is
using and how to troubleshoot them. Please refer to Chapter 6, Querying a Single Table, for
an introduction to the EXPLAIN syntax you will be using here.

Querying Multiple Tables Chapter 7

[245]

You will begin with a query you used earlier in the chapter and will add EXPLAIN to the
query to get information about which indexes your query is using. Execute the following
query to get your index explanation information:

EXPLAIN SELECT p.playerid, p.birthyear,
 a.yearid, a.teamid, a.G_defense, b.H
FROM lahmansbaseballdb.appearances AS a
INNER JOIN lahmansbaseballdb.people AS p
ON p.playerid = a.playerid
INNER JOIN lahmansbaseballdb.batting AS b
ON p.playerid = b.playerid
WHERE b.yearid = 2017
AND b.H <> 0
ORDER BY p.playerid, a.yearid, a.teamid, a.G_defense, b.H;

In the following screenshot, the EXPLAIN results are shown:

From the results in the preceding screenshot, you can see the following:

The tables are in the results as their alias names, such as b for the batting table,
p for the people table, and a for the appearances table. If you didn't use
aliases, then the actual table name would appear in the table column.
The batting table is using the primary key to return data. This is good since it
will mean that data will most likely be returned faster as the query is using an
index. The batting table is filtered to 90.00, using a WHERE clause.
The people and appearance tables don't have an index used in this query. The
people table is using temporary and filesort, which can slow down a query,
and the appearances table is using a join buffer (Block Nested Loop), which
means that data from earlier joins has been placed into a buffer. The data from
the appearances table will be joined to this data in the buffer, which also can
slow down a query.
This query (without EXPLAIN) returns 5,520 rows, but you can see that it's
looking at quite a few rows in people (19,473 rows) and appearances
(105,113 rows). This query (without EXPLAIN) is also taking over 17 seconds to
run (the timing may vary on different computers).

Querying Multiple Tables Chapter 7

[246]

The type column shows a couple of different values: ALL and ref. type shows
the type of join that was used for the tables. Many different values can be in this
table. ALL means that a full table scan is happening. This makes sense since
you can see that no index is being used for the people and the appearances
table, so the entire table will need to be scanned to find the results. ref means
that all rows from that table that have a match in the other tables in the query
will be read. This makes sense because the batting table has an index that can
be used, so the query can seek the records it needs instead of having to scan the
entire table. For a listing of join types, please refer to the Further reading section
later in this chapter.

Let's work on getting rid of the Using temporary and Using filesort clauses on the
people table, and the Using join buffer (Block Nested Loop) clause on the
appearances table. You can start by looking at your query some more to see whether you
can change anything to improve the query without adding or changing indexes. If you
change the WHERE clause in your preceding query to WHERE a.yearid = 2017, then the
WHERE clause is now using the appearances table instead of the batting table. With this
new WHERE clause, you wind up with new EXPLAIN results, as shown in the following
screenshot:

You can see in the preceding screenshot that the appearances table is now using the
PRIMARY key. It has gone from 105113 rows down to 1494 rows viewed. This is much
more efficient and takes only about 5 seconds versus 17 seconds previously. It changes the
results of the query, though, and returns 5602 rows instead of 5520 rows. This change may
or may not be acceptable to you, depending on what you are trying to achieve with your
query results.

You could instead try switching out a.yearid and a.teamid in both the SELECT and
ORDER BY clauses to b.yearid and b.teamid, to align with the b.yearid you are using
in the original WHERE clause, but this slows the query down even more.

Another option for this query is to add another WHERE clause (AND a.yearid = 2017), as
in the following code sample:

WHERE b.yearid = 2017
AND a.yearid = 2017
AND b.H <> 0

Querying Multiple Tables Chapter 7

[247]

This query will filter the results down from 5520 rows to only 956 rows, but the query runs
in 1.45 seconds. This also may or may not be acceptable to you, depending on what you
wanted the original query to return.

If you go back to the original query and see what you can improve upon by adding an
index, you need to look at what indexes are on the people and appearances tables. To see
the indexes on appearances, click the down arrow next to the appearances table, and
then click the down arrow next to Indexes. Any indexes on the table will be listed. You can
click the index you want to see the definition of, and it will be displayed in the lower panel,
as shown in the following screenshot:

Querying Multiple Tables Chapter 7

[248]

You can see from the previous screenshot that the appearances table has one index named
PRIMARY, and that the index has three columns, which are yearID, teamID, and playerID.
If you do the same steps to see the indexes on the people table, you can see that it doesn't
have any indexes on it.

What you can do to speed up this query is to add a couple of non-clustered indexes, one on
the appearances table and one on the people table. What's important to note at this point
is that by adding indexes for this query, you can speed up this query. Note that you will
slow down other queries, such as queries inserting, updating, or deleting data, and you
could also slow down other queries selecting data, so you need to be careful adding indexes
to help one query. You need to analyze all the queries on a MySQL server to understand
the impact you may have by adding or removing indexes.

Let's start by adding a non-clustered index on the people table by executing the following
query:

ALTER TABLE lahmansbaseballdb.people
ADD INDEX `NC_playerid_birthyear` (playerID ASC, birthYear ASC) VISIBLE;

What you are doing with that previous index creation script is covering the columns you
are using in the query. For the people table, you are joining on and ordering by playerid,
and you are filtering on birthyear, so you've included those columns in a nonclustered
index.

By adding the non-clustered index to the people table, your query runs in 1.5 seconds, and
produces the EXPLAIN results in the following screenshot:

You can see in the preceding screenshot that your query is now using the non-clustered
index you just created on the people table, which is only getting 1 row returned now
instead of 19473 rows. Now, let's look at the appearances table since it's still getting
105113 rows and not using an index.

Let's add a nonclustered index on the appearances table by executing the following query:

ALTER TABLE lahmansbaseballdb.appearances
ADD INDEX `NC_playerid_yearid_teamid_G_defense` (playerID ASC, yearID ASC,
teamID ASC, G_defense ASC) VISIBLE;

Querying Multiple Tables Chapter 7

[249]

What you are doing with the previous index creation script is covering the columns you are
using in the query. For the appearances table, you are joining on playerid and ordering
by yearID, teamID, and G_defense, so you've included those columns in a non-clustered
index.

By adding the non-clustered index to the appearances table, your query runs in less than
1 second, and produces the EXPLAIN results in the following screenshot:

You can see from the preceding screenshot that you've eliminated the problem with joining
on the appearances table, and the query is using the nonclustered index you just created.
You can also see that the batting table now has Using temporary and Using filesort in the
Extra column.

You might be able to remedy this with a nonclustered index on the batting table. If you
look at the indexes on the batting table, you can see that it has one index named PRIMARY
and it contains three columns: playerid, yearid, and stint. Since you are using
playerid to join, yearid and H in the WHERE clause, and H in the ORDER BY clause, create a
nonclustered index with those columns, with the following code:

ALTER TABLE lahmansbaseballdb.batting
 ADD INDEX `NC_playerid_yearid_H` (playerID ASC, yearID ASC, H ASC)
VISIBLE;

After running the previous index creation, the query is slightly faster, but still using
temporary and filesort, as you can see in the following screenshot:

It's probably not worth adding that last non-clustered index since it's not speeding up the
query much, and it's not filtering out more rows from the join, so you can drop that index.
By adding two non-clustered indexes, you got the original query to run in less than 1
second, where it was previously taking 17 seconds. You can't always get the query to run
faster, and it's not always worth adding more indexes to shave off fractions of a second.

Querying Multiple Tables Chapter 7

[250]

You could have stopped after adding the nonclustered index to the people table since you
got the query down to 1.5 seconds from 17, and it was using an index for both the
batting table and the people table. By adding an index to appearances, you just shifted
the load but didn't help it a lot. Ultimately, you could drop both the nonclustered indexes
you created on the batting and appearances tables and still have a highly performant
query.

Summary
In this chapter, you learned about the types of table joins, including INNER, OUTER, FULL,
and advanced joins, such as the cross, natural, and self joins.

Additionally, you learned about set theory and how to combine queries using operators
such as UNION and UNION ALL. You also learned about intersection and differences when
combining queries.

Lastly, you learned about optimizing your query when it contains multiple tables, using the
EXPLAIN operator, and you saw how you could either change your query or add indexes to
improve your query.

In the next chapter, you will learn how to modify data in tables. This includes learning how
to use INSERT, UPDATE, and DELETE statements. You will also learn about SQL
transactions, which help to better control the modification of data. Additionally, you will
learn how to modify table structures.

Questions
Which types of table joins exist? 1.
What does an INNER JOIN do? 2.
What is a table alias, and how do you use it? 3.
Which types of OUTER JOIN exist in MySQL? 4.
What does a right excluding join do? 5.
What is a natural join? 6.
What is a CROSS JOIN? 7.
What is the difference between UNION and UNION ALL? 8.
How do you accomplish an intersection query in MySQL? 9.
How can you improve multiple table query performance?10.

Querying Multiple Tables Chapter 7

[251]

Further reading
For a listing of join types in EXPLAIN results, visit https:/ ​/ ​dev.​mysql. ​com/​doc/ ​refman/ ​8.
0/​en/​explain-​output. ​html#explain- ​join- ​types.

https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain-join-types

8
Modifying Data and Table

Structures
In this chapter, you will learn how to modify data in tables. This includes learning how to
use the INSERT, UPDATE, and DELETE statements. You will also learn about SQL
transactions, which help to better control the modification of data. Finally, you will learn
how to modify table structures.

In this chapter, we will cover the following topics:

Inserting data into tables
Deleting data from tables
Updating data in tables
Using transactions to save or revert changes
Modifying the table structure

Technical requirements
You can find the code files used in this chapter at https:/ ​/​github. ​com/​PacktPublishing/
learn-​sql-​database- ​programming/ ​tree/ ​master/ ​chapter- ​8.

Inserting data into tables
Inserting data is key to populating your database tables with data. The INSERT statement
allows you to insert data into tables in your database. In order to insert data, you need to
gather information about your table(s).

https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-8

Modifying Data and Table Structures Chapter 8

[253]

Gathering information to insert, update, or delete
data
To insert, update, or delete data, you first need to know a few things about the table:

The name of each column: You need to know the exact name of the columns
because you will be using them to specify each column in your INSERT, UPDATE,
or DELETE statements. These statements are commonly referred to as data
manipulation language (DML) commands.
The order of the columns: This is especially important when you select data
from another table to insert into a table.
The data type of each column: You need to know whether any of the data that
you insert will fail because of a data type mismatch.
If the column is a part of a key or constraint: You need to be aware of any NOT
NULL, default, unique, or CHECK constraints that are on the table that impact
whether your data can be modified.You also need to be aware of any primary or
foreign key constraints that prevent inserting, updating, or deleting data from
your table.

To get the information in the preceding list, you can execute the following queries to get
information about a table:

USE yourschema;
describe managers;

SELECT * FROM information_schema.table_constraints
WHERE table_name = 'managers'
AND table_schema = 'yourschema';

The first query in the previous code block gives you information about the table, such as
column names, column types, whether they allow NULL values, whether they have a key
associated with them, whether they have a default value, and any extras they may have,
such as auto_increment, as shown:

Modifying Data and Table Structures Chapter 8

[254]

The second query in the previous code block gives you information such as the schema,
table and constraint names, what type of constraint there is, and whether a constraint is
enforced or not, as shown:

If you want to see the definition of the CHECK constraints, you need to script out the
definition of your table in MySQL. To view the CHECK constraint information, execute the
following query:

USE yourschema;
SHOW CREATE TABLE managers;

The previous query returns the CREATE statement for the table in the database that you
specified in the query. This way, you can examine the table definition to see all the
information you need.

See the Further reading section for details on how to get this information in
Oracle, PostgreSQL, and SQL Server.

Using the INSERT statement
There are a couple of ways to insert data using the INSERT statement. You can use either a
single- or multiple-row insert with specified VALUES.

Single-row inserts
To insert a single row into a table in MySQL, use the following syntax:

INSERT INTO lahmansbaseballdb.collegeplaying
 (`playerID`,
 `schoolID`,
 `yearID`)
 VALUES

Modifying Data and Table Structures Chapter 8

[255]

 (<{playerID: }>,
 <{schoolID: }>,
 <{yearID: }>);

You can get this syntax by taking the following steps:

Right-click on Tables in MySQL Workbench.1.
Select Send to SQL Editor.2.
Choose Insert Statement.3.

This places the INSERT syntax for that table into a SQL query window:

Modifying Data and Table Structures Chapter 8

[256]

The INSERT statement allows you to add values to the collegeplaying table. To make the
query insert proper values into a row in the collegeplaying table, you need to add
values to the VALUES statement, as in the following query:

USE lahmansbaseballdb;
INSERT INTO collegeplaying
 (playerID,
 schoolID,
 yearID)
 VALUES
 ('blaloha01',
'sandiegost',
 1999);

You will see the following results from the previous query. It shows that one row is
inserted in the collegeplaying table. It is seen that the player blaloha01 attended
sandiegost State University in the year 1999:

To make the query more compact, you can place the columns and values on the same line,
as in the following query:

USE lahmansbaseballdb;
INSERT INTO collegeplaying
(playerID, schoolID, yearID)
VALUES ('blaloha01','sandiegost',1999);

The previous query runs in the same way as the INSERT query before it. The previous
query is just more compact and takes up less screen space. This is particularly helpful if you
have a lot of queries in one SQL file.

You can also insert values into a table without specifying the columns if you make sure to
place your values in the correct order. The following query inserts the same values into the
table as the previous INSERT statements:

USE lahmansbaseballdb;
INSERT INTO collegeplaying
VALUES ('blaloha01','sandiegost',1999);

Modifying Data and Table Structures Chapter 8

[257]

If you want to insert values into some fields in the table but not others, you need to specify
the columns you want to add them to to ensure the values go into the correct columns.

For instance, if you want to place a playerID value into the collegeplaying table
without a value for schoolID, you can execute the following query:

USE lahmansbaseballdb;
INSERT INTO collegeplaying
(playerID, yearID)
VALUES ('blaloha01', 1999);

The previous query inserts a row into the collegeplaying table and the schoolID value
is NULL, in this case, since we didn't insert a value into it, which gives the results shown in
the following screenshot:

It doesn't make a lot of sense to have a row in the collegeplaying table without a
schoolID value specified, but this just gives you an example of how it would work.

If you execute the following query, you get an error:

USE lahmansbaseballdb;
INSERT INTO collegeplaying
VALUES ('blaloha01', 1999);

The error you receive is Error Code: 1136. Column count doesn't match value
count at row 1. MySQL fails to insert rows if your value count doesn't match the
column count in the table. Since you know that the collegeplaying table has three
columns, the INSERT query fails since you've only specified two values. You need to
specify the columns you want those values inserted into.

Let's say you put the values in the wrong order for the columns in the table, as in the
following query:

USE lahmansbaseballdb;
INSERT INTO collegeplaying
VALUES('blaloha01',1999, 'sandiegost');

Modifying Data and Table Structures Chapter 8

[258]

The previous query gives you an error, Error Code: 1366. Incorrect integer
value: 'sandiegost' for column 'yearID' at row 1. This error occurs since
MySQL can't implicitly convert the 'sandiegost' value into a SMALLINT value, which is
what the yearID column data type is. Since you placed 'sandiegost' in the
yearID column on the INSERT line, MySQL assumed you wanted to insert 'sandiegost'
into yearID.

Alternatively, if you execute the following query, you won't get an error:

USE lahmansbaseballdb;
INSERT INTO collegeplaying
(playerID,schoolID)
VALUES ('blaloha01', 1999);

Even though 1999 isn't a schoolID value, MySQL doesn't know this and implicitly
converts 1999 into a VARCHAR value and inserts it into the collegeplaying table
without showing an error. You will also notice that the yearID column is NULL since you
didn't insert anything into that column. The following screenshot shows you the results of
the previous code:

If the table you are trying to insert data into defines a default constraint, then you can leave
that column out of the listing of columns and not specify a value when inserting.

If you try to insert data into a table with a CHECK constraint and the data doesn't conform to
the CHECK constraint, you will get an error. For example, if you have a CHECK constraint on
yearID in the collegeplaying table ((yearID >= 1871) and (yearID <= 2155))
and you try to insert 1870 for yearID, the insert action will fail because of the CHECK
constraint.

If you try to insert a NULL value into a column with a NOT NULL constraint, then it will fail
because you aren't allowed to add NULL values to that column.

As for DEFAULT constraints, you can place a value into a column with an INSERT statement,
but if you don't specify a value, the default value will automatically be placed into the
column.

If you are inserting a value into a column that is in a primary or foreign key relationship,
you must ensure that the value doesn't violate those relationships; otherwise, the
INSERT statement will fail.

Modifying Data and Table Structures Chapter 8

[259]

Multiple row inserts
To insert multiple rows into a table in MySQL, use the following query:

USE lahmansbaseballdb;
INSERT INTO collegeplaying
(playerID, schoolID, yearID)
VALUES ('blaloha01','sandiegost',2000),
 ('blaloha01','sandiegost',2001),
 ('blaloha01','sandiegost',2002);

You will see the following results from the previous query. It shows that your
INSERT statement worked by inserting three rows into the collegeplaying table for the
playerID blaloha01, it shows that this player attended sandiegost State University
in 2000, 2001, and 2002:

In the previous screenshot, you can see the results from the collegeplaying table for
playerID the blaloha01. You can see the yearID 1999 from the last single-row insert
and three rows from the multiple-row insert you just did.

Differences in other Relational Database Management
Systems
In Oracle, you can't use the same syntax for multiple-row inserts. Instead, you need to use
an INSERT ALL syntax, as in the following query:

INSERT ALL
INTO collegeplaying(playerID, schoolID, yearID)
VALUES('blaloha01','sandiegost',2000)
INTO collegeplaying(playerID, schoolID, yearID)
VALUES('blaloha01','sandiegost',2001)
INTO collegeplaying(playerID, schoolID, yearID)
VALUES('blaloha01','sandiegost',2002)
SELECT * FROM DUAL;

PostgreSQL and SQL Server allow the same syntax as MySQL for multiple-row inserts.

Modifying Data and Table Structures Chapter 8

[260]

Inserting data from one table into another table
When inserting from one table into another table, you have a couple of options:

You can create a new table and insert data into it from an existing table
You can insert data into an existing table from another table

If you want to create a new table and insert data into it from an existing table, use the
following syntax:

CREATE TABLE newtablename
SELECT * FROM existingtablename

The previous query creates a new table and inserts the records from the SELECT statement
on an existing table into the new table. This gives you a copy of all the data from the
original table. The following query creates a new table named managerscopy and places
all the data from the existing table, managers, into the new table:

USE lahmansbaseballdb;
CREATE TABLE managerscopy
SELECT * FROM managers;

You can also filter the results of the original table so that you get a subset of results in the
new table, as in the following query:

USE lahmansbaseballdb;
CREATE TABLE managers_plyrmgr
SELECT * FROM managers
WHERE plyrMgr = 'Y';

The previous query creates a table named managers_plyrmgr and only inserts records
from the managers table, where the manager is also plyrMgr.

Additionally, you can create a blank table by executing the following query:

USE lahmansbaseballdb;
CREATE TABLE managerscopy
SELECT * FROM managers
WHERE 1=0;

In the previous query, WHERE 1=0 can never be true, so it returns no rows and, therefore,
places no new rows into the new table. As a result, you wind up with a new, empty table.

Modifying Data and Table Structures Chapter 8

[261]

A good use case for creating a table and adding records from existing tables is the
awardsmanagers and awardsplayers tables. Perhaps you would like to have a combined
table with all of the award information—you can execute the following query to accomplish
this:

USE lahmansbaseballdb;
CREATE TABLE awards
SELECT am.playerID, namegiven, awardid, yearID, "Manager" as playertype
FROM awardsmanagers am
INNER JOIN people p
ON p.playerID = am.playerID
UNION
SELECT ap.playerID, namegiven, awardid, yearID, "Player"
FROM awardsplayers ap
INNER JOIN people p
ON p.playerID = ap.playerID
ORDER BY awardid;

The previous query creates the awards table and populates it with the rows from the
awardsmanagers and awardsplayers tables.

If you want to insert data into an existing table from another existing table, use the
following syntax:

INSERT INTO existingtable
SELECT * FROM anotherexistingtable

The preceding query populates an existing table with the records from the SELECT
statement. To properly illustrate how this works, create a new table in another schema with
the following query:

USE yourschema;
CREATE TABLE allstarfull (
 playerID varchar(9) NOT NULL,
 yearID smallint(6) NOT NULL,
 gameNum smallint(6) NOT NULL,
 gameID varchar(12) NULL,
 teamID varchar(3) NULL,
 lgID varchar(2) NULL,
 GP smallint(6) NULL,
 startingPos smallint(6) NULL
);

Modifying Data and Table Structures Chapter 8

[262]

Then, insert data into this table from an existing table in another schema using the
following query:

INSERT INTO yourschema.allstarfull
SELECT * FROM lahmansbaseballdb.allstarfull
WHERE gameid LIKE 'NLS%'

The previous query inserted all the data from the lahmansbaseballdb.allstarfull
table into the yourschema.allstarfull table, where gameid starts with NLS. You can
also join tables to insert data into one existing table, as well. Pretty much any of the SQL
queries that you've used so far in this book can be used to insert data into an existing table
if the columns support the data that is inserted.

Differences to other RDMSes
Oracle, PostgreSQL, and SQL Server all offer the same way of creating a new table and
inserting data into it from an existing table; however, they MySQL differs from all of these.

In Oracle, PostgreSQL, and SQL Server, if you want to create a new table and insert data
into it, you use the SELECT...INTO statement, rather than CREATE TABLE, then use
the SELECT statement, as in MySQL. You can execute the following query to create a new
table from an existing table via a SELECT statement:

SELECT *
INTO managerscopy
FROM managers;

You can also specify column names instead of selecting them all, as in the following query:

SELECT playerID, yearID, teamID, G
INTO managerscopy
FROM managers;

The previous query creates a new table with just the four columns from the existing
table specified. You can also use a WHERE clause to limit the rows.

Additionally, you can just create the schema of the table by executing the following query:

SELECT * INTO managerscopy
FROM managers
WHERE 1 = 0;

In the previous query, WHERE 1=0 will never be true, so the query only creates the table but
doesn't populate it with data.

Modifying Data and Table Structures Chapter 8

[263]

Deleting data from tables
To remove data that you've previously inserted into your database, you need to use the
DELETE statement. You can delete all the records from a table, or use a WHERE clause to
delete only some of the records from a table.

Using the DELETE statement with a WHERE
clause
To avoid deleting everything from your table, you can use the WHERE clause with your
DELETE statement. To delete data from a table in MySQL, use the following syntax:

DELETE FROM lahmansbaseballdb.collegeplaying
WHERE <{where_expression}>;

You can get this syntax by taking the following steps:

Right-click on Tables in MySQL Workbench.1.
Select Send to SQL Editor.2.
Then, select Delete Statement.3.

This places the DELETE syntax for that table into an SQL query window.

Let's analyze what you might want to delete from the collegeplaying table based on
some records you inserted in the previous section of this chapter. If you run the following
query, you can see what you inserted:

USE lahmansbaseballdb;
SELECT * FROM collegeplaying
WHERE playerID = 'blaloha01';

The previous query gives you the results shown in the following screenshot:

Modifying Data and Table Structures Chapter 8

[264]

In the preceding screenshot, you can see some data you may not want to keep, such as the
row that has a schoolID as NULL or the schoolID field that has a year in it. You can
delete these rows with the following query:

USE lahmansbaseballdb;
DELETE FROM collegeplaying
WHERE playerID = 'blaloha01'
AND (schoolID IS NULL OR yearID IS NULL);

With the previous query, you may get an Error Code: 1175. You are using safe
update mode, and you tried to update a table without a WHERE that uses
a KEY column. To disable safe mode, toggle the option in Preferences ->

SQL Editor and reconnect error.

If you got this error, follow the message and uncheck the Safe Updates checkbox, then click
OK, as in the following screenshot. You will need to restart MySQL Workbench for this to
take effect:

Modifying Data and Table Structures Chapter 8

[265]

Execute the DELETE query from the preceding code block again. You will see that the rows
with the NULL values have been deleted.

Deleting all the data from a table
If you want to delete all the rows from a table, you can use the DELETE clause without the
WHERE clause.

Be very careful with this method since you will be deleting all the rows in
a table and once done, they can't be retrieved.

You can execute the following code to delete all the rows from the allstarfull table in
the yourschema database:

USE yourschema;
DELETE FROM allstarfull;

The previous code deletes everything from the allstarfull table.

Learning an alternative way to delete data with
the TRUNCATE statement
There is a faster way to delete all the rows from a table, called TRUNCATE. Deleting rows is a
data manipulation language(DML) action, but a truncate is a data definition language
(DDL) action. Deleting values is a slower process because the database system has to log
each delete, but the truncate process doesn't. Another difference between deleting and
truncating is that with a TRUNCATE statement, you reclaim the storage that the data used
after a truncate; with a DELETE statement, you can't reclaim the storage. If a table has
foreign key references, you are unable to truncate and will need to use a DELETE statement
to delete the rows from the referenced tables first.

A TRUNCATE statement is final. There is no way to roll it back.

Modifying Data and Table Structures Chapter 8

[266]

If you are sure you want to delete all the rows in a table, then truncating is the best way to
do this. To do so, you can execute the following script:

USE yourschema;
TRUNCATE TABLE allstarfull;

The previous script deletes all the rows in the allstarfull table by performing a truncate
against the table.

Updating data in tables
Updating allows you to modify existing rows in a table. You can either update specific
rows with a WHERE clause or all the rows in a table with UPDATE without WHERE.

Using the UPDATE statement with a WHERE
clause
Let's say you made a mistake when you inserted a record for the college information earlier
in this chapter. You can update this information with the UPDATE clause. To update data in
a table in MySQL, use the following syntax:

UPDATE lahmansbaseballdb.collegeplaying
SET
`playerID` = <{playerID: }>,
`schoolID` = <{schoolID: }>,
`yearID` = <{yearID: }>
WHERE ;

You can get this syntax by taking the following steps:

Right-click on Tables in MySQL Workbench.
Choose Send to SQL Editor.
Choose Update Statement.

This places the UPDATE syntax for that table into a SQL query window.

You can execute this UPDATE query to update the record:

USE lahmansbaseballdb;
UPDATE collegeplaying
SET schoolID = 'sandiego', yearID = 2000
WHERE playerID = 'blaloha01';

Modifying Data and Table Structures Chapter 8

[267]

The previous query updates the schoolID value to sandiego and the yearID value to
2000, which is shown in the following screenshot:

You can update one or more columns in an UPDATE statement. If you later discover that you
wanted the yearID value to be 1999, you can execute the following query:

USE lahmansbaseballdb;
UPDATE collegeplaying
SET yearID = 1999
WHERE playerID = 'blaloha01';

The previous query sets the yearID value back to 1999, only for the rows where the
playerID value is blaloha01.

Updating all the data in a table
You can run an UPDATE statement without a WHERE clause. However, be very careful when
doing this since it can be time-consuming on a large table. If you accidentally update all the
rows, it could break the reporting or application functionality that relies on the values as
they were before you changed them.

You can update the managerscopy table since it is a copy of the managers table and it
won't do any harm to update a column to all the same values:

USE lahmansbaseballdb;
UPDATE managerscopy
SET lgID = '--';

The previous query updates all the lgID rows to '--', as you can see in the following
screenshot:

Modifying Data and Table Structures Chapter 8

[268]

If you need to set this back to the original values, you can carry out an update from an
existing table.

Updating table data from another existing table
If you need to update values from an existing table, you can use the following query:

USE lahmansbaseballdb;
UPDATE managerscopy mc
INNER JOIN managers m
ON m.playerID = mc.playerID
AND mc.teamID = m.teamID
AND mc.yearID = m.yearID
SET mc.lgID = m.lgID

The previous query sets the values back to their original values in the managerscopy table,
as in the following screenshot:

You can see, in the previous screenshot, that '--' has been replaced in the managerscopy
with the original values from the existing managers table.

So far, you've learned how to gather information about your tables in order to insert, delete,
or update data in them. You also learned how to insert data via single or multiple-row
inserts. Additionally, we covered deleting all or some of the data in a table and how to
update all or some of the data in a table. Now, we will cover how to execute SQL
statements in transactions. It's important to encapsulate your INSERT, UPDATE, and DELETE
statements into transactions; the next section will cover why.

Modifying Data and Table Structures Chapter 8

[269]

Using transactions to save or revert
changes
A SQL transaction is a grouping of one or more changes to the database. Transactions help
ensure a consistent state in your database. The common terms in SQL transactions are
COMMIT and ROLLLBACK. Commit makes the changes permanent and rollback cancels the
changes.

There are four properties of transactions to keep in mind:

Atomicity: This ensures all changes in a transaction are completed successfully.
If they are successful, the changes are committed. If any change isn't successful,
all the changes are rolled back.
Consistency: This ensures any changes can't violate the database's integrity,
including constraints. Changes interrupted by errors due to violations of
database integrity are rolled back. This includes any changes that don't violate
database integrity.
Isolation: All transactions are isolated from each other so that no other
transaction can interfere with the other transactions that are running.
Durability: Once a transaction is committed, any interruption to the database's
availability, such as a restart or system failure, will not affect the consistency of
the data.

These four properties are referred to as ACID. To understand ACID a bit better, let's go
through a couple of examples. Let's say you want to transfer money from your checking
account into your savings account. For atomicity, the transfer fails unless the balance is
updated in the checking account and in the savings account. You don't want the money to
go missing because only the checking account is reduced by the amount but the savings
account isn't increased by the same amount. For consistency, any error or database integrity
violation that happens while the transfer completes causes a rollback to ensure the checking
and savings balances are unaffected. For isolation, all banking transactions are isolated
from each other, so another person's transfer doesn't affect yours. Lastly, for durability,
once the transfer is committed to the database, any interruption in the database's
availability doesn't affect your bank balances.

Modifying Data and Table Structures Chapter 8

[270]

Understanding a SQL transaction
As previously stated, a SQL transaction is a grouping of one or more changes to a database.
Let's first discuss some key terms relating to SQL transactions:

Starting a new transaction involves using the START TRANSACTION or
BEGIN keywords. This signifies the beginning of the group of SQL queries that
you want to run together. Generally, you can run single queries or statements
without using transactions (and if there is an error, it is still rolled back), but it's
important to group related queries that update, insert, or delete data into a
transaction, as you saw with the bank transfer example.
Committing your changes involves making the changes permanent and uses the
COMMIT keyword at the end of the transaction block.
Rolling back your changes involves canceling the changes and uses the
ROLLBACK keyword at the end of the transaction block.
Auto-commit is enabled by default in MySQL, but you can disable it for a session
with SET autocommit keywords. With auto-commit, you can't roll back
changes, but if an error occurs, the changes are automatically rolled
back. PostgreSQL and SQL Server have auto-commit enabled by default. With
Oracle, you need to enable auto-commit in your SQL client, such as Oracle SQL
Developer.

More information on each of these SQL keywords is given later on in this chapter, but this
gives you a basis for understanding more about implicit and explicit transactions:

Implicit transactions: You don't specify any transaction commands, as briefly
outlined in the preceding point. Implicit transaction causes an auto-commit of the
commands you are running. Some things you run force an implicit commit,
regardless of whether you use transaction commands, such as DDL
changes—including altering or creating tables.
Explicit transactions: You specify the transaction commands. Nothing is
committed until you specify the COMMIT keyword. This behavior is overridden if
you use a DDL command in your explicit transaction. It reverts to auto-commit if
you do this and commits all your changes as if they were implicit.

Modifying Data and Table Structures Chapter 8

[271]

To understand the states of a transaction, refer to the following diagram:

Here is a description of each of the transaction states in the preceding diagram:

Active: When a transaction is executing, it's in an active state.
Partially committed: When a transaction executes its final operation, it's in a
partially committed state.
Committed: When a transaction executes all its operations successfully, it's in a
committed state and the changes are permanent.
Failed: When a transaction fails checks from the database system and can't
proceed any further, it's in a failed state.
Aborted: When a transaction fails, the database system rolls back (undoes) any
changes that are in progress.

Learning the SQL syntax for SQL transactions
There are a few keywords in MySQL to ensure your SQL queries are in a transaction. To
start a transaction in MySQL, use the START TRANSACTION or BEGIN keywords. To commit
the transaction, you can use the COMMIT keyword. To rollback a transaction, use the
ROLLBACK keyword.

Modifying Data and Table Structures Chapter 8

[272]

To see a transaction in action, you can execute a query that we used earlier on in this
chapter, but this time in a transaction:

USE lahmansbaseballdb;
START TRANSACTION;
UPDATE managerscopy
SET lgID = '--';

The previous query updates the managerscopy table and sets all the lgID values to '--',
but this time, it's within a transaction, which means if you didn't like the results of the
update, you can roll it back. If you are pleased with the results, you can issue a COMMIT
command, but if you aren't pleased with them, then you can issue a ROLLBACK command
instead. If you don't commit your transaction right away, users in other sessions querying
the managerscopy table won't see the changes you've made until you issue the COMMIT
command.

You can also issue the COMMIT command along with the original query, as in the following
query:

USE lahmansbaseballdb;
START TRANSACTION;
UPDATE managerscopy
SET lgID = '--';
COMMIT;

The previous query commits the transaction right after it's done so that all users can see the
changes you've made right away. When you test your query, it's a good idea to not issue
the COMMIT command right away and check the results of your transaction first before
issuing the COMMIT command. This way, you can issue a ROLLBACK command instead, if
the results of the UPDATE, DELETE, or INSERT commands weren't as you expected.

The following query uses BEGIN instead of START TRANSACTION, but it does the same
thing as the previous query:

USE lahmansbaseballdb;
BEGIN;
UPDATE managerscopy
SET lgID = '--';
COMMIT;

Modifying Data and Table Structures Chapter 8

[273]

A good use case for using a transaction in the lahmansbaseballdb table may be if you
want to copy records from one table to another, as in the following query:

USE lahmansbaseballdb;
CREATE TABLE awards LIKE awardsmanagers;
START TRANSACTION;
INSERT INTO awards
SELECT * FROM awardsmanagers
WHERE awardid = 'BBWAA Manager of the Year';
DELETE FROM awardsmanagers
WHERE awardid = 'BBWAA Manager of the Year';

You check the results of the previous query and realize that you already had the 'BBWAA
Manager of the Year' field in the awards table, so you don't want to copy it there but
you don't want to delete it out of the other table since you want to keep it in the
awardsmanager table. This is a good case for issuing a ROLLBACK statement, as in the
following statement:

ROLLBACK;

However, let's say that you were happy with the results of the transaction; so, instead, you
would execute a COMMIT statement, as in the following query:

COMMIT;

If you want to automate the copying of data, as in the previous transaction, you need to put
the COMMIT statement in the query so that each time the query runs, it commits
automatically, instead of waiting for user intervention to commit, as in the following
query:

USE lahmansbaseballdb;
START TRANSACTION;
INSERT INTO awards
SELECT * FROM awardsmanagers
WHERE awardid = 'BBWAA Manager of the Year';
DELETE FROM awardsmanagers
WHERE awardid = 'BBWAA Manager of the Year';
COMMIT;

The previous query commits once it's completed successfully, but still rolls back if it
encounters any errors.

Modifying Data and Table Structures Chapter 8

[274]

Let's have a look at an example where the transaction auto-commits because you used a
DDL statement in your transaction:

USE lahmansbaseballdb;
START TRANSACTION;
INSERT INTO awards
SELECT * FROM awardsmanagers
WHERE awardid = 'BBWAA Manager of the Year';
DROP TABLE lahmansbaseballdb.managerscopy;
DELETE FROM awardsmanagers
WHERE awardid = 'BBWAA Manager of the Year';
COMMIT;

Everything before the point where you issued DROP TABLE in the transaction is committed,
even though you didn't explicitly use the COMMIT statement. Be careful not to place DDL
changes in the middle of your transaction because this will cause changes to values that
you may not want to auto-commit, and they will commit even if they failed to complete
correctly.

MySQL also allows you to turn off auto-commit for your session. You can turn off auto-
commit by executing the following script:

SET autocommit = OFF;

Once you execute the previous script, you will need to execute a COMMIT statement if you
want any INSERT, UPDATE, or DELETE queries to become permanent changes to the
database.

To turn auto-commit back on, execute the following script:

SET autocommit = ON;

Remember that MySQL automatically commits changes to the database by default, unless
you use a transaction or turn off auto-commit for your session.

MySQL also supports some additional transaction-based keywords. You can utilize
savepoints within a transaction to rollback to a specific point in the transaction. You do this
by naming the SAVEPOINT and rolling back to it. The following query shows you how to
do this:

USE lahmansbaseballdb;
START TRANSACTION;
SAVEPOINT firstsavepoint;
INSERT INTO awards
SELECT * FROM awardsmanagers
WHERE awardid = 'BBWAA Manager of the Year';

Modifying Data and Table Structures Chapter 8

[275]

SAVEPOINT secondsavepoint;
DELETE FROM awardsmanagers
WHERE awardid = 'BBWAA Manager of the Year';
ROLLBACK TO firstsavepoint;

In the previous query, a SAVEPOINT value called firstsavepoint is created after you
start the transaction. Then, another SAVEPOINT value is created after you insert data into
the awards table. At the end of the query, a ROLLBACK query is issued, which undoes all
the changes back to the first SAVEPOINT instance, which in this case is everything in the
transaction. You could instead issue a ROLLBACK statement to secondsavepoint. This
would only undo the DELETE statement in the transaction. If you issued a
ROLLBACK statement without the SAVEPOINT name, the savepoints would no longer be
saved and the entire transaction would be rolled back. If you wanted to commit this
transaction instead of rolling back, you would issue the COMMIT statement; the whole
transaction would be committed and the savepoints removed. The same limitations apply
as in a transaction. If you issue a statement such as a drop table in the middle of your
transaction or savepoint, all the transactions before that point will be implicitly committed.

Differences in RDMS transaction syntax
Each RDMS has a slightly different syntax for using transactions on your queries:

Oracle: In Oracle, you need to use SET TRANSACTION to start your transactions;
there isn't an option to use START TRANSACTION or BEGIN. Another difference is
rolling back to a savepoint. You need to use the ROLLBACK TO SAVEPOINT
savepointname syntax instead of ROLLBACK TO savepointname.
PostgreSQL: In PostgreSQL, you need to use BEGIN to start your transactions;
there isn't an option to use START TRANSACTION. Otherwise, you can use all the
same syntaxes as in MySQL.
SQL Server: In SQL Server, you need to use BEGIN TRANSACTION or BEGIN
TRAN to start your transactions. There isn't an option to use START TRANSACTION
or just BEGIN. Otherwise, you can use all the same syntaxes as in MySQL.

Modifying the table structure
To modify the table structure, you need to use the ALTER TABLE command. This command
also allows you to add, delete, and modify the table structure and other objects in the
database.

Modifying Data and Table Structures Chapter 8

[276]

Be careful when making schema changes, such as modifying the table
structure. Dropping objects or columns causes data loss.

To use the scripts in this section, you can create a new database and table with the
following scripts.

The first script creates a new database:

CREATE SCHEMA foraltering;

The next script creates a new table:

USE foraltering;
CREATE TABLE tableforaltering (
 playerID varchar(9) NOT NULL,
 schoolID varchar(15) NULL,
 yearID smallint NULL
);

The last script inserts the following data into the new table that we just created:

USE foraltering;
INSERT INTO tableforaltering
VALUES ('aardsda01','pennst',2001),
('aardsda01',NULL,NULL),
('aardsda01','rice',2003),
('abadan01','gamiddl',1992),
('abadan01','gamiddl',1993),
('abbeybe01','vermont',1889),
('abbeybe01','vermont',1890),
('abbeybe01','vermont',1891),
('abbeybe01','vermont',1892),
('abbotje01','kentucky',1991),
('abbotje01','kentucky',1992),
('abbotje01','kentucky',1994);

Once you have executed the previous scripts, you will be able to execute the other scripts in
this section.

Modifying Data and Table Structures Chapter 8

[277]

Adding a column
Let's say you wanted to track the number of atbats and hits of a player for each year they
were in college. To add a column to an existing table, you need to execute the following
scripts:

USE foraltering;
ALTER TABLE tableforaltering
ADD COLUMN atbats SMALLINT NULL AFTER yearID;

ALTER TABLE tableforaltering
ADD COLUMN hits SMALLINT NULL AFTER atbats;

If you want to add both columns to the same query, you can execute the following query
instead:

USE foraltering;
ALTER TABLE tableforaltering
ADD COLUMN atbats SMALLINT NULL AFTER yearID,
ADD COLUMN hits SMALLINT NULL AFTER atbats;

The following screenshot shows the new columns in the table:

In the next section, you will learn how to drop these columns.

Modifying Data and Table Structures Chapter 8

[278]

Dropping a column
In a similar way to how you add columns, you can also drop columns. Let's say you
changed your mind and don't want to track the number of atbats and hits of a player for
each year that they were in college. To drop columns from an existing table, you need to
execute the following scripts:

USE foraltering;
ALTER TABLE tableforaltering
DROP COLUMN atbats;

ALTER TABLE tableforaltering
DROP COLUMN hits;

If you want to drop both columns in the same query, you can execute the following query
instead:

USE foraltering;
ALTER TABLE tableforaltering
DROP COLUMN atbats,
DROP COLUMN hits;

The following screenshot shows the new columns are dropped from the table:

You cannot drop a column or columns that are part of a foreign key relationship; you need
to resolve these keys before proceeding. For example, using the yourschema database you
created in Chapter 4, Designing and Creating a Database, you could try to drop the column
named teamID from the managers table with the following query:

USE yourschema;
ALTER TABLE managers
DROP COLUMN teamID;

Modifying Data and Table Structures Chapter 8

[279]

The previous query gives you an Error Code: 1828. Cannot drop column
'teamID': needed in a foreign key constraint 'FK_teamID' error. You need to
drop the foreign key first, then drop the column, as in the following query:

USE yourschema;
ALTER TABLE managers
DROP FOREIGN KEY FK_teamID;
ALTER TABLE managers
DROP COLUMN teamID;

Next, you will learn how to rename a column.

Renaming a column
To change a column's name, re-add the atbats column first so that you can change it with
the following query:

USE foraltering;
ALTER TABLE tableforaltering
ADD COLUMN atbats SMALLINT NULL AFTER yearID;

Let's say you wanted to rename this column to numberofatbats. You can execute the
following script to do that:

USE foraltering;
ALTER TABLE tableforaltering
CHANGE COLUMN atbats numberofatbats SMALLINT;

You can see, in the previous query, that you put in the current name of the column, then the
new column name. You also have to put the column data type in, which in this case stays
the same, so you just put the current data type into the query. The following screenshot
shows the updated column name:

Modifying Data and Table Structures Chapter 8

[280]

In the next section, you will learn how to change the data type of a column.

Changing the data type of a column
Let's say you discover that you need the schoolID values to be 16 characters long instead
of 15 characters long. You can update the length of the field by executing the following
query:

USE foraltering;
ALTER TABLE tableforaltering
CHANGE COLUMN schoolID schoolID VARCHAR(16);

You will need to specify the same column name twice. This is because you
can rename the column at the same time as changing the data type, but
since you aren't changing the column name, MySQL requires you to place
the column name in the query twice as part of the CHANGE COLUMN
statement.

If you realize that you want the schoolID values to be 7 characters long, you can execute
the following query to change the length of the field:

USE foraltering;
ALTER TABLE tableforaltering
CHANGE COLUMN schoolID schoolID VARCHAR(7);

The previous query gives you an Error Code: 1265. Data truncated for column
'schoolID' at row 1 error. This error occurs because the size you want to set the
column to is shorter than the data that the column contains. Instead, you can set the
schoolID value to VARCHAR(8) to avoid this error. You may come across longer school
names in the future, as in the following INSERT query:

USE foraltering;
INSERT INTO tableforaltering
VALUES ('blowemi01','washington',1986);

The previous query gives you an Error Code: 1406. Data too long for column
'schoolID' at row 1 error. You need to make sure that your column size can
accommodate the data that is entered into the column.

Modifying Data and Table Structures Chapter 8

[281]

Let's say you want to change the schoolID column into a numeric type by executing the
following query:

USE foraltering;
ALTER TABLE tableforaltering
CHANGE COLUMN schoolID schoolID INT;

The previous query gives you an Error Code: 1366. Incorrect integer value:
'pennst' for column 'schoolID' at row 1 error. MySQL isn't able to convert
string characters into INT, so any numeric data type you try to convert to fails. If you try to
convert yearID into VARCHAR, it succeeds, but you might not want the yearID values in
VARCHAR since year may be the perfect use for the YEAR data type. Let's try converting the
column to YEAR by executing the following query:

USE foraltering;
ALTER TABLE tableforaltering
CHANGE COLUMN yearID yearID YEAR;

The previous query gives you an Error Code: 1264. Out of range value for
column 'yearID' at row 6 error. This is because the YEAR data type ranges from 1901
to 2155. Unfortunately, our data includes years that precede 1901. Let's instead change it
to SMALLINT, since you will probably never store years that have five numeric values, by
executing the following query:

USE foraltering;
ALTER TABLE tableforaltering
CHANGE COLUMN yearID yearID SMALLINT;

You can see, in the following screenshot, that the table type changes you made are reflected
in the column definitions:

Next, you will learn how to add or change a column constraint.

Modifying Data and Table Structures Chapter 8

[282]

Adding or changing a column constraint
When you created this table with the earlier scripts, only playerID was set to NOT NULL.
Let's say you wanted the schoolID and yearID values to be NOT NULL. You can create a
NOT NULL constraint by executing the following query:

USE foraltering;
ALTER TABLE tableforaltering
CHANGE COLUMN schoolID schoolID VARCHAR(8) NOT NULL,
CHANGE COLUMN yearID yearID SMALLINT NOT NULL;

The previous query fails with an Error Code: 1138. Invalid use of NULL
value error. This error occurs because you have some NULL values in the table for
schoolID and yearID. You have to fix them before proceeding to update the columns to
NOT NULL, which you can do with the following query:

USE foraltering;
UPDATE tableforaltering
SET schoolID = 'rice', yearID = 2002
WHERE playerID = 'aardsda01' and yearID IS NULL;

Now, you can re-run ALTER TABLE, and changing the column constraint to NOT NULL for
schoolID and yearID is successful.

To add a CHECK constraint for yearID to limit records to be from 1871 to 2155, you can
execute the following script:

USE foraltering;
ALTER TABLE tableforaltering
ADD CONSTRAINT check_yearID CHECK ((yearID >= 1871) and (yearID <= 2155));

The previous query makes it so that you can only enter values between and including 1871
to 2155 for yearID. If you had already included some ;yearID values that were outside
that range, then the constraint would fail.

Let's now try inserting a value that's outside the date range for the yearID CHECK
constraint. You can do this by executing the following query:

USE foraltering;
INSERT INTO tableforaltering
VALUES ('aardsda01','pennst',1850);

The previous query gives you an Error Code: 3819. Check constraint
'check_yearID' is violated error. This error occurs because you tried to insert the
1850 value for yearID, which is outside the allowed range.

Modifying Data and Table Structures Chapter 8

[283]

Dropping a constraint, key, or index
To drop a CHECK constraint, you need to run the following query:

USE foraltering;
ALTER TABLE tableforaltering
DROP CHECK check_yearID;

The preceding query drops the CHECK constraint named check_yearID. Dropping CHECK
constraints is different from dropping other constraints, such as foreign keys or primary
keys. A foreign key constraint can be dropped using the following query:

ALTER TABLE tablename
DROP FOREIGN KEY FK_keyname;

Primary key constraints can be dropped using the following query:

ALTER TABLE tablename
DROP PRIMARY KEY;

An index can be dropped using the following query:

USE yourschema;
ALTER TABLE managers
DROP INDEX playerID_yearID_teamID_UNIQUE;

There are some differences in dropping constraints in other RDMS, which is covered in the
following section.

Differences to other RDMS
In Oracle, PostgreSQL, and SQL Server, to drop a CHECK constraint, you instead use a
query such as the following:

ALTER TABLE tableforaltering
DROP CONSTRAINT check_yearID;

Next, you will learn how to drop a table.

Modifying Data and Table Structures Chapter 8

[284]

Dropping a table
To drop (delete) a table, you can execute the following query:

USE foraltering;
DROP TABLE tableforaltering;

This query deletes not only all the data in the table but also the table structure.

Summary
In this chapter, you learned how to gather information from a table to use it to INSERT,
UPDATE, and DELETE data. You learned how to insert data using single- and multiple-row
methods. You also learned how to create a new table and insert data from an existing table
into it, as well as how to insert data from an existing table into another existing table.

You learned how to delete all the data from a table and how to delete only some data in a
table. You also learned how to update all the data in a table and how to update only some
of the data in a table. You learned what a transaction is and how to use it, including how to
start a transaction and how to commit or roll back a transaction.

Finally, you learned how to modify the table structure, including how to add and drop
columns, how to rename a column, how to change the data type of a column, how to add,
change, and drop constraints, and how to drop a table.

In the next chapter, you will learn how to use expressions. By the end of the next chapter,
you will understand what expressions are and how to use them, how to cast and convert
data into different data types, how to use calculated fields, how to work with dates and
times, how to carry out mathematical calculations, and how to use statistical functions.

Questions
How do you gather information about a table you want to insert, update, or1.
delete data from?
How do you insert data into a new table from an existing table in MySQL? 2.
How do you limit data to be deleted? 3.
What's an alternative way to delete all the rows in a table? 4.

Modifying Data and Table Structures Chapter 8

[285]

How do you update data based on another table? 5.
What is an SQL transaction? 6.
How do you use transactions in MySQL? 7.
How do you add a column to a table? 8.
How do you change the data type of a column? 9.
How do you rename a column? 10.

Further reading
For more information:

For an explanation of how to view table information in Oracle, visit https:/ ​/
livesql. ​oracle. ​com/ ​apex/ ​livesql/ ​file/ ​tutorial_
FIMJZ2NPQ4AWTCE0B329BW3GX. ​html.
For an explanation of how to view table information in PostgreSQL, visit https:/
/​www.​postgresql. ​org/ ​docs/ ​9. ​1/​information- ​schema. ​html.
For an explanation of how to view table information in SQL Server, visit https:/
/​docs.​microsoft. ​com/ ​en- ​us/ ​sql/​relational- ​databases/ ​system- ​stored-
procedures/ ​sp- ​help- ​transact- ​sql? ​view= ​sql-​server- ​ver15.

https://livesql.oracle.com/apex/livesql/file/tutorial_FIMJZ2NPQ4AWTCE0B329BW3GX.html
https://livesql.oracle.com/apex/livesql/file/tutorial_FIMJZ2NPQ4AWTCE0B329BW3GX.html
https://livesql.oracle.com/apex/livesql/file/tutorial_FIMJZ2NPQ4AWTCE0B329BW3GX.html
https://livesql.oracle.com/apex/livesql/file/tutorial_FIMJZ2NPQ4AWTCE0B329BW3GX.html
https://livesql.oracle.com/apex/livesql/file/tutorial_FIMJZ2NPQ4AWTCE0B329BW3GX.html
https://livesql.oracle.com/apex/livesql/file/tutorial_FIMJZ2NPQ4AWTCE0B329BW3GX.html
https://livesql.oracle.com/apex/livesql/file/tutorial_FIMJZ2NPQ4AWTCE0B329BW3GX.html
https://livesql.oracle.com/apex/livesql/file/tutorial_FIMJZ2NPQ4AWTCE0B329BW3GX.html
https://livesql.oracle.com/apex/livesql/file/tutorial_FIMJZ2NPQ4AWTCE0B329BW3GX.html
https://livesql.oracle.com/apex/livesql/file/tutorial_FIMJZ2NPQ4AWTCE0B329BW3GX.html
https://livesql.oracle.com/apex/livesql/file/tutorial_FIMJZ2NPQ4AWTCE0B329BW3GX.html
https://livesql.oracle.com/apex/livesql/file/tutorial_FIMJZ2NPQ4AWTCE0B329BW3GX.html
https://livesql.oracle.com/apex/livesql/file/tutorial_FIMJZ2NPQ4AWTCE0B329BW3GX.html
https://livesql.oracle.com/apex/livesql/file/tutorial_FIMJZ2NPQ4AWTCE0B329BW3GX.html
https://livesql.oracle.com/apex/livesql/file/tutorial_FIMJZ2NPQ4AWTCE0B329BW3GX.html
https://livesql.oracle.com/apex/livesql/file/tutorial_FIMJZ2NPQ4AWTCE0B329BW3GX.html
https://livesql.oracle.com/apex/livesql/file/tutorial_FIMJZ2NPQ4AWTCE0B329BW3GX.html
https://livesql.oracle.com/apex/livesql/file/tutorial_FIMJZ2NPQ4AWTCE0B329BW3GX.html
https://livesql.oracle.com/apex/livesql/file/tutorial_FIMJZ2NPQ4AWTCE0B329BW3GX.html
https://www.postgresql.org/docs/9.1/information-schema.html
https://www.postgresql.org/docs/9.1/information-schema.html
https://www.postgresql.org/docs/9.1/information-schema.html
https://www.postgresql.org/docs/9.1/information-schema.html
https://www.postgresql.org/docs/9.1/information-schema.html
https://www.postgresql.org/docs/9.1/information-schema.html
https://www.postgresql.org/docs/9.1/information-schema.html
https://www.postgresql.org/docs/9.1/information-schema.html
https://www.postgresql.org/docs/9.1/information-schema.html
https://www.postgresql.org/docs/9.1/information-schema.html
https://www.postgresql.org/docs/9.1/information-schema.html
https://www.postgresql.org/docs/9.1/information-schema.html
https://www.postgresql.org/docs/9.1/information-schema.html
https://www.postgresql.org/docs/9.1/information-schema.html
https://www.postgresql.org/docs/9.1/information-schema.html
https://www.postgresql.org/docs/9.1/information-schema.html
https://www.postgresql.org/docs/9.1/information-schema.html
https://www.postgresql.org/docs/9.1/information-schema.html
https://www.postgresql.org/docs/9.1/information-schema.html
https://www.postgresql.org/docs/9.1/information-schema.html
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-help-transact-sql?view=sql-server-ver15

3
Section 3: Advanced SQL

Querying
With the foundations of basic SQL now under your belt, you will learn about more
advanced SQL techniques, including how to use expressions, aggregate functions, flow
control statements, error handling, subqueries, and common table expressions. You will
also learn how to create programmable objects such as views, triggers, stored procedures,
variables, and temporary tables.

This section comprises the following chapters:

Chapter 9, Working with Expressions
Chapter 10, Grouping and Summarizing Data
Chapter 11, Advanced Querying Techniques
Chapter 12, Programmable Objects

9
Working with Expressions

In this chapter, you will learn how to use expressions, including using literals, operators,
columns, and built-in functions to create expressions. You will learn about the different
types of built-in functions, including string, numeric, datetime, and advanced functions,
which include casting and converting to other data types. You will learn how to use
statistical functions, including how to get and use variance and standard deviation. Finally,
you will learn how to create a generated column based on an expression.

In this chapter, we will cover the following topics:

Using expressions
Working with dates and times
Using statistical functions
Using generated columns

Technical requirements
You can refer to the code files of this chapter at the following GitHub link: https:/ ​/
github.​com/​PacktPublishing/ ​learn- ​sql- ​database- ​programming/ ​tree/ ​master/ ​chapter-
9.

Using expressions
An expression is a combination of values that are interpreted by MySQL to produce
another value. Expressions can be used in SELECT statement clauses, the WHERE clause,
the ORDER BY clause, the HAVING clause (covered in Chapter 10, Grouping and Summarizing
Data), or in a SET statement (covered in Chapter 12, Programmable Objects).

https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-9

Working with Expressions Chapter 9

[288]

Expressions include column values, operators, literal values, built-in functions, NULL
values, user-defined functions, and stored procedures. User-defined functions and stored
procedures are covered in Chapter 12, Programmable Objects.

You can combine literals, operators, and built-in functions in countless ways to produce
expressions. Your imagination may be the only limit on the ways you can combine these
into expressions.

Literal values
A literal value is a constant value such as a string, a number, or a NULL value.

The following query shows an example of different literal values in a SELECT statement:

SELECT 'string', 1, 1.23, NULL;

The previous query has four literals: a string, a number, a floating-point or decimal
number, and a NULL. The following screenshot shows the results:

As you can see in the previous screenshot, the column names are the values used in the
query—that is, the column heading for string is string, 1 is 1, and so on. If you want to
name them differently, you can use aliases (covered in more detail in chapter 7, Querying
Multiple Tables), as in the following query:

SELECT 'string' as stringvalue,
 1 as numbervalue,
 1.23 as floatdecimalvalue,
 NULL as 'nullvalue';

The previous query gives you the results shown in the following screenshot:

You will see that the column headings have the alias names you provided.

https://cdp.packtpub.com/learn_sql_database_programming/wp-admin/post.php?post=35&action=edit
https://cdp.packtpub.com/learn_sql_database_programming/wp-admin/post.php?post=30&action=edit

Working with Expressions Chapter 9

[289]

Operators
There are a few different types of operators: comparison, mathematical, and logical
operators. Comparison and logical operators were covered in Chapter 6, Querying a Single
Table.

Comparison operators
To recap what was covered in Chapter 6, Querying a Single Table, the following table lists
comparison operators:

Symbol Description Examples

= equal
column = 'text'

column = 1

>= greater than or equal to column >= 1

> greater than column > 1

<= less than or equal to column <= 1

< less than column < 1

<> does not equal
column <> 'text'

column <> 1

!= does not equal
column != 'text'

column != 1

Some example use cases of comparison operators are listed here:

WHERE column = 100—This will return all rows where a column value equals
100.
WHERE column = 'string value'—This will return all rows where a column
value equals 'string value'.
WHERE column != 1000—This will return all rows where a column value does
not equal 1000.
WHERE column <> 'string value'—This will return all rows where a
column value does not equal 'string value'.

Logical operators
To recap what was covered in Chapter 6, Querying a Single Table, here are the logical
operators: AND, OR, NOT, IN, LIKE, and BETWEEN. Logical operators evaluate to true (or 1),
false (or 0), or NULL.

https://cdp.packtpub.com/learn_sql_database_programming/wp-admin/post.php?post=29&action=edit
https://cdp.packtpub.com/learn_sql_database_programming/wp-admin/post.php?post=29&action=edit
https://cdp.packtpub.com/learn_sql_database_programming/wp-admin/post.php?post=29&action=edit

Working with Expressions Chapter 9

[290]

Some example use cases of logical operators are listed here:

WHERE column1 <> 1 AND column2 = 2—This will return all rows where
column does not equal 1 and where column2 equals 2.
WHERE column1 <> 1 OR column2 = 2—This will return all rows where
column does not equal 1 OR where column2 equals 2.
WHERE column1 IN (1, 2, 3)—This will return all rows where column1
values are equal to 1, 2, or 3.
WHERE column1 BETWEEN 1 AND 4—This will return all rows where column1
values are between 1 and 4, including 1 and 4.
WHERE column1 NOT IN (1, 2, 3)—This will return all rows where
column1 values are not equal to 1, 2, or 3.
WHERE column1 IS NOT NULL—This will return all rows where column1
values are not NULL.
WHERE column1 LIKE 'abc%'—This will return all rows where column1
values begin with abc.

You can also use string values with AND, OR, NOT, IN, and BETWEEN, and use numeric values
with LIKE.

Mathematical operators
Mathematical operators perform math in your query. The mathematical operators are
shown in the following table:

Symbol Description Examples
+ addition column + 1

- subtraction column - 1

* multiplication column * 1

/ division column / 1

Some example use cases of mathematical operators are listed here:

SELECT column1 + 2: This returns a column1 value with 2 added to it, so if the
value of column1 is 1, then it will display in the results as 3.
WHERE column1 + 2: This returns all rows where column1 values equal
column1 plus 2.

Working with Expressions Chapter 9

[291]

SELECT 1 + NULL + 3: This returns NULL, as any of the mathematical operators
will return when used with a NULL value, so if a column contains a NULL value
and you use it with a mathematical operator, the result will be NULL.
SELECT 0/0: This returns NULL since anything divided by zero is undefined.

By executing the following query, you can see what adding 2 to each value will result in:

SELECT 'string'+2 as stringvalue,
 1+2 as numbervalue,
 1.23+2 as floatdecimalvalue,
 NULL+2 as 'nullvalue';

The following screenshot shows you the results:

You can see that the string value became the number 2 since you can't add 2 to a string
value. If you meant to add a 2 to the end of the string, you would need to change your
query to use the CONCAT() function covered in the Built-in functions section later in this
chapter.

Operator precedence
An important concept in mathematics is operator precedence, which means the order of
operations. Precedence will perform higher-level mathematical operations first so that
multiplication and division are done before addition and subtraction. You can add
parentheses around calculations to impact the precedence—for example, 1+2*3 = 7, but if
you meant to add 1 and 2 first, then multiply by 3, you would need to add parentheses,
like so: (1+2)*3, which now equals 9 instead. The precedence of the mathematical
operators we've covered is as follows: parentheses, multiplication/division, then
addition/subtraction.

Column values
Column values can have comparison, mathematical, and logical operators used with them,
as shown in the sections on each of those types of operators.

Working with Expressions Chapter 9

[292]

Built-in functions
Built-in functions allow you to modify data based on the function you use. There are a few
different categories of built-in functions: string, numeric, and date. There are also some
advanced built-in functions.

String built-in functions
String built-in functions allow you to manipulate string values. There are many different
string functions. The commonly used string built-in functions are shown in the following
list. Note that each of them can be used with a string value, a column with string values, or
an expression that contains strings:

CHAR_LENGTH: This returns the length of a string in characters.
CHAR_LENGTH('string'): This will return 6 since it's counting the
number of characters in the string.
CHAR_LENGTH(column1): This will return the string length in
characters for the values in column1 for each row.

LENGTH : This returns the length of a string in bytes.
LENGTH('string'): This will return 6 since it's the length in bytes.

CONCAT : This adds two or more expressions together.
CONCAT('string1', 'string2'): This concatenates string1 and
string2 as string1string2.
CONCAT (column1, " ", column2, column3): This concatenates
three column values and places a space between the first and second
values.

LEFT : This extracts characters in a string starting from the left.
LEFT('string', 3): This returns str because those are the first three
characters.

RIGHT —This extracts characters in a string starting from the right.
RIGHT('string', 3): This returns ing because those are the last
three characters.

LOWER—This converts text to lowercase.
LOWER('String'): This returns 'string' since it converts all letters
to lowercase.

Working with Expressions Chapter 9

[293]

UPPER : This converts text to uppercase.
UPPER('String'): This returns STRING since it converts all letters to
lowercase.

LTRIM —This removes leading spaces.
LTRIM(' String'): This returns String since it removes all the
spaces at the beginning of the string .

RTRIM —This removes trailing spaces.
RTRIM('String '): This returns String since it removes all the
spaces at the end of the string.

TRIM : This removes leading and trailing spaces.
TRIM(' String '): This returns String since it removes all
the spaces at the beginning and the end of the string.

LPAD : This left-pads a string to a certain length.
LPAD('string', 8, 'x'): This returns xxstring since it pads at the
beginning of the string, and the middle parameter—8, in this case—is
setting the length of the string after the padding.

RPAD: This right-pads a string to a certain length.
RPAD('string', 8, 'x') : This returns stringxx since it pads at
the end of the string, and the middle parameter— 8, in this case—is
setting the length of the string after the padding.

REPLACE : This replaces all occurrences of a substring within a string, with a
new substring.

REPLACE('string', 'str', 'ing'): This returns inging.
The first parameter string is the entire string.
The second parameter str is what you want to replace.
The third parameter ing is what you want to replace str
with.

SUBSTRING: This extracts a substring from a string starting at any position.
SUBSTRING('string', 2, 3): This returns tri.

The first parameter string is the entire string.
The second parameter 2 is the start position. Counting starts
at 0.
The third parameter 3 is the number of characters to extract.

Working with Expressions Chapter 9

[294]

REVERSE : This reverses a string.
REVERSE('string'): This returns gnirts since this reverses the
string.

Example usage with built-in string functions is shown in the following query:

USE lahmansbaseballdb;
SELECT UPPER(playerid) as playeridupper,
 playerid,
 LOWER(CONCAT(teamid, ' ', lgid)) as teamleague,
 teamid,
 lgid,
 LOWER(gameid) as gameidlower,
 gameid
FROM allstarfull;

The results of the previous query are shown in the following screenshot:

You can see that the UPPER function was used on playerid and resulted in the
characters in playerid being capitalized.
You can also see that teamid and lgid were concatenated with a space between
them, which was nested inside a LOWER function.
Also,gameid was put into a LOWER function, so the characters in gameid were in
lowercase.

Working with Expressions Chapter 9

[295]

Differences in RDMS (Relational Database Management Systems)
The following are the differences in built-in string functions in Oracle (noted only where
different):

SUBSTR: Instead of SUBSTRING, LEFT, and RIGHT, use SUBSTR in Oracle the same
way you used SUBSTRING in MySQL. Also, use SUBSTR instead of LEFT and
RIGHT.
LENGTHB: Instead of LENGTH, use LENGTHB in Oracle the same way you used
LENGTH in MySQL.
LENGTH: Instead of CHAR_LENGTH, use LENGTH in Oracle the same way you used
CHAR_LENGTH in MySQL.
CONCAT: This only allows the concatenation of two strings.

The following are the differences in built-in string functions in SQL Server (noted only
where different):

LEN: Instead of LENGTH.
Not available in SQL Server: CHAR_LENGTH, LPAD, and RPAD.

Numeric built-in functions
Numeric built-in functions allow you to manipulate numeric values. There are many
different numeric functions. Listed here are the commonly used numeric built-in functions.
Note that each of them can be used with a column with numerical values or an expression
that contains numerical values:

AVG : This returns the average of an expression.
AVG(rating): This will return the average of all the values in a
rating column.
NULL values are ignored.

COUNT : This returns the number of records.
COUNT(column1): This will return the count of values in the
column1 value, and column1 can contain either strings, dates,
or numbers.
NULL values are ignored.

Working with Expressions Chapter 9

[296]

MAX : This returns the maximum value in a set of values.
MAX(rating):This will return the maximum rating in a column of
rating values.

MIN: This returns the minimum value in a set of values.
MIN(rating): This will return the minimum rating in a column of
rating values.

ROUND: This rounds a number to a specified number of decimal places.
ROUND(123.456, 2): This will return 123.46 since the number
will round to two decimal places.

SUM: This is the sum of a set of values.
SUM(number): This will return the sum of the values in a column
of number values.
NULL values are ignored.

FORMAT: This formats decimal numbers to have commas for readability.
FORMAT(1234.4567, 2): This will return 1,234.46 since the
number will round to two decimal places and a comma is added
for readability.

Example usage with built-in numeric functions is shown in the following query:

USE lahmansbaseballdb;
SELECT ROUND(AVG(g_all),1) as average_g_all,
 MAX(g_all) as max_g_all,
 MIN(g_all) as min_g_all
FROM appearances;

The results of the previous query are shown in the following screenshot:

You can see that the AVG function was used on g_all and resulted in the average of all
g_all fields being averaged, which was nested instead of the ROUND function with one
decimal place. You can also see that the MAX and MIN functions were used on g_all, and
respectively resulted in the maximum and minimum games played being displayed.

Working with Expressions Chapter 9

[297]

If you wanted to also include a playerid in this query, you could add it as in the following
query:

USE lahmansbaseballdb;
SELECT playerid,
 ROUND(AVG(g_all),1) as average_g_all,
 MAX(g_all) as max_g_all,
 MIN(g_all) as min_g_all
FROM appearances;

The previous query will give you an error: Error Code: 1140. In an aggregated query
without GROUP BY, expression #1 of SELECT list contains
the lahmansbaseballdb.appearances.playerID; nonaggregated column. This is
incompatible with sql_mode=only_full_group_by.

In order to add a column to a query that isn't a built-in function, you will need to use the
GROUP BY clause, which is covered in more detail in Chapter 10, Grouping and Summarizing
Data. The following query will resolve the error from the previous query:

USE lahmansbaseballdb;
SELECT playerid,
 ROUND(AVG(g_all),1) as average_g_all,
 MAX(g_all) as max_g_all,
 MIN(g_all) as min_g_all
FROM appearances
GROUP BY playerid
ORDER BY playerid;

The results of the previous query are shown in the following screenshot:

You can see the GROUP BY clause, which is telling the query to group the AVG, MIN, and MAX
functions by the playerid, gives us the average games by each playerid now, as well as
the max and min games.

https://cdp.packtpub.com/learn_sql_database_programming/wp-admin/post.php?post=33&action=edit

Working with Expressions Chapter 9

[298]

Differences in RDMS
You can't use the FORMAT built-in function in Oracle, PostgreSQL, or SQL Server.

Datetime built-in functions
Datetime built-in functions allow you to manipulate datetime values. There are many
different datetime functions. The commonly used datetime built-in functions are listed next.
Note that each of them can be used with a date value, a column with date values, or an
expression that contains date values.

To get the current date or time, use the following:

CURRENT_DATE: This returns the current date.
CURRENT_DATE(): This returns the date in YYYY-MM-DD format—that
is, 2020-01-11.

CURRENT_TIME—This returns the current time.
CURRENT_TIME(): This returns the time in HH:MM:SS format—that
is, 21:09:27.

CURRENT_TIMESTAMP: This returns the current date and time.
CURRENT_TIMESTAMP(): This returns the datetime in YYYY-MM-DD
HH:MM:SS format—that is, 2020-01-11 21:10:23.

NOW: This returns the current date and time in the same format
as CURRENT_TIMESTAMP.

NOW(): This returns the datetime in YYYY-MM-DD HH:MM:SS
format—that is, 2020-01-11 21:10:23.

To format dates and times, use the following:

DATE_FORMAT: This formats a date into a specified format.
DATE_FORMAT(date, format): Here, date is a valid date value and
format is the format you want the date in. For example,
DATE_FORMAT(NOW(), %m-%d-%y') will return 01-12-20 (depending
on the date you run it). To read about all the formats you can use, see
the DATE_FORMAT information in the Further reading section of this
chapter.

Working with Expressions Chapter 9

[299]

TIME_FORMAT: This formats a time into a specified format.
TIME_FORMAT(time, format): Here, time is a valid time value, and
format is the format you want the time in. For example,
TIME_FORMAT(NOW(), '%T') will return the current time in 24-hour
format, 18:52:24 (depending on the time you run it). To read about all
the formats you can use, see the TIME_FORMAT information in the
Further reading section of this chapter.

To add or subtract dates and times, use the following:

ADDDATE : This adds a date interval from a date and returns that date.
ADDDATE(date, INTERVAL value addunit): Here, date is a valid
date value, INTERVAL is a keyword that stays unchanged, value is a
number, and addunit is the unit of time, such as DAY. For
example, ADDDATE('2020-01-01', INTERVAL 5 DAY) will return
2020-01-06 because the ADDDATE function will add 5 days to the
date specified. To read about all INTERVAL you can use, see the
ADDDATE information in the Further reading section of this chapter.

ADDTIME—This adds a date/time interval from a date and returns that date.
ADDTIME(datetime, addtime)—Here, datetime is a valid datetime
value, and addtime is the amount of time to add (positive or negative).
For example, ADDTIME('2020-01-01 10:10:10', '8:10:5') will
return 2020-01-01 18:20:15 because the ADDTIME function will
add 8 hours, 10 minutes, and 5 seconds to the date specified.

DATE_SUB: This subtracts a date/time interval from a date and returns that date.
DATE_SUB(date, INTERVAL value subunit)—Here, date is a
valid date value, INTERVAL is a keyword that stays unchanged, value
is a number, and subunit is the unit of time, such as DAY. For example,
DATE_SUB('2020-01-01', INTERVAL 5 DAY) will return 2019-12-27
because the DATE_SUB function will add 5 days to the date
specified. DATE_SUB INTERVAL is the same as ADDDATE INTERVAL.

DATEDIFF: This returns the number of days between two date values.
DATEDIFF(date1, date2)—Here, date1 and date2 are two valid
datetimes. It will calculate the difference between date1 and date2.
For example, DATEDIFF('2020-01-01', '2020-01-03') results in
-2.

Working with Expressions Chapter 9

[300]

To get pieces of the date or time returned, use the following:

DATE : This returns the date part from the datetime expression.
DATE('2019-06-10 12:12:12') returns 2019-06-10.

DAY: This returns the day of the month for a date.
DAY('2019-06-10 12:12:12') returns 10.

DAYNAME: This returns the weekday for a date.
DAYNAME('2019-06-10 12:12:12') returns Monday.

DAYOFMONTH: This returns the day of the month for a date.
DAYOFMONTH('2019-06-10 12:12:12') returns 10.

DAYOFWEEK: This returns the day of the week for a date.
DAYOFWEEK('2019-06-10 12:12:12') returns 2, where Sunday is 1,
so Monday is 2, and the rest of the week counts up.

DAYOFYEAR—This returns the day of the year for a date.
DAYOFYEAR('2019-06-10 12:12:12') returns 161.

HOUR—This returns the hour part for a date.
HOUR('2019-06-10 12:12:12') returns 12.

LAST_DAY—This returns the last day of the month for a date.
LAST_DAY('2019-06-10 12:12:12') returns 2019-06-30.

MINUTE—This returns the minute for a date.
MINUTE('2019-06-10 12:12:12') returns 12.

MONTH—This returns the month for a date.
MONTH('2019-06-10 12:12:12') returns 6.

MONTHNAME—This returns the month name for a date.
MONTHNAME('2019-06-10 12:12:12') returns June.

SECOND—This returns the second for a date.
SECOND('2019-06-10 12:12:12') returns 12.

WEEK—This returns the week number for a date
WEEK('2019-06-10 12:12:12') returns 23.

WEEKDAY—This returns a weekday number for a date.
WEEKDAY('2019-06-10 12:12:12') returns 0, where Monday is 0
and the rest of the week counts up.

WEEKOFYEAR—This returns the week number for a date.
WEEKOFYEAR('2019-06-10 12:12:12') returns 24.

Working with Expressions Chapter 9

[301]

YEAR—This returns the year part for a date.
YEAR('2019-06-10 12:12:12') returns 2019.

YEARWEEK—This returns the year and week number for a date.
YEARWEEK('2019-06-10 12:12:12') returns 201923.

Example usage with built-in datetime functions is shown in the following query:

SELECT
DAYNAME('2019-06-10 11:12:13') as dayofweek,
MONTH('2019-06-10 11:12:13') as month,
DAY('2019-06-10 11:12:13') as day,
YEAR('2019-06-10 11:12:13') as year,
HOUR('2019-06-10 11:12:13') as hour,
MINUTE('2019-06-10 11:12:13') as minute,
SECOND('2019-06-10 11:12:13') as second

The results of the previous query are shown in the following screenshot:

You can see that the month, day, year, hour, minute, and second built-in date functions
were used on a date, and it resulted in those being extracted from the date. Also, the
dayname was queried using the DAYNAME function.

Working with time zones
Since MySQL doesn't support storing time zone information with datetime data types, I
recommend choosing a time zone that you will store your data in—for
example, Coordinated Universal Time (UTC), or the time zone that the server is in—and
let the application handle any local time zones that need to be displayed. If a user is in New
York and they are using the application, and they need to see the time in the Eastern time
zone, the application will convert it on display from the time stored in the database to their
time zone. If users are inserting data into the database, and an insert date is captured for
that inserted data (which is good practice), then it will be inserted into the database in the
database time zone (whichever you've selected). Then, if they want to view the data, it
could either be displayed back in a portal to them as their time zone or the database's time
zone, depending on preference. If they are directly querying the database without an
application interface, they will see the data in the database's time zone.

Working with Expressions Chapter 9

[302]

Differences in RDMS
The following are the differences in built-in datetime functions in Oracle (noted only
where different):

CURRENT_DATE —Use without ()
SELECT CURRENT_DATE;

CURRENT_TIME —Use without()
SELECT CURRENT_TIME;

LAST_DAY—Different formatting with literal
LAST_DAY(DATE '2019-06-10')

EXTRACT—Use in place of YEAR, MONTH, DAY, MINUTE, SECOND
EXTRACT(MONTH FROM TO_DATE('10-Jun-2019 12:12:12',

'DD-Mon-YYYY HH24:MI:SS')) returns 6 for the month number. To
learn more about the Oracle EXTRACT function, see the Further reading
section in this chapter.

The rest of the MySQL datetime functions are not included in Oracle.

The following are the differences in built-in datetime functions in PostgreSQL (noted only
where different):

CURRENT_DATE —Use without ()
SELECT CURRENT_DATE;

CURRENT_TIME—Use without ()
SELECT CURRENT_TIME;

NOW—Use without ()
SELECT NOW;

EXTRACT—Use in place of YEAR, MONTH, DAY, MINUTE, and SECOND
EXTRACT(MONTH FROM timestamp '10-Jun-2019 12:12:12')

returns 6 for the month number. To learn more about the PostgreSQL
EXTRACT function, see the Further reading section in this chapter.

CURRENT_TIMESTAMP and DATE work the same way.

The rest of the MySQL datetime functions are not included in PostgreSQL.

Working with Expressions Chapter 9

[303]

The following are the differences in built-in datetime functions in SQL Server (noted only
where different):

GETDATE—Use instead of NOW
GETDATE() returns the datetime in YYYY-MM-DD HH:MM:SS
format—that is, 2020-01-11 21:10:23.

CONVERT—Use instead of DATE_FORMAT and TIME_FORMAT
CONVERT (VARCHAR, GETDATE(), 110) returns a date in format
mm-dd-yyyy. To learn more about converting dates into specific
formats, see the Further reading section of this chapter.

DATEADD—Use instead of ADDDATE, ADDTIME, and DATE_SUB. To learn more
about DATEADD, see the Further reading section of this chapter.
DATEDIFF('2020-01-01', '2020-01-03');: To learn more about DATEDIFF,
see the Further reading section of this chapter.
DATEPART — Use instead of DAYOFWEEK, DAYOFYEAR, HOUR, MINUTE, SECOND,
and WEEK. To learn how to use DATEPART, see the Further reading section in this
chapter.
DATENAME—Use instead of WEEKDAY, MONTHNAME, WEEKOFYEAR. To learn how to
use DATENAME, see the Further reading section in this chapter.
DAY, MONTH, and YEAR can be used the same as in MySQL, but can also be used in
DATEPART in SQL Server.
CURRENT_TIMESTAMP works the same way.

The rest of the MySQL datetime functions are not included in SQL Server.

Advanced built-in functions
Advanced built-in functions allow you to do many different things, such as convert to
different data types or get the current username or database name. The commonly used
advanced built-in functions are listed next. Note that each of them can be used with a value,
a column, or an expression.

Working with Expressions Chapter 9

[304]

To get information about the user or system, use the following:

CURRENT_USER returns the username for the current connection.
SELECT CURRENT_USER(); returns root@% (depending on who you
are logged in as).

DATABASE returns the name of the active database.
SELECT DATABASE(); returns lahmansbaseballdb (depending on
which database you are using).

VERSION returns the current version of the MySQL database.

SELECT VERSION(); returns 8.0.18 (depending on your MySQL version).

To explicitly convert/cast values, use the following:

CAST converts a value into the specified data type.
CAST(value as datatype)

CAST can only use these data types:
DATE converts the value to a date in YYYY-MM-DD format.
DATETIME converts the value to a datetime in YYYY-MM-DD
HH:MM:SS format.
TIME converts the value to a time in HH:MM:SS format.
CHAR converts the value to a char.
SIGNED converts the value to a signed int.
UNSIGNED converts the value to an unsigned int.
BINARY converts the value to a binary.
DECIMAL converts the value to a decimal.

For example:
SELECT CAST('2019-06-10 11:12:13' AS

DATE); returns 2019-06-10.
SELECT CAST('2019-06-10 11:12:13' AS

UNSIGNED); returns 2019.

Working with Expressions Chapter 9

[305]

CONVERT converts a value into a specified data type or character set.
CONVERT(value, datatype)

Or CONVERT(value USING charset)
CONVERT can only use these data types:

DATE converts the value to date in YYYY-MM-DD format.
DATETIME converts the value to a datetime in YYYY-MM-DD
HH:MM:SS format.
TIME converts the value to a time in HH:MM:SS format.
CHAR converts the value to a char.
SIGNED converts the value to a signed int.
UNSIGNED converts the value to an unsigned int.
BINARY converts the value to a binary.
DECIMAL converts the value to a decimal.

For example:
SELECT CONVERT('2019-06-10 11:12:13',

DATE); returns 2019-06-10.
SELECT CONVERT('100.2', decimal(5,2)); returns
100.20/

SELECT CONVERT('2019-06-10 11:12:13', unsigned);

returns 2019.
SELECT CONVERT('testing' USING latin1); returns a
BLOB.

Execute SHOW CHARACTER SET to see a list of all the character sets
available to convert to.

To work with data, use the following:

IF returns a value if the condition is TRUE and another value if it's FALSE.
IF(condition, value if true, value if false)

SELECT IF(10<20, 1, 2); returns 1.
SELECT IF(10<20, 'true', 'false');returns TRUE.

CASE goes through conditions and then returns a value once the
condition is met. This is like an expanded IF function.

CASE
 WHEN condition1 THEN result1
 WHEN condition2 THEN result2
 WHEN conditionN THEN resultN

Working with Expressions Chapter 9

[306]

 ELSE result
END;

For example:
USE lahmansbaseballdb;
SELECT playerid, yearid,
CASE
WHEN g_all between 0 and 10 then 'barely any'
WHEN g_all between 11 and 50 then 'some'
WHEN g_all between 51 and 100 then 'many'
ELSE 'tons'
END

FROM appearances; returns the case statements for g_all
instead of the number value that is in the column.

LAST_INSERT_ID returns the auto-increment ID that was last used on
insert.

SELECT LAST_INSERT_ID();—If the table has auto-
increment enabled, it will return the last ID that was used on
insert.

Working with NULL values
NULL is not an empty string or 0; it is unknown or undefined. NULL is not equal to anything,
including itself.

To work with NULL values, use the following built-in functions:

NULLIF compares two expressions and returns NULL if they are equal. If they are
not equal, it returns the first expression.

SELECT NULLIF(1, 1); returns NULL.
SELECT NULLIF(1, 2); returns 1.

IFNULL returns the specified value if the expression is NULL.
 SELECT IFNULL(NULL, 'testing'); returns testing.
SELECT IFNULL(NULL, NULL); returns NULL.

ISNULL returns 0 or 1 depending on whether the value is NULL.
SELECT ISNULL(NULL); returns 1.
SELECT ISNULL('testing'); returns 0.

Working with Expressions Chapter 9

[307]

Differences in advanced built-in functions in RDMS
The following are the differences in built-in advanced functions in Oracle (noted only
where different):

USER or sys_context('USERENV', 'SESSION_USER') instead of
CURRENT_USER

SELECT USER from dual;

SELECT sys_context('USERENV', 'SESSION_USER') from
dual;

sys_context('USERENV', 'CURRENT_SCHEMA') instead ofDATABASE()
SELECT sys_context('USERENV', 'CURRENT_SCHEMA') from

dual; To learn more about the Oracle sys_context function,
see the Further reading section in this chapter.

SELECT * FROM v$version WHERE banner LIKE 'Oracle%'; instead of
VERSION()

CAST—Oracle has different data types you can cast to and from. To learn more
about the Oracle CAST function, see the Further reading section in this chapter.
CONVERT—Oracle only allows the conversion of a string to another character
set. To learn more about the Oracle CONVERT function, see the Further reading
section in this chapter.
IF—Oracle doesn't allow the same syntax as MySQLs IF. It requires IF, ELSE. To
learn more about the Oracle IF function, see the Further reading section in this
chapter.
COALESCE instead of IFNULL

SELECT COALESCE(NULL, 'testing'); returns 'testing'

SELECT COALESCE(NULL, NULL); returns NULL

LAST_INSERT_ID and ISNULL are not included in Oracle.

The following are the differences in built-in advanced functions in PostgreSQL (noted only
where different):

CURRENT_USER no ()
SELECT CURRENT_USER;

CURRENT_DATABASE instead of DATABASE
SELECT CURRENT_DATABASE;

CAST—The same syntax, but different types to cast to based on PostgreSQL data
types, covered in more detail in Chapter 3, Understanding Data Types.

https://cdp.packtpub.com/learn_sql_database_programming/wp-admin/post.php?post=26&action=edit

Working with Expressions Chapter 9

[308]

Use the Data Type Formatting functions instead of CONVERT. To learn more
about the PostgreSQL Data Type Formatting functions, see the Further reading
section in this chapter.
IF—different syntax with PostgreSQL. To learn more about the PostgreSQL IF
function, see the Further reading section in this chapter.
COALESCE instead of IFNULL

SELECT COALESCE(NULL, 'testing'); returns 'testing'

SELECT COALESCE(NULL, NULL); returns NULL

LAST_INSERT_ID and ISNULL are not included in PostgreSQL.

The following are the differences in built-in advanced functions in SQL Server (noted only
where different):

CURRENT_USER no ()
SELECT CURRENT_USER;

DB_NAME instead of DATABASE
SELECT DB_NAME();

@@VERSION instead of VERSION
SELECT @@VERSION;

CAST works but has different data types. To learn more about the SQL Server
CAST and CONVERT functions, see the Further reading section in this chapter.
CONVERT has different data types. To learn more about the SQL Server CAST and
CONVERT functions, see the Further reading section in this chapter.
IF has a different syntax. To learn more about the SQL Server IF function, see
the Further reading section in this chapter.
SCOPE_IDENTITY instead of LAST_INSERT_ID

SELECT SCOPE_IDENTITY();

COALESCE instead of IFNULL
SELECT COALESCE(NULL, 'testing'); returns 'testing'

SELECT COALESCE(NULL, NULL); returns NULL

ISNULL has a different syntax. To learn more about the SQL Server ISNULL
function, see the Further reading section in this chapter.

Working with Expressions Chapter 9

[309]

Built-in functions and indexing
When using a built-in function in your query, the query may not use the indexes on the
table. For example, the following query needs to do a full scan of the table:

USE lahmansbaseballdb;
SELECT UPPER(playerid) as playeridupper, playerid
FROM allstarfull
WHERE upper(playerid) = 'AARONHA01';

The following screenshot shows the execution plan of the previous query:

The following query can seek the rows that are needed:

USE lahmansbaseballdb;
SELECT playerid FROM allstarfull
WHERE playerid = 'aaronha01';

The following screenshot shows the execution plan of the previous query:

You can see that the query that doesn't use a built-in function in the WHERE clause performs
much better than the one that does.

Reading and running execution plans are covered in more detail in Chapter 6, Querying a
Single Table, and in Chapter 7, Querying Multiple Tables.

https://cdp.packtpub.com/learn_sql_database_programming/wp-admin/post.php?post=29&action=edit
https://cdp.packtpub.com/learn_sql_database_programming/wp-admin/post.php?post=30&action=edit

Working with Expressions Chapter 9

[310]

Using statistical functions
MySQL includes some built-in functions for calculating statistics. We covered SUM, AVG,
MIN, and MAX earlier in the chapter. Let's learn about a couple of built-in functions that are
helpful in calculating statistics.

Learning how to use built-in statistical functions
To calculate standard descriptive statistics, you can use the following built-in functions in
addition to the ones previously learned:

VARIANCE—This gives you the variance of your data, which calculates what the
difference is for each point and the mean of all the points. If zero is returned, then
all the data points are the same. A larger value returned means that individual
data points are farther from the mean.
STDDEV—This gives you the standard deviation, which helps you understand
how spread out your data is, and how close each data point is to the mean (you
calculate the mean by using the AVG built-in function). If 0 is returned, then all
the data points are the same. A larger value returned means that individual data
points are farther from the mean. Using the standard deviation gives you a
standard way of knowing what is normal, and helps to find outlier values.

To learn more about variance and standard deviation, please see the Further reading section
in this chapter.

You can execute the following query to return information on the statistics of hits:

USE lahmansbaseballdb;
SELECT COUNT(h) AS count,
 SUM(h) AS sum,
 AVG(h) AS mean,
 STDDEV(h) AS 'stddev',
 VARIANCE(h) AS 'variance',
 MIN(h) AS minimum,
 MAX(h) AS maximum
FROM batting;

The results from the previous query are shown in the following table:

count sum mean stddev variance min max

105861 3902204 36.8616 52.471012533351455 2753.2071562751253 0 262

Working with Expressions Chapter 9

[311]

In the previous table, the sum isn't useful with hits, but it's there to show you the different
statistical functions you can run against the batting table. The count is the count of all the
hits in the batting table. The mean is the average of all the hits, and you can see the
minimum is 0 (meaning a player had no hits), and the maximum is 262. More importantly,
you can see that the standard deviation and the variance are both quite large, so this tells
you that the individual data points are quite dissimilar to one another. This variance makes
sense since there is a lot of variation in how many hits a baseball player gets.

Exploring differences in RDMS
In SQL Server, use STDEV instead of STDDEV, and use VAR instead of VARIANCE. The
functions in SQL Server work the same way as in MySQL but just have a different function
name.

Using generated columns
A generated column allows you to store data in a column based on an expression.
Generated columns can be useful when you want to store something in a table based on
other columns. For example, if you wanted to have the batting average stored, you would
need to divide other fields in the batting table to do this. Generated columns can be helpful
instead of having to calculate a value every time you execute a query. With a generated
column, you will just put the generated column name in the query instead of having to
calculate on the fly.

Types of generated columns
A generated column can either be virtual or stored. You can store a mix of virtual and
stored columns in a table. Generated columns can refer to other generated columns, as long
as the generated column you are referring to is earlier in the table definition.

Virtual: Column values aren't stored on disk and therefore don't use any storage.
They are evaluated when the rows are read with a query. They only support
secondary indexes, so you can't place this column in a primary key. This is
explained next, with the GENERATED ALWAYS AS syntax.
Stored: Column values are stored on insert and update, and therefore take
storage on disk. Stored generated columns can have indexes placed on them.
This is explained next, with the GENERATED ALWAYS AS with STORED syntax.

Working with Expressions Chapter 9

[312]

Creating a generated column
Let's say you regularly need to get a player's batting average, so you want to store it in a
generated column instead of calculating it each time with an expression. The following is a
query that calculates the batting average:

USE lahmansbaseballdb
SELECT playerid, yearid, teamid,
 h, ab, h/ab AS batavg
FROM batting;

To create a virtual generated column with the batting average in the batting table, execute
the following query:

USE lahmansbaseballdb;
ALTER TABLE batting
ADD COLUMN batavg DECIMAL(4,3) GENERATED ALWAYS AS (h/ab) AFTER lgID;

To create a stored generated column with the batting average in the batting table, execute
the following query:

USE lahmansbaseballdb;
ALTER TABLE batting
ADD COLUMN batavgstored DECIMAL(4,3) GENERATED ALWAYS AS (h/ab) STORED
AFTER lgID;

The previous query results in an error: Error Code: 1365. To perform division by 0, you
can use the NULLIF built-in function to avoid errors, as shown in the following query:

USE lahmansbaseballdb;
ALTER TABLE batting
ADD COLUMN batavg DECIMAL(4,3)
GENERATED ALWAYS AS (h/NULLIF(ab,0))
STORED AFTER lgID;

The column shows up in the column listing in MySQL Workbench, regardless of whether
it's virtual or stored on disk. To see if it's a virtual or stored generated column, you will
need to alter the table in MySQL Workbench to see the column definition. The column
listing can be seen in the following screenshot:

Working with Expressions Chapter 9

[313]

You can see in the preceding screenshot that the batavg column is a virtual generated
column, in this case. If you specified STORED in the created or the generated column, then
the STORED radio button would be selected instead.

Differences in RDMSes
Oracle only allows you to create virtual columns and does not allow you to add a column
after a specific column, unlike in MySQL. You can create a virtual column in Oracle with
the following code:

ALTER TABLE batting
ADD batavg GENERATED ALWAYS AS (h/ab);

PostgreSQL only allows you to create a generated column in version 12 or higher. You can
create a virtual generated column in PostgreSQL with the following code:

ALTER TABLE batting
ADD batavg numeric GENERATED ALWAYS AS (h/ab) VIRTUAL;

Working with Expressions Chapter 9

[314]

You can create a stored generated column in PostgreSQL with the following code:

ALTER TABLE batting
ADD batavg numeric GENERATED ALWAYS AS (h/ab) STORED;

SQL Server allows you to create a computed column but doesn't allow you to add a column
after a specific column. You can create a virtual computed column in SQL Server with the
following code:

ALTER TABLE batting
ADD batavg AS (h/NULLIF(ab,0));

You can create a stored computed column in SQL Server with the following code:

ALTER TABLE batting
ADD batavg AS (h/NULLIF(ab,0)) PERSISTED;

Summary
In this chapter, you learned how to use expressions, including using literals, operators,
columns, and built-in functions to create expressions. You learned how to use each and that
you can use them all together to create expressions.

You learned about the different types of built-in functions, including string, numeric,
datetime, and advanced functions, which include casting and converting to other data
types. There are many different kinds of string, numeric, and datetime built-in functions.
They help you to work with expressions to ensure they are in the format and data type that
you want. You also learned how to work with NULL values. Additionally, you learned how
indexing might be affected by built-in functions.

Next, you learned how to use statistical functions, including how to get and use variance
and standard deviation with the STDDEV and VARIANCE functions. Finally, you learned
how to create a generated column based on an expression, and what it means to store the
column virtually or on disk.

In the next chapter, you will learn how to use aggregate functions to a group and
summarize data. Aggregate functions include math functions such as AVG, SUM, COUNT, MIN,
and MAX. You will also learn how to use the GROUP BY and HAVING clauses in conjunction
with the aggregate functions.

Working with Expressions Chapter 9

[315]

Questions
What components can make up an expression?1.
What is a literal value? 2.
What do mathematical operators do? 3.
What is operator precedence? 4.
What types of built-in functions exist? 5.
What does LOWER return? 6.
What does CAST allow you to do? 7.
What happens with index usage when you use a built-in function in your WHERE8.
clause?
How do you get the standard deviation on a table column? 9.
What kinds of generated columns can you create? 10.

Further reading
For more information:

To learn more about the DATE_FORMAT built-in function, visit https:/ ​/ ​dev.
mysql.​com/ ​doc/ ​refman/ ​8. ​0/​en/ ​date- ​and- ​time- ​functions. ​html#function_
date-​format.
To learn more about the TIME_FORMAT built-in function, visit https:/ ​/ ​dev.
mysql.​com/ ​doc/ ​refman/ ​8. ​0/​en/ ​date- ​and- ​time- ​functions. ​html#function_
time-​format.
To learn more the ADDDATE built-in function INTERVALS, visit https:/ ​/​dev.
mysql.​com/ ​doc/ ​refman/ ​8. ​0/​en/ ​expressions. ​html#temporal- ​intervals.
To learn more about variance and standard deviation, visit https:/ ​/​www.
khanacademy. ​org/ ​math/ ​probability/ ​data- ​distributions- ​a1/​summarizing-
spread-​distributions/ ​v/ ​range- ​variance- ​and- ​standard- ​deviation- ​as-
measures- ​of- ​dispersion.
To learn more about the Oracle EXTRACT function, visit https:/ ​/​docs. ​oracle.
com/​cd/ ​B19306_ ​01/ ​server. ​102/ ​b14200/ ​functions050. ​htm.
To learn more about the PostgreSQL EXTRACT function, visit https:/ ​/ ​www.
postgresql. ​org/ ​docs/ ​11/ ​functions- ​datetime. ​html#FUNCTIONS- ​DATETIME-
EXTRACT.

https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://dev.mysql.com/doc/refman/8.0/en/expressions.html#temporal-intervals
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/v/range-variance-and-standard-deviation-as-measures-of-dispersion
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://www.postgresql.org/docs/11/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT
https://www.postgresql.org/docs/11/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT
https://www.postgresql.org/docs/11/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT
https://www.postgresql.org/docs/11/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT
https://www.postgresql.org/docs/11/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT
https://www.postgresql.org/docs/11/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT
https://www.postgresql.org/docs/11/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT
https://www.postgresql.org/docs/11/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT
https://www.postgresql.org/docs/11/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT
https://www.postgresql.org/docs/11/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT
https://www.postgresql.org/docs/11/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT
https://www.postgresql.org/docs/11/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT
https://www.postgresql.org/docs/11/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT
https://www.postgresql.org/docs/11/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT
https://www.postgresql.org/docs/11/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT
https://www.postgresql.org/docs/11/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT
https://www.postgresql.org/docs/11/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT
https://www.postgresql.org/docs/11/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT
https://www.postgresql.org/docs/11/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT
https://www.postgresql.org/docs/11/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT
https://www.postgresql.org/docs/11/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT

Working with Expressions Chapter 9

[316]

To learn more about converting dates into specific formats in SQL Server,
visit https:/ ​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​sql/ ​t-​sql/ ​functions/ ​cast- ​and-
convert- ​transact- ​sql? ​view= ​sql-​server- ​ver15#date- ​and- ​time- ​styles.
To learn more about the DATEPART function in SQL Server, visit https:/ ​/ ​docs.
microsoft. ​com/ ​en- ​us/ ​sql/ ​t- ​sql/​functions/ ​datepart- ​transact- ​sql? ​view=
sql-​server- ​ver15.
To learn more about the DATENAME function in SQL Server, visit https:/ ​/ ​docs.
microsoft. ​com/ ​en- ​us/ ​sql/ ​t- ​sql/​functions/ ​datename- ​transact- ​sql? ​view=
sql-​server- ​ver15.
To learn more about the DATEADD function in SQL Server, visit https:/ ​/ ​docs.
microsoft. ​com/ ​en- ​us/ ​sql/ ​t- ​sql/​functions/ ​dateadd- ​transact- ​sql?​view= ​sql-
server-​ver15.
To learn more about the DATEDIFF function in SQL Server, visit https:/ ​/ ​docs.
microsoft. ​com/ ​en- ​us/ ​sql/ ​t- ​sql/​functions/ ​datediff- ​transact- ​sql? ​view=
sql-​server- ​ver15.
To learn more about the Oracle sys_context function, visit https:/ ​/​docs.
oracle.​com/ ​cd/ ​B19306_ ​01/ ​server. ​102/ ​b14200/ ​functions165. ​htm.
To learn more about the Oracle CAST function, visit https:/ ​/​docs. ​oracle. ​com/
cd/​B19306_ ​01/ ​server. ​102/ ​b14200/ ​functions016. ​htm.
To learn more about the Oracle CONVERT function, visit https:/ ​/​docs. ​oracle.
com/​cd/ ​B28359_ ​01/ ​server. ​111/ ​b28286/ ​functions027. ​htm#SQLRF00620.
To learn more about the Oracle IF function, visit https:/ ​/​docs. ​oracle. ​com/ ​cd/
B19306_​01/ ​appdev. ​102/ ​b14261/ ​if_​statement. ​htm.
To learn more about the PostgreSQL data type formatting functions,
visit, https:/ ​/ ​www. ​postgresql. ​org/ ​docs/ ​11/​functions- ​formatting. ​html.
To learn more about the PostgreSQL IF function, visit https:/ ​/ ​www.​postgresql.
org/​docs/ ​9. ​1/ ​plpgsql- ​control- ​structures. ​html.
To learn more about the SQL Server CAST and CONVERT functions, visit https:/ ​/
docs.​microsoft. ​com/ ​en- ​us/ ​sql/ ​t-​sql/ ​functions/ ​cast- ​and- ​convert-
transact- ​sql? ​view= ​sql- ​server- ​ver15#date- ​and- ​time- ​styles.
To learn more about the SQL Server IF function,
visit https://docs.microsoft.com/en-us/sql/t-sql/language-elements/if-e
lse-transact-sql?view=sql-server-ver15.
To learn more about the SQL Server ISNULL function, visit https:/ ​/​docs.
microsoft. ​com/ ​en- ​us/ ​sql/ ​t- ​sql/​functions/ ​isnull- ​transact- ​sql? ​view= ​sql-
server-​ver15.

https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datepart-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/dateadd-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/datediff-transact-sql?view=sql-server-ver15
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions165.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions027.htm#SQLRF00620
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14261/if_statement.htm
https://www.postgresql.org/docs/11/functions-formatting.html
https://www.postgresql.org/docs/11/functions-formatting.html
https://www.postgresql.org/docs/11/functions-formatting.html
https://www.postgresql.org/docs/11/functions-formatting.html
https://www.postgresql.org/docs/11/functions-formatting.html
https://www.postgresql.org/docs/11/functions-formatting.html
https://www.postgresql.org/docs/11/functions-formatting.html
https://www.postgresql.org/docs/11/functions-formatting.html
https://www.postgresql.org/docs/11/functions-formatting.html
https://www.postgresql.org/docs/11/functions-formatting.html
https://www.postgresql.org/docs/11/functions-formatting.html
https://www.postgresql.org/docs/11/functions-formatting.html
https://www.postgresql.org/docs/11/functions-formatting.html
https://www.postgresql.org/docs/11/functions-formatting.html
https://www.postgresql.org/docs/11/functions-formatting.html
https://www.postgresql.org/docs/11/functions-formatting.html
https://www.postgresql.org/docs/11/functions-formatting.html
https://www.postgresql.org/docs/11/functions-formatting.html
https://www.postgresql.org/docs/11/functions-formatting.html
https://www.postgresql.org/docs/9.1/plpgsql-control-structures.html
https://www.postgresql.org/docs/9.1/plpgsql-control-structures.html
https://www.postgresql.org/docs/9.1/plpgsql-control-structures.html
https://www.postgresql.org/docs/9.1/plpgsql-control-structures.html
https://www.postgresql.org/docs/9.1/plpgsql-control-structures.html
https://www.postgresql.org/docs/9.1/plpgsql-control-structures.html
https://www.postgresql.org/docs/9.1/plpgsql-control-structures.html
https://www.postgresql.org/docs/9.1/plpgsql-control-structures.html
https://www.postgresql.org/docs/9.1/plpgsql-control-structures.html
https://www.postgresql.org/docs/9.1/plpgsql-control-structures.html
https://www.postgresql.org/docs/9.1/plpgsql-control-structures.html
https://www.postgresql.org/docs/9.1/plpgsql-control-structures.html
https://www.postgresql.org/docs/9.1/plpgsql-control-structures.html
https://www.postgresql.org/docs/9.1/plpgsql-control-structures.html
https://www.postgresql.org/docs/9.1/plpgsql-control-structures.html
https://www.postgresql.org/docs/9.1/plpgsql-control-structures.html
https://www.postgresql.org/docs/9.1/plpgsql-control-structures.html
https://www.postgresql.org/docs/9.1/plpgsql-control-structures.html
https://www.postgresql.org/docs/9.1/plpgsql-control-structures.html
https://www.postgresql.org/docs/9.1/plpgsql-control-structures.html
https://www.postgresql.org/docs/9.1/plpgsql-control-structures.html
https://www.postgresql.org/docs/9.1/plpgsql-control-structures.html
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/if-else-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/if-else-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/isnull-transact-sql?view=sql-server-ver15

10
Grouping and Summarizing

Data
In this chapter, you will learn how to use aggregate functions to group and summarize
data. Aggregate functions include math functions such as AVG, SUM, COUNT, MIN, and MAX.
You will also learn how to use the GROUP BY and HAVING clauses in conjunction with the
aggregate functions. Finally, you will learn how MySQL executes your query clauses.

In this chapter, we will cover the following topics:

Understanding aggregate functions
Using the GROUP BY clause
Using the HAVING clause
Understanding SQL query order of execution

Let's get started!

Technical requirements
You can refer to the code files for this chapter by going to the following GitHub
link: https:/​/​github. ​com/ ​PacktPublishing/ ​learn- ​sql-​database- ​programming/ ​tree/
master/​chapter-​10.

https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-10

Grouping and Summarizing Data Chapter 10

[318]

Understanding aggregate functions
Aggregate functions include numeric and statistical built-in functions. These topics were
covered in more detail in Chapter 9, Working with Expressions. The following is a recap
from that chapter.

Numeric aggregate functions
Numeric built-in functions handle mathematical calculations. They can all operate on a
numeric data type table column or an expression of a numeric data type. The following list
shows a sample of these functions:

AVG: Returns the average of an expression:
AVG(rating): This will return the average of all the values in a rating
column.
NULL values are ignored.

COUNT: Returns the number of records:
COUNT(column1): This will return the count of values in column1
: column1 can contain either strings, dates, or numbers.
NULL values are ignored.

MAX: Returns the maximum value in a set of values :
MAX(rating): This will return the maximum rating in a column of
rating values.

MIN: Returns the minimum value in a set of values:
MIN(rating): This will return the minimum rating in a column of
rating values.

ROUND: Rounds a number to a specified number of decimal places:
ROUND(123.456, 2): This will return 123.46 since the number will
round to 2 decimal places.

SUM: The sum of a set of values:
SUM(number): This will return the sum of the values in a column of
number values.
NULL values are ignored.

Grouping and Summarizing Data Chapter 10

[319]

FORMAT: Formats decimal numbers so that they have commas for readability:
FORMAT(1234.4567, 2): This will return 1,234.46 since the number
will round to 2 decimal places. A comma has been added for
readability.

Execute the following query to see each of the numeric aggregate functions in action:

USE lahmansbaseballdb;
SELECT
 ROUND(AVG(g_all),1) as average_g_all_rounded,
 MAX(g_all) as max_g_all,
 MIN(g_all) as min_g_all,
 FORMAT(COUNT(g_all), 0) as count_g_all_formatted,
 SUM(g_all) as sum_g_all
FROM appearances;

The previous query provides the results shown in the following table:

average_g_all_rounded max_g_all min_g_all count_g_all_formatted sum_g_all
51.3 165 1 105,789 5422767

The first column shows you the average of all games played. The second column shows
you the maximum number of games played by a player. The third column shows you the
minimum number of games played by a player. The fourth column shows you the count of
all games formatted to have a comma and zero decimal places. The last column shows you
the sum of all games played.

Statistical aggregate functions
In order to calculate standard descriptive statistics, you can use the following built-in
functions:

VARIANCE: This gives you the variance of your data, which calculates what the
difference is for each individual point and the mean of all the points. If zero is
returned, then all the data points are the same. A larger value returned means
that individual data points are farther from the mean.

Grouping and Summarizing Data Chapter 10

[320]

STDDEV: This gives you the standard deviation, which helps you understand how
spread out your data is, as well as how close each individual data point is to the
mean (you calculate the mean by using the AVG built-in function). If zero is
returned, then all the data points are exactly the same. A larger value returned
means that individual data points are farther from the mean. Using the standard
deviation gives you a standard way of knowing what is normal, and helps to find
outlier values.

Execute the following query to see each of the statistical aggregate functions in action:

USE lahmansbaseballdb;
SELECT
 STDDEV(h) AS 'stddev',
 VARIANCE(h) AS 'variance'
FROM batting;

The previous query provides the results shown in the following table:

stddev stddev
52.4710125 2753.20716

The first column shows you the stddev of all hits in the batting table. The second column
shows you the variance of hits in the batting table.

Using the GROUP BY clause
The GROUP BY clause allows you to group rows that have the same values into summary
rows. This clause is often used with aggregate functions, which were covered in the
previous section of this chapter. It's an optional clause that can be used on a SELECT
statement.

The following code shows the GROUP BY syntax, where the WHERE and ORDER BY clauses
are optional:

SELECT column(s)
 FROM table
 WHERE condition(s)
 GROUP BY columns(s)
ORDER BY column(s);

Grouping and Summarizing Data Chapter 10

[321]

Understanding how GROUP BY works without
aggregate functions
Let's say you want to find the distinct list of player ID's and the teams they've played for.
You can execute a query like the following:

USE lahmansbaseballdb;
SELECT playerid, teamid
FROM batting
GROUP BY teamid;

The previous query will give you this error: Error Code: 1055. Expression #1 of
SELECT list is not in GROUP BY clause and contains nonaggregated column
'lahmansbaseballdb.batting.playerID,' which is not functionally
dependent on columns in GROUP BY clause; this is incompatible with

sql_mode=only_full_group_by.

This error means that you need to place playerid in the GROUP BY clause, as follows:

USE lahmansbaseballdb;
SELECT playerid, teamid
FROM batting
GROUP BY teamid, playerid;

The previous query will give you the results shown in the following screenshot:

Here, you can see that each player may have more than one row because they played for
more than one team during their career.

Grouping and Summarizing Data Chapter 10

[322]

Using WHERE with GROUP BY
You can also use the WHERE clause along with the GROUP BY clause. The GROUP BY clause
will go after the WHERE clause like so:

USE lahmansbaseballdb;
SELECT playerid, teamid
FROM batting
WHERE playerid = 'aardsda01'
GROUP BY teamid, playerid;

The previous query returns the results shown in the following screenshot:

Here, you can see that you are now only getting the results for aardsda01.

As a comparison, if you execute the previous query without GROUP BY, the query will
return one additional row:

USE lahmansbaseballdb;
SELECT playerid, teamid
FROM batting
WHERE playerid = 'aardsda01';

The following screenshot shows the results of running the previous query:

Grouping and Summarizing Data Chapter 10

[323]

You can now see two rows containing style. This is because this player was on the Seattle
team for 2 years, whereas he was only on the other teams for 1 year. You can view this
information by executing the following query:

USE lahmansbaseballdb
SELECT playerid, teamid, yearid
FROM batting
WHERE playerid = 'aardsda01';

The following screenshot shows you the results of running the previous query:

Here, you can see that teamid is not unique because there are 2 years for the SEA team ID.
This shows us that GROUP BY is like using DISTINCT.

The following table shows a comparison between GROUP BY and DISTINCT:

GROUP BY query DISTINCT query
USE lahmansbaseballdb;
SELECT playerid, teamid

FROM batting
WHERE playerid = 'aardsda01'
GROUP BY teamid, playerid;

USE lahmansbaseballdb;
SELECT DISTINCT playerid, teamid
FROM lahmansbaseballdb.batting
WHERE playerid = 'aardsda01';

GROUP BY query results DISTINCT query results

Here, you can see that GROUP BY, without aggregate functions, produces the same results
as DISTINCT.

Grouping and Summarizing Data Chapter 10

[324]

Using ORDER BY with GROUP BY
You can also use the ORDER BY clause with GROUP BY. It will need to be placed after the
GROUP BY clause, as shown in the following query:

USE lahmansbaseballdb;
SELECT playerid, teamid
FROM batting
WHERE playerid = 'aardsda01'
GROUP BY teamid, playerid
ORDER BY playerid, teamid;

The following screenshot shows the results of running the previous query:

Here, you can see that the results are now ordered by playerid and teamid.

Learning how to use the GROUP BY clause to
group query results using aggregate functions
Using aggregate functions with GROUP BY can give you some interesting summarized
results. We learned a bit about this already in Chapter 9, Working with Expressions. There
are a couple of ways you can use aggregate functions in a query. One way requires a GROUP
BY, while one doesn't.

If you want to summarize an entire table, you don't need to use GROUP BY, as shown in the
following query:

USE lahmansbaseballdb;
SELECT sum(AB) AS sum_at_bats
FROM batting;

Grouping and Summarizing Data Chapter 10

[325]

The results from running the previous query can be seen in the following table:

sum_at_bats
'14922240'

The previous result is the sum of all the at-bats (AB) for the entire table. That's the total for
all the times every player came up to bat.

If you want to summarize data for specific columns in a table with aggregate functions, you
will need to use a GROUP BY clause. Let's say you wanted to get some summarized
information about each player's batting. You can execute the following query to do that:

USE lahmansbaseballdb;
SELECT playerid, teamid, sum(AB) AS sum_at_bats
FROM batting
GROUP BY playerid, teamid;

The following screenshot shows the results of running the previous query:

Here, we can see the sum of the at-bats (AB) for the combination of each player and the
team they were on.

Learning how to use the ROLLUP modifier
The ROLLUP modifier allows you to get subtotal rows (also referred to as super-aggregate
rows) and a grand total row. The ROLLUP modifier works by aggregating the grouping sets
in a GROUP BY clause. A grouping set is the set of columns you group by. For example, with
the following query, the grouping set is the sum of at-bats by playerid and teamid:

USE lahmansbaseballdb;
SELECT playerid, teamid, sum(AB) AS sum_at_bats
FROM batting
GROUP BY playerid, teamid;

Grouping and Summarizing Data Chapter 10

[326]

To get a subtotal by grouping set and grand total, you will add the ROLLUP modifier, like
so:

USE lahmansbaseballdb;
SELECT playerid, teamid, sum(AB) AS sum_at_bats
FROM batting
GROUP BY playerid, teamid WITH ROLLUP;

If you scroll down to the bottom of the results from running the previous query, you will
see a grand total, as shown in the following screenshot:

Here, you can see that each player and team combination has a sum_at_bats value and
that playerid has a NULL teamid to show the total for each player (considered a subtotal
of the results). At the bottom of the results, you can see a grand total of all at-bats for all
players and team combinations.

You can also use WHERE and ORDER BY with the ROLLUP modifier on the GROUP BY clause.

Differences in RDBMSes
ROLLUP in Oracle, PostgreSQL, and SQL Server uses a different syntax, as shown in the
following query:

USE lahmansbaseballdb;
SELECT playerid, teamid, sum(AB) AS sum_at_bats
FROM batting
GROUP BY ROLLUP (playerid, teamid)
ORDER BY playerid, teamid;

Grouping and Summarizing Data Chapter 10

[327]

The following screenshot shows the results of running the previous query:

Oracle, PostgreSQL, and SQL Server ROLLUP subtotals and grand totals in the same way as
MySQL. If you scroll to the bottom of the results, you will see a grand total with playerid
and teamid set to NULL.

Using the HAVING clause
The HAVING clause is used to filter the GROUP BY results. The following code shows the
HAVING syntax, where the WHERE and ORDER BY clauses are optional:

SELECT column(s)
 FROM table
WHERE condition(s)
 GROUP BY columns(s)
 HAVING condition(s)
 ORDER BY column(s);

Learning how to use the HAVING clause to limit
query results
Let's say you needed to see the results of running the GROUP BY clause in the previous
section, but where the sum of at-bats is greater than 100. This is when you would use a
HAVING clause, as shown in the following query:

USE lahmansbaseballdb;
SELECT playerid, teamid, sum(AB) AS sum_at_bats
FROM batting

Grouping and Summarizing Data Chapter 10

[328]

GROUP BY playerid, teamid
HAVING sum_at_bats > 100;

The following screenshot shows the results of running the previous query:

Here, you can see the results of GROUP BY, with only the sum of at-bats that are greater
than 100.

Let's say you were using a WHERE clause for this instead, as shown in the following query:

USE lahmansbaseballdb;
SELECT playerid, teamid, sum(AB) AS sum_at_bats
FROM batting
WHERE sum(AB) > 100
GROUP BY playerid, teamid;

You will have two issues with the previous query:

You won't be able to use a column alias in the WHERE clause. You have to use the
function in the WHERE clause, so sum (AB) instead of sum_at_bats.
Once you fixed the previous error, you will receive another error: Error Code:
1111. Invalid use of group function. You can't use a GROUP BY function
in a WHERE clause and must instead use the HAVING clause.

You can also use multiple HAVING clauses, as shown in the following query:

USE lahmansbaseballdb;
SELECT playerid, teamid, sum(AB) AS sum_at_bats
FROM batting
GROUP BY playerid, teamid
HAVING sum_at_bats > 100
AND sum_at_bats < 400;

Grouping and Summarizing Data Chapter 10

[329]

The following screenshot shows the results of running the previous query:

The previous results include any at-bats that are greater than 100 and less than 400.

You can use a BETWEEN clause like so:

USE lahmansbaseballdb;
SELECT playerid, teamid, sum(AB) AS sum_at_bats
FROM batting
GROUP BY playerid, teamid
HAVING sum_at_bats BETWEEN 100 AND 400;

The following screenshot shows the results of running the previous query:

The previous results will include the sum of at-bats that are between 100 and 400, including
100 and 400.

Any of the operators you can use in a WHERE clause, you can also use in a HAVING clause.
The operators you can use in a WHERE clause were covered in more detail in Chapter 6,
Querying a Single Table.

Grouping and Summarizing Data Chapter 10

[330]

Understanding the difference between the
HAVING and WHERE clauses
You can also use the WHERE and HAVING clauses in the same query, and each has its specific
uses. The following table outlines each. side by side:

HAVING WHERE

Filters on aggregated data Filters on row data
Happens after aggregation Happens before aggregation

For example, in a previous query of Learning how to use the HAVING clause to limit query
results section, you were getting any aggregated at-bat results that were between 100 and
400. However, this would mean that MySQL is aggregating results that wouldn't even get
summed, such as rows that have zero or NULL, so you would want to filter out those rows
so they won't be counted. You can execute the following query to do that:

USE lahmansbaseballdb;
SELECT playerid, teamid, sum(AB) AS sum_at_bats
FROM batting
WHERE ab <> 0
AND ab IS NOT NULL
GROUP BY playerid, teamid
HAVING sum(AB) BETWEEN 100 and 400;

The previous query will give you the same results without the WHERE clause (which are the
same results as in the previous section), but it should get you those results faster. Without
the WHERE clauses, the query runs in 0.179 seconds, while with the WHERE clauses, it runs in
0.140 seconds.

That's not a huge difference, but the difference will become bigger and bigger the larger
your dataset becomes. It's important to filter out as many of the rows with a WHERE clause
as you can if you are going to be using a HAVING clause with GROUP BY.

Understanding SQL query order of
execution
It's important to understand that there is a specific order you write SQL query clauses in, as
well as a specific order that they are actually executed in by MySQL engine.

Grouping and Summarizing Data Chapter 10

[331]

You write SQL query clauses in this order:

SELECT

FROM/JOIN

WHERE

GROUP BY

HAVING

ORDER BY

LIMIT

The order that the clauses are run in by the MySQL engine is as follows:

FROM/JOIN

WHERE

GROUP BY

HAVING

SELECT

ORDER BY

LIMIT

This is why you can only use column aliases from the SELECT clause in the ORDER BY
clause. Understanding the order that MySQL actually runs your clauses in can help you to
better understand how your query works or doesn't work.

There is a setting in MySQL that overrides this default behavior for the GROUP BY and
HAVING clauses, which are enabled by default, so MySQL will allow you to use column
aliases in them. The other RDBMSes, such as Oracle, PostgreSQL, and SQL Server, do not
allow this.

Summary
In this chapter, you learned how to use aggregate functions to group and summarize data.
Aggregate functions include math functions such as AVG, SUM, COUNT, MIN, and MAX. They
also include statistical functions such as STDDEV and VARIANCE.

You learned how to use GROUP BY with and without aggregate functions to summarize
data. You also learned how to filter summarized data with the HAVING clause. Then, you
learned the difference between the HAVING and WHERE clauses.

Grouping and Summarizing Data Chapter 10

[332]

Finally, you learned how MySQL actually executes your query clauses. It's not about the
order you write the clauses in, but writing them in a different order that explains why you
can't use aliases in all the clauses of the SQL statement.

In the next chapter, you will learn how to use advanced querying techniques. By the end of
the next chapter, you will be able to understand what types of subqueries exist and how to
use them, how flow control statements work and how to use them, when and how to use
common table expressions, and how to implement error handling.

Questions
What does the GROUP BY clause allow you to do? 1.
Do you use the WHERE clause before or after the GROUP BY clause? 2.
What's the difference between a GROUP BY clause without aggregate functions3.
and a DISTINCT query?
Do you use the ORDER BY clause before or after the GROUP BY clause? 4.
What modifier can you use on the GROUP BY clause to get subtotals and grand5.
totals?
What does the HAVING clause do? 6.
What's the difference between the WHERE and HAVING clauses? 7.
Can you use the WHERE and HAVING clauses together? 8.
What order do you write query clauses in? 9.
What order does MySQL execute query clauses in? 10.

11
Advanced Querying

Techniques
In this chapter, you will learn how to use advanced querying techniques and how to use
two different kinds of subqueries, correlated and non-correlated. Then, you will learn about
two different types of common table expressions, recursive and non-recursive. Next, you
will learn about query hints and how to choose which index your query will use. Finally,
you will learn about isolation levels and concepts related to how data is read from, and
written to, tables.

In this chapter, we will cover the following topics:

Using subqueries
Using common table expressions
Using query hints and transaction isolation levels

Let's get started!

Technical requirements
You can refer to the code files for this chapter by going to the following GitHub
link: https:/​/​github. ​com/ ​PacktPublishing/ ​learn- ​sql-​database- ​programming/ ​tree/
master/​chapter-​11

https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-11

Advanced Querying Techniques Chapter 11

[334]

Using subqueries
A subquery is a query nested in another query with parentheses. A subquery can be used in
SELECT, FROM, INSERT, DELETE, UPDATE, and WHERE clauses, and can also be nested inside
another subquery. Subqueries can be beneficial when a query may require complex joins
and unions. A subquery can return either a single value, row, column, or table.

A subquery is the inner query of another query, which is considered the outer query. The
inner query is executed before the outer query so that the inner query results are passed to
the outer query. For example, in the following code, the query inside parentheses is the
inner query, while the query outside parentheses is the outer query:

SELECT col1
FROM table1
WHERE col1 IN
 (SELECT col1 FROM table 2 WHERE col1 = 'test')

Understanding the different types of subqueries
and their usage
There are two types of subqueries, correlated and non-correlated. The following table
outlines their differences:

Non-correlated Correlated
The inner query doesn't depend on the

outer query Inner query depends on the outer query

Can run as a standalone query Can't run as a standalone query

Executed only once Executed once for each row selected in the
outer query

Executed before the outer query Executed after the outer query
Can't be used instead of JOIN on the outer

query
Can be used instead of JOIN on the outer

query, but will be slower than JOIN

The following sections will show examples of each to help you understand them better.

Advanced Querying Techniques Chapter 11

[335]

Using non-correlated subqueries
You can use a non-correlated subquery in a WHERE clause along with these operators:

IN: This will return results in the outer query where the results are in the inner
query. If the inner query returns even one NULL value, then there will be no outer
query results. This is because IN can evaluate to either true, false, or NULL. The
following code block shows some sample syntax:

SELECT column(s)
FROM tablea
WHERE col1 IN (SELECT col
 FROM tableb
 WHERE condition(s));

NOT IN: This will return results in the outer query where the results are not in the
inner query. If the inner query returns even one NULL value, then there will be no
outer query results. This is because NOT IN can evaluate to either true, false,
or NULL. The following code block shows some sample syntax:

SELECT column(s)
FROM tablea
WHERE col1 NOT IN (SELECT col
 FROM tableb
 WHERE condition(s));

ANY: This will return results in the outer query where the results of the outer
query satisfy any of the results of the inner query. The following code block
shows some sample syntax:

SELECT column(s)
FROM tablea
WHERE col1 >= ANY (SELECT col
 FROM tableb
 WHERE condition(s));

ALL: This will return results in the outer query where the results of the outer
query satisfy all of the results of the inner query. The following code block shows
some sample syntax:

SELECT column(s)
FROM tablea
WHERE col1 >= ALL (SELECT col
 FROM tableb
 WHERE condition(s));

Advanced Querying Techniques Chapter 11

[336]

SOME: This is an alias for ANY and will return the same results as ANY. The
following code block shows some sample syntax:

SELECT column(s)
FROM tablea
WHERE col1 >= SOME (SELECT col
 FROM tableb
 WHERE condition(s));

=: This will return results in the outer query where the results are equal to the
inner query result. This can only be used if the inner query returns one
value. The following code block shows some sample syntax:

SELECT column(s)
FROM tablea
WHERE col1 = (SELECT col
 FROM tableb
 WHERE condition(s));

>: This will return results in the outer query where the results are greater than the
inner query result. This can only be used if the inner query returns one value.
The following code block shows some sample syntax:

SELECT column(s)
FROM tablea
WHERE col1 > (SELECT col
 FROM tableb
 WHERE condition(s));

<: This will return results in the outer query where the results are less than the
inner query result. This can only be used if the inner query returns one value.
The following code block shows some sample syntax:

SELECT column(s)
FROM tablea
WHERE col1 < (SELECT col
 FROM tableb
 WHERE condition(s));

Advanced Querying Techniques Chapter 11

[337]

>=: This will return results in the outer query where the results are greater than or
equal to the inner query result. This can only be used if the inner query returns
one value. The following code block shows some sample syntax:

SELECT column(s)
FROM tablea
WHERE col1 >= (SELECT col
 FROM tableb
 WHERE condition(s));

<=: This will return results in the outer query where the results are less than or
equal to the inner query result. This can only be used if the inner query returns
one value. The following code block shows some sample syntax:

SELECT column(s)
FROM tablea
WHERE col1 <= (SELECT col
 FROM tableb
 WHERE condition(s));

!= or <>: This will return results in the outer query where the results are not
equal to the inner query result. This can only be used if the inner query returns
one value. The following code block shows some sample syntax:

SELECT column(s)
FROM tablea
WHERE col1 != (SELECT col
 FROM tableb
 WHERE condition(s));

Using a non-correlated subquery in the WHERE clause
This section will help you better understand how to use a non-correlated subquery in the
WHERE clause:

Using IN: This will return results in the outer query where the results are in the
inner query. If the inner query returns even one NULL value, then there will be no
outer query results. This is because IN can evaluate to either true, false, or
NULL. The IN operator allows you to use a subquery that returns zero or more
rows.

Advanced Querying Techniques Chapter 11

[338]

You can execute the following query using a non-correlated subquery with IN:

USE lahmansbaseballdb;
SELECT playerid, yearid, g as GamesBatted
FROM batting
WHERE playerid IN (SELECT playerid FROM people WHERE birthcity =
'Boston');

The preceding query returns the results shown in the following screenshot:

The preceding query will return the playerid, yearid, and
GamesBatted columns when playerid has birthcity as Boston in the people
table. This is because the WHERE clause has a non-correlated subquery that queries
the people table for all playerid that have birthcity equal to Boston, and
then queries the batting table to get the list of playerid with the corresponding
yearid and GamesBatted column.

Using NOT IN: This will return results in the outer query where the results
are not in the inner query. If the inner query returns even one NULL value, then
there will be no outer query results. This is because NOT IN can evaluate to either
true, false, or NULL. The NOT IN operator allows you to use a subquery that
returns zero or more rows.

You can also use the same non-correlated subquery, but with NOT IN in the
WHERE clause instead, as shown in the following query:

USE lahmansbaseballdb;
SELECT playerid, yearid, g as GamesBatted
FROM batting
WHERE playerid NOT IN (SELECT playerid FROM people WHERE birthcity
= 'Boston');

Advanced Querying Techniques Chapter 11

[339]

The previous query returns the results shown in the following screenshot:

The previous query will return the playerid, yearid, and
GamesBatted columns when playerid doesn't have birthcity as Boston in
the people table. This is because the WHERE clause has a non-correlated subquery
that uses NOT IN in the query of the people table for all playerid that have
birthcity equal to Boston, and then queries the batting table to get the list of
playerid with the corresponding yearid and GamesBattedcolumns.

It's important to remember that if your non-correlated subquery returns
any NULL values when you use IN or NOT IN, then the outer query will
return no results.

Using >= (greater than or equal to): This will return results in the outer query
where the results are greater than or equal to the inner query result. This can only
be used if the inner query returns one value. The >= operator allows you to use a
subquery that returns zero or more rows.

You can also use comparison operators such as >= (greater than or equal to) with
a non-correlated subquery in the WHERE clause, as shown in the following query:

USE lahmansbaseballdb;
SELECT playerid, yearid, salary
FROM salaries
WHERE salary >=
 (SELECT AVG(salary)
 FROM salaries
 WHERE teamid = 'DET'
 GROUP BY teamid)
ORDER BY playerid, yearid;

Advanced Querying Techniques Chapter 11

[340]

The preceding query returns the results shown in the following screenshot:

The previous query will return the playerid, yearid, and salary columns if
the salary of the player is greater than or equal to the average salary on the DET
team.

It's important to remember that when using comparison operations such
as =, >, <, >=, <=, or <>, your subquery can only return one row or you
will receive an error: Error Code: 1242. Subquery returns more
than 1 row.

Using ANY: This will return results in the outer query where the results of the
outer query satisfy any of the results of the inner query. The ANY operator allows
you to use a subquery that returns zero or more rows.

You can also use comparison operators such as >= (greater than or equal to) with
ANY and a non-correlated subquery in the WHERE clause, as shown in the
following query:

USE lahmansbaseballdb;
SELECT playerid, yearid, salary
FROM salaries
WHERE salary >= ANY
 (SELECT AVG(salary)
 FROM salaries
 GROUP BY teamid)
ORDER BY playerid, yearid;

Advanced Querying Techniques Chapter 11

[341]

The preceding query returns the results shown in the following screenshot:

The preceding query will return the playerid, yearid, and salary columns if
the salary of the player is greater than or equal to ANY of the average salaries for
each teamid.

Using ALL: This will return results in the outer query where the results of the
outer query satisfy all of the results of the inner query. The ALL operator allows
you to use a subquery that returns zero or more rows.

You can also use comparison operators such as >= (greater than or equal to) with
ALL and a non-correlated subquery in the WHERE clause, as shown in the
following query:

USE lahmansbaseballdb;
SELECT playerid, yearid, salary
FROM salaries
WHERE salary >= ALL
 (SELECT AVG(salary)
 FROM salaries
 GROUP BY teamid)
ORDER BY playerid, yearid;

Advanced Querying Techniques Chapter 11

[342]

The preceding query returns the results shown in the following screenshot:

The previous query will return the playerid, yearid, and salary columns if
the salary of the player is greater than or equal to ALL of the average salaries for
each teamid.

When using ANY or ALL with comparison operations such as =, >, <, >=,
<=, or <>, your subquery can return more than one row.

Additionally, you can use any of the operators listed at the beginning of this section by
following the rules for each of the operators.

Using a non-correlated subquery in the SELECT clause
To help you better understand how to use a non-correlated subquery in the SELECT clause,
execute the following query:

USE lahmansbaseballdb;
SELECT playerid, yearid, salary,
 (SELECT ROUND(AVG(salary), 0)
 FROM salaries) AS average_salary,
 salary - (SELECT ROUND(AVG(salary), 0)
 FROM salaries) AS difference,
 (SELECT MAX(salary)
 FROM salaries) AS max_salary
FROM salaries
ORDER BY playerid, yearid;

Advanced Querying Techniques Chapter 11

[343]

The preceding query returns the results shown in the following screenshot:

The previous query will return the playerid, yearid, salary, average_salary,
difference, and max_salary columns for each row returned. average_salary,
difference, and max_salary use a non-correlated subquery to return the results.

Using a non-correlated subquery in the FROM clause
To help you better understand how to use a non-correlated subquery in the FROM clause,
execute the following query:

USE lahmansbaseballdb;
SELECT ROUND(AVG(average_salary), 0) AS average_of_all_teams_salaries
FROM
 (SELECT AVG(salary) average_salary
 FROM salaries
 GROUP BY teamid);

The preceding query will give you the following error:

Error Code: 1248. Every derived table must have an alias.

Advanced Querying Techniques Chapter 11

[344]

This means that we need to add an alias to the inner query contained in the FROM clause.
The subquery used in a FROM clause is also referred to as a derived table. The following
highlighted code shows you a proper derived table, along with its alias:

Subquery and derived table terminology are often used interchangeably.

When you execute the following query with a properly defined derived table, it will work
without returning an error:

USE lahmansbaseballdb;
SELECT ROUND(AVG(average_salary), 0) AS average_of_all_teams_salaries
FROM
 (SELECT AVG(salary) average_salary
 FROM salaries
 GROUP BY teamid) AS team_salary;

The preceding query returns the result shown in the following screenshot:

The preceding query will return the average of all the averages of the teams' salaries. This is
accomplished via a non-correlated query in the FROM clause that gets each teams' average
salary. By doing this, the outer query gets the average of those averages.

If you were to run the inner query on its own, you would see the listing of teams' average
salaries. The inner query is highlighted in the following screenshot:

Advanced Querying Techniques Chapter 11

[345]

You can add teamid to the columns of the inner query to see the teamid column and make
it more obvious what is happening with the inner query:

SELECT teamid, AVG(salary) average_salary
FROM salaries
GROUP BY teamid

The results from the inner query are shown in the following screenshot:

The outer query then averages those team's salaries into one average for all the teams.

As an example of how you can exclude records from the derived table with a WHERE clause,
you can execute the following query:

USE lahmansbaseballdb;
 SELECT ROUND(AVG(average_salary), 0) AS average_of_all_teams_salaries
FROM
 (SELECT AVG(salary) average_salary
 FROM salaries
 GROUP BY teamid) AS team_salary
WHERE team_salary.average_salary > 2000000;

The preceding query provides the results shown in the following screenshot:

Here, you can see that average_of_all_teams_salaries is now higher than in the
previous query since it has a derived table without a WHERE clause that filters data in the
derived table, that is, 2537765 (with a WHERE clause on the derived table column) versus
2078464 (with a derived table only).

Advanced Querying Techniques Chapter 11

[346]

Using INSERT, UPDATE, and DELETE with non-correlated subqueries
To show you an example of inserting with a non-correlated subquery, execute the following
query to create a new table to hold the data:

USE lahmansbaseballdb;
 CREATE TABLE salaries_avg (
 teamID varchar(3) NOT NULL,
 salaryavg double NOT NULL
);

Once you've created the table with the preceding script, you can execute the following
script to insert data into the table:

USE lahmansbaseballdb;
INSERT INTO salaries_avg
 SELECT teamid, average_salary
 FROM
 (SELECT teamid, AVG(salary) average_salary
 FROM salaries
 GROUP BY teamid) AS team_salary
 WHERE team_salary.average_salary > 2000000;

Here, you can see that the non-correlated subquery is actually in the SELECT clause of the
INSERT query. This is how you can insert data by using a subquery in the same way you
use it in a SELECT clause and then use that SELECT clause to query the data you want to
insert. The following screenshot shows the results of what was inserted into the
salaries_avg table:

Advanced Querying Techniques Chapter 11

[347]

You can also update from a subquery, as shown in the following query:

USE lahmansbaseballdb;
UPDATE salaries_avg
SET
 teamid = (SELECT teamid
 FROM
 (SELECT teamid, AVG(salary) average_salary
 FROM salaries
 GROUP BY teamid) AS team_salary
 WHERE team_salary.average_salary > 2000000
 LIMIT 1);

After the previous update, salary_avg table will look as follows. It's showing all ATL
because that's what the previous UPDATE query ultimately did:

Additionally, you can delete with a subquery, as shown in the following query:

USE lahmansbaseballdb;
DELETE FROM salaries_avg
WHERE teamid IN (SELECT teamid
 FROM
 (SELECT teamid, AVG(salary) avgsalary
 FROM salaries
 GROUP BY teamid) AS team_salary
 WHERE team_salary.avgsalary > 2000000
 AND teamid = 'ATL');

Now, there will be no rows in salaries_avg table.

Advanced Querying Techniques Chapter 11

[348]

Differences between non-correlated subqueries in other relational database
management systems (RDMSes)
There is only one small difference in Oracle when using the subquery in a FROM clause: you
can't use the AS keyword with the alias for the subquery. Instead, the query will look as
follows:

USE lahmansbaseballdb;
SELECT ROUND(AVG(average_salary), 0) AS average_of_all_teams_salaries
FROM
 (SELECT AVG(salary) average_salary
 FROM salaries
 GROUP BY teamid) team_salary;

The original query had AS between the code snippets GROUP BY teamid) and
team_salary, like this:

GROUP BY teamid) AS team_salary;

Using correlated subqueries
You can use a correlated subquery in a WHERE clause along with these operators:

IN: This will return results in the outer query where the results are in the inner
query. If the inner query returns even one NULL value, then there will be no outer
query results. This is because IN can evaluate to either true, False, or NULL. The
following shows some sample syntax:

SELECT column(s) FROM table a
WHERE a.col IN (SELECT b.col
 FROM table b
 WHERE a.col = b.col);

NOT IN: This will return results in the outer query where the results are not in the
inner query. If the inner query returns even one NULL value, then there will be no
outer query results. This is because NOT IN can evaluate to either true, false, or
NULL. The following shows some sample syntax:

SELECT column(s) FROM table a
WHERE a.col NOT IN (SELECT b.col
 FROM table b
 WHERE a.col = b.col);

Advanced Querying Techniques Chapter 11

[349]

EXISTS: This will return results in the outer query where the results exist in the
inner query. It evaluates to either true or false. The following shows some
sample syntax:

SELECT column(s) FROM table a
WHERE EXISTS (SELECT 1 FROM table b
 WHERE a.col = b.col);

NOT EXISTS: This will return results in the outer query where the results do not
exist in the inner query. It evaluates to either true or false. The following
shows some sample syntax:

SELECT column(s) FROM table a
WHERE NOT EXISTS (SELECT 1 FROM table b
 WHERE a.col = b.col);

Using a correlated subquery in the WHERE clause
This section will help you better understand how to use a correlated subquery in the WHERE
clause:

Using EXISTS: This will return results in the outer query where the
results exist in the inner query. It evaluates to either true or false. The EXISTS
operator allows you to use a subquery that returns exactly one row.

You can execute the following query using a correlated subquery with EXISTS:

USE lahmansbaseballdb;
SELECT f.playerid, f.yearid, f.teamid, pos
FROM fielding f
WHERE EXISTS(SELECT 1
 FROM salaries s
 WHERE salary < 200000
 AND salary IS NOT NULL
 AND (f.playerid = s.playerid
 AND f.teamid = s.teamid
 AND f.yearid = s.yearid))
ORDER BY f.playerid;

Advanced Querying Techniques Chapter 11

[350]

The preceding query returns the results shown in the following screenshot:

The preceding query will return the playerid, yearid, teamid, and
pos columns when playerid has salary less than 200000 in the salaries
table. This is because the WHERE clause has a correlated subquery that queries the
salaries table for all playerid that have a salary less than $200,000, and joins
the playerid, yearid and, teamid combination in the salaries table to the
playerid, yearid, and teamid combination in the fielding table. The inner
query will run exactly once for each row in the outer table.

Using IN: This will return results in the outer query where the results are in the
inner query. If the inner query returns even one NULL value, then there will be no
outer query results. This is because IN can evaluate to either true, false, or
NULL. The EXISTS operator allows you to use a subquery that returns exactly one
row.

You can execute the following query using a correlated subquery with IN:

USE lahmansbaseballdb;
SELECT f.playerid, f.yearid, f.teamid, pos
FROM fielding f
WHERE playerid IN (SELECT playerid
 FROM salaries s
 WHERE salary < 200000
 AND salary IS NOT NULL
 AND (f.playerid = s.playerid
 AND f.teamid = s.teamid
 AND f.yearid = s.yearid))
ORDER BY f.playerid;

Advanced Querying Techniques Chapter 11

[351]

The preceding query returns the same results as the previous query, as shown in
the following screenshot:

The previous query will return the playerid, yearid, teamid, and pos columns
when playerid has salary less than 200000 in the salaries table. This is
because the WHERE clause has a correlated subquery that queries the salaries
table for all playerid that have a salary less than $200,000, and joins the
playerid, yearid and, teamid combination in the salaries table to the
playerid, yearid, and teamid combination in the fielding table. The inner
query will run exactly once for each row in the outer table.

Using a correlated subquery in the SELECT clause
You can execute the following query using a correlated subquery in the SELECT clause:

USE lahmansbaseballdb;
SELECT f.playerid, f.yearid, f.teamid, pos,
 (SELECT salary
 FROM salaries s
 WHERE (f.playerid = s.playerid
 AND f.teamid = s.teamid
 AND f.yearid = s.yearid)) AS salary
FROM fielding f
ORDER BY f.playerid;

Advanced Querying Techniques Chapter 11

[352]

The previous query returns the same results as the previous query in this section did, as
shown in the following screenshot:

The previous query will return the playerid, yearid, teamid, pos, and salary columns.
salary is obtained by querying the salaries table and joining it to the fielding table by
playerid, yearid, and teamid. The inner query will run exactly once for each row in the
outer table.

Using common table expressions
A common table expression (CTE) is a container for a single SQL statement that will allow
you to query a temporary result set. A CTE allows you to create complex queries in a more
readable way. It may be beneficial to use a CTE instead of subqueries because it's easier to
read and understand later. CTEs can also be used instead of creating a view. To create a
view, you need elevated permissions in a database, but you won't need any additional
permissions to use a CTE. Views will be covered in more detail in Chapter 12,
Programmable Objects. Additionally, CTEs can help you run recursive queries.

Advanced Querying Techniques Chapter 11

[353]

Using non-recursive CTEs
The syntax for a single non-recursive CTE is as follows:

WITH ctename (col1, col2, colN)
AS (SELECT col1, col2, colN FROM table)
SELECT col1, col2, colN FROM ctename;

The syntax for a non-recursive CTE with multiple CTEs is as follows:

WITH ctename1 (col1, col2, colN)
AS (select col1, col2, colN from table1),
ctename2 (col1, col2, colN)
AS (select col1, col2, colN from table2)
SELECT col1, col2, colN
FROM ctename1
JOIN ctename2
ON ctename1.col1 = ctename2.col1;

The following diagram will help you understand what each piece of the CTE is:

Advanced Querying Techniques Chapter 11

[354]

Non-recursive CTE with the SELECT statement
To help you understand a good use case for a CTE, let's work with a query from earlier in
this chapter that uses a derived table:

USE lahmansbaseballdb;
 SELECT ROUND(AVG(average_salary), 0) AS average_of_all_teams_salaries
FROM
 (SELECT AVG(salary) average_salary
 FROM salaries
 GROUP BY teamid) AS team_salary
WHERE team_salary.average_salary > 2000000;

The preceding query will be rewritten into the following CTE:

USE lahmansbaseballdb;
WITH avgsalarycte
AS
(SELECT AVG(salary) AS average_salary
FROM salaries
GROUP BY teamid)

SELECT ROUND(AVG(average_salary), 0) AS average_of_all_teams_salaries
FROM avgsalarycte
WHERE average_salary > 2000000;

The CTE query will give you the same results as the derived table query (2537765), but
may be a little bit easier to read and understand, especially if you aren't the one who wrote
the query or if you are coming back to the query a long while after writing it. Of course,
you would comment your code so that anyone can understand what you are trying to do,
but it's still nice to make your code as simple as possible. This really comes into play when
your derived tables get way more complicated than this example query, but still, the same
concept applies.

Using recursive CTEs
The syntax for a recursive CTE is as follows:

WITH RECURSIVE ctename
AS (
 initial query
 UNION ALL
 recursive query
)
SELECT * FROM ctename;

Advanced Querying Techniques Chapter 11

[355]

The initial query is the base result set of your CTE. This is also referred to as an anchor
member. The recursive query is the query that will be referencing the CTE name. It is joined
to the anchor query by a UNION ALL. If you're doing a simple counting style CTE, then you
will also use what's referred to as a termination condition so that your CTE stops when the
recursive query stops returning rows.

A simple example of recursion is as follows:

WITH RECURSIVE cte (x) AS
(
 SELECT 1
 UNION ALL
 SELECT x + 1 FROM cte
 WHERE x < 10
)
SELECT x FROM cte;

The preceding CTE will return x as 1, and then keep adding 1 to x, as long as x is less than
10, as shown in the following results:

If you were to leave off the termination condition on the recursive query (WHERE x < 10),
you would receive this error from MySQL:

Error Code: 3636. Recursive query aborted after 1001 iterations. Try
increasing @@cte_max_recursion_depth to a larger value.

Advanced Querying Techniques Chapter 11

[356]

Instead of changing @@cte_max_recursion_depth, you would need to add a termination
condition. Some other examples of ways to use a recursive CTE could be with data series
generation or hierarchical data, such as employee reporting structures.

Differences between CTEs in other RDMSes
In SQL Server and Oracle, remove the RECURSIVE keyword when running a recursive CTE.
Non-recursive and recursive use the same syntax in SQL Server and Oracle.

Using query hints and transaction isolation
levels
Query hints and isolation levels help you to have more control over how your query is
executed by MySQL. Before we discuss these topics, let's go over what locking, blocking,
and deadlocking mean.

Understand the concepts of locking, blocking,
and deadlocking
Locking is what happens when a query runs against a database. There are read locks and
write locks:

Read locks: Allow other queries reading data (SELECT) to read as well.
Write locks: Other queries can't read or write data until the write (INSERT,
UPDATE, DELETE) query is complete.

Blocking can happen when one or more queries holds a lock on the same data. Deadlocking
can happen when each query locks data that the other query needs.

Advanced Querying Techniques Chapter 11

[357]

For example, when you run a query, MySQL has to decide how to get the data from the
table(s). If your table has no index, the query will need to scan through the entire table to
find the data, much the same way you would have to scan through an entire book if it
didn't have an index in the back. That would be very time-consuming, depending on how
long the book is. The same thing goes for an index on a table. You might not notice any
issues with your query running for a long time if the table is small, but once the table is
large, scanning the entire table to get the results could take quite a while. Plus, if other
people are also running queries on the same table, the results may never return since
queries may block each other or deadlock.

Locking happens when you run a query. Locking isn't bad in itself. Locking becomes an
issue when different queries interfere with each other and cause blocking. Blocking
happens when more than one query is trying to read or write the same data. Sometimes,
blocking happens and it's just for a short period of time, so blocking isn't necessarily bad,
but if two or more queries request the same data for creating locks that won't be resolved,
MySQL will decide which is easiest to kill (usually based on how long it will take to
rollback any given query), and this is what is referred to as a deadlock. MySQL will need to
roll back a query if it hasn't finished inserting, updating, or deleting data to keep the data in
a consistent state.

If you create indexes and use them properly with your queries, you will have less blocking
and deadlocking to deal with because the index will allow you to query data more quickly.

The main way indexes can speed up a query is by using the columns in the index when
joining tables, when filtering results (that is, yearid = 2017), and when ordering results
(that is, order by year descending).

Learning how to use index hints to improve
queries
Generally speaking, MySQL will know how to choose the correct index for your queries.
That being said, you can force it to choose which index to use with index hints on your
query. USE INDEX keywords will allow you to specify the index you want your query to
use. The following code block shows the syntax of an index hint:

SELECT columns
FROM tablename USE INDEX(indexname)
WHERE condition;

Advanced Querying Techniques Chapter 11

[358]

To follow along with the USE INDEX query later in this section, add the following index to
the appearances table:

USE lahmansbaseballdb;
ALTER TABLE appearances
ADD INDEX NC_playerid_g_cols
(playerID ASC, G_all ASC, G_batting ASC, G_defense ASC) VISIBLE;

If you want to see a list of the indexes on your table, along with associated information
about those indexes, execute the following query:

USE lahmansbaseballdb;
SHOW INDEXES FROM appearances;

The SHOW INDEXES query will give you the results shown in the following screenshot:

The previous screenshot gives you information about the indexes on the appearances table.
This includes the name of the index, the columns in the index, and the order of the
columns.

Then, execute this query without any index hints:

USE lahmansbaseballdb;
EXPLAIN SELECT playerid FROM appearances;

You will see that it will choose the index you just added to the key column, as shown in the
following screenshot:

Let's say you wanted to ensure it used the primary key index. Here, you can add an index
hint to the query, as shown in the following example:

USE lahmansbaseballdb;
EXPLAIN SELECT playerid FROM appearances USE INDEX (PRIMARY);

Advanced Querying Techniques Chapter 11

[359]

The following screenshot shows that the query is now using the PRIMARY index instead:

The query does run slightly faster in this case, but it may not always do so, depending on
the system specifications and the query that is being executed, as shown in the following
screenshot, the Action Output window shows the Duration/Fetch Time:

It's mainly best to let MySQL engine choose the best index for your query, but index hints
are an option if you really want to choose the specific index to use.

Learning how to use transaction isolation levels
You learned about isolation briefly in Chapter 8, Modifying Data and Table Structures, as
part of the four properties of database transactions: Atomicity, Consistency, Isolation, and
Durability (ACID).

There are a few key terms to understand before learning about isolation levels:

Dirty read: Let's say that one transaction (T1) is running and updating some
data, and another transaction (T2) comes along to select data from that same
table and returns the data, but then T1 rolls back. Now, the user who was
running T2 thinks this data is how T1 would have left it, had it not rolled back.
Non-repeatable read: Like the previous example, we have two transactions
executing (T1 and T2). T1 is executing the update, while T2 is selecting from the
same table, but this time, T2 gets a snapshot of the data when it starts running, so
it won't see T1's data in-progress. However, if T2 were to run again after T1 is
done, it would return different results.

Advanced Querying Techniques Chapter 11

[360]

Phantom read: Like the previous examples, we have two transactions executing
(T1 and T2). T1 is executing the insert, while T2 is selecting from the same table,
but this time, T2 gets a snapshot of the data when it starts running, so it won't see
T1's data in-progress. However, in this case, the same results would be used
throughout T2's execution, whenever the select query is re-executed as part of
that transaction. It won't take into account any of the changes that T1 made, even
if they are already committed. Phantom reads happen when rows are returned
that weren't in the previous results.

To sum up the differences between dirty reads, non-repeatable reads, and phantom reads,
you can think of dirty reads as reading uncommitted data, non-repeatable reads occur
when a transaction reads committed updates from another transaction, and phantom reads
occur when a transaction reads from another transaction committing inserts or deletes.

There are four different kinds of isolation levels in MySQL (in order of least isolation to
most isolation, and also fastest to slowest):

READ UNCOMMITTED: There is very little isolation in this isolation level. With this
isolation level, transactions can see data that hasn't been committed in other
transactions yet. This is what is considered a dirty read. It can be highly
performant, but it's the isolation level with the most issues when it comes to
getting the correct data returned. It could even return data that won't be there
anymore after another concurrently running transaction is running.
READ COMMITTED: Unlike READ UNCOMMITTED, more isolation exists in this
isolation level. READ COMMITTED solves the dirty read problem and introduces a
non-repeatable read. This isolation level ensures that only committed data is
read.
REPEATABLE READ: This is the default for MySQL. With this isolation level, the
problem of dirty reads and non-repeatable reads are eliminated, but the risk of
phantom reads is introduced.
SERIALIZABLE: This isolation level takes it one step farther than REPEATABLE
READ and completely isolates transactions from one another. You won't
encounter dirty reads, non-repeatable reads, or phantom reads. With this
isolation level, transactions appear to be executed in a serial order. If you set this
as the default in MySQL, then everything will run much slower. This is best in
environments where accuracy is most important, and transactions aren't long-
running.

Advanced Querying Techniques Chapter 11

[361]

To summarize when different issues with each isolation level occur, refer to the following
table:

Isolation level Dirty reads Non-repeatable reads Phantom reads
READ UNCOMMITTED Maybe Maybe Maybe
READ COMMITTED No Maybe Maybe
REPEATABLE READ No No Maybe
SERIALIZABLE No No No

The isolation level can be set globally (this affects all queries), can be set for each transaction
(set of queries), or you can set it for the session. If you set the transaction isolation level to
something different than the global setting, it will override the isolation for just that one
transaction or session.

To set the isolation level for the session, you add the following before starting a transaction
or query:

SET SESSION TRANSACTION isolationlevel;

In the previous query, isolationlevel is changed to the isolation level you want to set.

To set the isolation level for the transaction, you add the following before starting a
transaction:

SET TRANSACTION isolationlevel;

In the previous query, isolationlevel is changed to the isolation level you want to set.

Generally speaking, changing the isolation level isn't something you want to do, but let's
say you want to ensure that your SELECT statement won't lock any data. Here, you can
execute the following query:

USE lahmansbaseballdb;
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;
SELECT * FROM appearances;

The previous query would only return dirty reads if another transaction was actually
changing data in the appearances table at the same time you were querying it.

Advanced Querying Techniques Chapter 11

[362]

Summary
In this chapter, you learned how to use advanced querying techniques. First, you learned
how to use subqueries, which includes non-correlated subqueries and how to use each with
the SELECT, FROM, and WHERE clauses, and also how to use them in INSERT, UPDATE, and
DELETE queries. You also learned about correlated subqueries and how to use them with
the SELECT, FROM, and WHERE clauses.

Next, you learned about the different kinds of CTEs and how to use them, including
recursive and non-recursive. Then, you learned about query hints and how to choose which
index your query will use. Finally, you learned about isolation levels, which include four
levels and what happens during each level. You also learned how to set your queries to use
a specific isolation level.

In the next chapter, you will learn how to create programmable objects. By the end of the
next chapter, you will be able to understand what types of views exist and how to use
them, as well as when and how to use variables, procedures (and the components of
procedures, such as error handling and flow control), functions, triggers, and temporary
tables.

Questions
What type of subqueries can you use? 1.
What's the difference between correlated and non-correlated subqueries? 2.
Where can you use a non-correlated subquery? 3.
Where can you use a correlated subquery? 4.
What is CTE? 5.
What types of CTEs exist? 6.
What is locking? 7.
How can you make a query use a specific index? 8.
What transaction isolation levels exist? 9.
What is a phantom read? 10.

Further reading
For more information on Oracle isolation levels, visit https:/ ​/​blogs. ​oracle. ​com/
oraclemagazine/​on- ​transaction- ​isolation- ​levels.

https://blogs.oracle.com/oraclemagazine/on-transaction-isolation-levels
https://blogs.oracle.com/oraclemagazine/on-transaction-isolation-levels
https://blogs.oracle.com/oraclemagazine/on-transaction-isolation-levels
https://blogs.oracle.com/oraclemagazine/on-transaction-isolation-levels
https://blogs.oracle.com/oraclemagazine/on-transaction-isolation-levels
https://blogs.oracle.com/oraclemagazine/on-transaction-isolation-levels
https://blogs.oracle.com/oraclemagazine/on-transaction-isolation-levels
https://blogs.oracle.com/oraclemagazine/on-transaction-isolation-levels
https://blogs.oracle.com/oraclemagazine/on-transaction-isolation-levels
https://blogs.oracle.com/oraclemagazine/on-transaction-isolation-levels
https://blogs.oracle.com/oraclemagazine/on-transaction-isolation-levels
https://blogs.oracle.com/oraclemagazine/on-transaction-isolation-levels
https://blogs.oracle.com/oraclemagazine/on-transaction-isolation-levels
https://blogs.oracle.com/oraclemagazine/on-transaction-isolation-levels
https://blogs.oracle.com/oraclemagazine/on-transaction-isolation-levels
https://blogs.oracle.com/oraclemagazine/on-transaction-isolation-levels
https://blogs.oracle.com/oraclemagazine/on-transaction-isolation-levels
https://blogs.oracle.com/oraclemagazine/on-transaction-isolation-levels

12
Programmable Objects

In this chapter, you will learn how to create programmable objects, including how to create
and use views, which includes selecting data from views and inserting, updating, and
deleting data using views. You will learn how to create and use variables, which includes
how to declare and assign values to variables. You will also learn how to create and use
stored procedures, including how to use variables and parameters in stored procedures, as
well as how to control flow and error handling. Finally, you will learn how to create and
use functions, triggers, and temporary tables.

In this chapter, we will cover the following topics:

Creating and using views
Creating and using variables
Creating and using stored procedures
Creating and using functions
Creating and using triggers
Creating and using temporary tables

Let's get started!

Technical requirements
You can refer to the code files for this chapter by going to the following GitHub
link: https:/​/​github. ​com/ ​PacktPublishing/ ​learn- ​sql-​database- ​programming/ ​tree/
master/​chapter-​12.

https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-12

Programmable Objects Chapter 12

[364]

Creating and using views
A view is a stored query. You can select data from a view to return the results of the query.
You can also think of a view as a virtual table. A view can be created from one or more
tables and can contain all or just some of the rows from one or more tables.

Views can be important for allowing certain users to have access to only specific fields in a
table. If you had sensitive data in some of the columns and you didn't want everyone to be
able to view that data, then you could provide them with the view instead. Also, you can
use a view to make column names more intuitive by using column aliases in the view
definition. You could also summarize data in a view to generate reports.

Learning how to create and query a view
In this section, we will learn how to create a view when writing queries. To create a view,
use the following syntax:

CREATE VIEW nameofview AS
SELECT col1, col2, co1n
FROM tablename
WHERE condition;

Let's take a query and place it into a view with the following code:

USE lahmansbaseballdb;
CREATE VIEW playergameinfo AS
SELECT p.playerid, birthyear,
 a.yearid, a.teamid,
 G_defense AS defensegames,
 H AS numberofhits
FROM appearances AS a
JOIN people AS p
ON p.playerid = a.playerid
JOIN batting AS b
ON a.playerid = b.playerid
AND a.yearid = b.yearid
AND a.teamid = b.teamid
WHERE b.yearid = 2017
AND H <> 0;

Programmable Objects Chapter 12

[365]

Once this view is created, you will be able to query data from the view, as shown in the
following query:

USE lahmansbaseballdb;
SELECT * FROM playergameinfo;

The following screenshot shows the results of the previous query:

You can also specify the columns you want to be returned from the view, as shown in the
following query:

USE lahmansbaseballdb;
SELECT playerid, birthyear, yearid, teamid, defensegames
FROM playergameinfo
WHERE teamid = 'CHA'
ORDER BY defensegames DESC;

The previous query will give you the results shown in the following screenshot:

You can see that the previous query specifies the columns you want to be returned, as well
as that it uses the WHERE and ORDER BY clauses. You can do this with a view in exactly the
same way as you would with a regular query.

Programmable Objects Chapter 12

[366]

You can see the views that are created in MySQL Workbench in the SCHEMAS panel for
each database, right below the Tables listing:

If you don't see the view you just created listed under Views, then right-click Views and
choose Refresh All.

Learning how to modify data returned in a view
You can insert, update, and delete data with the help of a view. You just have to use the
view name in your INSERT, UPDATE, or DELETE statements instead of a table name.

Whatever permissions a user has to the underlying table(s) will determine
if they can insert, update, or delete via a view.

In order to insert and update records via a view, there is one more thing to know about
view creation. There is WITH CHECK OPTION, which ensures that any data that's inserted or
updated via a view conforms to the conditions specified in the view. Before you add a new
view, you should create a copy of the parks table to ensure you don't update the original
table. We are only doing this for this test case, but if you really want to update the parks
table, you could create the view on that table instead. You can execute the following query
to create a copy of the parks table:

USE lahmansbaseballdb;
CREATE TABLE parks_copy
SELECT * FROM parks

Programmable Objects Chapter 12

[367]

Now, you can create another view by using WITH CHECK OPTION on parks_copy with the
following code:

USE lahmansbaseballdb;
CREATE VIEW parksalias AS
SELECT parkalias, parkkey, parkname,
 city, state, country
FROM parks_copy
WHERE parkalias IS NOT NULL
WITH CHECK OPTION;

If you query the parksalias view in the following query, you will see that the parkalias
column doesn't have any NULL values:

USE lahmansbaseballdb;
SELECT * FROM parksalias;

The following screenshot shows the results of the parksalias view:

Updating data using a view
To update parkalias to NULL where parkkey = 'ANA01', you can execute the following
query:

UPDATE parksalias
SET parkalias = NULL
WHERE parkkey = 'ANA01';

You will receive the following error:

Error Code: 1369. CHECK OPTION failed 'lahmansbaseballdb.parksalias'

Programmable Objects Chapter 12

[368]

You can't update parkalias to NULL because NULL is filtered out in the WHERE clause of the
view, and the view has WITH CHECK OPTION defined.

Now, let's create a view as shown in the following code:

USE lahmansbaseballdb;
CREATE VIEW parksalias AS
SELECT parkalias, parkkey, parkname,
 city, state, country
FROM parks_copy
WHERE parkalias IS NOT NULL;

You will be able to update a parkalias value that is NULL, even though the WHERE clause
filters to IS NOT NULL. This is because you didn't specify WITH CHECK OPTION in your
view definition.

Updating data using a view that has multiple tables
You can update data via a view that has multiple tables. First, you need to set up a copy of
an existing table so you don't update the data in the original table. You can do that with the
following query:

USE lahmansbaseballdb;
DROP TABLE IF EXISTS collegeplaying_copy;
CREATE TABLE collegeplaying_copy
SELECT * FROM collegeplaying;

Next, you can create a view with this new table in it with the following query:

USE lahmansbaseballdb;
DROP VIEW IF EXISTS collegeplayingbyname;
CREATE VIEW collegeplayingbyname AS
SELECT namefirst, namelast, schoolid, yearid
FROM collegeplaying_copy c
INNER JOIN people p
ON p.playerid = c.playerid;

You can see what the view contains by executing the following query:

USE lahmansbaseballdb;
SELECT * FROM collegeplayingbyname;

Programmable Objects Chapter 12

[369]

The previous query returns the results shown in the following screenshot:

namefirst and namelast come from the people table, while schoolid and yearid
come from the collegeplaying_copy table. Let's update a value in the
collegeplaying_copy table with the following query:

USE lahmansbaseballdb;
UPDATE collegeplayingbyname
SET schoolid = 'testing', yearid = 2004
WHERE (namefirst = 'David' and namelast = 'Aardsma')
and (schoolid = 'rice' and yearid = 2003);

Execute the following query again:

USE lahmansbaseballdb;
SELECT * FROM collegeplayingbyname;

Now, you will see that the collegeplaying_copy table has been updated, as shown in the
following screenshot:

You can also update the people table from this view, but this shows you how you can
update fields in one table via a view that has multiple tables joined. You can't update more
than one table at a time in a view. Execute the following query, which tried to update both
tables at the same time, via the view:

USE lahmansbaseballdb;
UPDATE collegeplayingbyname
SET schoolid = 'testing', yearid = 2004, namefirst = 'Peter'
WHERE (namefirst = 'David' and namelast = 'Aardsma')
and (schoolid = 'rice' and yearid = 2003);

Programmable Objects Chapter 12

[370]

The preceding query will give you an error:Error Code: 1393. Can not modify more
than one base table through a join view

'lahmansbaseballdb.collegeplayingbyname'. You will need to do use update
statements instead of one to get to the end results that you want, but to show you this, you
need to create a copy of the people table first to ensure that you don't update the original
table:

USE lahmansbaseballdb;
DROP TABLE IF EXISTS people_copy;
CREATE TABLE people_copy
SELECT * FROM people;

You will also need to update the view so that it includes the people_copy table instead of
the people table:

USE lahmansbaseballdb;
DROP VIEW IF EXISTS collegeplayingbyname;
CREATE VIEW collegeplayingbyname AS
SELECT namefirst, namelast, schoolid, yearid
FROM collegeplaying_copy c
INNER JOIN people_copy p
ON p.playerid = c.playerid;

Now, we can update the school information with the following query:

USE lahmansbaseballdb;
UPDATE collegeplayingbyname
SET schoolid = 'testing', yearid = 2004
WHERE (namefirst = 'David' and namelast = 'Aardsma')
and (schoolid = 'rice' and yearid = 2003);

You can see that it updated the school information with the following query:

Then, update the player name with the following query:

USE lahmansbaseballdb;
UPDATE collegeplayingbyname
SET namefirst = 'Peter'
WHERE (namefirst = 'David' and namelast = 'Aardsma')
and (schoolid = 'rice' and yearid = 2003);

Programmable Objects Chapter 12

[371]

Here, you can see that it didn't just update the one row contained the new player's name. It
updated them all because the people_copy table holds the player name, not the school
table, so when you updated the player's name, it updated it for all the rows in the view, as
shown in the following screenshot:

You need to be very careful when updating multiple tables at the same time in a view to
avoid updating data you didn't intend to update.

Inserting data using a view
To insert data into a view that has WITH CHECK OPTION, you can execute the following
query:

USE lahmansbaseballdb;
INSERT INTO parksalias
VALUES (NULL,
 'TST01',
 'testing park name',
 'Seattle',
 'WA',
 'US');

The preceding query will return the following error:

Error Code: 1423. Field of view 'lahmansbaseballdb.parksalias' underlying
table doesn't have a default value.

The preceding error has to do with the fact that the ID field in the parks_copy table isn't
auto-incremented, and your view doesn't include it. This brings up an interesting point
about inserting data via a view because this could happen to you if an ID field isn't auto
incremented or another field doesn't allow a NULL to be inserted. If those fields aren't in the
view, then your INSERT statement using that view will fail. To fix this issue on the
parks_copy table, execute the following query:

USE lahmansbaseballdb;
ALTER TABLE parks_copy
CHANGE COLUMN ID ID SMALLINT NOT NULL AUTO_INCREMENT,
ADD PRIMARY KEY (ID);

Programmable Objects Chapter 12

[372]

If you re-execute the INSERT statement shown in the preceding query, you will get a
different error, but an error that will be similar to the one you received when you tried to
update to a NULL value. This time, the error will be as follows:

 Error Code: 1369. CHECK OPTION failed 'lahmansbaseballdb.parksalias'

You can't insert parkalias as NULL because NULL is filtered out in the WHERE clause of the
view, and the view has WITH CHECK OPTION defined.

Let's say we create a view like this with the following code instead:

USE lahmansbaseballdb;
CREATE VIEW parksalias AS
SELECT parkalias, parkkey, parkname,
 city, state, country
FROM parks_copy
WHERE parkalias IS NOT NULL;

By doing this, you will be able to insert a parkalias value that is NULL, even though the
WHERE clause filters to IS NOT NULL. This is because you didn't specify WITH CHECK
OPTION in your view definition.

Inserting data using a view that has multiple tables
You can insert data via a view that has multiple tables. First, you need to set up a copy of
an existing table so you don't insert data into the original table. You can do that with the
following query:

USE lahmansbaseballdb;
DROP TABLE IF EXISTS collegeplaying_copy;
CREATE TABLE collegeplaying_copy
SELECT * FROM collegeplaying;

Next, you can create a view with this new table in it with the following query:

USE lahmansbaseballdb;
DROP VIEW IF EXISTS collegeplayingbyname;
CREATE VIEW collegeplayingbyname AS
SELECT namefirst, namelast, schoolid, yearid
FROM collegeplaying_copy c
INNER JOIN people p
ON p.playerid = c.playerid;

Programmable Objects Chapter 12

[373]

You can see what the view contains by executing the following query:

USE lahmansbaseballdb;
SELECT * FROM collegeplayingbyname;

The preceding query returns the results shown in the following screenshot:

The namefirst and namelast columns come from the people table, while the schoolid
and yearid columns come from the collegeplaying_copy table. Let's insert a row into
the view with the following query:

USE lahmansbaseballdb;
INSERT INTO collegeplayingbyname (namefirst, namelast, schoolid, yearid)
VALUES ('David', 'Aardsma', 'rice', 2004);

The preceding query will give you an error:

Error Code: 1393. Can not modify more than one base table through a join
view 'lahmansbaseballdb.collegeplayingbyname'.

You will need to insert the school information via this view, but there's a problem – you
can't update who the school information will belong to, so you will need to update the view
so that it includes playerid from the schoolplaying_copy table:

USE lahmansbaseballdb;
DROP VIEW IF EXISTS collegeplayingbyname;
CREATE VIEW collegeplayingbyname AS
SELECT c.playerid, namefirst, namelast, schoolid, yearid
FROM collegeplaying_copy c
INNER JOIN people_copy p
ON p.playerid = c.playerid;

Execute the following query to see the fields in the view:

USE lahmansbaseballdb;
SELECT * FROM collegeplayingbyname;

Programmable Objects Chapter 12

[374]

Now, you can see that playerid is in the view, as shown in the following screenshot:

Now, you will be able to insert college information for a player with the following query:

INSERT INTO collegeplayingbyname (playerid, schoolid, yearid)
VALUES ('aardsda01', 'rice', 2004);

Execute the following query:

USE lahmansbaseballdb;
SELECT * FROM collegeplayingbyname
WHERE playerid = 'aardsda01';

Now, you will see that the collegeplaying_copy table has a new row, as shown in the
following screenshot:

You wouldn't want to insert items into the people table from this view because you would
be missing a lot of data related to the person you are inserting. This because you can only
insert the first and last names from this view. The best way to avoid having someone try to
insert a first and last name from this view is to ensure that there is a primary key on the
playerid field in the people table so that if someone tried to insert from this view, it
would fail as they didn't add a playerid to the people table.

Programmable Objects Chapter 12

[375]

Deleting data using a view
To delete the row in the parksalias view that corresponds to parkkey = 'ALB01', you
can execute the following query:

USE lahmansbaseballdb;
DELETE from parksalias
WHERE parkkey = 'ALB01';

You won't receive an error, but it won't delete that row because it doesn't exist in the view.
It exists in the underlying table, but since the view doesn't contain that row, a DELETE
statement via the view won't be able to delete it.

The Output panel shows that zero rows were deleted, as shown in the following
screenshot:

Let's try to delete the row you just inserted via the view with the help of the following
query:

USE lahmansbaseballdb;
DELETE from parksalias
WHERE parkkey = 'TST01';

Again, you won't receive an error, but it won't delete that row because it doesn't exist in the
view. The Output panel shows that zero rows were deleted, as shown in the following
screenshot:

Even though you could insert it via the view, now that it's in the underlying table with a
NULL value in parkalias, it's not available to the view to be deleted. This is an important
reason to use WITH CHECK OPTION on your views.

Programmable Objects Chapter 12

[376]

Deleting data using a view that has multiple tables
To see if you can delete data via a view that has multiple tables, you need to set up a copy
of an existing table so that you don't delete the data in the original table. You can do that
with the following query:

USE lahmansbaseballdb;
DROP TABLE IF EXISTS collegeplaying_copy;
CREATE TABLE collegeplaying_copy
SELECT * FROM collegeplaying;

Next, you can create a view with this new table in it with the following query:

USE lahmansbaseballdb;
DROP VIEW IF EXISTS collegeplayingbyname;
CREATE VIEW collegeplayingbyname AS
SELECT namefirst, namelast, schoolid, yearid
FROM collegeplaying_copy c
INNER JOIN people p
ON p.playerid = c.playerid;

Let's delete a value using the view we just created with the following query:

USE lahmansbaseballdb;
DELETE FROM collegeplayingbyname
WHERE (namefirst = 'David' AND namelast = 'Aardsma')
 AND (schoolid = 'rice' AND yearid = 2003);

You will receive an error:

Error Code: 1395. Can not delete from join view
'lahmansbaseballdb.collegeplayingbyname'

This shows that you can't delete from a view that includes multiple tables.

Learning how to update or delete a view
If you want to update a view (change the view definition), you can execute the following
query:

USE lahmansbaseballdb;
ALTER VIEW parksalias AS
SELECT parkalias, parkkey, parkname, city, state, country
FROM parks_copy
WHERE parkalias IS NOT NULL
WITH CHECK OPTION;

Programmable Objects Chapter 12

[377]

The difference is that you use ALTER VIEW instead of CREATE VIEW.

If you want to delete a view, you can execute the following query:

USE lahmansbaseballdb;
DROP VIEW playergameinfo;

By dropping the view, it has been deleted from the database.

Differences between views in other relational
database management systems (RDBMSes)
Oracle and PostgreSQL don't have the same functionality as the ALTER keyword. In order
to change the view definition, you will need to use CREATE OR REPLACE VIEW, as shown
in the following query:

CREATE OR REPLACE VIEW parksalias AS
SELECT parkalias, parkkey, parkname, city, state, country
FROM parks_copy
WHERE parkalias IS NOT NULL
WITH CHECK OPTION;

The preceding query will replace the view if it already exists or create it if it doesn't.

Creating and using variables
A variable lets you store a single data value that can be used during your session's queries.
You can only store a limited set of data types in a variable. These include string, integer,
decimal, float, or NULL. If you use a different type in your variable, it will be converted into
one of the permitted types listed previously.

Learning how to create and assign values to
variables
In order to create and assign a value to a variable, you use the SET statement. There are two
variations of assigning a value to a variable:

SET @varname = value;

SET @varname := value;

Programmable Objects Chapter 12

[378]

You can also set a variable with a SELECT statement, as shown in the following code
sample:

SELECT @varname := column1 FROM tablename;

You can name your variable what you like. Variable names are not case-sensitive. You can
name it @varname and then use @VARname in a query when referencing the variable name,
and it will work.

Learning how to use variables in SQL statements
In order to use a variable in a SQL statement, you need to place the variable name into the
query, as shown in the following example:

USE lahmansbaseballdb;
SET @varname := 'ALB01';
SELECT * FROM parks_copy
WHERE parkkey = @varname;

The preceding query produces the following results:

This was a simple example that shows how to use a variable – they can be quite powerful.

Differences between variables in other RDBMSes
The differences between variables in each of the RDMSes are outlined as follows:

Oracle: In Oracle, there is a different syntax for using variables, as shown in the
following query:

DECLARE
 var_parkname varchar2(100);
 var_parkkey varchar2(5) := 'ALB01';
BEGIN
SELECT parkname INTO var_parkname FROM parks_copy
WHERE parkkey = var_parkkey;
DBMS_OUTPUT.PUT_LINE(var_parkname);
END;

Programmable Objects Chapter 12

[379]

The query has you declare a variable for parkkey (var_parkkey), as well as for
the output of the query with the variable in it, which is named var_parkname.
Then, you output var_parkname to get the results.

PostgreSQL: You can't use variables outside of functions.
SQL Server: In SQL Server, you can't use := to set a variable, only =. Also, you
need to declare the variable before setting it, as shown in the following code
snippet:

DECLARE @varname varchar(5);

You can also declare and set the variable in one line, as shown in the following
code snippet:

DECLARE @varname varchar(5) = 'ALB01';

The first DECLARE statement will require you to use a SET statement to set the
value, but the second DECLARE statement won't.

Creating and using stored procedures
A stored procedure is a set of SQL statements stored in a database. It could be just one SQL
statement or many statements. With the help of this, you can reuse certain pieces of code.
This can particularly be helpful when you are grouping business logic into a set of queries
that will need to be run over and over again.

Creating a stored procedure
Let's learn how to create a stored procedure. First, we'll go through the following syntax,
which is used to create a stored procedure:

DELIMITER $$
CREATE PROCEDURE storedprocname()
 BEGIN
 your sql statments go here;
 END $$
DELIMITER ;

Programmable Objects Chapter 12

[380]

In the previous code sample, we have the following:

DELIMITER lets MySQL know that there may be lines in-between the delimiter
statements that end in a semicolon.
If you don't put DELIMITER around a stored procedure, you will get an error
when MySQL hits the semicolon in your first SQL query, inside the stored
procedure.

Let's work through an example of how to create a stored procedure. The following code
will help you create a stored procedure:

USE lahmansbaseballdb;
DELIMITER $$
CREATE PROCEDURE getplayergameinfo()
BEGIN
 SELECT p.playerid, birthyear, a.yearid,
 a.teamid, G_defense AS defensegames,
 H AS numberofhits
 FROM appearances AS a
 JOIN people AS p ON p.playerid = a.playerid
 JOIN batting AS b ON a.playerid = b.playerid
 AND a.yearid = b.yearid
 AND a.teamid = b.teamid
 WHERE b.yearid = 2017 AND H <> 0
 ORDER BY p.playerid, a.yearid, a.teamid,
 G_defense, H;
END $$
DELIMITER ;

With that, you have created a stored procedure.

In order to call the stored procedure that you just created, execute the following code:

USE lahmansbaseballdb;
CALL getplayergameinfo();

Programmable Objects Chapter 12

[381]

The call to the stored procedure will return the results shown in the following screenshot:

You can view the stored procedures that were created in MySQL Workbench in the
SCHEMAS panel for each database, right below the Views listing:

If you don't see the stored procedure you just created listed under Stored Procedures, then
right-click Stored Procedures and choose Refresh All.

Learning how to alter and drop stored
procedures
In order to alter a store procedure, you will need to drop it and then recreate it. Let's try to
alter the stored procedure that we just created in the previous section. First, drop it with the
following query:

DROP PROCEDURE getplayergameinfo;

Programmable Objects Chapter 12

[382]

You can now recreate it with any modifications that you want to make. Be careful when
dropping a stored procedure because you can't restore the same without having a database
backup. You can do this in MySQL Workbench by right-clicking on Stored Procedures in
the Schemas panel, then choosing Send to SQL Editor, and then choosing Create
Statement, as shown in the following screenshot:

Make sure to script out the stored procedure before dropping it.

Using variables and parameters in stored
procedures
Earlier in this chapter, you learned how to use variables outside of stored procedures.
Variables can also be used inside a stored procedure, mainly with flow control statements.
When working with stored procedures, you may want to pass in a value to use inside the
stored procedure. This is called a parameter. The main difference between a variable and a
parameter is that parameters are static throughout the procedure, but a variable can be
changed during the stored procedure. IN parameters allow you to provide a value or
values to the stored procedure. OUT parameters allow you to receive output from the stored
procedure.

IN parameter
Let's begin by dropping the procedure that we created in the previous section with the help
of the following code:

USE lahmansbaseballdb;
DROP PROCEDURE IF EXISTS getplayergameinfo;

Programmable Objects Chapter 12

[383]

In the preceding code, there is an IF EXISTS in the DROP PROCEDURE statement. This will
drop the procedure if it exists, but won't throw an error after dropping it if it doesn't exist.

Next, you will create the procedure, but this time it will have a couple of parameters so that
you can change the WHERE clause values:

USE lahmansbaseballdb;
 DELIMITER $$
 CREATE PROCEDURE getplayergameinfo
 (
 IN yearid_in year,
 IN hits_in smallint
)
 BEGIN
 SELECT p.playerid, birthyear, a.yearid,
 a.teamid,G_defense AS defensegames,
 H AS numberofhits
 FROM appearances AS a
 JOIN people AS p ON p.playerid = a.playerid
 JOIN batting AS b ON a.playerid = b.playerid
 AND a.yearid = b.yearid
 AND a.teamid = b.teamid
 WHERE b.yearid = yearid_in AND h > hits_in
 ORDER BY p.playerid, a.yearid,
 a.teamid, G_defense, H;
 END $$
 DELIMITER ;

By doing this, you will have two parameters inside the parentheses after the procedure
name: yearid_in and hits_in. They are declared with IN at the beginning, the name of
the parameter, the data type of the parameter, and separated by a comma.

Then, you can call the procedure with the parameters shown in the following code:

USE lahmansbaseballdb;
CALL getplayergameinfo(2016, 0);

Programmable Objects Chapter 12

[384]

The preceding code will return the results shown in the following screenshot:

The call to the stored procedure allows you to put in any valid year for yearid_in and any
smallint for hits_in. This will put those values into the WHERE clause and return the
results based on those values.

OUT parameter
Let's begin by dropping the procedure that you created in the preceding section with the
following code:

USE lahmansbaseballdb;
DROP PROCEDURE IF EXISTS getplayergameinfo;

Next, you will create the procedure, but this time, it will also have an OUT parameter:

USE lahmansbaseballdb;
DELIMITER $$
CREATE PROCEDURE getplayergameinfo
(
IN yearid_in year,
IN h_in smallint,
OUT countplayers smallint
)
BEGIN
 SELECT COUNT(p.playerid)
 INTO countplayers
 FROM appearances AS a
 JOIN people AS p ON p.playerid = a.playerid
 JOIN batting AS b ON a.playerid = b.playerid
 AND a.yearid = b.yearid
 AND a.teamid = b.teamid
 WHERE b.yearid = yearid_in AND h > h_in

Programmable Objects Chapter 12

[385]

 ORDER BY p.playerid, a.yearid, a.teamid, G_defense, H;
END $$
DELIMITER ;

You will see a couple of new things in the stored procedure. First, there's an OUT
parameter. You will see that we now have another parameter inside the paratheses after the
procedure name, countplayers. This is declared with OUT at the beginning, the name of
the parameter, the data type of the parameter, and separated by a comma. The query also
had to be changed to get the count of the playerid field and then select countplayers.

In order to call the stored procedure, you will need to execute the following query:

USE lahmansbaseballdb;
CALL getplayergameinfo(2015, 10, @countplayers);
SELECT @countplayers;

The preceding query will return the results shown in the following screenshot:

Next, we will cover flow control statements in stored procedures.

Using flow control statements
Flow control statements help you to loop through the logic in SQL queries inside of a stored
procedure, such as in LOOP, REPEAT, and WHILE. They also allow you to apply conditions to
values, such as in CASE statements.

Understanding the different types of flow control
statements
There are several different MySQL keywords to control the flow of queries:

IF: Returns a value if the condition is TRUE and another value if it's FALSE.
CASE: Goes through conditions and then returns a value once the condition is
met. This is like an expanded IF function (IF-THEN-ELSE).
LOOP: Executes a statement repeatedly. If you don't specifically terminate this, it
can run infinitely.

Programmable Objects Chapter 12

[386]

REPEAT: Repeats a statement until a condition is true. It always runs at least
once.
WHILE: Repeats a statement while a condition is true.
ITERATE: Starts the statement again. It can appear in LOOP, REPEAT, or WHILE
statements.
LEAVE: Exits the statement. It can appear in LOOP, REPEAT, or WHILE statements.
RETURN: Used to return a value.

Understanding the difference between the IF and CASE
statements and how to use them
The IF and CASE statements are similar but do have some differences, as outlined in the
following table:

IF CASE

Accepts three parameters Accepts multiple parameters
Accepts one condition Accepts multiple conditions

The following shows the syntax of IF:

IF(condition, value if true, value if false);

Here's an example of an IF statement that will return 'barely any' for g_all between 0
and 10, and 'some more' for any games not between 0 and 10 instead of the number
value that is in the column:

USE lahmansbaseballdb;
SELECT playerid, yearid,
IF(g_all between 0 and 10, 'barely any', 'some more') as gamecount
FROM appearances
WHERE yearid = 1990;

Programmable Objects Chapter 12

[387]

The previous query returns the results shown in the following screenshot:

Now, let's go through the syntax of the CASE statement:

CASE
 WHEN condition1 THEN result1
 WHEN condition2 THEN result2
 WHEN conditionN THEN resultN
 ELSE result
 END;

The following query is an example of the CASE statement:

USE lahmansbaseballdb;
SELECT playerid, yearid,
CASE
WHEN g_all between 0 and 10 then 'barely any'
WHEN g_all between 11 and 50 then 'some'
WHEN g_all between 51 and 100 then 'many'
ELSE 'tons'
END
FROM appearances
WHERE yearid = 1990;

Programmable Objects Chapter 12

[388]

The preceding query returns the case statements for g_all instead of the number value
that is in the column, as shown in the following screenshot:

As you can see, the CASE statement is much more flexible and powerful than the IF
statement.

Understanding how to loop through statements
You can loop through statements with LOOP, WHILE, and REPEAT:

Using the LOOP statement: LOOP allows you to execute a statement repeatedly. If
you don't specifically terminate a LOOP statement, it can run infinitely. The
following shows you an example of the LOOP syntax:

[beginlabel:] LOOP
 sql statements
 END LOOP [endlabel];

beginlabel and endlabel are optional, and you can name them whatever
makes sense for the loop. You use the label when executing an ITERATE or LEAVE
statement. The SQL statements will execute once, each time LOOP executes. You
can terminate a LOOP with either a LEAVE or RETURN statement. You should use a
LOOP statement when you aren't certain how many times it may need to run.

You can execute the following code to test out an example loop:

DELIMITER $$
CREATE PROCEDURE forloopexample()
BEGIN
 DECLARE n INT;
 DECLARE loopreturn VARCHAR(25);

Programmable Objects Chapter 12

[389]

 SET n = 1;
 SET loopreturn = '';

 looplabel: LOOP
 IF n > 14 THEN
 LEAVE looplabel;
 END IF;

 SET n = n + 1;
 IF (n mod 2) THEN
 ITERATE looplabel;
 ELSE
 SET loopreturn = CONCAT(loopreturn,n,',');
 END IF;
 END LOOP;
 SELECT loopreturn;
END$$
DELIMITER ;

You can execute the following code to call the loop stored procedure:

CALL forloopexample();

The previous code returns the results shown in the following screenshot:

The stored procedure loops through until it's at 14 and stores those numbers in
the string variable (loopreturn). Then, the string variable is returned. You will
also notice that the way a variable is declared and set is different than in the
creating and using variables section of this chapter. In a stored procedure, you
have to declare the variable (with the DECLARE keyword) and set its data type.
Then, you separately set the variable's value.

Using the REPEAT statement: REPEAT allows you to repeat a statement until a
condition is true. It always runs at least once. The following shows you an
example of the REPEAT syntax:

[beginlabel:] REPEAT
 sql statements
UNTIL condition
END REPEAT [endlabel]

Programmable Objects Chapter 12

[390]

beginlabel and endlabel are optional, and you can name them whatever
makes sense for the repeat loop. The SQL statements will execute once for each
time REPEAT executes. You can use a REPEAT statement when you aren't certain
how many times it may need to run, but know you need it to run at least once.
You use UNTIL to terminate the loop once the condition of UNTIL is met. You can
execute the following code to test out an example repeat loop:

USE lahmansbaseballdb;
DELIMITER $$
CREATE PROCEDURE repeatexample()
BEGIN
 DECLARE count INT DEFAULT 1;
 DECLARE result VARCHAR(30) DEFAULT '';
 REPEAT
 SET result = CONCAT(result,count,',');
 SET count = count + 1;
 UNTIL count > 10
 END REPEAT;
 SELECT result;
END$$
DELIMITER ;

You can execute the following code to call the repeat stored procedure:

CALL repeatexample();

The preceding code returns the results shown in the following screenshot:

The stored procedure repeats until it's at 10 and stores those numbers in the
string variable (repeatreturn). Then, the string variable is returned. You will
also notice that the way a variable is declared and set is different than in the
creating and using variables section of this chapter. In a stored procedure, you
have to declare the variable (with the DECLARE keyword) and set its data type.
Then, you separately set the variable's value.

Using the WHILE statement: The WHILE statement is executed repeatedly till a
condition is true. The following shows you an example of the WHILE syntax:

[beginlabel:]
WHILE condition DO
sql statements

Programmable Objects Chapter 12

[391]

END WHILE
[end_label]

beginlabel and endlabel are optional, and you can name them whatever
makes sense for the WHILE loop. The SQL statements will execute once while the
condition is true. You can execute the following code to test out an example
WHILE loop:

USE lahmansbaseballdb;
DELIMITER $$
CREATE PROCEDURE whileexample()
BEGIN
 DECLARE count INT;
 DECLARE whileresult Varchar(50);
 SET count = 1;
 SET whileresult = '';
 WHILE count <=10 DO
 SET whileresult = CONCAT(whileresult, count, ',');
 SET count = count + 1;
 END WHILE;
 SELECT whileresult;
END $$
DELIMITER ;

You can execute the following code to call the while stored procedure:

CALL whileexample();

The previous code returns the results shown in the following screenshot:

The stored procedure loops while it's equal to or less than 10 and stores those
numbers into the string variable (whilereturn). Then, the string variable is
returned. You will also notice that the way a variable is declared and set is
different than as shown in the creating and using variables section of this chapter.
In a stored procedure, you have to declare the variable (with the DECLARE
keyword) and set its data type. Then, you separately set the variable's value.

Programmable Objects Chapter 12

[392]

Using error handling
When you encounter an error in SQL code, you want to make sure you handle it properly
by continuing or exiting the current query and issuing a useful error message.

Understanding error handling syntax and how to
implement error handling
In order to handle errors, you can use special error handling. The syntax for that is as
follows:

DECLARE action HANDLER FOR condition statement;

When a condition matches the condition specified in the handler, MySQL will execute the
statement specified in the handler and either continue or exit based on the action specified.
This statement can be a single statement or multiple statements surrounded by BEGIN and
END.

The action specified in the handler can be one of two values:

Continue: Execution of the code will continue
Exit: Execution of the code will terminate

The condition specified in the handler can be one of the following:

A MySQL error code: This will be an integer value for a specific error, such as
1051. More information on error codes can be found in the Further reading
section.
A standard SQLSTATE value: This will be a five-character string value, such as
42S01. This could also be SQLWARNING, NOTFOUND, or SQLEXCEPTION. More
information on these can be found in the Further reading section.

Let's look at an example, for ease of understanding. You can execute the following to create
a stored procedure with error handling:

USE lahmansbaseballdb;
 DELIMITER $$
 CREATE PROCEDURE insertallstarfull(
 IN inplayerid varchar(9),
 IN inyearid smallint,
 IN ingamenum smallint
)
 BEGIN

Programmable Objects Chapter 12

[393]

 DECLARE EXIT HANDLER FOR 1062
 BEGIN
 SELECT CONCAT('Duplicate key (',inplayerid,',',inyearid,',',ingamenum,')
occurred') AS message;
 END;

 INSERT INTO allstarfull (playerid, yearid, gamenum)
 VALUES (inplayerid, inyearid, ingamenum);

 SELECT count(*)
 FROM allstarfull
 WHERE playerid = inplayerid;
 END$$
 DELIMITER ;

The previous stored procedure will allow us to insert values into allstarfull by passing
in playerid, yearid, and gamenum as parameters.

You can call it with the following query:

CALL insertallstarfull('aaronha01', 1958, 0);

The preceding call will produce an error, as follows:

Unlike if you didn't have error handling in your stored procedure, it won't throw an error
and show that error in the Output area of MySQL Workbench. In this case, it shows you the
error you custom coded into the stored procedure in your query window and gracefully
exits the stored procedure.

Instead, if we call the stored procedure with different parameter values, as shown in the
following query, we won't receive an error message:

CALL insertallstarfull('aaronha01', 1954, 0);

We now get the count(*) results from the query that follows in the insert in the stored
procedure, as shown in the following screenshot:

Programmable Objects Chapter 12

[394]

Declaring and handling errors is considered catching errors. With this method, you have
more control over how errors are handled instead of just letting a stored procedure fail and
having to find the error message in the output panel. This can be especially beneficial if you
want to continue with an error or capture the errors to write them to a table.

Differences between stored procedures in other
RDBMSes
Each RDBMS and its differences will be explained in more detail here.

Oracle
Oracle has a different syntax to create and call a stored procedure. It also has different
syntax for flow control and error handling. The syntax for how to create and call a stored
procedure is outlined in the Creating and calling a stored procedure in Oracle section. The flow
control and error handling differences will be covered in the Flow control in Oracle and Error
handling in Oracle sections, respectively.

Creating and calling a stored procedure in Oracle
To create a stored procedure, you can execute the following query:

CREATE OR REPLACE PROCEDURE getplayergameinfo(data OUT varchar2)
IS
BEGIN
 SELECT p.playerid
 INTO data
 FROM appearances a
 JOIN people p ON p.playerid = a.playerid
 JOIN batting b ON a.playerid = b.playerid
 AND a.yearid = b.yearid
 AND a.teamid = b.teamid
 WHERE b.yearid = 2017 AND H <> 0
 FETCH FIRST 1 ROWS ONLY;
END;

To call a stored procedure, you can execute the following query:

DECLARE
 results VARCHAR2(4000);
BEGIN
 getplayergameinfo(results);

Programmable Objects Chapter 12

[395]

 DBMS_OUTPUT.PUT_LINE(results);
END;

The preceding query will return the results of the getplayergameinfo stored procedure.

Flow control in Oracle
Oracle has IF/ELSE, CASE, and LOOP and WHILE statements for flow control options.

The LOOP statement in Oracle is similar to the REPEAT statement in MySQL and uses the
following syntax:

[label]
LOOP
sql statements go here;
EXIT [label] WHEN condition;
END LOOP;

The WHILE statement in Oracle, which is very similar to the WHILE statement in MySQL,
uses the following syntax:

[label]
WHILE condition LOOP
sql statements go here;
END LOOP [label];

For more information about Oracle flow control, take a look at the Further reading section.

Error handling in Oracle
Oracle does error handling with the EXCEPTION statement. The following syntax is an
example of how Oracle handles errors:

DECLARE
err_num NUMBER;
err_msg VARCHAR2(200);
BEGIN
sql statements go here
EXCEPTION
conditions for exception go here
WHEN OTHERS THEN
err_num := SQLCODE;
err_msg := SUBSTR(SQLERRM, 1, 200);
INSERT INTO errors VALUES (err_num, err_msg);
END;

Programmable Objects Chapter 12

[396]

To learn more about error handling in Oracle, take a look at the Further reading section.

PostgreSQL
PostgreSQL has a different syntax for creating stored procedures. It also has different
syntax for flow control and error handling. Generally speaking, you won't use stored
procedures in PostgreSQL; instead, you'll use functions.

Creating a stored procedure in PostgreSQL
In PostgreSQL, you can't return data via a stored procedure. If you need to return data, you
will need to use a function instead. If you want to create a stored procedure to insert,
update, or delete data, you can use the following syntax:

CREATE OR REPLACE PROCEDURE procedurename()
LANGUAGE plpgsql
AS $$
BEGIN
 -- update, insert, or delete sql statements go here
END
$$;

To create a stored procedure with IN parameters, you can use the following syntax:

CREATE OR REPLACE PROCEDURE procedurename
(
 varname vartype,
 varname2 vartype
)
LANGUAGE plpgsql
AS $$
BEGIN
 INSERT INTO tablename (col1, col2)
 VALUES (varname, varname2);

END
$$;

Since no results can be returned from a PostgreSQL stored procedure, there are no OUT
parameters.

Programmable Objects Chapter 12

[397]

Flow control in PostgreSQL
PostgreSQL has IF/ELSE, CASE, and LOOP and WHILE statements for flow control options.
For the IF/ELSE example we used in MySQL, you would need to use a CASE statement in
PostgreSQL.

The LOOP statement in PostgreSQL is similar to the REPEAT statement in MySQL and uses
the following syntax:

[looplabel]
LOOP
sql statements go here;
EXIT [looplabel] WHEN condition;
END LOOP;

The WHILE statement in PostgreSQL, which is very similar to the WHILE statement in
MySQL, uses the following syntax:

[whilelabel]
WHILE condition LOOP
sql statements go here;
END LOOP;

For more information about PostgreSQL flow control, take a look at the Further reading
section.

Error handling in PostgreSQL
PostgreSQL does error handling with the RAISE statement. Any errors will be caught in the
RAISE statement when it's used.

The following query will try to insert values into the allstarfull table and use RAISE to
output the error:

DO $$
BEGIN
INSERT INTO allstarfull
(playerid, yearid, gamenum)
VALUES ('aaronha01', 1958, 0);

exception when others then
RAISE notice '% %', SQLERRM, SQLSTATE;

END $$;

Programmable Objects Chapter 12

[398]

You will receive an error with those variables set as-is because there is a primary key
violation:

duplicate key value violates unique constraint
"allstarfull$index_2bd68208_c8b4_4347" 23505

To learn more about error handling in PostgreSQL, take a look at the Further reading
section.

SQL Server
SQL Server has a different syntax for creating and calling stored procedures. It also has
different syntax for flow control and error handling. The syntax for how to create and call a
stored procedure is outlined in the Creating and calling a stored procedure in SQL Server
section. The flow control and error handling differences will be covered in the Flow control
in SQL Server and Error handling in SQL Server sections, respectively.

Creating and calling a stored procedure in SQL Server
To create a stored procedure, you can execute the following query:

CREATE or ALTER PROCEDURE getplayergameinfo
AS
SELECT p.playerid, birthyear,
 a.yearid,a.teamid,
 G_defense AS defensegames,
 H AS numberofhits
FROM appearances AS a
JOIN people AS p
ON p.playerid = a.playerid
JOIN batting AS b
ON a.playerid = b.playerid
AND a.yearid = b.yearid
AND a.teamid = b.teamid
WHERE b.yearid = 2017 AND H <> 0
ORDER BY p.playerid, a.yearid,
 a.teamid,G_defense, H;

To call a stored procedure, execute the following query:

EXEC getplayergameinfo;

To create a stored procedure with IN parameters, execute the following query:

CREATE or ALTER PROCEDURE getplayergameinfo
 @yearid_in smallint,

Programmable Objects Chapter 12

[399]

 @hits_in smallint
AS
SELECT p.playerid, birthyear,
 a.yearid, a.teamid,
 G_defense AS defensegames,
 H AS numberofhits
FROM appearances AS a
JOIN people AS p
ON p.playerid = a.playerid
JOIN batting AS b
ON a.playerid = b.playerid
AND a.yearid = b.yearid
AND a.teamid = b.teamid
WHERE b.yearid = @yearid_in
AND H > @hits_in
ORDER BY p.playerid, a.yearid, a.teamid, G_defense, H;

To call the stored procedure with IN parameters, execute the following query:

EXEC getplayergameinfo
@yearid_in = 2017, @hits_in = 0;

To create a stored procedure with OUT parameters, execute the following query:

CREATE or ALTER PROCEDURE getplayergameinfo
 @yearid_in smallint,
 @hits_in smallint,
 @countplayers smallint OUT
AS
SELECT COUNT(p.playerid)
FROM appearances AS a
JOIN people AS p
ON p.playerid = a.playerid
JOIN batting AS b
ON a.playerid = b.playerid
AND a.yearid = b.yearid
AND a.teamid = b.teamid
WHERE b.yearid = @yearid_in
AND H > @hits_in;

To call the stored procedure with OUT parameters, execute the following query:

DECLARE @countplayers smallint
EXEC getplayergameinfo
@yearid_in = 2017,
@hits_in = 0,
@countplayers = @countplayers OUT;
SELECT @countplayers;

Programmable Objects Chapter 12

[400]

The previous query will return the count of players.

Flow control in SQL Server
SQL Server has IF/ELSE, CASE, and WHILE statements for flow control options. For the
IF/ELSE example we used in MySQL, you would need to use a CASE statement in SQL
Server.

The WHILE has different syntax, as shown in the following query:

DECLARE @counter INT = 1;
WHILE @counter <= 10
BEGIN
 PRINT @counter;
 SET @counter = @counter + 1;
END

The WHILE loop will print 1 through 10.

Also, in SQL Server, you can use a WHILE statement in any query, and it doesn't have to be
contained in a stored procedure.

Error handling in SQL Server
SQL Server does error handling with the TRY and CATCH statements. The syntax for this is
shown in the following code:

BEGIN TRY
 --sql statements
END TRY
BEGIN CATCH
 --sql statements
END CATCH

Anything you want to execute goes in the TRY statement, and if there is an error, the CATCH
statement will run. If there is no error, the TRY statements are successfully executed, and
the CATCH statement is never used.

The following query will try to insert values into the allstarfull table using the TRY and
CATCH statements:

DECLARE @inplayerid varchar(9) = 'aaronha01';
DECLARE @inyearid smallint = 1958;
DECLARE @ingamenum smallint = 0;
BEGIN TRY

Programmable Objects Chapter 12

[401]

 INSERT INTO allstarfull
 (playerid, yearid, gamenum)
 VALUES
 (@inplayerid, @inyearid, @ingamenum);
END TRY
BEGIN CATCH
SELECT
 ERROR_NUMBER() AS ErrorNumber
 ,ERROR_MESSAGE() AS ErrorMessage;
END CATCH;

You will receive an error with those variables set as-is because there is a primary key
violation, as shown in the following screenshot:

To learn more about the TRY and CATCH statements in SQL Server, take a look at the Further
reading section.

Creating and using functions
You can create user-defined functions in MySQL. These are used to extend the functionality
of MySQL, and they work much the same as other built-in functions work. As you may
recall, built-in functions are things such as SUM() or AVG().

Understanding the difference between a function
and a stored procedure
A function differs from a stored procedure in many ways, as shown in the following table:

Function Stored procedure
Returns only one mandatory value Can return zero, one, or multiple values

Doesn't allow transactions Allow transactions
Can be used in SELECT, WHERE, and

HAVING clauses
Can't be used in SELECT, WHERE, and HAVING

clauses
Only allows input parameters Allows input and output parameters

Can't use error handling Can use error handling

Programmable Objects Chapter 12

[402]

Each is powerful in their own way, and you need to keep in mind how each works to
ensure you choose the right one for your use case. Generally speaking, a function is used to
compute a value, while a stored procedure is used to execute business logic.

Learning how to create and use functions
The syntax to create a function is quite similar to creating a stored procedure:

DELIMITER $$
 CREATE FUNCTION functionname(
 parameter1,
 parameter2,…
)
 RETURNS datatype
 [NOT] DETERMINISTIC
 BEGIN
 -- put sql statements here
 END $$
 DELIMITER ;

DELIMITER lets MySQL know that there may be lines in-between the delimiter statements
that end in a semicolon. If you don't put DELIMITER around a function, you will get an
error when MySQL hits the semicolon in your first SQL query, inside the stored procedure.

A function can be deterministic or non-deterministic. Deterministic always returns the
same result for the same input parameters, whereas non-deterministic doesn't.

Let's walk through an example. You can execute the following query to create a function:

USE lahmansbaseballdb;
DELIMITER $$
 CREATE FUNCTION hittinglevel(
 g_all smallint
)
 RETURNS VARCHAR(10)
 DETERMINISTIC
 BEGIN
 DECLARE hitlevel VARCHAR(10);
 IF g_all BETWEEN 0 and 10 THEN
 SET hitlevel = 'barely any';
 ELSEIF g_all BETWEEN 11 and 50 THEN
 SET hitlevel = 'some';
 ELSEIF g_all BETWEEN 51 and 100 THEN
 SET hitlevel = 'many';
 ELSEIF g_all > 100 THEN
 SET hitlevel = 'tons';

Programmable Objects Chapter 12

[403]

 END IF;
 RETURN (hitlevel);
 END$$
 DELIMITER ;

The function you just created will set hitlevel for the g_all parameter and we will use
this in a function.

Now, you can call the function in a SELECT query, as follows:

USE lahmansbaseballdb;
 SELECT playerid, yearid, teamid,
 hittinglevel(ab) AS hits
 FROM batting
 WHERE yearid = 2017;

The function we used in the previous query was used to pass in the g_all parameter. It
returns the results shown in the following screenshot:

You could also use this function for any smallint type value that's passed into it, even if it
has nothing to do with baseball hits.

Programmable Objects Chapter 12

[404]

You can see the functions that have been created in MySQL Workbench in the SCHEMAS
panel for each database, right below the Stored Procedures listing:

If you don't see the function you just created listed under Functions, then right-click
Functions and choose Refresh All.

Learning how to alter or delete functions
In order to alter a function, you will need to drop it, then recreate it. If you wanted to alter
the function you just created in the previous section, you would drop it with the following
query:

DROP FUNCTION hittinglevel;

Then, you would have to recreate it with any modifications you wanted to make. Be careful
when dropping because you can't restore the function without having a database backup.
You can do this in MySQL Workbench by right-clicking on the function in the SCHEMAS
panel, then choosing Send to SQL Editor, and then choosing Create Statement, as shown
in the following screenshot:

Programmable Objects Chapter 12

[405]

Make sure to script out the function before dropping it.

Differences between functions in other RDBMSes
Each RDBMS and its differences will be explained in more detail in this section.

Oracle
Oracle has a different syntax from MySQL for creating a function, but generally works the
same way, as shown in the following query:

CREATE FUNCTION hittinglevel(g_all IN NUMBER)
 RETURN VARCHAR AS
 hitlevel VARCHAR(10);
BEGIN
 hitlevel := CASE
 WHEN g_all BETWEEN 0 and 10 THEN 'barely any'
 WHEN g_all BETWEEN 11 and 50 THEN 'some'
 WHEN g_all BETWEEN 51 and 100 THEN 'many'
 ELSE 'tons'
 END;

Programmable Objects Chapter 12

[406]

 RETURN hitlevel;
END;

You can call the function and drop the function the same way that you do in MySQL.

PostgreSQL
PostgreSQL has a different syntax from MySQL for creating a function, but generally works
the same way, as shown in the following query:

CREATE FUNCTION hittinglevel(g_all SMALLINT)
 RETURNS VARCHAR(10)
 AS $hitlevel$
 DECLARE hitlevel varchar(10);
 BEGIN
 IF g_all BETWEEN 0 and 10 THEN
 SET hitlevel = 'barely any';
 ELSEIF g_all BETWEEN 11 and 50 THEN
 SET hitlevel = 'some';
 ELSEIF g_all BETWEEN 51 and 100 THEN
 SET hitlevel = 'many';
 ELSEIF g_all > 100 THEN
 SET hitlevel = 'tons';
 END IF;
 RETURN hitlevel;
 END;
 $hitlevel$
 LANGUAGE plpgsql;

You can call the function and drop the function the same way that you do in MySQL.

SQL Server
SQL Server has a different syntax for creating a function, but it works quite similarly to
MySQL. The following query shows you how to create a function in SQL Server:

CREATE FUNCTION hittinglevel
(@g_all SMALLINT)
RETURNS VARCHAR(10)
AS
BEGIN
 DECLARE @hitlevel varchar(10);
 IF @g_all BETWEEN 0 and 10
 SET @hitlevel = 'barely any'
 IF @g_all BETWEEN 11 and 50

Programmable Objects Chapter 12

[407]

 SET @hitlevel = 'some'
 IF @g_all BETWEEN 51 and 100
 SET @hitlevel = 'many'
 IF @g_all > 100
 SET @hitlevel = 'tons'
 RETURN @hitlevel;
END;

The function you just created in SQL Server will work the same way as in MySQL, and you
can drop it the same way as well.

Creating and using triggers
A trigger is a set of actions that run after you insert, update, or delete data. Triggers are
created on tables. You can use triggers to enforce business rules for data, audit data, or
validate data.

There are a few different types of DML triggers:

BEFORE INSERT: This causes the trigger to run some logic before you insert data
into the table.
AFTER INSERT: This causes the trigger to run some logic after you insert data
into the table.
BEFORE UPDATE: This causes the trigger to run some logic before you update
data in the table.
AFTER UPDATE: This causes the trigger to run some logic after you update data
in the table.
BEFORE DELETE: This causes the trigger to run some logic before you delete data
from the table.
AFTER DELETE: This causes the trigger to run some logic after you delete data
from the table.

Additionally, you can create multiple triggers on a table. You can have the triggers in a
specific order from the same insert/update/delete on a table.

Programmable Objects Chapter 12

[408]

Learning how to create and use a trigger
Let's take a look at the following syntax for creating a trigger:

CREATE TRIGGER triggername
 {BEFORE | AFTER} {INSERT | UPDATE| DELETE }
 ON tablename FOR EACH ROW
 triggerbody;

You can choose either BEFORE or AFTER, and either INSERT, UPDATE, or DELETE. You can
name the trigger with a descriptive name, and you choose the table for your trigger in place
of tablename. Finally, you put the logic in triggerbody.

Creating and using a trigger with one statement
Let's create a copy of a table and an audit table:

We'll start by creating a copy of the allstarfull table: 1.

USE lahmansbaseballdb;
CREATE TABLE allstarfull_copy
SELECT * FROM allstarfull;

Then, we'll create an audit table for the allstarfull_copy table with the2.
following query:

USE lahmansbaseballdb;
 CREATE TABLE allstarfull_audit (
 id INT AUTO_INCREMENT PRIMARY KEY,
 playerID varchar(9) NOT NULL,
 yearID smallint(6) NOT NULL,
 gameNum smallint(6) NOT NULL,
 gameID varchar(12) NULL,
 teamID varchar(3) NULL,
 lgID varchar(2) NULL,
 GP smallint(6) NULL,
 startingPos smallint(6) NULL,
 changedate DATETIME NOT NULL,
 actiontype VARCHAR(50) NOT NULL);

Programmable Objects Chapter 12

[409]

You can create a BEFORE UPDTE trigger on the allstarfull_copy table, which3.
will write changes to the audit table using the following query. The OLD keyword
signifies that you want to capture the value before it was changed. The other
option you can use is NEW, which would capture the value after it was changed:

USE lahmansbaseballdb;
 CREATE TRIGGER before_allstar_update
 BEFORE UPDATE ON allstarfull_copy
 FOR EACH ROW
 INSERT INTO allstarfull_audit
 SET actiontype = 'update',
 playerid = OLD.playerid,
 yearid = OLD.yearid,
 gamenum = OLD.gamenum,
 gameid = OLD.gameid,
 teamid = OLD.teamid,
 lgid = OLD.lgid,
 gp = OLD.gp,
 startingpos = OLD.startingpos,
 changedate = NOW();

You can update some data in the allstarful_copy table with the following4.
query:

USE lahmansbaseballdb;
 UPDATE allstarfull_copy
 SET
 yearID = 2015,
 gameNum = 1,
 gameID = 'NLS201507170',
 teamID = 'CHI',
 lgID = 'AL',
 GP = 1,
 startingPos = 9
 WHERE playerid = 'arrieja01';

Select from allstarfull_copy with the following query:5.

USE lahmansbaseballdb;
 SELECT * FROM allstarfull_copy
 WHERE playerid = 'arrieja01';

Programmable Objects Chapter 12

[410]

You will see that the rows have been updated to the values you specified in the
preceding UPDATE statement, as shown in the following screenshot:

Select from allstarfull_audit with the following query:6.

USE lahmansbaseballdb;
 SELECT * FROM allstarfull_audit;

You will see that a row has been inserted into the allstarfull_audit table with the OLD
values, as shown in the following screenshot:

You can also see that changedate and actiontype have been updated accordingly with
the current datetime of the allstarfull_copy update and the actiontype update.

Creating and using a trigger with multiple statements
If you want to run multiple statements inside your trigger, you will need to use DELIMITER
statements around your SQL statements, much the same way you use them in a stored
procedure. The syntax for this is as follows:

DELIMITER $$

CREATE TRIGGER before_allstar_update
 BEFORE UPDATE ON allstarfull_copy
 FOR EACH ROW
BEGIN
 IF OLD.playerid <> NEW.playerid THEN
 INSERT INTO allstarfull_audit
 SET actiontype = 'update',
 playerid = OLD.playerid,
 yearid = OLD.yearid,
 gamenum = OLD.gamenum,
 gameid = OLD.gameid,
 teamid = OLD.teamid,
 lgid = OLD.lgid,
 gp = OLD.gp,
 startingpos = OLD.startingpos,

Programmable Objects Chapter 12

[411]

 changedate = NOW();
 END IF;
END$$
DELIMITER ;

The preceding code will only insert into the allstarfull_audit table if the new
playerid doesn't equal the old playerid.

Creating and using multiple triggers on the same table
You can create multiple triggers on a table and have them precede or follow one another by
adding the PRECEDES or FOLLOWS keywords to the trigger definition. The following code
sample shows you the placement of these keywords:

CREATE TRIGGER triggername
 {BEFORE | AFTER} {INSERT | UPDATE| DELETE }
 ON tablename FOR EACH ROW
 {FOLLOWS | PRECEDES} anothertriggername
triggerbody;

You can add an additional trigger for BEFORE UPDATE to the allstarfull_copy table
with the following code:

USE lahmansbaseballdb;
 CREATE TRIGGER before_allstar_update2
 BEFORE UPDATE ON allstarfull_copy
 FOR EACH ROW
 FOLLOWS before_allstar_update
 INSERT INTO allstarfull_audit
 SET actiontype = 'update',
 playerid = OLD.playerid,
 yearid = OLD.yearid,
 gamenum = OLD.gamenum,
 gameid = OLD.gameid,
 teamid = OLD.teamid,
 lgid = OLD.lgid,
 gp = OLD.gp,
 startingpos = OLD.startingpos,
 changedate = NOW();

Notice that this new trigger is also an update trigger, and it will follow
before_allstar_update.

Programmable Objects Chapter 12

[412]

You can also have a delete or insert trigger on the same table, but they won't have to
precede or follow because they aren't of the same type. If you wanted to have more than
one insert or delete trigger on the same table, then you would also define them with
precedes or follows.

Deleting a trigger
In order to delete a trigger, execute the following query:

USE lahmansbaseballdb;
DROP TRIGGER before_allstar_update;

Differences between triggers in other RDBMSes
Each RDBMS and its differences are explained as follows:

Oracle: Oracle has a similar syntax to MySQL for creating triggers. For more
information about Oracle triggers, take a look at the Further reading section.
PostgreSQL: In PostgreSQL, you need to create a function and a trigger function.
The trigger function contains the logic for the trigger, and the trigger placed on
the table calls the trigger function. For more information about PostgreSQL
triggers, take a look at the Further reading section.
SQL Server: In SQL Server, the syntax is different, and you can't do BEFORE
triggers, only AFTER triggers. SQL Server creates two virtual tables to store the
data before and after the changes. Those tables are referred to as INSERTED and
DELETED. The following table shows you which of these tables holds for INSERT,
UPDATE, and DELETE actions:

Action INSERTED table DELETED table
INSERT Rows to be inserted Empty
UPDATE Rows to be updated Existing rows modified
DELETE Empty Rows to be deleted

To help you understand this, here is the BEFORE trigger that you created earlier in this
chapter and modified for use in SQL Server:

CREATE TRIGGER after_allstar_update
ON allstarfull_copy
AFTER UPDATE
AS
BEGIN

Programmable Objects Chapter 12

[413]

 INSERT INTO allstarfull_audit(
 playerid, yearid,
 gamenum,gameid,
 teamid,lgid,
 gp,startingpos,
 changedate, actiontype
)
 SELECT playerid, yearid,
 gamenum,gameid,teamid,
 lgid, gp,startingpos,
 GETDATE(),'update'
 FROM inserted i
 UNION ALL
 SELECT playerid,yearid,
 gamenum, gameid, teamid,
 lgid, gp, startingpos,
 GETDATE(),'delete'
 FROM deleted d;
END

This trigger inserts a row into the audit table for the new data (FROM inserted i) and a
row for the old data (FROM deleted d). If you just wanted to get the old data in the audit
table, you could remove the section of the trigger that inserts from the inserted table, as
shown in the following code:

SELECT playerid, yearid,
 gamenum,gameid,teamid,
 lgid, gp,startingpos,
 GETDATE(),'update'
 FROM inserted i
 UNION ALL

To learn more about SQL Server triggers, take a look at the Further reading section.

Creating and using temporary tables
Temporary tables allow you to store temporary query results that can be used during a
query session. A temporary table can only be used in your current session. No one else can
use them except you. These kinds of tables are useful when you have a complicated or
long-running query whose results you want to use in a session. This way, you won't have
to keep running the same query over and over, but instead, store the results and query that
table.

Programmable Objects Chapter 12

[414]

Learning how to create and use a temporary table
To create a temporary table, you can use the same syntax that we used for creating a
permanent table, except we will add the TEMPORARY keyword. You can either create a
temporary table with a definition or create one from an existing permanent table. Let's have
a look at the syntax that's used to create temporary tables:

Explicit creation of a temporary table:

Use the following syntax to create a temporary table schema explicitly:

CREATE TEMPORARY TABLE temptablename(
 col1 col1type,
 col2 col2type);

You will define each column name, data type, and any constraints on it, such as
NOT NULL, the same as you would when you create a permanent table.

Implicit creation of a temporary table:

Use the following syntax to create a temporary table schema implicitly from one
or more tables via a query:

CREATE TEMPORARY TABLE temptablename
SELECT * FROM permanenttable
LIMIT 0;

Setting LIMIT to 0 means it will only create the schema, but if you want the data
as well, you can leave off LIMIT, or you can set it to a different LIMIT of your
choosing.

When you create a temporary table with the following query, you will have a blank table
with the columns specified in the query:

USE lahmansbaseballdb;
 CREATE TEMPORARY TABLE tempplayerinfo
 SELECT p.playerid, birthyear,
 a.yearid, a.teamid,
 G_defense AS defensegames,
 H AS numberofhits
 FROM lahmansbaseballdb.appearances AS a
 JOIN lahmansbaseballdb.people AS p
 ON p.playerid = a.playerid
 JOIN lahmansbaseballdb.batting AS b
 ON a.playerid = b.playerid
 AND a.yearid = b.yearid

Programmable Objects Chapter 12

[415]

 AND a.teamid = b.teamid
 WHERE b.yearid = 2017
 AND H <> 0
 LIMIT 0;

After creating the preceding temporary table, you can execute the following query to get
information about the columns in the temporary table:

USE lahmansbaseballdb;
DESCRIBE tempplayerinfo;

The following screenshot shows the results of running the preceding query:

You can see that each of the columns listed in the SELECT portion of the query has been
placed into the temporary table, along with any specification of the columns that exist in
the permanent tables that those columns refer to.

When you execute the following query, you will see that the table is empty:

USE lahmansbaseballdb;
SELECT * FROM tempplayerinfo;

This previous query returns no results because the original creation was set to LIMIT 0.

You won't see a temporary table listed with the other tables in MySQL
Workbench.

If you set LIMIT to another number or leave LIMIT off when creating the temporary table,
the table will have data in it, so you will have to drop it first and then recreate it.

Programmable Objects Chapter 12

[416]

Learning how to delete a temporary table
In order to delete a temporary table, you can execute the following query:

USE lahmansbaseballdb;
DROP TEMPORARY TABLE tempplayerinfo;

This will delete the temporary table. Then, you can recreate it with different specifications.
Also, if you close your session, your temporary table will be automatically deleted.

Differences between temporary tables in other
RDBMSes
The differences between each RDBMS are outlined as follows:

Oracle: You need to specify either a GLOBAL or PRIVATE temporary table when
creating a temporary table. You also need the AS keyword after the temporary
table name, as shown in the following query:

CREATE GLOBAL TEMPORARY TABLE tempplayerinfo AS
 SELECT p.playerid, birthyear,
 a.yearid, a.teamid,
 G_defense AS defensegames,
 H AS numberofhits
 FROM appearances a
 JOIN people p
 ON p.playerid = a.playerid
 JOIN batting b
 ON a.playerid = b.playerid
 AND a.yearid = b.yearid
 AND a.teamid = b.teamid
 WHERE b.yearid = 2017
 AND H <> 0

Additionally, you drop a temporary table slightly differently in Oracle than in
MySQL, as shown in the following query:

DROP TABLE tempplayerinfo;

For more information about Oracle temporary tables, please take a look at the link
provided in the Further reading section.

Programmable Objects Chapter 12

[417]

PostgreSQL: The difference in PostgreSQL when creating a temporary table from
a query is that you need to use AS after the temporary table name, as shown in
the following query:

CREATE TEMPORARY TABLE tempplayerinfo AS
SELECT p.playerid, birthyear,
 a.yearid, a.teamid,
 G_defense AS defensegames,
 H AS numberofhits
FROM appearances AS a
JOIN people AS p
ON p.playerid = a.playerid
JOIN batting AS b
ON a.playerid = b.playerid
AND a.yearid = b.yearid
AND a.teamid = b.teamid
WHERE b.yearid = 2017
AND H <> 0
LIMIT 0;

Additionally, you drop a temporary table slightly differently in PostgreSQL than
in MySQL, as shown in the following query:

DROP TABLE tempplayerinfo;

Otherwise, PostgreSQL temporary tables work the same way as they do in
MySQL.

SQL Server: SQL Server doesn't use the TEMPORARY keyword to create
temporary tables. SQL Server has two types of temporary tables, as outlined in
the following table:

Local Global
Available to the current session Available to all sessions

Deleted once the current session is closed or with a
DROP statement

Deleted after all sessions are closed or with a
DROP statement

Table name starts with # Table name starts with ##

Similar to MySQL, you can create a table first, then insert data into it or select a
temporary table with SQL Server.

Programmable Objects Chapter 12

[418]

To show you how this works in SQL Server, execute the following query. This
will create a temporary table from a query:

SELECT TOP 0 p.playerid, birthyear,
 a.yearid, a.teamid,
 G_defense AS defensegames,
 H AS numberofhits
INTO #tempplayerinfo
FROM appearances AS a
JOIN people AS p
ON p.playerid = a.playerid
JOIN batting AS b
ON a.playerid = b.playerid
AND a.yearid = b.yearid
AND a.teamid = b.teamid
WHERE b.yearid = 2017
AND H <>;

This is the same temporary table we created earlier in MySQL, but there is a
slightly different syntax for SQL Server.

Also, to drop a temporary table in SQL Server, execute the following query:

DROP TABLE #tempplayerinfo;

To learn more about SQL Server temporary tables, take a look at the Further reading section.

Summary
In this chapter, you learned how to create programmable objects, including how to create
and use views, which included selecting data from views and inserting, updating, and
deleting data using views. Additionally, you learned how to alter and drop views. You
learned how to create and use variables, which included how to declare and assign values
to variables. This also included how to use variables in a query.

Then, you learned how to create and use stored procedures, including how to alter and
drop stored procedures. This included learning how to use variables and parameters in
stored procedures, as well as how to control flow in stored procedures using IF, CASE,
LOOP, REPEAT, and WHILE. Finally, you learned how to handle errors in stored procedures.

Programmable Objects Chapter 12

[419]

After that, you learned how to create and use functions, including how to alter and drop
functions. You learned how to create and use triggers, including how to create triggers with
one statement, triggers with multiple statements, and multiple triggers on one
table. Finally, you learned how to create and use temporary tables, either explicitly or
implicitly, as well as how to drop temporary tables.

In the next chapter, you will learn how to explore and process data. By the end of the next
chapter, you will be able to understand how to get to know the data by creating a statistical
identity, learn how to detect and fix anomalous and missing values, learn how to formalize
strings via functions, and use regular expressions to match data value patterns.

Questions
What is a view? 1.
Can you update, insert, and delete via a view? 2.
What is a variable? 3.
How do you set the value of a variable? 4.
What is a stored procedure? 5.
What is the difference between a parameter and a variable? 6.
What types of flow control statements are available? 7.
What is a function? 8.
What is a trigger? 9.
What is a temporary table?10.

Further reading
For more information on MySQL error codes, visit https:/ ​/​dev. ​mysql. ​com/ ​doc/
refman/​8. ​0/ ​en/ ​server- ​error- ​reference. ​html.
For more information on MySQL SQL states in error handling, visit https:/ ​/
dev.​mysql. ​com/ ​doc/ ​refman/ ​5. ​6/​en/ ​declare- ​handler. ​html.
For more information on Oracle flow control statements, visit https:/ ​/​docs.
oracle.​com/ ​cd/ ​E18283_ ​01/ ​appdev. ​112/ ​e17126/ ​controlstatements. ​htm.
For more information on PostgreSQL flow control statements, visit https:/ ​/​www.
postgresql. ​org/ ​docs/ ​11/ ​plpgsql- ​control- ​structures. ​html#PLPGSQL-
CONTROL- ​STRUCTURES- ​LOOPS.

https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://dev.mysql.com/doc/refman/5.6/en/declare-handler.html
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/controlstatements.htm
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://www.postgresql.org/docs/11/plpgsql-control-structures.html#PLPGSQL-CONTROL-STRUCTURES-LOOPS

Programmable Objects Chapter 12

[420]

For more information on Oracle error handling, visit https:/ ​/ ​docs. ​oracle. ​com/
cd/​E11882_ ​01/ ​timesten. ​112/ ​e21639/ ​exceptions. ​htm#TTPLS195.
For more information on PostgreSQL error handling, visit https:/ ​/​www.
postgresql. ​org/ ​docs/ ​11/ ​plpgsql- ​errors- ​and- ​messages. ​html.
For more information on SQL Server TRY CATCH statements, visit https:/ ​/​docs.
microsoft. ​com/ ​en- ​us/ ​sql/ ​t- ​sql/​language- ​elements/ ​try- ​catch- ​transact-
sql?​view= ​sql- ​server- ​ver15.
For more information on Oracle triggers, visit https:/ ​/​docs. ​oracle. ​com/​cd/
B19306_​01/ ​server. ​102/ ​b14200/ ​statements_ ​7004. ​htm.
For more information on PostgreSQL triggers, visit https:/ ​/​www. ​postgresql.
org/​docs/ ​11/ ​sql- ​createtrigger. ​html.
For more information on SQL Server triggers, visit https:/ ​/​docs. ​microsoft.
com/​en- ​us/ ​sql/ ​t- ​sql/ ​statements/ ​create- ​trigger- ​transact- ​sql? ​view= ​sql-
server-​ver15.
For more information on SQL Server temporary tables, visit https:/ ​/​docs.
microsoft. ​com/ ​en- ​us/ ​sql/ ​t- ​sql/​statements/ ​create- ​table- ​transact- ​sql?
view=​sql- ​server- ​ver15#temporary- ​tables.
For more information on Oracle temporary tables, visit https:/ ​/​docs. ​oracle.
com/​en/ ​database/ ​oracle/ ​oracle- ​database/ ​18/ ​admin/ ​managing- ​tables.
html#GUID- ​6EB347F0- ​64BA- ​4B15- ​8182- ​41BA7D5A876F.

https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://docs.oracle.com/cd/E11882_01/timesten.112/e21639/exceptions.htm#TTPLS195
https://www.postgresql.org/docs/11/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/11/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/11/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/11/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/11/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/11/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/11/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/11/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/11/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/11/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/11/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/11/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/11/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/11/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/11/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/11/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/11/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/11/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/11/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/11/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/11/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/11/plpgsql-errors-and-messages.html
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7004.htm
https://www.postgresql.org/docs/11/sql-createtrigger.html
https://www.postgresql.org/docs/11/sql-createtrigger.html
https://www.postgresql.org/docs/11/sql-createtrigger.html
https://www.postgresql.org/docs/11/sql-createtrigger.html
https://www.postgresql.org/docs/11/sql-createtrigger.html
https://www.postgresql.org/docs/11/sql-createtrigger.html
https://www.postgresql.org/docs/11/sql-createtrigger.html
https://www.postgresql.org/docs/11/sql-createtrigger.html
https://www.postgresql.org/docs/11/sql-createtrigger.html
https://www.postgresql.org/docs/11/sql-createtrigger.html
https://www.postgresql.org/docs/11/sql-createtrigger.html
https://www.postgresql.org/docs/11/sql-createtrigger.html
https://www.postgresql.org/docs/11/sql-createtrigger.html
https://www.postgresql.org/docs/11/sql-createtrigger.html
https://www.postgresql.org/docs/11/sql-createtrigger.html
https://www.postgresql.org/docs/11/sql-createtrigger.html
https://www.postgresql.org/docs/11/sql-createtrigger.html
https://www.postgresql.org/docs/11/sql-createtrigger.html
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15#temporary-tables
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F
https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/managing-tables.html#GUID-6EB347F0-64BA-4B15-8182-41BA7D5A876F

4
Section 4: Presenting Your

Findings
This section will outline how you can present your findings. This will include providing an
explanation of exploring and processing your data. By doing this, you will be able to tell a
story with the data you've collected. By the end of this section, you will be able to
understand and clean your data, as well as present it to your audience.

This section comprises the following chapters:

Chapter 13, Exploring and Processing Your Data
Chapter 14, Telling a Story with Your Data
Chapter 15, Best Practices for Design and Querying
Chapter 16, SQL Appendix

13
Exploring and Processing Your

Data
In this chapter, you will learn how to explore and process data. By the end of this chapter,
you will understand how to get to know the data by creating a statistical identity, learn
how to detect and fix anomalous and missing values, and use regular expressions to match
data value patterns.

In this chapter, we will cover the following topics:

Exploring your dataset
Processing your dataset

Let's get started!

Technical requirements
You can refer to the code files for this chapter by going to the following GitHub
link: https:/​/​github. ​com/ ​PacktPublishing/ ​learn- ​sql-​database- ​programming/ ​tree/
master/​chapter-​13.

Exploring your dataset
Exploring your dataset is vital so that you can get acquainted with and learn more about
your data. You can do this by checking the statistical identity of your data and checking for
rare, missing, and duplicate values. Additionally, you can either consult the expert or
become the expert on the dataset.

https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-13

Exploring and Processing Your Data Chapter 13

[423]

Getting to know your data using statistical
identities
Getting to know your data is vital so you can understand how to analyze and tell a story
with it. There are a few built-in functions in MySQL that you can use to get to know your
data, including the following:

AVG: Returns the average of an expression
COUNT: Returns the number of records
MAX: Returns the maximum value in a set of values
MIN: Returns the minimum value in a set of values
ROUND: Rounds a number to a specified number of decimal places
SUM: The sum of a set of values
VARIANCE: Gives you the variance of your data
STDDEV: Gives you the standard deviation of your data

Each of these was covered in more detail in Chapter 9, Working with Expressions. Please
refer to that chapter if you need additional information on the built-in functions included
here.

If you want to get some general idea of hits in the batting table, you can execute the
following query:

USE lahmansbaseballdb;
SELECT AVG(h) AS mean,
STDDEV(h) AS stddev,
VARIANCE(h) AS variance,
MIN(h) AS minimum,
MAX(h) AS maximum
FROM batting;

The results from the preceding query are shown in the following table:

mean stddev variance min max
36.8616 52.4710125 2753.20716 0 262

In the preceding table, the mean is the average of all the hits, and we can see that the
minimum is 0 and that the maximum is 262. More importantly, we can see that the
standard deviance and the variance are both quite large, so this tells us that the individual
data points are very dissimilar to one another. This information makes sense since there is
quite a lot of difference in how many hits a player may get in any given year.

Exploring and Processing Your Data Chapter 13

[424]

Maybe you would like to see the statistical identity based on each player. If so, you can
execute the following query:

USE lahmansbaseballdb;
SELECT playerid,
AVG(h) AS mean,
STDDEV(h) AS stddev,
VARIANCE(h) AS variance,
MIN(h) AS minimum,
MAX(h) AS maximum
FROM batting
GROUP BY playerid;

The preceding query will give you a list of all the players, along with their mean, stddev,
variance, minimum, and maximum hits over all the years they played, as shown in the
following screenshot:

Maybe you would like to see the statistical identity based on each year. If so, you can
execute the following query:

USE lahmansbaseballdb;
SELECT yearid,
AVG(h) AS mean,
STDDEV(h) AS stddev,
VARIANCE(h) AS variance,
MIN(h) AS minimum,
MAX(h) AS maximum
FROM batting
GROUP BY yearid;

Exploring and Processing Your Data Chapter 13

[425]

The preceding query will give you a list of all the years the player's played and the mean,
stddev, variance, minimum, and maximum hits over all the years they played, as shown in
the following screenshot:

Maybe you would like to see the statistical identity based on each team's hits. If so, you can
execute the following query:

USE lahmansbaseballdb;
SELECT teamid,
AVG(h) AS mean,
STDDEV(h) AS stddev,
VARIANCE(h) AS variance,
MIN(h) AS minimum,
MAX(h) AS maximum
FROM batting
GROUP BY teamid;

The preceding query will give you a list of all the teams and their mean, stddev, variance,
minimum, and maximum hits over all the years they played, as shown in the following
screenshot:

The general idea is to look at as many tables and their columns as you can to get a good
idea of what your data looks like. Then, you need to determine what it means so that you
can tell a story with your data.

Exploring and Processing Your Data Chapter 13

[426]

Detecting rare and outlier values
Detecting rare and outlier values can help you determine if you have bad or irrelevant data.
The terms rare and outlier can be subjective. Different people might define rare and
outlier data standards differently. Knowing this can help you prepare for possible
disagreements in a business situation.

To see the distinct values in a table, execute the following query:

USE lahmansbaseballdb;
SELECT DISTINCT h as hits, COUNT(h) as count
FROM batting
GROUP BY hits
ORDER BY count;

The preceding query will give you a list of each distinct value in the h (hits) column and a
count of those hits, as shown in the following two screenshots. This first screenshot shows
you the beginning rows of the results:

This second screenshot shows you the last rows of the results:

Exploring and Processing Your Data Chapter 13

[427]

Here, we can see that the values at the top of the results are rare or outlier results because
they only have one value with that number of hits, but this doesn't mean that they are
erroneous. If you saw a result that was way beyond any other values, such as 400, for
example, then you should research that value more because it may need to be fixed to the
correct value. Of course, the value that may seem erroneous will depend on the column's
values, so this is why you need to check for rare and outlier values, as well as view all the
other distinct values to determine what rare and outlier values mean for your data.

Detecting missing values
Another important thing to look for is missing values to determine whether you need to fix
the values or remove the data points. To see the count of NULL versus NON NULL values in a
table, execute the following query:

USE lahmansbaseballdb;
SELECT
SUM(!ISNULL(h)) AS hits_count,
SUM(ISNULL(h)) AS null_hits_count
FROM batting;

The results from the preceding query can be seen in the following table:

hits_count null_hits_count

105861 0

Looking at the results in the preceding table, you can see that there aren't any NULL values
for hits since null_hits_count is 0.

Let's try a different column in our preceding query, as follows:

USE lahmansbaseballdb;
SELECT
SUM(!ISNULL(ibb)) AS ibb_count,
SUM(ISNULL(ibb)) AS null_ibb_count
FROM batting;

The results from the preceding query are shown in the following table:

ibb_count null_ibb_count

69210 36651

Exploring and Processing Your Data Chapter 13

[428]

Looking at the results in the preceding table, you can see that there are a lot of NULL values
for ibb since null_ibb_count is 36651. In case you don't know, ibb is intentional base on
balls (or intentional walks), which means the batter was thrown four balls in a row to allow
them to walk to first base without the opportunity to swing at the ball. It may be the case
that there are a lot of NULL values. Maybe there wasn't data available, or maybe the baseball
rules changed at some point to allow intentional walks, so players in years before this rule
was changed would show up as NULL.

You can confirm this theory by executing the following query:

USE lahmansbaseballdb;
SELECT MIN(yearid) as minyear,
MAX(yearid) as maxyear
FROM batting
WHERE ibb IS NULL;

The preceding query will give you the following results:

minyear maxyear

1871 1954

Here, you can see that only the years from 1871 to 1954 have NULL values in the ibb
column, so it seems to indicate that maybe a rule changed in 1955 that allows intentional
base on balls. If you do an internet search for the intentional base on balls, you will see that
official tracking data for this baseball statistic started in 1955, but it was allowed before
then. This is why it's essential to follow through to a proper conclusion before assuming
anything about your data.

Detecting duplicate and erroneous values
To see duplicate values in a table, execute the following query:

USE lahmansbaseballdb;
SELECT name_full
FROM schools
GROUP BY name_full
HAVING count(*) >= 2;

Exploring and Processing Your Data Chapter 13

[429]

The preceding query gives you the results shown in the following screenshot:

These are possible duplicates. If you execute the following query, you will see be able all
the fields in the table to see if they are genuinely duplicates:

USE lahmansbaseballdb;
SELECT * FROM schools
WHERE name_full = 'Bethel College';

The preceding query gives you the results shown in the following screenshot:

You can see that these aren't duplicates since they each have a unique schoolID and are in
different locations. You can also search for duplicates based on the combination of multiple
columns with the following query:

USE lahmansbaseballdb;
SELECT name_full, city
FROM schools
GROUP BY name_full, city
HAVING count(*) >= 2;

The preceding query will return no results because there aren't any duplicates with the
school name and city combination.

Exploring and Processing Your Data Chapter 13

[430]

Checking for duplicates on this table brought up something interesting, though. There are
some double quotes (") at the front of some of the school names. Let's take a look at that
data more closely with the following query:

USE lahmansbaseballdb;
SELECT * FROM schools
WHERE name_full = '"California Polytechnic State University';

The preceding query returns the results shown in the following screenshot:

You can see from the results that there is a double quote at the start of the name_full
column and a double quote ending the city column. This error must have occurred when
the data was inserted. We will go through cleaning up erroneous data later in this chapter.

Consulting with experts or becoming the expert
It may be possible that an expert on the data you are using is available for you to speak
with directly, or has already written documentation that you can refer to. If not, you may
need to become the expert on the data yourself. We've already gone through some ways
you can acquaint yourself with the data you are using. Additionally, you can create
documentation for your data so that you have it for future reference and so that you can
provide it to someone else if they need to understand the data better. One way to become
an expert on the data you are working with is to follow the information provided in the
preceding sections of this chapter. Another way is to create a data dictionary to document
the data.

Creating a data dictionary
A data dictionary is a document that helps you understand what is in your database. It
includes things such as the names of all the objects, tables, and column names, what the
data type of each column is, and any constraints on table columns. The data dictionary can
also include any notes about the tables you think would be necessary for people to know
about the data.

Exploring and Processing Your Data Chapter 13

[431]

To create a data dictionary in MySQL for free, you will need to install a Python plugin into
your MySQL Workbench installation. The Python file you will need for this can be found in
the code files you downloaded in the Technical requirements section of this chapter. Follow
these steps to install the plugin:

In MySQL Workbench, click Scripting from the menu and click Install1.
Plugin/Module...:

Navigate to the location of the chapter-13 files, choose the mysql-workbench-2.
plugin-doc-generating.py file, and click Open. For more information about
this Python plugin, visit https:/ ​/​github. ​com/ ​letrunghieu/ ​mysql- ​workbench-
plugin-​doc- ​generating/ ​blob/ ​master/ ​LICENSE:

https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE
https://github.com/letrunghieu/mysql-workbench-plugin-doc-generating/blob/master/LICENSE

Exploring and Processing Your Data Chapter 13

[432]

A popup will appear, letting you know that the plugin has been installed and3.
that you need to restart MySQL Workbench to use it. Click OK on the popup and
close and reopen MySQL Workbench:

Once you have installed the plugin, you will need to create an Entity-4.
Relationship Diagram (ERD). The steps to create this were covered in Chapter
7, Querying Multiple Tables. To recap how to start the ERD process, you click on
the Database menu item and click Reverse Engineer. Then, you follow the steps
provided to get the objects you want into the ERD. We will start the data
dictionary creation process after the ERD has been created.

Once you have generated your ERD, click Tools in the menu, then Utilities, and
then Generate documentation (Markdown):

Once you've done that, you will have the documentation in the clipboard on your computer
so that you can paste it into the file of your choosing.

You could just paste it into a text file, but it works best for readability purposes when it's in
a Markdown editor. There are many free markdown editors. I use Typora, but you can
install any one of your choosing.

Exploring and Processing Your Data Chapter 13

[433]

You will need to open your markdown editor and make sure that you have a blank
markdown file before pasting the markdown from MySQL Workbench into the file. Then,
you will have something that looks similar to the following:

This markdown file will contain each table, along with its columns and their types,
attributes, and constraints. You can also add a description for each table and a description
for each column if needed. There will also be a section for each table to show its indexes.

Exploring and Processing Your Data Chapter 13

[434]

You can add all the objects from your database into your data dictionary, not just tables,
depending on whether you want to add an explanation for each of those objects.

You can use the description column on the tables to add explanations. For example, some of
the columns in the batting table may need more explanations as to what they mean; for
example, G means Games, while AB means At-bats. The data dictionary allows you to
explain further, as shown in the following screenshot:

There is a complete data dictionary in the code files you downloaded in the Technical
requirements section of this chapter.

Exploring and Processing Your Data Chapter 13

[435]

Using regular expressions
Regular expressions (REGEXP) help you search for string patterns in your data. REGEXP
expands upon the patterns you can use in the LIKE operator, which we covered in Chapter
6, Querying a Single Table. LIKE allowed you to use the percent sign (%) wildcard to
represent zero or more characters or the underscore (_) wildcard to represent one or more
characters to match patterns on strings in the WHERE clause. Regular expressions have far
more wildcard characters, thereby giving you far more options for matching patterns. The
downside to regular expressions is that they can be complicated and hard to understand.
Regular expressions can also reduce query performance, depending on how complex they
get.

The following table outlines some of the commonly used regular expression characters:

Character How it works
^ Matches the beginning of a string
$ Matches the end of a string
. Matches any character

[...] Matches any character inside square brackets
[^...] Matches any character not inside square brackets
p1|p2|p3 Matches any of the patterns specified

+ Matches a sequence of characters one or more times

To use REGEXP in a MySQL query, you need to add the REGEXP keyword to a WHERE clause,
as shown in the following code sample:

SELECT col1, col2, col3
FROM tablename
WHERE stringcolumn REGEXP pattern;

You can also use NOT REGEXP to search for the opposite of the pattern. Let's go through
some examples of how to use the REGEXP characters:

Caret (^): Use this to match at the beginning of a string. This can be seen in the
following query, which will return any playerid starting with a or A:

USE lahmansbaseballdb;
SELECT playerid
FROM people
WHERE playerid REGEXP '^a';

Exploring and Processing Your Data Chapter 13

[436]

Dollar sign ($): Use this to match at the end of a string. This can be seen in the
following query, which will return any birthcity values ending with y or Y:

USE lahmansbaseballdb;
SELECT birthcity
FROM people
WHERE birthcity REGEXP 'y$';

Period (.): Use this to match any character in a string, as shown in the following
query:

USE lahmansbaseballdb;
SELECT birthyear
FROM people
WHERE birthyear REGEXP '199.';

The preceding query will return any birthyear values that start with 199. It will
return values such as 1990 through 1999.

Square brackets ([...]): Use this to match any character placed inside the
square brackets, as shown in the following query:

USE lahmansbaseballdb;
SELECT playerid
FROM people
WHERE playerid REGEXP '^[C]'
ORDER BY playerid;

The preceding query will return any playerid values that start with C or c.

Use the following query to match any character not placed inside the square
brackets:

USE lahmansbaseballdb;
SELECT playerid
FROM people
WHERE playerid REGEXP '^[^C]'
ORDER BY playerid;

 The preceding query will return any playerid values that don't start with C or
c.

Exploring and Processing Your Data Chapter 13

[437]

Pipe delimiter (|): Use this to match any of the patterns specified, as shown in
the following query:

USE lahmansbaseballdb;
SELECT playerid
FROM people
WHERE playerid REGEXP '^[C|D|E]'
ORDER BY playerid;

The preceding query will return any playerid values that start with C or c, D or
d, and E or e.

Plus sign (+): Use this to match any of the patterns specified, as shown in the
following query:

USE lahmansbaseballdb;
SELECT birthcity
FROM people
WHERE birthcity REGEXP 'son+';

The preceding query will return any birthcity values that have the string, son,
in them.

Combining regular expression characters
You can mix the characters to get even more complicated search patterns, as shown in the
following query:

USE lahmansbaseballdb;
SELECT DISTINCT birthcity
FROM people
WHERE birthcity REGEXP '^[abc].{3}on$'
ORDER BY birthcity;

The preceding query will return any birthcity that starts with a, b, or c, then has three
characters in the middle, then ends with on, as shown in the following screenshot:

Exploring and Processing Your Data Chapter 13

[438]

Regular expressions can be powerful, but you need to be careful when using them because
they may not use the indexes of the table you are querying, and then your query can
become quite slow, depending on the size of the table.

Processing your dataset
After you've gotten to know your data, you may need to fix issues residing in it. This
section will do a walkthrough of some methods you can use to address the problems you
may encounter in your dataset.

Fixing rare and outlier values
Detecting rare and outlier values can help you determine if you have bad or irrelevant
data. To proceed from where we left off in the detecting rare and outlier values section,
execute the following query:

USE lahmansbaseballdb;
SELECT DISTINCT h as hits, COUNT(h) as count
FROM batting
GROUP BY hits
ORDER BY count;

Exploring and Processing Your Data Chapter 13

[439]

The preceding query will give you a list of each distinct value in the h (hits) column and a
count of those hits, as shown in the following two screenshots. This first screenshot shows
you the beginning rows of the results:

Here, we can see that the values at the top of the results could be rare or outlier results
because they only have one value with that number of hits, but it doesn't mean that they are
erroneous. Let's just say, for the sake of showing you how to fix an outlier or rare value that
is erroneous, that you think the 248 hits value is incorrect. You would need to do some
more research to fix it. To get more information about the player that this hit count relates
to, execute the following query:

USE lahmansbaseballdb;
SELECT b.playerid, namefirst, namelast,
 yearid, teamid, g, ab, h
FROM batting b
INNER JOIN people p
ON p.playerid = b.playerid
WHERE h = 248;

The preceding query gives you the results shown in the following screenshot:

Here, you can see that this hit count relates to Ty Cobb, who is a very famous baseball
player, and he did likely have that many hits in a year, but let's just double-check that
number by going to a baseball reference site: https:/ ​/​www. ​baseball- ​reference. ​com/ ​. You
can look him up in there and go to the year in question. You can find the specific page
at: https:/​/​www.​baseball- ​reference. ​com/​players/ ​split. ​fcgi? ​id=​cobbty01 ​year= ​1911 ​t=
b.

https://www.baseball-reference.com/
https://www.baseball-reference.com/
https://www.baseball-reference.com/
https://www.baseball-reference.com/
https://www.baseball-reference.com/
https://www.baseball-reference.com/
https://www.baseball-reference.com/
https://www.baseball-reference.com/
https://www.baseball-reference.com/
https://www.baseball-reference.com/
https://www.baseball-reference.com/
https://www.baseball-reference.com/
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b
https://www.baseball-reference.com/players/split.fcgi?id=cobbty01&year=1911&t=b

Exploring and Processing Your Data Chapter 13

[440]

What you will discover is that he did have 248 hits that season, but if you found that that
number was wrong, you would have to run an UPDATE statement against that table with
the following query:

USE lahmansbaseballdb;
UPDATE batting
SET h = whatevernumberiscorrect
WHERE playerid = 'cobbty01'
AND yearid = 1911
AND teamid = 'DET';

The preceding query won't work because you can't set the hits to a non-numeric value, but
that's just to show you how you would fix an erroneous value, and since this isn't an
incorrect value, you shouldn't fix it. This is how you would handle a rare or outlier value
that is erroneous.

There could also be cases where the value is erroneous, but you can't find the correct value.
In this case, you would need to decide whether you want to remove the data from your
dataset.

Fixing missing values
Another essential thing to look for is missing values to determine if you need to adjust the
values or remove the data points. A row may be complete except for one column, so you
may need to fix that one column of missing data. To see the count of NULL versus NON NULL
values in a table, execute the following query:

USE lahmansbaseballdb;
SELECT
SUM(!ISNULL(birthyear)) AS birthyear_count,
SUM(ISNULL(birthyear)) AS null_birthyear_count
FROM people;

The results from the preceding query are shown in the following table:

birthyear_count null_birthyear_count

19497 120

Exploring and Processing Your Data Chapter 13

[441]

Looking at the results in the preceding table, you can see that there are some NULL values
for birthyear. It may be valid that there are some NULL values in this case. Maybe there
wasn't data available for those players. You can find out more information about these
players by executing the following query:

USE lahmansbaseballdb;
SELECT playerid, namefirst, namelast, debut
FROM people
WHERE birthyear is NULL;

The preceding query will give you the results shown in the following screenshot:

Here, you can see that players with a missing birthyear started playing baseball in the
1870s. It may be that this data is missing for them because no one knows when they were
born.

Let's look up John Barrett in the baseball reference website. You can do that by going
to: https:/​/​www.​baseball- ​reference. ​com/ ​players/ ​b/​barre01. ​shtml.

You can see that his birthdate is unknown, but let's say you discovered that they did have a
birthdate listed for him. You could update his information by executing the following
query:

USE lahmansbaseballdb;
UPDATE people
SET birthyear = whateverbirthyeariscorrect
WHERE playerid = 'barre01';

The preceding query won't work because you can't set the birthyear to a non-numeric
value, but that's just to show you how you would fix a missing value.

https://www.baseball-reference.com/players/b/barre01.shtml
https://www.baseball-reference.com/players/b/barre01.shtml
https://www.baseball-reference.com/players/b/barre01.shtml
https://www.baseball-reference.com/players/b/barre01.shtml
https://www.baseball-reference.com/players/b/barre01.shtml
https://www.baseball-reference.com/players/b/barre01.shtml
https://www.baseball-reference.com/players/b/barre01.shtml
https://www.baseball-reference.com/players/b/barre01.shtml
https://www.baseball-reference.com/players/b/barre01.shtml
https://www.baseball-reference.com/players/b/barre01.shtml
https://www.baseball-reference.com/players/b/barre01.shtml
https://www.baseball-reference.com/players/b/barre01.shtml
https://www.baseball-reference.com/players/b/barre01.shtml
https://www.baseball-reference.com/players/b/barre01.shtml
https://www.baseball-reference.com/players/b/barre01.shtml
https://www.baseball-reference.com/players/b/barre01.shtml
https://www.baseball-reference.com/players/b/barre01.shtml
https://www.baseball-reference.com/players/b/barre01.shtml
https://www.baseball-reference.com/players/b/barre01.shtml

Exploring and Processing Your Data Chapter 13

[442]

There could also be cases where the missing value is significant, but you can't find the
correct value. In this case, you would need to decide whether you want to remove the data
from your dataset.

Removing or fixing duplicates
There are a couple of ways to remediate duplicates, either by removing them or fixing
them. We will go through each way in the following sections.

Removing duplicates
To remove a duplicate, let's do some setup first with the following queries:

Let's create a copy of the schools table with the following query: 1.

USE lahmansbaseballdb;
DROP TABLE IF EXISTS schools_copy;
CREATE TABLE schools_copy
SELECT *
FROM schools
WHERE 1=0;

Now, let's insert some data into the schools_copy table with the following2.
query:

USE lahmansbaseballdb;
INSERT INTO schools_copy VALUES
('adelphi','Adelphi University','Garden City','NY','USA'),
('adelphi1','Adelphi University','Garden City','NY','USA'),
('akron','University of Akron','Akron','OH','USA'),
('alabama','University of Alabama','Tuscaloosa','AL','USA'),
('alabamast','Alabama State University','Montgomery','AL','USA');

Now that we have a table set up so that we can remove duplicates, execute the3.
following query:

USE lahmansbaseballdb;
SELECT name_full
FROM schools_copy
GROUP BY name_full
HAVING count(*) >= 2;

Exploring and Processing Your Data Chapter 13

[443]

The preceding query gives you the results shown in the following screenshot:

Bethel College is a possible duplicate.

If you execute the following query, you will see all the fields in the table to tell4.
whether they are genuinely duplicates:

USE lahmansbaseballdb;
SELECT * FROM schools_copy
WHERE name_full = 'Bethel College';

The preceding query gives you the results shown in the following screenshot:

Here, we can see that Bethel College truly is a duplicate value, even though
schoolID is different. It's just that the schoolID column can't have duplicates, so
maybe someone inserted it with a different schoolID at some point, not realizing
that it already existed with another schoolID. You can delete one of these rows
based on schoolid, as shown in the following query:

USE lahmansbaseballdb;
DELETE FROM schools_copy
WHERE schoolid = 'inbethel';

Exploring and Processing Your Data Chapter 13

[444]

Execute this query again:

SELECT name_full
FROM schools_copy
GROUP BY name_full
HAVING count(*) >= 2;

You will see that you no longer have any duplicates in the school_copy table.

Execute this query again:

USE lahmansbaseballdb;
SELECT * FROM schools_copy
WHERE name_full = 'Bethel College';

The preceding query gives you the results shown in the following screenshot:

Now, you only have the one result for Bethel College since you removed the
duplicate.

If you didn't have a unique ID for each row, then this will become much more difficult. This
is why it's crucial to design tables so that you have a unique identifier for each row or a
combination of values, or make a unique identifier enforced by a primary key.

Fixing duplicates
Next, let's look at fixing a duplicate value. To fix a duplicate, let's do some setup first with
the following queries:

Let's create a copy of the schools table with the following query: 1.

USE lahmansbaseballdb;
DROP TABLE IF EXISTS schools_copy;
CREATE TABLE schools_copy
SELECT *
FROM schools
WHERE 1=0;

Exploring and Processing Your Data Chapter 13

[445]

Now, let's insert some data into the schools_copy table with the following2.
query:

INSERT INTO schools_copy VALUES
('adelphi','Adelphi University','Garden City','NY','USA'),
('adrianmi','Adelphi University','Garden City','NY','USA'),
('akron','University of Akron','Akron','OH','USA'),
('alabama','University of Alabama','Tuscaloosa','AL','USA'),
('alabamast','Alabama State University','Montgomery','AL','USA');

Now that we have a table set up to fix duplicates, execute the following query: 3.

USE lahmansbaseballdb;
SELECT name_full
FROM schools_copy
GROUP BY name_full
HAVING count(*) >= 2;

The preceding query gives you the results shown in the following screenshot:

Adelphi University is a possible duplicate. If you execute the following query,
you will be able to view all the fields in the table to see if they are genuinely
duplicates:

USE lahmansbaseballdb;
SELECT * FROM schools_copy
WHERE name_full = 'Adelphi University';

The preceding query gives you the results shown in the following screenshot:

Here, we can see that Adelphi University doesn't look like a duplicate value
because schoolID is very different, as if it should have been a different school
altogether. We have the schools table as a reference point in this case, but if you
didn't have that, maybe you could figure out what adrianmi is with a Google
search. The Google search results for this are shown in the following screenshot:

Exploring and Processing Your Data Chapter 13

[446]

From the information provided online about the college, you can execute the 4.
following query to fix the record:

USE lahmansbaseballdb;
UPDATE schools_copy
SET name_full = 'Adrian College',
 city = 'Adrian',
 state = 'MI',
 country = 'USA'
WHERE schoolid = 'adrianmi';

Execute this query again:

SELECT name_full
FROM schools_copy
GROUP BY name_full
HAVING count(*) >= 2;

You will see that you no longer have any duplicates in the school_copy table.5.

Execute this query again:

USE lahmansbaseballdb;
SELECT * FROM schools_copy
WHERE name_full = 'Adelphi University';

Exploring and Processing Your Data Chapter 13

[447]

The preceding query gives you the results shown in the following screenshot:

Now, you only have the one result for Adelphi University since you fixed the duplicate.

Fixing erroneous data
Checking for duplicates on the schools table in the Detecting duplicate and erroneous values
section brought up something interesting: there are some double quotes (") at the front of
some of the school names. Let's take a look at that data more closely with the following
query:

USE lahmansbaseballdb;
SELECT * FROM schools
WHERE name_full = '"California Polytechnic State University';

The preceding query returns the results shown in the following screenshot:

Here, you can see that there is a double quote to start the name_full column and a double
quote to end the city column. This error must've happened when inserting the data. To fix
this, you will need to run an UPDATE statement to set the values correctly, as shown in the
following query:

USE lahmansbaseballdb;
UPDATE schools
SET name_full = 'California Polytechnic State University',
 city = 'San Luis Obispo',
 state = 'CA',
 country = 'USA'
WHERE schoolid = 'calpoly';

Exploring and Processing Your Data Chapter 13

[448]

The preceding query will fix the issues we saw earlier with one row, that is, '"California
Polytechnic State University".

Execute this query again:

USE lahmansbaseballdb;
SELECT * FROM schools
WHERE name_full = '"California Polytechnic State University';

You will see that you have one more erroneous value to fix, as shown in the following
screenshot:

This can also be fixed in the same way you fixed the preceding erroneous value.

Summary
In this chapter, you learned how to explore your dataset and get to know your data with
statistical identities. You also learned how to detect rare and outlier values, missing values,
and duplicate values.

Then, you learned how to become an expert of your dataset by creating a data dictionary.
You also learned how to use regular expressions to match data patterns. Finally, you
learned how to process your dataset by fixing or removing rare or outlier values, missing
values, and duplicate values.

In the next chapter, you will learn how to tell a story with your data. You will learn how to
find a narrative, including what types of stories are told with data. This includes how to use
the statistical identity of your data to determine a story. You will also learn how to know
your audience, including determining who they are and what would be an effective
presentation for them. Additionally, you will learn how to determine a presentation
framework, including explaining the question, answer, and methodology, as well as how to
use visualizations in your presentations.

Exploring and Processing Your Data Chapter 13

[449]

Questions
How do you detect rare or outlier values? 1.
How do you detect missing values? 2.
How do you detect duplicate values? 3.
How can you become an expert on your data? 4.
What is a data dictionary? 5.
How can you create a data dictionary from MySQL Workbench? 6.
What is a regular expression?7.
What does the caret (^) regular expression do?8.
What does the pipe delimiter (|) regular expression do? 9.
Can you combine multiple regular expressions?10.

14
Telling a Story with Your Data

In this chapter, you will learn how to tell a story with your data. You will learn how to find
a narrative, including what types of stories you can tell with data and how to use the
statistical identity of your data to determine a story. You will also learn how to know your
audience, including deciding who they are and what would be a compelling presentation for
them. You will then learn how to identify a presentation framework, including explaining
the question, answer, and methodology. Finally, you will learn how to use visualizations in
your presentations.

In this chapter, we will cover the following topics:

Finding a narrative
Knowing your audience
Determining a presentation framework
Using visualizations

Let's get started!

Technical requirements
You can refer to the code files for this chapter by going to the following GitHub
link: https:/​/​github. ​com/ ​PacktPublishing/ ​learn- ​sql-​database- ​programming/ ​tree/
master/​chapter-​14.

https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-14

Telling a Story with Your Data Chapter 14

[451]

Finding a narrative
To tell a good story, you will need to find a narrative for your data. A narrative is all about
telling the story of your data. A good narrative will draw the reader or listener into the
story of your data and make them feel engaged with the topic at hand. People may not feel
compelled to listen to or act on your findings if you present them in a dull or overly
complicated way.

Types of data stories
There are many different types of stories that you can tell with data:

Reporting: Tells a story about the past. For example, this could be a batting
report for all the players on a specific baseball team.
Explanatory: Tells a story about what people or things are up to and may include
asking people questions via surveys. For example, this could be votes cast by
fans for players to appear in the Allstar game.
Predictive: Tells a story about the future; for example, how many runs will score
based on how many outs there are and the number of players on base.
Correlation: Tells a story about how variables relate to one another. For example,
it could be that a player with more walks also has more hits than other players.
Causation: Tells a story about how one variable caused another one to change.
For example, it could be that a team with more home runs has more wins.

Correlation doesn't imply causation. For example, you may find that just
because a player with the most walks has the most hits, it doesn't mean
that having a lot of walks causes them to have a lot of hits.

Telling a Story with Your Data Chapter 14

[452]

You can also combine these types of stories and tell stories such as the following:

How something changed over time. For example, how many wins a team has
year over year.
Go from the big picture to a narrow focus. For example, going from how many
hits there are in 1 year in baseball to how many hits were on each team for that
year, to how many hit each player got in any given year for each team.
Start narrow and go to the big picture. For example, going from how many hits
each player got in any given year for each team, to how many hits were on each
team for that year, to how many hits there are in one year in baseball.
Comparing and contrasting. Comparing or contrasting one team's or player's
statistics for any given year to another team's or player's statistics.

Asking questions to find your narrative
A lot of times, you won't get a clear-cut question handed to you that you can quickly solve,
so you will need to talk with people having problems and figure out the question that they
lack an answer to. You then need to be able to translate the question into an actionable
issue.

Let's say you were trying to solve a baseball problem while working for a major league
baseball team who's trying to decide which players they may want to add to or remove
from their team. You are going to need to ask a lot of good questions to get to the question
or questions that need to be answered. Maybe some of these questions would be good to
ask:

Who is performing well on the current team, and who isn't?
What are some factors you would look for in a new player?
How much money are you spending on current players?
How much money are you willing to spend to get new players?

Once you've asked enough questions to find the problem that can be solved, you will be
able to come up with a story to tell.

Of course, there may not be a problem to solve, if you are just gathering data to tell a story.
For example, with a reporting story, you are only showing what's happened in the past. It
may be that you can use that to also come up with a predictive story or a correlation story.

Telling a Story with Your Data Chapter 14

[453]

Using the statistical identity of your data to
determine a narrative
In Chapter 13, Exploring and Processing Your Data, we covered how to determine the
statistical identity of your data. The general idea is to look at as many tables and their
columns as you can to get a good idea of what your data looks like and what it means so
that you can tell a story about your data.

To give you an idea of something you could look for to determine a narrative, you can
execute the following query:

USE lahmansbaseballdb;
SELECT f.pos, FORMAT(AVG(salary),0) as averagesalary
FROM salaries s
INNER JOIN fielding f
ON f.playerid = s.playerid
AND f.yearid = s.yearid
GROUP BY pos
ORDER BY averagesalary;

The preceding query returns the results shown in the following screenshot:

This query shows you the average salary based on a position across all of major league
baseball for the entire history of the league. The query results show you a way you could
start from a big picture and bring that down a narrow focus. Starting with the average
salary of each position, you can work your way into a story of why the average salary looks
the way it does.

Don't feel frustrated if your story doesn't pop out at you right away, or it takes time to
build. Telling a story with data isn't always easy. Usually, it is pretty tricky, especially if
you want to tell a story that's worth reading or listening to, or if you need to find the right
solution to the problem you are trying to solve.

Telling a Story with Your Data Chapter 14

[454]

Knowing your audience
Information regarding who will be viewing your presentation and findings will be
necessary for deciding how to present your findings. You will need to determine who your
audience is so that you can provide your results in the proper manner.

Determining who your audience is
Your audience can include many people or a specific subset of people. When you are telling
a story with business data, some of your audience may be as follows:

Decision-makers: This could include your manager or the executives at your
organization. Your direct manager may want or need more information than an
executive, who would like a more high-level, less-detailed presentation.
Colleagues: This could be people who are on your team or members of other
teams in your organization. Your team members may want additional
information about how you came to your conclusions. In contrast, members of
other groups may not understand the details and will need a more high-level,
less-detailed presentation.
General public: You may need to create a presentation for a broader audience,
and in this case, it may make sense to create a presentation that isn't quite as
detailed.

Creating a compelling presentation for your
audience
When creating a presentation, it's important to remember that you need to think about
whether your audience is a beginner, intermediate, or advanced in their knowledge of the
topic. You may need to create different presentations for different audiences. It will be
beneficial to have at least a couple of different versions of the presentation: a detailed one
and a less detailed one. You may even need to create different presentations for different
formats or purposes, such as for a website or compliance reasons.

For baseball data storytelling, your audience will most likely be people who are familiar
with and interested in baseball. Still, it can't hurt to include some information about the
basics if you want to add people who don't know as much about baseball. It can be essential
to show your presentation to someone who doesn't know the topic matter well to see if they
understand what you are trying to explain.

Telling a Story with Your Data Chapter 14

[455]

Determining a presentation framework
A presentation framework consists of a few things, including the following:

Creating a structure for your presentation. This structure will tell your audience
what you will cover in your presentation, what the objectives are, and what they
will learn.
Determining the level of information presented, such as how detailed or high-
level you want to make your presentation.

To have a proper presentation framework, you will need to ensure that your audience
understands what question you are asking, what the answer is, and how you got to the
answer.

Explaining the question
You need to begin your presentation by explaining the question you are trying to answer.
It's essential to keep your focus on one question and not get distracted by other questions. If
you decide to answer too many questions in a presentation (that is, telling too many
stories), the story will become lost in too much data and explanations.

For example, let's say you were trying to determine why individual players or types of
players make more than other players; you would want to keep the focus on that question
only. You don't want to suddenly throw in statistics about manager salaries or details about
why a team moved to another city. Even if you are providing a big picture of this and
narrowing down the focus, you still don't want your big picture to include everything and
anything. Your big picture needs to focus on the specific question you are trying to answer.

An example question could be: Why do certain baseball player positions make more than others?

Explaining the answer
After making sure you've explained the question clearly, you will need to explain the
answer clearly. Again, you can start with the big picture and work your way down to a
narrow focus if that's the story you've chosen to tell. As you explain the answer, make sure
to give context along the way and don't wait to answer everything until the end.

Telling a Story with Your Data Chapter 14

[456]

To explain the answer to the question, Why do certain baseball player positions make more than
others?, you could go first through the high-level salary information showing the average
salary for each type of player in a graph. Next, you could go through batting information
for each of the positions to see if there is a correlation between batting and
salary. Additionally, you could look at pitching or fielding statistics to get to the full
detailed story of why certain positions make more than others.

Explaining your methodology
Make sure that you describe your methodology so that it gives your presentation context.
You may need to go through a long process to get to the question's answer, but most
audiences won't want or need that much explanation. Long explanations of the
methodology are best left to colleagues that share your love of diving into the data to tell
stories.

Using visualizations
Creating a visualization means taking query results and making graphic representations of
the data, such as graphs or charts. The visualizations tell your story, and your words will
add the required context, which follows along with the expression that a picture is worth a
thousand words. You don't want your audience to sit there reading or watching you read
from dry slides of paragraphs or tables, describing your data in great detail. Of course, the
detail can and should be available to those who want or need to see it, but your
presentation should be mostly visualizations, along with some context, for your findings to
shine through.

Common mistakes to avoid in visualizations
There are several things to avoid in visualizations:

Jumping to conclusions: Just because a baseball player's hits keep going up year
after year doesn't mean that they will continue to do so the next year.
Switching colors: Don't use one color in one chart for Player A and a different
color in another chart for Player A.
Not labeling your charts: Always label your chart's components and give them a
descriptive title so that people don't have to draw their own conclusions
regarding what you are trying to show.

Telling a Story with Your Data Chapter 14

[457]

Not providing context: You may say that something increased 500%, but what
are the actual numbers? 400% increase from 1 to 5 may seem like a lot or not very
much, depending on the thing you are measuring. If a player had one hit last
year and has five hits this year, that's a 400% increase, but it's still not very good,
depending on how many times they batted in a year. Maybe they only batted in
one game each year, which means they did a lot better from one year to the next,
but if they batted in a lot of games, then five hits isn't that great.
Cherry-picking data: Instead of using all the data to show the real story, maybe a
player's batting average would look a lot better if you removed the games where
they didn't get any hits. However, if you do this, you aren't giving the full
picture.
Not properly formatting numbers for readability: For example, it's hard to tell
the scale of each of these numbers:

123456789.1234
1234.567891234

In this case, use a comma to make this a bit more obvious and do some rounding
to make it easier to read:

123,456,789.12
1,234.57

Arbitrary scale: Having your scale start at something other than zero to try to
make the numbers seem better, worse, or just different than they are.

Using data visualization tools
There are many different and powerful visualization tools available, depending on your
operating system and how much you want to pay for them. Some of these data
visualization tools are as follows:

Microsoft Office (https:/ ​/​www. ​office. ​com/ ​): You can use Excel and
PowerPoint to make your presentation with visualizations.
Google Documents (https:/ ​/​about. ​google/ ​products/ ​): Free Google option
with Google account signup.
OpenOffice (https:/ ​/​www. ​openoffice. ​org/ ​): Free version of Microsoft Office
products.

https://www.office.com/
https://www.office.com/
https://www.office.com/
https://www.office.com/
https://www.office.com/
https://www.office.com/
https://www.office.com/
https://www.office.com/
https://www.office.com/
https://www.office.com/
https://about.google/products/
https://about.google/products/
https://about.google/products/
https://about.google/products/
https://about.google/products/
https://about.google/products/
https://about.google/products/
https://about.google/products/
https://about.google/products/
https://about.google/products/
https://www.openoffice.org/
https://www.openoffice.org/
https://www.openoffice.org/
https://www.openoffice.org/
https://www.openoffice.org/
https://www.openoffice.org/
https://www.openoffice.org/
https://www.openoffice.org/
https://www.openoffice.org/
https://www.openoffice.org/

Telling a Story with Your Data Chapter 14

[458]

Tableau (https:/ ​/​www. ​tableau. ​com/ ​): A custom visualization tool for building
dashboards and data stories. You can get a 14-day free trial of their enterprise
product, Tableau Desktop. There is also a free option you can install called
Tableau Public, but it doesn't allow MySQL connections, and all your
visualizations are published publically.
Power BI (https:/ ​/ ​powerbi. ​microsoft. ​com/ ​en- ​us/​): A custom visualization
tool for building dashboards and data stories. PowerBI is not available on Mac.

I will be using Google Sheets for the visualizations in this section, but you should be able to
achieve similar results in the other visualization options listed previously. If you don't have
a Google account, you can do something very similar in OpenOffice, which is the free
version of Microsoft Excel.

To get started with visualizations in Google Sheets, you will need to execute the queries in
MySQL first, then copy the data into Google Sheets to get the charts you will need for your
visualizations. Let's get started:

You can execute the following query in MySQL Workbench: 1.

USE lahmansbaseballdb;
SELECT f.pos as position, FORMAT(AVG(salary),0) as averagesalary
FROM salaries s
INNER JOIN fielding f
ON f.playerid = s.playerid
AND f.yearid = s.yearid
GROUP BY position
ORDER BY averagesalary;

Then, you can take the results of the query and place them into Google Sheets, as2.
shown in the following screenshot:

https://www.tableau.com/
https://www.tableau.com/
https://www.tableau.com/
https://www.tableau.com/
https://www.tableau.com/
https://www.tableau.com/
https://www.tableau.com/
https://www.tableau.com/
https://www.tableau.com/
https://www.tableau.com/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/

Telling a Story with Your Data Chapter 14

[459]

From there, you can create a bar chart to use as your visualization, as shown in3.
the following screenshot:

Here, we can see that catchers (C) get paid the least overall, while first basemen
(1B) get paid the most overall.

To understand the possible reasons why this is the case, let's take a look at the4.
batting average for each position by executing the following query:

USE lahmansbaseballdb;
SELECT f.pos as position, avg(h/ab) as battingaverage
FROM fielding f
INNER JOIN batting b
ON f.playerid = b.playerid
AND f.yearid = b.yearid
GROUP BY position
ORDER BY battingaverage;

After placing the data from the preceding query into Google Sheets, you can5.
generate the following chart of batting averages for each position:

Telling a Story with Your Data Chapter 14

[460]

Here, from the last two charts, we can that when the player has a higher batting
average, they get paid more, with a couple of exceptions. The pitcher (P) position
has the lowest batting average but the second-highest pay. The main takeaway
from this is that you don't hire a pitcher because of their exceptional batting
skills – you hire them because they're a good pitcher. Another exception is that
second baseman (2B) and shortstops (SS) are reversed in terms of pay and
batting, with SS having a lower batting average than 2B but higher pay.

This difference in pay may be able to be explained by fielding skills. Let's take a6.
look at those by executing the following query:

USE lahmansbaseballdb;
SELECT f.pos as position, avg(innouts) as inningouts,
FROM fielding f
WHERE f.pos IN ('2B', 'SS')
GROUP BY position;

Telling a Story with Your Data Chapter 14

[461]

After placing the data from the preceding query into Google Sheets, you can7.
generate the following chart of outs per inning for the 2B and SS positions:

Looking at the preceding chart, we can see that shortstops have more outs per
inning, which could account for why they get paid more than second basemen,
even though they have a lower batting average than second basemen. Since we
are looking at salary and understanding why certain positions make what they
do, we could take this a step farther to understand why pitchers make the money
they do. We can see that the salary isn't based on fielding or batting.

Execute the following query to look at the pitcher's earned runs: 8.

USE lahmansbaseballdb;
SELECT format(avg(salary),0) as avgsalary,
CASE WHEN round((er/(ipouts/3))*9, 2) < 4.6
then 'ERA less than average runs scored per game'
ELSE 'ERA more than average runs scored per game'
END as eracalc
FROM pitching p
INNER JOIN salaries s
ON p.playerid = s.playerid
GROUP BY eracalc
ORDER BY avgsalary;

Telling a Story with Your Data Chapter 14

[462]

After placing the data from the preceding query into Google Sheets, you can9.
generate the following chart of average salary by earned run average (ERA):

Let's take a look at how we got these numbers. The most crucial statistic in
pitching is the ERA. The ERA is the average number of runs allowed by a pitcher
per nine innings of pitching. So, first, you would need to determine the average
number of runs per game with the following query:

USE lahmansbaseballdb;
SELECT avg(r/g) as avgrunspergame FROM teams;

The preceding query returns 4.60267536. This is why we use greater than or less
than 4.6 in our CASE calculation, as shown in the following query:

CASE WHEN round((er/(ipouts/3))*9, 2) < 4.6
then 'ERA less than average runs scored per game'
ELSE 'ERA more than average runs scored per game'

Plus, the formula for the ERA is (earned runs divided by innings pitched) x 9.
Since we only have ipouts columns available to us, we need to calculate the
inning pitched by dividing ipouts by three since there are three outs in an
inning.

Here, we can see that the pitcher is paid based on their ERA, but there is possibly
no accounting for why they have a lower salary than the first basemen.

Telling a Story with Your Data Chapter 14

[463]

You could extend your question to include the pay of managers and why they10.
are paid how much they are. Your question would then become something like,
Why are all the members of baseball paid the amount they are? Here's a query you can
execute to get the winning ratio of managers and their average salary:

USE lahmansbaseballdb;
SELECT CASE WHEN w/g > .5 then 'winning record'
else 'losing record'
END as winratio,
FORMAT(AVG(salary), 0) as avgsalary
FROM managers m
INNER JOIN salaries s
ON s.playerid = m.playerid
GROUP BY winratio;

After placing the data from the preceding query into Google Sheets, you can11.
generate the following chart of average salary by winning record versus losing
record:

Telling a Story with Your Data Chapter 14

[464]

Here, we can see that, on average, a team manager will make more money if they
have a winning season. You can see this in the following query, where the
manager's average salary is compared to the position players in baseball:

USE lahmansbaseballdb;
SELECT 'manager' as position, FORMAT(AVG(salary), 0) as
averagesalary
FROM managers m
INNER JOIN salaries s
ON s.playerid = m.playerid
UNION
SELECT f.pos as position, FORMAT(AVG(salary),0) as averagesalary
FROM salaries s
INNER JOIN fielding f
ON f.playerid = s.playerid
AND f.yearid = s.yearid
GROUP BY position
ORDER BY averagesalary;

After placing the data from the preceding query into Google Sheets, you can12.
generate the following chart of average salary by all positions in baseball,
including the manager:

Telling a Story with Your Data Chapter 14

[465]

The findings are as follows:

First basemen have the highest salary of any position player because they have
the best batting statistics.
Shortstops have a higher salary than second basemen because they have better
fielding statistics.
Pitchers have a higher salary when their ERA is less than the average runs scored
in a baseball game.
Managers have a higher salary based on having a winning record.

These charts, data, and findings have been placed in a Google Slides presentation, which
you can find in the code files for this chapter.

Summary
In this chapter, you learned how to tell a story with your data. You learned how to find a
narrative, including what types of stories can be told with data, including reporting,
explanatory, predictive, correlation, and causation stories. You also learned about
combining these types of stories to tell stories about how something changed over time,
how to go from a big picture to a narrow focus and vice versa, and comparing and
contrasting data. You then learned how to ask questions to get to the question or problem
you want to solve. After, you learned how to use the statistical identity of your data to
determine a story.

Then, you learned how to know your audience, including determining who they are and
what would be a compelling presentation for them. Some of your audience may include
decision-makers, colleagues, and the general public. You learned that different types of
audiences require different presentations.

Next, you learned how to determine a presentation framework, including explaining the
question, answer, and methodology. You learned to keep your question focused on one
topic and not try to answer too many questions in one story. You also learned that, when
answering a question, you need to stay focused on the question you are answering and not
get distracted by unrelated data. After that, you learned that you need to explain your
methodology, but different audiences will want or need different levels of explanation of
your methodology.

Telling a Story with Your Data Chapter 14

[466]

Finally, you learned how to use visualizations in your presentations, as well as what types
of visualization tools are available to use. You also learned about common mistakes to
avoid in your visualizations.

In the next chapter, some best practices will be outlined regarding the topics we discussed
in the previous chapters. We will also show you how to quickly reference best practices
instead of having to go through each chapter.

Questions
What are the types of stories that we can tell with data? 1.
How can you combine these stories to tell additional stories? 2.
What kinds of people will your audience include? 3.
Should you create more than one presentation to accommodate different4.
audiences?
How do you determine a presentation framework? 5.
How should you go about figuring out the question you want to answer? 6.
How should you go about telling the answer to your question? 7.
How do you explain your methodology? 8.
What are some common mistakes to avoid in your visualizations? 9.
What are some common visualization tools you can use? 10.

5
Section 5: SQL Best Practices

This section will outline the best practices for database design, indexing, and querying and
modifying data. and it will also provide an appendix of SQL syntax, so you can refer to it
later without having to go through each chapter.

This section comprises the following chapters:

Chapter 15, Best Practices for Design and Querying
Chapter 16, SQL Appendix

15
Best Practices for Designing

and Querying
In this chapter, you will learn about database best practices, including database design,
indexing, and querying and modifying data. You learned about these topics throughout the
previous chapters. This chapter will summarize and give additional tips regarding the best
practices. This chapter will also provide a way for the more experienced among you to
quickly reference best practices instead of having to go through each chapter.

In this chapter, we will cover the following topics:

Best practices for database design
Best practices for indexing
Best practices for querying and modifying data

Technical requirements
You can refer to the code files of this chapter at https:/ ​/​github. ​com/ ​PacktPublishing/
learn-​sql-​database- ​programming/ ​tree/ ​master/ ​chapter- ​15.

Best practices for database design
To implement the best design for your database, you will need to follow some basic
guidelines and ensure that you have proper data integrity by implementing keys and
constraints, naming your database objects correctly, and using the correct data types.
Always remember to document the database with a data dictionary, an entity-relationship
diagram (ERD), or both.

https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15
https://github.com/PacktPublishing/learn-sql-database-programming/tree/master/chapter-15

Best Practices for Designing and Querying Chapter 15

[469]

Understanding data integrity
Data integrity refers to the consistency and accuracy of data. In RDMS, keys enforce data
integrity. A key forces values in a table to conform to a standard that you specify in the
key. It's essential to enforce data integrity in your database so that you have accurate and
consistent data. You want to ensure that incorrect values don't wind up in the database.
You also want to ensure that data isn't in the wrong format. You don't want users to be able
to delete information from one table that another table relies on.

There are many types of keys to ensure data integrity and enforce table relationships or
referential integrity, as shown in the following list. For more detail about this topic, go
to Chapter 1, Introduction to Relational Database Management Systems.

Entity integrity: This is used to ensure that each row in a table is identifiably
unique. Entity integrity is accomplished with a few different types of keys or
constraints, including unique, not null, and primary key constraints:

Unique constraint: This is used to ensure that all values in a column or
columns are different from each other.
Not null constraint: This is used to ensure that all values in a column
are not null.
Primary key: This is used to ensure that all values in a column are not
null and are unique. Each table can have only one primary key. There
are two types of primary key: natural and surrogate. With a natural
key, you are using unique columns, and the data in those columns
exists outside the database (that is, in the business world). With a
surrogate key, you are creating a column to hold a unique value for
each row, and that value isn't used anywhere outside the database. If
there was an obvious choice for a primary key (bearing in mind that
this is unique and non-null), we could use that column. For instance,
we could use an obvious primary key if one of these tables contained
information about books. Each book has a unique, non-null ISBN. This
natural key would be an excellent choice for a primary key. Still, when
your tables contain multiple columns that are unique and not null to
make a composite primary key, then it's better to have one column that
uniquely identifies each row. You can then still have a unique, not null
composite key on those columns that uniquely identify a row.
Nevertheless, you should always ensure that the easiest way to identify
a row with one column is with a surrogate primary key.

Best Practices for Designing and Querying Chapter 15

[470]

Referential integrity: This refers to the consistency and accuracy between tables
that can be linked together. Referential integrity is achieved by having a primary
key on the parent table and a foreign key on the child table. When a foreign key
is present, it must reference a valid, existing primary key in the parent table. A
lack of referential integrity leads to incomplete data being returned without an
indication of an error. It's basically as if your records are lost in the database,
since they may never show up in reports or query results. It can cause all kinds of
problems, such as strange results, lost orders, and in certain use cases, potentially
life-and-death situations, such as patients not receiving proper treatments. The
foreign key constraint can maintain three types of table relationships:

One-to-one: This type of relationship is created when one table has just
one corresponding row in another table. An example of this could be a
table with employees and computers; each employee has one
computer.
One-to-many: This type of relationship is created when one table has
none, one, or many corresponding rows in another table. An example
of this could be a table with adults and children; an adult table row
may have none, one, or many rows in the child table.
Many-to-many: This type of relationship is created when many rows in
one table correspond to many rows in another table. An example of this
could be customers and product tables; customers can purchase many
products, and many products can be bought by many customers.

Domain integrity: This is used to ensure that data values follow defined rules for
the format, range, and value using check and default constraints:

Check constraint: This is used to ensure that all values in a column are
within a range of values. A check constraint is enforced with user-
defined conditions and is evaluated as either true or false.
Default constraint: This is used to ensure that all rows in a column
have a value. A default constraint assigns a default value to a field.

You should always have a primary key on a table to ensure uniqueness, preferably with a
natural key, but a surrogate key can be used if there is no apparent natural key. Use foreign
keys and constraints as they are needed since you don't want to rely on developers to
enforce database integrity via an application.

Best Practices for Designing and Querying Chapter 15

[471]

Naming conventions of database objects
Naming conventions are important for multiple reasons. You must ensure that you name
things accurately and descriptively, while at the same time avoiding keywords that might
add any kind of confusion to the naming. You must avoid adding spaces in the names,
choose a proper case, and stick to one naming convention. You should also make sure that
you only use permitted characters when naming a database object. You can read about this
topic in more detail in Chapter 4, Designing and Creating a Database. The following list
shows the object-naming conventions that you should follow:

Avoiding keywords: There are lots of keywords or reserved words in MySQL.
You should avoid naming your database and database objects with keywords.
For instance, you wouldn't want to name your table DATETIME because this is a
keyword reserved for the datetime data type.
Avoiding spaces: If you use spaces in a database name or database object, you
will always need to use backticks around that name when querying.
Using descriptive and accurate names: Try to use full words when you can as
abbreviations may be misunderstood. Name a table as accurately and
descriptively regarding its purpose as possible so that it's easy to understand
what's in the table just by looking at its name. For example, it may be hard to
understand what's inside a table named tblName; it uses the abbreviation tbl
for table and Name, which doesn't help you know what's inside it. If the table
contains cat breeds, then you could name the table CatBreeds, and that will
make it pretty clear what might be inside that table. An important decision
regarding naming database objects is whether you should name them so that you
know that it is a table, view, or stored procedure. You could name a table as
tblCatBreeds, but it's best to leave the type of the object out of the name, so
you would instead name the table CatBreeds.
Case and separating words: There are different ideas behind how to use cases
and how to separate words in database object names. You shouldn't use spaces to
separate words, but you can use cases or underscore. The different types of case
naming are as follows:

lowercase naming: This means that the entire object name is
lowercase—for example, catbreeds or dogbreeds are table names
with lowercase naming.
UPPERCASE naming: This means that the entire object name is in
uppercase—for example, CATBREEDS or DOGBREEDS are table names
with uppercase naming.
camelCase naming: This means that the name starts with a lowercase
letter, and each new word starts with uppercase—for example,

Best Practices for Designing and Querying Chapter 15

[472]

catBreeds and dogBreeds are table names with camelCase naming.
PascalCase naming: This means that the first letter in each word is
capitalized—for example, CatBreeds and DogBreeds are table names
with PascalCase naming.

Since MySQL doesn't support anything but lowercase naming by default,
I would recommend using underscores (_) between words in database
object naming systems if some of the names are long to avoid confusion
with an all-lowercase naming system.

Allowed characters when naming database objects: When creating a database
object, you can't just use any character. You need to use the permitted characters,
which include numbers (0–9), lowercase letters (a–z), uppercase letters (A–Z),
dollar signs ($), and underscores (_).

Understanding what data types to use
Data types define the type of value that can be stored in a column. To decide which data
type a column should be, you need to know what kind of data will be stored in that
column. In MySQL, there are three main data types: string, numeric, and datetime.

Each data type has different characteristics based on the amount of space it takes up, the
kind of values that can be stored, whether the values can be indexed, and how the values
are compared to each other. It's best to choose the most precise type to optimize storage.

For example, don't store the first name in a column with varchar(max), but instead store
the first name in a column that would accommodate a long first name, such as
varchar(20); this way, you use much less storage for your first-name column. It's also
vital to use numeric data types for numerical values and datetime data types for datetime
values so that you don't have to convert these values from strings if you store numerical or
datetime values in a string instead. Data types are covered in more detail in Chapter 3,
Understanding Data Types.

Best Practices for Designing and Querying Chapter 15

[473]

Here are some reasons why you need to choose wisely:

If you choose a data type that is too large for the data that it will hold, it will
cause extra stress for your database because you will be using additional storage.
The less storage you use, the more data you can have in memory (RAM). This
will increase your database's performance.
If you choose a data type that is too small for the data it will hold, this will cause
your data to be truncated have failures upon insertion because the data type
won't allow those sizes of data to be inserted.

The following table takes you through some examples of how to choose data types. It also
helps you understand the reasoning behind why you would choose each data type:

Value(s) or type of data Type in MySQL
State abbreviations that are always two letters, such as CA,

CO—we would use CHAR here instead of VARCHAR because
these values will always be the same length

CHAR(2)

State names such as California or Colorado—we would
use VARCHAR here because there is a variable length, and we
would set the VARCHAR to the longest length string, which in

this case would be South or North Carolina.

VARCHAR(14)

Primary key, autoincremented column for a table. Unsigned INT with auto_increment
Large amounts of text—consider putting TEXT columns in a
separate table to optimize table performance. Database and

table design will be covered in more detail in Chapter
4, Designing and Creating a Database.

TEXT

Storing files, including images—for the most part,
you should use the filesystem for what it was intended

for—storing files—and you should not store them in the database.
If you do store them in the database, then store them in a

separate table to avoid performance problems.

BLOB

Enumerated and set values—you should avoid these data types
because if you ever decide to add something else to

the ENUM or SET declaration, then MySQL will have to rebuild
the table, and if you have a lot of rows, this could be very time

consuming. In addition, developers can use logic on the
application side to handle this much better than a MySQL table

can.

ENUM or SET

Storing 0 and 1 values, such as whether a value
is true or false. BIT

Storing zip codes (such as 11155) TINYINT

Best Practices for Designing and Querying Chapter 15

[474]

Storing money values (such as $115.25) DECIMAL

Social security numbers (123-45-6789)—these are numbers, but
you won't be doing calculations on them, and you may want to

store the hyphens for proper formatting.
VARCHAR

Dates with time—don't use string types to store dates. DATETIME

Scientific data or data where you don't need exact precision Float or Double

The preceding table took you through some examples of how to choose data types. It also
helped you understand the reason for selecting each data type.

Best practices for indexing
Indexing is a method of optimizing database performance by reducing the amount of disk
usage when running a query against the database. Indexes are placed on column(s) in a
table. Tables can have more than one index, but there tends to be an optimal number of
indexes that you can have before indexes start hurting performance instead of helping it.
The optimal number can vary depending on the table; this is why index tuning can be an
art as well as a science. To properly index a table, you need to have a good understanding
of how the data in the table is being used.

It's good to plan out the indexing that you will need in advance of adding data, if possible.
When you add an index to a blank table, it adds it pretty much instantaneously. If you add
an index later, it can take quite a while depending on how much data you have, especially
when adding certain kinds of indexes that reorder the data in the table.

Understanding when to create indexes
You should create indexes for regularly used queries. Don't create indexes that don't have a
use case for the queries being executed against a table. Don't guess at what indexes a table
needs. Instead, you need to know the queries that are being executed, how often they are
executed, and how important they are. Then you can decide how to create indexes based on
the conditions used in the WHERE clause and by the columns used in the ORDER BY and
GROUP BY clauses.

Best Practices for Designing and Querying Chapter 15

[475]

There is no right number of indexes on a table or columns in your indexes. Generally
speaking, too few or too many indexes can make the performance of your database worse.
This is why it's important to know what queries are being executed on the table so that you
can understand best what would help the performance. Having only one index might work
for some tables, but maybe some tables need five indexes. Try to keep the number of
columns in an index to the minimum number required—for example, you don't want to
add all the columns of your table to an index. An exception to this could be if a table only
has a few columns.

Here are some important things to note about indexing:

You should create indexes for uniqueness (primary key) and referential integrity
(foreign keys). This will help ensure your database's data integrity.
Indexing doesn't speed up everything that happens in a database table. It won't
speed up writes (the insertion, updating, and deletion of data); it only speeds up
reading (querying data from the database), so you need to be careful that you
don't add an index for reads that then slows down writes too much. Indexing
slows down writes because the index has to be updated each time data is
written.
The order of the columns in indexes matters. If you have the columns in the
index written as managerid then yearid, and you want to filter on just yearid,
then your query filtering on yearid might not even use the index. You may need
an index that has yearid first or maybe as the only column in the index. Also,
just filtering on managerid would give you good performance even if you didn't
use yearid in the filter, since the query would use the managerid then
the yearid indexes.
Indexes can take a lot of storage. A clustered index shouldn't take upspace on
disk since it's an ordering of the data that is already sitting on disk, but
nonclustered indexes can take up quite a bit of room depending on the size of the
table and the number of columns in the index.
Indexing columns that contain a lot of nonunique values may not provide much
performance improvement. If you have to decide between the columns to index,
then you should choose a column with more variability, such as the first name
rather than state names.

Best Practices for Designing and Querying Chapter 15

[476]

Best practices for querying and modifying
data
To query and modify data appropriately, you will need to follow some basic
guidelines—including the following guidelines for writing clean code—to make your
queries fast.

Understanding how to write clean code
It's important to write clean code for readability and ease of use so that you and others can
easily understand what your code is trying to do. This can be done by following these tips:

Formatting your SQL code for readability is important so that you and others can
easily understand your SQL code. SQL ignores whitespace, making it easy to
format for readability. You can write SQL code all on one line, but it's much
easier to read if you place different parts of the SQL on separate lines.

For example, say that you wrote some code like the following query, which has
all the code on one line and wraps around:

CREATE TABLE `managers` (`managerkey` smallint NOT NULL,`playerid`
varchar(9) NOT NULL,`yearid` year(4) NOT NULL,`teamid` char(3) NOT
NULL);

Instead, think about writing it so that it's easier to read, as is shown in the
following query, where each piece is on a separate line:

CREATE TABLE `managers` (
`managerkey` smallint NOT NULL,
`playerid` varchar(9) NOT NULL,
`yearid` year(4) NOT NULL);

When writing queries, you can use the beautify button in MySQL Workbench to
make your code nicely formatted. The beautify button is shown in the following
screenshot:

Best Practices for Designing and Querying Chapter 15

[477]

The following screenshot shows a query before the beautify button is used:

The following screenshot shows you the same query after using the beautify
button:

Use uppercase for keywords and lowercase for everything else. This way, it's
easier to see the keywords in a query or script.
Add comments to your SQL code to ensure that it's clear to you and others what
is being done in the script. You may want to save this script for later or share it
with others, and it will make a lot of difference if you comment your code with
explanations. When creating comments, it's important to note a few things, such
as who created the code, when the code was created, who last modified the code,
the date of the modification, and an explanation of why it was created or
modified. More details are provided in Chapter 6, Querying a Single Table.

Best Practices for Designing and Querying Chapter 15

[478]

Understanding query optimization
To make sure your queries are optimized and run as quickly as they can, you want to
ensure that they are correctly using the indexes on the table you are querying. If you use
indexes properly with your queries, then you will have less blocking and deadlocking to
deal with because the index will allow you to query data more quickly.

There is a simple way to see how MySQL will run your query, and that is to append
EXPLAIN to the front of your query. For example, you can see EXPLAIN being used in the
following query:

USE lahmansbaseballdb;
EXPLAIN SELECT playerid, g_all, g_batting, g_defense
FROM appearances;

What EXPLAIN will do is give you a table of information about how it's going to run the
query. The preceding query will provide you with the results shown in the following
screenshot:

Let's look at an example query that uses some more clauses to see some more information
in our EXPLAIN result:

USE lahmansbaseballdb;
EXPLAIN SELECT distinct playerid, g_all, g_batting, g_defense
FROM appearances
WHERE playerid LIKE 'a%'
ORDER BY playerid;

The preceding query gives us the results shown in the following screenshot:

Now we can see some more interesting information with our EXPLAIN results. The filtered
column shows us that we are only getting approximately 11.11% of the rows returned. It
also shows that we are using a WHERE clause, that the query needs a temporary table, and
that MySQL had to use an extra pass to sort the records. In this specific case, since it's such
a small table and it won't be growing quickly, you could get away with not changing
anything, but if this table were to become much larger, then you would need to account for
these issues.

Best Practices for Designing and Querying Chapter 15

[479]

Let's say that we knew this table will soon grow much larger. How could we fix these
issues that we are seeing? Let's take a step back and examine how this query could be
changed to use an index. Let's say that we ran the following query instead:

USE lahmansbaseballdb;
EXPLAIN SELECT distinct playerid
FROM appearances
WHERE playerid LIKE 'a%'
ORDER BY playerid;

In the following screenshot, we can see the results from the preceding query:

Since we removed the g_all, g_batting, and g_defense columns from the SELECT
query, we can see that the query is now using the PRIMARY key (which is the clustered
index on this table), so this will make the query faster, but it doesn't have all the columns
that we may need in our query. This is when we need to think about whether we need
those columns that we've removed, and if so, then we may need to add a new index to
account for this. This is called adding an index to cover a query. Addressing similar
concerns as we did previously in this section, this is a small table that isn't going to grow, so
it may not be necessary to change anything. Still, if we were going to account for a table
that might become significantly larger, and we are planning to run this query frequently,
we could add a nonclustered index to cover the additional columns in the query. You also
need keep in mind that when you add indexes you will affect other queries, possibly
making them less efficient, and you will slow down insertions, updates, and deletions.

You can also use a graphical interface for the query execution plan. To do this, you will
need to run your query first:

USE lahmansbaseballdb;
SELECT distinct playerid, g_all, g_batting, g_defense
FROM appearances
WHERE playerid LIKE 'a%'
ORDER BY playerid;

Then click Query in the MySQL Workbench menu, then Explain Current Statement, as
shown in the following screenshot:

Best Practices for Designing and Querying Chapter 15

[480]

This will bring up a Visual Explain plan panel below the query window and above the
output window, as shown in the following screenshot:

The preceding screenshot shows that the query is using the NC_playerid_g_cols index,
and it only has to use a range of the index, which is good since it does not have to scan the
entire index. It gives you the approximate row count and the time it will take to return the
query, which is 3.28K rows and 697.26 milliseconds, respectively. It also tells you the table
it will be using, appearances. You can then see that it checks for distinct values and orders
them, and then returns the query results.

Best Practices for Designing and Querying Chapter 15

[481]

Understanding best practices when querying
data
To build fast queries, you need to follow some best practices when querying data. First, it's
important to understand that you have to write the clauses in a specific order or your query
will fail, as shown in the following list:

SELECT statement best practices:
Use SELECT fields instead of SELECT *. This is taxing on database
resources, especially if a table has a lot of columns. It's best to write a
query just to select the columns that you know you will need instead of
selecting them all with SELECT *.
Use column aliases, especially when using functions. When you use a
function in the WHERE clause, it will put the function as the name of the
column instead of a more useful name. While giving the column an
alias doesn't speed up your query, it will make it easier to know what
you see in the results—for example, if you execute SELECT
UPPER('ab'), the column in the results will be displayed as shown in
the following screenshot:

Whereas if you give the function an alias such as SELECT UPPER('ab')
in uppercase, then the results will have a better column name, as shown
in the following screenshot:

Avoid using SELECT DISTINCT. You can use DISTINCT to remove duplicates
from query results, but this can be an intensive process that uses a lot of database
resources depending on the size of the table. It may be better just to add more
columns to your SELECT statement to ensure the distinctiveness of the results.
One exception to this can be if you are trying to get a list of distinct values in one
column only.

Best Practices for Designing and Querying Chapter 15

[482]

WHERE clause best practices:
Only use wildcards at the end of a string. Wildcards, such as the
percent sign (%) and underscore (_), at the beginning of a string are
slower to process because the user won't be able to use any indexes on
the table.
Use an underscore (_) wildcard instead of a percent sign (%) when
possible. This is because the underscore will perform faster than the
percent sign since the underscore matches on one character and the
percent sign matches on one or more characters.
Avoid WHERE clauses with functions. Functions in the WHERE clause can
cause the query to be a lot slower because the query won't be able to
use any indexes on the table. For example, the following query will be
slow:

SELECT column WHERE UPPER(column) = 'ab';

However, the following query will be faster:

SELECT column WHERE column = 'ab';

Use WHERE instead of HAVING to filter, when possible. HAVING is used to filter
query results in a GROUP BY. WHERE can filter those results before it even gets to
the GROUP BY, which makes your query less expensive to run. For example, if
you are trying to filter by a count in a grouping, then you will need to use a
HAVING clause, but if you are also trying to filter by a date range, then you
should use a WHERE clause first.
Use lookup tables instead of IN clauses.
JOIN clause best practices:

Use table aliases. It's more human-readable to use table aliases when
joining tables together. Look at the following query:

SELECT tablea.col, tableb.col
FROM tablea
INNER JOIN tableb
ON tablea.id = tableb.id;

Instead, you should use this query:

SELECT a.col, b.col
FROM tablea a
INNER JOIN tableb b
ON a.id = b.id;

Best Practices for Designing and Querying Chapter 15

[483]

ORDER BY clause best practices:
Avoid using column numbers in the ORDER BY clause. It can be
confusing if you use column numbers instead of the column names in
the ORDER BY clause. In addition, if you change the columns in the
SELECT statement, you will have no idea what the column numbers in
the ORDER BY clause corresponded to.
For example, you should execute the following query:

SELECT col1, col2 FROM tablename ORDER BY col1, col2;

You should not execute the following query :

SELECT col1, col2 FROM tablename ORDER BY 1, 2;

Don't order by too many columns. If you order by all the columns in the table,
then there will be a performance impact on your query, so you need to be careful
when choosing which and how many columns to use in your ORDER BY clause.
LIMIT clause best practices:

Use LIMIT when running a query for the first time. This can help you
to see a subset of your query results to check whether you are on the
right track without returning a lot of results that may be too taxing on
the database system.

Other best practices:
Use transactions and error handling in stored procedures and
functions. You want to be able to group functionality and have it roll
back as one if something fails. It's essential to understand what error
happened so that you can troubleshoot how to fix any issues that come
up.
Avoid subqueries when you can. They are more intensive than a
JOIN—for example, the following query will be more intensive:

SELECT a.col,
 (SELECT b.col
 FROM tableb b
 WHERE b.id = a.id) AS colname
FROM tablea a;

The following query will be less intensive:

SELECT a.col, b.col
FROM tablea a
LEFT JOIN tableb b
ON b.id=a.id;

Best Practices for Designing and Querying Chapter 15

[484]

When running intensive analytical queries, run them during nonpeak hours, or if
there is a secondary readable database, execute them there. Intensive queries
include queries that will return a lot of results or query large tables. You may be
able to schedule them to execute at nonpeak hours so that you don't have to
work at strange hours to execute them.
Don't take user input to build a query. Instead, use a stored procedure or
function to take values via variables, but with the caveat that if an application is
passing through values into the stored procedure or function, then it should
check values before they are passed in to avoid attacks on your database.
Use stored procedures, functions, or views for queries that are used
repeatedly. This ensures that the queries are more easily maintained. It can also
ensure that similar functionality is stored together. It's also possible to limit
access at a more granular level by granting user access to just one view or stored
procedure.

Understanding best practices when modifying
data
To build fast queries, you need to follow some best practices when modifying data.

INSERT statement best practices:
Always use column names in INSERT. To avoid confusion, it's best to
specify column names in your INSERT statements. For example, the
following query may work fine:

INSERT INTO tablename VALUES (1, 'testing', 100);

The previous query may encounter an error if the column types change
or another column is added, so it's better to use the following query
instead:

INSERT INTO tablename (id, name, value) VALUES (1,
'testing', 100);

Use small batches when running large INSERT, UPDATE, and DELETE
statements. This will avoid issues with the INSERT, UPDATE, or DELETE queries
blocking other queries that are trying to execute concurrently. You can use a loop
to limit the number of rows that will be inserted, updated, or deleted until you
reach the total number of rows you need to affect.

Best Practices for Designing and Querying Chapter 15

[485]

DELETE statement best practices:
If you are deleting all the data in a table, then you should use
TRUNCATE instead. TRUNCATE is a fast option for deleting all data from
a table. The following syntax shows an example of its use:

TRUNCATE TABLE tablename;

Summary
In this chapter, you learned about the best practices for databases. You also learned about
the best practices for database design, including which data types to use.

You also learned about the best practices for indexing, including indexing naming
conventions, how indexes relate to data integrity with primary and foreign keys, how
indexing impacts performance, and when to create indexes. You also learned about the best
practices for querying and modifying data, including how to write clean code. You also
learned about the best practices for querying data, with specific tips on SQL statements and
clauses, as well as tips on best practices when modifying data.

In the next chapter, the SQL commands discussed in this book will be outlined for quick
reference. The syntax for querying data, modifying data, and designing databases and
tables will also be included. This will help you by providing a quick reference guide so that
you won't need to go back through all the chapters of this book to check your syntax.

Questions
Why is data integrity important for your database? 1.
Why is it important to name your database objects by following naming2.
standards?
Why is it important to choose the right data types for your data? 3.
Is there a right number of indexes or columns in an index on a table? 4.
How do you see which indexes a query is using? 5.
How do you write clean code? 6.
What are some best practices when writing SQL statements? 7.
What are some best practices when using the WHERE clause? 8.
What are some best practices when using an INSERT statement?9.
What are some best practices when using a DELETE statement?10.

16
SQL Appendix

In this chapter, the SQL commands that are mentioned in this book will be outlined for
quick reference. This includes the syntax for querying data, modifying data, and designing
databases and tables. This chapter will help you by providing a quick reference guide so
that you won't have to go back through all the chapters to check the syntax, but if you
require more details regarding how the syntax works, you can refer to the specific chapter
for that information.

In this chapter, we will cover the following topics:

SQL for designing databases
SQL for selecting data
SQL for modifying data
SQL expressions
Advanced query techniques
Programmable objects

SQL for designing databases
This section takes you through some example syntax for creating and altering databases in
MySQL. For more details on this syntax, visit Chapter 4, Designing and Creating a Database,
and Chapter 8, Modifying Data and Table Structures. These chapters will also outline the
differences in syntax for Oracle, PostgreSQL, and SQL Server.

https://cdp.packtpub.com/learn_sql_database_programming/wp-admin/post.php?post=27&action=edit
https://cdp.packtpub.com/learn_sql_database_programming/wp-admin/post.php?post=31&action=edit

SQL Appendix Chapter 16

[487]

Syntax for creating a database
In order to create a database, you can use the following sample syntax:

CREATE DATABASE yourschema;

Syntax for creating and altering tables
In order to create a table, you can use the following sample syntax. The items in square
brackets are optional:

CREATE TABLE schemaname.tablename (
col1name datatype [constraintinfo] [AUTO_INCREMENT],
col2name datatype [constraintinfo],
...
colNname datatype [constraintinfo]
[PRIMARY KEY (col1name),]
[UNIQUE KEY uniquekeyname (col1name),]);

You can alter a table in several different ways, as follows:

Altering a table to add a column:

ALTER TABLE tablename
ADD COLUMN colname datatype [constraintinfo] [AFTER othercolname];

Altering a table to add multiple columns:

ALTER TABLE tablename
ADD COLUMN col1name datatype [constraintinfo] [AFTER othercolname],
ADD COLUMN col2name datatype [constraintinfo] [AFTER
othercolname1],

Altering a table to drop a column:

ALTER TABLE tablename
DROP COLUMN colname;

Altering a table to drop multiple columns:

ALTER TABLE tablename
DROP COLUMN col1name,
DROP COLUMN col2name;

SQL Appendix Chapter 16

[488]

Altering a table to rename a column:

ALTER TABLE tablename
CHANGE COLUMN oldcolname newcolname datatype;

Altering a table to change the data type of a column:

ALTER TABLE tablename
CHANGE COLUMN colname colname newdatatype;

Altering a table to change a column constraint:

ALTER TABLE tablename
CHANGE COLUMN colname colname datatype newconstrainttype;

Altering a table to add a column constraint:

ALTER TABLE tablename
ADD CONSTRAINT constraintname constraintinfo;

Altering a table to drop a check constraint:

ALTER TABLE tablename
DROP CHECK constraintname;

Altering a table to drop a foreign key constraint:

ALTER TABLE tablename
DROP FOREIGN KEY fkname;

Altering a table to drop a primary key constraint:

ALTER TABLE tablename
DROP PRIMARY KEY;

Dropping a table:

DROP TABLE tablename;

SQL Appendix Chapter 16

[489]

Syntax for creating and altering indexes
To see what index a query has, you can use the following sample syntax:

EXPLAIN SELECT statement;

To create an index, you can use the following sample syntax:

ALTER TABLE tablename
ADD INDEX indexname (columnnames);

To change an index in MySQL, you need to drop it and then add it back again using the
following sample syntax:

ALTER TABLE tablename
DROP INDEX indexname;

SQL for selecting data
This section takes you through some example syntax for selecting data in MySQL. For more
details on this syntax, visit Chapter 6, Querying a Single Table; Chapter 7, Querying Multiple
Tables; and Chapter 10, Grouping and Summarizing Data. These chapters will also outline the
differences in syntax for Oracle, PostgreSQL, and SQL Server.

Syntax for selecting data
To select all columns from one table, you can use the following sample syntax:

SELECT * FROM tablename;

To select one or more columns from one table, you can use the following sample syntax:

SELECT col1, col2, col3 FROM tablename;

To select from a specified database, you can use the following sample syntax:

USE databasename;
SELECT col1, col2, col3 FROM tablename;

https://cdp.packtpub.com/learn_sql_database_programming/wp-admin/post.php?post=29&action=edit
https://cdp.packtpub.com/learn_sql_database_programming/wp-admin/post.php?post=30&action=edit
https://cdp.packtpub.com/learn_sql_database_programming/wp-admin/post.php?post=33&action=edit

SQL Appendix Chapter 16

[490]

To select distinct records from a table, you can use the following sample syntax:

SELECT DISTINCT col1, col2 FROM tablename;

To limit and offset the number of records that are returned, you can use the following
sample syntax:

SELECT col1, col2 FROM tablename
LIMIT 500 OFFSET 1000;

To comment on your SQL query, you can use the following sample syntax:

this is single line comment

/*
this is a
multi line
comment
*/

Syntax for filtering data
To limit results using WHERE, you can use the following sample syntax:

SELECT col1, col2
FROM tablenameWHERE condition(s);

To limit results using AND with WHERE, you can use the following sample syntax:

SELECT col1, col2
FROM tablename
WHERE condition AND condition;

To limit results using OR with WHERE, you can use the following sample syntax:

SELECT col1, col2
FROM tablename
WHERE condition OR condition;

To limit results using IN with WHERE, you can use the following sample syntax:

SELECT col1, col2
FROM tablename
WHERE col1 IN (values);

SQL Appendix Chapter 16

[491]

To limit results using NOT IN with WHERE, you can use the following sample syntax:

SELECT col1, col2
FROM tablename
WHERE col1 NOT IN (values);

To limit results using BETWEEN with WHERE, you can use the following sample syntax:

SELECT col1, col2
FROM tablename
WHERE col1 BETWEEN value and anothervalue;

To limit results using NOT BETWEEN with WHERE, you can use the following sample syntax:

SELECT col1, col2
FROM tablename
WHERE col1 NOT BETWEEN value and anothervalue;

To limit results using the percent sign (%) with WHERE, you can use the following sample
syntax:

SELECT col1, col2
FROM tablename
WHERE col1 LIKE 'value%';

To limit results using the underscore (_) with WHERE, you can use the following sample
syntax:

SELECT col1, col2
FROM tablename
WHERE col1 LIKE 'value_';

Syntax for ordering results
To order results by one column using ORDER BY, you can use the following sample syntax.
The WHERE clause is optional:

SELECT col1, col2, col3
FROM table
WHERE condition(s)
ORDER BY col1;

SQL Appendix Chapter 16

[492]

To order results by multiple columns using ORDER BY, you can use the following sample
syntax. The WHERE clause is optional:

SELECT col1, col2, col3
FROM table
WHERE condition(s)
ORDER BY col2, col1;

To order results in descending order using ORDER BY, you can use the following sample
syntax. The WHERE clause is optional:

SELECT col1, col2, col3
FROM table
WHERE condition(s)
ORDER BY col2 DESC, col1 DESC;

Syntax for joining tables
To join tables using an inner join, you can use the following sample syntax:

SELECT column(s)
FROM table1 AS a
JOIN table2 AS b
ON a.id = b.id

To create a join using the left outer join, you can use the following sample syntax:

SELECT column(s)
FROM table1 AS a
LEFT OUTER JOIN table2 AS b
ON a.id = b.id

To create a join using the right outer join, you can use the following sample syntax:

SELECT column(s)
FROM table1 AS a
RIGHT OUTER JOIN table2 AS b
ON a.id = b.id

SQL Appendix Chapter 16

[493]

Syntax for grouping results
To group data using GROUP BY, you can use the following sample syntax. WHERE and
ORDER BY are optional:

SELECT column(s)
FROM table
WHERE condition(s)
GROUP BY columns(s)
ORDER BY column(s);

To get subtotals and totals with GROUP BY and ROLLUP, you can use the following sample
syntax:

SELECT col1, col2, col3
FROM table
GROUP BY col2, col1, WITH ROLLUP;

Syntax for filtering grouped results
To limit results in GROUP BY using HAVING, you can use the following sample
syntax. WHERE and ORDER BY are optional:

SELECT column(s)
FROM table
WHERE condition(s)
GROUP BY columns(s)
HAVING condition(s)
ORDER BY column(s);

Syntax for using aggregate functions
For numeric functions, you can use the following sample syntax:

SELECT
 ROUND(AVG(col1),1) AS rounded_average,
 MAX(col1) AS maximum,
 MIN(g_all) AS minimum,
 FORMAT(COUNT(col1), 0) AS count_formatted,
 SUM(col1) AS sum
FROM tablename;

SQL Appendix Chapter 16

[494]

For statistical functions, you can use the following sample syntax:

SELECT
 STDDEV(col1) AS 'standard_deviation',
 VARIANCE(col1) AS 'variance'
FROM tablename;

SQL for modifying data
This section takes you through some example syntax for modifying data in MySQL. For
more details on this syntax, visit Chapter 8, Modifying Data and Table Structures. This
chapter will also outline the differences in syntax for Oracle, PostgreSQL, and SQL Server.

Syntax for inserting data
To INSERT a single row, you can use the following sample syntax:

INSERT INTO tablename (col1, col2, col3)
VALUES ('value1','value2',value3);

To INSERT multiple rows, you can use the following sample syntax:

INSERT INTO tablename (col1, col2, col3)
VALUES ('value1','value2',value3),
 ('value5','value6',value7),
 ('value8','value9',value10);

To create a table and insert data from another table into the new table, you can use the
following sample syntax:

CREATE TABLE newtablename
SELECT * FROM existingtablename

To insert data from one table into another, you can use the following sample syntax:

INSERT INTO existingtable
SELECT * FROM anotherexistingtable

https://cdp.packtpub.com/learn_sql_database_programming/wp-admin/post.php?post=31&action=edit

SQL Appendix Chapter 16

[495]

Syntax for updating data
To UPDATE certain data in a table, you can use the following sample syntax:

UPDATE tablename
SET col1 = 'value1', col2 = value2
WHERE col1 = 'value3';

To UPDATE all the data in a table, you can use the following sample syntax:

UPDATE tablename
SET col1 = 'value1';

To UPDATE data in a table based on a query, you can use the following sample syntax:

UPDATE tablename tn
INNER JOIN anothertablename atn
ON tn.col1 = atn.col1
SET tn.col2 = atn.col2;

Syntax for deleting data
To DELETE data from a table, you can use the following sample syntax:

DELETE FROM tablename
WHERE col1 = 'value1';

To DELETE all the data from a table, you can use the following sample syntax:

DELETE FROM tablename;

For a faster way to delete all the data from a table, you can use the following sample syntax:

TRUNCATE TABLE tablename;

Syntax for SQL transactions
To put a SQL query in a TRANSACTION and COMMIT the transaction, you can use the
following sample syntax:

START TRANSACTION;
UPDATE tablename
SET col1 = 'value1';
COMMIT;

SQL Appendix Chapter 16

[496]

To put a SQL query in a TRANSACTION and ROLLBACK the transaction, you can use the
following sample syntax:

START TRANSACTION;
UPDATE tablename
SET col1 = 'value1';
ROLLBACK;

To put a SQL query in a TRANSACTION using savepoints to ROLLBACK the transaction, you
can use the following sample syntax:

START TRANSACTION;
SAVEPOINT firstsavepoint;
INSERT INTO tablename
SELECT * FROM anothertablename
WHERE col1 = 'value1';
SAVEPOINT secondsavepoint;
DELETE FROM tablename
WHERE col1 = 'value2';
ROLLBACK TO firstsavepoint;

SQL expressions
This section takes you through some example syntax for using expressions in MySQL. For
more details on this syntax, visit Chapter 9, Working with Expressions. That chapter also
outlines the differences in syntax for Oracle, PostgreSQL, and SQL Server.

Types of expressions
To use literal values in expressions, you can use the following sample syntax:

SELECT 'string', 1, 1.23, NULL;

To use comparison operators, you can use the following examples:

SELECT column FROM table WHERE column = 100: This is an example of
equal to.
SELECT column FROM table WHERE column = 'value': This is an example
of equal to.
SELECT column FROM table WHERE column != 1000: This is an example
of not equal to.

https://cdp.packtpub.com/learn_sql_database_programming/wp-admin/post.php?post=32&action=edit

SQL Appendix Chapter 16

[497]

SELECT column FROM table WHERE column != 'value': This is an
example of not equal to.
SELECT column FROM table WHERE column <> 1000: This is an example
of not equal to.
SELECT column FROM table WHERE column <> 'value': This is an
example of not equal to.
SELECT column FROM table WHERE column >= 1: This is an example
of greater than or equal to.
SELECT column FROM table WHERE column > 1: This is an example
of greater than.
SELECT column FROM table WHERE column < 1: This is an example of less
than.
SELECT column FROM table WHERE column <= 1: This is an example of less
than or equal to.

To use logical operators, you can use the following examples:

SELECT column FROM table WHERE column1 <> 1 AND column2 = 2:
This is an example of the AND operator.
SELECT column FROM table WHERE column1 <> 1 OR column2 = 2: This
is an example of the OR operator.
SELECT column FROM table WHERE column1 IN (1, 2, 3): This is an
example of the IN operator.
SELECT column FROM table WHERE column1 BETWEEN 1 AND 4: This is an
example of the BETWEEN with AND operator.
SELECT column FROM table WHERE column1 NOT IN (1, 2, 3): This is
an example of the NOT IN operator.
SELECT column FROM table WHERE column1 IS NOT NULL: This is an
example of the IS NOT NULL operator.
SELECT column FROM table WHERE column1 LIKE 'abc%': This is an
example of the LIKE operator.

To use mathematical operators, you can use the following examples:

SELECT column FROM table WHERE column + 2: This is an example of
addition.
SELECT column FROM table WHERE column - 2: This is an example of
subtraction.

SQL Appendix Chapter 16

[498]

SELECT column FROM table WHERE column * 2: This is an example of
multiplication.
SELECT column FROM table WHERE column / 2: This is an example of
division.

For string functions, you can use the following examples:

CHAR_LENGTH('string'): This will return 6 since it's counting the number of
characters in the string.
LENGTH('string'): This will return 6 since it's the length in bytes.
CONCAT('string1', 'string2'): This concatenates string1 and string2;
for example, string1string2.
LEFT('string', 3): This returns str because those are the first three
characters.
RIGHT('string', 3): This returns ing because those are the last three
characters.
LOWER('String'): This returns string since it converts all letters into lowercase.
UPPER('String'): This returns STRING since it converts all letters into
lowercase.
LTRIM(' String'): This returns string since it removes all the spaces at
the beginning of the string.
RTRIM('String '): This returns string since it removes all the spaces at
the end of the string.
TRIM(' String '): This returns string since it removes all the spaces
at the beginning and the end of the string.
LPAD('string', 8, 'x'): This returns xxstring since it pads at the
beginning of the string. The middle parameter – 8, in this case – is setting the
length of the string after the padding.
RPAD('string', 8, 'x') : This returns stringxx since it pads at the end of
the string. The middle parameter – 8, in this case – is setting the length of the
string after the padding.
REPLACE('string', 'str', 'ing'): This returns inging.
SUBSTRING('string', 2, 3): This returns tri.
REVERSE('string'): This returns gnirts since this reverses the string.

SQL Appendix Chapter 16

[499]

For numeric functions, you can use the following examples:

AVG(rating): This will return the average of all the values in a rating column.
COUNT(column1): This will return the count of values in column1. column1 can
contain either strings, dates, or numbers.
MAX(rating): This will return the maximum rating in a column of rating values.
MIN(rating): This will return the minimum rating in a column of rating values.
ROUND(123.456, 2): This will return 123.46 since the number will be rounded
up to two decimal places.
SUM(number): This will return the sum of the values in a column of number
values.
FORMAT(1234.4567, 2): This will return 1,234.46 since the number will be
rounded up to two decimal places. A comma is added for readability.

For date or time functions, you can use the following examples:

CURRENT_DATE(): Returns date in YYYY-MM-DD format, that is, 2020-01-11.
CURRENT_TIME(): Returns time in HH:MM:SS format, that is, 21:09:27.
CURRENT_TIMESTAMP(): Returns datetime in YYYY-MM-DD HH:MM:SS format,
that is, 2020-01-11 21:10:23.
NOW(): Returns datetime in YYYY-MM-DD HH:MM:SS format, that is, 2020-01-11
21:10:23.
DATE_FORMAT(date, format): Here, date is a valid date value and format is
the format you want the date in. For example, DATE_FORMAT(NOW(), %m-%d-
%y'), will return 01-12-20.
TIME_FORMAT(time, format): Here, time is a valid time value and format is
the format you want the time in.

For advanced functions, you can use the following examples:

SELECT CURRENT_USER();: Returns root@% (depending on who you are
logged in as).
SELECT DATABASE();: Returns lahmansbaseballdb (depending on which
database you are using).
SELECT VERSION();: Returns 8.0.18 (depending on your MySQL version).
CAST(value as datatype): Converts the value from one datatype into
another datatype.

SQL Appendix Chapter 16

[500]

CONVERT(value, datatype): Similar to the cast function.
IF(condition, value if true, value if false): Returns the result
based on the result of the condition.
CASE
 WHEN condition1 THEN result1
 WHEN condition2 THEN result2
 WHEN conditionN THEN resultN

 ELSE result
END;: The result is shown based on the condition that returns true.

To work with NULL values, you can use the following examples:

SELECT NULLIF(1, 1): Returns NULL.
SELECT NULLIF(1, 2): Returns 1.
SELECT IFNULL(NULL, 'testing'): Returns 'testing'.
SELECT IFNULL(NULL, NULL): Returns NULL.
SELECT ISNULL(NULL): Returns 1.
SELECT ISNULL('testing'): Returns 0.

Syntax for using generated columns
To create a virtual generated column, you can use the following sample syntax:

ALTER TABLE tablename
ADD COLUMN columnname datatype GENERATED ALWAYS AS (expression) AFTER
column;

To create a stored generated column, you can use the following sample syntax:

ALTER TABLE tablename
ADD COLUMN columnname datatype GENERATED ALWAYS AS (expression) STORED
AFTER column;

Advanced query techniques
This section takes you through some example syntax for advanced query techniques in
MySQL. For more details on this syntax, visit Chapter 11, Advanced Query Techniques. This
chapter will also outline the differences in syntax for Oracle, PostgreSQL, and SQL Server.

https://cdp.packtpub.com/learn_sql_database_programming/wp-admin/post.php?post=34&action=edit

SQL Appendix Chapter 16

[501]

Syntax for subqueries
In the following code, the query inside parentheses is the inner query, while the query
outside parentheses is the outer query.

To use a subquery, you can follow the following sample syntax:

SELECT col1
FROM table1
WHERE col1 IN
 (SELECT col1 FROM table 2 WHERE col1 = 'test')

For a non-correlated subquery in WHERE with multiple values being returned, you can
follow the following sample syntax. The square brackets indicate you could use any one of
those options in place of those listed options:

SELECT column(s)
FROM tablename
WHERE column [IN | NOT IN | ANY | ALL | SOME]
 (SELECT col1 from tablename WHERE condition(s));

For a non-correlated subquery in WHERE with a single value being returned, you can follow
the following sample syntax. The square brackets indicate you could use any one of those
options in place of those listed options:

SELECT column(s)
FROM tablename
WHERE column [= | > | >= | < | <= | != |<>]
 (SELECT col1 from tablename WHERE condition(s));

For a non-correlated subquery in SELECT, you can follow the following sample syntax:

SELECT col1, col2,
 (SELECT col from tablename)
FROM tablename;

For a non-correlated subquery in FROM, you can follow the following sample syntax:

SELECT col1, col2
FROM(SELECT col from tablename);

SQL Appendix Chapter 16

[502]

For a correlated subquery in WHERE, you can follow the following sample syntax. The
square brackets indicate you could use any one of those options in place of those listed
options:

SELECT column(s)
FROM tablename1 a
WHERE column [IN | NOT IN |EXISTS | NOT EXISTS]
 (SELECT col1 from tablename2 b WHERE a.id = b.id);

For a correlated subquery in SELECT, you can follow the following sample syntax:

SELECT col1, col2,
 (SELECT col3 FROM tablename2 b WHERE a.id = b.id)
FROM tablename1 a;

Syntax for common table expressions
For a single non-recursive CTE, you can use the following sample syntax:

WITH ctename (col1, col2, colN)
AS (SELECT col1, col2, colN FROM table)
SELECT col1, col2, colN FROM ctename;

For a non-recursive CTE with multiple CTEs, you can use the following sample syntax:

WITH ctename1 (col1, col2, colN)
AS (select col1, col2, colN from table1),
ctename2 (col1, col2, colN)
AS (select col1, col2, colN from table2)
SELECT col1, col2, colN
FROM ctename1
JOIN ctename2
ON ctename1.col1 = ctename2.col1;

For a recursive CTE, you can use the following sample syntax:

WITH RECURSIVE ctename
AS (
 initial query
 UNION ALL
 recursive query
)
SELECT * FROM ctename;

SQL Appendix Chapter 16

[503]

Syntax for query hints
For an index hint, you can use the following sample syntax:

SELECT column(s)
FROM tablename USE INDEX(indexname)
WHERE condition(s);

Syntax for transaction isolation level
To set the isolation level for the session, you can use the following sample syntax:

SET SESSION TRANSACTION isolationlevel;

To set the isolation level for the transaction, you can use the following sample syntax:

SET TRANSACTION isolationlevel;

Programmable objects
This section takes you through some example syntax for modifying data in MySQL. For
more details on this syntax, visit Chapter 12, Programmable Objects. This chapter will also
outline the differences in syntax for Oracle, PostgreSQL, and SQL Server.

Syntax for views
To create a view, you can use the following sample syntax:

CREATE VIEW nameofview AS
SELECT col1, col2, co1n
FROM tablename
WHERE condition(s);

To create a view that will be used to modify data, you can use the following sample syntax:

CREATE VIEW nameofview AS
SELECT col1, col2, co1n
FROM tablename
WHERE condition(s)
WITH CHECK OPTION;

https://cdp.packtpub.com/learn_sql_database_programming/wp-admin/post.php?post=35&action=edit

SQL Appendix Chapter 16

[504]

Syntax for variables
To use a variable in your SQL statement, you can use the following sample syntax:

SET @varname := 'value';
SELECT * FROM tablename
WHERE col1 = @varname;

Syntax for stored procedures
To create a stored procedure, you can use the following sample syntax:

DELIMITER $$
CREATE PROCEDURE storedprocname()
 BEGIN
 your sql statments go here;
 END $$
DELIMITER ;

To call the stored procedure that you just created, you can use the following sample syntax:

CALL storedprocname ();

To use IN parameters in a stored procedure, you can use the following sample syntax:

DELIMITER $$
CREATE PROCEDURE storedprocname
(
IN in_varname vartype,
IN in_varname2 vartype
)
 BEGIN
 SELECT * FROM tablename
 WHERE col1 = in_varname AND col2 = in_varname2
 END $$
DELIMITER ;

To call your stored procedure with IN parameters, you can use the following sample
syntax:

CALL storedprocname('value', value);

SQL Appendix Chapter 16

[505]

To use IN parameters in a stored procedure, you can use the following sample syntax:

DELIMITER $$
CREATE PROCEDURE storedprocname
(
IN in_varname vartype,
IN in_varname2 vartype,
OUT out_varname vartype
)
 BEGIN
 SELECT * FROM tablename
 WHERE col1 = in_varname AND col2 = in_varname2
 END $$
DELIMITER ;

To call your stored procedure with the IN and OUT parameters, you can use the following
sample syntax:

CALL storedprocname ('value', value, @out_varname);
SELECT @out_varname;

To alter the stored procedure, you need to delete it and recreate it with the following
sample syntax:

DROP PROCEDURE storedprocname;

Syntax for flow control statements
To loop through data in a stored procedure with LOOP, you can use the following sample
syntax:

[beginlabel:] LOOP
 sql statements
 END LOOP [endlabel];

To loop through data in a stored procedure with REPEAT, you can use the following sample
syntax:

[beginlabel:] REPEAT
 sql statements
UNTIL condition
END REPEAT [endlabel]

SQL Appendix Chapter 16

[506]

To loop through data in a stored procedure with WHILE, you can use the following sample
syntax:

[beginlabel:]
WHILE condition DO
sql statements
END WHILE
[end_label]

Syntax for error handling
To handle errors in a stored procedure, you can use the following sample syntax:

DECLARE action HANDLER FOR condition statement;

Syntax for functions
To create a function, you can use the following sample syntax:

DELIMITER $$
 CREATE FUNCTION functionname(
 parameter1,
 parameter2,…
)
 RETURNS datatype
 [NOT] DETERMINISTIC
 BEGIN
 -- put sql statements here
 END $$
 DELIMITER ;

To call the function in a SELECT query, you can use the following sample syntax:

SELECT col1, col2,
 functionname(col3)
FROM tablename;

To alter the function, you need to delete it and recreate it with the following sample syntax:

DROP FUNCTION functionname;

SQL Appendix Chapter 16

[507]

Syntax for triggers
To create a trigger, you can use the following sample syntax. The square brackets indicate
you could use any one of those options in place of those listed options:

CREATE TRIGGER triggername
 [BEFORE | AFTER] [INSERT | UPDATE| DELETE]
 ON tablename FOR EACH ROW
 triggerbody;

To create multiple triggers, you can use the following sample syntax. The square brackets
indicate you could use any one of those options in place of those listed options:

CREATE TRIGGER triggername
 [BEFORE | AFTER] [INSERT | UPDATE| DELETE]
 ON tablename FOR EACH ROW
 [FOLLOWS | PRECEDES] anothertriggername
triggerbody;

To delete a trigger, you can use the following sample syntax:

DROP TRIGGER triggername;

Syntax for temporary tables
To explicitly create a temporary table, you can use the following sample syntax:

CREATE TEMPORARY TABLE temptablename(
 col1definition,
 col2definition,
 colndefinition);

To implicitly create a temporary table schema from one or more tables via a query, you can
use the following sample syntax:

CREATE TEMPORARY TABLE temptablename
SELECT * FROM permanenttable
LIMIT 0;

To delete a temporary table, you can use the following sample syntax:

DROP TEMPORARY TABLE temptablename;

SQL Appendix Chapter 16

[508]

Summary
In this book, you learned many things about the SQL programming language and how to
use it in MySQL Workbench. This included creating databases, creating and alerting tables,
and creating and altering indexes.

You learned how to select data with SQL syntax using the SELECT, WHERE, ORDER BY,
JOIN, GROUP BY, and HAVING clauses. We also provided information about the aggregate
functions you can use in the GROUP BY clause. You also learned how to modify data with
SQL syntax including INSERT, UPDATE, and DELETE. This included how to use SQL
transactions to commit and rollback SQL statements.

Then, you learned about advanced query techniques, including how to create and use
subqueries, common table expressions, query hints, and transaction isolation level syntax.
You learned about programmable objects, including creating and using views, variables,
stored procedures, functions, triggers, and temporary tables.

Finally, you learned about the best practices for database design and querying, how to
explore and process your data, and how to tell a story with your data. You now have the
necessary skills to successfully query a SQL database and tell a story with the data.

Assessments

Chapter 1
Structured Query Language, or SQL (pronounced see-quel), is the language used1.
for querying and manipulating data, and defining structures in databases.
Data definition language (DDL), data manipulation language (DML), and data2.
control language (DCL)
Queries, clauses, predicates, expressions, statements, and white space.3.
To avoid redundant data, optimize database performance, and ensure data4.
integrity.
First normal form, second normal form, and third normal form.5.
Ensuring consistency and accuracy of data.6.
Entity, referential, and domain integrity.7.
The top four are Oracle, MySQL, SQL Server, and PostgreSQL.8.
It's available for free, it offers a lot of functionality for system and database9.
administrators, it's easy to use and implement, and it's fast and stable.
Licensing is expensive, and it may require significant database administrator10.
resources after installation to maintain it.

Chapter 2
Windows and Mac.1.
Open the System Preferences, then click MySQL; then, you can see the status2.
and configuration options.
Click the + sign next to MySQL Connections in MySQL Workbench, then fill in3.
the connection information.
By using the Data Import/Restore in the Administration tab.4.
After executing a query, it will be in the Action Output panel. 5.
By clicking on the table name in the Schemas panel, then the columns will6.
appear in the Information panel.

Assessments

[510]

By using the View menu and clicking Panels, then Hide Secondary Sidebar.7.
In the Output panel in the Action column.8.
In the Output panel in the Message column.9.
By right-clicking the table, then choosing Select Rows - Limit 1000.10.

Chapter 3
CHAR, VARCHAR, BINARY, VARBINARY, BLOB, TEXT, ENUM, SET.1.
They make your database size much larger and hurt query performance.2.
INT, FLOAT, DOUBLE, DECIMAL, BIT.3.
Use this when you are concerned about the upper bounds of the range on your4.
INT.
DATE, TIME, DATETIME, TIMESTAMP, YEAR.5.
Oracle, PostgreSQL, and SQL Server.6.
JSON and spatial data types.7.
You want to pick the smallest data type that will hold your data so that you can8.
have the fastest query performance.
TINYINT.9.
VARCHAR.10.

Chapter 4
Keywords and spaces.1.
Numbers (0-9), lowercase letters (a-z), uppercase letters (A-Z), the dollar sign ($),2.
and the underscore (_).
CREATE DATABASE yourschema;3.
The Output panel.4.
With a natural key, you are using unique columns, and the data in those columns5.
exists outside the database (that is, in the business world). With a surrogate key,
you are creating a column to hold a unique value for each row, and that value
isn't used anywhere outside the database.

Assessments

[511]

this is a single line comment6.
/*7.
this is a
multi line
comment
*/

Clustered indexes sort the data in order on disk and nonclustered indexes don't. 8.
 If two or more queries are requesting the same data, creating locks that won't be9.
resolved, MySQL will decide which is easiest to kill (usually based on how long
it will take to roll back any given query).
Yes.10.

Chapter 5
Table Data Import and Export, SQL Data Import and Export, Result Data Export,1.
and SQL syntax.
Right-click a table, then choose Table Data Import Wizard.2.
You use the Configure Import Settings page to map the columns.3.
Right-click a table and choose Table Data Export Wizard.4.
Go into the Management or Administration panel in MySQL Workbench, then5.
select Data Import/Restore.
Go into the Management or Administration panel in MySQL Workbench, then6.
select Data Export.
Select rows from a table, then click the Export recordset to an external file7.
button.
LOAD DATA INFILE '/pathtoyourfiles/baseballdatabank-csv/csv-8.
files/Teams.csv'
INTO TABLE yourschema.teams
FIELDS TERMINATED BY ',';

SELECT * INTO OUTFILE 'teams-export.csv'9.
FIELDS TERMINATED BY ';' OPTIONALLY ENCLOSED BY '"'
LINES TERMINATED BY '\n'
FROM yourschema.teams;

secure-file-priv10.

Assessments

[512]

Chapter 6
The semicolon (;).1.
SELECT and FROM.2.
Since this selects all columns in a table, it is considered more expensive than if3.
you specify the columns you need.
It helps to limit the results of your queries.4.
Percent (%) and underscore (_).5.
It helps you to sort your results.6.
ASC or DESC.7.
EXPLAIN.8.
Right-click a table and choose Alter Table or you can execute a SQL query to9.
alter the table.
Click the Query menu in MySQL Workbench, then choose Explain Current10.
Statement.

Chapter 7
INNER, OUTER, cross, natural, and self joins.1.
Returns only matching records from each joined table.2.
dbname.tablename AS a3.
LEFT, RIGHT, FULL, right excluding, and left excluding.4.
Includes all rows from the right table that don't match records in the left table.5.
Associates columns of the same name in the joined tables with each other. It's6.
similar to an inner join or left outer join.
It returns a combination of every row from two tables.7.
UNION removes duplicates and UNION ALL doesn't.8.
By using DISTINCT in SELECT clause and an INNER JOIN.9.
By ensuring you use the indexes that are on the tables or by adding indexes to10.
the tables.

Assessments

[513]

Chapter 8
USE yourschema;1.
describe managers;

CREATE TABLE newtablename2.
SELECT * FROM existingtablename

By using a WHERE clause.3.
TRUNCATE TABLE tablename;4.
UPDATE table1 t15.
INNER JOIN table2 t2
ON t1.id = t2.id
SET t1.col1 = t2.col1

A grouping of one or more changes to the database.6.
To start a transaction in MySQL, use the START TRANSACTION or BEGIN7.
keywords. To commit the transaction, you use the COMMIT keyword. To roll back
a transaction, use the ROLLBACK keyword.
ALTER TABLE table18.
ADD COLUMN col2 datatype constraint AFTER col1;

ALTER TABLE table19.
CHANGE COLUMN col1 col1 newdatatype;
ALTER TABLE table1

CHANGE COLUMN col1 col1a datatype;10.

Chapter 9
 You can combine literals, operators, and built-in functions in countless ways to1.
produce expressions.
A constant value such as a string, a number, or a NULL value.2.
Perform math in your query.3.
An important concept in mathematics is operator precedence, which means the4.
order of operations. Precedence means that higher-level mathematical operations
will be performed first so that multiplication and division are done before
addition and subtraction. You can add parentheses around calculations to impact
the precedence.

Assessments

[514]

String, numeric, and date.5.
Converts text to lowercase.6.
Converts a value into the specified data type.7.
The query may no longer use the indexes on the table.8.
STDDEV(column)9.
Virtual and stored.10.

Chapter 10
To group rows that have the same values into summary rows.1.
Use the WHERE clause before the GROUP BY clause.2.
They wind up returning the same results.3.
Use ORDER BY clause after the GROUP BY clause.4.
ROLLUP.5.
To filter the GROUP BY results.6.
Yes.7.
SELECT8.
FROM/JOIN
WHERE
GROUP BY
HAVING
ORDER BY
LIMIT

FROM/JOIN9.
WHERE
GROUP BY
HAVING
SELECT
ORDER BY
LIMIT

Assessments

[515]

Chapter 11
Correlated and non-correlated.1.

2.
Non-correlated Correlated
The inner query doesn't depend on the
outer query. Inner query depends on the outer query.

Can run as a standalone query. Can't run as a standalone query.

Executed only once. Executed once for each row selected in
the outer query.

Executed before the outer query. Executed after the outer query.

Can't be used instead of JOIN on the
outer query.

Can be used instead of JOIN on the
outer query, but will be slower than a
JOIN.

SELECT, WHERE, FROM, INSERT, UPDATE, and DELETE clauses.3.
SELECT and WHERE clauses.4.
A container for a single SQL statement that will allow you to query a temporary5.
result set.
Recursive and non-recursive. 6.
Locking is what happens when a query runs against a database.7.
With an index hint.8.
READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ,9.
and SERIALIZABLE.
Phantom reads happen when rows are returned that weren't in the previous10.
results.

Chapter 12
A stored query.1.
 Yes, depending on the query in the view. You can update, insert, and delete2.
from a view if it queries one table. You can insert and update from a view if
queries multiple tables, but you can't delete.

Assessments

[516]

It lets you store a single data value that can be used during your session's3.
queries.
One of two ways: 4.

SET @varname = value;

SET @varname := value;

A set of SQL statements stored in the database.5.
The main difference between a variable and parameter is that parameters are6.
static throughout the procedure, but a variable can be changed during the stored
procedure.
IF, CASE, LOOP, REPEAT, WHILE, ITERATE, and LEAVE.7.
These are a way to extend the functionality of MySQL, and they work much the8.
same other built-in functions work.
A set of actions that run after you insert, update, or delete data in a table.9.
Allow you to store temporary query results that can be used during a query10.
session.

Chapter 13
By listing the distinct values in a table.1.
By querying for NULL values in a table. 2.
By querying the table with a GROUP BY and a HAVING count(*) > 2.3.
Acquaint yourself with the data and create a data dictionary.4.
A document that helps you to understand what is in your database.5.
First, you will need to install a Python plugin into your MySQL Workbench6.
installation, then create an ERD. Next, you can use the Python plugin to create
the data dictionary to paste into a text or markdown editor of your choice.
They help search for string patterns in your data.7.
Matches the beginning of a string.8.
Matches any of the patterns specified. 9.
Yes. WHERE column REGEXP '^[abc].{3}on$'10.

Assessments

[517]

Chapter 14
Reporting, Explanatory, Predictive, Correlation, Causation.1.
How something changed over time, go from the big picture to a narrow focus,2.
start narrow and go to the big picture, and comparing and contrasting.
Decision-makers, colleagues, and the general public.3.
Yes, depending on how many audiences you might have. 4.
Explaining the question, answer, and methodology.5.
It's essential to keep your focus on one question.6.
As you go through explaining the answer, make sure to give context along the7.
way, and don't wait to answer everything until the end.
 Make sure to describe your methodology so that it gives your presentation8.
context. You may have a long process to get to the question's answer, but most
audiences won't want or need that much explanation.
Jumping to conclusions, switching colors, not labeling your charts, not providing9.
context, cherry-picking data, not properly formatting numbers for readability,
arbitrary scale.
Microsoft Office, Google Documents, OpenOffice, Tableau, and PowerBI.10.

Chapter 15
It helps to ensure your data is consistent, accurate, and in the right format.1.
You must ensure that you name things accurately, descriptively, and at the same2.
time avoiding keywords that will add any kind of confusion to the naming. You
must avoid adding spaces in the names, choose the right case, and stick to one
convention. You should make sure that you use only permitted characters when
naming a database object.
If the data type is too large, it takes up too much space on disk. If the data type is3.
too small, then it doesn't fit your data.
There is no right number of indexes on a table or columns in your indexes.4.
Generally speaking, too few or too many indexes can make the performance of
your database worse. This is why it's important to know what queries are being
executed on the table to understand best what would help the performance.

Assessments

[518]

The EXPLAIN keyword with your query or in the MySQL Workbench menu5.
under Query, then Explain Current Statement.
Steps to write clean code are as follows:6.

Format it for readability.
Using uppercase for keywords and lowercase for everything else.
Adding comments.

Some best practices when writing SQL statements are as follows:7.

Use SELECT fields instead of SELECT *.
Use column aliases, especially when using functions.
Avoid using SELECT DISTINCT.

Some best practices when using the WHERE clause are as follows:8.

Only use wildcards at the end of a string.
Use an underscore (_) wildcard instead of a percent sign (%) when possible.
Avoid WHERE clauses with functions.
Use WHERE instead of HAVING to filter when possible.

Always use column names in INSERT.9.
If you are deleting all the data in a table, use TRUNCATE instead.10.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

SQL for Data Analytics
Upom Malik, Matt Goldwasser, Et al

ISBN: 978-1-78980-735-6

Learn how to clean your data and ready it for analysis

Use SQL to summarize and identify patterns in data
Apply special SQL clauses and functions to generate descriptive statistics
Use SQL queries and subqueries to prepare data for analysis
Perform advanced statistical calculations using the window function
Analyze special data types in SQL, including geospatial data and time data
Import and export data using a text file and PostgreSQL
Debug queries that won't run
Optimize queries to improve their performance for faster results

https://www.packtpub.com/big-data-and-business-intelligence/hands-data-science-and-python-machine-learning

Other Books You May Enjoy

[520]

Advanced MySQL 8
Eric Vanier, Birju Shah, Et al

ISBN: 978-1-78883-444-5

Explore new and exciting features of MySQL 8.0
Analyze and optimize large MySQL queries
Understand MySQL Server 8.0 settings
Master the deployment of Group Replication and use it in an InnoDB cluster
Monitor large distributed databases
Discover different types of backups and recovery methods for your databases
Explore tips to help your critical data reach its full potential

Other Books You May Enjoy

[521]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
advanced built-in functions
 about 303, 305, 306
 comparing, in RDMSes 307, 308
 working, with NULL values 306
advanced functions 499
advanced query techniques 500
aggregate functions
 about 318
 GROUP BY clause, used for group query results

with 324, 325
 GROUP BY clause, working without 321
 numeric aggregate functions 318, 319
 statistical aggregate functions 319, 320
 syntax, for using 493, 494
AND operators
 using 186
at-bats (AB) 325
Atomicity, Consistency, Isolation, and Durability

(ACID) 359
audience
 about 454
 colleagues 454
 compelling presentation, creating for 454
 decision-makers 454
 determining 454
 general public 454

B
BETWEEN operators
 using 187, 188
blocking 356, 357
built-in statistical functions
 comparing, in RDMSes 311
 using 310, 311

C
camelCase naming 97
case naming
 camelCase naming 97
 lowercase naming 97
 PascalCase naming 97
 types 97
 UPPERCASE naming 97
clustered indexes 133
column aliases
 using 174, 175
columns 13
common table expressions (CTE)
 comparing, in RDMSes 356
 using 352
comparison operators
 about 289, 496
 use cases 289
compelling presentation
 creating, for audience 454
Coordinated Universal Time (UTC) 301
correlated subqueries
 about 334
 using 348, 349
 using, in SELECT clause 351, 352
 using, in WHERE clause 349, 350, 351
CROSS JOIN
 about 215
 using 231, 232
CSV files
 exporting, with table data export 148, 149, 150,

151, 152, 153
 importing, with table data import 141, 142, 143,

145, 146, 147, 148

[523]

D
data control language (DCL) 10
data definition language (DDL) 10, 265
data deletion
 syntax for 495
data insertion
 syntax for 494
data integrity, domain integrity
 check constraint 470
 default constraint 470
data integrity, entity integrity
 not null constraint 469
 primary key 469
 unique constraint 469
data integrity, referential integrity
 many-to-many 470
 one-to-many 470
 one-to-one 470
data integrity
 about 469
 domain integrity 470
 entity integrity 469
 referential integrity 470
 types 469
data manipulation language (DML) 10, 253, 265
data stories, types
 about 451
 causation 451
 combining 452
 correlation 451
 explanatory 451
 predictive 451
 reporting 451
data type
 selecting 91
 selecting, examples 91, 92
data updation
 syntax for 495
data visualization tools
 using 457, 458, 459, 461, 462, 463, 464, 465
data
 deleting 253, 254
 deleting, from table with TRUNCATE statement

265

 deleting, from tables 263, 265

 deleting, from tables DELETE statement used
with WHERE clause 263, 264, 265

 exporting, from result set 162, 163
 filtering, with syntax 490, 491
 INSERT statement, using 254
 inserting 253, 254
 inserting, from one table to another table 260,

261, 262
 inserting, into database tables 252
 inserting, on Oracle 262
 inserting, on PostgreSQL 262
 inserting, on SQL Server 262
 inserting, with INSERT ALL syntax 259
 modifying 494
 selecting, with syntax 489, 490
 updating 253, 254
database design
 best practices 468
 data integrity 469, 470
 data types, selecting 472, 473, 474
 objects, naming conventions 471, 472
database integrity, entity integrity
 not-null constraint 16
 primary key 16, 17
 unique constraint 14, 15
database integrity
 about 13
 domain integrity 20, 21, 22
 entity integrity 14
 referential integrity 18, 19, 20
 types 14
database normalization
 about 22
 first normal form (1NF) 23, 24, 25
 second normal form (2NF) 26, 27
 third normal form (3NF) 27, 29, 30
database table
 creating 116, 117, 118, 119, 120, 121
 creating, via MySQL Workbench 122, 123, 125,

126, 127, 128
 creating, via MySQL Workbench with SQL

scripts 129
 data integrity, applying 117
 data types, applying 117
 data, inserting into 252

[524]

 natural primary keys 121
 surrogate primary keys 121
database, guidelines for naming conventions
 accurate naming 96
 case naming 97, 98
 characters, allowing when naming database

objects 98
 descriptive naming 96
 keywords, avoiding 95
 space, avoiding 96
 words, separating 97, 98
database
 about 11
 creating 94, 99
 creating, via MySQL Workbench interface 99,

100, 101, 102
 creating, via MySQL Workbench with SQL script

103, 104
 creating, with syntax 487
 designing 486
 guidelines, for naming conventions 95
 words, separating ways 98
dataset
 becoming, expert 430
 consulting, with experts 430
 data dictionary, creating 430, 431, 432, 433,

434

 duplicate values, detecting 428, 429, 430
 duplicates, fixing 442, 444, 445, 446, 447
 duplicates, removing 442, 443, 444
 erroneous data, fixing 447, 448
 erroneous values, detecting 428, 429, 430
 exploring 422
 missing values, detecting 427, 428
 missing values, fixing 440, 441, 442
 outlier values, detecting 426, 427
 outlier values, fixing 438, 439, 440
 processing 438
 rare values, detecting 426, 427
 rare values, fixing 438, 439, 440
 regular expressions (REGEXP), using 435, 436,

437

 statistical identity, using 423, 424, 425
date and time data types
 about 83

 in MySQL 84
 in Oracle 85, 86
 in PostgreSQL 86
 in SQL Server 86, 87
 table comparison 87
datetime built-in functions
 about 298, 299, 300, 301
 comparing, in RDMSes 302, 303
 working, with time zones 301
deadlocking 356, 357
DELETE clause
 using, with non-correlated subqueries 346, 347
DELETE statement
 used, for deleting data from tables with WHERE

clause 263, 264, 265
DISTINCT clause
 using 176, 177, 178
DML triggers
 types 407
domain integrity 20, 21, 22

E
earned run average (ERA) 462
entity integrity 14
entity-relationship diagram (ERD) 108, 468
error handling syntax 392, 393, 394
error handling
 implementing 392, 393, 394
 in Oracle 395
 in PostgreSQL 397
 in SQL Server 400, 401
 syntax for 506
 using 392
expressions, built-in functions
 advanced built-in functions 303, 305, 306
 categories 292
 datetime built-in functions 298, 299, 300, 301
 numeric built-in functions 295, 296, 297
 string built-in functions 292, 293, 294
expressions, operators
 comparison operators 289
 logical operators 289, 290
 mathematical operators 290, 291
expressions, types
 about 496

[525]

 advanced functions 499
 comparison operators 496
 logical operators 497
 mathematical operators 497
 NULL values 500
 numeric functions 499
 string functions 498
expressions
 about 185, 496
 built-in functions 292, 309
 column values 291
 indexing 309
 literal value 288
 operators 289
 using 287, 288
Extensible Markup Language (XML) 90

F
field 12
first normal form (1NF) 23, 24, 25
flow control statements
 IF statements, versus CASE statements 386,

387, 388
 in Oracle 395
 in PostgreSQL 397
 in SQL Server 400
 loop statements 389, 390, 391
 loop, through statements 388
 syntax for 505
 types 385, 386
 using 385
FROM clause
 about 170
 non-correlated subqueries, using 343, 344, 345
 using 169
FULL OUTER JOIN
 about 215
 comparing, in relational data models (RDMs)

230

 results, returning with 218
 using 230, 231
functions
 alter or delete 404, 405
 creating 401, 402, 403, 404
 in Oracle 405

 in PostgreSQL 406
 in SQL Server 406
 syntax for 506
 using 401, 402, 403, 404
 versus stored procedure 401

G
generated columns, using
 syntax for 500
generated columns
 comparing, in RDMSes 313, 314
 creating 312, 313
 stored column 311
 types 311
 using 311
Google Documents
 URL 457
GROUP BY clause
 ORDER BY clause, using with 324
 ROLLUP modifier, using 325, 326
 using 320
 using, to group query results with aggregate

functions 324, 325
 WHERE clause, using with 322, 323
 working, without aggregate functions 321
grouped results
 filtering, with syntax 493

H
HAVING clause
 using 327
 using, to limit query results 327, 328, 329
 versus WHERE clauses 330

I
IN operators
 using 187, 188
IN parameter 382, 383, 384
index hints
 using, to improve queries 357, 358, 359
indexes
 altering, with syntax 489
 creating, with syntax 489
 using, with queries 202, 203, 204, 205, 206,

208, 209, 210, 211

[526]

 using, with SQL query 244, 245, 246, 247, 248,
249, 250

indexing
 about 132
 best practices 474
 clustered indexes 133
 creating, consideration 474, 475
 impacts performance 135, 136, 137
 naming conventions 137, 138
 nonclustered indexes 134
 relating, to data integrity 133
 types 133, 135
INNER JOIN
 about 215
 results, returning with 215
 syntax, using 219, 220, 221, 222
 using 218
INSERT clause
 using, with non-correlated subqueries 346, 347
INSERT statement, used for inserting data
 multiple row inserts 259
 single-row inserts 254, 256, 257, 258
intentional base on balls (ibb) 428

J
JavaScript Object Notation (JSON) 88, 141
JSON data
 reference link 88
JSON, using in PostgreSQL
 reference link 89

L
LEFT OUTER JOIN
 about 215
left outer join
 results, returning with 216, 217
LEFT OUTER JOIN
 syntax, using 223, 224, 225, 226
LIKE operator
 comparing, in RDMSes 195, 196
 using 188
LIMIT clause
 using 178, 179, 180
locking 356, 357
logical operators

 about 289, 497
 use cases 290
lowercase naming 97

M
Mac
 MySQL Server, installing on 54, 55, 56, 57, 58
 MySQL Server, status checking on 58
 MySQL Workbench, installing on 54, 59, 60
many-to-many table relationships 109, 110, 111,

112, 113, 114, 115, 116
mathematical operators
 about 290, 497
 operator precedence 291
 use cases 290
Microsoft Office
 URL 457
modifying data
 best practices 476
 best practices, considerations 484, 485
 clean code, writing 476, 477
multiple triggers
 creating, on same table 411, 412
 using, on same table 411, 412
MySQL date and time data type
 table summary 84, 85
MySQL numeric data type
 table summary 80, 81
MySQL Server instance
 database, restoring to 64, 65, 66, 67, 68, 69
MySQL Server
 configuring, on Windows 44, 46, 48, 49, 50, 52,

53, 54
 installing, on Mac 54, 55, 56, 57, 58
 installing, on Windows 35, 37, 38, 39, 40, 41,

43

 status, checking on Mac 58
MySQL string data type
 table summary 74, 75
MySQL Workbench interface
 database, creating via 99, 100, 101, 102
MySQL Workbench, with SQL script
 database table, creating via 129, 131
 database, creating via 103, 104
MySQL Workbench

[527]

 connecting, to another instance 62, 63, 64
 connecting, to local instance 61
 database table, creating via 122, 123, 125, 126,

127, 128, 129
 exporting, via SQL data export in 158, 160, 161
 importing, via SQL data import in 153, 155, 157,

158

 installing 34
 installing, on Mac 54, 59, 60
 installing, on Windows 35
 local instance, setting up 62, 63, 64
 using 60, 61
MySQL, isolation levels
 READ COMMITTED 360
 READ UNCOMMITTED 360
 REPEATABLE READ 360
 SERIALIZABLE 360
MySQL
 about 31
 date and time data types 84
 numeric data types 78, 79, 80
 other data types 88, 89
 string data types 72, 73, 74

N
narrative
 determining, with statistical identity of data 453
 searching 451
 searching, with asking questions 452
NATURAL JOIN
 about 215
 using 233
non-correlated subqueries
 about 334
 comparing, in RDMSes 348
 DELETE clause, using 346, 347
 INSERT clause, using 346, 347
 UPDATE clause, using 346, 347
 using 335, 336, 337
 using, in FROM clause 343, 344, 345
 using, in SELECT clause 342, 343
 using, in WHERE clause 337, 339, 340, 341,

342

non-recursive CTEs
 using 353

 using, with SELECT statement 354
nonclustered indexes 134
NOT operators
 using 187, 188
NULL values 500
 filtering 196, 197
numeric aggregate functions
 about 318, 319
 average 318
 COUNT 318
 FORMAT 319
 MAX 318
 MIN 318
 ROUND 318
 SUM 318
numeric built-in functions
 about 295, 296, 297
 comparing, in RDMSes 298
numeric data types
 about 77
 in MySQL 78, 79, 80
 in Oracle 82
 in PostgreSQL 82
 in SQL Server 82
 table comparison 83
numeric functions 499

O
one-to-many table relationships 109
one-to-one table relationships 108
OpenOffice
 URL 457
OR operators
 using 186
Oracle
 about 30, 31
 data, inserting 262
 date and time data types 85, 86
 error handling 395
 flow control statements in 395
 functions 405
 numeric data types 82
 other data types 89
 stored procedure, creating 394
 stored procedures 394

[528]

 string data types 75
ORDER BY clause
 used, for sorting by one or more columns 199,

200, 201, 202
 using 197
 using, to order query results 198, 199
 using, with GROUP BY clause 324
other data types
 about 88
 in MySQL 88, 89
 in Oracle 89
 in PostgreSQL 90
 in SQL Server 90
OUT parameter 384, 385
OUTER JOIN
 about 215
outer join
 FULL OUTER JOIN 215
OUTER JOIN
 LEFT OUTER JOIN 215
 RIGHT OUTER JOIN 215
 using 223

P
parameter 382
PascalCase naming 97
PostgreSQL XML data type
 reference link 90
PostgreSQL
 about 32
 data, inserting 262
 date and time data types 86
 error handling 397
 flow control statements 397
 functions 406
 numeric data types 82
 other data types 90
 stored procedure, creating 396
 string data types 76
PowerBI
 URL 458
presentation framework
 answer, explaining 455, 456
 determining 455
 methodology, explaining 456

 question, explaining 455
primary key 16
programmable objects 503

Q
query hints
 syntax for 503
 using 356
querying data
 best practices 476
 best practices, considerations 481, 482, 483,

484

 clean code, writing 476, 477
 optimization 478, 479, 480

R
read locks 356
recursive CTEs
 using 354, 355, 356
referential integrity 18, 19, 20
regular expressions (REGEXP)
 characters, combining 437, 438
 using 435
 using, examples 435, 436, 437
relational data models (RDMs)
 FULL OUTER JOIN syntax, comparing 230
 SQL query, comparing in 243
 SQL query, running that intersect in 242, 243
Relational Database Management Systems

(RDMSes), types
 MySQL 31
 Oracle 30, 31
 PostgreSQL 32
 SQL Server 31
Relational Database Management Systems

(RDMSes)
 about 11
 advanced built-in functions, comparing in 307,

308

 built-in statistical functions, comparing in 311
 code, commenting on 185
 columns 13
 common table expressions (CTEs), comparing

356

 comparing, in SQL transactions 275

[529]

 datetime built-in functions, comparing in 302,
303

 fields 12
 generated columns, comparing in 313, 314
 LIKE operator, comparing in 195, 196
 non-correlated subqueries differences 348
 numeric built-in functions, comparing 298
 results, limiting on 180, 181
 ROLLUP modifier, using 326, 327
 rows 13
 string built-in functions, comparing in 295
 tables 12
 temporary tables, comparing 416, 417, 418
 triggers, comparing 412, 413
 types 30
 variables, comparing 378
 versus, Structured Query Language (SQL) 32
 views, comparing 377
result data export
 about 162
 data, exporting directly from 162, 163
results
 grouping, with syntax 493
 ordering, with syntax 491, 492
RIGHT OUTER JOIN
 about 215
 results, returning with 217, 218
 syntax, using 226, 227, 228, 229
ROLLUP modifier
 in Relational Database Management Systems

(RDMSes) 326, 327
 using 325, 326
rows 13

S
second normal form (2NF) 26, 27
SELECT clause
 correlated subqueries, using 351, 352
 non-correlated subqueries, using 342, 343
SELECT statement
 about 170
 clauses, placing in correct order for writing 171
 non-recursive CTEs, using 354
 querying with 171, 172, 173, 174
 using 169

SELF JOIN
 about 215
 using 234, 235
set theory
 about 235
 intersect, using in SQL query 241, 242
 UNION join, using in SQL query 235, 236
 using, in SQL query 243
SQL code
 commenting 131, 132
 comments, adding 183, 184
 errors 105, 106, 107
 formatting, for readability 131
SQL data export
 about 153
 used, for exporting in MySQL Workbench 158,

160, 161
SQL data import
 about 153
 used, for importing in MySQL Workbench 153,

155, 157, 158
SQL file
 opening 182, 183
SQL joins
 about 215
 cross join 215
 INNER JOIN 215
 NATURAL JOIN 215
 OUTER JOIN 215
 SELF JOIN 215
 types 215
SQL query clauses
 writing, order 330, 331
SQL query
 comparing, in other RDMs 243
 EXCEPT operator, using 244
 indexes, using with 244, 245, 246, 247, 248,

249, 250
 intersect, using 241, 242
 MINUS operator, using 244
 running, that intersect in other RDMs 242, 243
 saving, to files 181, 182
 set theory, using 243
 UNION ALL, using 240, 241
 UNION join, using 235, 236

[530]

 UNION, using 237, 238, 239, 240
SQL script
 used, for exporting 165, 166
 used, for importing 164, 165
SQL Server
 about 31
 data, inserting 262
 date and time data types 86, 87
 error handling 400, 401
 flow control statements 400
 functions 406
 numeric data types 82
 other data types 90
 stored procedure, creating 398, 399, 400
 string data types 76
SQL statements
 variables, using 378
SQL syntax
 for SQL transactions 271, 273, 274, 275
 used, for exporting data 164
 used, for importing data 164
SQL transactions
 about 270, 271
 properties 269
 Relational Database Management Systems

(RDMSes), comparing 275
 SQL syntax 271, 273, 274, 275
 syntax for 495, 496
 using, to save or revert changes 269
statistical aggregate functions
 about 319, 320
 standard deviation 320
 variance 319
statistical functions
 using 310
statistical identity, of data
 using, to determine narrative 453
stored procedures, parameter
 IN parameter 382, 383, 384
 OUT parameter 384, 385
stored procedures
 alter and drop 381, 382
 creating 379, 380, 381
 creating, in Oracle 394
 creating, in PostgreSQL 396

 creating, in SQL Server 398, 399, 400
 error handling, using 392
 flow control statements, using 385
 in Oracle 394
 parameters, using 382
 syntax for 504, 505
 using 379
 variables, using 382
 versus functions 401
string built-in functions
 about 292, 293, 294
 comparing, in RDMSes 295
string data types RDMS
 table comparison 76
string data types
 about 71
 in MySQL 72, 73, 74
 in Oracle 75
 in PostgreSQL 76
 in SQL Server 76
string functions 498
Structured Query Language (SQL)
 about 9, 10
 elements 10, 11
 versus Relational Database Management

Systems (RDMSes) 32
subqueries, types
 about 334
 correlated subqueries 334
 non-correlated subqueries 334
subqueries
 syntax for 501, 502
 using 334

T
table aliases
 using 222
table data export
 about 141
 CSV files, exporting with 148, 149, 150, 151,

152, 153
table data import
 about 141
 CSV files, importing with 141, 142, 143, 145,

146, 147, 148

[531]

table data
 UPDATE statement, used for updating with

WHERE clause 266, 267
 updating 266, 267, 268
 updating, from another existing table 268
table expressions
 syntax for 502
table relationships
 about 107
 entity-relationship diagram (ERD) 108
 many-to-many table relationships 109, 110, 111,

112, 113, 114, 115, 116
 one-to-many table relationships 109
 one-to-one table relationships 108
table structure
 column constraint, adding 282
 column constraint, modifying 282
 column, adding 277
 column, dropping 278, 279
 column, renaming 279, 280
 constraint, dropping 283
 data type, modifying of column 280, 281
 index, dropping 283
 key constraints, dropping 283
 modifying 275, 276
 table, dropping 284
Tableau
 URL 458
tables
 about 12
 altering, with syntax 487, 488
 creating, with syntax 487, 488
 joining, with syntax 492
temporary tables
 comparing, in other RDMSes 416, 417, 418
 creating 413, 414, 415
 deleting 416
 syntax 507
 using 413, 414, 415
third normal form (3NF) 27, 29, 30
transaction isolation levels
 dirty read 359
 non-repeatable read 359
 phantom read 360
 syntax for 503

 using 356, 359, 360, 361
triggers
 comparing, in other RDMSes 412, 413
 creating 407, 408
 creating, with multiple statements 410
 creating, with one statement 408, 409, 410
 deleting 412
 syntax for 507
 using 407, 408
 using, with multiple statements 410
 using, with on statement 408
 using, with one statement 409, 410
TRUNCATE statement
 used, for deleting data from tables 265

U
UPDATE clause
 using, with non-correlated subqueries 346, 347
UPDATE statement
 used, for updating table data with WHERE

clause 266, 267
UPPERCASE naming 97
USE statement
 using 176

V
variables
 comparing, in other RDMSes 378
 creating 377
 syntax for 504
 using 377
 using, in SQL statements 378
 values, assigning 377, 378
 values, creating 377, 378
views
 comparing, in other relational database

management systems (RDMSes) 377
 creating 364
 creating, when writing queries 364, 365, 366
 deleting 376, 377
 returned data, modifying 366, 367
 syntax for 503
 updating 376, 377
 used, for deleting data 375
 used, for deleting data that has multiple tables

376

 used, for inserting data 371, 372
 used, for inserting data that has multiple tables

372, 373, 374
 used, for updating data 367, 368
 used, for updating data that has multiple tables

368, 369, 370, 371
 using 364
visualizations
 data visualization tools, using 457, 458, 459,

461, 462, 463, 464, 465
 mistakes, avoiding 456, 457
 using 456

W
WHERE clause
 correlated subqueries, using 349, 350, 351
 DELETE statement, used for deleting data from

table with 263, 264, 265
 need for 185
 non-correlated subquery, using 337, 339, 340,

341, 342
 UPDATE statement, used for updating table data

with 266, 267
 used, for limiting query results 185
 using 185
 using, with GROUP BY clause 322, 323
 versus HAVING clauses 330
wildcards
 percent (%) wildcard, using 189, 190, 191
 types 189
 underscore (_) wildcard, using 191, 192, 193,

194

 using 188
 values, escaping 194
Windows
 MySQL Server, configuring on 44, 46, 48, 49,

50, 52, 53, 54
 MySQL Server, installing on 35, 37, 38, 39, 40,

41, 43
 MySQL Workbench, installing on 35
write locks 356

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Database Fundamentals
	Chapter 1: Introduction to Relational Database Management Systems
	Understanding SQL
	Elements of SQL

	Understanding databases
	Tables
	Fields
	Records or rows
	Columns

	Understanding data integrity
	Types of integrity
	Entity integrity
	Unique constraints
	Not null constraints
	The primary key

	Referential integrity
	Domain integrity

	Database normalization
	The first normal form
	The second normal form
	The third normal form

	Types of RDMS
	Oracle
	MySQL
	SQL Server
	PostgreSQL
	RDMS SQL differences

	Summary
	Questions

	Chapter 2: Installing and Using MySQL Workbench
	Technical requirements
	Installing MySQL Workbench
	Installing on Windows
	Installing MySQL on Windows
	Configuring MySQL on Windows

	Installing on Mac
	Installing MySQL Server on Mac
	Checking the status of MySQL Server on Mac

	Installing MySQL Workbench on Mac

	Using MySQL Workbench
	Connecting to your local instance
	Connecting to another instance or setting up your local instance

	Restoring a database
	Summary
	Questions

	Chapter 3: Understanding Data Types
	Understanding string data types
	String data types in MySQL
	MySQL string data type table summary
	String data types in other RDMS
	Oracle
	PostgreSQL
	SQL Server

	String data types RDMS table comparison

	Understanding numeric data types
	Numeric data types in MySQL
	MySQL numeric data type table summary
	Numeric data types in other RDMSes
	SQL Server
	Oracle
	PostgreSQL

	Numeric data types table comparison

	Understanding date and time data types
	Date and time data types in MySQL
	MySQL date and time data type table summary
	Date and time data types in other RDMSes
	Oracle
	PostgreSQL
	SQL Server

	Date and time data types table comparison

	Understanding other data types
	Other data types in MySQL
	Other data types in other RDMSes
	Oracle
	PostgreSQL
	SQL Server

	Choosing the right data type
	Examples of choosing a data type

	Summary
	Questions

	Chapter 4: Designing and Creating a Database
	Technical requirements
	Creating a database
	Guidelines for naming conventions
	Avoiding keywords
	Avoiding spaces
	Descriptive and accurate naming
	Case and separating words
	Allowed characters when naming database objects

	Learning how to create a database
	Creating a database via the MySQL Workbench interface
	Creating a database via MySQL Workbench with a SQL script

	Understanding SQL code errors

	Understanding table relationships
	Understanding entity-relationship diagrams
	Understanding one-to-one table relationships
	Understanding one-to-many table relationships
	Understanding many-to-many table relationships

	Creating a table in the database
	Understanding how to apply data types and data integrity to your table
	Learning to create a database table
	Natural and surrogate primary keys
	Creating a database table via MySQL Workbench
	Creating a database table via MySQL Workbench with SQL scripts

	Learning how to format SQL code for readability
	Commenting SQL code

	Understanding indexes
	Understanding how indexing relates to data integrity
	Types of indexes

	Understanding how indexing impacts performance
	Understanding naming conventions for indexes

	Summary
	Further reading
	Questions

	Chapter 5: Importing and Exporting Data
	Technical requirements
	Understanding table data import and export
	Importing CSV files with table data import
	Exporting to CSV files with table data export

	Understanding SQL data import and export
	Importing via data import in MySQL Workbench
	Exporting via data export in MySQL Workbench

	Understanding result data export
	Exporting data directly from a result set

	Understanding SQL syntax for importing and exporting data
	Importing with a SQL script
	Exporting with a SQL script

	Summary
	Further reading
	Questions

	Section 2: Basic SQL Querying
	Chapter 6: Querying a Single Table
	Technical requirements
	Using the SELECT statement and FROM clause
	Understanding the SELECT statement and the FROM clause
	Learning the correct order of other clauses you can use with SELECT
	Understanding the different ways to query with a SELECT statement
	Learning how to use column aliases
	Using the USE statement
	Learning how to use the DISTINCT clause
	Learning how to use the LIMIT clause
	Limiting results on other Relational Database Management Systems (RDMSes)

	Learning how to save a SQL query to a file
	Learning how to open a SQL file
	Learning how to add comments to your SQL code
	Commenting code on other RDMSes

	Using the WHERE clause
	Understanding how and when to use the WHERE clause to limit query results
	Learning how to use the AND and OR operators
	Learning how to use the NOT, IN, and BETWEEN operators
	Learning how to use the LIKE operator and wildcards
	Using the percent (%) wildcard
	Using the underscore (_) wildcard
	Escaping wildcard values
	Differences between LIKE in other RDMSes

	Learning how to filter on NULL values

	Using the ORDER BY clause
	Learning how to use the ORDER BY clause to order query results
	Learning how to use the ORDER BY clause to sort by one or more columns

	Using indexes with your queries
	Learning how to see what indexes your query is using

	Summary
	Questions
	Further reading

	Chapter 7: Querying Multiple Tables
	Technical requirements
	Understanding joins
	Understanding results returned with an inner join
	Understanding results returned with a left outer join
	Understanding results returned with a right outer join
	Understanding results returned with a full outer join

	Using INNER JOIN
	Learning INNER JOIN syntax
	Learning how to use table aliases

	Using OUTER JOIN
	Learning LEFT OUTER JOIN syntax
	Learning RIGHT OUTER JOIN syntax
	Exploring differences in other relational data models
	Using FULL OUTER JOIN

	Using advanced joins
	Understanding what a CROSS JOIN is and how to use it
	Understanding what a NATURAL JOIN is and how to use it
	Understanding what a SELF JOIN is and how to use it

	Understanding set theory
	Understanding what a UNION join is and learning how to use it in a SQL query
	UNION
	UNION ALL

	Understanding what an intersect is and learning how to use it in a SQL query
	Looking at intersection in other RDMS

	Understanding what difference is and learning how to use it in a SQL query
	Exploring differences in other RDMS
	EXCEPT
	MINUS

	Using indexes with your queries
	Summary
	Questions
	Further reading

	Chapter 8: Modifying Data and Table Structures
	Technical requirements
	Inserting data into tables
	Gathering information to insert, update, or delete data
	Using the INSERT statement
	Single-row inserts
	Multiple row inserts
	Differences in other Relational Database Management Systems

	Inserting data from one table into another table
	Differences to other RDMSes

	Deleting data from tables
	Using the DELETE statement with a WHERE clause
	Deleting all the data from a table
	Learning an alternative way to delete data with the TRUNCATE statement

	Updating data in tables
	Using the UPDATE statement with a WHERE clause
	Updating all the data in a table
	Updating table data from another existing table

	Using transactions to save or revert changes
	Understanding a SQL transaction
	Learning the SQL syntax for SQL transactions
	Differences in RDMS transaction syntax

	Modifying the table structure
	Adding a column
	Dropping a column
	Renaming a column
	Changing the data type of a column
	Adding or changing a column constraint
	Dropping a constraint, key, or index
	Differences to other RDMS

	Dropping a table

	Summary
	Questions
	Further reading

	Section 3: Advanced SQL Querying
	Chapter 9: Working with Expressions
	Technical requirements
	Using expressions
	Literal values
	Operators
	Comparison operators
	Logical operators
	Mathematical operators
	Operator precedence

	Column values
	Built-in functions
	String built-in functions
	Differences in RDMS (Relational Database Management Systems)

	Numeric built-in functions
	Differences in RDMS

	Datetime built-in functions
	Working with time zones
	Differences in RDMS

	Advanced built-in functions
	Working with NULL values
	Differences in advanced built-in functions in RDMS

	Built-in functions and indexing

	Using statistical functions
	Learning how to use built-in statistical functions
	Exploring differences in RDMS

	Using generated columns
	Types of generated columns
	Creating a generated column
	Differences in RDMSes

	Summary
	Questions
	Further reading

	Chapter 10: Grouping and Summarizing Data
	Technical requirements
	Understanding aggregate functions
	Numeric aggregate functions
	Statistical aggregate functions

	Using the GROUP BY clause
	Understanding how GROUP BY works without aggregate functions
	Using WHERE with GROUP BY
	Using ORDER BY with GROUP BY

	Learning how to use the GROUP BY clause to group query results using aggregate functions
	Learning how to use the ROLLUP modifier
	Differences in RDBMSes

	Using the HAVING clause
	Learning how to use the HAVING clause to limit query results
	Understanding the difference between the HAVING and WHERE clauses

	Understanding SQL query order of execution
	Summary
	Questions

	Chapter 11: Advanced Querying Techniques
	Technical requirements
	Using subqueries
	Understanding the different types of subqueries and their usage
	Using non-correlated subqueries
	Using a non-correlated subquery in the WHERE clause
	Using a non-correlated subquery in the SELECT clause
	Using a non-correlated subquery in the FROM clause
	Using INSERT, UPDATE, and DELETE with non-correlated subqueries
	Differences between non-correlated subqueries in other relational database management systems (RDMSes)

	Using correlated subqueries
	Using a correlated subquery in the WHERE clause
	Using a correlated subquery in the SELECT clause

	Using common table expressions
	Using non-recursive CTEs
	Non-recursive CTE with the SELECT statement

	Using recursive CTEs
	Differences between CTEs in other RDMSes

	Using query hints and transaction isolation levels
	Understand the concepts of locking, blocking, and deadlocking
	Learning how to use index hints to improve queries
	Learning how to use transaction isolation levels

	Summary
	Questions
	Further reading

	Chapter 12: Programmable Objects
	Technical requirements
	Creating and using views
	Learning how to create and query a view
	Learning how to modify data returned in a view
	Updating data using a view
	Updating data using a view that has multiple tables

	Inserting data using a view
	Inserting data using a view that has multiple tables

	Deleting data using a view
	Deleting data using a view that has multiple tables

	Learning how to update or delete a view
	Differences between views in other relational database management systems (RDBMSes)

	Creating and using variables
	Learning how to create and assign values to variables
	Learning how to use variables in SQL statements
	Differences between variables in other RDBMSes

	Creating and using stored procedures
	Creating a stored procedure
	Learning how to alter and drop stored procedures
	Using variables and parameters in stored procedures
	IN parameter
	OUT parameter

	Using flow control statements
	Understanding the different types of flow control statements
	Understanding the difference between the IF and CASE statements and how to use them
	Understanding how to loop through statements

	Using error handling
	Understanding error handling syntax and how to implement error handling

	Differences between stored procedures in other RDBMSes
	Oracle
	Creating and calling a stored procedure in Oracle
	Flow control in Oracle
	Error handling in Oracle

	PostgreSQL
	Creating a stored procedure in PostgreSQL
	Flow control in PostgreSQL
	Error handling in PostgreSQL

	SQL Server
	Creating and calling a stored procedure in SQL Server
	Flow control in SQL Server
	Error handling in SQL Server

	Creating and using functions
	Understanding the difference between a function and a stored procedure
	Learning how to create and use functions
	Learning how to alter or delete functions
	Differences between functions in other RDBMSes
	Oracle
	PostgreSQL
	SQL Server

	Creating and using triggers
	Learning how to create and use a trigger
	Creating and using a trigger with one statement
	Creating and using a trigger with multiple statements
	Creating and using multiple triggers on the same table
	Deleting a trigger

	Differences between triggers in other RDBMSes

	Creating and using temporary tables
	Learning how to create and use a temporary table
	Learning how to delete a temporary table
	Differences between temporary tables in other RDBMSes

	Summary
	Questions
	Further reading

	Section 4: Presenting Your Findings
	Chapter 13: Exploring and Processing Your Data
	Technical requirements
	Exploring your dataset
	Getting to know your data using statistical identities
	Detecting rare and outlier values
	Detecting missing values
	Detecting duplicate and erroneous values
	Consulting with experts or becoming the expert
	Creating a data dictionary

	Using regular expressions
	Combining regular expression characters

	Processing your dataset
	Fixing rare and outlier values
	Fixing missing values
	Removing or fixing duplicates
	Removing duplicates
	Fixing duplicates

	Fixing erroneous data

	Summary
	Questions

	Chapter 14: Telling a Story with Your Data
	Technical requirements
	Finding a narrative
	Types of data stories
	Asking questions to find your narrative
	Using the statistical identity of your data to determine a narrative

	Knowing your audience
	Determining who your audience is
	Creating a compelling presentation for your audience

	Determining a presentation framework
	Explaining the question
	Explaining the answer
	Explaining your methodology

	Using visualizations
	Common mistakes to avoid in visualizations
	Using data visualization tools

	Summary
	Questions

	Section 5: SQL Best Practices
	Chapter 15: Best Practices for Designing and Querying
	Technical requirements
	Best practices for database design
	Understanding data integrity
	Naming conventions of database objects
	Understanding what data types to use

	Best practices for indexing
	Understanding when to create indexes

	Best practices for querying and modifying data
	Understanding how to write clean code
	Understanding query optimization
	Understanding best practices when querying data
	Understanding best practices when modifying data

	Summary
	Questions

	Chapter 16: SQL Appendix
	SQL for designing databases
	Syntax for creating a database
	Syntax for creating and altering tables
	Syntax for creating and altering indexes

	SQL for selecting data
	Syntax for selecting data
	Syntax for filtering data
	Syntax for ordering results
	Syntax for joining tables
	Syntax for grouping results
	Syntax for filtering grouped results
	Syntax for using aggregate functions

	SQL for modifying data
	Syntax for inserting data
	Syntax for updating data
	Syntax for deleting data
	Syntax for SQL transactions

	SQL expressions
	Types of expressions
	Syntax for using generated columns

	Advanced query techniques
	Syntax for subqueries
	Syntax for common table expressions
	Syntax for query hints
	Syntax for transaction isolation level

	Programmable objects
	Syntax for views
	Syntax for variables
	Syntax for stored procedures
	Syntax for flow control statements
	Syntax for error handling

	Syntax for functions
	Syntax for triggers
	Syntax for temporary tables

	Summary

	Assessments
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15

	Other Books You May Enjoy
	Index

