

Hands-On
SQL Server 2019
Analysis Services
Design and query tabular and multi-dimensional
models using Microsoft's SQL Server Analysis
Services

Steven Hughes

BIRMINGHAM—MUMBAI

Hands-On SQL Server 2019
Analysis Services
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Srikanth Varanasi
Senior Editor: Mohammed Yusuf Imaratwale
Content Development Editor: Tazeen Shaikh
Technical Editor: Manikandan Kurup
Copy Editor: Safis Editing
Project Coordinator: Aishwarya Mohan
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Production Designer: Alishon Mendonca

First published: October 2020

Production reference: 1211020

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80020-476-8

www.packt.com

http://www.packt.com

To my wonderful wife, Sheila. Your patience and support during the writing
process has been phenomenal. Sometimes the work is long and keeps me

away from you, even when I am in the same house. Thanks for everything.
Love always.

 – Steve Hughes

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

Foreword
I respected Steve’s knowledge and technical depth long before I met him and as we have
worked together, the root of his success is evident. Steve is a person worth listening to and
learning from. He helps with a giving heart to truly enable others. His passion for lifting
others up is evident in the labor of love that is this book.

Much learning is now done in smaller chunks or digital bites that allow us to solve
problems quickly and move on. This is a great enabler and accelerator for our journeys.
There are subjects, however, that can get deep quickly and require a more comprehensive
approach to truly master them.

 We need people and resources committed to combining industry-leading experience with
theory, practicality, and hands-on approaches that explain, enable, and enlighten us to a
new set of solutions and possibilities.

Analysis Services is close to my heart because, like many of you, I have banged my
head on the keyboard because a query would not perform, or a hierarchy would not
work properly or worse yet my model just would not support where I needed to take
the solution. I have been blessed to work alongside some of the most brilliant minds
in our field. I’m honored to learn from them at every step and you have an incredible
opportunity with this book to learn from one of the best.

Enjoy this book. Take notes in the margins, dog-ear the pages, or highlight in your
e-reader. There will be plenty you will want to revisit.

My best wishes for your success.

Adam Jorgensen

Vice President, Professional Services - Data & Analytics

3Cloud

Contributors

About the author
Steve Hughes is the director of consulting and an enterprise architect at 3Cloud. He
has worked extensively on Microsoft SQL Server Analysis Services multidimensional
models throughout the years, followed by working with tabular models including Power
BI and Power Pivot implementations. He is passionate about using data effectively and
helping customers understand that data is valuable and profitable. He has worked in many
industries, including healthcare, finance, manufacturing, transportation, and utilities. He
is a Microsoft Certified Professional with multiple Microsoft Azure and Data Platform
certifications.

I want to thank Edward Jankowski (my father-in-law), Adam Jorgenson
(friend and boss), and Terry Hughes (my father) for their examples of

excellence in technology and work.

About the reviewers
Dan English is a data and AI cloud solution architect at Microsoft in Minneapolis, MN.
He has been developing with Microsoft technologies since 1996 and has focused on data
warehousing and business intelligence since 2004. He has helped run and present at user
group events such as the Minnesota SQL Server user group and the Microsoft Minnesota
BI user group, along with SQLSaturday events. He holds a Bachelor of Science degree
in business administration from Minnesota State University, Mankato. He and his wife,
Molly, live in Minnesota and have two children, Lily and Wyatt.

Alan Faulkner is an IT professional with more than 20 years of progressive technical
experience. He specializes in business intelligence, data warehousing, and database
architecture. With the advent of the cloud, Alan architects data solutions based on Azure
technologies as well. His experience across disparate industries, applications, and tools
provides efficient delivery of flexible and scalable data architectures. Alan holds a B.S.
degree in Computer Information Systems (CIS) from DeVry University. He participated in
the Microsoft SSAS Maestro program during its short-lived tenure and has written about
Analysis Services on his blog, FalconTek Solutions Central.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Section 1: Choosing Your Model

1
Analysis Services in SQL Server 2019

What is SQL Server Analysis
Services anyway?� 18
SQL Server Analysis Services is not SQL
Server� 18
SQL Server Analysis Services through
the years� 19

Why use SQL Server Analysis
Services?� 20
Optimized for reporting and analytics� 20
Works great with Excel� 22
Organized with end users in mind� 22

What's new in SQL Server
Analysis

Services 2019?� 24
Multidimensional models in 2019� 24
Tabular models in 2019� 24

What are the tools used with
SQL Server Analysis Services?� 27
SQL Server 2019 Developer edition� 27
SQL Server Management Studio (SSMS)� 45
Visual Studio with SQL Server Data
Tools (SSDT)� 47

One last thing – our sample data� 51
Restoring the data warehouse backup� 52

Summary� 54

2
Choosing the SQL Server 2019 Analytic Model for Your
BI Needs

Technical requirements� 56
Understanding how we got
here – two modes� 56
Discovering multidimensional
model strengths and challenges� 57

Strengths of the multidimensional model�57
Multidimensional model challenges� 60

Discovering tabular model
strengths and challenges� 62
Strengths of tabular models� 62

Table of Contents
Preface

ii Table of Contents

Challenges with tabular models� 65

Understanding other
differences that matter� 68
Partitioning� 69
Role-playing dimensions� 69
OLAP versus relational concepts� 70
Hardware requirements � 70

Choosing the model type for
business-specific reasons� 72
Rapid development and change� 72
Cloud readiness� 72
Complex analysis� 73
Client tools � 73

Summary� 74
Further reading� 74

Section 2: Building and Deploying a
Multidimensional Model

3
Preparing Your Data for Multidimensional Models

Technical requirements� 78
A short primer on dimensional
modeling� 78
Understanding the origin of
dimensional modeling� 78
Defining dimensional modeling terms� 80
Key dimensional modeling concepts� 82
Common issues in relational
dimensional models� 85
Planning dimensions and facts � 86

Designing and building
dimensions and facts� 87
Column names – business-friendly or
designer-friendly?� 87
Dimension tables� 89
Fact tables� 90
Indexing strategies� 91

Loading data into your star
schema� 92
Staging your data� 92
SQL Server data loading methods and
tools � 92

Using database views and data
source views� 94
Data source views – pros and cons� 95
Database views as an interface layer� 96

Prepping our database for the
multidimensional model� 97
Wide World Importers Sales� 97
Creating the views for the
multidimensional model � 99

Summary� 107

Table of Contents iii

4
Building a Multidimensional Cube in SSAS 2019

Technical requirements� 110
Creating the Analysis Services
project in Visual Studio� 110
Adding the SQL Server database
connection to the project� 112
Adding the DSVs to the project� 114

Adding dimensions, attributes,
and hierarchies� 125
Creating dimensions with the
Dimension Wizard� 126

Adding hierarchies to your dimensions� 133
Processing the dimensions� 142
Updating our dimensions� 144

Adding cubes and measure
groups� 149
Creating the cube and measure groups� 150
Reviewing the cube's structure and
modifying measures� 151
Reviewing dimension usage� 154

Summary� 162

5
Adding Measures and Calculations with MDX

Technical requirements � 164
Introducing MDX basics –
SELECT, FROM, WHERE� 164
Understanding multidimensional
query concepts� 164
Understanding query structure� 168
Building your first query� 169

Adding calculations and
measures to your cube� 178
Using the calculations section � 178
Creating calculated measures� 180
Creating named sets� 185

Adding KPIs to our cube� 186

Understanding the basics of a KPI� 186
Building your KPI� 187

Exploring more MDX
expressions� 193
Traversing hierarchies� 193
Exploring data with more MDX
functions� 198
Creating more calculations with
aggregation and math functions� 202
Working with time� 205

Summary� 208

Section 3: Building and Deploying
Tabular Models

iv Table of Contents

6
Preparing Your Data for Tabular Models

Technical requirements � 212
Prepping data for tabular
models� 212
Contrasting self-service and managed
deployments� 212
Using a star schema data warehouse� 214
Using non-star schema databases� 215

Using nontraditional sources� 217

Data optimization
considerations� 218
Prototyping your model in Excel
with
Power Pivot� 220
Summary� 227

7
Building a Tabular Model in SSAS 2019

Technical requirements � 230
Creating the solution and first
tabular model� 230
Importing data into your model� 235
Marking the date table� 245
Adding hierarchies to the model� 246
Adding some measures to our model� 249
Managing partitions in tabular models� 252

Creating a tabular model with
DirectQuery� 256
Creating a new tabular model project� 256
Converting the new model to

DirectQuery� 257
Adding sample partitions to the
DirectQuery model� 259
Enhancing your DirectQuery model� 260
Previewing the data with Excel� 261

Creating a tabular model on
transactional data� 262
Importing a Power Pivot model
into Analysis Services� 264
Deploying and processing your
completed models� 265
Summary� 267

8
Adding Measures and Calculations with DAX

Technical requirements � 270
Understanding the basics of
DAX� 270
Adding columns and measures
to the tabular model� 271

Creating item calculations� 275

Creating measures with the
CALCULATE function� 281
Working with time intelligence
and DAX� 286

Table of Contents v

Creating calculated tables� 289
Creating a delivery date table to
support role playing� 289
Creating a filtered row set calculated
table� 291
Creating a summary calculated table� 292
Creating a composite calculated table� 293

Creating calculation groups� 294

Creating KPIs� 298
Understanding the components in a
tabular model KPI� 299
Building your KPI� 300

Querying your model with SQL
Server Management Studio and
DAX� 301
Summary� 303

Section 4: Exposing Insights while
Visualizing Data from Your Models

9
Exploring and Visualizing Your Data with Excel

Technical requirements� 308
Connecting Excel to your
models� 308
Connecting to the multidimensional
model� 309
Connecting to the tabular model� 312

Building visualizations with
your models� 314
Understanding the PivotTable Fields
panel� 314
Creating a PivotTable� 316
Adding a PivotChart� 318
Adding slicers� 320
Adding timelines� 322

Building and enhancing an
Excel dashboard � 324

Moving the PivotTable and the filter� 324
Updating the Employee slicer� 324
Adjusting the other PivotTable� 327
Cleaning up our dashboard design� 328

Advanced design with CUBE
functions� 330
Adding PivotTables to a new sheet� 331
Converting the PivotTable to formulas� 331
Formatting the new fields� 334

Sharing your Excel dashboards
with others� 335
Checking your capabilities� 335
Checking your credentials� 335
Deploying your workbook� 336

Summary� 337

vi Table of Contents

10
Creating Interactive Reports and Enhancing Your
Models in Power BI

Technical requirements� 340
Creating Power BI visualizations
using live connections� 340
Connecting to data sources in Power BI� 342
Live connecting to the
multidimensional model� 342
Live connecting to the tabular model� 346
Building our Power BI report with
multidimensional data� 347
Building our Power BI report with
tabular data� 361

Understanding live connections
and import for Power BI with
SSAS models� 369
Adding measures to Power BI
when using tabular models and
live connections� 370
Creating a new measure� 371

Deploying your Power BI report
to a Power BI workspace� 374
Summary� 378

Section 5: Security, Administration, and
Managing Your Models

11
Securing Your SSAS Models

Technical requirements� 382
Reviewing security settings for
SSAS � 382
Opening the security settings for the
server� 382
Allowing anonymous access to your
model� 385
Understanding advanced security
properties� 386
Setting security properties in
msmdsrv.ini� 387

Setting up user roles in servers
and databases� 389
Adding members to the server
administrator role� 389

Adding a read-only role to the
multidimensional model� 390
Adding a read-only role to the tabular
model� 392

Implementing data security in
multidimensional models� 394
Adding customer roles with dimension
hierarchy security� 394
Adding sales group security with
dynamic dimension security� 400
Adding inventory group security with
cell-level security� 408

Implementing data security in
tabular models� 410

Table of Contents vii

Creating a role to limit access to a
customer� 410
Adding dynamic security for sales

territories to the tabular model� 412

Summary� 416

12
Common Administration and Maintenance Tasks

Technical requirements� 418
Understanding the languages� 418
Backing up and restoring SSAS
databases� 420
Restoring your databases� 425

Processing or refreshing the
data in your models� 427
Processing multidimensional models
and their components� 427
Processing tabular models and their
components� 433

Scaling your models� 435
Understanding processing and query
servers� 437
Choosing scaling out versus clustering� 437

Synchronizing your databases� 438

Discovering how your models
are performing� 443
Using Dynamic Management Views� 444
Using SQL Server Profiler� 445

Reviewing other maintenance
tasks or tools� 446
Warming multidimensional models� 446
Using usage-based optimization with
multidimensional models� 447
Removing unused fields from your
tabular models� 448
Using open source tools to support
tabular models� 448

Summary� 449

Other Books You May Enjoy
Index

Preface
SQL Server Analysis Services (SSAS) continues to be a leading enterprise-scale
toolset, enabling customers to deliver data and analytics across large datasets with great
performance. This book will help you understand MS SQL Server 2019's new features and
improvements, especially when it comes to SSAS.

First, you'll cover a quick overview of SQL Server 2019, learn how to choose the right
analytical model to use, and understand their key differences. You'll then explore how to
create a multi-dimensional model with SSAS and expand on that model with MDX. Next,
you'll create and deploy a tabular model using Microsoft Visual Studio and Management
Studio. You'll learn when and how to use both tabular and multi-dimensional model
types, how to deploy and configure your servers to support them, and design principles
that are relevant to each model. The book comes packed with tips and tricks to build
measures, optimize your design, and interact with models using Excel and Power BI. All
this will help you visualize data to gain useful insights and make better decisions. Finally,
you'll discover practices and tools for securing and maintaining your models once they
are deployed.

By the end of this MS SQL Server book, you'll be able to choose the right model, and build
and deploy it to support the analytical needs of your business.

Who this book is for?
This Microsoft SQL Server book is for BI professionals and data analysts who are looking
for a practical guide to creating and maintaining tabular and multi-dimensional models
using SQL Server 2019 Analysis Services. A basic working knowledge of BI solutions such
as Power BI and database querying is required.

x Preface

What this book covers?
Chapter 1, Analysis Services in SQL Server 2019, introduces Analysis Services and the steps
to install the tools used in the rest of the book.

Chapter 2, Choosing the SQL Server 2019 Analytic Model for Your BI Needs, presents
multidimensional and tabular models of Analysis Services and provides reasons to choose
between them.

Chapter 3, Preparing Your Data for Multidimensional Models, outlines how to organize
data into star schemas to support multidimensional models.

Chapter 4, Building a Multidimensional Cube in SSAS 2019, covers the necessary steps to
build the multidimensional model, complete with facts, dimensions, and partitions.

Chapter 5, Adding Measures and Calculations with MDX, illustrates how to expand a
multidimensional model with measures and calculations created with MDX and how to
query a multidimensional model with MDX.

Chapter 6, Preparing Your Data for Tabular Models, covers the steps required to build a
Power Pivot model in Excel and prep data for work with tabular models.

Chapter 7, Building a Tabular Model in SSAS 2019, shows how to build tabular models
using standard refresh, Direct Query, and Power Query, and how to import a Power Pivot
model to create a tabular model.

Chapter 8, Adding Measures and Calculations with DAX, elucidates the steps to query a
model with DAX and expand the model using DAX to create measures, columns, and
calculated tables.

Chapter 9, Exploring and Visualizing Your Data with Excel, highlights the use of Excel to
visualize the data from the models after the models have been created.

Chapter 10, Creating Interactive Reports and Enhancing Your Models in Power BI, focuses
on the use of Power BI to create modern reports using both multidimensional and tabular
models.

Chapter 11, Securing Your SSAS Models, engages in imparting knowledge and
implementing various patterns to secure multidimensional and tabular models.

Chapter 12, Common Administration and Maintenance Tasks, provides steps to manage
models by helping in understanding the backup and restore operations, scaling options,
and performance techniques.

Preface xi

To get the most out of this book
This book is designed for those of you who are experienced working with data and
analysis in their business. Most readers should have some experience with Excel or Power
BI. Analysis Services is the next level of data analysis that uses the power of SQL Server
2019. This book will give you hands-on guidance, from installing tools to the basics of
maintenance and operations.

In the first chapter of the book, we will walk through the installation of the SQL Server
tools. However, you should plan to get Excel and Power BI Desktop downloaded so that
you build reports and visualizations on the models you will create in the later chapters.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to copy/pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/hands-on-sql-server-2019-analysis-
services. In case there's an update to the code, it will be updated on the existing
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:
https://static.packt-cdn.com/downloads/9781800204768_
ColorImages.pdf.

https://github.com/PacktPublishing/hands-on-sql-server-2019-analysis-services
https://github.com/PacktPublishing/hands-on-sql-server-2019-analysis-services
https://github.com/PacktPublishing/hands-on-sql-server-2019-analysis-services
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800204768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800204768_ColorImages.pdf

xii Preface

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. Here is an example: "In my case, the account name is NT Service\
MSOLAP$DOWSQL2019TAB."

A block of code is set as follows:

USE [Master]

CREATE LOGIN [NT Service\MSOLAP$DOWSQL2019TAB] FROM WINDOWS
WITH DEFAULT_DATABASE=[master], DEFAULT_LANGUAGE=[us_english]

GO

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "Once you have the user in place, choose Impersonate Service Account and
click Connect."

Tips or important notes	
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

http://www.packtpub.com/support/errata

Preface xiii

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com

Section 1:
Choosing

Your Model

We kick off the book with an introduction to SQL Server 2019 and the process to install
and configure the data engine, the Analysis Services engines, and the sample databases.
When starting to work with SQL Server Analysis Services (SSAS), the developer or
architect needs to choose the proper model to use. This section will clarify what SSAS is
and the key differences between the models.

This section comprises the following chapters:

•	Chapter 1, Analysis Services in SQL Server 2019

•	Chapter 2, Choosing the SQL Server 2019 Analytic Model for Your BI Needs

1
Analysis Services in

SQL Server 2019
As you prepare to build your analytic models in SQL Server, you need to understand the
basics about SQL Server Analysis Services (SSAS) including the purpose of the overall
platform, with a basic understanding of the product. We will be exploring the origin of
SSAS and its evolution into what we use today.

Upon completion of this chapter, you should understand where SSAS fits into the
overall data analytics ecosystem. In this chapter, we're going to answer the following key
questions about Analysis Services:

•	 What is SQL Server Analysis Services anyway?

•	 Why use SQL Server Analysis Services?

•	 What's new in SQL Server Analysis Services 2019?

•	 What are the tools used with SQL Server Analysis Services?

•	 One last thing – our sample data

18 Analysis Services in SQL Server 2019

In preparation for the rest of the book, the final section of the chapter discusses the tools
we use. We will provide links and instructions for the installation procedures to prepare
for the various examples and development used throughout the book. We will also walk
through the restoration of the SQL Server database used to support our Analysis Services
examples in later chapters.

What is SQL Server Analysis Services anyway?
SSAS is distributed as part of the SQL Server stack of tools. This stack has included a
variety of tools over the years:

•	 SQL Server Management Studio

•	 Data Transformation Services

•	 SQL Server Integration Services

•	 SQL Server Reporting Services

•	 Data Quality Services

•	 Master Data Services

•	 Data Virtualization with PolyBase

•	 Big Data Clusters

Some of these options have been part of SQL Server for years, such as Integration Services,
but some are brand new to SQL Server 2019, such as Big Data Clusters. Analysis Services
has been in the product line for a long time, having been added in 1998.

SQL Server Analysis Services is not SQL Server
This statement may seem odd, but it is important to understand the place that Analysis
Services has in the SQL Server stack and related Microsoft Business Intelligence (MSBI)
ecosystem. As the list earlier in the chapter calls out, Analysis Services and many other
products have been included in the purchase of SQL Server but are not a relational
database management system (RDBMS).

The only component of SQL Server that has no official title is the relational data engine.
It is simply referred to as SQL Server. SQL Server directly refers to the capability to store
data in tables and use Transact-SQL or TSQL to interact with the data. Relationships,
indexes, views, and stored procedures can be used in this engine and are commonly used
for transactional systems and data warehouse solutions.

What is SQL Server Analysis Services anyway? 19

Analysis Services is designed to optimize data for analysis and reporting. Relational
systems specialize in managing large amounts of transactions with good performance.
Analytic solutions such as Analysis Services are designed to aggregate and query large
amounts of data efficiently. While design methodologies such as star schemas are
designed to optimize relational systems for analytic workloads, these schemas still
require significant optimization within relational systems to match the performance of
analytic solutions.

Relational versus analytic workloads
Relational workloads are typically normalized in relational database systems.
Normalization involves using a lot of related tables to keep the data changes
to a minimum. They are optimized to load data. Analytic workloads are
denormalized using large flat tables with minimal relationships. This keeps the
work of reading the data to a minimum.

The key takeaway here is that SQL Server refers to the relational database engine.
Analysis Services is a separate data storage solution that is optimized for analytic and
reporting workloads.

SQL Server Analysis Services through the years
SSAS has a long and interesting history. Personally, I started working with Analysis
Services with its first release in 1998. Microsoft did not reinvent the wheel; they acquired
another company to accelerate their introduction into analytic server tools or Online
Analytical Processing (OLAP) servers. They started the process in 1996 and acquired
Panorama Software's development team to begin the development of their new OLAP
server product called OLAP Services 7.0, which was shipped with SQL Server 7.0 in 1998.

OLAP Services was a multidimensional database solution. Microsoft rebranded this to
Analysis Services with its SQL Server 2000 release. They made significant changes to the
multidimensional server and supporting technology in the 2005, 2008, and 2012 releases.
The multidimensional server was designed to work with large-scale data on spinning
disks. As hardware continued to improve, optimizations for the platform changed and we
saw the shift to more memory-optimized solutions.

Enter Power Pivot with SQL Server 2008 R2 and Excel 2010. This is a significant turning
point in the Analysis Services story. The Vertipaq compression engine was introduced
to the MSBI set of offerings. While technically a part of SSAS, Power Pivot was released
to Excel first. This columnar-based in-memory solution laid the groundwork for tabular
models in Analysis Services, which is now the preferred option for working with
Analysis Services.

20 Analysis Services in SQL Server 2019

Check out the following timeline. It illustrates the key points in the history of Analysis
Services and related technologies:

Figure 1.1 – Over 20 years of Microsoft Analysis Services history

Microsoft has focused most of its attention on the tabular model technology in the most
recent releases of Analysis Services. This technology is the heart of the Power BI products
and is the only model type supported as a native Azure technology.

We will walk through the value of both types of models in Chapter 2, Choosing the SQL
Server 2019 Analytic Model for Your BI Needs. Let's take a step back and look at why you
would consider using Analysis Services to support your workloads today.

Why use SQL Server Analysis Services?
Now that you understand where Analysis Services fits into the SQL Server stack and the
Microsoft BI ecosystem, why would you choose to use Analysis Services? Traditionally,
Analysis Services was the best option to organize data for easy and performant analysis
of data at scale. I have used Analysis Services to optimize data warehouses built on a
variety of relational technologies including Microsoft SQL Server and Oracle. Analysis
Services is source agnostic. If you can connect to the source, you have a use case for
Analysis Services if you want more efficient analytics and reporting.

Optimized for reporting and analytics
This is the primary reason OLAP servers were introduced to the market. Earlier, we called
out relational solutions and their optimization for efficient transaction handling. However,
many of the optimizations for transaction handling conflict with reporting needs. One key
example is the complexity of a relational solution.

The following diagram shows the complexity of relational design. The number of tables
and joins required for reporting and analytics hinders the performance of report writers
and queries:

Why use SQL Server Analysis Services? 21

Figure 1.2 – Relational diagram of the Wide World Importers sales schema

As you can see in the preceding diagram, relational models make heavy use of foreign
keys and related tables. Ralph Kimball introduced dimensional modeling and the star
schema concepts to help optimize read techniques with relational systems. This resulted
in simpler, flatter (denormalized) schemas such as the following diagram, which is the
best design to support multidimensional model design:

Figure 1.3 – Star schema diagram for Wide World Importers sales facts

22 Analysis Services in SQL Server 2019

While the star schema and dimensional models improved the ability of relational systems
to extract reporting data, they were still bound to relational rules and languages. OLAP
servers were introduced to further optimize the data for end user consumption. This
resulted in even simpler, user-friendly options. The following example shows a pivot table
in Excel that is directly connected to an Analysis Services model. This makes the data
accessible and easy for users to analyze and create reports without deep technical skills:

Figure 1.4 – Excel pivot table connected to an Analysis Services model

Let's see the relation of Analysis Services with Excel.

Works great with Excel
This leads to one of the primary reasons that Analysis Services has become a beloved
delivery platform for users and IT organizations. Once data is delivered in Analysis
Services, it can be easily consumed by Excel. When a user connects to an Analysis
Services model, they are able to interact with the data and build what they need from the
underlying database without coming back to IT for additional support.

Organized with end users in mind
The other reason that has to be considered is that the data is organized to support
the business, not database or code efficiencies. Well-designed OLAP solutions use
business-friendly names for the data. OLAP solutions typically hide system fields as well
making sure the data in the OLAP database is relevant.

Why use SQL Server Analysis Services? 23

Here is a list of key user-friendly features in OLAP databases:

•	 Proper spelling and grammar, using spaces, capitalization, and punctuation.

•	 Hidden system values such as primary keys, surrogate keys, and system names.

•	 Relationships built in so the user does not have to determine how the data is related;
it is related in the model itself.

•	 Pre-existing common calculations such as totals or averages, which respond
correctly to filtering or slicing.

The following table shows how reporting queries becomes simpler as the database engine
and structure is more focused on an aggregated and report-friendly structure:

Figure 1.5 – How reporting queries becomes simpler

Each of these queries returns the same results:

Total Sales	 Total Profit	 Buying Group

73037043.78	 31660852.75	 N/A

62654262.56	 27125589.10	 Tailspin Toys

62352133.11	 26942739.05	 Wingtip Toys

24 Analysis Services in SQL Server 2019

As you can see, making data more consumable for users is one of the key reasons to use
Analysis Services. When considered in combination with OLAP-friendly tools such as
Excel, Power BI, and Tableau, the use of OLAP servers is even more compelling.

What's new in SQL Server Analysis
Services 2019?
The focus of this book is on using SSAS 2019. What has Microsoft added to the product
in its most recent release? Because Analysis Services is effectively broken into two types
of databases – multidimensional and tabular – we will talk about the changes to
each separately.

Multidimensional models in 2019
This is the short list. Microsoft has not made significant changes to multidimensional
capabilities in Analysis Services since the SQL Server 2012 release. Even that release
focused on the new xVelocity In-Memory Analytics Engine (aka Vertipaq) that would
support tabular models. Microsoft considers the multidimensional model in Analysis
Services mature and is not adding major features at this point. The focus is on bug fixes
and various performance enhancements to the engine. The key takeaway here is that
multidimensional models still have a place but are not receiving any significant updates.
The following is from Microsoft's documentation:

Multidimensional mode and Power Pivot for SharePoint mode are
staples for many Analysis Services deployments. In the Analysis Services
product lifecycle, these modes are mature. There are no new features for

either of these modes in this release. However, bug fixes and performance
improvements are included.

Source
https://docs.microsoft.com/en-us/analysis-
services/what-s-new-in-sql-server-analysis-
services#sql-server-2017-analysis-services

Tabular models in 2019
While multidimensional models are considered mature, Microsoft is continuing to make
significant investments in tabular model technology. Since its release in 2012 until now,
major changes have happened with tabular models.

https://docs.microsoft.com/en-us/analysis-services/what-s-new-in-sql-server-analysis-services#sql-server-2017-analysis-services
https://docs.microsoft.com/en-us/analysis-services/what-s-new-in-sql-server-analysis-services#sql-server-2017-analysis-services
https://docs.microsoft.com/en-us/analysis-services/what-s-new-in-sql-server-analysis-services#sql-server-2017-analysis-services

What's new in SQL Server Analysis Services 2019? 25

Compatibility levels
When working with tabular models, you need to understand compatibility
levels. Microsoft introduced compatibility levels to allow new versions of
Analysis Services to be backward compatible while enabling significant
changes to supported features. When creating a tabular model, it is
recommended to use the most current compatibility level. However, if you
have an existing model and want to upgrade to the latest SQL Server version,
you can set your compatibility level to what you are currently running until
you have a chance to update the level and test it with the new features. The
compatibility level is set when creating a new project in Visual Studio.

SQL Server 2019 supports the 1500 (SQL Server 2019), 1400 (SQL Server
2017), and 1200 (SQL Server 2016) compatibility levels. The features released
with SQL Server 2019 are included in compatibility level 1500.

Here are some of the key updates included with SQL Server 2019 Analysis Services
(compatibility level 1500):

•	 Query interleaving

•	 Calculation groups in tabular models

•	 Governance setting for Power BI cache refreshes

•	 Online attach

•	 Many-to-many relationship support

Let's look at each of these changes in terms of what they are and why they matter.

Query interleaving
Query interleaving allows you to set how queries are handled based on query length
and performance. Tabular model queries are handled in a first-in, first-out model (FIFO)
by default. This means that a long-running query could make shorter queries run for
longer if they follow that query in the queue. By enabling this feature, shorter queries
can be executed during a long query run. This feature is only available for import models,
not Direct Query. However, if you have a high-concurrency tabular model solution (lots
of users or complex queries), this feature could improve performance for your users and
reduce CPU pressure on the server.

26 Analysis Services in SQL Server 2019

Calculation groups
Calculation groups are used to group related calculations, which users often work with
at the same time. This is really helpful with large complex models with many different
calculations for the users to navigate. Microsoft calls out that Time intelligence will
benefit from this significantly. For example, you can create a calculation group that has
Current, Month-to-Date (MTD), Quarter-to-Date (QTD), and Year-to-Date (YTD)
and call it xTD. When the user views the deployed model, they will see a calculation group
as a single column they can add to their visual, which displays all four of these calculations
as applied to a base measure such as Revenue. This feature has been added to improve
usability in complex models.

Governance settings for Power BI cache refresh
The Power BI service caches data for dashboards and reports to improve performance
and user experience when using live connections with tabular models. However, in some
cases, this can cause a significant amount of queries with the possibility of overloading a
server. This setting will override background refresh policies set on the client, preventing
performance issues on the server.

Online attach
Currently, updates to tabular models require the model to be taken offline while deploying
changes to the model. This results in downtime for the model. This feature allows model
designers to deploy model changes live. This is similar to the shadow copy feature with
multidimensional models, which supports the same online deployment.

The process currently is supported using XML for Analysis (XMLA) (more about that
later). However, for tabular models, you will need to account for double the model's
memory footprint during the online attach operation. The effective result is that during
the attach process, both the new model and the old model will be in memory during the
process. Once the process has completed, the old model will be removed. During the
operation, users can continue to query the model and will start using the new model once
it is loaded.

Many-to-many relationship support
Many-to-many relationship support has always been an issue with tabular models. This
change allows relationships to be created between two tables where the relationship may
not be unique. For example, if you have a fact table that is aggregated to the month, you
will now be able to use the month value from a date table that has daily granularity. This
allows cleaner, simpler models that are easier to use. Next, we will look at the tools that are
used with SSAS.

What are the tools used with SQL Server Analysis Services? 27

What are the tools used with SQL Server
Analysis Services?
Because SSAS is part of the SQL Server stack, many tools can be used to support both
products. Microsoft has made a significant push to consolidate tooling over the years. As a
result, we have two key tools used for building and interacting with models – SQL Server
Management Studio (SSMS) and Visual Studio. In the following sections, I will discuss
what role each plays and where to get the tools to match the work we are doing in the rest
of the book. We will also walk through the installation of both Analysis Services modes.

SQL Server 2019 Developer edition
Let's start with installing SQL Server 2019 and both Analysis Services modes. We will be
using the Developer edition of the SQL Server products. Because we will be using data
stored in SQL Server to support our models, you will be installing three instances of
SQL Server – one relational, one multidimensional, and one tabular. The relational and
multidimensional instances will be installed during the same installation. The Developer
Edition is the functional equivalent of the Enterprise Edition.

You can find the latest version of SQL Server 2019 Developer edition by searching for
SQL Server 2019 Developer in your preferred search engine. The current location for all
SQL Server downloads is https://www.microsoft.com/en-us/sql-server/
sql-server-downloads. You should download the Developer edition as shown in the
following screenshot. It is a free developer option for you to use while learning SSAS:

Figure 1.6 – Downloading the Developer edition

https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads

28 Analysis Services in SQL Server 2019

We do have the ability to install two of the instances simultaneously. Next, we will install
the database engine and multidimensional mode as described. Once those are complete,
we will install another instance to support the tabular mode.

Installing SQL Server 2019 database engine and SQL Server 2019
Analysis Services multidimensional mode
For the most part, we will follow a normal installation process for the database engine
and Analysis Services in multidimensional mode. I will use the following set of
screenshots to highlight decision points through the process:

1.	 After you launch the installation for the first time, you will need to select the
Custom installation type. Basic does not include the option to install Analysis
Services:

Figure 1.7 – Choose Custom from the initial installation dialog

What are the tools used with SQL Server Analysis Services? 29

Production installations
The instructions provided here are intended for development and
experimental installs. Please refer to the latest best practices from Microsoft
regarding production workload installations.

2.	 You will need to select the Installation tab on the left, then select New SQL Server
stand-alone installation or add features to an existing installation option:

Figure 1.8 – Choose the New SQL Server stand-alone installation

30 Analysis Services in SQL Server 2019

3.	 You will start the installation process. You can select the default options until you
get to the Product Key screen. On this screen, you should select the Developer
edition for your free key. This will allow you to use all the features available in SQL
Server Enterprise edition:

Figure 1.9 – Select Developer edition for free product key

What are the tools used with SQL Server Analysis Services? 31

4.	 The next stopping point is Feature Selection, as shown in the following screenshot.
I encourage you to review all the options available to you with SQL Server 2019.
There are a lot of non-database features included in SQL Server, such as support
for machine learning and data virtualization (Polybase). If this is the first time
you have installed SQL Server in some time, you should note that SQL Server
Reporting Services (SSRS) and SQL Server Management Studio (SSMS) are not
included here. Both of these products should be downloaded separately. We will
walk through Management Studio for our purposes shortly.

We will need Database Engine Services and Analysis Services for our installation.
That will allow us to create instances of SQL Server and SSAS during our
installation:

Figure 1.10 – Choose Database Engine Services and Analysis Services

32 Analysis Services in SQL Server 2019

5.	 The next section of interest is Instance Configuration. If you have been around
SQL Server for a while, you have likely installed the Default instance many times.
I am recommending you use the Named instance option. We will have two
instances of Analysis Services when we are done. Using the Named instance option
will help you keep these clearly separate:

Figure 1.11 – Select Named instance and provide a unique name for your instance

Two names or three names
The current installation path we are following will result in two instance names.
The first instance name will be used for both Database Engine Services and
Analysis Services – Multidimensional Mode. We will go through the install
process again to install Analysis Services – Tabular Mode with a different
instance name. If you want to identify all of your instances separately, go back
a step and unselect Analysis Services. This will allow you to create Database
Engine Services with a unique instance name. You will need to follow the
steps in the tabular mode installation instructions to add an instance for
multidimensional mode as well. Refer to the setup instructions in the following
sections for the Multidimensional Mode installation. This is your choice and
will not affect examples used in the remainder of the book.

What are the tools used with SQL Server Analysis Services? 33

Remember that the name you choose here will be used by both the Database Engine
Services instance and the Analysis Services Multidimensional Mode instance.

I am choosing to keep the default settings for Server Configuration. In a
production installation, you should use service accounts configured for this
purpose. Service accounts are created by your security team and are typically the
more secure option for production environments. You may choose to do this for
your developer install here if you choose to:

Figure 1.12 – Set custom accounts here if preferred

34 Analysis Services in SQL Server 2019

6.	 The next section covers Database Engine Configuration. I almost always set up
mixed mode when doing development or testing work. This allows me to have
an System Administrator user as well as to set up local database users if needed.
I would not recommend this for most production scenarios. Using an Active
Directory account is more secure for production servers. In our scenario, I would
also recommend adding your current Windows user account to the SQL Server
Administrators group:

Figure 1.13 – Set up your authentication and admins

7.	 Now click on the Data Directories tab. This is a preference for you as well. You are
welcome to keep the default options here. I typically create a data directory off of
a drive – in this case, C – to hold data files. If you have multiple drives, you should
select the fastest drive for your SQL Server data. Take note of your backup directory
as you will need to use that later in the chapter:

What are the tools used with SQL Server Analysis Services? 35

Figure 1.14 – Choose the location for your data directories
I will not be customizing the rest of the install. Feel free to browse the other tabs to
review additional options you can set during installation.

8.	 The next screen is Analysis Services Configuration. It is similar to the previous two
screens we worked with. However, you will notice that Analysis Services does not
have a mixed mode option. It only supports Windows or Active Directory security.

36 Analysis Services in SQL Server 2019

We will be installing Multidimensional and Data Mining Mode in this instance.
While I don't have a screenshot of the data directories, I would recommend you
choose your fastest available hard disk for this instance as well:

Figure 1.15 – Select multidimensional mode and add your user as an admin

You have completed the configuration settings at this point. The next few dialogs will
show you what you have chosen to install, and you will be able to see your installation
progress. You will see the following dialog when you have successfully completed
your installations:

What are the tools used with SQL Server Analysis Services? 37

Figure 1.16 – Congratulations! You have successfully installed SQL Server 2019

Let's now look at the installation of SSAS using tabular mode.

Installing SQL Server 2019 Analysis Services tabular mode
Now, we will install another instance of Analysis Services using the tabular mode
as follows:

1.	 Typically, the Installation dialog box is still open at this point (assuming you did
not close it). If it is not open, you will want to run the installation media for SQL
Server 2019 again.

38 Analysis Services in SQL Server 2019

You will choose the new SQL Server stand-alone installation option as we did in the
previous section:

Figure 1.17 – Choose to do a new SQL Server installation

What are the tools used with SQL Server Analysis Services? 39

2.	 You can use the default settings until you get to the Installation Type dialog. Do
not choose to add features. You must perform a new installation. The reason for this
is that you cannot add another Analysis Services instance to your current instance:

Figure 1.18 – Choose Perform a new installation of SQL Server 2019

40 Analysis Services in SQL Server 2019

3.	 As you move through the next few dialogs, you will choose the development free
option once again. When you get to the feature selection, you should only select the
Analysis Services option. We are only planning to install an additional Analysis
Services Tabular Mode instance:

Figure 1.19 – Only choose Analysis Services here

What are the tools used with SQL Server Analysis Services? 41

4.	 Once again, I will recommend a named instance for this installation as well. As
you can see, we do not have a default instance, so that is still an option here. Your
existing instance name is shown in the table for your reference:

Figure 1.20 – Create a new named instance

42 Analysis Services in SQL Server 2019

5.	 The next step is Analysis Services Configuration. In this case, you will select the
Tabular Mode option. As with the other installation, you can specify your Data
Directories and set your current user as an administrator for this instance:

Figure 1.21 – Choose Tabular Mode and add your user as an admin

6.	 Complete the installation process and you should see the following Complete
dialog with only Analysis Services in the Feature list. Congratulations, you have
successfully installed the three instances of SQL Server 2019 to be used throughout
the book:

What are the tools used with SQL Server Analysis Services? 43

Figure 1.22 – Congratulations! You have successfully installed your Analysis Services – Tabular Mode

Now that we have successfully installed Analysis Services for tabular models, let's see how
to manage installations.

Managing installations
Once installed, you will find that SQL Server tends to be very resource hungry. My
recommendation is that you turn the services off when you are not using them. The
following scripts are PowerShell and will allow you to turn them on and off as needed. In
order to use these scripts, you will need to put the instance name in the locations where
[[INSTANCE NAME]] is in the code. Replace all that text with your instance name. If
that does not work, you will need to find the service name in the services list in Windows.

44 Analysis Services in SQL Server 2019

There are two scripts here – the first will disable the service and turn it off. This will
prevent it from restarting if you reboot your PC. The second script will turn on the
services. I saved these files as SQLServerOn.ps1 and SQLServerOff.ps1. I execute
them by opening a PowerShell window as an administrator. At the prompt, you type
the following:

$ "<<YOUR PATH HERE>>\SQLServerOff.ps1"

You will need to replace <<YOUR PATH HERE>> with the location you stored the file at.
Now to the scripts themselves. This script will disable the services and power down the
service:

Set-Service 'MSSQL$[[INSTANCENAME]]' -StartupType Disabled

Stop-Service -Name 'MSSQL$[[INSTANCENAME]]' -Force

Set-Service 'MSOLAP$[[INSTANCENAME]]' -StartupType Disabled

Stop-Service -Name 'MSOLAP$[[INSTANCENAME]]' -Force

Set-Service 'MSOLAP$[[INSTANCENAME]]' -StartupType Disabled

Stop-Service -Name 'MSOLAP$[[INSTANCENAME]]' -Force

I saved this script as SQLServerOff.ps1. Once this is run, these services will not
restart on reboot. The next script will re-enable the services. I chose to enable with a
manual StartupType in order to prevent a restart in the event of a reboot. You can
choose Automatic if you prefer:

Set-Service 'MSSQL$[[INSTANCENAME]]' -StartupType Manual

Start-Service -Name 'MSSQL$[[INSTANCENAME]]'

Set-Service 'MSOLAP$[[INSTANCENAME]]' -StartupType Manual

Start-Service -Name 'MSOLAP$[[INSTANCENAME]]'

Set-Service 'MSOLAP$[[INSTANCENAME]]' -StartupType Manual

Start-Service -Name 'MSOLAP$[[INSTANCENAME]]'

This script is saved as SQLServerOn.ps1. Remember to execute this with a PowerShell
command window open in administrator mode.

What are the tools used with SQL Server Analysis Services? 45

Enabling PowerShell execution
By default, PowerShell execution is secured. If you have not enabled PowerShell
execution on your PC, you will be unable to run a script you have created. To
enable PowerShell to run locally created scripts on your PC, you will need to
open a PowerShell window and run the following script:

Set-ExecutionPolicy RemoteSigned

Next, we will get familiar with SSMS.

SQL Server Management Studio (SSMS)
A few versions back, Microsoft removed SSMS from the SQL Server media. This allowed
them to make changes to the tool independent of the version of SQL Server released. This
made it significantly easier for users to get Management Studio, eliminating the need
to run the SQL Server installation process. At the time of writing, the latest version of
Management Studio is 18. You should install the latest version to make sure you have all
the capabilities we will go through in the book.

Installing SQL Server Management Studio
The installation link for SSMS can be found on the same page as SQL Server 2019
Developer edition. It is usually located near the bottom of the page with all the supporting
tools, as follows:

Figure 1.23 – Choose SQL Server Management Studio

46 Analysis Services in SQL Server 2019

When you select the SSMS link, you will be redirected to the Microsoft Docs page with
instructions and details about the current version of Management Studio. Download and
install SSMS. This is a simple install with no options that impact the work we will do in
the book. As noted in the following install dialog, this book will be using RELEASE 18.4:

Figure 1.24 – Installation screen for SQL Server Management Studio – release 18.4

Next, let's learn more about Visual Studio.

What are the tools used with SQL Server Analysis Services? 47

Visual Studio with SQL Server Data Tools (SSDT)
Visual Studio and SQL Server have had many different working combinations over the
years. While I included SSDT in this section's heading, Visual Studio 2019 is set up
differently. Prior to the current version of Visual Studio, SSDT was a separate installation
that you installed after selecting your Visual Studio version. As a reminder, we will be
using Visual Studio 2019 for the examples and illustrations in this book:

Figure 1.25 – Choose Download SQL Server Data Tools for this section

Previous versions of Visual Studio
SSDT is still a valid install with Visual Studio version 2017. However, SQL
Server 2019 components including the latest Compatibility Level are not
supported. You may need to keep Visual Studio 2017 and related tools to
support the current project. Visual Studio 2017 and Visual 2019 can be
installed side by side.

48 Analysis Services in SQL Server 2019

Installing and configuring Visual Studio with support for Analysis
Services 2019
The first decision you will need to make is what edition of Visual Studio you want to
use. If you have a Visual Studio subscription, a corporate license, or a personal license,
you likely have options to install Visual Studio 2019 Professional or Visual Studio 2019
Enterprise. If you are starting out and this is truly a learning experience for you and you
don't want or need to purchase a license for Visual Studio, the best option is likely the
Community Edition.

For the purposes of this book, I will be using the Community Edition of Visual
Studio 2019. You can find this edition for download at https://visualstudio.
microsoft.com/downloads/. Let's get it installed and configured.

As part of the installation, you will need to select one or more workloads. While you are
welcome to choose other workloads for the installation, for our purposes, you need to
select Data storage and processing in the Visual Studio installation dialog.

Once the installation is complete, launch Visual Studio. Under the Get started options,
choose Continue without code. The next step is to install the extensions to create
Analysis Services projects.

Adding Visual Studio Extensions for Analysis Services 2019
Now that you have Visual Studio 2019 open, you need to install the extensions used to
support Analysis Services development:

1.	 First, let's open the Manage Extensions dialog. You can open this by selecting the
Extensions option in Visual Studio and selecting Manage Extensions:

Figure 1.26 – Open Manage Extensions in Visual Studio 2019

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

What are the tools used with SQL Server Analysis Services? 49

2.	 Once you select Manage Extensions, the following dialog will open. You will need
to open the following menu sequence: Online > Visual Studio Marketplace >
Tools > Data. This will filter the list of options to data-specific extensions. Choose
Microsoft Analysis Services Projects and then click Download. This will start the
process to download and install the extension:

Figure 1.27 – Choose the Microsoft Analysis Services Projects download

50 Analysis Services in SQL Server 2019

3.	 Once the install is complete (it may require you to close Visual Studio), you should
be able to create a new project and see the Analysis Services project types in the
options:

Figure 1.28 – Congratulations! You can create Analysis Services projects

You will need to restart Visual Studio to complete the installation process. Once you have
restarted Visual Studio, you are ready to create Analysis Services models and deploy them
to Analysis Services 2019.

One last thing – our sample data 51

One last thing – our sample data
This is the final preparation piece before we build the Analysis Services models. We will
be using the latest Microsoft sample database from Wide World Importers. The Wide
World Importers data warehouse sample is a star schema database. While a number of
cool features have been added and can be explored in the data warehouse, our focus is on
source data for our Analysis Services models.

You can find the World Wide Importers sample databases on GitHub: https://
github.com/Microsoft/sql-server-samples/releases/tag/
wide-world-importers-v1.0. For our purposes, you only need the
WideWorldImportersDW-Full.bak file. If you are interested in the features for the
transactional database, which is the actual source for the data warehouse, you can also
download WideWorldImporters-Full.bak. If you get both samples, you will need
10 GB of storage for the databases and a minimum of 1.5 GB of RAM to support them.

The sample databases use the latest features of SQL Server 2019
This is a warning for if you choose to install both databases on your server.
Both use in-memory features, which could cause performance issues on your
computer. These features are meant to highlight some of the latest features
but can be resource-intensive. If this is a concern, you should not restore the
transactional database at this time.

Once you have the backup file downloaded, I would recommend you move the file to the
Backup folder located where you selected during the install process. This folder will be
easily discoverable from SSMS during the restore process. This is not required, but I find it
a good practice in most cases.

https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0
https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0
https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0

52 Analysis Services in SQL Server 2019

Restoring the data warehouse backup
Let's restore the database now:

1.	 Open up SQL Server Management Studio.

2.	 Connect to your SQL Server 2019 database instance.

3.	 Right-click on the Databases folder and select Restore Database…:

Figure 1.29 – Select Restore Database…

4.	 In the Restore Database… dialog, choose Device.

5.	 Then use the ellipses button to open a dialog box that will allow you to choose the
WideWorldImportersDW-Full.bak file. Click Add to find your backup file.

6.	 Once selected, your dialog should be filled in similar to the following:

One last thing – our sample data 53

Figure 1.30 – Your dialog box should look like this

7.	 Next, select OK. This will take some time, but you should see the restored database
in Management Studio when the process is complete.

You can also use a script to restore the backup as shown here. You will need to
replace {YOUR PATH HERE} with the location of your files:

USE [master]

RESTORE DATABASE [WideWorldImportersDW]

FROM DISK = N'{YOUR PATH HERE}\MSSQL\Backup\
WideWorldImportersDW-Full.bak'

WITH FILE = 1,

MOVE N'WWI_Primary' TO N'{YOUR PATH HERE}\MSSQL\DATA\
WideWorldImportersDW.mdf',

MOVE N'WWI_UserData' TO N'{YOUR PATH HERE}\MSSQL\DATA\
WideWorldImportersDW_UserData.ndf',

MOVE N'WWI_Log' TO N'{YOUR PATH HERE}\MSSQL\DATA\
WideWorldImportersDW.ldf',

MOVE N'WWIDW_InMemory_Data_1' TO N'{YOUR PATH HERE}\
MSSQL\DATA\WideWorldImportersDW_InMemory_Data_1',

DOWNLOAD,

54 Analysis Services in SQL Server 2019

STATS = 5

GO

Whichever option you choose to use, this will result in a restored database for us to use in
later chapters.

Summary
At this point, we are ready to start working with Analysis Services in SQL Server 2019.
You have successfully installed the tools we will be using and uploaded the sample data.
Along the way, you were able to learn some of Analysis Services' history and how the
introduction of Tabular Mode and the VertiPaq engine disrupted the multidimensional
database world.

In the next chapter, we will evaluate the right times to choose one mode over the other.
As you noticed during the installation, they are not the same product and they come
with their own strengths and weaknesses. Once we look at the reasons to choose one
option over the other, we will begin the process of creating models in both, starting with
multidimensional and moving to tabular. We will look at some common reporting tools
to interact with these models and wrap up with some advanced techniques. Remember,
if you follow the exercises in the book, you will create models in both modes in Analysis
Services and understand which fits your business needs better.

2
Choosing the SQL

Server 2019 Analytic
Model for Your

BI Needs
Before we jump into detailed hands-on work with both types of models in SQL Server
Analysis Services (SSAS) 2019, we'll look at some of the key differences in the products.
This chapter will refer to specific examples later in the book to point to more specific
details. The goal of this chapter is to help you understand that the models are different,
but both – multidimensional and tabular – are still valuable and can have a place in the
solutions you create.

In this chapter, we will walk through a short recap of how we got to two models in SSAS.
Then, we will dig into the key strengths and weaknesses of the models. Besides the
strengths and weaknesses, there are other differences that should be considered when
choosing a model. Some of those differences are more technical in nature and others are
specific to business problems. Keep in mind that you and others in the industry may agree
or disagree with the importance of some of the differences based on specific experiences
or needs, but that is fine.

56 Choosing the SQL Server 2019 Analytic Model for Your BI Needs

The goal of this chapter is to give you some key thoughts so that you can make an
educated and informed choice on the direction you want to go with your analytics model.
We will call out locations later in the book that highlight the topics so that you can get
hands-on with the details.

In this chapter, we're going to cover the following main topics:

•	 Understanding how we got here – two modes

•	 Discovering multidimensional model strengths and weaknesses

•	 Discovering tabular model strengths and weaknesses

•	 Understanding other differences that matter

•	 Choosing the mode for business-specific reasons

Technical requirements
There are no technical requirements for this chapter. This chapter is focused on deciding
the model type.

Understanding how we got here – two modes
In Chapter 1, Analysis Services in SQL Server 2019, we delved into the history of Analysis
Services in SQL Server. As you can see, multidimensional mode has been around for
over 20 years now. Tabular mode was introduced to SQL Server in 2012. But why bring
in tabular? As the analytics industry has continued to grow, the technology has also
improved. In particular, column-oriented database technology, which optimized
memory consumption, was one of the biggest industry changes. It introduced technology
in the Microsoft database space called VertiPaq. This column-based storage technology
changed how we think about analytics and introduced Power Pivot in Excel and tabular
mode in SQL Server.

When Microsoft introduced tabular mode, Microsoft Business Intelligence (BI)
architects in the industry had mixed feelings. At that point, we had built complex business
solutions on multidimensional models and were very skilled at managing and improving
the solutions. Multidimensional models were not perfect, but they were easy for users to
use once deployed and were key to supporting ad hoc analysis in Excel and other similar
tools. Tabular models lacked many of the sophisticated capabilities that were well-
established in multidimensional models.

Discovering multidimensional model strengths and challenges 57

One additional feature that was introduced with Power Pivot and tabular model
technology is the ability to mash up data easily. For the first time, users had easy access to
tools that enabled them to do data modeling and shaping.

Welcome to SQL Server 2019! With the latest release, Microsoft has closed much of the
gap between the features and even went beyond multidimensional capabilities in some
cases. If you search for model comparisons on the internet, you will find many of the
comparisons are from 2016 or before. Let's start by looking at the strengths and challenges
of the multidimensional model.

Discovering multidimensional model
strengths and challenges
When multidimensional models were introduced, they were difficult for most report
developers to wrap their heads around. They were not relational in nature and we had
to think differently about structures. In order to create a good multidimensional model,
we now need to understand dimensional modeling and denormalization (we dive into
details on this in Chapter 3, Preparing Your Data for Multidimensional Models). However,
the results were high performing, ad hoc-capable analytics databases that were simple for
users to consume.

This section will focus on the strengths and challenges specific to multidimensional
models. While not necessarily an exhaustive list, these strengths and challenges will
influence your model choice. These are not listed in any particular order because they may
apply differently to your specific technical or business needs.

Strengths of the multidimensional model
In this section, we will discuss the key strengths of the multidimensional model.

The multidimensional model is mature
When discussing model types in Analysis Services, the age or maturity of the
multidimensional model is often stated as one of its strengths. This is still a strength in
many ways. In particular, the product does not change a lot from release to release (this
could be seen as a weakness as well). Stability is a key factor in data solutions, as changes
to the server could prevent upgrades due to instability in the release or features that break
existing functionality.

58 Choosing the SQL Server 2019 Analytic Model for Your BI Needs

The other advantage that maturity brings is the availability of resources to support
developing solutions. Multidimensional model development and operations are well
documented. Developers that are new to the multidimensional model will find that
much of the best documentation can be over 5 years old. However, this documentation
is still effective as the product has not had major changes for a while. A great example
of this is the Analysis Services Performance Guide for SQL Server 2012 and SQL Server
2014 from Microsoft, which was last updated for the 2014 release but is still very
relevant to the current version of Analysis Services (link to the document: http://
download.microsoft.com/download/D/2/0/D20E1C5F-72EA-4505-
9F26-FEF9550EFD44/Analysis%20Services%20MOLAP%20Performance%20
Guide%20for%20SQL%20Server%202012%20and%202014.docx).

Scaling for large datasets
Multidimensional models are built on the filesystem, unlike tabular models, which are
built into memory. Because of this difference, multidimensional models can scale to very
large, multi-terabyte sizes. Some models have exceeded 20 terabytes in size. Typically,
models that will be measured in terabytes should be considered good candidates for
multidimensional models. While memory capabilities continue to grow, the expense
becomes an issue as memory is still more expensive than high-performing storage
solutions.

Analysis Services compression considerations
One of the key reasons to use SSAS is data compression. Multidimensional
models typically see 3x compression, which means that relational data used in
the model will be effectively three times smaller in multidimensional models.
As with any database solution, this compression level will vary based on the
data and tuning. For example, more aggregations in multidimensional models
will increase the size required to store the data. Tabular models have a much
higher compression rate at 10x. Because of this disparity in compression, you
will need to consider the impact of compression when planning an Analysis
Services solution.

When evaluating very large models in multidimensional databases, you must make sure
that your storage solution is designed to support the model. If storage is not optimized
for or cannot be optimized for multidimensional models, this may not be the best option.
Refer to the Performance Guide mentioned previously for details on optimizing storage.

http://download.microsoft.com/download/D/2/0/D20E1C5F-72EA-4505-9F26-FEF9550EFD44/Analysis%20Services%20MOLAP%20Performance%20Guide%20for%20SQL%20Server%202012%20and%202014.docx
http://download.microsoft.com/download/D/2/0/D20E1C5F-72EA-4505-9F26-FEF9550EFD44/Analysis%20Services%20MOLAP%20Performance%20Guide%20for%20SQL%20Server%202012%20and%202014.docx
http://download.microsoft.com/download/D/2/0/D20E1C5F-72EA-4505-9F26-FEF9550EFD44/Analysis%20Services%20MOLAP%20Performance%20Guide%20for%20SQL%20Server%202012%20and%202014.docx
http://download.microsoft.com/download/D/2/0/D20E1C5F-72EA-4505-9F26-FEF9550EFD44/Analysis%20Services%20MOLAP%20Performance%20Guide%20for%20SQL%20Server%202012%20and%202014.docx

Discovering multidimensional model strengths and challenges 59

Using actions to enhance the user experience
This is one of the coolest features in multidimensional models, which has not been
implemented in tabular models yet (I'm not sure whether it is in the plan for a future
feature in tabular models). We create actions in Chapter 5, Adding Measures and
Calculations with MDX, and demonstrate them in Excel in Chapter 9, Exploring and
Visualizing Your Data with Excel. Actions allow the developer to create a more interactive
or elegant solution directly in the cube with data in the cube.

For example, we have used actions to allow users to see details in a SQL Server Reporting
Services (SSRS) report with the filters filled in with data in the cell that is selected.
Others have used this to create links to websites, such as product details. This allows the
multidimensional model to focus on the data required for analytics while still creating an
enhanced experience for users, who can find additional content or information related to
what they are working with.

Building complex relationships and rollups
This strength involves a couple of topics that support specific business scenarios, such as
a chart of accounts or organization chart. Both business scenarios are designed with
parent-child relationship or self-join structures. For example, the relational data for
an organizational structure likely has an employee key and a manager key. The manager
key is actually an employee key from the same table, which is a self-join. This join type is
not supported in tabular models but is easily supported in multidimensional models. In
Chapter 4, Building a Multidimensional Cube in SSAS 2019, we cover how to create these
dimensions and the properties in the model design that specifically support that structure.

In the same section, we cover the basics of custom rollups. Custom rollups are
particularly helpful when working with financial models. We often want to display
expenses as a positive number in the reports but want to subtract it from income in the
rollup. This type of aggregation is possible in multidimensional models using unary
operators. When these operators are implemented, users are able to easily create reporting
and perform analysis in a format they are used to seeing in financial reports. This is one
of the key reasons that multidimensional models should be considered for financial
analytics.

Solving 'what if' scenarios with write back
The ability to write back to Analysis Services has long been considered a strength of the
multidimensional model. While this is not covered in detail in this book, this capability is
important to understand. This feature is typically used to handle 'what if ' scenarios, such
as budgeting and forecasting.

60 Choosing the SQL Server 2019 Analytic Model for Your BI Needs

The write back capability in multidimensional models retains and updates data modified
in the process. Typically, these changes are written to a database and are included in
analytics and reporting. We have seen that write back is also used to support some budget
versus actual scenarios as well. Write back support is one of those features that most
solutions don't require, but when it is required, it is frustrating to deal with workarounds.
(While not built into tabular models, some third-party solutions exist to support write
back capabilities in tabular models.)

Forces good data modeling techniques
We are calling this a strength because of peers in the industry who miss the formal
design process that was required. With tabular models and related technologies, such as
Power BI, self-service is the next great thing. Power BI and even tabular models can use
Power Query and M to collect data from any data source and model that data as they
see fit for their reporting purposes. This often leads to dataset spreadmart. Datasets are
spread all over with inconsistent data modeling, transformation, and calculations. Excel
spreadsheets were the first tool to see this issue in the business, but now we see it with
Power BI, Tableau, and similar self-service tools.

Multidimensional models just don't work that way. You must have a solid star schema
built on dimensional modeling techniques to create the cube. In Chapter 3, Preparing Your
Data for Multidimensional Models, we walk through the modeling process and the design
decisions that go into creating a great multidimensional model. While some may consider
this a weakness as it requires more time and technical development, the end result is
highly trusted. Traditionally, multidimensional models designed by the technical teams
were modeled well, properly maintained, and secure and compliant. Tabular models are
the end of the self-service life cycle that leads to the same result in many cases. However,
multidimensional models start with these requirements in mind.

Now that we have reviewed the strengths, let's look at some key challenges with
multidimensional models.

Multidimensional model challenges
In this section, we will review some key challenges of the multidimensional model.

Discovering multidimensional model strengths and challenges 61

Difficult implementation of distinct count
One of the measures that is always requested by business users is distinct count. Distinct
count measures are key to understanding data and are often used in reporting. However,
since its inception, multidimensional models have not handled distinct counts very
well. This is due to the fact that distinct count measures cannot be easily aggregated in
multidimensional models, making the measure perform very poorly in queries.

That issue is resolved by creating a separate measure group, as we call out in Chapter 4,
Building a Multidimensional Cube in SSAS 2019. The problem with this solution is that
developers and the business have to make trade-offs or decisions around which distinct
count measures they want to include in order to keep the cube reasonable for size and
operations.

MDX can be difficult
MDX is not SQL. Sure, it has SELECT, FROM, and WHERE, but that is where the
similarities end. Because the data is stored and queried multidimensionally, the traditional
understanding of how tables and relationships work doesn't apply. This distinction causes
most great SQL developers to struggle with MDX. When the code gets more complex, this
becomes worse.

In Chapter 5, Adding Measures and Calculations with MDX, we introduce MDX to you
and get you through the basics. However, large books have been written to support
MDX developers throughout the years. The complexity and the limited use cases
for the language have made it a primary reason for many to shy away from using
multidimensional models.

Small changes require full reload
Of all the multidimensional model challenges, this is by far the most significant.
Small changes can effectively break the cube, which will force the cube to be rebuilt
or fully reprocessed. While full processing can be a best practice for smaller cubes
and multidimensional models, as noted in Chapter 12, Common Administration and
Maintenance Tasks, larger cubes can take hours or even days to fully rebuild and reload.
This lack of flexibility has been an issue for developers and administrators of cubes
for years.

The problem is that the actual storage of data, design of aggregations, and index designs
are all impacted with a change as simple as adding an attribute to a dimension. There
are many options to help reduce or manage processing time, but design changes to the
model will cause a greater impact. These changes must always be weighed against the time
required to publish the change and reload the data.

62 Choosing the SQL Server 2019 Analytic Model for Your BI Needs

Now that we have reviewed some key strengths and challenges of multidimensional
models, let's look at the strengths and challenges of tabular models.

Discovering tabular model strengths and
challenges
Tabular models are the not-so-new version of analytic models in SSAS. They have been
around for nearly 10 years now and are a key product in Microsoft's future of business
intelligence tools. As discussed in Chapter 1, Analysis Services in SQL Server 2019, they are
built on VertiPaq technology, which leverages memory and column compression to create
a great analytics platform. Like multidimensional modes, tabular models have strengths
and challenges that we want you to know about.

One key consideration of our list here is that we only cover compatibility level 1500.
Tabular models have been through a lot of change since 2012, including with this release
(see the new features in Chapter 1, Analysis Services in SQL Server 2019). Some of the
features in the current release eliminate some key challenges that have existed in tabular
models since they were released. One such weakness is no support for many-to-many
relationships. Depending on your compatibility level, you may not see support for other
features, such as ragged hierarchies, translations, and calculated tables (which support
role-playing functionality).

If you are working with an older version of tabular models or have your compatibility
level set lower than 1500, some or all of these features may not be available to you. Refer
to the What's New in SQL Server Analysis Services page located here for details on what is
available to you: https://docs.microsoft.com/en-us/analysis-services/
what-s-new-in-sql-server-analysis-services?view=asallproducts-
allversions.

While this is not an exhaustive coverage of the strengths and challenges of tabular models,
this list should help you make decisions about which model is the best option for your
implementation.

Strengths of tabular models
Tabular models are newer, and bring a new set of strengths for us to consider.

https://docs.microsoft.com/en-us/analysis-services/what-s-new-in-sql-server-analysis-services?view=asallproducts-allversions
https://docs.microsoft.com/en-us/analysis-services/what-s-new-in-sql-server-analysis-services?view=asallproducts-allversions
https://docs.microsoft.com/en-us/analysis-services/what-s-new-in-sql-server-analysis-services?view=asallproducts-allversions

Discovering tabular model strengths and challenges 63

Everything is a table
This is an interesting strength. In multidimensional design, we work with measure groups
and dimensions. However, that concept does not exist in the same way. Whether it is a
dimension or a fact table, it is merely a table in tabular models. This gives the designer
flexibility to create different types of models to support business needs. The other area
where this is a key differentiator is in managing changes in the model.

In a multidimensional model, as we noted previously, a small change can cause the entire
model to be rebuilt and reloaded (fully processed). However, when a similar change is
made to a table in a tabular model, only that table is impacted. For example, if you add a
field to a table, you will need to refresh that table, but the entire model does not need to be
processed.

Another concept that extends this strength is that the fields in a table are also treated the
same. This means that you can create a measure on a field such as Amount and slice on it
as well. This capability is not at all available in multidimensional models.

DAX is typically easier for users
Data Analytic Expressions, or DAX, is often viewed as simpler for all users and
developers to learn. The reason behind this is that DAX is designed to work like functions
in Excel. The goal of DAX was to make it easier for Excel users and developers to
transition to a new function language.

That simplicity comes at a cost. While DAX lends itself to many of the same capabilities
of MDX and Excel functions, it is still an expression language that is not designed for
complex scenarios or simple querying. It is true that Excel users will find the transition
easier than a transition to SQL or MDX, but the opposite is true for SQL or MDX
developers. Microsoft has made significant improvements to DAX with every release.
DAX is getting more support for set-based operations, which is where it is significantly
weaker than SQL or MDX.

Developers who have been working with Power BI or tabular models for a few years
have been able to make significant progress with DAX. For example, in Power BI, quick
measures include community-created measures to support some optimized DAX
calculations. You can use these quick measures to learn some of the more complex DAX
calculations. We have a good DAX primer in Chapter 8, Adding Measures and Calculations
with DAX. This is a good way to get started with DAX.

64 Choosing the SQL Server 2019 Analytic Model for Your BI Needs

Mashing up data with Power Query

Because tabular models are built on the back of self-service capabilities, they include
Power Query to support pulling data from various data sources. Power Query is intended
to be a lightweight data mashup tool for retrieving and shaping data prior to loading it into
a model.

In some situations, this can expedite the creation of tabular models and get them delivered
to the business for consumption more rapidly. Power Query allows developers to work
with a variety of data sources beyond relational databases. This capability lets them mash
the data together, which can eliminate the need for a relational data warehouse. We will
be creating a tabular model using Power Query in Chapter 7, Building a Tabular Model in
SSAS 2019.

This should not be considered as a replacement for a standard extraction,
transformation, and load (ETL) process using tools such as SQL Server Integration
Services (SSIS). Power Query, while simple and flexible, struggles to perform in large
enterprise solutions. We expect it to continue to improve as Microsoft continues to invest
but be wary of using this as your sole ETL solution. You should also not use this to replace
the traditional data warehouse. There are still many benefits to having the transformed or
shaped data stored in a warehouse, including access to reporting tools or analysis by open
source analytic tools, such as Azure Machine Learning.

Extending tables with calculated columns
One unique feature in tabular models is the ability to create a calculated column. This
feature allows you to calculate a column based on the context of the row. This has a couple
of key uses. One is that we can calculate values based on what is in the row. For example,
if we wanted to include an amount field that is calculated to increase the amount by 10
percent (10%), we can add a column that uses a DAX expression such as 10% Increase
in Sales:='Sales'[Sales Amount] * 1.1. This will create a column that can
be used like a standard column. Measures can be created against or, for instance, can be
used to filter data.

Another great use for this feature is to create calculated key columns that can be used to
establish relationships between data from different sources. For example, if the product
key for red balloons in the inventory data source is Red Balloons – 0909, which
signifies product and lot, we could separate the column for the lot ID so that it could be
related to the manufacturing table of products that uses the lot number for the key.

You can explore more options using calculated columns in Chapter 8, Adding Measures
and Calculations with DAX. We use calculated columns to add a column to count a
specific item that we use in another calculated measure.

Discovering tabular model strengths and challenges 65

Using data source capabilities with DirectQuery
DirectQuery allows you to work with sets of data beyond the size that can be supported
in tabular models due to memory restrictions. DirectQuery also allows you to take
advantage of underlying data source servers to return results. Tabular models can serve
as a semantic layer and send queries back to the supported data sources. Some analytics
can be served better when run on the host servers. We will create a tabular model with
DirectQuery in Chapter 7, Building a Tabular Model in SSAS 2019.

Distinct count is a simple expression
This is a huge deal with tabular models. Distinct count measures are painful to work with
in multidimensional models. However, in tabular models, the DISTINCTCOUNT function
works great on a column in your table. This is likely due to the column-oriented storage
used in the underlying engine. If you need many distinct count measures, tabular models
are the best choice.

Challenges with tabular models
Newer, tabular models have a different set of challenges.

Model size is limited to memory capacity
One of the key design decisions is around the size of the model you are creating. Because
tabular models are stored in memory, you need to understand the potential impact to
the server memory you will experience when your model is fully deployed and in use. A
typical rule of thumb is that you need enough memory to support the size of your model
twice over (size x2) for normal operations. However, if you don't use a separate server for
processing (see Chapter 12, Common Administration and Maintenance Tasks, for details on
scaling out your tabular server), you should plan for three or four times the size of your
data. You do not want to run out of memory on your server.

This is only a weakness in that it realistically caps the size of your model to the amount of
memory on the server. This has limited scale due to cost as memory size increases. There
are a couple of options to work around this weakness:

•	 You can use multiple models to deliver solutions. Reduce the functional area of your
models. This is less convenient for your users but will let you use multiple servers to
support the analytics environment.

•	 The other option is the next strength listed as well – use DirectQuery for large
models. However, you will need to convert your model to DirectQuery.

66 Choosing the SQL Server 2019 Analytic Model for Your BI Needs

Composite models in Power BI
While beyond the scope of this book, Power BI has advanced capability that
uses a combination of refreshed data and DirectQuery data to address large
models called composite models. We bring this up here because while this
functionality is not currently available in Analysis Services, it is likely on the
roadmap for future releases. If this is the functionality you require, be sure
to look at the composite model capability in Power BI as one way to support
larger models.

The only other option beyond the tabular model options in Analysis Services is the option
to use multidimensional models for large analytic solutions. Microsoft will continue to
improve scaling options, but you should always keep in mind that memory is the key
hardware constriction for tabular models.

Subpar design experience in Visual Studio
This is a challenge that is very frustrating for those of us who develop either model type
in Visual Studio. The tooling for multidimensional models is very robust and has not
changed significantly since 2016. However, the tabular model design in Visual Studio
can be an exercise in frustration. This is magnified by the simplicity of creating similar
solutions with Power BI and Power Pivot in Excel. First, you cannot design the tabular
model without a workspace server (we will set that up in Chapter 7, Building a Tabular
Model in SSAS 2019. There is also a discussion there on the best approach for your
development. You cannot design without data available in the model).

Another frustrating issue with Visual Studio is that the tools we use for development have
not been updated or optimized for high-resolution monitors. Because almost all laptops
and most other systems use higher resolutions, dialog windows and other areas of the
development environment will appear tiny or boxes will only show half of the height.
Throughout this book, you will see some zoom-ins, which are done because of this issue.
It seems clear that this issue will not be resolved soon, so you need to plan for this when
designing your Analysis Services models.

Discovering tabular model strengths and challenges 67

Code is contained in a single file
This challenge is focused on the design and development of tabular models. In Visual
Studio, the model is stored in a single file, .bim. Multidimensional projects store the
various objects in different files, such as cubes, dimensions, and so on. This allows
development teams to work on various areas in multidimensional models. Tabular models
are effectively limited to one developer at a time due to merge issues. The following figure
compares the file structures in the Solution Explorer windows of each model project type:

Figure 2.1 – Tabular versus multidimensional project file structures

While this will not impact small development teams, the frustration of limited
development capacity could impact a business intelligence team's ability to deliver in team
settings.

68 Choosing the SQL Server 2019 Analytic Model for Your BI Needs

The following table summarizes the technical strengths and challenges of the two types of
models in SSAS:

Figure 2.2 – Comparing the strengths and challenges of the two models

As you can see, both models have technical strengths that will influence your choice of
model. This is not an exhaustive list, but it will hopefully help you with your decision. In
the next section, we will explore some additional differences in implementation patterns.

Understanding other differences that matter
Besides the strengths and challenges called out previously, in this section, we will see the
differences in how a feature is implemented or how a capability is accomplished with
each of the models. The differences between the model types may or may not impact your
decision on the model you will choose. The importance of these topics is to understand
the differences and the effect those differences may have on your model design.

Understanding other differences that matter 69

Partitioning
Partitioning is the process of separating a table into sections to improve performance or
maintainability. Before we dig into the differences, you can find more about implementing
multidimensional model partitions in Chapter 4, Building a Multidimensional Cube in
SSAS 2019, and implementing tabular model partitions in Chapter 7, Building a Tabular
Model in SSAS 2019.

So, both model types support partitions. In both models, partitioning larger tables
can improve the processing time. Partitioning allows you to process the partitions
independently so that you can reload smaller amounts of data, which reduces load time
accordingly. This means that if you need to reduce the time it takes to bring the latest data
into a model of either type, partitioning will do that for you. Now, what is different?

Where partitioning supports improved processing in both models, it only improves query
performance in multidimensional models. Partitions in multidimensional models are used
by the query engine and underlying indexes and aggregations to limit the amount of data
being returned. This is significant because multidimensional models are stored and pulled
from storage, not memory. The lesson here is: do not use partitions to improve query
performance in tabular models.

The other key difference is that in multidimensional models, partitions are only applied to
measure groups or fact tables. Because all tables in tabular models are tables, every table
can be partitioned in a tabular model, even tables that function as dimensions. This can
be helpful for large dimensions where most of the change is on a specific set of members.
For example, a large product dimension could be partitioned between discontinued and
current items. You could then process the current item partition only, which would reduce
processing time and resource needs.

As you can see, partitions are an important part of the design process. However, you need
to consider why and how you plan to implement partitions in your model.

Role-playing dimensions
Role-playing dimensions have been a part of data warehouse and cube design for years.
For a detailed look at dimensional modeling and role-playing dimensions, check out
Chapter 3, Preparing Your Data for Multidimensional Models. Role-playing dimensions
refer to those dimension tables that may have multiple relationships with a fact table. The
most common example is the date dimension. In a sales fact table, you have multiple dates
that are relevant for analysis, such as order date, invoice date, shipping date, and delivery
date. Depending on the user of the solution, they may want to perform analysis on any
one or more of these dates.

70 Choosing the SQL Server 2019 Analytic Model for Your BI Needs

This functionality is built into the multidimensional model natively. You can add multiple
relationships to the table in the data source view (Chapter 4, Building a Multidimensional
Cube in SSAS 2019), and then create multiple dimensions on the table. This allows the
fact table to be sliced or filtered by either date. One key design consideration is that it
is good to have a master date dimension that is used across multiple fact tables. This
makes analysis easier when comparing different measure groups. For example, you might
consider the master date for sales facts to be the order date, and the master date for the
inventory to be the inventory date. You could have a date table that is used for both. This
allows you to compare the current inventory at the time of the order date easily.

With the inclusion of calculated tables in tabular models, you can now create the
equivalent of a role-playing dimension (we create calculated tables in Chapter 8, Adding
Measures and Calculations with DAX). Prior to this feature being added, you had to add
the table multiple times, which complicated the data model and made designing for role-
playing dimensions more difficult. Calculated tables are just that: calculated. This allows
you to bring one table into the model and create calculated tables for additional roles.
Keep in mind that only the primary date table can be marked as the date table.

OLAP versus relational concepts
We have touched on this difference in a number of topics. The crux of this difference is
that multidimensional modes were designed for Online Analytical Processing (OLAP)
databases. Dimensions and facts are the normal design pattern. When traditional BI
architects move to tabular models, they see that this is no longer true. Tabular models
are built on relational concepts. There are strictly two dimensions – columns and rows.
This simplifies the model and is much easier for people familiar with Excel or relational
databases to comprehend the model.

Multidimensional models and OLAP models are built with the concepts of cells with
intersecting dimensionality. One of the ways we often see this being handled is by
implementing star schemas and dimensional models to be used by tabular models. While
that structure is not required, there are definitely advantages to using that design. It
simplifies the overall model and follows a known design pattern that can be supported by
many BI practitioners.

Hardware requirements
As you have seen in previous topics in this chapter, these models have different hardware
needs. We are using hardware requirements generically. The same problems must be
resolved whether the model is deployed directly on servers (bare iron), on virtual
machines locally (VMware or HyperV), or on virtual machines in the cloud (Microsoft
Azure or Amazon Cloud Services).

Understanding other differences that matter 71

Multidimensional models require more overall performance considerations as the data
is retrieved from disk. Tabular models only use the hard disk to store metadata and data
when the server is shut down. When working with SSAS in multidimensional mode, we
recommend that you use solid-state hard drives. Multidimensional models are stored as
many small files and the storage should be optimized for random reads for the best query
performance.

Both systems require substantial memory for querying and processing. Multidimensional
models use the memory capacity to optimize queries through various caching
mechanisms. For example, there is a section in Chapter 12, Common Administration and
Maintenance Tasks, that covers warming the multidimensional model to support better
initial query performance. However, with tabular models, memory is the most important
consideration. The entire tabular database must be loaded into memory and around three
to four times the size of the database will be required to properly support a tabular model.
Memory or RAM is one of the most consistent needs in Analysis Services models.

After memory, both modes need to have high-speed CPUs with onboard caching
to support query and processing operations. Because both model types use parallel
processing techniques, more cores are preferred. As user count and query concurrency
increase, more memory and CPU will be required to maintain optimal performance.

Once you have reached the peak of performance with the hardware capability, we
recommend scaling out Analysis Services. Scaling up or increasing hardware capacity only
solves some of the issues that you may experience with your deployments. We recommend
that you scale out as opposed to scale up. There are additional considerations for scaling
out your solutions. You can find more details on scaling out in Chapter 12, Common
Administration and Maintenance Tasks.

Finally, you should never put instances of both models on the same machine (bare
iron or virtual). These servers need to be tuned for different use cases. The biggest area
of contention will be memory, but the CPU will also be taxed when run on the same
machine. When working with tabular models, you must consider the memory constraints
for running multiple models on the same instance. As noted previously, you need to
account for the size of the database and an additional three or four times that size for
tabular models. Too many models on the same machine will cause significant memory
contention and cause the servers to no longer respond to requests.

Now that we have the key differences between the solutions, let's look at some business
considerations.

72 Choosing the SQL Server 2019 Analytic Model for Your BI Needs

Choosing the model type for
business-specific reasons
Now that we have reviewed many of the technical differences between the models, let's
look at how specific business needs may influence your decision. This section of the
chapter is a blend of business needs and technical fit. We will wrap this section up with a
combined matrix to help you determine the best fit for your business and technical leads.

Rapid development and change
Businesses change often and quickly. As they change, reporting and analytic needs change
as well. The amount and the frequency of the change directly impact which solution is a
better fit. Tabular models are by far the better option to support frequent changes. They
are simpler to construct and more flexible to supporting change.

The primary factors for this recommendation include the ability to retrieve and shape data
using Power Query. This allows developers to change and include data from more sources
in the model. Multidimensional models require a solid star schema, which involves more
complex ETL solutions as well. This design requirement also slows down the ability to
handle business changes quickly. The more complex multidimensional solution has caused
frustration for business and technical teams alike. One of the ways it has been handled
throughout the years is by trying to include as much as possible in a cube.

Tabular models allow you to work with tables as individual entities. Change to a single
table can be handled in an isolated fashion, which allows the model to flex more rapidly to
accommodate changing business needs.

Cloud readiness
As the importance of cloud and hybrid solutions continue to increase, it is important to
understand where SQL Server 2019 and its Analysis Services models fit. SQL Server 2019
is built with a variety of hooks for hybrids solutions, such as big data clusters or stretch
databases in Azure SQL. So, where does Analysis Services fit into this scenario?

Azure Analysis Services is built on the same technology as Power BI and tabular models.
This means that tabular models are much easier to migrate to Azure when you are ready
for a full cloud solution. Multidimensional models are not natively supported structures in
Azure and require virtual machines.

Choosing the model type for business-specific reasons 73

Cloud support for tabular features
While tabular models are supported in Azure Analysis Services and Power BI
Premium, not all features in SQL Server 2019 Analysis Services are available in
the online servers. We highly recommend that you do not commit to a purely
cloud solution until you have tested the features you are using. In most cases,
you will not have feature issues. The other area to consider is the size of your
model. At the time of writing, Azure Analysis Services models are limited to
400 GB.

While the support for multidimensional models is missing, other technical or
business reasons may make them a better solution. If that is the case, you can support
multidimensional deployments to the cloud using virtual machines. You can also use
virtual machines to support larger tabular models or use features not currently available in
true cloud deployments.

Complex analysis
As noted in various preceding sections, multidimensional models have a significant
amount of maturity. This includes support for complex analytical scenarios. One such
scenario concerns financial analysis including balance sheets, charts of account, and other
financial statements that change signs as the data is rolled up. There is currently no simple,
built-in functionality to support this type of reporting in tabular models. For example,
you can set the rollup using a unary operator as a property within a chart of accounts
dimension. Beyond this, other complex scenarios are more easily solved with MDX and
multidimensional models. When deciding on the model type, it will be important to
understand which model is better equipped to handle your most complex problems.

Client tools
Because tools that work with Analysis Services typically support either model type, this
is usually not an issue. What is important to understand is how those tools interact with
Analysis Services and the potential tuning complications. In many cases, the tools are
sending MDX to both models. Analysis Services has the ability to use this for both model
types, but you should understand the tooling so that you can make an informed decision.
Power BI, for example, supports both model types well with Live Connection capabilities.
Excel is best equipped for MDX, which it has been doing for years.

While any tool is likely to have issues with generating the most efficient queries,
understanding the language the tool uses will help you determine tuning issues along the
way. By knowing which tools you plan to use, you may find that a model is better suited to
meet your needs.

74 Choosing the SQL Server 2019 Analytic Model for Your BI Needs

Summary
As you can see, there are many different aspects to consider when choosing a model.
As you continue through this book, you will see some of the strengths and challenges
in action.

The remainder of the book is focused on hands-on experiences working with both types
of models. Chapters 3–5 focus on building out a multidimensional model. In Chapters 6–8,
you will build and expand on various types of tabular models. The rest of the book will use
the models you create to build reports and exercise advanced features such as security and
scaling. Let's get started with multidimensional models in SSAS 2019. In the next chapter,
we will start by preparing data for use with multidimensional models.

Further reading
Here is some additional reading to help you along with your decision-making process.

In this chapter, we covered technical differences, implementation differences, and
business impacts to consider when making your model choice. For the current
feature comparison list, refer to Microsoft's documentation here: https://docs.
microsoft.com/en-us/analysis-services/comparing-tabular-and-
multidimensional-solutions-ssas?view=asallproducts-allversions.

https://docs.microsoft.com/en-us/analysis-services/comparing-tabular-and-multidimensional-solutions-ssas?view=asallproducts-allversions
https://docs.microsoft.com/en-us/analysis-services/comparing-tabular-and-multidimensional-solutions-ssas?view=asallproducts-allversions
https://docs.microsoft.com/en-us/analysis-services/comparing-tabular-and-multidimensional-solutions-ssas?view=asallproducts-allversions

Section 2:
Building and
Deploying a

Multidimensional
Model

This section will cover creating a multidimensional model with SQL Server Analysis
Services 2019 and will expand on that model with Multidimensional Expressions
measures. Once completed, the model will be deployed to a development server.

This section comprises the following chapters:

•	Chapter 3, Preparing Your Data for Multidimensional Models

•	Chapter 4, Building a Multidimensional Cube in SSAS 2019

•	Chapter 5, Adding Measures and Calculations with MDX

3
Preparing

Your Data for
Multidimensional

Models
Multidimensional models are the original OLAP structures supported in SQL Server
Analysis Services (SSAS). Starting out as OLAP services over 20 years ago, the tooling
is now considered mature by Microsoft and is not planned for any major updates in the
foreseeable future. Throughout the years, Microsoft has made significant improvements
to Analysis Services and its support for multidimensional models. This includes changes
to support dimensional models or star schemas. Today's version of Analysis Services
continues to lean heavily on that data modeling pattern.

This chapter focuses on preparing your data. To properly build a multidimensional
model, your data should be shaped using dimensional modeling techniques. You will
be introduced to dimensional modeling theory, design practices to support those
models, and other techniques to support using cubes with SQL Server. Without this data
preparation, you will struggle to build cubes that are efficient and performant.

78 Preparing Your Data for Multidimensional Models

In this chapter, we're going to cover the following main topics:

•	 A short primer on dimensional modeling

•	 Designing and building dimensions and facts

•	 Loading data into your star schema

•	 Using database views and data source views

•	 Prepping our database for the multidimensional model

•	 Let's get started!

Technical requirements
In this chapter, we will be using the WideWorldImportersDW database from Chapter
1, Analysis Services in SQL Server 2019. You should connect to the database with SQL
Server Management Studio (SSMS). We will be creating views at the end of this
chapter in preparation for building multidimensional models in Chapter 4, Building a
Multidimensional Cube in SSAS 2019.

A short primer on dimensional modeling
The foundational architecture for successfully building multidimensional models in SQL
Server is the dimensional model or star schema. As Microsoft continued to improve
Analysis Services, one of the key elements was embracing dimensional model design as a
key element to building cubes. The marriage between dimensional modeling and Analysis
Services eventually resulted in a book by the Kimball Group, which combined their
concepts with the Analysis Services implementation – The Microsoft Data Warehouse
Toolkit. In this section, we will introduce you to the basics of dimensional model design.

Understanding the origin of dimensional modeling
Ralph Kimball is considered the father of the dimensional model. He founded the Kimball
Group in the 1980s and coauthored all the books in the Toolkit series. The Kimball Group
authored multiple books, conducted thousands of training sessions, and supported the
growth of dimensional modeling until it closed its doors in 2015. You can find out more
about the Kimball Group on their website at https://www.kimballgroup.com.

https://www.kimballgroup.com

A short primer on dimensional modeling 79

Dimensional modeling exists today in response to the need to simplify reporting for end
users and report writers. By the time dimensional modeling was introduced, relational
database theory was mature and relational database management systems (RDBMS)
were optimized to support those normalized data models. The key design principles for
normalization are as follows:

•	 Eliminate duplicate data.

•	 Make sure all the data in the table is related.

Highly normalized structures involve multiple tables with relationships between them.
These databases could be normalized based on normal forms. The most common designs
today for transactional systems are in the third normal form.

Let's look at the first, second, and third normal form rules:

•	 Remove duplicate columns or fields from the table (First normal form rule).

•	 Create separate tables for related columns and assign a unique primary key (First
normal form rule).

•	 Remove common data elements from a table that apply to multiple rows (Second
normal form rule).

•	 Create relationships between these tables using foreign keys (Second normal
form rule).

•	 Remove all columns not directly related to the primary key (Third normal
form rule).

While normalization supports high-performing transactional business needs, it adds a
significant amount of complexity when you're trying to build a report on the information.
In some cases, dozens of tables may be required to build out a meaningful report in
mature, normalized solutions. Furthermore, the database engines built by vendors such as
Oracle and Microsoft were designed to optimize this type of interaction with the data.

The complexity of normalization is the impetus for dimensional models and the
denormalization of data. This is not a simple design choice. In order to effectively improve
the ability and performance of RDBMS solutions so that they return large amounts of
aggregated data, specific design considerations were made to support the systems where
the data was located, as well as the needs of the business.

80 Preparing Your Data for Multidimensional Models

For this new model to be successful, it needed to lean on the capabilities – and account for
the weaknesses – of the platforms it would be deployed on. The star schema design, with
its dimensions and facts, did just that. Indexes and caching capabilities were considered
in the design, as well as the simple use of data. While there are hundreds of nuances and
variations in the design principles, the core result was an elegantly simple design that
could be supported by the systems available when it was created.

Now, we will look at a number of key concepts around dimensional modeling that impact
our multidimensional design. Understanding these concepts is important when it comes
to prepping your data for a successful multidimensional model or cube.

Defining dimensional modeling terms
Dimensional modeling has its own vernacular. Some of the language carries forward into
the cubes themselves. Here are some core terms you should know:

•	 Dimension: Something you can slice a metric by. The key word here is by; for
example, I want to know the sales by country, by month, by salesperson. That
statement would result in three likely dimensions – geography, date, and employee.

•	 Fact: A fact is measurable. It may be able to be summed, averaged, or otherwise
aggregated. It is the target of the dimension. A sales fact table could likely have
revenue, quantity, and taxes as measures or facts.

•	 Star Schema: This is the design of the dimensional model. It looks like a star since
it has fact tables at the center and the arms of the star as the dimensions. The
following is an example of a star schema:

A short primer on dimensional modeling 81

Figure 3.1 – Star schema example from Wide World Importers Data Warehouse

•	 Grain: The grain of a fact table is effectively the lowest level you can drill to in the
data. This is usually defined by combining the dimensions in the table. For example,
if the fact table has a daily grain by salesperson, it would aggregate the sales for the
salesperson to the day. This would likely add another fact to the table with the count
of sales for the day.

•	 Surrogate Key: These keys are used with the dimensions. Because most data
warehouse solutions combine data from multiple source systems, they often have
separate keys for the same dimensional item. For example, a CRM solution may
have a product ID, which is different from the inventory system. In dimensional
models, we strive to have only one product dimension to help related data from
various facts in a single solution. Surrogate keys allow us to create a generic key that
will be used to represent the same item from multiple systems. This is key to making
conformed dimensions, which will be covered in the next section.

82 Preparing Your Data for Multidimensional Models

Many more terms exist in the world of dimensional modeling, and there are books and
other resources that dig into the details. We'll cover a couple more key concepts around
dimensional modeling next.

Key dimensional modeling concepts
Dimensional modeling includes some key concepts that have set it apart from traditional
relational database modeling techniques through the years. Those concepts must be
considered when you're designing your multidimensional model.

Conformed dimensions
Conformed dimensions are one of the key simplifying concepts in the dimensional model
design process. Data warehouse solutions often pull data from various source systems.
These systems usually handle specific business needs. Continuing with the sales example
we used previously, products could exist in the customer relationship management,
inventory, and point of sale systems. This would result in three keys and different
attributes related to a product in each solution. As the star schema is built out, having one
product dimension to support all data will be the key to success within the model. In the
following example, I will walk through these three sources and how we could create the
conformed dimension.

Product source definitions
The following definitions show the three sources and their product attributes, as well as an
example of our Wonderful Widget product:

•	 Customer Relationship Management (CRM) Product:

a) Product ID: WW123

b) Product Name: Wonderful Widget

c) Product Description: Wonderful Widget that everyone loves

d) Product Color: <<empty>>
•	 Inventory Product:

a) Product ID: 4321

b) Product Name: Wonderful Widget

c) Product Source: Joe's Amazing Emporium

d) Product Storage Requirement: ¼ pallet

A short primer on dimensional modeling 83

•	 Point of Sale (POS) Product:

a) Product ID: 8712.12

b) Product Name: Wonderful Widget

c) Product Price: $12.00

d) Product Cost: $8.44

e) Product SKU: WW1223-001-009

Conforming a product
As you can see, we have different IDs and names. Part of conforming a dimension is
understanding what the business wants to see on your reports, as well as making sure that
the product dimension has the right information from the sources. Here is one way we
could choose to make the product dimension conform with the source we chose:

•	 Product SID: 79, Surrogate key, not related to any source

•	 Product SKU: WW1223-001-009, from POS

•	 Product Name: Wonderful Widget, from Inventory

•	 Product Description: Wonderful Widget that everyone loves, from CRM

•	 Product Cost: $8.44, from POS

•	 Product Price: $12.00, from POS

•	 Product Source: Joe's Amazing Emporium, from Inventory

Not all the fields we specified previously were required for our data warehouse. One of the
keys to good design in this case is related to the cost of storage and performance. When
the dimension is loaded, a staging area will likely support the lookups in order to match
the keys and updates. By conforming the dimension, we can collect facts into fact tables
that can share this dimension, thus making report design simpler and standardized.

84 Preparing Your Data for Multidimensional Models

Slowly changing dimensions
As you likely noticed, product cost and price attributes likely change over time and
can affect calculations throughout the life of a data warehouse. The concept of slowly
changing dimensions (SCD) covers this design issue. There are many types of slowly
changing dimensions. The most common implementations that can be supported in a
cube are as follows:

•	 SCD Type 0: In this case, we never change the dimension attribute, even if a change
comes from the source.

•	 SCD Type 1: We replace the dimension attribute with the latest value from the
source. We retain no history of its previous value. In our product example, the name
and SKU are great candidates for this. Typically, we only care about the current
name and SKU for our business.

•	 SCD Type 2: We add a row with the updated attribute and retain its history. This
is the most complicated to effectively implement here (there are more complicated
SCD types, but they are not in the scope of this book). In order to support the SCD
Type 2 attribute, you need to add fields to your dimension table. This typically
includes Date Valid From, Date Valid To, Current, and in some cases Deleted.
This combination of attributes supports using the correct value at the time the data
was valid.

SCD Type 2
In my experience, many businesses want the ability to do this, but also do not
want it to affect their reporting. I have commonly created a current version of
a dimension to support consistent reporting. The SCD Type 2 dimension was
used when historical support was required. It is typically more complicated to
build reports using Type 2 because a user often sees the changes as bad data if
they are not aware of whether the historical support is in place. Use SCD Type
2 only when needed to support a specific business case.

The enterprise data warehouse bus matrix
In the late 1990s, Ralph Kimball introduced the Enterprise Data Warehouse Bus Matrix,
or simply the Bus Matrix. It is a simple and elegant way to describe the relationship
between dimensions and facts within a dimensionally modeled data warehouse. There are
multiple articles on its implementation if you are interested in reading up on them. Here is
an example of a bus matrix that is reflective of our current example solution; that is, Wide
World Importers:

A short primer on dimensional modeling 85

Figure 3.2 – Bus matrix for Wide World Importers

The bus matrix is implemented in Analysis Services. By designing your underlying
database in a dimensional model, you will find it easy to translate that design into your
multidimensional model.

Common issues in relational dimensional models
With all the effort that's put into dimensional models, why do we need tools such as
Analysis Services? Great question!

RDBMS systems were not specifically designed to support OLAP workloads. The star
schema was designed to take advantage of the strengths within an RDBMS, while at the
same time simplifying the model for the business. However, relational systems designs
were still focused on meeting transactional demands, not reporting demands. Small
high-speed transactions are the focus, not large volumes of data, which are aggregated as
required for reporting.

86 Preparing Your Data for Multidimensional Models

SQL Server columnstore indexes
Microsoft released its new columnstore index functionality in SQL Server
2012. This technology has been improved significantly as SQL Server has
matured today. Columnstore indexes use the same technology as SSAS tabular
models to increase the performance of reporting by storing data in a column-
wise pattern. While most normalized systems reduce duplication in tables with
related tables, columnstore indexing reduces how many duplicated values can
be stored in columns, thus improving performance and improving how the
data is compressed. It is ideally suited to support denormalized schemas, such
as the star schema.

While improvements have been made to the RDBMS products through the years,
SSAS was designed from the ground up to support aggregations and reporting.
Multidimensional models support large amounts of data that's highly compressed and
optimized for returning aggregated results.

Another reason that SSAS was introduced was to eliminate the use of SQL in writing
reports. Integration with Excel made SSAS a favorite tool for business analysts all over
the world. They are able to connect to the cube and then use drag and drop features with
pivot tables and pivot charts to do a quick analysis of the data, without writing SQL or
requesting data from the IT team. This simplified data analysis considerably.

Planning dimensions and facts
Now that the basics around dimensional modeling concepts have been covered, the
next step is planning the dimensions and facts for your data warehouse. The following
principles need to be kept in mind:

•	 Know what problem you are trying to solve. You need to know what the business is
trying to understand. Your design should understand the various business areas that
need to be analyzed.

•	 Understand the grain. As we noted previously, it is important to know what the
grain of each of the fact tables will be. Do you need to support multiple grains?
For example, let's say a sale has a total and a date when it occurred. However, if the
sale or invoice consists of multiple items, you may need to track your sales at the
purchase level (one fact table) and your line items in the sale in a different fact table.

Designing and building dimensions and facts 87

•	 Build out your bus matrix. You need to understand your facts and dimensions. This
will continually change throughout your implementation but understanding your
first fact and its dimensionality will help you add facts and know when you need
to add dimensions. We often know a few dimensions we need right away, such as
customers, products, dates, or locations. Plan your core conformed dimensions out
so that you can start the build quickly and expand the capability of your solution
with your business needs.

At this point, I will lay out a word of caution: too much time spent in the design process
will be counterproductive. Businesses are typically very impatient. If you try to solve
everything at the beginning, you will never build anything. Always try to identify how
you can make the wins you need iteratively. You should always be delivering more to the
business so that they can see your progress and support your efforts as you build out
the solution.

Designing and building dimensions and facts
Because our focus is on building a multidimensional model in SSAS, the next few sections
will be relatively short, but focused on what you need in order to build out a good star
schema using SQL Server 2019.

Column names – business-friendly or designer-
friendly?
Without trying to start a war about whether you should have spaces in your column
names, I want to call out that this is merely an option. In SQL Server, you can use truly
business-friendly names in your tables and columns. Most, if not all, DBAs will argue that
this is not a best practice. In order to properly do this, the database object names must
be enclosed in brackets. While the name might appear in a nice format on the resulting
report, the SQL syntax becomes more complex.

The reserved word conundrum
In every RDBMS system, reserved words exist. This commonly includes words
such as NAME, EXTERNAL, GROUP, BULK, and USER. SQL Server has
well over 100 of these words. This means that something such as a product
name needs to have a fully descriptive name, not just NAME. While you can
potentially use reserved words in your table designs, this is not a best practice
and should be avoided.

88 Preparing Your Data for Multidimensional Models

Let's design the product dimension from the work we did previously. We will create the
table using both types of syntax and then show you what the query would look like.

Here is the script for the table with spaces in the names:

CREATE TABLE [Dimension].[Product] (

	 [Product SID] INT NOT NULL

	 ,[Product SKU] NVARCHAR(15) NOT NULL

	 ,[Product Name] NVARCHAR(100) NOT NULL

	 ,[Product Description] NVARCHAR(500) NULL

	 ,[Product Cost] DECIMAL(18,2) NOT NULL

	 ,[Product Price] DECIMAL(18,2) NOT NULL

	 ,[Product Source] NVARCHAR(200) NULL)

Here is the script for the table without spaces in the names:

CREATE TABLE [Dimension].[Product] (

	 [ProductSID] INT NOT NULL

	 ,[ProductSKU] NVARCHAR(15) NOT NULL

	 ,[ProductName] NVARCHAR(100) NOT NULL

	 ,[ProductDescription] NVARCHAR(500) NULL

	 ,[ProductCost] DECIMAL(18,2) NOT NULL

	 ,[ProductPrice] DECIMAL(18,2) NOT NULL

	 ,[ProductSource] NVARCHAR(200) NULL)

While some data professionals like using underscores in their designs, I typically only
use that syntax style to clarify a use or something similar. For example, I use them to
clarify that a field has a special use. The surrogate key for the product dimension could
be ProductKey or Product_Key. However, I would not use underscores to replace
spaces – Product_Short_Name versus ProductShortName. The point of this is
that you should settle on a naming convention for your solution and that it should be
understandable and simple. The focus should be for others, not you. A data warehouse
designed for you may make it easy for you to maintain, but not something the business
wants to use.

Now, let's look at those queries against the tables we created previously. The first query
does not require brackets for the object names:

SELECT ProductSID, ProductSKU, ProductName

FROM Dimension.Product

Designing and building dimensions and facts 89

The second query does due to the spaces in the names:

SELECT [Product SID], [Product SKU], [Product Name]

FROM Dimension.Product

If you are going to have report writers and business users interacting with your data, I
recommend that you don't use spaces. It will be easier to train report writers to handle
SQL correctly than to deal with the multitude of issues that will likely be generated
using brackets.

One other thing about naming conventions that you should take into consideration is
that some developers and database designers using dim and fact as prefixes for the tables.
Others use schemas to accomplish the same result. Once again, this is a preference, not
a rule. Pick the pattern you want to implement and stick with it. Our example database,
WideWorldImportersDW, uses schemas – Dimension and Fact – to clarify the tables.

Dimension tables
Dimension tables should be planned to support the conformed dimension logical design
you have. Continuing with the product theme, the product dimension table should have
the following fields:

•	 Product_SID: Surrogate key, identity column, clustered index

•	 ProductSKU

•	 ProductName

•	 ProductDescription

•	 ProductCost

•	 ProductPrice

•	 ProductSource

•	 Product_ValidFrom

•	 Product_ValidTo

•	 Product_Current

•	 Product_Deleted

90 Preparing Your Data for Multidimensional Models

This design supports SCD Type 2 functionality. Following the design we have in
place, this dimension supports SCD Type 2 for cost, price, and source. The rest of the
attributes support the SCD Type 1 design, which overwrites on update. The primary
key is the surrogate key in our design. Traditionally, SQL Server developers use identity
columns (auto-incrementing integers) for the surrogate key. In SQL Server 2019, the
recommendation is to use sequences to auto-populate the key. To wrap up the design, we
will add a clustered index to the primary key and cover indexes that support our expected
query patterns.

A little bit of information about indexes
Indexes are used to optimize searches and queries in databases. In this section,
we mentioned two common types of indexes used in relational databases that
support data warehouses. The first is the clustered index. A clustered index is
used to order the data in a table. The second is the covering index. A covering
index is used to organize data so that you can specifically support queries
against a table. Overall, indexes are used to improve the performance of queries
in databases.

The rest of the dimensions for any data warehouse you are working on should follow the
same basic principles laid out here.

Fact tables
Fact tables typically have metrics and dimension keys. Be aware that this is a fairly
simple design. In many cases, fact tables will have additional, non-measurable fields. Our
example is a simple design to highlight design patterns. The fact table in our case includes
a key for the table, which is effectively a row number. Foreign key constraints are added to
each of the dimension keys used in the fact table.

With SQL Server 2019, additional techniques can be used to further improve the design
and implementation of the fact table. For example, in our example data warehouse, a
similar table, Fact.Sale, was built with a clustered columnstore index instead of a
standard clustered index, but only on the primary key fields. The primary key for this
table has a unique index applied as well. The rest of the fact tables will use similar
design patterns.

Designing and building dimensions and facts 91

Indexing strategies
While indexing strategies are not a primary concern when working with multidimensional
models, they have to be considered when completing the star schema. The key impact this
has on Analysis Services is data refresh. As data volumes grow, indexes will be required
to optimize processing performance for the cube. When designing the star schema
initially in SQL Server 2019, the following indexes should be applied to support the
expected workload.

Organizing the tables with clustered columnstore indexes will improve the overall
performance of processing. This is primarily because a denormalized database design
such as a star schema lends itself to many duplicated values in the columns of the tables.
This duplication is optimized through compression and memory support and results
in better performing queries on larger tables in particular. A key consideration is that
the compression and related performance for clustered columnstore indexes is realized
on partitions larger than one million rows. If your table has less than one million rows,
performance may not be helped as much.

If clustered columnstore indexes are not a good fit for your table, start by creating a
standard clustered index on the table. Using the key is the best way to keep the load to the
table efficient, but if the data is bulk loaded using a date value or similar pattern, consider
expanding the clustered index so that it includes that value. Clustered indexes represent
the physical storage order of the table. As such, if the key value is constantly loaded out of
order, the table will become fragmented. For dimension tables, using the unique, typically
sequential, key for the clustered index makes the most sense.

Traditionally, non-clustered indexes have been at the heart of performance improvements
in data warehouse solutions. When designing the star schema, non-clustered indexes are
initially used with the foreign keys in fact tables. (Foreign keys are used to match data
between tables.) As query performance is evaluated and common patterns for queries are
identified, covering indexes are added to tables. Covering indexes have multiple columns
in the index. Some columns are ordered, while others are included. This improves read
performance in the data warehouse and helps with loading the cube when the indexes are
set up to support processing Analysis Services databases.

Plenty of indexing techniques and patterns have been used through the years to support
relational databases that have star schemas. Analysis Services uses these optimized
databases to process the data in the model. However, these same databases may also be
used for reporting or other data analytics purposes. When applying indexes to databases,
always consider competing workloads.

92 Preparing Your Data for Multidimensional Models

Foreign key
Because the work is being done on a relational database platform, enforcing relationships
is considered a best practice. Most data warehouses will include this in the design.
However, if you experience performance issues during the loading process, you may
find significant gains when removing the constraints. I would only recommend this if
you need to improve load performance and you can validate that constraint checking is
part of the issue. The constraints should be kept if your load process may have orphan
records due to load inconsistencies.

These are just a few design considerations you should think about when building your
solution so that it supports a multidimensional model. Next, I will walk through some of
the loading options you can consider.

Loading data into your star schema
Now that you have your star schema designed, what's next? You need to build a plan so
that you can load data from the source systems and get them properly in place in your
star schema. In this section, I will give you some pointers to get you going. This is not an
exhaustive or complete loading strategy but should help you understand the basics you
need to plan.

Staging your data
I recommend that you plan to stage your data in a database prior to loading it into your
star schema. The process of lookups and standardization can add significant load on the
system that you are loading from. By having a staging database or a staging schema, you
can load data from various source systems with minimal transformation. Then, using the
resources dedicated to the process, the data can be loaded from staging to the star schema
without there being any negative impacts on the source. How often you stage data can be
managed based on the needs of the source system.

SQL Server data loading methods and tools
SQL Server has a number of methods and tools you can use to load data into a star
schema. I will reference the two most common methods – ETL and ELT – and the most
common tools – SQL Server 2019 Integration Services (SSIS) and SQL – used to load
star schemas.

Loading data into your star schema 93

When working with any type of data warehouse solution, ETL and ELT are the most
commonly referenced patterns. Let's take a look at what each of the letters in ETL and ELT
stand for:

•	 E: Extraction, the process of pulling data from a source system

•	 T: Transformation, the process of manipulating and shaping data for use

•	 L: Load, the process of loading data into a destination system

The order of the letters – ETL and ELT – describe when and where the data will be
transformed or shaped. ETL is the most traditional solution. This typically involves a
specialized tool such as SSIS to be used between the two datasets.

In an ETL solution, to load the star schema from staging, SSIS will connect to the staging
dataset, bring the data into the tool, use steps in the tool to manipulate the data, and then
load the manipulated data into the star schema. The following is an example of an SSIS
package that loads a dimension into the star schema:

Figure 3.3 – Sample data flow task in an SSIS package

94 Preparing Your Data for Multidimensional Models

The key here is that the most significant transformation work is conducted while the data
is in the process of being loaded into the star schema. SSIS and similar tools flow data
through and use memory and temporary storage to make changes required to the data
along the way.

ELT moves the transformation workload to the destination. This technique has come into
fashion more recently as developers seek to use the processing power and capabilities of
the destination system to transform data. In this pattern, data is moved from the source
to the destination first using the data movement tool of choice (for example, SSIS). Once
it has been moved, jobs are initiated that typically use SQL and stored procedures to
transform the data into the star schema. If you have your staging database on the same
instance or if you're using a schema for staging, this is a popular choice. This allows
development teams to focus on fewer coding languages, which helps with ongoing
maintenance and staffing.

There is not a right or perfect design choice. More mature solutions have a combination
of these techniques, with the goal of being the best option for the job at hand. Whichever
path you choose, this section should have given you a basic understanding of the primary
options you can use to move and shape your data into the star schema, which is used to
support multidimensional models.

Using database views and data source views
So far, the focus has been on prepping the star schema in the relational database so
that you can build out the multidimensional model. This section will focus on a design
decision that impacts database design, but also impacts how you work with Analysis
Services itself. As part of building out a multidimensional model, data source views
are created in Analysis Services to serve as the mapping between the relational and
multidimensional models:

Using database views and data source views 95

Figure 3.4 – Data source view in SQL Server 2019 Analysis Services from Visual Studio

We will now look at the pros and cons of data source views.

Data source views – pros and cons
Data source views (DSVs) are an integral part of a multidimensional model project. This
is where the source data is modeled for the multidimensional model. In the preceding
screenshot, the star schema can be clearly seen. The preceding model has been pulled
directly from the underlying SQL Server database with no modifications. The key to the
preceding statement is no modifications. In my opinion, this is the best way to implement
the data source view. However, it is not the only way.

DSVs support the creation of custom tables, fields, and relationships. The end goal is star
schema shaped data that can be easily used by the multidimensional model.

96 Preparing Your Data for Multidimensional Models

Why would you modify the shape of the data here? Some designers make changes here
because it is convenient. Changes are made here for the purpose of cube design and do
not require any other intervention. Convenience is not a good reason to make changes
here. Often, those changes are not well-documented or easy to discover. When the source
changes, care must be taken to ensure the DSV also handles these changes. If not, cubes
will not process, which creates frustration with the end users or consumers of the cube
when it is not available.

The best reason to shape the data in the data source view is when developers cannot
easily change or modify database views, as this helps support the star schema model in
the underlying database. If this is the reason, then I recommend that you make it the
pattern for ongoing work. You will not be able to take advantage of better view design
techniques from the database, but it will allow you to make the changes needed to
support multidimensional model design. Be aware that complex data source views can
significantly impact model processing (loading the data). I recommend only using DSVs
when this is the case. The preferred option is to push the view design to the relational
database, where management and performance are better.

Database views as an interface layer
The preferred practice is to use database views as an interface layer. There are two
principles to take into account – flexibility and protection.

Database views allow you to be flexible in your design. Views can be used to support
calculations, aggregations, and column design. In a view, a calculation can be added that
will reduce the calculation workload in the cube. For example, the following measures
are part of the sales fact: Total Sale, Total Sale with Tax, and Total Sale with Shipping
and Tax. They use Total Sale, Total Tax, and Total Shipping as base metrics. These
can definitely be calculated in the cube using multidimensional expressions (MDX).
However, they will not be pre-aggregated and will degrade performance. If these are
precalculated in the view, they will not need calculations to be created in the cube.

This example already works to support aggregation optimization in the cube. Another
example is that SUM typically performs better than COUNT in a cube. If each row counts
as 1, then adding a column with the value of 1 to the view allows the cube to optimize the
aggregation using a sum rather than counting the rows.

Prepping our database for the multidimensional model 97

Finally, by using a view to cover all tables used in the multidimensional DSV, changes
can be made to optimize the underlying tables while guaranteeing there's an interface
for the relational model that does not change. This protects the cube from unintentional
breakage when you're changing the underlying schema to optimize the database or to
change functionality. For example, if a source system changes the way a date is formatted,
the view can modify the format so that it matches what is expected in the cube, thereby
preventing processing issues. This method also prevents issues caused by core changes in
the underlying database, such as fields being added or removed and object name changes
(tables or columns).

I recommend using views as the interface or abstraction layer as it will protect the cube
from disruption and lead to better user satisfaction. Optimization and aggregation
support are helpful as well, but protection is more important.

Prepping our database for the
multidimensional model
Everything in this chapter is about prepping the underlying data and database in order to
support a multidimensional model. This section presents a hands-on implementation of
the views to support the multidimensional model we are going to create.

Wide World Importers Sales
The focus of this book is on Wide World Importers Sales. In particular, the Fact.Sales
table will be used as the heart of the schema. The following dimensions are part of our
model design:

•	 City: Dimension.City

•	 Customer: Dimension.Customer

•	 Bill To Customer: Dimension.Customer

•	 Invoice Date: Dimension.Date

•	 Delivery Date: Dimension.Date

•	 Item: Dimension.Stock Item

•	 Salesperson: Dimension.Employee

98 Preparing Your Data for Multidimensional Models

A total of six tables will be used in the multidimensional model. These tables already
exist in our data warehouse, so the next step is to create views that will support the
multidimensional model build in the following chapters.

Role playing dimensions
While only five dimension tables support the sales of the star schema, seven
dimensions are in the design. Date and customer tables are used twice each in
this design. Dimension tables used more than once in a schema are referred to
as role playing dimensions. These dimensions use the same data but represent
different business relationships in the data. Date is one of the most common
role-playing dimensions. In the Wide World Importers Sales fact, both an
invoice date and delivery date are used. The underlying shape and content of
the date table for both dimensions are identical, but the business purpose or
role of the relationship is different. This technique allows data warehouse teams
to manage the data while making it available for many purposes.

The data warehouse designers choose a few techniques we have described:

•	 Using business-friendly names for database objects.

•	 Using common naming with spaces included in table names and field names.

•	 Using square brackets [] when referring to objects in the schema. As a best
practice, square brackets will be used in all the code to keep the pattern uniform,
whether they are needed or not.

•	 Using database schemas to differentiate fact tables, dimension tables, and staging
tables. The [Fact], [Dimension], and [Integration] schemas are already
in place and used in the data warehouse. The integration schema supports staging
tables and other ETL support tables.

Here are a few other design techniques to be aware of:

•	 Key is used for primary and foreign key fields.

•	 Foreign key constraints are in place with matching non-clustered indexes.

•	 SCD Type 2 is in place for the City, Customer, Stock Item, and
Employee tables:

a) The [Valid From] and [Valid To] fields specify the range.

b) If [Valid To] is 9999-12-31 23:59:59.9999999, the record is current.

c) No current flag is in place.
•	 [Lineage Key] is used throughout to identify the load information.

Prepping our database for the multidimensional model 99

•	 [Fact Sale] has a dual field primary key – [Sale Key] and [Invoice
Date Key].

•	 The primary key is not clustered.

•	 [Fact Sale] is built with a clustered columnstore index.

•	 Unicode (for example, nvarchar) types are used for text fields.

•	 The date dimension uses the date type for its primary key.

I wanted to call attention to these as these are design details to be aware of. Now that
you have a basic understanding of the data in the data warehouse, the next section will
describe some considerations for creating our views.

Creating the views for the multidimensional model
Now that we know what is in our model, let's plan out what the views will be. The views
that will support our model should be isolated from other views or objects in the database.
This is done using a database schema.

Database schemas for the data warehouse
Schemas serve various purposes in the data warehouse. The Wide World
Importers data warehouse comes with schemas that support design, such
as Fact and Dimensions, as well as schemas that support various functional
areas, such as Sequences, Application, and Integration. I have used schemas
to separate functional areas and apply appropriate security for those areas. I
commonly create at least two schemas when implementing multidimensional
models – Reports and Cube. Reports supports our ability to build reports
directly from the database. It allows report designers to build against views as
opposed to the underlying tables. Cube is used to support multidimensional
models. While these may have significant overlap, they can be matched
functionally to their purpose and create that interface layer. This helps protect
database designers and consumers from change that is often required to
support business and technology changes.

We will add a schema to hold the views for the multidimensional build called Cube. Use
the following code in SSMS to create the schema in WideWorldImporterDW:

USE WideWorldImportersDW;

GO

CREATE SCHEMA [Cube];

GO

100 Preparing Your Data for Multidimensional Models

Next, we need to create the views. We are going to implement two views for the dimension
table with SCD Type 2 implemented that have historical changes in place. One view will
carry the Current label and will only have the current representation of the dimension
value. The other view will contain all the data. Currently, some of the tables have no
change history. In our design, we will only create Current views for dimensions with
change history. If other dimensions start to have historical changes, a current view can be
added to the dimension to support the business needs.

Why have a current view?
While business users want us to track change, typically, they want to create
reports with the most current information. They are often unable to properly
query SCD Type 2 dimensions since they often appear as more than one row.
This can impact calculations as well. I have found it necessary to include both
in the design of the cube as the business needs the capability of both options.

For each of the dimensions, a Current flag will be added for the SCD Type 2
dimensions. This will be used to help identify the current state easily in the
resulting report.

The fact table will get a count column. As we previously noted, this will allow for better
aggregations in the cube.

An Invoice dimension view will then be added. This will be based on the Sales fact
table and allows us to group and count invoices, as well as sales that represent lines on
the invoice. This will also have an Invoice Sales fact table to support the metrics at
the invoice level. This addition will support more capability within the cube while not
impacting the underlying database table design.

The following sections lay out the views that will be created to support the cube and
are organized based on the underlying database table. Do not use SELECT * FROM
TableName in your views. If a column name changes, you can support that properly if
the columns are called out in the view.

City dimension view
The City dimension table has SCD Type 2 support but has no historical changes that are
needed for our analytic models. Only one view will be created for City to support the
multidimensional model:

Prepping our database for the multidimensional model 101

CREATE OR ALTER VIEW [Cube].[City] AS

	 SELECT [City Key] ,[WWI City ID]

 ,[City] ,[State Province]

 ,[Country] ,[Continent]

 ,[Sales Territory],[Region]

 ,[Subregion],[Location]

 ,[Latest Recorded Population]

 FROM [Dimension].[City];

Customer dimension view
The City dimension table has SCD Type 2 support but has no historical changes in place.
One view will be created – Customer:

CREATE OR ALTER VIEW [Cube].[Customer] AS

SELECT [Customer Key] ,[WWI Customer ID]

 ,[Customer] ,[Bill To Customer]

 ,[Category] ,[Buying Group]

 ,[Primary Contact],[Postal Code]

 FROM [Dimension].[Customer];

Date dimension view
The Date dimension table does not have SCD Type 2 support. No additional fields have
been added at this time:

CREATE OR ALTER VIEW [Cube].[Date] AS

SELECT [Date],[Day Number]

 ,[Day] ,[Month]

 ,[Short Month] ,[Calendar Month Number]

 ,[Calendar Month Label] ,[Calendar Year]

 ,[Calendar Year Label] ,[Fiscal Month Number]

 ,[Fiscal Month Label] ,[Fiscal Year]

 ,[Fiscal Year Label] ,[ISO Week Number]

 ,CASE WHEN GETDATE() = [Date] THEN 1 ELSE 0 END AS [Today]

FROM [Dimension].[Date];

102 Preparing Your Data for Multidimensional Models

Salesperson dimension view
The Employee dimension table has SCD Type 2 support and has historical changes in
place. Two views will be created – Salesperson and Salesperson-Current. The
Current flag has also been added to these views. These views will be filtered by the [Is
Salesperson] flag and that column will be removed from the view. The Photo column
will also be removed since, currently, there is no data in that column.

Based on the name pattern, the name will be split into Last Name and First Name to
allow flexibility in the reporting display, including a Last Name, First Name format.
By making these optional in the views, we can handle changes here. An assumption has
to be made at this point. We assume that the first name is followed by a space and that,
in most cases, this will leave the rest of the characters in the last name. The design of the
columns reflects this assumption:

CREATE OR ALTER VIEW [Cube].[Salesperson] AS

SELECT [Employee Key] ,[WWI Employee ID]

 ,[Employee] ,[Preferred Name]

 ,SUBSTRING([Employee],CHARINDEX(' ', [Employee])+1,
LEN([Employee])) AS [Last Name]

 ,SUBSTRING([Employee],1,CHARINDEX(' ', [Employee])) AS [First
Name]

 ,[Valid From] ,[Valid To]

 ,CASE WHEN [Valid To] > '9999-01-01' THEN 1 ELSE 0 END AS
[Current]

 ,[Lineage Key]

FROM [Dimension].[Employee]

WHERE [Is Salesperson] = 1;

The Salesperson-Current view will be shorter as the key and SCD information will
be removed. Here is the script for that view:

CREATE OR ALTER VIEW [Cube].[Salesperson-Current] AS

SELECT [WWI Employee ID]

 ,[Employee] ,[Preferred Name]

 ,SUBSTRING([Employee],CHARINDEX(' ', [Employee])+1,
LEN([Employee])) AS [Last Name]

 ,SUBSTRING([Employee],1,CHARINDEX(' ', [Employee])) AS [First
Name]

FROM [Dimension].[Employee]

WHERE [Is Salesperson] = 1 AND [Valid To] > '9999-01-01';

Prepping our database for the multidimensional model 103

Stock Item dimension views
The Stock Item dimension table has SCD Type 2 support and has historical changes
in place. Two views will be created – Item and Item-Current. The Current flag has
been added to the standard view, not the current view. The Photo field has been removed
in these views because all the values are NULL:

CREATE OR ALTER VIEW [Cube].[Item] AS

SELECT [Stock Item Key]

 ,[WWI Stock Item ID] ,[Stock Item]

 ,[Color] ,[Selling Package]

 ,[Buying Package] ,[Brand]

 ,[Size] ,[Lead Time Days]

 ,[Quantity Per Outer] ,[Is Chiller Stock]

 ,[Barcode] ,[Tax Rate]

 ,[Unit Price] ,[Recommended Retail Price]

 ,[Typical Weight Per Unit] ,[Valid From]

 ,[Valid To]

 ,CASE WHEN [Valid To] > '9999-01-01' THEN 1 ELSE 0 END AS
[Current]

 ,[Lineage Key]

 FROM [Dimension].[Stock Item];

The Item-Current view is shorter as the key column has been removed, along with all
of the SCD support columns:

CREATE OR ALTER VIEW [Cube].[Item-Current] AS

SELECT [WWI Stock Item ID]

 ,[Stock Item] ,[Color]

 ,[Selling Package] ,[Buying Package]

 ,[Brand] ,[Size]

 ,[Lead Time Days] ,[Quantity Per Outer]

 ,[Is Chiller Stock] ,[Barcode]

 ,[Tax Rate] ,[Unit Price]

 ,[Recommended Retail Price]

 ,[Typical Weight Per Unit]

FROM [Dimension].[Stock Item]

WHERE [Valid To] > '9999-01-01';

104 Preparing Your Data for Multidimensional Models

Sales fact views
The Sales fact table will be used in multiple views to support our multidimensional
model. Not only will the fact table be expanded, but an aggregated view for invoices
will be created as well. To round off the support for the new fact table, a new invoice
dimension will be added as well. These tables will be defined in the upcoming sections.

[Cube].[Sales]
The Sales view is a match with the [Fact].[Sales] table grain. Effectively, this view
represents the line items on an invoice. This table will include a Sales Count field,
which will have a value of 1. Additionally, several ID fields will be added to this table to
support Current dimensions that have been created in addition to the Key fields. The
relationships will be built to support Current with the unique source key:

CREATE OR ALTER VIEW [Cube].[Sales] AS

SELECT fs.[Sale Key] ,fs.[City Key]

,dc.[WWI City ID] ,fs.[Customer Key]

,dcu.[WWI Customer ID] ,fs.[Bill To Customer Key]

,dbc.[WWI Customer ID] as [WWI Bill To Customer ID]

,fs.[Stock Item Key] ,dsi.[WWI Stock Item ID]

,fs.[Invoice Date Key] ,fs.[Delivery Date Key]

,fs.[Salesperson Key] ,de.[WWI Employee ID]

,fs.[WWI Invoice ID] ,fs.[Description]

,fs.[Package] ,fs.[Quantity]

,fs.[Unit Price] ,fs.[Tax Rate]

,fs.[Total Excluding Tax] ,fs.[Tax Amount]

,fs.[Profit] ,fs.[Total Including Tax]

,fs.[Total Dry Items] ,fs.[Total Chiller Items]

,1 as [Sales Count] ,fs.[Lineage Key]

FROM [Fact].[Sale] fs

INNER JOIN [Dimension].[City] dc
 ON dc.[City Key] = fs.[City Key]

INNER JOIN [Dimension].[Customer] dcu
 ON dcu.[Customer Key] = fs.[Customer Key]

INNER JOIN [Dimension].[Customer] dbc
 ON dbc.[Customer Key] = fs.[Bill To Customer Key]

Prepping our database for the multidimensional model 105

INNER JOIN [Dimension].[Stock Item] dsi
 ON dsi.[Stock Item Key] = fs.[Stock Item Key]

INNER JOIN [Dimension].[Employee] de
 ON de.[Employee Key] = fs.[Salesperson Key];

 [Cube].[Invoice]
This will serve as a simple Invoice dimension. While not complex, the two-field
dimension will be helpful us perform some calculations across the solution as we build
it out:

CREATE OR ALTER VIEW [Cube].[Invoice] AS

SELECT fs.[WWI Invoice ID] ,fs.[Invoice Date Key]

FROM [Fact].[Sale] fs

GROUP BY fs.[WWI Invoice ID] ,fs.[Invoice Date Key];

[Cube].[Invoice Sales]
Finally, this view will serve as a fact table with aggregated values that can be used at
the Invoice level. A number of fields related to the line items have been removed. A
field for Sales Count has been added here, which is a count of the Sales rows
that make up the Invoice line. Invoice Count was added to support better
aggregation performance:

CREATE OR ALTER VIEW [Cube].[Invoice Sales] AS

SELECT fs.[WWI Invoice ID] ,fs.[City Key]

 ,dc.[WWI City ID] ,fs.[Customer Key]

 ,dcu.[WWI Customer ID] ,fs.[Bill To Customer Key]

 ,dbc.[WWI Customer ID] AS [WWI Bill To Customer ID]

 ,fs.[Invoice Date Key] ,fs.[Salesperson Key]

 ,de.[WWI Employee ID]

 ,SUM(fs.[Total Excluding Tax]) AS [Invoice Total Excluding
Tax]

 ,SUM(fs.[Tax Amount]) AS [Invoice Tax Amount]

 ,SUM(fs.[Profit]) AS [Invoice Profit]

 ,SUM(fs.[Total Including Tax]) AS [Invoice Total Including
Tax]

 ,SUM(fs.[Total Dry Items]) AS [Invoice Total Dry Items]

 ,SUM(fs.[Total Chiller Items]) AS [Invoice Total Chiller
Items]

 ,1 AS [Invoice Count] ,COUNT([Sale Key]) AS [Sales Count]

106 Preparing Your Data for Multidimensional Models

FROM [Fact].[Sale] fs

INNER JOIN [Dimension].[City] dc
 ON dc.[City Key] = fs.[City Key]

INNER JOIN [Dimension].[Customer] dcu
 ON dcu.[Customer Key] = fs.[Customer Key]

INNER JOIN [Dimension].[Customer] dbc
 ON dbc.[Customer Key] = fs.[Bill To Customer Key]

INNER JOIN [Dimension].[Employee] de
 ON de.[Employee Key] = fs.[Salesperson Key]

GROUP BY fs.[WWI Invoice ID] ,fs.[City Key]

 ,dc.[WWI City ID] ,fs.[Customer Key]

 ,dcu.[WWI Customer ID] ,fs.[Bill To Customer Key]

 ,dbc.[WWI Customer ID] ,fs.[Invoice Date Key]

 ,fs.[Salesperson Key] ,de.[WWI Employee ID];

This concludes the views that we need to create to support the multidimensional project
in the next chapter. These views support two star schemas using two fact tables with
conformed dimensions, as described in the bus matrix. The following screenshots
illustrate the two star schemas we've created (these diagrams only include view names,
keys, and relationships so that they can be easily viewed here):

Figure 3.5 – Sales star schema based on views (key fields only)

Summary 107

Here's the next one:

Figure 3.6 – Invoice Sales star schema based on views (key fields only)

This concludes the data preparation we need to do for our multidimensional models.
As you can see, star schemas are needed to move on to the next step, which is creating
the cubes.

Summary
In this chapter, we walked through the various techniques, patterns, and tools that you can
use to prepare your data for the multidimensional model. This chapter was wrapped up
with you learning how to create the views that will be used to create the multidimensional
model in the next chapter. In this chapter, you learned about the basic skills required to
create a quality dimensional design and the principals behind it. This implementation
is not only used for building SSAS models, such as for reporting databases, but is also
required for multidimensional models. This results in an updated star schema that will be
used in the next chapter to create those models.

In the next chapter, the focus will be on creating the multidimensional model using
Visual Studio 2019 and deploying the model to SQL Server 2019 Analysis Services.
Remember that we'll be building upon what we've learned here to create a great cube
in Analysis Services.

4
Building a

Multidimensional
Cube in SSAS 2019

In this chapter, we will create and deploy a multidimensional cube in SQL Server 2019. We
will use the existing data in the WideWorldImportersDW database that we uploaded
in Chapter 1, Analysis Services in SQL Server 2019. This data has already been organized
using dimensional modeling techniques. As you work through this chapter, you will learn
how to create the Analysis Services project and build out a functional cube. Once it has
been built out, we will deploy it and review more advanced techniques that will automate
cube processing.

In this chapter, we're going to cover the following main topics:

•	 Creating an Analysis Services project in Visual Studio

•	 Adding dimensions and hierarchies to the project

•	 Adding cubes and measure groups to the project

•	 Let's get started!

110 Building a Multidimensional Cube in SSAS 2019

Technical requirements
In this chapter, we will be using the WideWorldImportersDW database from Chapter
1, Analysis Services in SQL Server 2019. You should connect to the database with SQL
Server Management Studio (SSMS). You will be using the schema and views you created
in Chapter 3, Preparing Your Data for Multidimensional Models. If you are starting with
this chapter, you will need to apply the view from Chapter 3, Preparing Your Data for
Multidimensional Models, to the WideWorldImportersDW database before we start.

This chapter will also require the use of Visual Studio 2019 Community Edition to create
the Analysis Services project.

Creating the Analysis Services project in Visual
Studio
Analysis Services databases are created in Visual Studio. In this section, we will create the
project and connect to the database views we created previously. This will create a data
model in Analysis Services that will serve as the basis for the rest of the work we'll do in
this chapter. Let's get started:

1.	 Start by opening Visual Studio:

Figure 4.1 – Creating a new project in Visual Studio

Creating the Analysis Services project in Visual Studio 111

2.	 Choose Analysis Services Multidimensional and Data Mining Project and
click Next:

Figure 4.2 – Creating an SSAS multidimensional project

3.	 You now are ready to Configure your new project. You will be asked to fill in the
following properties associated with your project:

a) Project Name: WideWorldImportersMD

b) Location: This will be the location where you want to store the project

c) Solution Name: WideWorldImportersSSAS

Naming your Visual Studio project and solution
There are a couple of comments to be made on the names. We can put this
project and the tabular project we'll create later into the same solution. This will
simplify the process as we can add a project in later sections.

4.	 Click Create when you are done.

112 Building a Multidimensional Cube in SSAS 2019

Congratulations! With that, you have created the project. If you are new to Visual Studio,
now is a good time to review the integrated development environment (IDE). When you
have a new project, the two key features you need to know about are the design surface
and the Solution Explorer. In the following screenshot, we have highlighted the design
surface (1) and the solution explorer (2):

Figure 4.3 – Blank canvas for a new project in Visual Studio 2019

As we continue the process of getting the project ready so that we can build out our first
cube, we will be working with the solution explorer, which will add tabs or pages to the
design surface.

The next few sections will cover the base items that will support the entire project. First,
we will create the connection to the WideWorldImportersDW database that we created.
Then, we will create the data model, which will be the basis for cube development.

Adding the SQL Server database connection to the
project
SQL Server Analysis Services (SSAS) supports connecting to many different data
systems. For our hands-on example, we will be connecting to SQL Server 2019 and the
WideWorldImportersDW database.

Creating the Analysis Services project in Visual Studio 113

Database connections are created in the Data Sources section of Solution Explorer. Let's
get started:

1.	 Right-click on the Data Sources folder in Solution Explorer. This will open
a menu where you can choose to create a New Data Source…, as shown in the
following screenshot:

Figure 4.4 – Creating a new data source from the Solution Explorer

2.	 Click New Data Sources… to open the Data Source Wizard screen.

3.	 Click Next on the screen that appears.

4.	 On the next screen, select How to define the connection and change the selection
to Create a data source based on an existing or new connection. Then, click the
newly exposed New button. This opens the Connection Manager screen.

5.	 Set the following Connection properties on the Connection Manager screen:

a) Provider: Choose Native OLEDB\SQL Server Native Client 11.0.

b) Server Name: Enter your server name here.

c) Authentication: I am using Windows authentication. However, you may need
to use SQL authentication and the username and password if you have issues with
Windows authentication. You can use the username and password you created
when installing SQL Server in Chapter 1, Analysis Services in SQL Server 2019. This
is not an uncommon experience when performing local development with SSAS.

d) Connect to a Database: You can either select the WideWorldImportersDW
database from the list or type it in. Either option works.

6.	 We recommend that you click the Test Connection button to verify that the
authentication works and that the connection is good. Click OK after testing
the connection.

7.	 Now, you should be back in the connection wizard with your newly created
connection in the Data Connections list already selected. If it is not selected, select
it now.

114 Building a Multidimensional Cube in SSAS 2019

What if you have more connections in your list?
It is possible to have more connections show up in your Data Connections
list. This usually occurs if you have other Visual Studio projects that have
used similar connection processes. Be sure to connect the connection to the
WideWorldImportersDW database before proceeding.

8.	 Once you have selected the correct connection, click Next.

9.	 You should now be on the Impersonation Information dialog of the Data
Source Wizard screen. This allows you to select the authentication options you
will use when loading data into the SSAS database once it has been built. For our
purposes, select Use the credentials of the current user. This is useful for the
local development and deployment we will be using. However, other options are
better choices for production deployments. The option you choose for a production
deployment will depend on the security and authentication methods that have been
implemented within your organization.

10.	 Give the data source a name (the default is fine) and click Finish.

Congratulations! With that, you have created the data source. This is now in the Data
Sources folder. Now, we are ready to create our data source view.

Adding the DSVs to the project
Data source views (DSVs) serve as the translation layer between the source of your data
and the SSAS model. In Chapter 3, Preparing Your Data for Multidimensional Models, we
created views in the database to serve in a similar capacity. Why both?

DSVs in SSAS serve as an abstraction layer from the underlying data source. This means
that data not in a DSV cannot be accessed by the multidimensional model. If you want to
use the data for design, it has to exist in the DSV.

Database schemas and security
In the previous chapter, we created a schema and added the views that will
support our model build. It is a good practice to use a specific user or system
account in production deployments. When combined, these two activities limit
access to the schema and data for the model. If you implement this during
design, you can create an Active Directory group and give it permissions to the
schema. This will limit access to data for developers as well.

Creating the Analysis Services project in Visual Studio 115

DSVs become more important when the multidimensional model designer has no
access or influence on the underlying database. As an example, multidimensional
models are often created to make data in data warehouses more accessible. This includes
non-Microsoft database systems such as Oracle.

In situations where the data warehouse team and the business intelligence team are not
the same, multidimensional model development can be significantly hindered if database
views cannot be easily created. In a case such as this, a DSV can help with the process.
It allows you to add the table and then make changes to support the multidimensional
model design.

As we work through this section, we will be creating our core DSV based on the Cube
schema we created in Chapter 3, Preparing Your Data for Multidimensional Models.
However, we will also add a couple of tables using the DSV directly with the tables.
We will then illustrate some changes that can be made in the DSV, such as using a
relational view.

Creating DSVs from relational views
The following steps will help you create a DSV from the Cube.Customer view in the
Cube schema. Let's get started:

1.	 Right-click the Data Source Views folder in Solution Explorer and select
New Data Source View… to open the respective wizard, as shown in the
following screenshot:

Figure 4.5 – Creating a new data source view

2.	 From the welcome screen, click Next to get started.

116 Building a Multidimensional Cube in SSAS 2019

3.	 In the Select a Data Source dialog, you can select an existing data source or create
a new one. We created the data source in the previous section, so it should be in the
list of Relational data sources. Select the data source you created in the previous
section and click Next.

4.	 The Select Tables and Views dialog lists the available tables and views you can
add to your DSV. In the Available objects list, you can see all the tables and views
you have access to from the data source. If you have implemented security for your
developers, which limits the schemas or objects they can see, this will be similarly
filtered. Also, you are unable to select any other types of database objects. The list
is limited to tables and views. The schema name is in parenthesis after the table or
view name.

5.	 You should also see a Filter field, which is located under the Available objects
list. This feature is particularly helpful when working with large lists of tables and
views. It filters for the word or words listed there. Try it out using cube to see the list
become limited to those items in the Cube schema.

6.	 You can move the entire list of remaining objects to the Included objects list by
clicking the >> button between the lists. You can also move objects one at a time
using the > button or remove them from the Included objects list using either <<
for all selected or < for one at a time. If you are following along, your wizard dialog
should look as follows:

Figure 4.6 – Select Tables and Views window

Creating the Analysis Services project in Visual Studio 117

Adding related tables to the Data Source View Wizard
The option to Add Related Tables is the button below the Included objects
list. This button will add all the tables related to the table you add. For example,
if we selected the Sales (Fact) table and then clicked the Add Related Tables
button, it would add the Employee (Dimension), Customer (Dimension),
Date (Dimension), Stock Item (Dimension), and City (Dimension)
tables to the Included objects list. This does not work when using relational
views. While it can be inconvenient to use relational views, using views is still
a better practice in most cases. We do not recommend trading development
convenience for maintainability.

7.	 Once you have moved all the Cube schema objects to the list of Included objects,
click Next.

8.	 Give your DSV a name. The default name uses the same name as the data source.
This is fine for our use, but feel free to change it to something that means more to
you. Once you've done this, click Finish to close the wizard.

Double-click the DSV you just created to open the Design view for the DSV. As shown
in the following screenshot, we do not have any relationships between our tables. This is
what we will look at next:

Figure 4.7 – DSV Design view before relationships

118 Building a Multidimensional Cube in SSAS 2019

We will be adding diagrams for each fact table we included. The diagrams help us keep the
views organized around themes. We will also add relationships to finalize our DSVs for
the next steps.

Before we start the next section, let's do a quick refresher on our data model. We have
created eight dimensions, two of which are current. We have also created two fact tables.
The Sales fact view matches the Fact.Sale table in the data warehouse and the data
is at the line item level. The Invoice Sales fact view aggregates the date in Fact.
Sale to the invoice number level. Therefore, we will create two diagrams that have some
dimension table overlap – Sales Diagram and Invoice Sales Diagram.

Creating the Sales diagram and its relationships

1.	 Create a new diagram by right-clicking on Diagram Organizer in the top-left
corner of the DSV Design window. Click New Diagram, name it Sales
Diagram, and hit Enter.

2.	 You will now have a blank diagram window. We will now drag the tables we want to
include in this diagram. Let's start by dragging the Sales table onto the diagram
design surface.

3.	 Next, we'll add the dimensions we want to include; that is, City, Customer,
Date, Item, Item-Current, Salesperson, and Salesperson-Current.
When you drag them in, place them around the Sales table, as shown in the
following screenshot:

Creating the Analysis Services project in Visual Studio 119

Figure 4.8 – Sales diagram with dimension tables

4.	 You can create relationships in the diagram in two ways:

a) The first way is to drag the column from the Sales table and drop it on the
matching column in the dimension table. For example, you can drag City Key
from Sales to City Key on City.

b) The other option is to right-click the Sales table and choose New Relationship.

Both of these techniques will open the Specify Relationship dialog. If you drag
and drop the column, the columns will be filled in. In that dialog, you can update
the source and destination tables that will be used in the relationship. The Source
(foreign key) table is the fact table. In our case, select Sales from the drop-down
list. The Destination (primary key) table is the dimension table. In this case, select
City from the drop-down list.

120 Building a Multidimensional Cube in SSAS 2019

5.	 For both Source Columns and Destination Columns, choose City Key. This will
build the relationship between the two tables. If you have the source and destination
tables in the wrong order, an error will occur. You can use the Reverse button to
switch the tables so that they're in the correct relationship direction. Once you've
done this, click OK. You should see the following output when this step is complete:

Figure 4.9 – Relationship created between Sales and City

To complete this diagram, repeat the previous process and create the remaining
relationships. Use the following list to create the remaining relationships. The first two lists
are followed by the action to be taken after they are created. The list is organized as follows:
Source table, key field > Destination table, key field. Here is the first list:

•	 Sales, Customer Key > Customer, Customer Key

•	 Sales, Stock Item Key > Item, Stock Item Key

•	 Sales, WWI Stock Item ID > Item-Current, WWI Stock Item ID

Creating the Analysis Services project in Visual Studio 121

When creating this relationship, you may be prompted to create a Logical Primary Key in
the Item-Current table. Agree to this change by clicking Yes in the dialog that opens
as follows:

Figure 4.10 – Prompt to create a logical primary key in your DSV

Here is the second list:

•	 Sales, Salesperson Key > Salesperson, Employee Key

•	 Sales, WWI Employee ID > Salesperson-Current, WWI Employee ID

When creating this relationship, you will be prompted to create a Logical Primary Key
in the Salesperson-Current table. Agree to this change by clicking Yes in the dialog
that opens.

Here is the third list:

•	 Sales, Invoice Date Key > Date, Date

•	 Sales, Delivery Date Key > Date, Date

Role-playing dimensions
A role-playing dimension is a dimension that has multiple relationships with
the fact table. From a data warehouse implementation, it is more space-efficient
to create separate relationships from the same table. In our design, the date
is used for Invoice Date and Delivery Date, which have distinct
relationships but use the same dimensional data. This type of relationship
happens often in a data warehouse.

122 Building a Multidimensional Cube in SSAS 2019

Now that the relationships have been created, your Sales diagram is complete. It should
look as follows:

Figure 4.11 – Completed Sales diagram in the DSV

Next, we'll create a diagram for Invoice Sales and its relationships.

Creating the Invoice Sales diagram and its relationships
Next, we need to create the Invoice Sales diagram. This process is similar to the
one we followed for the Sales diagram. Here is the list of relationships you will need to
complete. The following list contains Source table, key field > Destination table, key field:

•	 Invoice Sales, Customer Key > Customer, Customer Key

•	 Invoice Sales, City Key > City, City Key

•	 Invoice Sales, Salesperson Key > Salesperson, Employee Key

•	 Invoice Sales, WWI Employee ID > Salesperson-Current, WWI
Employee ID

Creating the Analysis Services project in Visual Studio 123

•	 Invoice Sales, Invoice Date Key > Date, Date

•	 Invoice Sales, WWI Invoice ID > Invoice, WWI Invoice ID

The resulting Invoice Sales diagram should look as follows:

Figure 4.12 – Completed Invoice Sales diagram

We will now review the DSVs.

Custom DSVs
Before we move on to building out the dimensions and measure groups, we need to review
some additional capabilities available in our DSVs. We are going to update an existing
table and add some additional fields to it. To do this, we will replace the table with a New
Named Query. Let's get started:

1.	 Open the Data Source View Design window.

124 Building a Multidimensional Cube in SSAS 2019

2.	 Right-click on the Invoice table name in the Tables panel. Here, you'll see the
Replace Table option. Expand that menu and choose the With New Named Query
… option, as shown in the following screenshot:

Figure 4.13 – Creating a new named query to replace an existing table

3.	 This will open the Create Named Query dialog. We will be changing the SQL
section at the bottom. This is highlighted in the following screenshot:

Figure 4.14 – Create Named Query dialog with the SQL section highlighted

Adding dimensions, attributes, and hierarchies 125

4.	 Replace the query in the dialog with the following code:

SELECT [WWI Invoice ID]

, [Invoice Date Key] as [Invoice Date]

, CAST(DATEPART(year, [Invoice Date Key]) AS VARCHAR) +
'-'

 + CAST(DATEPART(month, [Invoice Date Key]) AS
VARCHAR) AS [Invoice Month]

, DATEPART(year, [Invoice Date Key]) AS [Invoice Year]

FROM Cube.Invoice

5.	 Click the green Run button in the Query definition section to update the query.
This should return the rows and update the dialog. When you can run this without
errors, click OK to close the dialog.

6.	 You will now see the additional fields in the DSV model. Because we did not change
the key column and we replaced the existing Invoice table, the relationships
stayed intact.

Now that we have created the Data Source View, we can start adding dimensions.

Adding dimensions, attributes, and
hierarchies
In SSAS, dimensions are comprised of a group of attributes and hierarchies that define
the dimension. Before we get into how, we need to discuss three key topics; that is,
dimensions, attributes, and hierarchies:

•	 Dimensions are the slicers we use in our cubes to filter and segment our data
for analysis. We defined our dimensions in Chapter 3, Preparing Your Data for
Multidimensional Models.

•	 Attributes are the various related items in our dimension. For example, if we use
the City dimension, the attributes include City Name, City Key, Country,
State or Province, and Last Recorded Population. These are the
fields we added to our DSV.

•	 Hierarchies help us organize our attributes. A hierarchy gives us a clear drill path
into our data. In our City dimension, we will create a Geography hierarchy that
consists of Country, State or Province, and City in that order. The goal of
hierarchies is to be able move through our data in a well-understood fashion.

126 Building a Multidimensional Cube in SSAS 2019

Now is a good time to remind you that multidimensional databases have been around
for many years. As a result, they have been modified significantly and have a wealth of
capabilities that are outside the scope of this book.

In the next few sections, we will create our dimensions through the use of the Dimension
Wizard window. This is the most efficient method to do this. Once the dimensions
have been created, we will create the hierarchies and attribute relationships. This is the
most basic development task required to create dimensions. The remaining sections will
call out specific, more advanced techniques that can be used improve the usability and
performance of the dimensions. Let's get started.

Creating dimensions with the Dimension Wizard
Let's begin with creating dimensions with the dimension wizard with the help of the
following steps:

1.	 The first step is to make sure we have the project open and can see the Solution
Explorer window. Right-click the Dimensions folder in your Analysis Services
project. You will see the option for New Dimension…, as shown in the following
screenshot. Click that to launch the wizard:

Figure 4.15 – Launching the Dimension Wizard from Solution Explorer

2.	 Now that you have the Dimension Wizard window open, you can click Next to
move to the first action screen – Select Creation Method.

3.	 You will see a list of options for creating dimensions. Because we are using a full
data warehouse and we have created our DSV, we will use the default option; that is,
Use an existing table. With that selected, click Next.

Adding dimensions, attributes, and hierarchies 127

Other dimension creation methods
As shown on the Select Creation Method screen of the Dimension Wizard
window, you can create dimensions by generating tables. Two of the options
are designed for situations when you need a Date dimension by generating a
table in the DSV or underlying data source. While convenient, we typically
recommend against this process. The reason for this is that most of the time
the wizard does not generate the attributes you need in your model. Most
data warehouses, such as ours, have a date dimension created to support this
functionality. The third option uses a generic template to create dimension
tables. For example, you can create a customer dimension using the Customer
Template option. However, you will still need data to support this. If you are
looking for design examples for various business needs, this may be a good way
to experiment. Typically, you will follow the pattern we have been using and
create a relational star schema to support multidimensional model design.

4.	 In Specify Source Information, select Data source view, Main table, and Key
columns. For our first run with the wizard, we will select Customer for our main
table. You will see that if keys are defined in the DSV, they will populate the Key
columns section. Confirm that Customer Key is listed in the Key columns
section and then click Next.

5.	 Next, we'll select the attributes we want to include in our dimension. This page lists
all of the attributes or fields from the Customer table in the DSV. You have three
options for each attribute. By selecting Attribute name, you are choosing to include
it in the dimension. The next option is Enable browsing. This option will set the
property that makes the attribute available in client tools. Finally, you can choose an
Attribute type. The next few steps will walk through these in detail.

Choosing your dimension attributes
Every field can be chosen as an attribute. Here are some of the key
considerations when choosing an attribute:

a) Does the business need the attribute? System values are typically not
necessary for development. Examples commonly include lineage IDs and other
fields designed to support the load process.

b) Is the field used at all? Just because the name sounds good does not mean it
is a candidate for an attribute.

c) The primary consideration is that the attribute needs to have value to the
business or is necessary for a calculation. Don't include the attribute just
because it is there.

128 Building a Multidimensional Cube in SSAS 2019

6.	 We will use all the attributes except Valid From, Valid To, Current, and
Lineage Key. This will be a common practice for all our dimensions as we build
them. For the customer dimension, leave Enable browsing selected. We do not
need to change our Attribute type. Your screen should look as follows:

Figure 4.16 – Customer Dimension Wizard with attributes selected

7.	 Click Next to preview the dimension. If everything looks correct, click Finish to
close the wizard and create the Customer dimension.

Congratulations! You have created the first dimension in your multidimensional model.
You should now see the Design tab for your dimension open in Visual Studio. Now, we
need to add our remaining dimensions. For each of the dimensions, you will go through
similar steps to what we followed here. We have listed each dimension here, along with
any changes you should consider while creating them:

•	 City: The wizard does not have Enable browsing selected for Location. Location
is a geography data type that is not supported in SSAS. We recommend that you
do not include that attribute. In the Attribute type section, you will see that there
is a Geography list of types. Go ahead and set Attribute type for City, State
Province (State or Province), Country, and Continent. You should also
set the dimension as a Geography type. This increases support in visualization tools.

Adding dimensions, attributes, and hierarchies 129

•	 Item: No changes from the pattern are required for this dimension.

•	 Current Item: We are changing the name of this dimension, which is based
on Item-Current in the last step to Current Item. This will be more
understandable for our users.

•	 Salesperson: We are using the Salesperson-Current table for this
dimension, not the Salesperson table. There are changes to the Salesperson
dimension that we need to bring into the multidimensional model, which means we
will have only one Salesperson dimension in use.

•	 Invoice: Change the name of WWI Invoice ID to Invoice Number. This
can be done on the Selection Dimension Attributes page of the wizard by double-
clicking the WWI Invoice ID name.

•	 Date: Date needs to have its Attribute types set. When you click the dropdown
list, you will find Date, which expands into date categories and specific types for
those categories, as shown in the following screenshot:

Figure 4.17 – Selecting attribute types for the Date dimension attributes

130 Building a Multidimensional Cube in SSAS 2019

Here is the completed dialog box for your reference. You will also find attribute types for
the standard calendar dates, fiscal dates, and ISO:

Figure 4.18 – Completed attribute types for the Date dimension attributes

You should see all your dimensions in the Dimensions folder in Solution Explorer. You
should also have all the dimension Design tabs open in Visual Studio.

Adding dimensions, attributes, and hierarchies 131

Using the Business Intelligence Wizard to set attribute types
We could have used the Business Intelligence Wizard on both the City and
Date dimensions to set the attributes. The Business Intelligence Wizard is
designed to support tasks such as attribute types. Because we did this while
creating the dimension, it is not necessary. If you want to view the wizard,
right-click the Date dimension and choose Add Business Intelligence. Select
Define Dimension Intelligence to view the mapping you just completed. This
works with the City dimension as well. This is just one other option you can
use to set the attribute types for your dimension.

Combining the key and name attributes
Before we start working on the hierarchies, we need to combine the dimension key with
its name. This is important as we do not need the surrogate key available in the hierarchy
or to users as it is meaningless. This process will result in the name or other meaningful
attributes being visible to the users while the data is optimized using the key in the
background. Let's begin:

1.	 Go to or open the City dimension Design page.

2.	 Click on the City attribute in the Attributes pane.

3.	 In the Properties pane, find the Source section and change KeyColumns from
City.City to City.City Key. When you choose to change this, the Key
Columns dialog will open. In that dialog, remove the City column first, and then
add the City Key attribute. This will result in City.City Key (Integer)
being in the property.

4.	 Change NameColumn to City.City (WChar).

5.	 Find the Usage property in the Basic section and change it from Regular to Key.

6.	 Delete the City Key attribute from the Attributes pane.

132 Building a Multidimensional Cube in SSAS 2019

This will set the City attribute as the key column for the City dimension. We have
highlighted the areas you need to be concerned with in the following screenshot:

Figure 4.19 – Changing the dimension key

This process should be completed for each dimension, before you add the hierarchies.
The following is the list of keys and names for the remaining dimensions that need to be
modified (not all the dimensions need this update):

Adding dimensions, attributes, and hierarchies 133

Figure 4.20 – Dimension and hierarchy definitions

Reminder
Be sure to save your work on a regular basis.

Adding hierarchies to your dimensions
Hierarchies are key to good design in all business intelligence models. However, in
multidimensional models in SSAS, they are even more important. They enhance the user
experience, improve performance, define aggregation levels, and refine storage patterns
for the data.

134 Building a Multidimensional Cube in SSAS 2019

Let's dig into some basics about hierarchies that you should know about. First, we need to
differentiate between natural and unnatural or artificial hierarchies:

•	 A natural hierarchy is a set of attributes in a dimension that are related in a pattern
from the smallest to the largest group. For example, a common natural hierarchy
is date. We know that a year has four quarters, each quarter has 3 months, and
that each month has between 28 and 31 days. The following diagram illustrates the
pattern we look for in natural hierarchies:

Figure 4.21 – Sample date hierarchy

•	 An unnatural or artificial hierarchy is when the attributes are not related in a
natural pattern and can have inconsistent group sizes throughout. These hierarchies
are typically helpful to the business for analysis but are not organized well in the
data. A clothing dimension provides a clear example of this type of hierarchy.

The natural hierarchy might contain Type (outdoor, indoor), Style, and Product or the
item of clothing. However, the business may want to create an artificial hierarchy using
different attributes, such as Color and Size. The business now wants a hierarchy that uses
the following pattern: Season, Style, Color, Size. The following diagram illustrates the
imbalance between natural and artificial hierarchies based on the data:

Figure 4.22 – Unnatural or artificial hierarchy of clothing

Adding dimensions, attributes, and hierarchies 135

This is not ideal as it cannot be optimized for SSAS. While it is possible to create these
in SSAS, it is typically not recommended. This is particularly true now that tools such as
Power BI can handle those requirements easier in their design tools. We will be creating
natural hierarchies in our dimensions in the next section.

Creating and updating attribute hierarchies
Once a dimension has been created, every attribute is created as a two-level hierarchy.
The levels are All and the attribute itself. As we discussed previously, this is to support
aggregations and storage. When measures are added later, each attribute will be
aggregated at the All level and the individual attribute level. In some cases, this is what we
want. However, we typically do not deal with most attributes in isolation, which is why we
create hierarchies.

We will start with the City dimension. Go to the Design tab for the City dimension. If
you have closed your tabs or Visual Studio, reopen the project, expand the Dimensions
folder, and double-click the City dimension to reopen the Design tab. You should be
looking at a screen similar to the one shown here:

Figure 4.23 – Dimension design window with the Attributes and Hierarchies panes highlighted

136 Building a Multidimensional Cube in SSAS 2019

We will be working with the Attributes and Hierarchies panes to create our hierarchies.
Typically, we should know the hierarchy options through data or business analysis. In this
case, we will be creating two hierarchies:

•	 Geography: This hierarchy will have a standard pattern for supporting continents
to cities.

•	 Sales Region: This hierarchy will support the sales territories as defined by Wide
World Importers.

We will create each hierarchy using the following steps:

1.	 We will start with the Geography hierarchy. Drag the Continent attribute onto
the Hierarchies pane. This will create a new hierarchy with Continent as the
first level.

2.	 Rename the hierarchy Geography. You can do this by clicking Hierarchy in the
new hierarchy table or by changing the name in the Properties window, which can
usually be found on the right-hand side of the screen, under Solution Explorer.

3.	 Next, drag the Country and State Province attributes onto the hierarchy you
just created in that order. You should target the <new level> row in the Geography
hierarchy. Don't worry if you drop it in the wrong place; you can move the levels
around by dragging them up or down as needed.

4.	 Finally, add the City attribute as the lowest level. As the key or leaf level, this is
where the relationship will be made with the fact table, as defined in the DSV.

5.	 Now that the Geography hierarchy is complete, we can create the Sales
Region hierarchy by dragging the Region attribute onto an empty area of the
Hierarchies pane.

6.	 As we did previously, rename the hierarchy by clicking into the header and giving it
the name Sales Region.

7.	 The rest of the attributes to add are Subregion, Sales Territory, State
Province, and City in that order.

Staying in the City dimension, you might have seen the warnings in the hierarchies
letting you know that the attribute relationships are not in place. That is the next area of
focus for our dimension build-out.

Adding dimensions, attributes, and hierarchies 137

Adding attribute relationships
Attribute relationships in SSAS support additional query and storage optimizations. SSAS
uses the defined relationships to consolidate processing operations, which makes loading
data into a multidimensional model (processing) and querying data in the model more
efficient. SSAS optimizes storage by using more compression when attribute relationships
are defined.

When we created the hierarchies, SSAS assumed that the relationships could be optimized
based on the relationships in the hierarchies. Let's add the relationships that support the
hierarchies we have created.

When you open the Attribute Relationships tab on the City dimension's Design
window, you will see that all the attributes that have been added to our hierarchies have
been mapped to City. The remaining attributes are considered direct attributes that have
a 1:1 relationship with City:

Figure 4.24 – City dimension attribute relationships before applying hierarchy mappings

138 Building a Multidimensional Cube in SSAS 2019

You can change the mapping in a couple of ways. The easiest and sometimes the most
frustrating option is to drag and drop. You can create the relationship between Country
and State Province by dragging State Province onto Country. The resulting
relationship is State Province > Country. If you do this the other way around, you
will need to fix the relationship. You can also adjust or create the relationship by right-
clicking on the attribute relationship in the pane on the right, under the mapping window.
This will open the following dialog, where you can add or create the relationship you need:

Figure 4.25 – Edit Attribute Relationship dialog

Whichever pattern you choose, you should end up with a set of relationships that match
the hierarchies we created.

Flexible versus Rigid attribute relationships
The default type of relationship for attributes is Flexible, which assumes that
the relationship could change over time. This is the default and most flexible
option, as the name suggests. However, this is less efficient if Rigid is a valid
option. Rigid assumes the relationship will not change over time. A great
example of a Rigid relationship is in the Date dimension. Years have quarters,
quarters have months, and months have days. This will not change. However,
an employee dimension could see people promoted to managers. This would
require the Flexible relationship type to support the movement of attributes
and their relationship over time. Be aware that if you choose Rigid and a
change does occur, the model load may fail as a result.

Adding dimensions, attributes, and hierarchies 139

Here is what the attribute relationships should look like when they are mapped correctly:

Figure 4.26 – City dimension attribute relationship configured correctly

Building out the rest of the hierarchies
You need to have followed the preceding steps for each of the dimensions we have created.
Let's take a look at the hierarchy definitions for each of the remaining dimensions.
Remember to create the hierarchy and then update the attribute relationships for each of
these dimensions. We have included the attribute relationship image for each dimension
as a reference.

Hierarchy and dimension names must be unique in the multidimensional
model
When designing a multidimensional model, it is common to have names
repeated in the design. When working with hierarchies and dimensions, your
hierarchy names need to be unique within the model; otherwise, you will get
a build error. For example, the Current Item and Item dimensions
have the same structure, while the Brand hierarchy we are creating will need
to be named differently to prevent conflicts. We will also use Customer
Hierarchy in the Customer dimension to differentiate the hierarchy
from the dimension.

Here is the attribute relationship for the Current Item and Item dimensions:

•	 Current Item dimension:

Hierarchy Name: Current Item Brand

Hierarchy Levels: Brand > Stock Item

140 Building a Multidimensional Cube in SSAS 2019

•	 Item dimension:

Hierarchy Name: Item Brand

Hierarchy Levels: Brand > Stock Item:

Figure 4.27 – Current item and item dimensions attribute relationships

Here is the attribute relationship for the Customer dimension:

•	 Customer dimension:

Hierarchy Name: Customer Hierarchy

Hierarchy Levels: Category > Buying Group > Bill To Customer > Customer:

Figure 4.28 – Customer attribute relationships

Here is the attribute relationship for the Date dimension:

•	 Date dimension:

Hierarchy Name: Calendar

Hierarchy Levels: Calendar Year (Calendar Year Label attribute renamed
Calendar Year) > Calendar Month (Calendar Month Label attribute renamed
Calendar Month in the hierarchy) > Date

Adding dimensions, attributes, and hierarchies 141

Hierarchy Name: Fiscal

Hierarchy Levels: Fiscal Year (Fiscal Year Label) attribute renamed Fiscal Year
in the hierarchy) > Fiscal Month (Fiscal Month Label attribute renamed Fiscal
Month in the hierarchy) > Date

Hierarchy Name: ISO Week

Hierarchy Levels: ISO Week Number > Date:

Figure 4.29 – Date dimension hierarchies

Once you've created the hierarchies, you should set the relationships up like so:

Figure 4.30 – Date dimension attribute relationships

Here is the attribute relationship for the Invoice dimension:

•	 Invoice dimension:

Hierarchy Name: Invoice Hierarchy

Hierarchy Levels: Invoice Year > Invoice Month > Invoice Date > Invoice Number:

Figure 4.31 – Invoice dimension attribute relationships

142 Building a Multidimensional Cube in SSAS 2019

Here is the attribute relationship for the Salesperson dimension:

•	 Salesperson dimension – no hierarchies or updates to attribute relationships
required

Now that we have all the dimensions built, along with their hierarchies, we can load and
preview the data. The next section describes how you can process your dimensions, which
will load the data into SQL Server 2019 Analysis Services.

Processing the dimensions
Processing in SSAS multidimensional models is the method of loading the data into
the multidimensional database. At the end of this chapter, we will dive into processing
techniques in more detail. The focus of this section is processing our dimensions. We will
walk through processing the City dimension in this section. By doing this, you will be
able to apply these steps once more so that you can process the rest of the dimensions.
Some of the setup here is for the entire project and will be repeated in the processing
section at the end as well.

Prepping your project for processing
The following steps only need to be done if you have not already set up the deployment
properties for your project. For these steps to work, SSAS in multidimensional mode
should be running:

1.	 Right-click on the project name in Solution Explorer and select Properties from
the menu.

2.	 This will open Property Pages for the project. You will see the Configurations
Properties page and three sections called Build, Debugging, and Deployment.

3.	 In the Build section, set Deployment Server Edition to Developer.

4.	 In the Deployment section, set Server Name to the server you have running in
multidimensional mode. In most cases, Localhost, the default option, will not be
correct if you set your environment up with named instances, as recommended in
Chapter 1, Analysis Services in SQL Server 2019.

5.	 Click OK to apply these changes.

Your project should now be ready to deploy to Analysis Services. Let's take a look:

6.	 Right-click on the City dimension and select Process….

Adding dimensions, attributes, and hierarchies 143

7.	 This step only applies if you have made changes to the project since the last time it
was processed. You will see a message that states The server content appears to be
out of date. Would you like to build and deploy the project first?. Select Yes to
continue with the build and deployment.

8.	 Once the project changes have been built and deployed, you will see a Process
Dimension dialog box. We will spend more time on processing options later in this
chapter. For this section, leave the default settings as is and click Run to continue.

9.	 Once this has completed, you can close all the open windows.

10.	 Now, go to the Browser tab in the City dimension's Design tab to explore the
hierarchies you've created. You will also see the other hierarchies, which are single
levels under the All level.

Solving impersonation issues while processing
One of the most common and annoying issues with SSAS in a development,
non-enterprise network environment is due to impersonation. You may recall when we
created the data source at the beginning of this chapter that we used Use the credentials
of the current user for impersonation. This impersonation has served us well for
development and my work for you as well.

In my setup, this did not work when processing because the current user is the SSAS NT
Service account, which is running the service. This is a default service that was user created
when my account was set up. To work around this issue, I added that user account to my
WideWorldImportersDW database in the db_datareader role. If you have issues
with processing, you can use this option. I would not recommend this for production
use. A system account with the appropriate permissions should be used to manage this
scenario. We will discuss this in detail in Chapter 11, Securing Your SSAS Models. If you
want to implement the solution I used quickly, run the following scripts in SQL Server
Management Studio when it's connected to your SQL Server Data Engine instance.

First, you will need get your service account name from our Services console or SQL
Server 2019 Configuration Manager. In my case, the account name is NT Service\
MSOLAP$DOWSQL2019. Here are the scripts you need in order to add this user to your
data warehouse:

USE [master]

GO

CREATE LOGIN [NT SERVICE\MSOLAP$DOWSQL2019] FROM WINDOWS WITH
DEFAULT_DATABASE=[master], DEFAULT_LANGUAGE=[us_english]

GO

144 Building a Multidimensional Cube in SSAS 2019

USE [WideWorldImportersDW]

GO

CREATE USER [SSASMDSys] FOR LOGIN [NT SERVICE\
MSOLAP$DOWSQL2019]

GO

USE [WideWorldImportersDW]

GO

ALTER ROLE [db_datareader] ADD MEMBER [SSASMDSys]

GO

Depending on your environment setup, this option may not work. In some cases, using
a Windows account may work. These issues typically affect development environments
that are not connected to an Active Directory domain. If you are connected to a domain,
service accounts will support a more cohesive solution.

Processing the rest of the project
Now that we have successfully processed the City dimension, you can choose to process
everything we have created so far by right-clicking the project name and selecting
Process All. This will confirm everything is working. If you have any errors, fix them
and process everything again. You can also choose to process them one at a time so that
you can deal with issues on a smaller scale. You must remember that the process queries
the source database and replaces the data with new data. When working with larger
multidimensional models, this can be a time issue. If your development environment is
not very powerful, you could even experience issues with our project.

Whether you process the entire database or one object at a time, a processing log is
displayed at the end. This provides the processing time and row counts for all the
dimension attributes and hierarchies that have been processed. You should take a moment
to explore the log to see the details of the work you have done. You should also browse
the dimensions to see how the data will be presented in end user tools. This is an excellent
way to handle issues early in the design process.

Updating our dimensions
If you have taken the time to browse the data, you may have noticed some issues with
our dimensions. The obvious issue is ordering dates. We would like them ordered by
date, not name or label. We will fix that order in this section, as well as the order for the
Salesperson dimension.

Adding dimensions, attributes, and hierarchies 145

Another issue is with the Customer dimension. Bill To Customer and Customer
have duplicate values in the Customer hierarchy for the head office of both Tailspin Toys
and Wingtip Toys. These are the two customers that are currently available in our data. We
will implement ragged hierarchy principles here to hide duplicate values. Let's get started
with fixing the sort order in our dimensions.

Fixing dimension and hierarchy orders
By default, dimension and hierarchy attributes are sorted by the key in the attribute. You
can sort attributes by other attributes in the dimension. Let's fix one so that you have an
example to work with. We will start with the Date dimension. SSAS knows how to sort
dates properly, so the lowest level, Date, is sorted correctly. However, we need to fix the
Month levels. Both the Fiscal and Calendar hierarchies have issues with the Month level
sorting. The Year and Date levels are fine. Let's get started:

1.	 Open the Date dimension's Design window.

2.	 Click on the Calendar Month Label attribute in the Attributes panel. This is
the attribute that's used in the Calendar Hierarchy Calendar Month level.

3.	 In the Properties panel, we need to add Calendar Month Label to the
NameColumn property.

4.	 Next, we need to add the Calendar Month Number attribute to KeyColumns.
In this dialog, Calendar Month Number needs to be on top of the list. This
effectively makes the key a combination of both.

5.	 In the Properties panel, find the OrderBy property. OrderBy should be set to Key.

6.	 Process the dimension and browse the change. (You may need to click the
Reconnect button at the top of the Browser window to refresh your results.)

7.	 Repeat this process for the Fiscal Month Label attribute.

We can also change our Item and Salesperson dimensions so that they use Name
instead of Key for the sort order. Let's walk through changing the Salesperson
dimension:

1.	 Open the Salesperson dimension's Design window.

2.	 Select the Employee attribute in the Attributes panel.

3.	 In the Properties panel, locate the OrderBy property.

4.	 Change this from Key to Name. Salesperson will now be sorted by Employee
(which is the full name) instead of the WWI Employee ID value that's used
in Key.

146 Building a Multidimensional Cube in SSAS 2019

5.	 Process the dimension and review the results.

6.	 Repeat this process with the Current Item and Item dimensions on the Stock
Item attribute.

You can apply the same pattern if you have other attributes you would like to change the
order of.

Ragged hierarchies
Ragged hierarchies are used when a hierarchy has levels that are skipped or end early. This
happens often in geography dimensions, for example. If you have customers in Europe
and Canada, you may have different levels of hierarchy.

Let's look at a Canadian hierarchy:

•	 Country: Canada

•	 StateOrProvince: Ontario

•	 City: Dinorwic

Now, let's look at a customer hierarchy in Norway:

•	 Country: Norway

•	 StateOrProvince: NONE

•	 City: Oslo

How is this handled in the data? Often, we repeat the city name in StateOrProvince if it is
not in the underlying data or structure. So, Olso would look as follows in the hierarchy:

•	 Country: Norway

•	 StateOrProvince: Oslo

•	 City: Oslo

The issue with this is that no one wants to see this in their report tools. We can remove the
second Oslo in the hierarchy by selecting the StateOrProvince level in the hierarchy and
changing the HideMemberIf property for the level to OnlyChildWithParentName. This
will make the unused level invisible to the report tools.

Let's put this to use with our Customer dimension. We know that head office
for both Wingtip Toys and Tailspin Toys is repeated in the Bill To Customer and
Customer levels of Customer Hierarchy. Here is how we resolve this issue:

Adding dimensions, attributes, and hierarchies 147

1.	 Open the Customer dimension's Design window.

2.	 Select the Customer level in Customer Hierarchy.

3.	 In the Properties pane for that level, change HideMemberIf from Never to
ParentName. This will hide that level when both levels have the same name.

Impact of ragged hierarchies
In the geography example, we introduced an artificial level that will have no
data associated with it. This means that Oslo levels will return the same values
, no matter which level we viewed. However, with our example, data may exist
at the Customer level for either head office. This means we will not see the
specific order of data for the head offices if it exists. We will leave this in place
in our model to demonstrate ragged hierarchies. However, you will need to
evaluate the user experience to ensure you display the data as expected to your
users.

Using Parent-Child relationships
We do not have an example of Parent-Child relationships in our model. However, as
you continue to develop your skills with multidimensional design, you will find that
implementing this type of relationship is fairly easy. Two of the most common examples
are chart of accounts (general ledgers) and employee reporting structures. Often, that data
has an unknown number of levels in it. This results in the underlying table having both a
key and a parent key. The following is a partial screenshot of the properties window for a
dimension with the various properties that support Parent-Child dimensions:

Figure 4.32 – Parent-Child properties

The two key properties to consider are RootMemberIf and MembersWithData.
RootMemberIf helps SSAS determine where the top of the hierarchy is. For example, if
the top level of your corporate hierarchy is the president and the parent key is null, then
you would use ParentIsBlankSelfOrMissing.

148 Building a Multidimensional Cube in SSAS 2019

MembersWithData helps determine if we display data at intermediate levels. In our
previous example, you may have President > Vice President > Director in
your hierarchy. You have the option to show data at intermediate levels, which assumes
you have data at those levels. In some cases, the only data that matters is at the leaf
level. We encourage you to experiment with this property to confirm you have the user
experience you need.

One last callout that is unique to multidimensional models is UnaryOperatorColumn.
When working with a chart of accounts, the aggregation and signs change as you traverse
the hierarchy. For example, expenses are represented as positive numbers until they are at
the same level as revenue. Unary operators specify how to aggregate and sign data in the
model. This information will have to be part of the dimension table and can be specified
here. This is a very powerful implementation and one of the reasons financial analytics are
often easier to implement in multidimensional models.

Cleaning up dimension hierarchy lists
We have done a lot of work with our dimensions already. However, there is one more
cleanup task we need to implement to make the user experience better for our users. This
task involves removing or hiding attributes that are not required in the dimensions.

For example, the Date dimension should only have the hierarchies exposed. As shown
in the Dimension Browser tab, all the attributes that are not used in the hierarchy are
exposed to the users. This is not a great user experience as those attributes are not very
valuable when they're not contained in a hierarchy:

Figure 4.33 – Date dimension hierarchies

Adding cubes and measure groups 149

You can remove these hierarchies from the list by hiding them. Let's take a look at how to
do this:

1.	 From the Dimension Structures tab, select an Attribute you want to hide.

2.	 In the Properties pane, find the AttributeHierarchyVisible property and set it
to False.

Complete this task for every attribute in the Date dimension you want to hide. We will
plan to hide all of them, leaving only the hierarchies we explicitly made visible to users.
Hiding these hierarchies only affects the user experience. We can still use these attributes
when creating hierarchies or custom calculations.

This concludes our work on dimensions. Next, we will be adding measure groups to see
how dimensions slice and dice our data.

Adding cubes and measure groups
In multidimensional models, cubes typically map to fact tables in our data source. They
have relationships to all the relevant dimensions and contain measures that can typically
be aggregated. Before we dig into creating our cubes and measure groups, let's talk
databases and cubes.

In multidimensional models in SSAS, a database generally refers to the overall structure
of the SSAS model. When SSAS was first introduced, only one measure group was
supported, so the entire structure was referred to the common term cube. As the product
matured, the structure became more complex. When we talk about the multidimensional
model, we are usually referring to the database. The model or database is made up of
dimensions, cubes (which contain multiple measure groups), the DSVs, and data sources.
In SSMS, you will see a similar structure to Visual Studio. The project in Visual Studio is
the equivalent of the database in SSMS. That being said, cube can also refer to the entire
database, even though cubes are specific structures in the model and used by users and
developers alike.

Measure groups in SSAS are typically organized around fact tables and share a common
set of dimensions. This pattern follows the dimensional model paradigm and is why it is
important to have star schemas to support multidimensional models.

150 Building a Multidimensional Cube in SSAS 2019

Creating the cube and measure groups
In this section, we will create our cube so that it contains our measures. Follow these steps:

1.	 In Solution Explorer, right-click the Cubes folder and select New Cube… to open
the Cube Wizard window.

2.	 Click Next on the opening screen.

3.	 Select Use existing tables on the Select Creation Method screen, and then
click Next.

4.	 On the Select Measure Group Tables screen, select the Sales and Invoice
Sales tables, and then click Next.

5.	 On the Select Measures screen, click the Sales and Invoice Sales checkboxes
to unselect all the measures.

6.	 Under Sales, select the following measures to include: Quantity, Unit
Price, Tax Rate, Total Excluding Tax, Tax Amount, Profit, Total
Including Tax, Total Dry Items, Total Chiller Items, and Sales
Count.

7.	 Under Invoice Sales, select the following measures to include: Invoice
Total Excluding Tax, Invoice Tax Amount, Invoice Profit,
Invoice Total Including Tax, Invoice Total Dry Items, Invoice
Total Chiller Items, Invoice Count, and Sales Count-Invoice
Sales.

8.	 Once the measures have been selected, click Next.

9.	 On the Select Existing Dimensions screen, select all the dimensions if they have
not been selected already. Click Next.

10.	 On the Select New Dimensions screen, deselect any options here. We do not need
to add any suggested dimensions. Click Next.

11.	 Change the name of the cube to Wide World Importers and click Finish.

You should now see the Wide World Importers Cube's Design window. Congratulations –
your first cube with two measure groups has been created! You should see something like
the following in your Cube Design window:

Adding cubes and measure groups 151

Figure 4.34 – First view of the Cube Design window

The rest of this section will explore the tabs in the Cube Design window. While we may
not change each section here, the goal is to make sure you understand their purpose and
can implement what you need to deliver specific solutions in your business.

Before moving on to the next section, process the project and resolve any errors.

Reviewing the cube's structure and modifying
measures
The specific panes in the Cube Structure tab are Measures, Dimensions, and Data
Source View. You can add or modify measures in the Measures pane. If you click a
measure, you can review the properties for that measure, including its aggregation,
format, and source. In the Dimensions pane, you can add a dimension or go to the
Design window for a dimension from that pane. If you need a new dimension or need to
remove or add a dimension to the cube structure, you can do that here. The other cube
pane is Data Source View. This is the visual diagram of the underlying structure that
supports the cube and its measure groups.

152 Building a Multidimensional Cube in SSAS 2019

Modifying measures
Now, we are going to modify some measures. Cubes present measures based on the
settings here. The primary focus will be on the aggregation functions and their formats.
Let's modify the Quantity, Total Including Tax, and Tax Rate measures in the
Sales measure group. You should update these for each measure in both measure groups
before leaving this pane. These examples should help you understand the basics.

Modifying the Quantity measure
The Quantity measure is the quantity of items ordered. We will review the key attributes
and add a format string in these steps:

1.	 Select Quantity under Sales in the Measures panel.

2.	 In the Properties panel, find AggregationFunction and confirm it is Sum.

3.	 Next, find the FormatString property and set it to #,##0.00;-#,##0.00.
Then, remove.00 from both to set this properly for integers, which is the data
type for Quantity. The resulting format string should be #,##0;-#,##0.

With that, you have just formatted the Quantity measure. If you prefer to use parentheses
for negative numbers, the format string would be #,##0;(#,##0).

Modifying the Total Including Tax measure
The Total Including Tax measure is the total sales amount for the order, including
tax, as the name suggests. We will review the key attributes and add a format string in
these steps:

1.	 Select Total Including Tax under Sales in the Measures panel.

2.	 In the Properties panel, find AggregationFunction and confirm it is Sum.

3.	 Next, find the FormatString property and set it to $#,##0.00;($#,##0.00).

Adding cubes and measure groups 153

Modifying the Tax Rate measure
The Tax Rate measure is the tax rate that's applied to each line. We will review the key
attributes and add a format string in these steps:

1.	 Select Tax Rate under Sales in the Measures panel.

2.	 In the Properties panel, find AggregationFunction and change it to Average of
Children. This will result in the average being used for the dimensions selected.
It will change depending on the filters and slicers used in a query. While true for all
measures, it important to remember that an average aggregation typically cannot be
added to other measures because the math becomes an issue. When using averages
as an aggregation, you will need to confirm it is returning the results you expect.

3.	 Next, find the FormatString property and set it to #,##0.00;-#,##0.00.

You should be able to use these patterns to update the remaining measures in both
measure groups. There are other aggregations that can be used here, including Count,
Min, Max, and even None.

Distinct counts in multidimensional models
Distinct count aggregations should only be used in their own measure groups.
This is recommended to prevent adverse performance on queries that do not
require this measure. If you need to add a distinct count, you should add a new
measure group and select Distinct Count for the aggregation type. Then, you
should select the attribute to perform the distinct count on. This will create a
new measure group in the cube that will manage the distinct count measure.
Refer to Microsoft's and other community documentation for additional
information on managing distinct count aggregations in multidimensional
models.

154 Building a Multidimensional Cube in SSAS 2019

Reviewing dimension usage
This tab highlights the importance of the Bus Matrix we referenced in Chapter 3,
Preparing Your Data for Multidimensional Models. This tab visualizes the actual
implementation of measures with the dimensions. Here is what you should expect to
see on this page if your cube has been organized correctly, as per the steps outlined in
this book:

Figure 4.35 – Dimension Usage tab in the Cube Design window

Now that we have the dimensions set up, we can add more capabilities to our model.

Reviewing calculations and KPIs
The next two tabs are the focus of Chapter 5, Adding Measures and Calculations with
MDX, where we'll dig into MDX and calculations. For now, you can skip these.

Creating an action
Actions are a great feature available in SSAS cubes. An action will allow you to drill
through to details, open a report, or open a URL based on where you are in the data. It
uses the data available to build out the action.

Note
Be aware that actions are not supported in all end user tools. For example, they
are supported in Excel, but not in Power BI.

Adding cubes and measure groups 155

We will add a drillthrough action to our cube, as follows:

1.	 In the Actions tab of the Cube Design panel, right-click the Action Organizer pane
and select New Drillthrough Action.

2.	 This will add the new action to the Action Organizer pane. You will see the
properties for the action in the middle pane.

3.	 Rename the action Drill to Details.

4.	 Next, we need to select our drillthrough columns. In the Drillthrough Columns
section, select the Item dimension table and choose all the fields.

5.	 On the next line, select Measures and choose the Quantity field.

6.	 On the next line, select Invoice Date and choose the Date field.

7.	 Process the cube. With that, your action should be in place. If you want to test it,
you can use Excel to connect to the database and try it out. We will dig into using
Excel in Chapter 9, Exploring and Visualizing Your Data with Excel.

Reviewing our partitions
On the Partitions tab, you will see the default partitions that have been created for our
measure groups. Partitions physically separate the data in our measure groups into
different buckets. These can be used to reduce processing time and effort for measure
groups. While our cube does not require these since processing performance is fine in
single partitions, let's walk through adding year partitions to the Sales measure group.

Our Sales measure group contains data from 2013 through 2016. We will create
four partitions:

•	 2013 and previous

•	 2014

•	 2015

•	 2016 to Current

We will use the Partition Wizard to help us create our partitions. In production
environments, you need to plan on creating new partitions as new data comes in. Some of
those techniques will be covered later in this book. Let's get started:

1.	 Select Source in the Sales partition (line 1) and click the ellipsis (…) to open the
Partition Source dialog box.

2.	 Change Binding Type to Query Binding.

156 Building a Multidimensional Cube in SSAS 2019

3.	 Add [Sales].[Invoice Date Key] <= '12/31/2013' to the
WHERE clause at the end. This will filter the current partition for dates from
2013 and earlier.

4.	 Rename the partition Sales 2013.

5.	 In the Properties pane, find EstimatedRows and set it to 61000. You can check the
row count in SSMS by querying the source table with the same filter. When using
partitions, this helps the aggregation wizard make better choices about aggregations.

6.	 Click New Partition… to launch the Partition Wizard window in order to create
the next partition.

7.	 Click Next on the opening screen.

8.	 Select the Sales table on the Specify Source Information screen and click Next.

9.	 On the Restrict Rows screen, select Specify a query to restrict rows. This will open
a query like the one we saw when we modified the first partition. Add [Sales].
[Invoice Date Key] BETWEEN '1/1/2014' and '12/31/2014' to the
WHERE clause. Check your work and click Next.

10.	 Leave the default values as is and click Next on the Processing and Storage
Locations screen.

11.	 Rename the partition Sales 2014. Choose Design aggregations later and click
Finish.

12.	 Follow the same process for the Sales 2015 partition.

13.	 Set EstimatedRows for the Sales 2014 partition to 70000.

14.	 Set EstimatedRows for the Sales 2015 partition to 75000.

15.	 For the Sales 2016 to Current partition, use [Sales].[Invoice Date
Key] >= '1/1/2016' in the WHERE clause. Set EstimatedRows for this
partition to 35000.

When you are done, your Partitions tab should have the following partitions for the
Sales measure group:

Figure 4.36 – Sales measure group partitions

Adding cubes and measure groups 157

We did not change the Storage Mode option. This option enables support for Relational
Online Analytical Processing (ROLAP), which is used for direct relational querying
from the cube. This is typically done to support real-time techniques so that we can view
data changes as they occur. Multidimensional Online Analytical Processing (MOLAP)
is typically the best option to choose for performance reasons. This is the default option
and how multidimensional models are stored. Aggregations will be covered in the
next section.

Process your model and resolve any errors. Next, we will add aggregations to our model.

Reviewing and creating aggregations
Aggregations are used to improve the query performance of your model. A balance has
to be struck between too many aggregations, which can bloat the size of the model and
ultimately hurt your processing and query performance, and too few aggregations, which
keeps the cube smaller but makes performance an issue. When first creating a cube,
the best plan is to let the Aggregation Design Wizard help you design them. Once you
have deployed the model and there has been a lot of usage, you can use the Usage Based
Optimization wizard to target aggregations to improve the user experience directly. For
our model, we will use the Aggregation Design Wizard to create our initial aggregations.

Let's add aggregations to our Sales measure group:

1.	 Expand the Sales measure group on the Aggregations tab.

2.	 Right-click on Unassigned Aggregation Design and pick Design Aggregations to
launch the wizard. Click Next on the opening screen.

3.	 You will see the partitions we created in the previous section. Select them all and
click Next.

4.	 On the Review Aggregation Usage screen, you will see all the dimension
attributes that can be targeted for aggregation. Default allows the wizard to decide
on the amount of aggregation to use. The other settings should only be used if you
have familiarity with the usage patterns and can provide guidance to the wizard. For
our example, we will leave the defaults in place. Click Next.

5.	 The Specify Object Counts screen lets you enter estimates for the counts for all
attribute and measure groups. Alternatively, you can click Count and the wizard
will count them all. If you have any performance issues due to the size of the data,
networking, or compute, you should enter the estimates yourself. Our dataset is
small, so having the wizard count should not be an issue. Click Count. Once it's
done this, you can expand the dimensions to see the counts. Click Next when you
are done.

158 Building a Multidimensional Cube in SSAS 2019

6.	 The next screen is Set Aggregations Options. The wizard will estimate and build
an aggregation design based on the options selected. Storage will likely not be
an issue for us. Performance Gain is a decent option for us to use here. I like to
let it run and click Stop when it starts to slow down (meaning it is finding fewer
options). You can choose any of these options. We are going to use the I click Stop
option. Select that option, and then click Start to kick off the wizard. You can stop
it whenever or let it run until it is done. The following screenshot shows where I
stopped my wizard. Yours will likely look a bit different:

Figure 4.37 – Aggregation Design Wizard completed with 99% optimization using 2.3 MB of storage

Adding cubes and measure groups 159

7.	 Click Next to move on to the final step.

8.	 Give the aggregation design a name, such as Initial Sales Aggregation,
and choose the Save aggregations but do not process them option. Click Finish.

We can repeat this process for the Invoice Sales measure group. If you take a look at
the Specify Object Count screen, you should notice that the counts are partially filled out
based on the work we did with the Sales measure group. Now, process your project.

Reviewing and creating a perspective
Perspectives are like views in SQL Server databases. They allow you to create analytic
views, which can make browsing the cube or creating reports easier. Let's create a
simplified view of our Invoice Sales data:

1.	 Right-click in the empty space of the Perspectives tab. Choose New Perspective.

2.	 You will see that a new perspective has been added next to the Object Type column.
Rename the perspective Invoicing.

3.	 Deselect the Sales measure group.

4.	 Deselect the City, Current Item, Item, Delivery Date, and
Salesperson dimensions.

5.	 Only select Customer Hierarchy in the Customer dimension and Invoice
Hierarchy in the Invoice dimension.

6.	 Only select the Invoice Total Including Tax and Invoice Count
measures from the Invoice Sales measure group.

7.	 Save and process your model.

Reviewing translations
Translations allow you to supply a specific language for the names of dimensions,
measures, and other viewable objects. You can also manage translations for dimension
attributes on the Translations tab. You can do this for each dimension.

160 Building a Multidimensional Cube in SSAS 2019

Browsing our cube
We have been building out a lot of functionality, and you have likely already used this to
view your changes. We recommend processing the cube one more time to make sure all
your changes are in place:

Figure 4.38 – Opening the cube browser

Here are some key things to be aware of in the browser:

1.	 This is the Change User button. You can choose which user experience you want
to see. This is related to securing your cube data and can involve filtered objects
and data.

2.	 This is the Reconnect button. Use this after processing your model so that you can
see the latest changes.

3.	 This dropdown is how you toggle between MDX and DAX. In most cases, you
will use MDX when working with multidimensional models.

4.	 This area is the filter area. You can drag a dimension here to limit the results of the
query. Add a date filter here. Drag the Invoice Date dimension to this area.
Leave Operator set to Equal. In Filter Expression, select CY2014. This will filter
the results to invoice dates in calendar year 2014.

Adding cubes and measure groups 161

5.	 This is the metadata area. From here, you can drag measures, KPIs, and various
dimension components, including the full dimension, hierarchies, and attributes, to
the query area. You can also change the metadata view by selecting a different cube
or perspective at the top. Click the button next to Wide World Importers at the top
of the metadata and change the view to the Invoicing perspective.

6.	 This is the query area. You drop items from the metadata area here to build the
query. You will see the results as you build. You need at least one measure and
one dimension to see data here. Drag Bill To Customer from Customer
Hierarchy, Invoice Count, and Invoice Total Including Tax to the
query area. The results are filtered for CY2014. You should see the following output.
Click the link in the query area to execute the query:

Figure 4.39 – Sample query using the cube browser

This concludes the build portion of the multidimensional model.

162 Building a Multidimensional Cube in SSAS 2019

Summary
At this point, you have successfully created an Analysis Services multidimensional project.
You have added dimensions and cubes to the project. You have also deployed your project
as an Analysis Services database and processed that database so that you can load it with
data. You now have a cube that supports basic analytics, which means you can browse
the cube right now using tools such as Excel or Power BI. We wrapped up our build and
deployment by browsing the data we deployed to the cube.

In the next chapter, we will continue to expand the cube by adding calculations and KPIs
to it. We will also explore our data using SSMS and MDX.

5
Adding Measures
and Calculations

with MDX
Now that we have the cube built, the time has come to enhance it with MDX. MDX, or
multidimensional expressions, is the language used to query a multidimensional model
and build calculations in the cube. In this chapter, we will introduce the core concepts
of MDX for building measures, calculations, and queries. While MDX has some similar
syntax and structure to SQL, the implementation and results are not similar. We will use
MDX to expand the functionality in the cube with measures, calculations, and KPIs.
Measures and calculations can be used to standardize business metrics for all users. KPIs,
or key performance indicators, are used to visualize performance and trending against
specified goals.

In this chapter, we're going to cover the following main topics:

•	 Introducing MDX basics – SELECT, FROM, WHERE

•	 Adding calculations and measures to your cube

•	 Adding KPIs to your cube

•	 Exploring more MDX expressions

164 Adding Measures and Calculations with MDX

Technical requirements
In this chapter, we will be using the WideWorldImportersMD Analysis Services database
from Chapter 4, Building a Multidimensional Cube in SSAS 2019. You should connect to
the database with SQL Server Management Studio. You will be using the SSAS database
and the cube created in Chapter 4, Building a Multidimensional Cube in SSAS 2019.

This chapter will also require the use of SQL Server Management Studio to execute the
queries and build out most of the MDX examples. Visual Studio 2019 will be required to
add calculated measures and KPIs to WideWorldImportersMD.

Introducing MDX basics – SELECT, FROM,
WHERE
MDX serves two primary purposes when working with multidimensional data – querying
data and enhancing the cube. In this section, we will walk through the basics of building
a query with measures. We will be working in SQL Server Management Studio for this
section. You will need to have your cube processed in order to create the queries.

Understanding multidimensional query concepts
SQL is a tabular query language. It returns data in columns and rows. A multidimensional
model has more depth than columns and rows. This means you can have rows, columns,
and other dimensions. Conceptually, every data point in a measure group is intersected
by every level on every dimension in the cube. This will allow you to navigate the model
in different ways. While MDX has the same core language construction as SQL, it adds
expressions that support navigating data multidimensionally. Now you know why they are
called cubes. Let's evaluate some of these key concepts and syntax.

Dimensions
We created dimensions in the previous chapter when we built the cube. Dimensions are
the building blocks for MDX. For example, if we build a calculation for average sales, a
dimension defines the context for the average. Dimensions slice and filter the data to build
the context for the measure and aggregation. What are average sales by month for each
customer? In this request, sales are the measure. Month and customer are the dimensions.
Average sales are measured in the context of the date and customer dimensions.

Introducing MDX basics – SELECT, FROM, WHERE 165

The Measure dimension
One unique characteristic of a multidimensional model is that the measures
in a measure group are also organized as a dimension called Measure. The
Measure dimension has a single level, so there is no concept of drilling into the
Measure dimensions by itself.

Levels
Hierarchies define the levels in a dimension. Because of this, MDX supports levels within
hierarchies of a dimension to drill up and down the levels in the dimension. For example,
you can use MDX to determine the values at Year, Month, and Day levels within the
Date dimension. Revisiting our current cube, we have defined many hierarchies that
will be implemented with levels in our MDX code. As we have been looking at our Date
dimension, it is important to understand that dimensional data can be represented
with multiple hierarchies and, as such, have different ways to view the data in code, as
shown in our current Date dimension. The following screenshot shows the Date
dimension hierarchies:

Figure 5.1 – Calendar hierarchies

As you can see in our Date dimension, we have three hierarchies. We can traverse the
Date dimension using those hierarchies. You will also notice that the lowest level is Date,
which represents a shared leaf or lowest level. Logically, you can use this relationship in
the levels to do comparisons between the Fiscal Month and Calendar Month levels in the
hierarchy. This type of level traversal is one of the unique features in MDX.

Every hierarchy has an ALL level by default
Every attribute and user-defined hierarchy contains an ALL level by default.
This is effectively an unfiltered level that allows you to build measures and
queries with MDX without having to explicitly reference every dimension. In
most cases, this will not impact your designs, but it is important to understand
that this exists. In some cases, you may have a business need to change the
default value for a dimension. This is rare. When this occurs, you will have to
account for the new default value's impact on your calculations.

166 Adding Measures and Calculations with MDX

Members
Members are the actual values or names for specific items in a level. Keeping up with the
Date dimension, we already called out the Year, Month, and Day levels. The members
representing individual items in each level would be Year = 2019, Month = March, and
Day = 3/15/2020. Levels contain all the members within the level and understand the
relationships between those members.

Using levels and members together, the model understands that the Date dimension has
user-defined hierarchies that have specific levels. It can navigate between members in a
dimension based on the relationships between levels.

Tuples and sets
Tuples represent the intersection of members. A tuple represents the address of a location
within a multidimensional model. Let's look at our example of average sales from the
previous section. It used two dimensions – Date and Customer. A tuple is a grouping
of members that acts as the address for the value we plan to act upon. In our example, we
were seeking the average by month and customer. To be more specific, we want to see
this for June 2019 for Customer1. This would result in a tuple such as the following:
([June 2019],[Customer1]). At this intersection of dimensions, we want to see
the average sales.

Tuples implicitly include all dimensions in the address
One of the most difficult concepts when working with MDX and
multidimensional models is that every measure is intersected by every
dimension and hierarchy, whether you include it or not. As mentioned
previously, this is typically the ALL level. In our preceding example, the tuple
could be expanded to include ([All Fiscal],[All Product],
[All Item], [June 2019], [Customer1]).

Sets are a group of tuples that can be used to determine a set of combined values between
related tuples. For example, you may use a set of tuples if you wanted to get the average
sales for June and July in our example. That set could be expressed similar to this: {
([Customer1],[June 2019]), ([Customer1],[July 2019]) }. This would
give us the average sales for Customer1 across June and July for 2019.

Introducing MDX basics – SELECT, FROM, WHERE 167

When working with MDX, many of the expressions return a set to allow you to perform
a calculation. Set expressions allow you to get all the children of a specific level or even
related members within the dimension.

Square brackets, curly braces, and parentheses
This section is key to understanding MDX. Let's call it the punctuation of MDX. I have
used the various formats in the preceding examples. Let's clarify them here:

•	 Square brackets [] are used to encapsulate the names of the design elements and
members. In SQL, you do not need to use square brackets if the name has no spaces.
However, a well-designed cube will actively use spaces to make the cube more user-
friendly. First, when working with design elements, we should use
square brackets: [Calendar Year]. This level contains all the years as members.
In our Date dimension, the Calendar Year level of the Calendar hierarchy
contains the following levels: [CY2013], [CY2014], [CY2015], [CY2016],
and [Unknown].

•	 Parentheses () are used to encapsulate tuples, as shown previously. However,
parentheses are also used with functions and math as is typical for most
expression languages.

•	 Curly braces {} are used to encapsulate sets within MDX.

•	 Periods or dots . are used to build definitions for members and to build
out functions. In our cube, we have a customer called Tailspin Toys
(Sylvanite, MT). That customer is represented in MDX as [Customer].
[Customer Hierarchy].[Customer].&[2]. This is the definition for
that member: Dimension.Hierarchy.Level.Member. If we wanted to
discover the parent or the next level up, we would express that as [Customer].
[Customer Hierarchy].[Customer].&[2].Parent. This will return
the parent level value for us. We can continue to move up the tree by asking
for the next parent level as well: [Customer].[Customer Hierarchy].
[Customer].&[2].Parent.Parent. This is how periods are used to both
define the member as well as build out functions in the expressions.

168 Adding Measures and Calculations with MDX

Properties
We have covered a lot of details for navigating your cube with MDX. Every design element
has properties that can be referenced as needed. The most common properties are Key,
Name, and Value. Key is required and is typically displayed by default. In the previous
example, the customer member was represented as &[2]. The ampersand (&) signifies
that the value we see is the key. You can pull up the Name property by using .Name or the
Value property by using .Value. These properties are helpful when refining a report
or when you have a value you want to use in a calculation that you do not include in the
aggregated data. You define the properties during the dimension design.

Putting it together
MDX uses familial relationship language to describe the relationships of data and
design in the model. Examples include functions such as Descendants, Ancestors,
Children, Parent, and even Cousin. We will use a number of these expressions to
show the strength of MDX as it successfully performs complex calculations. By looking at
these relationships as family trees, you should be able to better visualize how the model
stores the data and allows you to traverse the tree to produce those calculations.

Understanding query structure
When you look at a typical query, whether SQL or MDX, you see the core structure of
SELECT, FROM, WHERE. However, in a cube, these do not operate the same. Let's break
down the core structure to understand it better:

•	 SELECT is used to define the content you want to show. In MDX, you should tell it
where you want that data to go. Is it on the column, row, or a different dimension?
This is where we start to struggle understanding MDX. You can actually return a
number of dimensions with your data. The issue is that most tools only visualize
rows and columns. In a query, you specify ON COLUMNS or ON ROWS. You should
also know that ON 0 is equal to columns and ON 1 is equal to rows.

Introducing MDX basics – SELECT, FROM, WHERE 169

•	 FROM is used to define the cube you are querying. In all of our examples, this will be
[Wide World Importers].

•	 WHERE is used to slice or filter the data across a set definition. The set is used to
define the filter for the query, such as the month you want to see the data. This is
used to effectively create a sub cube or subsection of the cube to apply the rest of the
query to.

Building your first query
Enough discussion about the what; time to dig into how. We will be using SQL Server
Management Studio (SSMS) to create a query. The process to create a query is as follows:

1.	 Open SSMS and connect to your SQL Server Analysis Services database:

Figure 5.2 – Connecting to Analysis Services in SSMS

170 Adding Measures and Calculations with MDX

In this dialog, enter the name of the Analysis Services multidimensional instance
you created. You should see the following in your Object Explorer (the screenshot
shows various sections expanded to see the details of the deployed cube):

Figure 5.3 – Expanded Object Explorer for SQL Server Analysis Services

Introducing MDX basics – SELECT, FROM, WHERE 171

If you do not see a similar list of objects, refer to the previous chapter for building
out your Analysis Services multidimensional model.

2.	 As shown in the following screenshot, you can click New Query or MDX to create a
new MDX query window in SSMS:

Figure 5.4 – Selecting either New Query or MDX to create a new MDX query
Once you have connected to the database, you should see the Wide World
Importers cube in the Metadata tab displaying the structure and contents of
your cube. (You may see Invoicing in the dropdown; if so, choose Wide World
Importers from the list to continue.) The metadata information is very helpful
when creating queries. You can drag and drop from the metadata window to the
query panel to make queries. This helps with understanding how to shape the
various data elements for the query.

3.	 Let's create a query that will show us the total sales for each Bill To Customer.
We will build on this as we move forward. Start by typing SELECT into the
query window.

172 Adding Measures and Calculations with MDX

4.	 Drag the Bill To Customer level from the Customer hierarchy onto the query
window, as shown in the following screenshot:

Figure 5.5 – Dragging Bill To Customer to the query window

5.	 Add the .members function to the level name. This will return the set of members.

6.	 Specify On Columns or On 0 to specify you want to see this in the columns.

7.	 Next, add the FROM clause and drag or type the cube name [Wide World
Importers] into the FROM clause.

8.	 Execute the query. It will display the default measure, which may vary for you as we
did not explicitly set this value when we built the cube.

Your query should look like the following:
SELECT [Customer].[Customer Hierarchy].[Bill To
Customer].members on 0

FROM [Wide World Importers]

Your results should be similar to the following table:

Figure 5.6 – MDX query results

Introducing MDX basics – SELECT, FROM, WHERE 173

9.	 Add a WHERE clause or slicer for the fiscal year 2015. Expand the Invoice Date
dimension. Then, expand the Invoice Date.Fiscal hierarchy and the
Fiscal Year level. Drag FY2105 onto the query window after your WHERE
clause. Your query should look like the following:

SELECT [Customer].[Customer Hierarchy].[Bill To
Customer].members on 0

FROM [Wide World Importers]

WHERE [Invoice Date].[Fiscal].[Fiscal Year].&[FY2015]

Execute the query and you should see smaller numbers in your results.
Now that you have successfully built your first query with MDX, we are going to walk
through some variations that will be helpful for you to know as we continue to expand the
cube and build more sophisticated queries. You can use principles from this section, such
as drag and drop to simplify query building, in the next few sections.

Adding explicit measures to our query
In this example, we will modify the query to specify the measures we want to display and
move our customers to the rows. Here is the final query:

SELECT {[Measures].[Profit],[Measures].[Total Excluding
Tax],[Measures].[Total Including Tax]} on columns

,[Customer].[Customer Hierarchy].[Bill To Customer].members on
rows

FROM [Wide World Importers]

WHERE [Invoice Date].[Fiscal].[Fiscal Year].&[FY2015]

You can see that we added three new measures as a set that we want to display on
columns. We moved our existing customers to the rows. The rest of the query remained
the same. You should now see results shaped like the following table:

Figure 5.7 – MDX query with filter results

174 Adding Measures and Calculations with MDX

Using NON EMPTY
As you recall, all queries include the intersection of all possible combinations. In a cube,
many of those combinations can result in an empty value, or null. This is common in
cubes and can cause some query results to be more than what we wanted. Let's look at the
following query samples and their results. In this query, we want to see which customers
had any Red items delivered in the calendar year 2015. In this query, we will introduce
two new functions – crossjoin and children:

•	 crossjoin creates a Cartesian set that includes all the possible tuples between the
Customers and Quantity measures. This allows us to specify the measure we are
looking for and segment it by customer.

•	 children returns a set of next-level members or children in the hierarchy. In this
case, we want to see the data by month for the year 2015. By requesting the children,
we will get all the months.

By using these techniques, we can get all the results for who had Red items delivered.
Here is the query:

SELECT CROSSJOIN([Customer].[Customer Hierarchy].[Customer].
members, [Measures].[Quantity]) on 0

, [Delivery Date].[Calendar].[Calendar Year].&[CY2015].children
on 1

FROM [Wide World Importers]

WHERE [Item].[Color].&[Red]

When you execute the query, you should see results like mine:

Figure 5.8 – MDX query with crossjoin results

Introducing MDX basics – SELECT, FROM, WHERE 175

What you will notice right away is that in many cases, there are no values within many
of the cells. If you scroll more to the right, you will see stores where no reds have ever
been purchased, such as Frankewing, TN. In our results, we want to hide those
stores as they don't help. We can do that by adding NON EMPTY to the beginning of our
Customer line. This will remove customers who have never had a red-colored item
delivered. Here is the updated query. You can confirm the results in your execution:

SELECT NON EMPTY CROSSJOIN([Customer].[Customer Hierarchy].
[Customer].members, [Measures].[Quantity]) on 0

,[Delivery Date].[Calendar].[Calendar Year].&[CY2015].children
on 1

FROM [Wide World Importers]

WHERE [Item].[Color].&[Red]

After executing this query, you should be able to view only the customers who have had
red-colored items delivered to them.

Adding calculated members to our query
We built the cube with many measures built into it, including Quantity and Total
Including Tax. Both of those measures were designed to be summed. In the previous
query, we used Quantity to determine how many red-colored items were delivered to
our customers. Let's use that information to build out two measures we can use in our
query – [Measures].[Red Items] and [Measures].[% Red]. Red items will be
the sum of the quantity of items with the color red. We will use that measure to determine
the percentage of red-colored items that were delivered.

When adding calculated members to a query, use the WITH clause. Each new member
has a member definition in this format: MEMBER name AS expression. The order in
which you create the members also matters.

Member clause note
Do not separate your MEMBER clauses with commas.

176 Adding Measures and Calculations with MDX

MDX orders its operations from top to bottom. If you build a new member that depends
on a member created after that member, the query will fail. We have simplified the query
to better illustrate this process. Here is the query with the new members and a table with
the results:

WITH MEMBER [Measures].[Red Items] as SUM([Item].
[Color].&[Red],[Measures].[Quantity])

 MEMBER [Measures].[% Red] as [Measures].[Red Items] /
[Measures].[Quantity], FORMAT_STRING = 'Percent'

	

SELECT {[Measures].[Red Items],[Measures].[Quantity],
[Measures].[% Red]} on 0

,[Delivery Date].[Calendar].[Calendar Year].&[CY2015].children
on 1

FROM [Wide World Importers]

Execute the query and you should see the following results:

Figure 5.9 – Results for MDX query with custom members

Introducing MDX basics – SELECT, FROM, WHERE 177

Let's add a WHERE clause that filters out any item with N/A as the color. This will be a
better reflection of Red choices when a color can be selected. To do this, we will use the
EXCEPT function to create a set for our WHERE clause. Here is the updated query and
its results:

WITH MEMBER [Measures].[Red Items] as SUM([Item].
[Color].&[Red],[Measures].[Quantity])

 MEMBER [Measures].[% Red] as [Measures].[Red Items] /
[Measures].[Quantity], FORMAT_STRING = 'Percent'

	

SELECT {[Measures].[Red Items],[Measures].[Quantity],
[Measures].[% Red]} on 0

,[Delivery Date].[Calendar].[Calendar Year].&[CY2015].children
on 1

FROM [Wide World Importers]

WHERE (EXCEPT([Item].[Color].[Color].members,{[Item].
[Color].&[N/A]}))

The updated results are shown as follows:

Figure 5.10 – MDX query results with N/A values removed

178 Adding Measures and Calculations with MDX

You can see how the Red Items column values did not change, but the Quantity
values have been filtered by the slicer, which also impacted the % Red column. You will
see that results in MDX are impacted by all filters, slicers, and calculations.

Throughout the remainder of the chapter, we will continue to introduce new functions,
expressions, and concepts to expand your knowledge of MDX. However, this is by no
means exhaustive and you will find a lot of information on the internet relating to MDX
code. Because there have been few updates to multidimensional model support in SQL
Server Analysis Services, older content is still relevant to solving problems with MDX.
Now, we will add calculations to our cube, which will enhance our ability to query and our
users' experience with the data.

Adding calculations and measures to your
cube
We created some calculations while querying the cube. Now, let's make those a
permanent part of the cube. In this section, we will switch from SSMS as our primary
tool to Visual Studio and the SSAS project. We will continue to use SSMS for testing and
experimentation, so you will need to have both tools open. One other thing, we have been
using Red for a lot of our analysis. We will expand on that for our examples. In our use
case here, we will assume that our business users are trying to determine what colors have
the most impact on their business. Let's expand the color analysis for our cube.

Using the calculations section
Reopen your Visual Studio project if it is not open already. Once you have the project
loaded, open the Wide World Importers cube design window. In the design window,
select the Calculations tab. This will be our starting point for adding calculated measures
and named sets built with MDX. Let's walk through the key parts of the Calculations tab
as follows:

1.	 You will be able to create measures and named sets in the query pane. You will also
be able to add comments here to make sure other designers understand what the
calculations do.

2.	 The CALCULATE function should not be removed. As the comment notes,
removing it will affect how the cube is aggregated and is not required for any work
we are doing here.

Adding calculations and measures to your cube 179

3.	 The Script Organizer pane will list the calculation items created. It is also a quick
reference for the order in which the scripts will be executed.

4.	 Calculation Tools has much of the same content we worked with in SSMS when
creating our queries. Drag and drop is supported here as well.

The previous four steps are highlighted in the following screenshot:

Figure 5.11 – Calculations tab in cube design

Now that you have a basic understanding of the Calculations tab, let's build out our
color calculations.

180 Adding Measures and Calculations with MDX

Creating calculated measures
While you can type out the calculations directly in the Calculations tab, it is best to start
by using the calculation creation form. Let's add our Red Items calculation to the cube
using the form as follows:

1.	 You can open the form by right-clicking in the Script Organizer pane or by
selecting New Calculated Member from the menu bar, as shown in the
following screenshot:

Figure 5.12 – Creating a new calculated member with the form

2.	 Select New Calculated Member, which opens the form shown here. We will walk
through each value to create our Red Items calculated member:

Adding calculations and measures to your cube 181

Figure 5.13 – New Calculated Member form

Let's discuss about some fields from the preceding screenshot:

•	 Name: The name will be [Red Items]. The square brackets are required in the
form. It will not add them for you by default.

•	 Parent hierarchy: We are creating a calculated measure, so Measures is our
parent hierarchy. You can create members that are part of other hierarchies or
dimensions. You would select a different parent in that case.

•	 Expression: This is where the MDX calculation goes. Our calculation returns the
quantity of red items:
SUM([Item].[Color].&[Red],[Measures].[Quantity])

•	 Format string: This affects how the value is displayed in the end user tools. We
would like to use the following format string: "#,##0;-#,##0". This option is
not in the drop-down list. The closest is "#,##0.00;-#,##0.00", but we don't
need decimal places. Your options are to type this string, including quotation marks,
or choose the option with decimal places and remove them from the selection once
you are done.

182 Adding Measures and Calculations with MDX

Format strings
Formatting the data for ease of understanding or standardization is common
throughout cube design and MDX. Here are the basics to understanding
format strings.

Strings: Two options separated by a semicolon. The first value applies to all
strings. The second value applies to nulls or empty strings. The value of this is
that you can replace null with a value such as No Data.

Numbers: Numbers have four options all separated by semicolons. The first
value applies to positive numbers, the second applies to negative numbers, the
third applies to zeros, and the fourth applies to null values. If you have one
section, the format applies to all values. Typically, we use two options.
Dates: Dates have a single section and a lot of options to support various types
of display formats.

There are also standard formats included, such as Short Date, which will format
the date according to the system's short date format. If you want to dig into this
more, Microsoft has a complete list of options online. Search for MDX Format_
String for more information.

•	 Visible: Some measures exist as supporting calculations. It is common to hide those
by setting this property to False. In our case, we will leave this visible, which is the
default, True.

•	 Non-empty behavior: Non-empty behavior instructs SSAS how to determine
whether an empty value will be returned when a NON EMPTY query command is
issued. You add measures to optimize this performance. In our case, we will select
the Quantity measure, which means non-empty requests will use the Quantity
measure to determine empty values instead of the calculation itself.

•	 Associated measure group: A cube can contain one or many measure groups. Our
cube only has two measure groups, so we are not assigned the measure group. If you
have several measure groups in your implementation, it will be helpful to users to
associate the member with the best measure group.

•	 Display folder: This is an optional feature. We will use it to keep all our color
calculations together. Enter Color Analysis as our display folder.

This is where the process feels a bit weird. You may have noticed that there was no save or
close button on this form. This form has been writing the calculation to the script in the
background. To see the work you have done, you need to change the view. The following
screenshot shows you where the Script View and Form View buttons are on the toolbar:

Adding calculations and measures to your cube 183

Figure 5.14 – Form View and Script View buttons in the Calculations tab

When you select Script View, you will see the entire script, including the work you were
just doing. This view also hides the Script Organizer pane. When you are in Form
View, you can go to each calculation or script to see whether there is a form for that
specific calculation.

Go to Script View now. You will see the code that was generated for you. As you can see,
each section is separated by semicolons. Your code should look like the following:

/*

The CALCULATE command controls the aggregation of leaf cells in
the cube.

If the CALCULATE command is deleted or modified, the data
within the cube is affected.

You should edit this command only if you manually specify how
the cube is aggregated.

*/

CALCULATE

;

CREATE MEMBER CURRENTCUBE.[Measures].[Red Items]

 AS SUM([Item].[Color].&[Red],[Measures].[Quantity]),

FORMAT_STRING = "#,##0;-#,##0",

NON_EMPTY_BEHAVIOR = { [Quantity] },

VISIBLE = 1 , DISPLAY_FOLDER = 'Color Analysis' ;

As you can see, all the properties you set in the form are here. You can change the MDX
here and it will be presented in the form with your changes.

184 Adding Measures and Calculations with MDX

Let's add a comment here. After the semicolon following CALCULATE, add the
following code:

/* The next group of measures will be used for Color Analysis
*/

In our cube, we have eight identified colors. Use the New Calculated Member form to
add calculated members for Black, Blue, Gray, Light Brown, Steel Gray, White,
and Yellow. You should have eight measures in your calculations when you are done.
You can also use the script view to cut and paste. Either option will result in the same
work. However, the script view may result in errors if you are not careful.

The final step here is to go to Form View and move the Red Items calculated member
below Light Brown Items as this will put them in alphabetical order. You drag the
Red Items member to the location or use the arrow buttons located in the menu bar to
manipulate its location.

Now is a good time to see our work in action. You can process our changes by clicking
the Process button on the toolbar. Accept the default prompts. When the measure groups
have completed processing, go back to SSMS and refresh your Object Explorer pane. You
will now see a new folder in the Measures section called Color Analysis, which is
where we are putting our calculations. Create a simple MDX query using one or more of
your new measures. For example, let's create a query that shows the delivery of black and
blue items each year:

SELECT {[Measures].[Black Items], [Measures].[Blue Items]} on 0

, [Delivery Date].[Calendar].[Calendar Year].members on 1

FROM [Wide World Importers]

As you can see, I no longer have to create the measures in each query; they are now a part
of the cube structure itself.

Next, we need to add the percent of total measures to the cube. Using Form View, create
the first measure using the following values:

•	 Name: [% Black Items]

•	 Parent hierarchy: Measures

•	 Expression: [Measures].[Black Items] / [Measures].[Quantity]

•	 Format string: "Percent"

•	 Non-empty behavior: Quantity

•	 Display folder: Color Analysis

Adding calculations and measures to your cube 185

Create the same calculation for each color as we did before. You will notice that we are
using the calculated member we created previously in this calculation. The black percent
member will fail when it is created before the black item count member. The dependency
is sequential in the MDX script we are creating.

Creating named sets
Now that we have our calculated members created, we will look at creating a named set.
A named set is a set created by MDX that we can reuse in our cube and related queries.
When we created our calculations earlier, we added a slicer in the WHERE clause to
eliminate items that did not have a color attribute as follows:

WHERE (EXCEPT([Item].[Color].[Color].members,{[Item].
[Color].&[N/A]}))

We can add this as a named set to use it in our calculations. Using Form View, select the
[Yellow Items] calculated member from Script Organizer. Using the right-click
menu or the toolbar, select New Named Set. This should open the Named Set form and
place a new named set between your items' measures and % measures. In the form, there
are fewer properties. For our new named set, complete the form with the following values:

•	 Name: [Items with Color]

•	 Expression: EXCEPT([Item].[Color].[Color].members, {[Item].
[Color].&[N/A]})

•	 Type: Dynamic

•	 Display folder: Color Analysis

You have created your first named set. We are using the Dynamic type for the named set.
This means that the set will be re-evaluated based on the context established by the query.
When the Static type is chosen, the set does not react to slicers in the WHERE clause
or other influences. The set remains the same. Typically, Dynamic gives most users what
they expect in cube querying. In certain cases, you may not want the set to recalculate
each time for either performance (most common) or business reasons. Be sure to test both
options in a variety of cases to validate that you are getting the response you desire.

186 Adding Measures and Calculations with MDX

Now that we have the new named set, we can use it in our % calculations. The business
requirement is that the % of items of a specific color should only apply to items to which
color can be a valid attribute. We should change the calculation expression to incorporate
our named set as follows:

CREATE MEMBER CURRENTCUBE.[Measures].[% Black Items]

 AS [Measures].[Black Items] / SUM({[Items with
Color]},[Measures].[Quantity]),

FORMAT_STRING = "Percent",

NON_EMPTY_BEHAVIOR = { [Quantity] },

VISIBLE = 1 , DISPLAY_FOLDER = 'Color Analysis';

The denominator has been changed to use our new set with the Quantity measure. Now
we have adjusted the calculation to meet the requirements of the business. Once you have
applied those changes, process the cube. Next, we will build some KPIs to support our
color analysis.

Adding KPIs to our cube
KPIs are used by businesses to evaluate performance over time. KPIs in multidimensional
models in SSAS are server-based and can be used by various end user tools such as
Excel. The advantage here is that a business KPI can be created and shared easily within
an organization.

Understanding the basics of a KPI
A typical KPI is built on the following components:

•	 Goal or target

•	 Value or actual

•	 Status of the value compared to the goal

•	 Trend of the value to meeting the goal

These values can use indicators that typically work from a -1 to 1 value system. Here, -1
is measured as not meeting the goal, and 1 as meeting the goal. All these values are built
with MDX, which is what we will dig into now.

Adding KPIs to our cube 187

Building your KPI
First, you need to open the KPI tab in the Cube Design window in your Visual Studio
project. Once you have that open, create a new KPI by right-clicking in the KPI Organizer
pane or selecting the New KPI option from the toolbar. This will open a form along the lines
of what we used when creating calculated members, as shown in the following screenshot:

Figure 5.15 – New KPI form

Let's walk through creating a KPI for our cube, because a KPI is typically used to drive
toward a goal. Continuing our theme of color analysis, our business wants to see the
increase of the sale of red items by 10% year over year (YOY). Our KPI will be built with
the following attributes:

•	 Goal: 10% red quantity growth YOY

•	 Measure: Red items

Our first step will be to add some more calculated members to support our KPIs. As
part of the design and discovery process, it is common to use SSMS to work through
the members you need and want to test with. You will find some work in progress code
in GitHub that allows you to see some of the MDX queries used to explore the data
for building the KPIs. Once the discovery is complete, the following supporting MDX
calculated members need to be added to the cube. You can add these to the Calculations
tab in the Cube Design window. I have added these members to a separate folder
called KPI Support to keep us organized. Each measure works with [Measures].
[Quantity] and the [Invoice Date].[Fiscal] hierarchy, specifically with the
[Fiscal Year] level. We will combine this measure with our various item colors to
build out the KPIs. We can use them to create similar KPIs at a later time.

188 Adding Measures and Calculations with MDX

Here are the names and expressions for these calculations:

•	 [Measures].[Current FY Quantity]
Purpose: Returns the total quantity for the current fiscal year (FY).
Expression: (ANCESTOR([Invoice Date].[Fiscal].currentmember,
[Invoice Date].[Fiscal].[Fiscal Year]), [Measures].
[Quantity])

•	 [Measures].[Previous FY Quantity]
Purpose: Returns the total quantity for the previous FY.
Expression: (ANCESTOR([Invoice Date].[Fiscal].currentmember,
[Invoice Date].[Fiscal].[Fiscal Year]).prevmember,
[Measures].[Quantity])

•	 [Measures].[Quantity YOY 10% Target]
Purpose: Calculates the current year target by multiplying the previous year
quantity by 1.1.
Expression: [Measures].[Previous FY Quantity] * 1.1

•	 [Measures].[Quantity Status]
Purpose: Produces a value between -1 and 1 that can be used to signify the status
of the KPI. If the current value is the previous FY value * 1.05 or less, the value will
be -1. If it is greater than or equal to the target, the value will be 1. Between those
amounts, the status will be set at 0.
Expression: CASE WHEN (ANCESTOR([Invoice Date].[Fiscal].
currentmember,
[Invoice Date].[Fiscal].[Fiscal Year]), [Measures].
[Quantity]) < ((ANCESTOR([Invoice Date].[Fiscal].
currentmember, [Invoice Date].[Fiscal].[Fiscal Year]).
prevmember,
[Measures].[Quantity]) * 1.05)
THEN -1
WHEN (ANCESTOR([Invoice Date].[Fiscal].currentmember,
[Invoice Date].[Fiscal].[Fiscal Year]), [Measures].
[Quantity]) > ((ANCESTOR([Invoice Date].[Fiscal].
currentmember, [Invoice Date].[Fiscal].[Fiscal Year]).
prevmember,
[Measures].[Quantity]) * 1.1)
THEN 1 ELSE 0 END

Adding KPIs to our cube 189

Before we move on to creating the KPIs, there are several new expressions to add to your
MDX vocabulary. ANCESTOR is a function that returns a member that is higher in the
hierarchy. You can specify how many levels you want to go up or the specific level you
want to go to. In our case, we want to be at the [Fiscal Year] level regardless of where
we start.

Two member functions are used in these measures as well. currentmember refers to
the member currently in context. It will be used as the reference point for the calculation.
previousmember is used to go backward. nextmember also exists to move forward.
In our case, if currentmember is FY2015, previousmember will return FY2014,
and nextmember will return FY2016. These functions are used regularly to navigate
between related members.

The final piece of code to note is the CASE statement. There are two common methods
of handling this type of calculation – CASE and IIF. CASE is typically more efficient
in processing, but IIF can work for simpler expressions. Both options evaluate an
expression and return a result for a true and a false result. Learn both options so that you
can have design options when creating MDX calculations.

Using our KPI form, here is the process we will go through to build this:

1.	 Name: Red Item performance

Value Expression: In the value, we will use [Current FY Quantity] with
[Item].[Color].&[Red]. This will give us the current year quantity, which is
the value we will use as the actual value to compare with the goal. Here is the code:
([Measures].[Current FY Quantity], [Item].[Color].&[Red])

2.	 Goal Expression: The goal expression is the 10% target we created combined
with the [Item].[Color].&[Red] level as well. Here is the code for
the goal: ([Measures].[Quantity YOY 10% Target], [Item].
[Color].&[Red])

3.	 Status Expression: The status expression uses the [Quantity Status]
measure with the same [Item].[Color].&[Red] cross-reference. This will
return -1, 0, or 1 depending on the criteria we set. Here is the code for the status:
([Measures].[Quantity Status], [Item].[Color].&[Red])

4.	 Status Indicator: Select the Shapes indicator type for our example. You should
explore the built-in option to see how they react to your KPI.

190 Adding Measures and Calculations with MDX

This will complete our build. Be sure to process the cube when you have completed the
KPI. If you want to explore more about using the KPIs, you can get more sophisticated
using trends and other more advanced options. You can view the KPI indicators with
Excel. We will dig into more about using Excel with your models in a later chapter, but
this is really one of the best ways to confirm you have set up the indicators correctly. Here
are the steps to connect Excel to your cube and view your KPIs:

1.	 Open Excel and connect to your Analysis Services server. The following screenshot
describes where to find the connection you need to use:

Figure 5.16 – Choosing an Analysis Services connection in Excel

Adding KPIs to our cube 191

2.	 Enter the name of your server and select the cube you have been working in. This
will create an ODC connection for you to use in Excel.

3.	 For our purposes, we will choose to import the data to the current worksheet as a
PivotTable, as shown here:

Figure 5.17 – Import dialog in Excel

4.	 In PivotTable Fields, search for KPI or scroll through the list until you find the KPI
we created. Expand Red Item Performance and drag Status to the Values pane at
the bottom.

192 Adding Measures and Calculations with MDX

5.	 Next, find Invoice Date in the field list. Expand the Invoice Date.Fiscal hierarchy
and drag Fiscal Year to the Rows section. You should see something similar in your
Excel workbook if your cube and the KPIs have no issues:

Figure 5.18 – KPIs displayed in Excel

Congratulations! You have added calculated members and KPIs to your cube. In the next
section, we will explore some more MDX expressions so you can build more complex
queries and calculations to meet your business needs.

Exploring more MDX expressions 193

Exploring more MDX expressions
Entire books have been written on MDX exclusively. MDX is a very powerful query
and expression language. We have touched just a small part of what is possible. This
section will present a few additional expressions and techniques for you to practice with.
We will primarily be working in SSMS to illustrate both member creation and various
query techniques. Any member created in SSMS can be moved to the cube, as we have
demonstrated throughout this chapter.

Traversing hierarchies
Earlier in the chapter, we talked about how traversing the cube is like working with a
family tree. Functions such as parent, children, ancestor, descendant, and even cousin
exist in MDX. Here are some examples for you to use with our cube.

members
members returns all the members of a level or hierarchy depending on the context. We
have used members in several queries already. Let's look at the City dimension for an
easy example of using members. We can use members to determine which countries are
included in our cube as follows:

select [City].[Geography].[Country].members on 0 from [Wide
World Importers]

As you can see, the members set function is a dot function. It will return all the members
of the current level or hierarchy. In our case, we used a level, [Country], which resulted
in only one result – United States. If you choose to remove [Country], the query will
take a while to complete as it will return over 116,000 columns, which represent every
value in the hierarchy.

194 Adding Measures and Calculations with MDX

parent
parent returns the member in the level above the current member. This function is a
dot function that can be stacked and allows you to find grandparents as well. In this code
example, we stack the parent function three-deep:

select {[Black Items]} on 0

,{[City].[Geography].[City].&[114952]

, [City].[Geography].[City].&[114952].parent

, [City].[Geography].[City].&[114952].parent.parent

, [City].[Geography].[City].&[114952].parent.parent.parent} on
1

FROM [Wide World Importers];

The results are shown in the following table:

Figure 5.19 – Query results using the parent expression

As you can see here, we can ascend up the hierarchy using the parent function until we
reach the top. Typically, we only use it up one level, but the functionality is there to use
if needed.

children
We have discussed parent, and now we can delve into children. The children
function is also a dot function. This function returns all the children in the next level
down in the hierarchy. We can use the previously used example of Alabama. In this query,
we want to see all the cities in Alabama. If we choose not to use the NON EMPTY keyword
in the query, we will get all the cities regardless of whether they have data:

select [Black Items] on 0

, NON EMPTY [City].[Geography].&[Alabama].children on 1

from [Wide World Importers];

Exploring more MDX expressions 195

descendants
descendants is one of the more complex hierarchy functions in MDX. It is very
powerful with numerous variations. descendants returns data as sets of members.
descendants uses a combination of current member position, targeted position, and
the relationship between those two values to determine the set members.

Typically, you use the descendants function from a starting member. (There are other
options, but they are more advanced and beyond the scope of this book.) You then specify
the target level or number of levels from the current position. The number option is
normally used with ragged hierarchies where the end is not uniform. We will focus our
examples on the level version of the function.

The final option is very interesting. This option is the flag used to tell the function which
set of data to return. There are eight different flags that can be implemented:

•	 SELF returns the values at the level specified. If it is at the level of the current
member, it will return that member as well.

•	 AFTER returns the values below the level specified. It returns all the members after
that level.

•	 BEFORE returns the values between the current member and the level specified.
It will include the current member in the results, but no values from the
level specified.

•	 BEFORE_AND_AFTER returns the values included in both the BEFORE and AFTER
values, but not the specified values.

•	 SELF_AND_AFTER returns the level specified and below that level.

•	 SELF_AND_BEFORE returns the level specified and all members between the
current member and that level, as well as the current member.

•	 SELF_BEFORE_AFTER returns all members from all levels below the current
member and includes the current member as well.

•	 LEAVES returns leaf or lowest-level members between the current member and the
specified levels. This option is very helpful when working with ragged hierarchies
where the leaf levels often vary.

196 Adding Measures and Calculations with MDX

The following table illustrates how each flag affects what is returned when working with
the descendants function:

Figure 5.20 – Coverage by each descendant flag

Now that we understand the capabilities of descendants, let's walk through some
examples using our cube. We will be using the Sales Region hierarchy in the City
dimension. The starting point will be the Americas region. The target level will be the
State level. Let's look at a few of the flag options with the same query.

The following queries illustrate the SELF, BEFORE, and AFTER flags in use. You will need
to execute each query separately to generate the results shown later:

select {[Black Items]} on 0

, NON EMPTY descendants([City].[Sales Region].
[Region].&[Americas], [City].[Sales Region].[State Province],
SELF) on 1

FROM [Wide World Importers];

select {[Black Items]} on 0

, NON EMPTY descendants([City].[Sales Region].
[Region].&[Americas], [City].[Sales Region].[State Province],
BEFORE) on 1

FROM [Wide World Importers];

select {[Black Items]} on 0

, NON EMPTY descendants([City].[Sales Region].
[Region].&[Americas], [City].[Sales Region].[State Province],
AFTER)on 1

FROM [Wide World Importers];

Exploring more MDX expressions 197

SELF returns the State level values only. BEFORE returns three levels – Region,
Subregion, and Sales Territory. AFTER returns the city level. The following
table illustrates these results:

Figure 5.21 – MDX query results with descendant options

As you can see, you have a lot of ways to traverse down a hierarchy to return various sets
that can be used in calculations.

FirstChild, FirstSibling, LastChild, LastSibling
These functions allow you to find the first or last child or sibling for a specific member.
While this does not necessarily seem helpful for some dimensions, any specifically
ordered dimension may find value using these functions. The child versions of the
functions effectively return the first child in the children set. sibling functions operate
in the same level. We don't have a lot of dimensions where the order is significant. For this
example, we will use the Date dimension as it is the easiest to view the impact on:

select {[Black Items]} on 0

, NON EMPTY {[Invoice Date].[Calendar].[Calendar
Month].&[8]&[CY2015-Aug]

,[Invoice Date].[Calendar].[Calendar Month].&[8]&[CY2015-Aug].
firstchild

,[Invoice Date].[Calendar].[Calendar Month].&[8]&[CY2015-Aug].
lastchild

,[Invoice Date].[Calendar].[Calendar Month].&[8]&[CY2015-Aug].
firstsibling

,[Invoice Date].[Calendar].[Calendar Month].&[8]&[CY2015-Aug].
lastsibling} on 1

from [Wide World Importers];

198 Adding Measures and Calculations with MDX

Here are the results, including the members who are being referenced:

Figure 5.22 – MDX query results using child and sibling expressions

Sibling functions allow you to traverse the hierarchies in more interesting ways. This
wraps up our discussion on hierarchy-focused MDX functions.

Exploring data with more MDX functions
In this section, we will explore some other commonly used functions that will help you
build queries and calculations.

Crossjoin
We have used the crossjoin function once before in this chapter. Let's take a closer
look at this function. The crossjoin function returns the cross product or Cartesian
product between two sets. However, if both sets are in the same dimension, it will only
return results that exist. The following queries and results illustrate these two methods of
using crossjoin.

First, let's look at the more common usage, which is crossjoining two sets from different
dimensions. If you want to eliminate empty values, use the NON EMPTY keyword in your
query. In this query, we are going to create a crossjoin between December of the years we
have and the states of Alabama and Georgia:

select [Black Items] on 0

, crossjoin({[Invoice Date].[Calendar].[Calendar
Year].&[CY2013].lastchild,

	 [Invoice Date].[Calendar].[Calendar Year].&[CY2014].
lastchild,

	 [Invoice Date].[Calendar].[Calendar Year].&[CY2015].
lastchild,

	 [Invoice Date].[Calendar].[Calendar Year].&[CY2016].
lastchild}

	 ,

Exploring more MDX expressions 199

	 {[City].[Sales Region].[State Province].&[Alabama],

	 [City].[Sales Region].[State Province].&[Georgia]}) on 1

from [Wide World Importers];

Here are the results of the query using the crossjoin expression:

Figure 5.23 – MDX query results with the crossjoin expression

As you can see in the query results, we have effectively crossjoined the dates with the states
in our sets. The next query illustrates the fact that crossjoining attribute hierarchies will
only return those combinations with values. In this query, we are crossjoining items with
the colors red and yellow with all possible sizes. As you can see, the results only represent
existing combinations in the data:

select [Measures].[Quantity] on 0

, crossjoin({[Item].[Color].&[Yellow],[Item].[Color].&[Red]},
[Item].[Size].[Size].members) on 1

from [Wide World Importers];

Here are the results:

Figure 5.24 – MDX query results with crossjoin between color and size

200 Adding Measures and Calculations with MDX

As you can see in these results, not every size is returned. You need to keep this type of
difference in mind to make sure you are getting the results you want from the function.

IIF and IsEmpty
IIf is used like the CASE statement we used to support our KPIs. This expression
effectively tests a use case. If it results in true, then use the value in the second position;
if it is not true, use the third value. Here is the structure: IIF(<condition>,<if
true>,<if false>). IIF statements can be nested as well. You should use caution if
you are nesting IIF statements to make sure your results are as expected.

IsEmpty is a function that determines whether a value is empty or null. It evaluates to
TRUE or FALSE. We will use this in our IIF statement as part of the condition statement.
In our next query, we will create a new member to evaluate whether the base measure is
empty. If it is, the null value is replaced with the text No Sales:

with

member [Measures].[No Empty Quantity] as
IIF(ISEMPTY([Measures].[Quantity]),"No Sales", [Measures].
[Quantity])

select [Measures].[No Empty Quantity] on 0

, crossjoin({[Invoice Date].[Calendar].[Calendar
Year].&[CY2013].lastchild, [Invoice Date].[Calendar].[Calendar
Year].&[CY2014].lastchild, [Invoice Date].[Calendar].[Calendar
Year].&[CY2015].lastchild, [Invoice Date].[Calendar].[Calendar
Year].&[CY2016].lastchild}	 ,

{[City].[Sales Region].[State Province].&[Alabama], [City].
[Sales Region].[State Province].&[Georgia]}) on 1

from [Wide World Importers];

Here are the results with the null values replaced:

Figure 5.25 – MDX query with null values replaced

Exploring more MDX expressions 201

lag and lead
The last group of functions in this section is lag and lead. lag and lead move a
number of positions before (lag) or after (lead) the current member. In our example
here, we will use the Date dimension to illustrate this operation. We are building on some
of the work we did with lastchild:

select [Black Items] on 0

,{[Invoice Date].[Calendar].[Calendar Year].&[CY2013].
lastchild,

 [Invoice Date].[Calendar].[Calendar Year].&[CY2013].
lastchild.lag(1),

 [Invoice Date].[Calendar].[Calendar Year].&[CY2013].
lastchild.lag(6),

 [Invoice Date].[Calendar].[Calendar Year].&[CY2013].
lastchild.lead(1),

 [Invoice Date].[Calendar].[Calendar Year].&[CY2013].
lastchild.lead(6)} on 1

from [Wide World Importers];

These are the results:

Figure 5.26 – MDX query results with lag and lead expressions

As you can see in the results, the lag and lead functions support some interesting
results. While we used dates in our example, you can use these functions with sequential
values, such as order or invoice numbers.

202 Adding Measures and Calculations with MDX

Creating more calculations with aggregation and math
functions
We have been focused on a lot of functions to support various ways of traversing or
grouping members to apply calculations. However, we have kept the calculations
fairly straightforward. In this section, we will work with some common aggregation or
math functions.

Sum
SUM is one of the most basic functions. It effectively sums values in a set. We have used
this fairly extensively in this chapter. One key understanding is that any set can be used to
define the context for the values to be summed:

MEMBER [Measures].[Red Items] as SUM([Item].
[Color].&[Red],[Measures].[Quantity])

This is our example from earlier in the chapter. This works by summing all the items that
have a color attribute of red. You can swap out that section for any valid set using a variety
of functions. This example illustrates a more complex example:

WITH MEMBER [Measures].[No Territories] as

SUM(

 EXCEPT(

 descendants([City].[Sales Region].[Region].&[Americas],

		 [City].[Sales Region].[State Province], SELF)

 , {[City].[Sales Region].[State Province].&[Puerto Rico (US
Territory)],[City].[Sales Region].[State Province].&[Virgin
Islands (US Territory)]})

 ,[Measures].[Quantity])

select {[Measures].[Quantity],[Measures].[No Territories]} on 0

from [Wide World Importers];

This query returns two values built on Quantity. The No Territories measure
eliminates two US territories from the calculation. As you can see, multiple set operations
occur in the calculation of the sum.

Exploring more MDX expressions 203

Count
COUNT can be a dot function or a normal function. It effectively operates the same way
in both cases as it returns a count of members in the referenced set. One key difference
when using COUNT() is that you have an option to include or exclude empty values –
INCLUDEEMPTY or EXCLUDEEMPTY:

with member [Measures].[State Province Count] as [City].[Sales
Region].[State Province].count

 member [Measures].[No Territories Count] as

	 COUNT(EXCEPT(descendants([City].[Sales Region].
[Region].&[Americas],[City].[Sales Region].[State Province],
SELF), {[City].[Sales Region].[State Province].&[Puerto Rico
(US Territory)],[City].[Sales Region].[State Province].&[Virgin
Islands (US Territory)]}) ,INCLUDEEMPTY)

select {[Measures].[State Province Count],[Measures].[No
Territories Count]} on 0

from [Wide World Importers]

This query returns the count of all the members in the State Province level
of the Sales Region hierarchy in the State Province Count measure. No
Territories Count looks at the descendants of the Americas region and then
eliminates the territories. The counts are off by one additional value as the N/A member is
not a part of the Americas region.

Avg, Median, and Divide
Avg and Median both use the same format as Sum – Function(set,
[calculation]). Both functions ignore null or empty values in the calculations.
This is very important to understand. Let's look at the two ways to handle averages as
an example. Typically, we calculate an average as the sum of the values divided by the
count of the members. For example, you might calculate average sales as the total of sales
divided by the count of sales. However, if one of those sales is null, the math is different.

Let's take five sales with discounts of $100, $20, $30, $55, and null. What is the result you
want? If the fifth sale is valid as a transaction even though the discount does not exist or
is null, the math would be $205/5 = $41 average discount amount. If you were to use the
Avg function in MDX, the math would be $205/4 = $51.25. Both results are valid, but
you need to understand that this will affect your results. Be sure that you know which is
correct to meet your business needs.

204 Adding Measures and Calculations with MDX

Before we show the sample code, one other function becomes relevant. Divide handles
division operations better than using /. Divide handles divide-by-zero issues by
returning a null or empty value when executed. You can add the third parameter to
replace a divide-by-zero error with an alternative value. In our example here, we do not set
the third parameter:

with

member NEProfit as SUM([City].[Sales Region].[Sales
Territory].&[New England].children,[Measures].[Profit])

member NETerritoryCount as COUNT([City].[Sales Region].[Sales
Territory].&[New England].children)

member NEAvgProfit as AVG([City].[Sales Region].[Sales
Territory].&[New England].children, [Measures].[Profit])

member NEMedianProfit as MEDIAN([City].[Sales Region].[Sales
Territory].&[New England].children, [Measures].[Profit])

member NEAvgProfitCalc as DIVIDE([Measures].
[NEProfit],[Measures].[NETerritoryCount])

select {[Measures].[NEProfit]

	 ,[Measures].[NETerritoryCount]

	 ,[Measures].[NEAvgProfit]

	 ,[Measures].[NEAvgProfitCalc]

	 ,[Measures].[NEMedianProfit]} on 0

from [Wide World Importers];

Here is the result using these various math functions:

Figure 5.27 – MDX query results using math functions

You can expand the math functions with additional tuples or sets to make more
refined calculations.

Exploring more MDX expressions 205

TopCount and BottomCount
TopCount and BottomCount can be used for top 10 or bottom 10 measurement types.
They are easy to use. Here is the sample code for using these functions:

select [Measures].[Quantity] on 0

, topcount([Items with Color], 5) on 1

from [Wide World Importers];

select [Measures].[Quantity] on 0

, bottomcount([Items with Color], 5) on 1

from [Wide World Importers];

You will also find TopPercent and BottomPercent functions that can be used the
same way. The count is handled as a percent for those functions.

Working with time
The following functions are two of the building blocks for working with time calculations
in MDX.

ParallelPeriod
ParallelPeriod returns the measures you are querying from a previous period. For
example, if you want to see the same value for June 2015 in the previous year, you can use
ParallelPeriod to get that result. You would specify the level you want to use as the
parallel period, which, in our example, is year. Then select how many periods you want to
look back at. The default is one. Then you specify the member you want to start from. In
our MDX query, we are going to use a technique that will return this value over a set using
the currentmember function as well. We are going to look at the sales quantity for 2016
and look back to 2015 as the previous year:

with

member [Measures].[PY Quantity]

as ([Measures].[Quantity],parallelperiod([Invoice Date].
[Calendar].[Calendar Year], 1, [Invoice Date].[Calendar].
currentmember))

	 , FORMAT_STRING = '0,000'

select {[Measures].[Quantity], [Measures].[PY Quantity]} on 0

, [Invoice Date].[Calendar].&[CY2016].children on 1

from [Wide World Importers]

206 Adding Measures and Calculations with MDX

When you run the query in SSMS, you will get the following results:

Figure 5.28 – MDX query results with ParallelPeriod expression

As you can see, we don't have current data for some of the data, but previous year data
does exist. This type of calculation is common in cubes.

PeriodsToDate and Aggregate
This topic will cover the generic PeriodsToDate function, and we will look at some of
the other to date functions, such as MTD, QTD, and YTD. PeriodsToDate is the basis
for the other functions. The other function we will cover in this section is Aggregate.
The Aggregate function creates a member that is the aggregated value over a set. You
can apply various aggregation functions and numeric expressions to this member and
the aggregation will be applied. You can also specify numeric expression to the function
if you want to limit the result to that value. In our use case, we will use the Aggregate
function with the PeriodsToDate function to aggregate values over the time period we
are working with:

with

member [Delivery Date].[Calendar].[First7Months2015] as

		 Aggregate(

		 PeriodsToDate(

			 [Delivery Date].[Calendar].[Calendar Year]

				 , [Delivery Date].[Calendar].[Calendar
Month].&[8]&[CY2015-Aug]))

member [Delivery Date].[Calendar].[Aug2015YTD] as

		 Aggregate(

Exploring more MDX expressions 207

			 YTD([Delivery Date].[Calendar].[Calendar
Month].&[8]&[CY2015-Aug]))

select {([Delivery Date].[Calendar].
[First7Months2015],[Measures].[Quantity])

		 ,([Delivery Date].[Calendar].
[Aug2015YTD],[Measures].[Quantity])}on 0

	 , [Items with Color] on 1

from [Wide World Importers]

You will notice in the results you get that the values are the same. Both calculations are
effectively YTD through August 2015:

Figure 5.29 – MDX query results using the aggregate function

This concludes the MDX function walkthrough for this book. We have tried to give you
sufficient examples and information to let you build out your cube. However, this is only a
subset of the MDX functions available to you. While MDX tends to be difficult to master,
it is still very powerful and flexible as an analytics language.

208 Adding Measures and Calculations with MDX

Summary
This concludes the section on multidimensional models in SQL Server 2019 Analysis
Services. The goal has been to get you working with the tools and provide support for your
next steps working with cubes. While this is by no means exhaustive, you should have a
good understanding of dimensional design, multidimensional models, and MDX.
These skills will allow you to create analytic solutions for the business and your users
on multidimensional models. The lessons learned with MDX will support more
complex calculations and queries that are commonly needed to properly report on
business metrics.

The next few chapters will build out a similar model using tabular model techniques with
DAX. Multidimensional models are mature and complex. You will likely discover that
tabular models are easier to use but have some limitations for which multidimensional
models are better suited. In the next chapter, we will dig into tabular models!

Section 3:
Building and

Deploying
Tabular Models

In this section, we will be creating and deploying multiple tabular models using Visual
Studio, SQL Server Management Studio, and Power Pivot in Excel. We will create a similar
model to the multidimensional model, as well as models unique to tabular format.

This section comprises the following chapters:

•	 Chapter 6, Preparing Your Data for Tabular Models

•	 Chapter 7, Building a Tabular Model in SSAS 2019

•	 Chapter 8, Adding Measures and Calculations with DAX

6
Preparing Your Data

for Tabular Models
Tabular models are the newer analytics model structure implemented in SQL Server.
The underlying analysis engine is columnar, not multidimensional, which means there
are some different considerations for data preparation. The VertiPaq analysis engine
was originally introduced in Excel and now supports Power BI datasets and Analysis
Services tabular models. The technology behind VertiPaq uses a number of column-based
algorithms to improve storage and performance. This technology allows Analysis Services
to compress and structure the data for optimized performance. One other key design
change is that tabular models match various relational data structures and are not reliant
on a dimensional model for success.

In this chapter, we will look at the range of options, from minor preparation to star
schema-based approaches. We will walk through prototyping tabular models with Excel
Power Pivot capabilities. Because tabular models can be implemented without a lot of
data prep at times, we will conclude the chapter by looking at some of the techniques
needed to clean up projects that may have started out poorly. This chapter contains the
information you need to build sustainable tabular models to drive business solutions for
your organization.

212 Preparing Your Data for Tabular Models

In this chapter, we're going to cover the following main topics:

•	 Prepping data for tabular models

•	 Data optimization considerations

•	 Prototyping your model in Excel with Power Pivot

Technical requirements
In this chapter, we will be using the WideWorldImporters and
WideWorldImportersDW databases from Chapter 1, Analysis Services in SQL Server
2019. You should connect to the database with SQL Server Management Studio (SSMS).

We will be using Excel to build the Power Pivot model prototype. For our examples,
we will be using the Excel version that comes with Office 365 ProPlus. The other latest
versions of Excel should allow you to participate in the hands-on examples as well.

Prepping data for tabular models
With multidimensional models, a star schema is required in the underlying data source.
However, with tabular models, a star schema is not required. This means that data
preparation is not as clear as it is with multidimensional models. In this section, we
will explore some key considerations that are involved when preparing data for
tabular models.

Contrasting self-service and managed deployments
Tabular model designs have their origins in self-service technologies such as Power BI
and Excel. Why does this matter? Because well-designed dimensional models still perform
better and are easier to develop solutions for. Self-service models often focus only on the
immediate business need and not on lasting performance or growth. When the number
of consumers of an analytics model is one or just a few, the impact is minimal. However,
when scaling the models beyond a limited set of users, performance and usability become
key considerations in design.

SQL Server Analysis Services tabular models are created in Visual Studio and managed
at the server level. They are not self-service by nature. Technology development teams
are responsible for maintaining, supporting, and enhancing these models. Those teams
are also required to follow specific rules and processes to maintain the quality and
functionality of the models.

Prepping data for tabular models 213

A normal process in the industry is that when self-service models are difficult for the
business to manage, they call on their internal technology teams to take them over.
The problem with this scenario is that service-level agreements (SLAs), compliance
requirements, and the overall need for security get in the way of business expectations.
While this is not the focus of this book, you need to consider how to qualify tabular
models as a different management process from self-service models.

Let's wrap this section up with a few contrasting points on the differences between self-
service and managed deployments in the context of tabular model implementations in
a business:

•	 Analysis Services tabular models support larger models than self-service tools. They
are built on a server and can scale to the size of the memory in the server, which
often exceeds the capabilities of the self-service environments.

•	 Self-service tools allow quicker changes due to the lack of controls and processes
used when working with tabular models. This can be both good and bad. Self-
service models can adapt quickly but are susceptible to bad data and processes that
can lead to bad decisions being made. Tabular models take more time but are built
around controls and processes to help achieve better data quality.

•	 Analysis Services tabular models are created with Visual Studio, a developer tool.
Power BI and Excel are end user tools, which makes them easier to use and more
approachable for designers of all levels. One key difference here is that Visual Studio
projects have good source control and standard deployment options with versions
that can be easily implemented by developers. This allows clear change tracking,
which is not as easy to accomplish with self-service tools.

As you can see, the contrasts really come down to industry and corporate controls that
have been traditionally managed by IT teams and model sizes. When these requirements
become important, tabular models are required to support the business.

The impact of Power BI
Microsoft's Power BI product continues to change and fill gaps in enterprise
implementations. Microsoft continues to invest in Power BI Premium, which
has wider support for datasets and other additional capabilities. Power BI still
has limitations in source control and other typical IT processes. Until the gap
is closed, Analysis Services tabular models will continue to fill those needs
for businesses with larger datasets and specific management controls for data
and design.

214 Preparing Your Data for Tabular Models

Using a star schema data warehouse
The work that is required to create and maintain a star schema or dimensional data
warehouse built on Kimball practices was described in detail in Chapter 3, Preparing
Your Data for Dimensional Models. The principals behind a dimensional model make any
analytics solution work well. A dimensional model is organized to support reporting and
analysis with a focus on conformed dimensions and established measures.

A tabular model based on a dimensional data warehouse is one of the simplest
implementations to do. In our case, we can use the star schemas we created in Chapter 3,
Preparing Your Data for Dimensional Models, as shown in Figure 6.1. We created views to
support two measure groups in the multidimensional model:

1.	 Sales: This has the detail-level sales for Wide World Importers. This star schema
includes item-level sales:

Figure 6.1 – Sales star schema views for Wide World Importers

2.	 Invoice Sales: This measure view has the data aggregated to the invoice. This pattern
is very helpful in tabular models as it allows them to optimize for aggregations:

Prepping data for tabular models 215

Figure 6.2 – Invoice sales star schema views for Wide World Importers

This is a case where the work is completed in the data warehouse and no additional
preparations are required to support using this same schema with a tabular model. We
will also look at some options that will support role-playing dimension design.

Role-playing dimensions in tabular models
Unlike multidimensional models, role-playing dimensions are not natively
supported in the tabular model. In our case, we have role-playing relationships
created with the Date dimension. The invoice and delivery dates are mapped to
the same dimension.

Using non-star schema databases
When a tabular model is created on a database that has not been modeled with a star
schema, you have a couple of options. The first option is obvious. Use the existing data
structure as is and pull the data directly into the model. Using the tabular model features,
you can rename columns to make them more user friendly. You can also add measures
and columns to build out the model.

216 Preparing Your Data for Tabular Models

The other consideration is shaping the data before landing it in the model. This can be
done using the Power Query feature in tabular model design. For example, Power Query
can remove unused columns and add columns during the load process, as shown in the
following screenshot:

Figure 6.3 – Power Query example

Power Query can be used to filter data, add and remove columns, and format data for use
in the tabular model. This allows us to bypass loading star schema databases in simpler
operations. The key consideration here is that the data will be transformed during the
refresh process and the operations may not be as efficient as we see in modern extraction,
transformation, and load (ETL) tools such as SQL Server Integration Services (SSIS).

Prepping data for tabular models 217

Using nontraditional sources
One of the key characteristics in a data warehouse is that the source of the data for the
analytics and reporting systems is one single source. Report and dashboard designers
know that the data they are looking for is organized and managed by the data warehouse
team and should be able to be trusted. However, today's analytics needs do not always
make it to the data warehouse. Marketing teams are a great example of a group whose
needs change constantly. They use tools such as Google Analytics, Facebook, and even
YouTube to collect data and build reports. Often, these systems are not included in the
data warehouse, and adding them is complicated.

Power Query allows model designers to add these data sources to tabular models and
shape the data to allow it to be mashed up with a data warehouse or other traditional data
sources. While this may not be the best long-term solution, it allows the data warehouse
and analytics teams to create solutions quickly to support the business. If the business
team is using Power Query in Power BI to collect this data initially, that work can be used
to provide guidance and code to add to the larger tabular model projects.

The other common use case for data outside of the data warehouse is as general-purpose
data managed by a third party. We often see weather, traffic, and census data sourced
from third parties, including governments. The cost of pulling that data into a warehouse
via traditional means typically results in a low return on investment. With the Power
Query capability in SQL Server 2019 Analysis Services, businesses can add that data with
minimal impact. More importantly, the third party will be responsible for quality and
freshness, not the business teams.

218 Preparing Your Data for Tabular Models

Data optimization considerations
Another consideration when preparing your data for tabular models is the data refresh
options available. Typically, data is imported into your tabular model similar to the
process we used with multidimensional models. Imported data is loaded into memory
and optimized by the VertiPaq engine. This involves a high level of compression, including
columnar data storage techniques. The functions of compression and memory combine
to create an optimized model with performance. Here are some key considerations when
using data refresh:

•	 Refresh frequency: The data is only as fresh as the last import. If the data source
has been updated recently, the data may be out of sync. This is less of an issue when
you are loading data from a data warehouse. The data warehouse is typically loaded
in batches as well. If you match your refreshes to the batch loads, your data will
be consistent with the data warehouse. If you have chosen to use the transactional
database for the source, that database is written frequently too. Thus, your data will
only be as fresh as the latest import.

•	 Refresh time: Because the refresh process is importing the data into the model, you
must consider the time for doing that operation. If you have used Power Query to
shape a significant amount of your data, that will add to the refresh time because
all data will need to be reshaped each time. You can partition the data to reduce the
processing time in tabular models.

•	 Query performance: The import option has the best query performance. The data
that is loaded into memory has been optimized for queries. Your users will notice
the performance improvement in most cases. Typically, imported tabular models
perform better than multidimensional models and DirectQuery tabular models.

Data optimization considerations 219

The other data refresh option in tabular models is DirectQuery. DirectQuery does not
import data into SQL Server Analysis Services. It uses the data source's engine to execute
the queries. In our example, a DirectQuery model built on the data warehouse would send
SQL statements to the data warehouse to fulfill user requests. The user experience will
look like the import method, but the data is returned directly from the data warehouse,
and not from memory in Analysis Services. Here are some key considerations when
working with DirectQuery:

•	 Real-time connection: The data being served to users via DirectQuery is "real time"
from the data source. Changes in the source will immediately be reflected in the
user experience. DirectQuery makes it possible to have operational dashboards in
tabular models. The other consideration here is that the data is dependent on the
performance of the underlying source, and the network connectivity between the
tabular model and the data source.

•	 One data source: DirectQuery has limited data source support. The first limitation
is that a tabular model using DirectQuery can only use one data source. You cannot
mash up data in DirectQuery. Secondly, DirectQuery only supports a limited set of
relational sources at this time, including SQL Server, Azure SQL Database, Oracle,
and Teradata.

•	 Not limited by memory: DirectQuery tabular models are not limited in size
compared to the memory in Analysis Services. Because the data is returned from
the data source data system, all the data is available for analysis. However, there is a
limit on the number of rows returned – one million – although this can be adjusted
if required.

As you can see, tabular models have flexibility in their storage and query capabilities. We
recommend that you always start with the import mode and only use DirectQuery when
you have a specific use case that requires it.

Now that we have looked at the tabular model refresh options, let's look at using Excel to
create a tabular model.

220 Preparing Your Data for Tabular Models

Prototyping your model in Excel with
Power Pivot
One of the cool things about using tabular models is that you can prototype your model
using Excel. In this section, we will walk through creating a PowerPivot model to
demonstrate building a prototype that we will upload to SQL Server Analysis Services
in Chapter 7, Building a Tabular Model in SSAS 2019. We will work with the Invoice
Sales star schema illustrated in Figure 6.2 earlier in this chapter. Let's get started:

1.	 Open Excel and create a new workbook. Power Pivot is built in, so no additional
installs or extensions are required.

2.	 Next, we need to open the Power Pivot window. Go to the Data tab in Excel and
click the Go to the Power Pivot Window button on the ribbon as shown in the
following screenshot:

Figure 6.4 – Opening Power Pivot in Excel
If you have never opened Power Pivot before, you will be prompted to enable the
Data Analysis features. You should now see a new window open with a ribbon as
shown in the following screenshot:

Figure 6.5 – Power Pivot window

Prototyping your model in Excel with Power Pivot 221

3.	 Connect to the WideWorldImportersDW database by choosing From Database
and selecting From SQL Server. This will open the Table Import Wizard, as shown
in the following screenshot:

Figure 6.6 – Table Import Wizard in Power Pivot

4.	 Fill in the connection information for your WideWorldImportersDW server and
database and click Next >.

5.	 In the next screen, choose Select from a list of tables and views to choose the data
to import and click Next >.

222 Preparing Your Data for Tabular Models

6.	 Select the following views from the Cube schema in the Select Tables and Views
dialog: City, Customer, Date, Invoice, Invoice Sales, and Salesperson. You can
leave the Friendly Name column. You should note that this dialog will try to create
friendly names by recognizing syntax such as case and underscores. When you have
selected those views, click Finish to load the data into Power Pivot as shown in
the following screenshot:

Figure 6.7 – Select the views from the cube schema

Be wary of the amount of data in your sources
This process will try to load all the data from the selected tables into Power
Pivot, which will consume memory on the device you are using. You should
always use caution when using this feature or your device may run out of
memory if the dataset you select is too large.

Prototyping your model in Excel with Power Pivot 223

7.	 When the process is completed, you should see a dialog with the row counts for the
views that were imported. You can close the window if it looks similar to mine, as
shown in the following screenshot:

Figure 6.8 – Pivot table successfully loaded

224 Preparing Your Data for Tabular Models

8.	 Review the imported data. You should see six tabs, one for each view we created.
Before we move to the next step, let's get a short tour of Power Pivot using the
following screenshot as reference. In the center of the screen is the data that has
been imported into Power Pivot. To the right of the data you can see the option to
add another column, which we will do shortly. Below the data is the Calculation
Area, which is used to create measures:

Figure 6.9 – Power Pivot data view

9.	 We also need to create relationships, as there were no foreign keys. You can create
relationships using the Create Relationships button on the Design tab. However,
it can be helpful to use Diagram View to create and view the relationships visually.
Click Diagram View in the ribbon to change the view.

10.	 To create relationships, drag each dimension key onto the Invoice Sales fact table to
the matching key. For example, drag the Date field from the Date table to Invoice
Date Key in the Invoice Sales table. We rearranged the tables to look like a star
schema. The following screenshot shows the rest of the relationships laid out:

Prototyping your model in Excel with Power Pivot 225

Figure 6.10 – Power Pivot relationships
The following table describes the relationships in detail:

Figure 6.11 – Power Pivot relationships defined

11.	 To add a couple of calculations to support our model, let's go back to the Data
View. Now, click on the Invoice Sales tab. We will be adding two measures. The first
will sum Invoice Total Including Tax and the other will calculate the average of
Invoice Total Including Tax.

12.	 To create the sum, click any cell in the calculation area. We typically choose a cell
near the column we are working with. Type in the following formula: Invoice
Total:=sum('Invoice Sales'[Invoice Total Including Tax]).

13.	 Add another calculation below Invoice Total. It will be Invoice Average.
Use the following code for this: Invoice Average:=AVERAGE('Invoice
Sales'[Invoice Total Including Tax]).

226 Preparing Your Data for Tabular Models

14.	 Go ahead and set the format for both measures to currency ($ on the ribbon).

15.	 Go to the City tab. Let's add a calculated column with City and State
Province. Click on Add Column and then add this to the formula:
=City[City] & ", " & City[State Province]. Rename the column
City and State.

16.	 Let's give our model a test run. On the ribbon, click PivotTable. This will create a
PivotTable in Excel, connected to our model. In the new PivotTable, add our new
measures from the Invoice Sales section to the Values section. Then add our
new column, City and State, to Rows. Your PivotTable should look similar to
the following screenshot:

Figure 6.12 – PivotTable using our Power Pivot model

We will use the model in Chapter 7, Building a Tabular Model in SSAS 2019, to illustrate
how to deploy this to Analysis Services. Using Power Pivot with Excel allows developers to
build models locally and work with a rapid development and test cycle. When the model
meets the needs of the business, they can easily promote the model to Analysis Services in
most cases.

Summary 227

What about using Power BI to pivot?
Power BI can serve a similar purpose. It allows developers to rapidly build
solutions and prototype in a similar and often easier way than Power Pivot in
Excel. However, there is no automated way to promote the Power BI dataset to
SQL Server Analysis Services right now. Power BI also has a more significant
focus on the visualizations, whereas Power Pivot is focused on model creation.

Before we wrap up the chapter, save your Excel workbook with Power Pivot so we can use
it for our later exercises in the coming chapters.

Summary
As you can see, data preparation is not as important for tabular models. In short,
tabular models can be built quickly on less-than-great data structures. However, if
you want to build models for a longer duration, it is best to build out a tried and true
dimensional model. Once you have determined the foundation to build on, you can use
that information to determine how you want to work with data – either via refresh or
DirectQuery.

We also covered how to use Excel and Power Pivot to design and prototype an analytic
model that can be imported into Analysis Services. Using Power Pivot is a great way to
learn how to work with tabular model design, using Power Query to load and manipulate
the data.

In the next chapter, we will build tabular models from the ground up in Visual Studio.
We will also use the Power Pivot model we created in this chapter to create a new tabular
model. Let's create some tabular models!

7
Building a Tabular

Model in SSAS 2019
In the previous chapter, we looked at the various ways in which data can be prepped and
used with tabular models. This chapter focuses on using that data to build out tabular
models that we can use for analysis. When you have completed the work in this chapter,
you will be able to build tabular models from various types of data sources.

In this chapter, we will build out four tabular models to demonstrate building from the
data warehouse and also from the transactional database source. We will also create a
DirectQuery version of the data warehouse model. We will wrap up model creation by
importing the Power Pivot model we created in the previous chapter.

Apart from this, we will create a solution that supports multiple models or projects.
Like with the multidimensional model build, we will pull in the data, create tables, set
relationships, and add some custom columns and hierarchies. This will result in the
completion of basic tabular models that will be enhanced with Data Analysis Expression
(DAX) in the following chapter.

230 Building a Tabular Model in SSAS 2019

In this chapter, we're going to cover the following main topics:

•	 Creating the solution and first tabular model

•	 Creating a tabular model with DirectQuery

•	 Creating a tabular model on transactional data

•	 Importing a Power Pivot model into Analysis Services

•	 Deploying and processing your completed models

Technical requirements
In this chapter, we will be using the WideWorldImportersDW and
WideWorldImporters databases from Chapter 1, Analysis Services in SQL Server
2019. You should connect to the database with SQL Server Management Studio (SSMS).
You will be using views created in Chapter 3, Preparing Your Data for Multidimensional
Models. If you are starting with this chapter, you will need to apply the views from Chapter
3, Preparing Your Data for Multidimensional Models, to the WideWorldImportersDW
database before we start.

This chapter will also require the use of Visual Studio 2019 Community Edition to create
the Analysis Service project. We will also be importing the Power Pivot model we created
in Chapter 6, Preparing Your Data for Tabular Models, so have that to hand as well.

Creating the solution and first tabular model
We will be creating four tabular models in this chapter. The first and second models
will be built on the data warehouse and the third one will be built on the transactional
database. We will then wrap up with the imported model. Each of these will be created as
projects in a single Visual Studio solution. This will allow us to manage the shared settings
effectively. Let's get started:

Creating the solution and first tabular model 231

1.	 Open Visual Studio and create a new project. Choose the Analysis Services
Tabular Project as shown in the following screenshot. If you don't see it in your list,
search for Tabular to find the correct template:

Figure 7.1 – Creating a new Analysis Services tabular project

232 Building a Tabular Model in SSAS 2019

2.	 Configure your new project. Give the project and the solution a name. We are
naming our first project WideWorldImportersTAB as this will be the primary
model we will work with in the following chapters:

Figure 7.2 – Configuring your Analysis Services tabular project

3.	 When you click Create, you will be presented with a dialog to choose which SSAS
server you will use for your workspace. Tabular projects can create an integrated
workspace. This feature allows you to work with tabular model projects without
having access to a specific SSAS instance. In our case, we will select a workspace
server. We have already set up an Analysis Services instance with a tabular model,
so it makes sense for us to use it. If you are working on a company model and you
don't have access to a specific server, then the integrated workspace will allow you
to design and create the model.

Creating the solution and first tabular model 233

Choosing the integrated workspace or a workspace server
Workspace databases are required when working with tabular models in
Visual Studio. These databases are used to contain the data imported during
the design process. Microsoft recommends using the Integrated workspace
option. The primary reason is that there can be a lag when working with a
remote workspace server. If you have the SQL Server Analysis Services (SSAS)
instance running on the same device as Visual Studio, then both options are
viable. If you are unable to do this, use the integrated workspace option. The
only potential impact will be permissions to the database servers. You may
need to choose a different impersonation method to load data.

4.	 Because we are working with SSAS 2019, set Compatibility level as SQL Server
2019 / Azure Analysis Services (1500). This is the latest version of Analysis
Services tabular models. The project will support different levels, allowing you to
target the appropriate server instance. The following screenshot shows the settings
we used. Click OK when you complete this step:

Figure 7.3 – Choosing the development workspace

234 Building a Tabular Model in SSAS 2019

What is a compatibility level anyway?
When Analysis Services tabular models are updated with SQL Server or Azure
Analysis Services, some features are not always compatible with the version
you have worked in. The compatibility level allows Microsoft to release new
features and functionality without impacting your currently delivered projects.
The design and management tools such as SSMS and Visual Studio work with
multiple compatibility levels. Not only do the tools work with compatibility
levels, but the server engines on premises and in the cloud do as well. This
allows you to gain shared benefits when you upgrade while minimizing risk to
your currently deployed models. This is truly an awesome pattern Microsoft
has made available. It was necessary for them in Azure as it minimizes
the support and version issues that have been common in software. While
compatibility models will eventually be deprecated, their implementation has
enabled us to take advantage of improvements and use a measured approach
to upgrade our models. Compatibility levels are not automatically upgraded,
which means you need to manage the transition. In the end, this is something
to be aware of when working in new or older versions.

5.	 Now that you have the settings in place, click on Complete the creation of the
project. You will now have a new solution with one tabular model project, as
shown here:

 Figure 7.4 – New tabular model project

Creating the solution and first tabular model 235

Importing data into your model
Our next step is to create the data source. For this project, we will be using the Cube
schema we created in Chapter 3, Preparing Your Data for Multidimensional Models.
This will allow us to create a tabular model based on the same star schema as our
multidimensional model:

1.	 Right-click on the Data Sources folder and select Import from Data Source…
This will open the Get Data dialog, as shown here:

Figure 7.5 – Get Data dialog

2.	 Select Database to filter the available connector list and then select SQL Server
Database. Then, click on Connect.

3.	 In the SQL Server database connection dialog, enter the name of the server that
you created for WideWorldImportersDW. While it is optional, go ahead and
enter the database name as well, WideWorldImportersDW. Then, click OK.

4.	 The next window prompts us for our credentials to access the SQL Server database.

236 Building a Tabular Model in SSAS 2019

In Chapter 4, Building a Multidimensional Cube in SSAS 2019, we added the
multidimensional service account to the SQL Server database. We will now add the
tabular service account to the SQL Server database so we can use the Impersonate
Service Account option as Windows | Impersonation Mode.

Tip
If you are using the integrated workspace, you may want to create a SQL Server
login instead of using the service account.

We will need to add the service account to the db_datareader role in
WideWorldImportersDW. To quickly implement the solution I used, run the following
scripts in SSMS connected to your SQL Server Data Engine instance:

1.	 First, you will need to open your services console or SQL Server Configuration
Manger to get your service account name. In my case, the account name is NT
Service\MSOLAP$DOWSQL2019TAB. Here are the scripts to add this user to
your data warehouse:

USE [Master]

CREATE LOGIN [NT Service\MSOLAP$DOWSQL2019TAB] FROM
WINDOWS WITH DEFAULT_DATABASE=[master], DEFAULT_
LANGUAGE=[us_english]

GO

-- Execute the following after running the statement
above

USE [WideWorldImportersDW]

GO

CREATE USER [SSASTABSys] FOR LOGIN [NT SERVICE\
MSOLAP$DOWSQL2019TAB]

GO

USE [WideWorldImportersDW]

GO

ALTER ROLE [db_datareader] ADD MEMBER [SSASTABSys]

GO

If you experience issues while executing the script, try executing each
statement individually.

Creating the solution and first tabular model 237

2.	 Once you have the user in place, choose Impersonate Service Account and
click Connect. You may see an encryption warning. For our purposes, click OK
to continue.

The next task is to select the tables or views that will be used in our model. As we
noted before, we will be using the Cube schema, which is made up of views.

3.	 In the Navigator dialog, select the list of Cube schema objects except Cube.
Salesperson-Current. You can preview the content of each table when you
select it. This allows you to visually confirm that the tables or views you are selecting
are correct or have the expected data. Once you have selected all the Cube views,
your Navigator dialog should look like the following screenshot:

Figure 7.6 – Navigator dialog with Cube schema

Select Related Tables
The Select Related Tables button can be helpful when views are not used. This
button uses the foreign key relationships in the underlying database to add
tables related to the selected table. In our database, picking a Fact table and
clicking this button would result in the related dimension tables being selected.
However, if you follow the practice of using views as an interface layer (which
we recommend), then relationships are not present to be used, which is our
case here.

238 Building a Tabular Model in SSAS 2019

We have two options to continue, Transform Data or Load. Transform Data will
open the Power Query dialog and allow us to make some changes to the data we are
loading. Load simply loads the data as is. Load is most effective when you are doing
some discovery on the data and experimenting.

We recommend that you choose Transform Data to complete a couple of tasks that
are helpful right away. First, the table names that get pulled through from the source
include the schema name. We would want to remove that as it is not useful to our
users. Second, this is a great opportunity to remove columns that will not be used
in the model. In our case, we will be using most, if not all, of the columns from our
tables. In later model builds, this will become more relevant.

4.	 Now, click Transform Data to open Power Query.

Now that we have the Power Query Editor open, let's change the names of our
tables. In the editor, our tables are listed on the left in the Queries pane. You
can change the name by right-clicking the query and selecting Rename, or you
can select the table and change the name in the Properties panel on the right, as
highlighted in the following screenshot:

Figure 7.7 – Power Query Editor – changing the query name

Creating the solution and first tabular model 239

5.	 Remove Cube from all the query or table names. Once you have completed that,
click Import in the upper-left corner. This will import the data to our model
using the workspace and we can continue making modifications to the model in
Visual Studio.

Once you have imported the data, take a minute to check out the data in Visual
Studio. This experience is like working with the data in Power Pivot in Excel.

Before moving to the next step, open SQL Server Management Studio and connect
to the tabular model instance you selected for your workspace. You will see a tabular
model there with a GUID as part of the name. This is your workspace database. You
can see the tables and you can browse the database with the same browser used with
multidimensional models:

Figure 7.8 – Browsing the workspace model in SSMS

240 Building a Tabular Model in SSAS 2019

6.	 Now that the data has been imported, we need to add the relationships to the
model. To do this, you need to switch to the Diagram view. There are two small
buttons in the lower-right corner of the model designer that changes the view. Refer
to the following screenshot to see where they are as they are not easily identifiable. If
you are using a high-resolution monitor, they almost disappear:

Figure 7.9 – Grid and Diagram view buttons

Creating the solution and first tabular model 241

7.	 Select the Diagram view shown in the preceding screenshot and the screen will
switch to the following view:

Figure 7.10 – Diagram view before relationships have been created
In this view, we can create the relationships by dragging the keys from the
dimensions to their matching foreign key in the fact tables. The following table
shows the mapping for our model:

Figure 7.11 – Relationship mapping table

242 Building a Tabular Model in SSAS 2019

After you have created these relationships, your diagram view should look
something like the following screenshot:

Figure 7.12 – Diagram view with relationships

Creating the solution and first tabular model 243

Now is a good time to break down relationships in tabular models. These relationships
operate differently to the multidimensional model we created earlier. If you double-click
any relationship line, this will bring up the following Edit Relationship dialog:

Figure 7.13 – Edit Relationship dialog

Let's now dig into tabular model relationships:

•	 Tables and Columns: These dropdowns list the tables you can build relationships
between. The column lists specify the columns involved in the relationships. Tabular
models only support single-column relationships. Composite or multiple-column
relationships are not supported.

•	 Cardinality: This option specifies whether the relationship is Many to One (*:1),
One to Many (1:*), One to One (1:1), or Many to Many (*:*). If you import
tables, these relationships will be established. When we create the relationships,
Visual Studio evaluates and applies the relationship cardinality that fits based on the
data. You can use this dialog to fix any relationship issues that are discovered.

244 Building a Tabular Model in SSAS 2019

Many to many relationships, new in SQL Server 2019
Currently, many to many relationships are only supported in SSAS 2019, Azure
Analysis Services, and Power BI after the July 2019 release. Your model must
be set to the 1500 compatibility level to use this functionality. If you have a
business need to support this functionality, you should choose to use Analysis
Services to create your tabular model. Earlier compatibility levels had no
support or relationship workarounds to support many to many relationships.
In some cases, the effective functionality may be achieved by bi-directional
cross filtering or DAX functions. Neither of these solutions are optimal.

•	 Filter Direction: One of the cool things about working in tabular models is the
built-in cross filtering. The relationships define the filtering direction to help
manage the user experience. Cross filtering is the process where selecting a value
in a live connected solution automatically filters the contents. For example, in the
relationship we are showing, if you pick Item A, then the Sales table would be
filtered to show only matching sales. Any sale without Item A would no longer
be visible.

When using star schemas, the filter direction usually affects the fact tables in the
design (the many side of the one-to-many relationship). We have one relationship
between Invoice and Invoice Sales that is 1:1 and that is both directions. If
you want users to experience dimensions being filtered by fact table selections, you
can change the filter direction to << To Both Tables >>.

•	 Active: Tabular models only allow one active relationship between tables. In our
model, we have a role-playing dimension with Date. It is currently related to
both the delivery date and invoice dates in our model. We will use the relationship
with Invoice Date Key as the Active relationship. This makes it the default
relationship when interacting with the Date dimension.

The dashed line in the model signifies that the other relationship is inactive. This
relationship exists but requires DAX to be used. The alternative approach is to add
a copy of the table to the model to support an active relationship. This also requires
additional memory to support this. For this model, let's leave the relationship with
the delivery date as inactive.

The last property is Row Level Security. We will discuss this in more detail in the
following chapter on security. Now, let's move ahead and mark the date table.

Creating the solution and first tabular model 245

Marking the date table
In the next step, we will mark the date table. Tabular models use Data Analysis
Expressions (DAX) for adding calculations to the model. DAX has time intelligence
functions such as ENDOFMONTH, NEXTDAY, and TOTALMTD. These functions require a
date table to be tagged in your model.

In our model, we have created a Date dimension that meets the requirements. To mark
the Date table, follow these steps:

1.	 Right-click on the Date table.

2.	 Select Date.

3.	 Then, select Mark As Date Table, as shown in the following screenshot:

Figure 7.14 – Mark As Date Table
This will open a dialog prompting you to select the field in the table that is a
unique identifier and is a date data type. In our model, the Date field will be
automatically selected as it meets the criteria.

4.	 Click OK to complete the process.

Two other criteria must be met to qualify as a Date Table besides data type and unique
identifier. The dates in the date table must be sequential and without gaps. Don't use fields
from tables that are not sequential, such as fact tables. The other requirement is that the
date field must be at the day granularity. If using a field that is a Datetime data type,
it cannot contain partial days or time. Our model already has relationships based on
this column. We can now support time intelligence functions in our model. In the next
section, we will add hierarchies to the model.

246 Building a Tabular Model in SSAS 2019

Adding hierarchies to the model
As with our multidimensional model, hierarchies improve the user experience by
making the relationships between fields in the table clear. Unlike multidimensional
models, hierarchies don't impact performance or optimize aggregations. Their
purpose is to improve the user experience. Let's match the hierarchies created in the
multidimensional model.

Let's create the Geography hierarchy in the City table:

1.	 First, change to the Diagram view.

2.	 Locate the City table in your model diagram.

This hierarchy will be Continent | Country | State Province | City. When
you create a hierarchy in your project, it will always use the first column or field as
the top level. You can rearrange the order later if needed.

3.	 Select Continent in the City table.

4.	 You can now right-click and select Create Hierarchy from the shortcut menu,
which will add Continent to your new hierarchy. You can also use the Create
Hierarchy button in the table header to create a blank hierarchy. If you use the
shortcut menu option, you will see a generic hierarchy (Hierarchy1) created at the
bottom of the City table in the diagram. It will have the Continent field as the
first level in the hierarchy, as shown in the following screenshot:

Figure 7.15 – New hierarchy in the City table

Creating the solution and first tabular model 247

You will notice right away that the field name is repeated. You can rename the levels
if it will improve the user experience. In our current model build, we will leave the
field names intact. We have done the work in the underlying views to support a
good user experience.

You can add levels by dragging the field in the table to the position you need in the
hierarchy. You can use the Maximize button in the upper-right corner of the table
to open the table in a view that is easier to work with each specific table.

5.	 Drag Country, State Province, and City into your new hierarchy in that order.

6.	 Double-click the hierarchy name or right-click and select Rename to give your new
hierarchy a name. In this case, we are calling this hierarchy Geography.

Once you have completed these steps, your City table should look like the
following screenshot, with your new Geography hierarchy in place:

Figure 7.16 – Completed Geography hierarchy in the City table

248 Building a Tabular Model in SSAS 2019

Follow the preceding process to add the remaining hierarchies to the dimension tables in
our model. We will rename the label fields for the Date hierarchies by removing Label
from the field names. This is the only field name change we will make. Use the following
table to guide you through the changes you need to make:

Figure 7.17 – Hierarchy definitions

You will also be able to view the hierarchies in the Tabular Model Explorer pane in Visual
Studio, as shown in the following screenshot. However, the only management operations
available currently are the ability to delete the hierarchy or rearrange the levels. You must
use the Diagram view of the model to add additional hierarchies, change fields in your
existing hierarchies, or rename levels:

Creating the solution and first tabular model 249

Figure 7.18 – Tabular Model Explorer – City table hierarchies

In the next section, we will add measures to our model.

Adding some measures to our model
Now, let's expand our model by adding some basic measures. We will add many more
measures in the next chapter. Let's add the Total Sales Amount, Invoice Line
Count, and Invoices measures to the Sales table:

1.	 In Visual Studio, open the Grid view for the model and select the Sales table from
the tabs at the bottom.

250 Building a Tabular Model in SSAS 2019

2.	 Next, select the Total Including Tax column. This should highlight the entire
column. With that column selected, use the sum symbol on the toolbar to add a
new calculated measure. Use the following screenshot to help locate the button
on the toolbar:

Figure 7.19 – Adding a new calculated measure to your model
After clicking the button, you will find a new measure in the measure panel at
the bottom of the grid and below the Total Including Tax column, as
shown here:

Figure 7.20 – Results of creating a new measure with the Sum button

Creating the solution and first tabular model 251

3.	 Let's fix this new calculation. We should rename it Total Sales and set the
format to Currency. We can rename this by changing the name in the formula bar.
Currently, the formula is, Sum of Total Including Tax:=SUM([Total
Including Tax]). By changing it to Total Sales Amount:=SUM([Total
Including Tax]), we have renamed the calculation. You will see the change in
the calculation grid as well.

4.	 Next, let's add the currency format. You can do that by changing the Format
property in the Properties window, as shown in the following screenshot:

Figure 7.21 – Changing Format in the Properties window
You can also adjust Currency Symbol and Decimal places here.

Formatting measures and columns in tabular models
You can format all measures and columns in tabular models using the same
pattern. You need to go to the properties of each measure and column and
choose the formatting style you want to use. The format strings are the same
here as in the multidimensional models. We encourage you to take the time to
set the formats for all columns in your models. This greatly improves the
user experience.

5.	 Let's add the invoice line count. Highlight the Sales Count column and click the
sum button. Rename the measure Invoice Line Count. Change the format
for this measure to Custom and use the following format string: 0,0. This will add
commas to the number.

252 Building a Tabular Model in SSAS 2019

6.	 Finally, we will add the Invoices measure. Highlight the WWI Invoice ID
column. In this case, we will use the drop-down menu from the sum button and
select DistinctCount. This will give us the number of invoices represented here. Use
the same formatting as used in the Invoice Line Count measure.

DistinctCount in tabular versus multidimensional
The use of the DistinctCount aggregation has great value in data analytics
solutions. However, multidimensional models require these calculations to be
performed in separate measure groups due to negative performance impact on
existing measure groups. With the release of VertiPaq, Microsoft added better
support for distinct count measures. If you require distinct count measures
in your models, tabular models are a better choice versus multidimensional
models.

Managing partitions in tabular models
Partitions in tabular models allow you to reduce the processing or refresh burden in your
model. Partitioning your tables involves choosing ways to separate your data into smaller
chunks. Every table has a default, single partition. If your model can be partitioned so that
less data has to be refreshed at a time, you can shorten your data refresh windows. Let's
now add some partitions to the Sales table. Select the Sales table, and then click the
Partitions button from the toolbar, as shown in the following screenshot:

Figure 7.22 – The Partitions button on the toolbar

Creating the solution and first tabular model 253

This will open the Partition Manager dialog. Here, you can see the current partition
definition, as shown here. By default, the table has a single partition called Partition.
The definition of that partition is in M or Power Query, as shown in the Query
Expression textbox:

Figure 7.23 – Partition Manager with one partition

We are going to create two partitions, History and Current. The History partition
will include data up to 1/1/2015. The Current partition will cover from 1/1/2015 to
the present date. The first step is to change the existing partition to only include the
information before 1/1/2015. Let's do this as follows:

1.	 Click the Design button. This will open Power Query Editor for the partition.

2.	 Now, scroll over to the Invoice Date Key column and click the arrow on the
right side of the column to open the column menu.

254 Building a Tabular Model in SSAS 2019

3.	 Then, select Date Filters and choose Before:

Figure 7.24 – Date filters for the partition
This will open a dialog that allows you to select the date you want the partition to
cover up to.

4.	 Enter 1/1/2015 as the date and click OK.

5.	 To save this, click the Home button and choose Close & Update. This will reset the
partition to the date range you selected and load the data in the range specified.

The resulting query for your partition should look like the following:
let

 Source = #"<<server>>;WideWorldImportersDW",

 Cube_Sales = Source{[Schema="Cube",Item="Sales"]}
[Data],

 #"Filtered Rows" = Table.SelectRows(Cube_Sales, each
[Invoice Date Key] < #date(2015, 1, 1))

in

 #"Filtered Rows"

6.	 To create the next partition, copy the partition. Go to Power Query Editor for this
partition by clicking the Design button again. Now, let's update the query.

7.	 In the Query Settings pane on the right, you will see Applied Steps.

Creating the solution and first tabular model 255

8.	 Click the gear beside the Filter Rows step. This will reopen the date filter dialog.

9.	 Change the filter option to is after or equal to. This will cover the dates for the
Current partition:

Figure 7.25 – Filter Rows dialog for partitions

10.	 Click OK to set the new filter and then Close & Update the partition.

11.	 The final step is to rename the partitions History Partition and Current
Partition. Click OK when you are done. You can see the partitions you created
in Tabular Model Explorer, as shown here:

Figure 7.26 – Partitions in Tabular Model Explorer

256 Building a Tabular Model in SSAS 2019

Congratulations! You have created a tabular model that is similar in design to the
multidimensional model you created previously. This model is an in-memory model that
fully refreshes the data in the model using a star schema data warehouse as its underlying
data source. Next, we will look at the other design models you can use with tabular
models.

Creating a tabular model with DirectQuery
Now that we have created our first model, which was built on a data refresh or data load
model, we will create a tabular model with DirectQuery in this section. By way of a brief
reminder, a DirectQuery model does not store the data in Analysis Services; it sends
native queries to the data source to return the data that was requested. We will be creating
a new project and model that will be designed from the ground up for DirectQuery.

Copy issues with models and converting to DirectQuery
While the documentation notes that you can simply change the mode to
DirectQuery and fix any errors, this did not occur with our model. After
removing partitions, we continued to receive odd errors, so we are going to
create the model from scratch in this exercise. If you are interested in trying
to do this, you should use a copy of your original model. Create a new tabular
model project and replace the code (view the code from Solution Explorer on
the Model.bim file). This will give you a safe baseline to start with. You will
need to remove the partitions we created on the Sales table to get past the
first round of errors.

Creating a new tabular model project
We will be creating a new project in our existing solution. Let's get started:

1.	 From Solution Explorer, right-click the solution name,
WideWorldImportersTAB, choose Add, and then click New Project from
the menu.

2.	 In the Add a new project dialog, choose Analysis Services Tabular Project, and
then click Next.

3.	 Name your project WideWorldImportersDQ and click Create. You can select the
workspace server to complete the process.

Creating a tabular model with DirectQuery 257

Converting the new model to DirectQuery
These steps will change from in-memory to direct query, which sends queries to SQL
Server to be executed:

1.	 First, confirm you are working in the correct project in Solution Explorer.
If you followed the naming conventions I used, you should be in the
WideWorldImportersDQ project, as shown here:

Figure 7.27 – Solution Explorer – Tabular solution

2.	 Select Model.bim as shown in the previous screenshot and view the properties for
that file.

3.	 Locate the DirectQuery Mode property and set the value to On:

Figure 7.28 – The DirectQuery Mode property

258 Building a Tabular Model in SSAS 2019

4.	 To create a new data source, right-click Data Sources in Tabular Model Explorer
and choose New Data Source. The first thing to notice in the Get Data dialog is that
there are fewer data sources to choose from. That list contains currently supported
data sources for DirectQuery and is not limited to Microsoft data sources. Oracle
and Teradata are also supported:

Figure 7.29 – DirectQuery Get Data options

5.	 Now, choose SQL Server database and click Connect. Complete the connection
information process to connect to WideWorldImportersDW. Once done, be
aware that this is the only connection you can have in a DirectQuery tabular model.
This is one of the limitations using a DirectQuery tabular model.

6.	 Next, we will connect tables to our model. Right-click on the data source you
created and select Import new tables.

7.	 In the Navigator dialog, select Fact.Sale. Then, click the Select Related Tables
button. This should add the dimension tables related to Fact.Sale. For our purposes,
this will be a good option to demonstrate DirectQuery. Select Load when this is
done. Ironically, we are neither importing nor loading data in this scenario. You will
see from the Data Processing dialog shown next that no data is actually loaded into
the model:

Creating a tabular model with DirectQuery 259

Figure 7.30 – Processing Progress for DirectQuery

You will notice that the grids are empty in Visual Studio. We will resolve that in the next
section by adding sample partitions. If, during this process, you are unable to click on
other tabs, you may need to save your progress and restart Visual Studio before moving to
the next section.

Adding sample partitions to the DirectQuery model
When working with DirectQuery, you only see the metadata for the model. In order to
design with data, which is the normal process when working with tabular models, you
need to create sample partitions that bring some data into memory so it can be worked
with at design time. These partitions are only used during the design process.

Let's create sample partitions. We will start with the Fact Sale table:

1.	 Click on the Fact Sale tab and then click the Partitions button in the toolbar to
open Partition Manager.

The default partition is designated as the DirectQuery partition. When deployed,
this is the only partition that will be visible to users. Unlike the previous work we
did with partitions, you will see a new button called Set as a Sample.

2.	 Select the existing DirectQuery partition and click Copy. This new partition is
designated as the sample.

3.	 Next, click the Design button when the copied partition is selected.

260 Building a Tabular Model in SSAS 2019

4.	 In the Power Query Editor window, select Invoice Date Key and filter the dates for
the year 2015 as shown. This will limit the sample we will work with during design
time to Invoice Date in 2015. This is very important if you are using DirectQuery
with very large tables. This will limit the sample of rows so you can test the design in
Excel without issues:

Figure 7.31 – Filter Rows for sample partition

Even after creating the sample partition, the data does not display in the grid. This is
because development with DirectQuery models is still difficult and limited at this time.

You can create sample partitions for the dimensions as well at this point. I chose not to
filter the dimensions so we could be assured that the data works as expected. This is a
simple process of making a copy of the partition and then processing the partitions.

Enhancing your DirectQuery model
While you have limited ability to enhance DirectQuery tabular models, Analysis Services
serves as a semantic layer for your relational data. So, what can you do?

•	 Renaming objects: You can rename columns and tables to improve the
customer experience.

•	 Adding Measures: You can add measures using the same technique we used with
the in-memory models. Select the column to add the measure to and then click the
Sum button on the toolbar.

•	 Adding Columns: You can add calculated columns to the tables as well.

Creating a tabular model with DirectQuery 261

Previewing the data with Excel
In order to preview the data in the model, your best option is to use the Analyze in Excel
option. Look for the Excel icon in the middle of the toolbar. This will open the Analyze
in Excel dialog. At the bottom of the dialog, you have the option to choose Sample data
view or Full data view. Sample data view will use the smaller in-memory dataset. Full
data view will work with the full dataset. Sample data will allow you to work with the data
more efficiently, which is valuable when testing the updates:

Figure 7.32 – Analyze in Excel with DirectQuery models

DirectQuery models allow you to query larger datasets that may not fit in memory. These
models also support real-time changes to the underlying data source. They are not the
preferred solution in tabular models, but they are definitely a good option when required.
We will now move forward and create a tabular model on transactional data.

262 Building a Tabular Model in SSAS 2019

Creating a tabular model on
transactional data
We are now going to create a model based on unprepared data. There are cases where
building on the transactional system may be your best option due to business or other
technical reasons. This allows you to build an analytics solution without necessarily
building out a data warehouse. This process will use Power Query extensively to build out
the solution.

We will start the process by adding another SSAS tabular project to our solution. Let's
name this one WideWorldImportersPQ for Power Query. Let's get started on our
new model:

1.	 Add a new data source to the model. This time, we will be connecting to the
transactional database we restored, WideWorldImporters.

2.	 Next, we will import the tables. Right-click the data source and select Import
New Tables. Here is the list of tables to select in the navigator: Application.
TransactionTypes, Sales.CustomerCategories, Sales.Customers,
and Sales.CustomerTransactions.

3.	 Once you have the tables selected, click Transform Data. This will open Power
Query Editor so that we can modify the tables.

We are going to create a simple model so we will be removing columns, changing some
names, and making other adjustments to prepare the data for the model. The next steps
will walk through this process for each table's clean-up. This process is very similar to
transforming data with ETL tools but is typically referred to as shaping the data with this
toolset.

Let's start with the Sales Customers query. We will only be keeping the
CustomerID, CustomerName, and CustomerCategoryID columns:

1.	 You can easily do this by selecting the three columns we want to keep.

Creating a tabular model on transactional data 263

2.	 Then, right-click on one of the columns and choose Remove Other Columns. The
following screenshot shows the highlighted column and the menu option:

Figure 7.33 – Removing columns in Power Query

3.	 Once that is complete, rename the query Customers and add a space to
CustomerName so that it becomes Customer Name.

4.	 We will keep only two fields from Application TransactionTypes –
TransactionTypeID and TransactionTypeName. Rename the query
Transaction Types and the name column Transaction Type.

5.	 Only two fields will be retained for the Sales CustomerCategories query
– CustomerCategoryName and CustomerCategoryID. Rename the query
Customer Categories and the name column Customer Category.

6.	 The last query, Sales CustomerTransactions, will have a few more
columns – CustomerTransactionID, CustomerID, TransactionTypeID,
InvoiceID, TransactionDate, and TransactionAmount. Rename the
query Customer Transactions. Add spaces to the TransactionDate and
TransactionAmount column names.

264 Building a Tabular Model in SSAS 2019

Update permissions in the database to process
Depending on how you are authenticating to the WideWorldImporters
database, you may either get an error on permissions or only get the
data partially loaded. The WideWorldImporters table, Sales.
Customers, has special permissions associated with it. The simplest way
to bypass this for our purposes is to give the user you are connecting with
sysadmin permissions in the server. This is not a best practice. When
working with business databases, your DBA team should know the correct
permission set required to access your data.

7.	 When you are done with the changes to the queries, click on Close & Apply or
Close & Update from the Home menu. The option changes depending on whether
this is a new query or a query you are changing. This will load the grid with the data
we shaped for this model.

While this was not an exhaustive review of the Power Query capabilities in designing
tabular models, this gives you the opportunity to see that the data does not have to be
pristine in order to be consumed by a tabular model. We encourage you to explore these
capabilities to better understand the various ways in which you can shape data with Power
Query. Let's now import a Power Pivot model into Analysis Services.

Importing a Power Pivot model into Analysis
Services
In the previous chapter, we created a Power Pivot model in Excel. In this section, we will
import that model into Analysis Services.

Once again, we will be adding another Analysis Services tabular project to our solution. In
this case, the steps include importing the Power Pivot model. Let's get started:

1.	 Open Solution Explorer in Visual Studio. Right-click the solution and select Add |
New Project.

2.	 In the Add a new project dialog, search for tabular. You should see an option
called Import from PowerPivot. Select that option and click Next.

3.	 Give the new project a name like WideWorldImportersPowerPivot and click
Create. You should use the same settings for your workspace server and click OK.

4.	 You will then be presented with an Open dialog. Browse to the Excel workbook you
created previously and click Open. When the process completes, you should see
your model with the data loaded.

Deploying and processing your completed models 265

That's all it takes to import the model from Power Pivot in Excel. You should now have
four tabular model projects that have been created in various ways. The next section wraps
up the chapter by deploying these models to SSAS.

Deploying and processing your
completed models
As we wrap things up by deploying and processing your models, you need to be aware that
these will increase the memory pressure on your development solution. We recommend
that you remove all but the first model when we are done to save on resources. That model
will be used in the following chapters as well.

To deploy your projects, right-click the project and choose Deploy. This will load the data
model on Analysis Services. Keep in mind that the workspace versions of the databases
will be on the server if you have Visual Studio open and are working in a model. Start with
the WideWorldImportersTAB and WideWorldImportersPQ projects.

When you deploy the WideWorldImportersPowerPivot project, you will get a
message about upgrading the model to the latest compatibility level, as shown in the
following screenshot:

Figure 7.34 – Compatibility level warning for the Power Pivot model

266 Building a Tabular Model in SSAS 2019

In this case, we will select No. Let's update our model prior to processing:

1.	 Click on the Model.bim file in Solution Explorer and go to the Properties model.

2.	 In the Compatibility Level property, you should see SQL Server 2014 / SQL Server
2012 SP1 (1103) as the current level. Change that to SQL Server 2019 / Azure
Analysis Services (1500).

3.	 You will get a warning saying that the change is irreversible. Click Yes and continue.

Now that you have updated the model, deploy it to Analysis Services.

Instability in Visual Studio 2019 – restarts required
Throughout this chapter, you may experience odd errors, including errors
that say the model is already open after you make a property change like
the compatibility level. Close Visual Studio and reopen the solution. If you
are new to working with data tools in Visual Studio, especially the business
intelligence tools, you will find this frustrating. While not the best working
situation, restarting the IDE seems to clear up most of these issues during the
development cycle.

The last project we will be deploying is the DirectQuery project. Right-click and deploy it
to Analysis Services now. Because this is a DirectQuery model, you will notice that only
the metadata was loaded to the server.

Once you have deployed all the models, close Visual Studio and open SSMS. Connect to
your tabular model and you should see all the new tabular models deployed without the
GUIDs. If you still see a GUID-based model, either Visual Studio is still running with a
model in design mode or you set your workspace up to retain the workspace models.

That wraps up the various ways in which you can create a tabular model.

Summary 267

Summary
In this chapter, you have learned to create tabular models from various source
configurations, such as star schemas and transactional databases. You have created a
DirectQuery model that uses the underlying data store to process the requests, and you
imported your Power Pivot model into Analysis Services as well. The skills you have
learned here will support your ability to deliver tabular models that meet business needs
regardless of the data sources. You will also be able to explain the value of improving the
data sources to create more robust analytic models.

Don't forget to remove the Power Query and Power Pivot models to keep your
memory management on your development server in check. You can remove the
other two databases as well because we will be using workspace databases for the
next chapter. However, you will need to redeploy WideWorldImportersDQ and
WideWorldImportersTAB for later chapters.

The next chapter focuses on using DAX, or Data Analysis Expressions, to expand your
model even more. We will look at more complex measures and columns. We will also
deploy some KPIs and calculated tables. Let's go expand those models!

8
Adding Measures
and Calculations

with DAX
Now that you have created your tabular models, we will look at expanding the models
further using Data Analytic Expressions, or DAX. Like MDX for multidimensional
models, DAX is designed for use with Microsoft's VertiPaq engine. While MDX is
modeled after SQL (SELECT…FROM…WHERE), DAX was designed for use by business
and data analysts already familiar with Excel functions. In some ways, it is a happy
medium between Multidimensional Expressions (MDX) and Excel functions. We can use
DAX to create columns, measures, and query the database.

In this chapter, you will learn all there is to know about DAX, which will help you to
enhance your existing models to meet the business requirements. Without the calculations
you create with DAX, the user experience with the models will not be as good as it
could be. DAX calculations allow your users to have business-ready calculations at their
fingertips. Without these calculations in the models, users would need to add them in
their tools. Not only is this not user friendly, but it often leads to calculation variances
between the reports different users create.

270 Adding Measures and Calculations with DAX

In this chapter, we're going to cover the following main topics:

•	 Understanding the basics of DAX

•	 Adding columns and measures to the tabular model

•	 Creating measures with the CALCULATE function

•	 Working with time intelligence and DAX

•	 Creating calculated tables

•	 Creating calculation groups (new in SQL Server 2019)

•	 Creating KPIs

•	 Querying your model with SQL Server Management Studio and DAX

Technical requirements
In this chapter, we will be using the first tabular model we created in Chapter 6, Preparing
Your Data for Tabular Models, WideWorldImportersTAB, to exercise DAX. We will be
working with our Visual Studio project as well. Lastly, you will need to have Excel ready
for testing and SSMS for querying.

Understanding the basics of DAX
One of the key differences in DAX is that it is used to build expressions and formulas,
not traditional style queries. SQL works with tabular sets of data and MDX works with
multidimensional sets. DAX was designed more like Excel functions. This works well
when creating calculated measures and calculated columns. So, unlike MDX and SQL,
there is no SELECT … FROM … WHERE structure. There are a few other concepts we
need to review before we start creating calculations.

Adding columns and measures to the tabular model 271

When working with DAX, you need to consider the context the function applies to. When
creating calculated columns, the context is the row. You can use anything in the row to
help build the column with DAX. Other functions apply to the table or just the column.
When creating DAX calculations, you need to check the context to make sure you are
using the function correctly.

Table names and field names use special syntax. Table names are typically enclosed
in single quotes, 'Table Name', and columns are enclosed in brackets, [Column
Name]. When working with tables, you may see some calculations that do not use single
quotes. They are not required when there are no spaces or special characters in the name
of the table. For example, Item and 'Item' are both valid table names in our model.
IntelliSense demonstrates the standard practices when used.

Finally, whenever working with DAX, you always start with an equals sign. This is true
in both measures and calculated columns. You can add the name of the measure before
the equals sign. The base syntax for measures is [Measure Name]:=<Measure
Calculation>. When creating a calculated column, the formula bar does not contain
the name; it is simply =<Column Calculation>.

Adding columns and measures to the
tabular model
We can add value and usability to our model by adding measures and columns. In the
previous chapter, we created Invoices, Invoice Line Count, and Total Sales
Amount on the Sales table. We created these using the Autosum button on the toolbar.
This is the simplest way to add basic measures to your tables. Sum, Average, Count,
DistinctCount, Min, and Max are available using this button. As we did previously,
simply select the column you want to create the measure for and use the Autosum menu
to create the measure. Rename the measure as desired, add some formatting, and you are
good to go.

272 Adding Measures and Calculations with DAX

We will look at other options in this chapter to manually create measures and calculated
columns. Like Excel, we can use the formula bar to create and manage our measures. The
following screenshot shows the formula bar and the formula buttons (highlighted):

Figure 8.1 – DAX Formula Bar and Formula Buttons in Visual Studio

Both calculated columns and measures use the formula bar to display the calculation and
the name of the calculation.

Note
Visual Studio has issues with some high-resolution monitors that cause some
of the buttons to be very small as it does not scale. This is particularly an issue
with data tools and, depending on your monitor resolutions, some buttons and
text will appear as they do in the preceding screenshot. We will show the details
where we can, so that you can identify the buttons and text used throughout
the book.

As you can see in the preceding screenshot, there are three buttons on the formula bar to
help you create calculations. The red X is used to cancel the changes you made. The green
check mark will check and apply the changes. Keep in mind that you are actively adding
these to a tabular model in your workspace. When applied, it will create and deploy the
calculation to the workspace. Canceling changes becomes necessary when troubleshooting
issues with your calculation that cause it to not deploy correctly.

Adding columns and measures to the tabular model 273

The third button on the formula bar is fx, which is a function list. This allows you to add
a function to your formula. It also shows you the syntax and basic description of the
function. In the following screenshot, we opened the Insert Function dialog and have
highlighted AVERAGEA. This function creates an average of the numeric values in the
column while ignoring the non-numeric values:

Figure 8.2 – The Insert Function dialog

As you can see in the screenshot, there are many functions available to you. This is a good
way to explore them. The dialog also has a Select a category dropdown. This will filter the
functions to one of the following areas:

•	 Date & Time: These functions are typically referred to as time intelligence
functions. Some are basic, which capture the date part, but others require the Date
table to support functions such as NEXTYEAR.

•	 Math & Trig: Just like the category implies, these are math functions such as SQRT
(returns the square root of a number) and MOD (returns the remainder in a division
calculation).

•	 Statistical: This is one of the most frequently used categories as it supports counts,
averages, and standard deviation.

•	 Text: You can use the functions here to concatenate, trim, and search string values.

•	 Logical: Logical functions include IF, AND, and NOT, which allow you to add
decision logic to your calculations.

274 Adding Measures and Calculations with DAX

•	 Filter: This list includes various types of functions that limit the set of values
included in calculations. Some of these filters have explicit functionality to work
with selected values or to even remove other filters from the calculation.

•	 Information: Most of the functions you will use in this category are IS functions;
for example, checking to see whether a value is a number (ISNUMBER) or whether
the field is empty (ISEMPTY). They are often used with the Filter functions to
properly apply calculations.

•	 Parent/Child: These are PATH functions that work with a list of IDs. The functions
here are used to traverse hierarchies.

Implicit calculations
Like Excel, tabular models have the concept of implicit calculations. If you
have a value in a column that is numeric, by default, a sum calculation for that
column is created. You do not need to add the calculation. However, to make
sure you get your expected result, we recommend that you build calculations
that meet those needs. This will allow you to apply any business corrections or
any other adjustments needed at a later time. Also, some tools will treat value
columns as attribute columns. Calculated measures clearly define the value
role.

Before we create our calculations, there are two other buttons to call out on the formula
bar. The formula buttons we have been looking at are on the left side of the formula bar.
On the right side of the formula bar are two buttons. The first button looks like a down
arrow. You can use this button to expand the formula section so you can see longer DAX
expressions. The button furthest to the right will open a basic DAX Editor. This allows for
more screen space when creating complicated or long DAX expressions, as shown here:

Figure 8.3 – DAX Editor

Now that we are familiar with adding columns and measures to the table, let's learn how
to create item calculations.

Adding columns and measures to the tabular model 275

Creating item calculations
In Chapter 5, Adding Measures and Calculations with MDX, we created calculations based
on item colors. In this section, we will go through a similar process, creating calculated
columns and measures to support item counts by color. Through the next steps, we will
create a column to determine how many red items are on each line and then create some
calculations based on that information. In the next section, we will do a similar process,
but use the CALCULATE function to create the values:

1.	 In your Visual Studio project, go to the Sales table in the model.

2.	 Scroll over to the right and you will see a blank column at the end with the words
Add Column. Click the column header.

3.	 In the function bar, start by giving the column a name. We will call this column Red
Items. Let's start the function with the following code: Red Items:=.

4.	 In order to identify which items are red, we need to refer to the Item table. DAX
has a function to look up values in related tables called RELATED. This will return
the related value from the table, which, in our case, is items whose color is red. We
will use the RELATED('Item'[Color]) code to find the related item color. This
function works well when creating calculated columns that refer to columns from
other tables. However, if the relationship does not exist, this will return an error.

5.	 In the end, we want to populate our column with Quantity from the line we are
on whenever the item's color is red. Here is the full formula to return the desired
result:

Red Items:=IF(RELATED('Item'[Color])="Red",
Sales[Quantity], 0)

We now have a column that contains the quantity of red items for each row. The
value 0 is used when the row does not have red items. Keep in mind that this
formula uses the row as its context to determine the relationship and return the
quantity.

6.	 Now that we have the Red Items column, we can create a measure that returns
the sum. Click in the measures area below the column. Go to the formula bar and
use the following code to create the Total Red Items measure:

Total Red Items:= SUM(Sales[Red Items)

7.	 While you have the measure highlighted, let's fix the format. In the measure
properties, set the format to Custom and use the following code for the format
string: 0,0. Now we are done with the basics of adding red items.

276 Adding Measures and Calculations with DAX

In DAX, you will notice that many functions, such as SUM and AVERAGE, have suffixes
such as A and X or a combination thereof. The base functions work as expected; the
calculation is based on the column or field specified. Let's start with SUMX to see the
difference. SUMX evaluates the table and returns the sum of the values based on the
expression you create for the table. When we created the sum for red items, we created a
column and then summed those values. In this case, we will use a single function for the
measure; no column is required:

1.	 Select a field in the measure grid on the Sales table.

2.	 In the formula bar, enter the following calculation: Total Blue
Items:=SUMX('Sales',IF(RELATED('Item'[Color])="Blue",
Sales[Quantity],0)). You can see in the formula that we moved the same
calculation we used for the Red Items column into the measure itself. This
eliminates the need for the additional column.

3.	 Finally, set the format for this measure to 0,0 using the Custom format option in
the measure properties.

Note
You may decide that you need the column as well as the calculation. Keep
in mind that columns are calculated and stored in memory to improve
performance. Measures are calculated on the fly when requested. You may find
that your performance varies depending on how you create the calculation.
Furthermore, you may want those values in columns if you have other
calculations you would like to use them with.

Let's wrap up this section by creating the rest of the color measures for the remaining item
colors (black, gray, light brown, steel gray, white, and yellow) using the SUMX function
format. Remember to set the formatting to keep the measures consistent when you add
those measures now.

In the next section, we will look at the variations of the COUNT and AVERAGE measures.

Adding columns and measures to the tabular model 277

The COUNT and AVERAGE measures
The COUNT and AVERAGE measures have variations that can be used to understand
the various ways in which DAX does calculations. We have already looked at the
SUMX function and how it uses the table as the base for the calculation. The syntax and
functionality are the same for COUNTX and AVERAGEX. They both will perform the
calculation over the table based on the expression you provide.

In the next steps, we are going to create additional metrics based on Invoice Profit
in the Invoice Sales table:

1.	 First, we need to switch to the Invoice Sales table. Find the Invoice
Profit column and select a field in the measure grid.

2.	 The first measure we will create is Average Invoice Profit. For this measure,
we will use the AVERAGE function. This will give us the average or mathematic
mean for all the invoices. Here is the formula for this measure:

Average Invoice Profit:=AVERAGE('Invoice Sales'[Invoice
Profit])

3.	 The next measure will be to demonstrate AVERAGEX. We will look for the average
profit for sales made in Indiana. Once again, we will use the RELATED function to
find the matching State Province instance from the City table. This will filter
the invoices and give us an average profit for Indiana sales.

Here is the formula for the Indiana profits:
Average Indiana Profit:=AVERAGEX('Invoice
Sales',IF(RELATED(City[State Province])="Indiana",'Invoice
Sales'[Invoice Profit],""))

4.	 Now, to demonstrate the COUNTA measure, we are going to copy the Invoice
Profit column and set some of the values to NULL. COUNTA counts non-empty
cells, whereas COUNT will count only those cells containing values.

5.	 In Tabular Model Explorer, right-click the Invoice Sales table and select
Table Properties.

278 Adding Measures and Calculations with DAX

6.	 In the Edit Table Properties dialog, click the Design button. This will open the
Power Query Editor for the table.

7.	 Find the Invoice Profit column. Right-click the column header and select
Duplicate Column. This will create a copy of the column in the table called Invoice
Profit – Copy.

8.	 Right-click the header again and choose Replace Values. In this dialog, use 40.00
for Value To Find. Use null as the Replace With value (null is case-sensitive.
You may get an error if you use any capital letters. The error you will see is that text
is not permitted). Your dialog should look like the one in the following screenshot:

Figure 8.4 – The Replace Values dialog in Power Query

9.	 Click OK to complete the process.

10.	 To verify that the change has been applied properly, you can click the down arrow
on the column header and filter for (null), as shown in the following screenshot.
This will show the values you changed:

Adding columns and measures to the tabular model 279

Figure 8.5 – Filtering the column for null values

11.	 Once you have finished reviewing the change, be sure to remove the filter step from
the Applied Steps section by clicking the delete button, as shown in the following
screenshot. Then you are ready to move to the next step:

Figure 8.6 – Removing the filter

280 Adding Measures and Calculations with DAX

12.	 Go to Home and choose Close & Update. Then, click OK to close the Table
Properties window.

13.	 Back on the Invoice Sales table, you will see the Invoice Profit – Copy field
you added at the end of the table. If there are no values in the column, process the
table using the Process Table button on the toolbar shown here:

Figure 8.7 – The Process Table button

14.	 Now that we have the Invoice Profit – Copy field, create a COUNT calculation –
Count Inv Profits:=COUNT('Invoice Sales'[Invoice Profit -
Copy]). This returns the count of non-empty values in the column.

15.	 Create the COUNTA measure: CountA Inv Profits:=COUNTA('Invoice
Sales'[Invoice Profit - Copy]). This also returns the count of
non-empty values in the column. Effectively they have the same value, but we are
not discovering how many invoices do not have a profit or loss recorded.

These measures have helped us see profits. The next measures will help us identify missing
profits using DAX.

Identifying missing profits
We will now add another column that will help us identify invoices missing profits:

1.	 Click on Add Column in your Invoice Sales table.

2.	 In the formula bar, we are going to use the ISBLANK function to identify
those columns' missing values. Use this formula to create the column:
=ISBLANK('Invoice Sales'[Invoice Profit - Copy]).

3.	 Name the column Missing Profit. The Missing Profit column contains
TRUE and FALSE as values.

Creating measures with the CALCULATE function 281

4.	 First, let's add the standard COUNT function to this column. Use the following
calculation: Total Profit Count:=COUNT('Invoice Sales'[Missing
Profit]). When you apply the change, your cell will report an error. If you read
the tooltip for the error, you will see that COUNT does not work with BOOLEAN
data type columns.

5.	 Update the formula by using the COUNTA function as follows: Total Profit
Count:=COUNTA('Invoice Sales'[Missing Profit]). This will now
return the full number of rows with a value in it. The COUNTA function can be used
effectively for various column types.

6.	 The final step is to answer the question, "How many invoices are missing profit
calculations?". We can use two measures to answer this question. Click an empty
space in Measures Grid to create your new measure. This answer can now be done
with simple math: Total Profit Count – Count Inv Profits. Here
is the complete formula: Invoices Missing Profits:=[Total Profit
Count]-[Count Inv Profits].

The steps so far in this section have been used to exercise various aspects of using DAX
with tabular models. As you were working through this section, you likely realized that
the editor for building measures and columns with the tabular model is not very elegant.
While working with the editor, IntelliSense can even get in the way. The more you work
with the tool, the easier it will be.

Before we move to the next section, all the measures we have created respond to filters,
slicers, and cross-filtering in visualization tools. For example, if your visualization tool
has a date slicer, we can find the number of red items sold during that range just by using
our measure. It will filter the measure by the date selected. We will explore some ways to
ignore filters and build more complex calculations using the CALCUATE function in the
next section.

Creating measures with the
CALCULATE function
In the previous section, we created measures that gave us counts for each of the colors for
our items. We will be using the CALCUATE function to create formulas that return the
percentage of a color versus the total of colored items in the model. To do this, we will
need to eliminate those items whose color is N/A. We will use the CALCULATE function
to do this.

282 Adding Measures and Calculations with DAX

The CALCULATE function allows us to add filters to the calculation we are trying to work
with. CALCULATE does not allow the use of a measure in its expression. It also returns
a single value. The filters for this function need to return a table, so the work we did
with our item filter in the count calculations will need to be handled as a table filter. The
other important note here is that the CALCULATE function's filters override other filters
that may be applied by external operations in visualization tools. The calculation will be
performed over the tables as specified in the filter.

Let's get started with creating our percentage calculations:

1.	 Open the Sales table in your model in Visual Studio.

2.	 Select a cell in the measure grid. We will be creating similar measures for each of the
colors. Here is the measure we will be adding for red items:

% of Red Items:=[Total Red Items] /
CALCULATE(SUM(Sales[Quantity]),FILTER('Sales'
,RELATED('Item'[Color])<>"N/A"))

Let's break this down so you can understand the parts better. The numerator is the
measure we created previously – Total Red Items. While a column is required
for this calculation, the rest of the measures require the use of the following syntax
as we see with blue items (this is the preferred approach):

Total Blue
Items:=SUMX('Sales',IF(RELATED('Item'[Color])="Blue",
Sales[Quantity],0))

3.	 Next, let's look at the FILTER function we used. This is similar to the IF
functionality in our color count measures. The FILTER function creates a table
based on the criteria specified. We are eliminating any Sales line where Item has
a color of N/A. This means that our measures will be calculating the percentage of
red items for all items that have color.

In the CALCULATE function, we are calculating the sum of Quantity over the
table returned by the filter. This gives the sum of all the colored items sold in the
Sales table. This completes the denominator.

We use a standard division operation to create the percentage.

4.	 Finally, change the formatting to Percentage in Measure Properties. It will
automatically use two decimal places.

5.	 Wrap this up by creating the percentages for the remaining colors: blue, black, gray,
steel gray, light brown, yellow, and white.

Creating measures with the CALCULATE function 283

Now, we mentioned before that designing measures is difficult, including the fact that
IntelliSense will get in the way. Let's now review some helpful tips to save you from
frustration here:

1.	 First, copy the original % of Red Items calculation from the formula bar.

2.	 Next, click into the next cell in the measure grid and paste the formula into the bar.

3.	 Normally, I would try to double-click Red and replace it with Blue to finish this
off. However, this does not work as expected all the time, or even most of the time.
Instead, for the name of the measure, place your cursor at the beginning or end
of the word. Then, delete the word using backspace or delete and type in the new
value.

4.	 For the calculation itself, we need to change the value from [Total Red Items]
to [Total Blue Items].

IntelliSense can complicate editing
At times, it is difficult in Visual Studio to highlight the words in the formula
bar. You can delete the expression and start typing. IntelliSense will want to
help, so, you let it. However, you may get partial results in Visual Studio such as
[Total Blue Items]Items], which is obviously incorrect. Now you
need to eliminate the extra characters. The other option is to delete the entire
formula and type it in. Then, click at the end of the formula (do not use Tab or
Enter). Then, click Enter and it will work. Hopefully, this will help you use the
formula bar more efficiently when creating measures.

Let's now look at how we can perform key calculations using the ALL function.

Using the ALL function with CALCULATE
Before we move on, there is another key calculation that can be performed using the
CALCULATE function. We often need to create calculations that are in reference to the
grand total and we don't want external filters to change how the denominator for those
calculations is performed. In this case, we can use the CALCULATE function with the ALL
function to guarantee the results.

Let's use this capability to calculate the percentage of total invoices. The purpose of the
calculation is to have a flexible numerator that honors context filtering, whereas the
denominator will be static and count all of the invoices and ignore the filters:

1.	 Change to the Invoice Sales table in your model.

2.	 Select a cell in the measure grid below the WWI Invoice ID column.

284 Adding Measures and Calculations with DAX

Where should you put measures in the measure grid?
Throughout the creation of measures in this chapter, we have been adding
measures under columns that are used. However, this is not required. We are
doing this to make finding the measures a bit easier. The reality is that it does
not matter where you put the measure in the grid. By now, you must have
noticed that all measures contain full references to tables. The grid is simply a
way to see the results of a calculation quickly. All measures are considered to be
part of the tabular model as a whole and not bound to a table or column. So, if
you have a pattern that you would prefer to use, go for it. We will continue to
keep calculations on tables that make sense and near primary columns being
used.

3.	 Let's now review the formula we will use to create the calculation:

% of All Invoices:=COUNT(Invoice[WWI Invoice ID]) /
CALCULATE(COUNT(Invoice[WWI Invoice ID]),ALL('Invoice
Sales'))

You can see that we use the standard COUNT function to count the invoices.

4.	 Next, we use the CALCULATE and ALL functions to override other filters to create
the denominator. When applied, this will be 100%.

5.	 Change the format to Percentage. You should see the result as 100% in the measure
grid.

6.	 There is no way in Visual Studio to validate that the percentage worked as expected.
Let's use the Analyze in Excel feature to test this measure. Click the Excel icon in
the toolbar. This will open an Excel workbook with a PivotTable connected to your
tabular model.

7.	 Add % of All Invoices to the Values panel. This will add the value to the
PivotTable with the value 100.00% in the only cell.

8.	 Next, use the Search function in the PivotTables Fields panel and search for
Buying Group. Select the Buying Group option in the More Fields section of the
Customer table. This will add Buying Group to the rows. You can see that the %
of All Invoices works as designed as shown in the following screenshot:

Creating measures with the CALCULATE function 285

Figure 8.8 – Analyzing new calculations in Excel

9.	 Close Excel when you are done exploring. You can use this feature to validate
formulas as needed.

We are now ready to look at some time intelligence functions.

Checking your work with Excel
Use the Analyze in Excel feature available in Visual Studio to check your
work often. This is a great way to make sure the calculation responds to
filtering, slicing and dicing, and visualization as expected. This feature creates
a connection to your workspace model and runs queries there. This is a quick
way to work with the model you are currently designing.

286 Adding Measures and Calculations with DAX

Working with time intelligence and DAX
The time intelligence functionality is an important part of any analytics solution. Tabular
models are no exception. DAX has several functions that support time intelligence. In
order for these functions to work, a table in the model must be marked as Date Table. In
Chapter 7, Building a Tabular Model in SSAS 2019, we marked our date table as the date
table for this purpose. The requirements for the date table are called out in that chapter
as well.

Time intelligence functions in DAX allow you to perform calculations with your data
over supported time periods. This includes year, quarter, month, and day. Some of the
functions are common, including the to date functions such as YTD, QTD, and MTD.
Others have specific use cases, such as the BALANCE functions, which can be used to
calculate a value at the end of a period such as a month, CLOSINGBALANCEMONTH.

We are going to create a few calculations using the Invoice Sales table. We will be
checking our calculations using Analyze with Excel. The data we are working with is not
in the current time period, so we will not be able to rely on the calculations in the measure
grid. We are going to create a set of annual calculations. Here is what we will be creating in
the next set of steps:

•	 Invoice sales YTD

•	 Invoice sales next year

•	 Invoice sales previous year

Creating the YTD measure
Let's get started by creating the YTD measure:

1.	 Open your model in Visual Studio and navigate to the Invoice Sales table in
the model.

2.	 We will be using the Invoice Total Including Tax field for these calculations. You
can select a cell in the measure grid to start creating these formulas. Let's keep these
calculations in the same area for ease of use.

Working with time intelligence and DAX 287

3.	 The first calculation we are going to create is Invoice Sales YTD. We will be
using the TOTALYTD function. This function takes the following four parameters:

a) expression: The expression is the calculation, which is SUM('Invoice
Sales'[Invoice Total Including Tax]) in our case.

b) dates: Next is the dates parameter. We need to reference a date column or a
date table that has a single date column. We will be using 'Date'[Date] from our
model as the date column.

c) filter and year_end_date: These two parameters are optional. You can
filter the data being evaluated and specify a specific year end date if needed. We will
not be using either of these options.

The full formula we are using is as follows:
Invoice Sales YTD:=TOTALYTD(SUM('Invoice Sales'[Invoice
Total Including Tax]),'Date'[Date]).

4.	 Let's check our work in Excel. Click the Analyze in Excel button. In the PivotTable,
add the Invoice Sales YTD measure to the Values area and then add
Calendar Year from the Date table to the Rows area. You can see that each year
shows the YTD value for that year. You should see results similar to the worksheet
shown here:

Figure 8.9 – YTD results in Excel

Close Excel and then move on to the next two calculations.

288 Adding Measures and Calculations with DAX

Creating a calculation for next year's sales
Now we are going to create the calculation for next year's sales. While this sounds
predictive, it is useful when looking at changes for the following year when evaluating
values:

1.	 Click on a new cell in the measure grid. The NEXTYEAR function returns a table
of dates that match the criteria. In order to use this function, we will use the
CALCULATE function as well. Here is the code to create the next year's sales
calculation:

Invoice Sales Next Year:=CALCULATE(SUM('Invoice
Sales'[Invoice Total Including Tax]),
NEXTYEAR('Date'[Date]))

You will see that the calculation in the measure grid returns (blank) as the result.
This is because no values exist in the next year.

2.	 Before we check next year's values, let's create the previous year's sales measure as
well. The PREVIOUSYEAR function has the same syntax and returns a list of dates
like the NEXTYEAR function:

Invoice Sales Previous Year:=CALCULATE(SUM('Invoice
Sales'[Invoice Total Including Tax]),
PREVIOUSYEAR('Date'[Date]))

This calculation also shows (blank) in the measure grid results. Let's get back into
Excel.

3.	 Click Analyze in Excel to open Excel again.

4.	 Add both of our new measures to the Values area. They still show no results.

5.	 Add Calendar Year to the Rows area. To make the comparison clearer, you
can also add the Invoice Sales YTD measure to the Values area. Your results
should look similar to the following screenshot. The results have been formatted as
currency in Excel to make reading the results easier:

Figure 8.10 – Excel results for the next year and previous year functions

Creating calculated tables 289

6.	 Close Excel when you are done creating and checking the time intelligence
functions.

Now that we have worked with time intelligence functions, let's move on to creating
calculated tables.

Creating calculated tables
Calculated tables in tabular models are built using DAX and purely calculations.
Calculated tables allow you to create role-playing dimensions, filtered row sets, summary
tables, or even composite tables (made from columns of more than one table). We will
demonstrate the use cases in this section.

Creating a delivery date table to support role playing
In our model, we have used two dates – Invoice Date and Delivery Date – in the
Sales table. We have been using Invoice Date as our primary date in the model.
This means that in order to refer to Delivery Date in calculations, you need to use the
USERELATIONSHIP function. Both Invoice Date and Delivery Date are related to our
Date table. However, only the relationship with Invoice Date is active.

You can visually identify inactive relationships in the Diagram view. In the following
screenshot, you can see the two relationships. The inactive relationship is signified by the
dotted line. Solid lines are active relationships:

Figure 8.11 – Date relationships in the Diagram view

290 Adding Measures and Calculations with DAX

Using USERELATIONSHIP
If you have an inactive relationship that you want to use, the syntax is fairly
straightforward. You should have an inactive relationship in place to use this
function. (Do not use USERELATIONSHIP with active relationships.) In our
model, you can create a calculation to show quantities by delivery date. You
can use the following calculation to accomplish this: Total Items by
Delivery Date:=CALCULATE(SUM(Sales[Quantity]),
USERELATIONSHIP(Sales[Delivery Date
Key],'Date'[Date])).

You will need to use Excel to see the results in action.

Let's get started with our Delivery Date table:

1.	 In Tabular Model Explorer, right-click the Tables folder and select New
Calculated Table. You need to be in the Grid view to do this.

2.	 To create our calculated copy, simply add the following formula: ='Date'. This
should result in the new table being loaded with the same data as the Date table.

3.	 Rename the table Delivery Date in the Properties window and you are done.
You have created your first calculated table.

4.	 Let's wrap this up by adding the relationship. Go to the Diagram view and add the
relationship between the Delivery Date table and the Sales table by using the
Date field from the Delivery Date table and Delivery Date Key from
the Sales table. Now you have an active relationship to use for more expanded
analysis according to the date of delivery:

Figure 8.12 – New relationship with the calculated table delivery date

Creating calculated tables 291

We have just created a calculated table that can be used to support a role-playing
dimension. Now, we will use a filtered row set to create a calculated table.

Creating a filtered row set calculated table
In this example, we will create a calculated table that is filtered. We will use the Invoice
Sales table as our base table. We will be filtering the Invoice Sales table for sales
only made by the Tailspin Toys buying group:

1.	 Right-click the Tables folder in Tabular Model Explorer and click New
Calculated Table.

2.	 In this case, we will use the FILTER function to reduce the rows to those from
Tailspin Toys. Here is the formula we used:

=FILTER('Invoice Sales',RELATED(Customer[Buying
Group])="Tailspin Toys")

3.	 Rename the table Tailspin Toys Sales.

Delayed refresh in calculated data
In some cases, the newly created data will not show right away in the calculated
tables. You know it is working if there are no errors and you get a record count
in the lower-right corner while the table is selected. We can force the data to
refresh in the designer by closing and reopening Visual Studio if you want to
see the data to confirm the table is working as expected.

In our case, we have just created the table. To effectively use the table moving forward, you
should add relationships to support the work you want to do. Calculated tables function
the same as imported tables, but they do not retain relationships when created. You will
need to add them.

292 Adding Measures and Calculations with DAX

Creating a summary calculated table
We will create a summary calculated table that will show all the numbers of items we have
by color and brand:

1.	 Right-click the Tables folder in Tabular Model Explorer and click Create
Calculated Table.

2.	 For this table, we will be using the SUMMARIZECOLUMNS function. This will allow
us to reduce rows and create the summary we are looking for. Logically, this is like
creating an aggregated SQL statement with GROUP BY clauses. We will be creating
the table with three columns: Color, Brand, and the count of items in that
selection. Here is the formula for this table:

=SUMMARIZECOLUMNS('Item'[Brand],'Item'[Color],"Item Brand
Color Breakdown", COUNT('Item'[Stock Item Key]))

3.	 Rename the table Item Brand Color. Your results should look like the following
screenshot:

Figure 8.13 – Item Brand Color calculated table

As you can see, if you want to create some pre-aggregated or summarized tables to make
the data easier to use for your end users, that capability is built into tabular models with
DAX. Next, we will create a calculated table that brings more columns from other tables.

Creating calculated tables 293

Creating a composite calculated table
We are going to use a new DAX function, GENERATE, to build out our composite table.
The GENERATE function returns a Cartesian product from two tables that have matching
rows between them. We are going to expand on our previous table and bring in the sales
numbers from the Sales table with the help of another SUMMARIZE function:

1.	 Right-click the Tables folder in Tabular Model Explorer and click New
Calculated Table.

2.	 Here is the code to build our table:

=GENERATE(SUMMARIZE('Customer',Customer[Buying
Group]), SUMMARIZE('Item', 'Item'[Brand],'Item'[Color]
,"Item Brand Color Breakdown", SUMX(RELATEDTABLE(Sales),
Sales[Quantity]))

)

We will break it down for ease of understanding:

a) The first summarized table returns the list of buying groups. SUMMARIZE
generates a table based on groups by logic.

b) The next summarized table joins Item and Sales to create a summarized set of
quantities sold by color and brand. GENERATE brings these together in a Cartesian
product and you should get results similar to the following screenshot:

Figure 8.14 – Composite table results

3.	 Now, rename the table to Brand Color Sales by Buying Group.

294 Adding Measures and Calculations with DAX

You have now walked through building multiple calculated tables to serve different
purposes. We only added the relationship to the Delivery Date table. If you want to
add relationships to other tables, make sure to include a column that can be used to build
a relationship between the target tables.

Creating calculation groups
Calculation groups are new to tabular models. You can only use this functionality if your
model is set to Compatibility Level = 1500. Now, why is this important? As tabular
models become more prevalent, we see more and more calculations being added to
models. Many times, users grab a common set of calculations in various settings. For
example, we created YTD, next year, and previous year measures for Invoice Sales.

If you want to do the same calculations for Invoice Profit, you will need to create new
measures to support this. With calculation groups, you can create a group of metrics
that work with various measures. We could use a calculation group to create the time
intelligence calculations that can be shared across measures.

Getting ready to create calculation groups
Before we create our calculation group, we need to make sure our measures and model
are ready. First, this functionality only works with explicit measures. Explicit measures
are measures that are created in the model and not built implicitly in the visualization
tools. (For example, Power BI generates implicit measures for numeric columns, and this
is not supported.) In order to make sure this is handled correctly, it is necessary to set
discourageImplicitMeasures to TRUE for the model. Let's set that now.

First, you will not find discourageImplicitMeasures as a property of the model.
As per Microsoft documentation, it is exposed in the Tabular Object Model (TOM).
What the documentation does not tell you (at least easily) is how to check or modify this
value. This property appears to be set to true by default if you are using a 1500 level
model, which we are. However, if you upgraded or changed the level at some point, this
value may not be set correctly. Let's look at the setting to confirm or change it in
our model:

1.	 In Solution Explorer, find the WideWorldImportersTAB project and its
Model.bim file.

2.	 Right-click the file and then choose View Code. If you have the file open in design
view, you will be asked to close the file before opening it to view the code.

Creating calculation groups 295

3.	 You can now see the TOM that is built in JSON. I have copied the
first few lines of the JSON to highlight the property. If your model's
discourageImplicitMeasures property is set to false, change it to true
now. (JSON is case-sensitive. Make sure you use lowercase for the property.)
Remember, this property will not be in models whose compatibilityLevel
value is less than 1500:

{

 "name": "SemanticModel",

 "compatibilityLevel": 1500,

 "model": {

 "culture": "en-US",

 "discourageImplicitMeasures": true,

If you do not see this property, you can add the property to your file and save the
changes.

4.	 You can now change the view back to designer view from Solution Explorer. We
are now ready to create a calculation group. If you have not already closed the code
view of the file, you will be prompted to close it before continuing.

Now that we have the requirements out of the way, let's create a new calculation group.

Creating your calculation group
Keeping with our year theme from the previous section, we are going to create a
calculation group with YTD, previous year, and next year as the calculations:

1.	 Find the Calculation Groups folder in Tabular Model Explorer.

2.	 Right-click the folder and choose New calculation group.

3.	 Select the calculation group in Tabular Model Explorer. It will likely be named
something like CalculationGroup 1.

4.	 In the Properties window, change the name to Annual Calcs.

5.	 Next, set Precedence to 25. Precedence determines that a processing order for
more than one group is created. We don't want to leave it as 0 as other groups you
create in the future may need to be calculated first.

6.	 Next, expand the Columns folder under Annual Calcs. Let's rename the
calculation column Annual Metric.

296 Adding Measures and Calculations with DAX

7.	 We will now add the first metric, YTD. Expand the Calculation Items folder
and select the default item in the folder.

8.	 Rename the default item YTD.

9.	 Next, click the ellipses button in the Expression property to open the
DAX Editor.

Enter the following code into the editor:
CALCULATE(SELECTEDMEASURE(),DATESYTD('Date'[Date]))

This formula uses the SELECTEDMEASURE function. This function and others
with SELECTEDMEASURE in the name were created specifically for calculation
groups. These functions work with the measure that is selected to be used with the
calculation group. We will demonstrate this functionality once we have our other
metrics in the group. Be sure to apply your formula changes before moving to the
next step.

Change to how DAX is formatted
This is the only instance where we use DAX without using an equals sign.
Using an equals sign only raises an error, but the calculation group will not
work correctly if you use an equals sign.

10.	 Right-click on the Calculation Items folder to add a new calculation item. We
are planning to create two new items, so repeat this process while you are here. This
will give you two items with default names.

11.	 Rename one of the items Previous Year and the other Next Year.

12.	 The Previous Year expression is
CALCULATE(SELECTEDMEASURE(),PREVIOUSYEAR('Date'[Date])).

13.	 The Next Year expression is
CALCULATE(SELECTEDMEASURE(),NEXTYEAR('Date'[Date])).

Creating calculation groups 297

14.	 Apply the DAX formulas to save your updates.

15.	 We want to have the metrics in a specific order. You will be unable to change the
Ordinal property without a field to support sorting. Right-click on the Columns
folder and add a column.

16.	 Change the column name to Sort Order. You can now set the Ordinal value
for each of the items you created. I ordered them 1-3 in the following order: YTD,
Next Year, Previous Year.

In the following section, we will look at the issues that may occur when setting the sort
order and how to work around these issues.

Issues with setting the sort order
In some cases, developers have experienced issues setting the ordinal. When the column is
changed, it tries to save the value, but fails with an error message that says the value in not
valid. The workaround for this problem is to open Solution Explorer and choose to view
the code on the model.bim file. Search for calculationGroup and add the following
line after the expression statement: "ordinal" : 1. You can update all the calculation
items in the code. Save your changes and open the designer.

You will see that the changes are applied to your calculation items. There appears to be
some issue with the early implementation of this functionality. This workaround will allow
you to use the latest functionality in spite of some issues with the designer.

For reference, here is an example of a complete calculationItems with the ordinal
added:

 "calculationItems": [

 {

 "name": "YTD",

 "expression":
"CALCULATE(SELECTEDMEASURE(),DATESYTD('Date'[Date]))",

 "ordinal" : 1

 },

Let's now test the calculation group in Excel.

298 Adding Measures and Calculations with DAX

Testing your calculation group in Excel
The Annual Calcs calculation group is now complete. You should be able to test
this with the Analyze in Excel function. Add some measures to your Values areas (for
example, Red Items, Blue Items). Add Annual Calcs to Rows and you will see
the YTD item. Add Calendar Year from the Date table to the Columns area and you
can see all the items. You should see something similar to the following screenshot:

Figure 8.15 – Analyzing the calculation group in Excel

Now that we have seen how to create different calculated tables, let's create Key
Performance Indicators (KPIs) that help in evaluating performance.

Creating KPIs
KPIs are used by businesses to evaluate performance over time. Businesses use KPIs in
dashboards to show progress toward specific goals or targets. KPIs use a combination of
symbols and numbers to represent current states and trends. KPIs in tabular models in
SSAS are server-based and can be used by various end user tools such as Excel and Power
BI. The advantage here is that a business KPI can be created and shared easily within an
organization. This allows multiple users to include KPIs in their reporting with ease
and consistency.

Creating KPIs 299

Understanding the components in a tabular model KPI
In tabular models, KPIs are more simplistic than the KPIs in multidimensional models.
They are also much easier to create. KPIs are created directly from the measures. When
creating a KPI, you need to understand the five components that make up the KPI:

•	 Base value: The base value is the measure you select when creating the KPI. It is
what you are measuring against the target.

•	 Target value: The target value can be either an absolute value or a different measure.
In either case, the value needs to be scalar to work with your KPI.

•	 Target pattern: There are four patterns available in the KPI designer. The colors
red (bad), yellow (mid), and green (good) are used for the patterns. The first is the
standard pattern where high is good and low is bad. The second pattern reverses the
order. The other two patterns are based on whether closer to the target is better or
worse. You can see the patterns in the following KPI dialog screenshot.

•	 Target threshold: The threshold uses percentages to illustrate proximity to the
target. You can move the indicators to change how the target pattern returns good
or bad indicators.

•	 Icon style: These are the icons you want to use to visualize the base value
relationship to the target based on the threshold marks:

Figure 8.16 – Key Performance Indicator dialog

Now that we have a good understanding of the components that make up a KPI, let's
build it.

300 Adding Measures and Calculations with DAX

Building your KPI
We will create a KPI to show whether we are meeting our goal of selling 30% blue items
for all items we sell with a color. We will base this on our % of Blue Items measure in
the Sales table:

1.	 Locate the % of Blue Items measure in the Sales table.

2.	 Right-click the measure and select Create KPI from the menu. This will open the
KPI dialog.

3.	 We are going to use 0.3 (30%) as our target. Switch the Target to Absolute Value
and set the value to 0.3.

4.	 The threshold value is updated to match our target of 0.3. Set the yellow mark to
0.15 and the green mark to 0.25.

5.	 You can choose a different icon style, but we will use the default colored dots also
known as the stoplight.

6.	 Click OK. You can now see an icon with the measure, so you know a KPI has been
created, as shown here. The following screenshot illustrates this:

Figure 8.17 – Measuring with KPIs

You can now check this out using Excel once again. You can drag KPI Status to the Values
section. Then, add the Sales Region hierarchy to rows. You can drill in and see how each
region and levels below the region are performing. You should see something like our
results shown here:

Querying your model with SQL Server Management Studio and DAX 301

Figure 8.18 – KPIs in Excel

As you can see, adding simple KPIs to your model is easy. You can add targets with other
measures you have created as well.

Querying your model with SQL Server
Management Studio and DAX
To wrap up the chapter, we are going to create a query in SSMS using DAX. First, DAX
is not a query language, so the syntax is not as easy to understand at first for SQL users.
The first difference is that you must start every query with EVALUATE. The EVALUATE
function is used to analyze a table and return the values in the same way as a SELECT
statement does with relational databases. To use EVALUATE, your outermost function
must resolve to a table. Let's work through an example of this process:

1.	 Open SQL Server Management Studio and connect to your tabular model
instance. You should see your workspace database there.

2.	 Right-click your workspace database and select New Query followed by DAX.

3.	 Add the EVAULATE statement.

302 Adding Measures and Calculations with DAX

4.	 In the first query, let's get the Item table using EVALUATE('Item'). Execute the
query to return the contents of the Item table. You will notice that no measures are
included in the results. Calculated columns will be returned, but measures are not
scoped to a table.

5.	 For our next query, let's use the GENERATE function we used previously:

EVALUATE(

	 GENERATE(

		 SUMMARIZE('Customer',Customer[Buying Group]),

		 SUMMARIZE('Item',

			 'Item'[Brand],

			 'Item'[Color],

			 "Item Brand Color Breakdown",

			 SUMX(RELATEDTABLE(Sales),
 Sales[Quantity]))

))

We have used this same query before. Now you can see how you can test the results
prior to adding it as a calculated table.

6.	 We can also order the results in our DAX query by adding the ORDER BY clause
after our table definition. Let's order the results according to the buying group. Here
is the updated code with the results sorted by buying group:

EVALUATE(

	 GENERATE(

		 SUMMARIZE('Customer',Customer[Buying Group]),

		 SUMMARIZE('Item',

			 'Item'[Brand],

			 'Item'[Color],

			 "Item Brand Color Breakdown",

			 SUMX(RELATEDTABLE(Sales),
 Sales[Quantity]))

))

ORDER BY Customer[Buying Group]

Summary 303

7.	 Let's eliminate the N/A group. We can add the START AT clause to let SSMS know
where we want to start the results at. This only works with the ORDER BY clause:

EVALUATE(

	 GENERATE(

		 SUMMARIZE('Customer',Customer[Buying Group]),

		 SUMMARIZE('Item', 'Item'[Brand],'Item'[Color],

			 "Item Brand Color Breakdown",

			 SUMX(RELATEDTABLE(Sales),
 Sales[Quantity]))

))

ORDER BY Customer[Buying Group]

START AT "Tailspin Toys"

8.	 The DEFINE keyword can be used to add measures or other values for use in your
query. In this query, we shake it up a bit and create a query that uses dates and
colors with a custom sales measure:

DEFINE
MEASURE 'Sales'[Sales Total] = SUM('Sales'[Total
Excluding Tax])
EVALUATE(
	 SUMMARIZECOLUMNS(
		 'Date'[Calendar Year]
		 , 'Item'[Color]
		 , "Total Sales"
		 , CALCULATE([Sales Total])
))

You can see that there are many creative ways to create queries in DAX. It does take some
time to get used to, but you can work with DAX to test queries and check your tabular
model with SSMS.

Summary
That wraps up our chapter on DAX. So much more can be done with DAX. We encourage
you to explore the functions and try new things with your data. In this chapter, you added
measures, calculated columns, calculated tables, calculation groups, and KPIs to your
tabular model. We concluded the chapter by using SSMS to query the data.

304 Adding Measures and Calculations with DAX

You can use your DAX skills here to continue to expand and improve your tabular models.
These improvements will help your users have a more complete experience with your
models. You can also use DAX query techniques to review the data in your models and
continue to improve data quality and validate results.

The next chapter is our first chapter focused on visualizations. We begin our visualization
journey with Excel. We have been using Excel quite a bit in this chapter to check our work.
In the next chapter, we dig deeper and create some dashboards and learn a number of
Excel functions that help us make Excel look great while delivering the data.

Section 4:
Exposing Insights
while Visualizing

Data from
Your Models

This section will cover using Power BI and Excel to visualize the data from your model.
The ability to visualize data effectively will help business users gain insights to support
decision making with the data you have modeled.

This section comprises the following chapters:

•	 Chapter 9, Exploring and Visualizing Your Data with Excel

•	 Chapter 10, Creating Interactive Reports and Enhancing Your Models in Power BI

9
Exploring and

Visualizing Your
Data with Excel

We have now created multidimensional and tabular models in the previous chapters. The
data is ready, so let's visualize it. We will start our data visualization in Excel. Microsoft
Excel has been the most prolific analytics tool on the market for years. While that is not its
primary focus, its utility, simplicity, and reach far exceed those of its nearest competitor.

In this chapter, we will connect our models to Excel, build out some reports and
dashboards, and explore the differences between these models in Excel. We will wrap
up the chapter with some advanced visualization techniques that are unique to Excel
when working with analytical models built in SQL Server. We will be creating two Excel
workbooks, one for each model. This will allow us to compare how the models interact
with Excel.

When you are finished with this chapter, you should be comfortable with connecting
both multidimensional and tabular models to Excel and building basic reports with their
data. You will also learn some advanced techniques that will help with the creation of
dashboards and unique visualizations in Excel.

308 Exploring and Visualizing Your Data with Excel

In this chapter, we're going to cover the following main topics:

•	 Connecting Excel to your models

•	 Building visualizations with your models

•	 Building and enhancing an Excel dashboard

•	 Advanced design with CUBE functions

•	 Sharing your Excel dashboards with others

Technical requirements
In this section, you will need to deploy and have running the multidimensional model
(WideWorldImportersMD) that you created in Chapter 3, Preparing Your Data for
Multidimensional Models, Chapter 4, Building a Multidimensional Cube in SSAS 2019, and
Chapter 5, Adding Measures and Calculations with MDX. You will also need the tabular
model we expanded in Chapter 6, Preparing Your Data for Tabular Models, deployed and
running (WideWorldImportersTAB). We will not be working with the workspace version
of your tabular models. You will also need Microsoft Excel to work through the hands-on
work in this chapter. All of the examples in this chapter will be using the latest version of
Excel in Office 365 ProPlus at the time of writing (the May 2020 release). Because Excel is
updated continually via a subscription model, some examples may look different for you.

Connecting Excel to your models
Let's get started with Excel by creating two workbooks that will allow us to work
through the design process with both model types. Our workbooks are called
WideWorldImporters-MD.xlsx and WideWorldImporters-TAB.xlsx. This
matches the naming convention we have used throughout this book. Now that we have
our workbooks created, let's get connected to our models.

Connecting Excel to your models 309

Connecting to the multidimensional model
Multidimensional models (or cubes) and Excel have been working together for a very
long time. One of the great things about multidimensional models is the high level of
interactivity and capabilities that Excel seamlessly supports. This functionality propelled
cubes to the forefront of ad hoc analysis in businesses throughout the world. Let's begin:

1.	 Open your multidimensional workbook, WideWorldImporters-MD.xlsx.

2.	 On the Data tab, select Get Data | From Database | From Analysis Services. These
steps are illustrated in the following screenshot:

Figure 9.1 – Connecting to Analysis Services

3.	 In the Data Connection Wizard, enter your SSAS Server name and click Next. You
need to use the SSAS instance for your multidimensional model. Be sure to choose
the correct server.

310 Exploring and Visualizing Your Data with Excel

4.	 In the next dialog, the Data Connection Wizard, you should see the Wide
World Importers cube and the Invoicing perspective as shown in the following
screenshot:

Figure 9.2 – Select the cube to connect to
You may recall in Chapter 3, Preparing Your Data for Multidimensional Models,
we created a perspective that was a subset of our cube. This is a scenario where
perspectives can support a better user experience in Excel. It is very common
for cubes to be large and overflowing with objects. Perspectives allow you, as the
designer, to organize logical groups of objects for your users so they can work easily
with the analytics you have prepared for them.

5.	 Now, choose Wide World Importers and click Next.

6.	 The next dialog will save the connection file to the default location on your PC. If
you plan to distribute this workbook to other users, you can use this file to share
the connection with the workbook. We will leave it in the default location at this
time. We will give this connection a better, more friendly name: Wide World
Importers MD. This will make it easy to identify when using that connection with
a different workbook later.

7.	 Now click Finish.

8.	 This will open the Import Data dialog shown in the following screenshot. We now
have some different options to choose for how we want to bring the data from our
cube into our database initially:

Connecting Excel to your models 311

Figure 9.3 – Import Data options in Excel
As you can see in the preceding screenshot, we have a number of options to work
with. Some options are not available when working with direct connections to
SSAS, such as viewing the data in a Table and the choice to Add this data to the
Data Model.

Note
The data model is the underlying Power Pivot model in Excel. We cannot use
that with direct connections to Analysis Services models. This makes sense as
they are effectively the same structure. Analysis Services models, both tabular
and multidimensional, should be considered ready for use and do not require
additional mashup or manipulation in Power Pivot.

Out of the four options in the following list, the first two are the key options to
consider after creating your connection:

i) The first is how you want to view the data. The default is to create a PivotTable
report. This is the most common pattern to start working with the data. This
effectively allows Excel users to interact with the data from the cube in an ad
hoc manner.

ii) The second option will create the PivotTable and a matching PivotChart. While
interesting, you will typically find that it is easier to work with the PivotTable and
then add the PivotChart later.

iii) The third option here is to Only Create Connection. If you use Excel to create a
lot of reports or dashboards, you will likely use this option more frequently, as you
can use the connection to create multiple visualizations in Excel where and how you
want to.

312 Exploring and Visualizing Your Data with Excel

iv) The other option is to choose where you want to create the PivotTable or
PivotChart. The default will be the cell selected when you choose Get Data from
the menu. If you don't select a cell, you will typically see the A1 cell selected on
the first sheet of the workbook. You can change this location by selecting a different
cell in the workbook. If you have chosen to create a connection only, you will not be
able to choose the location because no object is being created.

9.	 Now, for our first connection, we will leave the default settings as they are and click
OK. This will create the PivotTable in the upper-left corner and connect to the cube.
Your workbook should look like the following screenshot and you are ready to start
querying and visualizing data from your cube in Excel:

Figure 9.4 – PivotTable with Analysis Services model

Let's now connect Excel to our tabular model.

Connecting to the tabular model
The process to connect to the tabular model is nearly identical to connecting Excel to
the multidimensional model. We will call out the steps here and refer to the preceding
screenshots where relevant:

1.	 Open the workbook you created to connect to your tabular model. Ours is called
WideWorldImporters-TAB.xlsx.

2.	 On the Data tab, select Get Data | From Database | From Analysis Services.

Connecting Excel to your models 313

3.	 In the Data Connection Wizard, enter the SSAS Server name for your tabular
model and click Next. Be sure to choose the correct server.

4.	 In the next dialog in the Data Connection Wizard, you should see the Model
cube. Tabular models are all called Model by default. You will also notice that the
dialog refers to the model as a Cube. Be sure to check your database name in the
dropdown as shown in the following screenshot. If you still have Visual Studio open
with your model, you will see the name of your database with the Globally Unique
Identifier (GUID), which means it is a workspace model, and will get a different
name, and it will close when the project is closed:

Figure 9.5 – Deployed and workspace tabular model databases

5.	 Choose WideWorldImportersTAB and click Next.

6.	 The next dialog will save the connection file to the default location on your PC. If
you deploy this broadly, you can use this file to help distribute your workbook. We
will leave it in the default location at this time. We will give this connection a better,
more friendly name: Wide World Importers TAB. This will make it easy
to identify when using that connection with a different workbook later. Now
click Finish.

7.	 This will open the Import Data dialog. As we did in the previous section, let's leave
the defaults and click OK. The workbook will have a PivotTable and the PivotTable
Fields area open. You now have a successful connection to your tabular model
in Excel.

You should now have two workbooks connected to your Analysis Services models. As
you can see, Excel shares the connection method between the two models. This typically
keeps the learning curve low if you are transitioning between the model types. Let's start
exploring the visualization options in Excel.

314 Exploring and Visualizing Your Data with Excel

Building visualizations with your models
For the remainder of this chapter, we will be creating the visualizations and queries
primarily using our multidimensional model. We can do this because Excel interacts with
both models in a similar way. Where differences appear, they will be called out to make
you aware. Let's get started.

Understanding the PivotTable Fields panel
Before we get into the details of designing visualizations in Excel, let's break down the
PivotTable Fields panel in Excel. How data is presented from each model type does vary
here and we will look at those differences.

The PivotTable Fields panel in Excel is made up of two main sections, first, the Fields
section, and second, the areas they are put into in the PivotTable, called Areas to Place
Fields, as shown in the following screenshot:

 Figure 9.6 – PivotTable Fields panel

Building visualizations with your models 315

Let's understand the features of the PivotTable Fields panel:

•	 The Show fields dropdown filters the field list to the group as defined in the model.
In multidimensional models, the fields are organized by measure group. We have
two measure groups in this scenario – Sales and Invoice Sales. Tabular models are
based on tables. In tabular models, this shows all the tables and calculation groups.
Keep in mind that this only filters the list of available fields to choose from, it does
not filter data or results. It is simply a mechanism to reduce the field list for ease of
use.

•	 The area labeled Fields shows the available fields you can choose from. The fields
are grouped either by the source, such as tables and measure groups, or data type,
such as KPIs.

•	 The area labeled Areas to Place Fields specifies where the fields should be placed
in the PivotTable. The Values area typically takes numeric values, which commonly
have a sigma or sum symbol by them. Text or attribute fields make up Rows and
Columns. These are most commonly marked by a table symbol in Fields. The Filter
area will create a drop-down filter option for your PivotTable and also uses text or
attribute fields.

When we created our multidimensional model, we placed the measures on colors that
we created into a folder called Color Analysis. You will find these measures in the
Values group in the PowerPivot Fields panel. This group contains a folder called Color
Analysis. You can see how these folders help organize calculations for ease of use
for users.

Implicit calculations are turned off
In our tabular model, we have turned off implicit calculations. Only the
measures we create in the model can be added to the Values section. In older
versions of tabular models, this is not the default. If that feature is turned off,
you can drag numeric fields from the tables that aren't in measures and Excel
will create an implicit calculation.

When you add fields to the area, the assumption is that we are adding row and column
headers in the PivotTable like a matrix visualization. The values to be calculated, dropped
into the Values section, are effectively sliced by the row and column combination. The last
section is the Filter section, which applies to the PivotTable we are working in.
Now that you have a basic understanding of the PivotTable Fields panel, let's create
some visuals.

316 Exploring and Visualizing Your Data with Excel

Creating a PivotTable
The activity of creating a PivotTable is the same using either model. For the following
steps, we will be using the multidimensional model in our WideWorldImporters-MD
workbook. When we originally created the connection, a simple PivotTable was created
in the workbook. We will use this as our starting point. The next steps will create a
PivotTable visualization with the color analysis we did in both models. The steps are
as follows:

1.	 In the field list, find the Color Analysis folder in Values. Select % Black Items
and % Blue Items from the list of fields. You should now see these measures in the
Values area in the bottom-right corner of the PivotTable Fields panel. You will also
see these fields in the Excel worksheet as column headers with the values below
them. As you can see in the worksheet, the formatting from the server is pulled
through to the worksheet. If you click in the field with the percentage value in it,
you can also see that the formatting in the cell is applied to a highly precise value.

2.	 Now that we have our first set of values in place, let's add some rows. Find City and
select Sales Region. This will add the Sales Region hierarchy to the rows. You can
see that one value, Americas, has a cross next to it. If you click the cross, you will
see the next level in the hierarchy, which is Northern America. Expand that to see a
list of regions under Northern America.

There are two more levels in the hierarchy, State Province and City. This is the
concept of drilling down. The creation of hierarchies in either type of model is
intended to give users an easy-to-use, well-defined drill-down path. As you can see,
the calculations represent the percentages of blue or black items in the context of
the row or region level.

3.	 Let's add employees to the columns. This will give us the percentage of sales by
employee and item colors that have been selected:

i) Find Salesperson and Employee in the field list.

ii) Drag Employee to the Columns area and drop it above the Values item in the
same area. If you drop it below Values, you can drag it above Values or you can
click the down arrow to move it in the direction you need.

If you selected the Employee field in the field list, it may have dropped Employee
into the Rows areas. You can drag it over to Values or select Move to Column
Labels to move it to the Columns area.

4.	 To wrap up our first PivotTable, drag the Invoice Date.Calendar hierarchy into the
Filters area.

Building visualizations with your models 317

5.	 Using the drop-down functionality in the filter in the grid, select CY2016 to filter
the data for calendar year 2016. When you have completed this, your PivotTable
should look similar to the following screenshot. Take some time to try variations of
rows, columns, and filters as you explore your model with Excel:

Figure 9.7 – Our first PivotTable created in Excel

Visible and hidden fields in our models
During the creation of our models, we have various ways to hide fields from the tools that
are interacting with the model. In multidimensional models, it is common to add fields to
a hierarchy and then not show the base fields. This optimizes performance and cube size.
We can also explicitly hide fields in the model design as well. We have similar options in
the tabular model. We can choose to hide fields from the users explicitly.

You will notice in our tabular model that all fields remain visible, whereas we hid some
fields in our multidimensional model. The City dimension highlights this difference well.
In our multidimensional model, we created two hierarchies that contained all the fields.
These fields are not visible outside of the hierarchy, whereas, in our tabular model, the
same hierarchies exist but a More Fields list is available as well. This list contains all the
fields. This has different design options and needs to be planned for your model creation.

There is little performance impact, if any, from including all the fields in tabular models.
In multidimensional models, hierarchies support better aggregated performance based on
storage and you need to be more intentional about what you expose in your model.

318 Exploring and Visualizing Your Data with Excel

As we wrap up this section on PivotTables, you must understand that the value of
creating models is that users can plug into and view data as they wish. You can repeat this
experience in the tabular model workbook. The primary differences are the numbers (we
have additional filters on the tabular model calculations) and the fact that the Date table
is used to get the Calendar hierarchy. In the tabular model, we do not start with role-
playing dimensions. Next, we will add a PivotChart to our workbook.

Adding a PivotChart
We will now add a PivotChart to our workbook. Add a sheet to your workbook to get us
started, then proceed with the following steps:

1.	 We already have a connection to our model so we can reuse that connection. Go to
the Data tab and select Existing Connections.

2.	 In the Existing Connections dialog, choose Connections and select the connection
for your multidimensional model, Wide World Importers MD. Click Open.

3.	 This will open the Import Data dialog. Choose PivotChart and click OK.

4.	 You should now have a blank PivotChart in the middle of your spreadsheet with the
PivotTable Fields pane. Let's start by adding in the % Black Items and % Blue
Items values. Select those to add them to the Values area. You should see the
default column chart created with those.

5.	 Drag the Invoice Date.Calendar hierarchy into the Axis (Categories) area. This
will update the bar chart to show the percentages by year. We now have a nice start
to a chart visualization. Your chart should be similar to the following chart:

Figure 9.8 – Our first PivotChart in Excel

Building visualizations with your models 319

There are a few parts of the PivotChart you need to understand before moving
forward:

i) You can see that the fields we have added to the chart are also represented as field
buttons. They allow you to modify the chart in various ways. If you right-click on
the buttons, you can change the order, move them to a different area, or remove
them altogether.

ii) You can change the hierarchy level as well. Click the down arrow to the right of
the Invoice Date.Calendar button. This will expand the hierarchy selector, which
allows you to adjust the level or filter levels out if you prefer. You can drill up or
down with the plus (+) and minus (-) buttons in the lower right of the chart. This is
not very readable in our scenario, but the option is there if you choose to use it.

iii) The plus symbol at the top, outside of the chart area, allows you to choose the
chart elements you want to see in the chart. Let's add a Chart Title with the name
Black & Blue Analysis. The paintbrush below the plus (+) button allows you
to change the color scheme and style of the chart. We will not change ours at this
time, but you should still look at the options.

6.	 With the chart selected, click the Design tab in the Excel ribbon.

7.	 Click the Change Chart Type button to see the types of charts we can use to
visualize our data. We are going to change our chart to a line chart.

8.	 Select the Line option in the Change Chart Type dialog. Choose Line with
Markers from the selections at the top of the dialog and click OK. The chart should
now look like the following screenshot:

Figure 9.9 – Line chart with a title

320 Exploring and Visualizing Your Data with Excel

You now have a nice line chart that shows the variance in the percentages of blue versus
black items sales by calendar year. We will use this chart in the next section as well.

Adding slicers
Slicers in Excel are buttons that allow you to filter the contents of your workbook in a
highly visual and touch-friendly way. Slicers have been in Excel for quite a while. In this
section, we are going to add an Employee slicer to the Black & Blue Analysis chart. The
last step in the section will show how to apply this slicer to the PivotTable we created. This
works because both items share a connection. Let's begin:

1.	 With the chart selected, navigate to the PivotChart Analyze tab on Excel's ribbon.
Click Insert Slicer.

2.	 This opens the Insert Slicers dialog. It shows you all the fields you can use to
filter the chart. Slicers do not support hierarchies, but levels in hierarchies can be
selected. If you choose a hierarchy or the top-level item, all of the fields will get
separate slicers. Find the Salesperson table and choose the Employee item to
create our slicer. Click OK.

3.	 This will drop the Employee slicer in the middle of your sheet, usually not where
you want it. You can move the slicer around to where you want it. We will place the
slicer to the right of the chart.

4.	 Click on the dot on the bottom of the slicer and expand the slicer until the scrollbar
disappears and you can see all of the salespeople. When you have the slicer in place
and expand your sheet, it should look as follows:

Figure 9.10 – Slicers added to the PivotChart

Building visualizations with your models 321

At the top of the slicer, there are two buttons next to the title. The first toggles the
multiselect option. The second clears any filter applied. The slicer is single-select by
default.

5.	 Choose a salesperson to filter the data. The chart will now show the sliced or
filtered data. The unselected salespeople are now white or unhighlighted. If a slicer
has options with no data, those buttons are typically gray and cannot be selected.

6.	 In the final step, we will show you how to apply the slicer's filtering to the PivotTable
we created initially. Select the Employee slicer. Then select the Slicer tab on the
ribbon. Next, click Report Connections:

Figure 9.11 – Report Connections dialog for the Employee slicer

7.	 In the Report Connections dialog shown in the preceding screenshot, you can see
the reports that share a connection with the slicer. They do not need to be on the
same sheet to be affected. Select PivotTable1 and click OK.

8.	 Now, look at the values on the PivotTable in your first sheet. Go back and change
the slicer and see how the values have changed.

9.	 Before we move to the next section, go back to the slicer and deselect this
connection. You can also try using the multiselect functionality and clearing the
filter to familiarize yourself with those features.

Slicers can be used with any field or fields that interact with the data in your Excel
PivotTables and charts. While dates can be filtered with slicers, we will demonstrate a
timeline with the PivotTable. One last point on slicers: you can create the same slicer with
tabular models. The process is identical to the preceding steps.

322 Exploring and Visualizing Your Data with Excel

Adding timelines
Timelines are special filter controls that support date fields. They have the ability to build
out the date hierarchies natively. This means that the data types of the field need to be of
the date data type (for example, Date or DateTime).

Date tables in our models
This control requires that the table or dimension be designated as the date or
time table. In the multidimensional model we created, the Date dimension
was designated as a Time type in the dimension's properties. In our tabular
model, the Date table was marked as the date table. These property settings
are picked up by the control. When working with the multidimensional model,
you will see two options for the timeline control, Invoice Date and
Delivery Date. Both of these are built on the same Date dimension as
role-playing dimensions. This functionality is not supported the same way in
tabular models. Even though we created a calculated table that supports the
delivery date, only one table can be marked as the date table so only one option
is available from the tabular model.

Let's look at the steps to add timelines:

1.	 Open the worksheet in Excel where you created your first PivotTable.

2.	 Click on the PivotTable. Remove the Invoice Date.Calendar filter from the
PivotTable. Click the down arrow on the field name in the Filters area in the
PivotTable Fields pane. Select Remove Field to remove that filter.

3.	 On the ribbon, go to the PivotTable Analyze tab and click Insert Timeline.

4.	 In the Insert Timelines dialog, choose Invoice Date and click OK.

5.	 Like the slicer, the timeline control is dropped into the middle of your sheet. Let's
move it to the right of the PivotTable. Your sheet should look as follows:

Building visualizations with your models 323

Figure 9.12 – PivotTable with a timeline
The timeline control has some cool features we want to highlight here. Let's start
with the dropdown that shows MONTHS right now. If you select the down arrow
you will see YEARS, QUARTERS, MONTHS, and DAYS as options. This changes
the granularity of the highlighted bar in the visual. You can select one or more
months in the bar that is shown in the middle. When you make a selection, the All
Periods label in the upper left will display what is selected, such as Feb 2016.

The scroll bar at the bottom of the visual lets you scroll through the available
options. Be aware that the dates shown in the visualization cover the date range
supported in your date table. For example, if you select Aug 2016, the PivotTable
will no longer contain data as our dataset does not contain data past the middle of
2016.

6.	 Change the dropdown to YEARS. Select 2015.

7.	 Change the dropdown to MONTHS. You will see that the months are filtered for
2015 as well. Select JAN.

8.	 On either side of the bar for JAN, you can drag to expand the selection. Try this
now by expanding the selection to include FEB and MAR.

You can use the same steps to connect this filter to the PivotChart we created that we used
when connecting the slicer. Review the preceding steps if you want to experiment with
connecting this to the PivotChart as well. You can remove the filter by clicking the button
with the filter and the red X on it.

324 Exploring and Visualizing Your Data with Excel

Also, like the slicer control, the timeline control can be added using the same process with
your tabular model. We are going to put this all together in the next section.

Building and enhancing an Excel dashboard
The focus of this section is to turn our work into a full dashboard for our users. We will
explore some more advanced techniques to make our dashboards more user friendly and
interactive. We will continue to focus on the multidimensional model and highlight the
differences that occur with tabular models.

We are going to combine everything we have created so far into a single sheet and make
various enhancements along the way. Let's get started.

Moving the PivotTable and the filter
Let's move the PivotTable and the filter:

1.	 Our first step is to move the PivotTable. Select the PivotTable and navigate to the
PivotTable Analyze tab on the ribbon. Then select Move PivotTable in the Actions
section on the tab.

2.	 In the Move PivotTable dialog, we will be keeping the PivotTable on the existing
worksheet. Set Location to B13 by selecting that cell in the sheet. Click OK when
you have updated the location.

3.	 Next, move the Invoice Date filter to a location in the upper-left corner of the
worksheet.

Updating the Employee slicer
Let's now move the Employee slicer:

1.	 We will move the Employee slicer next. You can simply select the slicer, then cut
and paste it to the first sheet. Paste it next to the timeline filter. It will overlap the
PivotTable a bit, but we will fix that in the next step.

2.	 Resize the slicer by making its height the same as the timeline. Next, double the
width of the slicer. The top of your worksheet will look something like the following
screenshot once you have resized the slicer:

Building and enhancing an Excel dashboard 325

Figure 9.13 – Timeline and slicer resized and repositioned

3.	 With the slicer selected, navigate to the Slicer tab on the ribbon. Select Slicer
Settings on the menu. This opens the Slicer Settings dialog shown here:

Figure 9.14 – Slicer Settings
We are going to make a number of changes in this dialog over the next few steps.
Name is the name of the field we pulled from the model. For our purposes, we can
keep the name.

4.	 We will keep the Display header option on. However, we will change the name to
Salesperson, which is a better description for the slicer.

5.	 The next section in the dialog is Item Sorting and Filtering. Because we are
working with names, we can change the sort order to Ascending (A to Z) to make
sure it sorts as we want. If the data you are using in the slicer is not sorted correctly
in the server, this is the opportunity to sort the values in a more user-friendly
fashion.

326 Exploring and Visualizing Your Data with Excel

The filtering section has three options:

i) By default, Visually indicate items with no data and Show items with no data
last are selected. Items with no data are grayed out and moved to the bottom of
the list with these settings. You can keep the slicer data in order by deselecting the
last option. This will still gray out options with no data but not move them to the
bottom.

ii) If you select the top option, the other two options cannot be selected. The first
option, Hide items with no data, will completely remove slicer items from view if
no data exists. You will need to determine the best option for your users based on
the content to filter. We will leave this setting on its default. Click OK to close the
dialog and save our setting changes.

6.	 We would still like to show all the options in our slicer. We can do this by changing
the column count. In the Slicer tab, change the Columns value from 1 to 3. You
may need to adjust the size of the slicer in order to remove the vertical scroll bar.

7.	 The last step for the slicer is to add the PivotTable back into the Report
Connections dialog. Select Report Connections and add the PivotTable to the
connections. Your worksheet should look like the following screenshot:

Figure 9.15 – Updated dashboard with fixed slicer

This wraps up the slicer settings. Let's continue modifying our Excel dashboard.

Building and enhancing an Excel dashboard 327

Adjusting the other PivotTable
We will now adjust the PivotTable:

1.	 We now need to move the PivotChart from the other tab to the first sheet. Cut and
paste the PivotChart next to our slicer.

2.	 This takes up more space than we have at the top of the sheet. You can add rows
above the PivotTable, which will push it down further on the sheet. The other option
is to use the Move PivotTable option used in Step 2 of the Moving the PivotTable
and the filter section. Add enough rows for the PivotChart to fit cleanly above the
PivotTable. Your sheet should now look like the following screenshot:

Figure 9.16 – Updated dashboard with PivotChart added

3.	 Select the PivotChart and go to the PivotChart Analyze tab on the Excel ribbon.
There are two buttons on the far right of the menu:

i) The first button, Field List, will show or hide the PivotTable Fields pane. You can
use this option if you are not planning to add any additional data to the PivotChart.

ii) The second button is the Field Buttons drop-down list. The field buttons are
the gray areas in the preceding screenshot. The list contains the area for each set of
field buttons. We don't have a reason to leave any field buttons on our chart. Choose
Hide All to remove or hide the buttons on the chart.

4.	 When we have copied the chart to the new tab, we may have broken the
connections to the slicer. We also need to add a connection to the timeline. Select
the PivotChart. Go to the PivotChart Analyze tab on the ribbon. Click Filter
Connections to open the Filter Connections dialog.

328 Exploring and Visualizing Your Data with Excel

5.	 Select both filters if they have not already been selected. This will apply the
Employee slicer and Invoice Date timeline selections to the PivotChart. Click OK
to apply the changes and close the dialog.

6.	 In the PivotTable, you may have noticed that Column Labels and Row Labels are
showing. You can hide those labels using a similar set of buttons to those we used
when cleaning up the PivotChart:

Figure 9.17 – Showing the options for PivotTables

7.	 Click Field Headers to remove those labels. Field List will hide the PivotTable
Fields pane while working with the PivotTable.

8.	 The +/- Buttons option will remove the ability to drill up or down in the PivotTable.
We will use this option to fix the rows in the PivotTable to show the Northern
America regions only.

9.	 While we were changing the size of the cells in the PivotTable, the slicer may have
moved around. In order to prevent that from happening as we continue to work
on the dashboard design, we need to fix the position of the slicer. Right-click on
the slicer and select Size and Properties from the shortcut menu. This opens the
Format Slicer pane in Excel.

10.	 In Format Slicer, expand the Properties section and choose Don't move or size
with cells. Once you have made the change you can close the Format Slicer pane.

Cleaning up our dashboard design
Let's clean up the dashboard:

1.	 Let's clean up some other items as we wrap up this phase of our design. First, let's
hide the gridlines. On the View tab on the ribbon in Excel, you can choose to hide
the gridlines.

2.	 We can also hide the headings here. But before we hide those, reduce the size of
column A to move the PivotTable closer to the left side of the sheet. The goal is to
leave a small margin there.

3.	 Once you have it adjusted to your liking, you can hide Headings from the View tab.
This will clean up the dashboard for a better user experience when it is deployed.

Building and enhancing an Excel dashboard 329

4.	 Our PivotChart moved when we adjusted the size of column A. Select the chart
and navigate to the Format tab. Select Format Selection on the menu to open the
Format Chart Area pane in Excel.

5.	 You need to open the Size and Properties sections in the Format Chart Area pane.
This is the third button on the pane, as shown here:

Figure 9.18 – Format Chart Area – Size and Properties pane

6.	 In the Properties section, choose Don't move or size with cells to lock the
PivotChart in place on the dashboard. Then close the Format Chart Area pane.

330 Exploring and Visualizing Your Data with Excel

Once all these steps are completed, your sheet should look similar to the following
screenshot:

Figure 9.19 – Our black and blue dashboard after formatting

So now what? We have cleaned up our dashboard with slicers, timelines, PivotCharts, and
PivotTables. The same steps can be used for the tabular models. We will now look at one
other advanced design feature, which will allow us to add some nice visuals to fill in the
space between the filters and the PivotTable.

Advanced design with CUBE functions
This section covers the CUBE functions available in Excel. This functionality allows you to
operate on data from Analysis Services without using PivotTables or PivotCharts. These
techniques are advanced and require basic Multidimensional Expression (MDX) skills.
However, we will walk you through the simplest way to learn and use these functions
initially.

We will use these functions to create the following three single-value visualizations on our
dashboard:

•	 Total black items sold in the selected period

•	 Total blue items sold in the selected period

•	 Black and blue items sales amount in the selected period

In the next sections, we will walk through the steps to add these measures and apply the
timeline filter to them.

Advanced design with CUBE functions 331

Adding PivotTables to a new sheet
Let's begin by adding PivotTables:

1.	 In our multidimensional workbook, add a new sheet.

2.	 Add another PivotTable to this sheet (Data | Existing Connections | Wide World
Importers MD).

3.	 In this PivotTable, select Blue Items and Black Items from the Color Analysis
folder.

4.	 Add another PivotTable from the same connection.

5.	 Add Total Excluding Tax from the Sales values to the Values area of the new
PivotTable.

6.	 Add Color from the Item table to the Filters area.

7.	 Expand the filter and click the Select Multiple Items option at the bottom. Then
select Black and Blue from the options. The filter will now show (Multiple Items)
as the selection.

Converting the PivotTable to formulas
We will now convert PivotTables to formulas:

1.	 Select a value from the first PivotTable. On the PivotTable Analyze tab in the
ribbon, expand the OLAP Tools menu and select Convert to Formulas. You should
see the PivotTable formatting disappear for these values.

2.	 Select the cell that has Black Items in it. In the formula bar you will see the
following function:

=CUBEMEMBER("Wide World Importers MD","[Measures].[Black
Items]")

CUBEMEMBER is one of a set of functions that can use the connection to refer to a
value in the cube using MDX syntax. In this case, the formula returns the name of
the member, which is Black Items. The field below this uses a different formula:

=CUBEVALUE("Wide World Importers MD",B$1)

332 Exploring and Visualizing Your Data with Excel

It is using CUBEMEMBER to determine the value to display in the cell. In our use
case, we need to merge these into a single formula.

3.	 In a new cell, use the following formula to return the count of Black Items:

=CUBEVALUE("Wide World Importers MD","[Measures].[Black
Items]")

4.	 Now we need to add the timeline slicer to this formula. We will use the name of the
timeline filter to return the filter member to use in our formula:

=CUBEVALUE("Wide World Importers MD","[Measures].[Black
Items]",Timeline_Invoice_Date)

If we wanted to add the Employee slicer, we would add the name to the formula
as well. The formula is building an MDX calculation based on the intersection of
the members we have chosen. By not including the Employee slicer, these values
will have the values for the filtered period regardless of the salespeople who may be
selected. This adds flexibility to the design.

5.	 Now, create another formula for Blue Items:

=CUBEVALUE("Wide World Importers MD","[Measures].[Blue
Items]",Timeline_Invoice_Date)

6.	 Now we can add these values to the dashboard, copy each formula, and add it to a
cell on the dashboard below the filters and above the PivotTable. Your dashboard
should look like the following screenshot:

Figure 9.20 – Black and blue dashboard with raw item counts

Advanced design with CUBE functions 333

7.	 Now let's create the formula for the sales amount. Return to the new sheet we
created. Select the PivotTable with the filters. Once again, go to the PivotTable
Analyze tab on the ribbon and select Convert to Formulas in the OLAP Tools
menu.

This time we get a Convert to Formulas warning message. This warning message
prevents users from unintentionally converting their PivotTables. This operation is
irreversible, so Excel is confirming the change.

We have the option here to convert the report filters as well. There are times you
may want to keep the filters in place. For example, if we wanted to continue to filter
values in our formulas using the filter as is, then we would leave this box unselected.
However, in our case, we want to get all the parts of the PivotTable converted to
formulas so we can build a filtered value for our dashboard. Select the Convert
Report Filters option and click Convert to complete the process.

8.	 Now that we have the various parts converted, select the field with (Multiple
Items) in it that uses a new CUBESET function to create a set that is used to filter
the measure:

=CUBESET("Wide World Importers MD","{[Item].
[Color].&[Blue],[Item].[Color].&[Black]}","(Multiple
Items)")

The set is named Multiple Items and is used in the CUBEVALUE function by
referring to the cell in the function options (B4 in our workbook) as follows:

=CUBEVALUE("Wide World Importers MD",B4,A6,Timeline_
Invoice_Date)

By using what we have discovered here, we can complete the custom CUBEVALUE
formula for our dashboard:

=CUBEVALUE("Wide World Importers MD", CUBESET("Wide
World Importers MD", "{[Item].[Color].&[Blue],[Item].
[Color].&[Black]}"), "[Measures].[Total Excluding
Tax]",Timeline_Invoice_Date)

9.	 As you can see, we embedded the CUBESET function into the CUBEVALUE formula
to get the result we wanted. This formula can now be copied onto our dashboard the
same way we did for the others.

334 Exploring and Visualizing Your Data with Excel

Formatting the new fields
Now that we have our new metrics copied into fields, we can format them (it is helpful to
turn Gridlines and Headings back on during this process. Be sure to hide them when you
are done formatting these values):

1.	 Select four cells using the cell with the value as the upper-left cell, then choose
Merge and Center from the Home tab on the ribbon. This will create a larger block
to display the number.

2.	 From the same tab, click the Middle Align button to center the values in the middle
of the merged cells vertically.

3.	 Increase the font size for those cells to 14 or to a size you like.

4.	 Merge and center the two cells above the newly configured cells. We will use this as
our header. Add text to these merged cells to be the labels – Black Items, Blue
Items, and Black & Blue Sales.

5.	 Format the sales cell as Currency as we did not format the Total Excluding Tax
measure in the tabular model.

6.	 Highlight the six cells you created at this point and add borders and shading to suit
your desired look for the dashboard. When you are done, your dashboard should
look similar to ours, as follows:

Figure 9.21 – Completed black and blue dashboard

Sharing your Excel dashboards with others 335

This completes the basic dashboard for Excel. You can create the same dashboard using
the tabular model data as well. The functionality is the same. Using the OLAP Tools
functionality effectively sends MDX to the tabular model as well. As a result, you will see
that the naming conventions used with the tabular model are the same as those used with
the multidimensional model.

For example, the Measures dimension is used in the tabular model formulas, but that
actual dimension is not in the tabular model. This is handled by the communication
protocols and drivers between Excel and SSAS.

In the next section, we will explore some options that can be used to share your completed
dashboard.

Sharing your Excel dashboards with others
Now that you have this awesome dashboard created, how can you share it? It is easy to
share it by sending it to others via email, but you always risk them making changes to the
data or design. If you want to share this with users while limiting their ability to edit, there
are several good options such as OneDrive, SharePoint, and even Power BI workspaces.
The next sections help you prepare for deploying your workbook to be shared.

Checking your capabilities
In order to share using one of the key services such as Power BI or SharePoint Online, you
need to have access to these services and the services need to have access to the location
of your model. Both services require Microsoft 365 subscriptions to use. The SharePoint
solution will be similar to an on-premises deployment if you have that available.

Checking your credentials
When deploying to an online service, you need to make sure that the credentials you will
be running under have access to the database. In all of our examples here, we have been
running entirely locally. When you move to an online service, your credentials need to
have access to your local server in order to refresh the data. You will be able to push the
Excel sheet to SharePoint or OneDrive, but any data refresh will require Active Directory
in order to complete the authentication process.

336 Exploring and Visualizing Your Data with Excel

Deploying your workbook
You can deploy your workbook to OneDrive (personal or corporate), SharePoint, or Power
BI. However, in order to properly share your Excel workbook with a live connection to
Analysis Services, Analysis Services must be on the Active Directory or Azure Active
Directory domain for the easiest and most optimal deployment.

If you have created your dashboard in an Active Directory-supported environment,
you should be able to refresh the data as required. If you are working in a disconnected
development environment, this may not be possible. While you can deploy the workbook,
none of the interactive functionality will work because the query is not using the correct
credentials.

Use the following steps to deploy your dashboard to OneDrive:

1.	 Open the OneDrive location you want to upload the file to.

2.	 Use the Upload button and choose your file to deploy your Excel dashboard to
OneDrive as shown here:

Figure 9.22 – OneDrive upload location

3.	 Open your Dashboard in OneDrive. This will be the online experience for your
dashboard.

Summary 337

4.	 Now that you have your dashboard deployed, you can use the Share button as
shown here to share it with others:

Figure 9.23 – Share your deployed Excel dashboard

This is just one approach you can use to share your dashboard with others. As you may
have noticed in the link, this is the equivalent of sharing your dashboard on SharePoint.

Summary
In this chapter, you saw the various types of interaction you can have with
multidimensional and tabular models when working with Excel. You created PivotTables
and charts and supported these with timeline and slicer filters. These skills you learned
will help you to visualize your data using Excel and both multidimensional and tabular
models. You are also now able to enhance your Excel workbook visualizations to make
them more appealing to your users and focus on the data to support your business
scenario.

In the next chapter, we will use Power BI Desktop to live-connect to our models and
create a similar dashboard. When the goal is to visualize the data in your models for users,
Power BI has more visual capabilities than Excel.

10
Creating Interactive

Reports and
Enhancing Your

Models in Power BI
In Chapter 9, Exploring and Visualizing Your Data with Excel, we connected our models to
Microsoft Excel. In this chapter, we will connect our models to Power BI, build out some
reports and dashboards, and enhance the models in Power BI. You will be able to use
these techniques to create compelling visualizations for your users. The goal with Power
BI is to clearly visualize data to help users make informed decisions quickly while at the
same time interact with the data to dive into the details.

We will wrap up the chapter by demonstrating how to add measures to the live connection
Power BI dashboard and how to deploy your desktop files to share in the Power BI service
online. We will be creating two Power BI Desktop files, one for each model. This will allow
us to compare how the models interact with Power BI.

340 Creating Interactive Reports and Enhancing Your Models in Power BI

In this chapter, we're going to cover the following main topics:

•	 Creating Power BI visualizations using live connections

•	 Understanding live connections and import for Power BI with SSAS models

•	 Adding measures to Power BI when using tabular models and live connections

•	 Deploying your Power BI report to a Power BI workspace

Technical requirements
In this section, you will need to have your multidimensional model that was created
in Chapter 3, Preparing Your Data for Multidimensional Models; Chapter 4, Building a
Multidimensional Cube in SSAS 2019, and Chapter 5, Adding Measures and Calculations
with MDX, deployed and running (WideWorldImportersMD). You will also need
the tabular model we expanded in Chapter 6, Preparing Your Data for Tabular Models,
deployed and running (WideWorldImportersTAB).

We will not be working with the workspace version of your tabular models. You will also
need the Power BI Desktop client to work through the hands-on work in this chapter. All
of the examples in this chapter will use the June 2020 release version of Power BI Desktop.
Because Power BI Desktop is updated monthly, some examples may look different for you.
If you do not have Power BI Desktop installed yet, you can go to the Microsoft Store and
search for Power BI Desktop to get the latest free version downloaded locally.

Creating Power BI visualizations using live
connections
Let's start creating our Power BI visualizations using the recommended connection
method – live connections. We will review more details about this connection type versus
the import method in the next section.

To get started, we will need to create Power BI Desktop files to support each model type:

1.	 Open and save two Power BI Desktop files – WideWorldImporters-MD.pbix
and WideWorldImporters-TAB.pbix.

2.	 When you open a new Power BI Desktop file, you will see a splash screen with some
information on it. Go ahead and close that window. Both desktops should look
similar to the following screenshot when you are ready:

Creating Power BI visualizations using live connections 341

Figure 10.1 – New Power BI Desktop Window

Remember, your Power BI Desktop surface may be different than the one we have shown
in the preceding screenshot. In most cases, the core functionality we will be exploring in
this chapter should be possible in future versions. But if you see significant differences,
you should review the changes since our version was released by checking out the Power
BI blog at https://powerbi.microsoft.com/en-us/blog/.

Before we launch into our work, let's do a quick tour of the desktop:

•	 Across the top, you will see the ribbon that is common across many Microsoft
products.

•	 On the left below the ribbon, you can see three buttons. They change the design
view that you see. Their functionalities are listed here:

a) The default is the report design surface.

b) The table button opens the data view which is like the view, we see when working
with tabular models in Visual Studio.

c) The third button is used to show the relationships. Remember that you can use
Power BI to model design work as we did with tabular models.

https://powerbi.microsoft.com/en-us/blog/

342 Creating Interactive Reports and Enhancing Your Models in Power BI

•	 On the right side are three panels that open by default in the report design view.
From left to right, they are Filters, Visualizations, and Fields:

a) The Filters panel allows you to apply filters to various parts of the report,
including the visual you are working with, the page you are on, or the entire report.

b) The Visualizations panel is where you select and modify any visualization
you want to work with. The options in this panel vary greatly depending on the
visualization you are working with.

c) Finally, the Fields panel displays the tables, fields, and measures we can add to
our report.

Let's now learn how to connect to data sources in Power BI.

Connecting to data sources in Power BI
Power BI supports three types of connections when working with data sources. They are
as follows:

•	 The first and most common type is import. The import method connects to a data
source and imports the data into memory. This is typically the best performing and
has the most design capabilities within Power BI.

•	 DirectQuery is the second option. DirectQuery can be used with a limited set of
data sources. It does not import the data, but instead sends queries back to the
source, allowing the source system to execute the query. This is mostly used with
large data warehouses where import is impractical. DirectQuery is not supported
for SSAS.

•	 Finally, there is a special connection type for Analysis Services and Power BI data
models – live connect. Live connect is only an option for Analysis Services and
Power BI models. It works like DirectQuery but is optimized for analytic models.
We will be using live connect to create our reports in this section.

Live connecting to the multidimensional model
Now that you have a basic understanding of connections, let's connect our Power BI
desktop to our multidimensional model:

1.	 Click the down arrow on the Get data button on the ribbon and select Analysis
Services:

Creating Power BI visualizations using live connections 343

Figure 10.2 – Get data from Analysis Services

2.	 In the SQL Server Analysis Services database dialog, you will need to add the
Server name for your multidimensional model. Since we know the database
name we are targeting, add that as well. Make sure that the Connect live option is
selected. Then click OK:

Figure 10.3 – SQL Server Analysis Services database connection information

344 Creating Interactive Reports and Enhancing Your Models in Power BI

3.	 The next dialog is the Navigator dialog. Here, you can see our database with the
cubes and perspectives listed out. In our model, we have one cube – Wide World
Importers – and one perspective – Invoicing. We will be using the Wide World
Importers cube for our dashboard.

4.	 When you click on Wide World Importers, the Navigator dialog lists the
dimensions and measures that will be brought into the designer. (You may also
notice that the Navigator dialog calls our cube a perspective as well. The Navigator
dialog does not distinguish between cubes and perspectives.) Once you have
selected Wide World Importers, click OK.

The Navigator dialog with the multidimensional model looks as shown in the following
screenshot:

Figure 10.4 – Navigator dialog with the multidimensional model

Creating Power BI visualizations using live connections 345

We are now connected to the multidimensional model. Your desktop should now look like
the following screenshot:

Figure 10.5 – Live connected to the multidimensional model

You should notice a couple of changes:

•	 On the left, the data view is not available. Because the data is not imported, the
data is not readily available for viewing. As of June 2020, the relationship or model
window is available in preview. At the time of writing, the relationships from the
cube are not represented in this view. You should expect improvements to this view
from Microsoft in the future.

•	 The other key change is that the Fields panel is populated with the dimensions and
measures from our model. You can expand the various tables and groupings to see
the fields and values we will be using in our report design.

•	 The last thing you should notice is also highlighted in the preceding screenshot. In
the lower-right corner, you will see the following: Live connection: Connected.
This lets you know the type of connection you are using in the current design
environment.

346 Creating Interactive Reports and Enhancing Your Models in Power BI

Live connecting to the tabular model
The following steps will walk you through the process of adding a tabular model live
connection to Power BI:

1.	 Open your other desktop file, WideWorldImporters-TAB.pbix.

2.	 Click the down arrow on the Get data button on the ribbon and select Analysis
Services (Refer to Figure 10.2).

3.	 In the SQL Server Analysis Services database dialog, you will need to add the
Server name for your tabular model. Since we know the database name we are
targeting, add that as well. Make sure that the Connect live option is selected. Then
click OK (Refer to Figure 10.3).

You will not get a Navigator dialog unless you do not enter the database name, which
is different from our experience with Excel. Once the connection is made, the Fields
list is populated, and we can see the Live connection: Connected information in the
lower-right corner. You should notice that the Fields list shows all the tables from our
tabular model as tables whereas the multidimensional model differentiated between
measure groups and dimensions. The other key difference is that the preview for the
model view shows the relationships in our tabular model, which were missing from our
multidimensional view.

Now that we have connected to both models, let's start by creating a dashboard (or
Power BI report) as we did with Excel in the previous chapter. We will be replicating the
following screenshot in both model types as much as we are able. Then we will add some
additional visuals that highlight the use of Power BI with our models:

Creating Power BI visualizations using live connections 347

Figure 10.6 – Excel dashboard from Chapter 9

Let's get started with our multidimensional report.

Building our Power BI report with multidimensional
data
Open your Power BI desktop file that is connected to your multidimensional model. For
some additional space on the design surface, we collapsed the Filters panel by clicking the
> at the top of the panel. The steps in the following section will help us to create the visuals
and filters to reproduce a similar dashboard in Power BI using multidimensional data. As
done previously, the data will be focused on our black and blue items. Let's start by adding
the core visuals to the dashboard.

348 Creating Interactive Reports and Enhancing Your Models in Power BI

Creating the base dashboard in Power BI

Let's begin by creating the base dashboard in Power BI:

1.	 Let's start by creating a table with salespeople, regions, and percentages (%) of items
sold. In the Fields panel, expand Measures, then Color Analysis. You should see
the following expanded in your Fields panel:

Figure 10.7 – Color Analysis measures in the Fields panel

Creating Power BI visualizations using live connections 349

2.	 Select % Black Items and % Blue Items. This will add those measures to the default
visual on the design surface. In our case, this created a column chart. You will see
in the Fields panel that our choices have been marked, as shown in the following
screenshot. This helps you know which fields are used in your report:

Figure 10.8 – Added the % measures to Power BI Desktop

350 Creating Interactive Reports and Enhancing Your Models in Power BI

3.	 While the column chart is the default visual, we will be using a matrix visual.
This is easy to change – with the visual highlighted, locate the matrix visual in
the Visualizations panel and click it. This will change the visual to look like the
following:

Figure 10.9 – Column chart changed to matrix visual

4.	 Now let's add our additional fields. Locate the City table and select the Sales Region
hierarchy. This should add the Sales Region hierarchy to the Rows section of your
matrix.

5.	 Next, find the Salesperson table and choose Employee. This should add the
salesperson's name to the columns in your matrix. The Employee field will be in the
Columns section of your matrix's properties. Your Power BI Desktop matrix visual
should look like the following:

Creating Power BI visualizations using live connections 351

Figure 10.10 – Added fields to the matrix visual

6.	 Drag the matrix control to the bottom of your page and expand it so it fills the
bottom of the page.

7.	 The final step is to drill down the hierarchy to display similar information to what
we see in the pivot table in Excel. The following screenshot shows the resulting
table and the button used to drill down:

Figure 10.11 – Matrix with Sales Region drilled down to the Region level

The next part of the process is to add a line chart.

352 Creating Interactive Reports and Enhancing Your Models in Power BI

Adding a line chart
The steps to add a line chart are as follows:

1.	 Click on a blank space on the design surface.

2.	 Then go to Color Analysis and select % Blue Items and % Black Items. Like before,
this will add a column chart to the report.

3.	 With the chart highlighted, select the Line Chart option in Visualizations. This will
change the chart to the line chart with two dots on it as follows:

Figure 10.12 – Change from the default chart to a line chart

4.	 Now, let's add the calendar years to the axis. Go to Invoice Date | Calendar
hierarchy and select Calendar Year. The chart will now look like this:

Creating Power BI visualizations using live connections 353

Figure 10.13 – Adding years to the line chart

5.	 The chart has all the years and Unknown. In order to remove Unknown from the
visual, we need to expand the Filters pane.

6.	 In the Filters on this visual section, expand Calendar Year.

7.	 Change the Filter type to Advanced filtering.

8.	 Choose is not from Show items and enter the Unknown value.

354 Creating Interactive Reports and Enhancing Your Models in Power BI

9.	 Click Apply filter to remove the Unknown value from just this visual. The following
screenshot shows the Filters pane when the setting is applied:

Figure 10.14 – Filtering Unknown from Calendar Year

Creating Power BI visualizations using live connections 355

10.	 Let's add markers to the line chart. With the line chart still highlighted, click on the
paint roller, and expand Shapes. Click Show Marker to add markers to the chart.

11.	 In the same area, expand the Title section and change the title to Black & Blue
Analysis. Wrap up this visual by changing the size to fit in the upper-right corner of
the report. Now on to the next visual. At this point, your report should look like the
following screenshot:

Figure 10.15 – Power BI report with two visualizations

Now let's add the counts and amounts for black and blue items as cards in the report.

Adding cards to our visuals
In Power BI, we will be using the card visualization for each metric – Blue Items, Black
Items, and Black & Blue Sales as follows:

1.	 On the Fields panel, find the Sales measure group and select the Quantity measure.
This will add the Quantity value as the default chart.

2.	 Change the chart type to Card in Visualizations.

3.	 In the Filters panel, add the Color field from the Item dimension to the Filters on
this visual. Select Black from the list of options. The quantity will now be filtered for
black items only.

356 Creating Interactive Reports and Enhancing Your Models in Power BI

4.	 Click on the paintbrush to open the properties for the card. Find Title and turn it
on. Add Black Items as the title.

5.	 Change Alignment to centered and the font size to 30. Change Background color
to a light blue.

6.	 Lastly, change Display units to None in the Data label area of the properties. This
will display the actual value on the card.

7.	 Finish this visual off by resizing the card so we can fit three of these side by side.
Your report should look like the following screenshot at this point:

Figure 10.16 – Multidimensional report with the card added

8.	 We need two more of those cards. We will copy and paste two more next to the
existing card. We will change the properties of these new cards to show the number
of blue items and the total amount sold for both black and blue items.

9.	 Let's update the middle card to the blue item quantity. In the Filters pane, change
Color from Black to Blue. Then update the title to Blue Items.

10.	 Now, for the last card, the card on the right, we will update this to support the
number of sales for black and blue items. Click on that card. Now add Blue to
the filter. This will give us the aggregate of both items. Change the field to Total
Including Tax. Update the card's title to Black & Blue Sales:

Creating Power BI visualizations using live connections 357

Figure 10.17 – Dashboard with all data visuals

Now that we have the core visuals in place, we want to add the two slicers to the
dashboard – Invoice Date and Salesperson.

Adding slicers to our visuals
Slicers let us add interactive filtering. We will be adding date and salesperson slicers
in the following steps:

1.	 Add a slicer visual to your report. Once you have it there, add the Date field to the
slicer. You may get an error saying hierarchy slicers don't work unless you are using
SQL Analysis Services 2019 or newer, as shown in the following screenshot:

Figure 10.18 – Hierarchy slicer error with a multidimensional model

358 Creating Interactive Reports and Enhancing Your Models in Power BI

As I am sure you are aware, we are using SQL Analysis Services 2019. This error
message is misleading. The actual issue we are dealing with is that the hierarchy
slicers are not supported with multidimensional models. As you work through
additional design with multidimensional models, you should be aware that some
functionality is not available for use with multidimensional models. Now, let's move
forward and fix this slicer to work with our multidimensional data.

We have two options to fix our slicer:

i) The first option is to determine that we only want a year filter.

ii) The second option is to allow all levels of filtering.

The next few steps will create both types of filters. So you can see the difference, we
will remove the year filter and instead use the relative date filter.

2.	 Make a copy of the slicer with the error. Now, click on the slicer. In the
Visualizations panel, you can see the hierarchy in the Field section as shown here:

Figure 10.19 – Hierarchy fields in the slicer control

Creating Power BI visualizations using live connections 359

As you can see, all the fields in the Calendar hierarchy are present. Because the
hierarchy is not supported in the slicer, you need to specify which field you want to
use in the slicer.

3.	 Click the X to remove Calendar Month and Date from the first slicer. This will
make the slicer a year slicer for your data. Your slicer will have the Calendar Year
options, which can be selected.

4.	 On the second slicer, remove Calendar Month and Calendar Year. This will show
the individual dates in the slicer. You should have both slicers on your report now,
which should look like the slicers shown in the following screenshot:

Figure 10.20 – Two date slicers using different levels in the hierarchy

5.	 In the year slicer, you can choose between the List view or Dropdown view. The
List view is the default. Dropdowns can be used to conserve space. They still allow
multiple selections and have All as the top level.

6.	 To change the view, you need to select the down arrow in the upper-right corner of
the visual. Be aware that the down arrow is only visible when you hover over that
corner. Choose Dropdown for the year slicer:

Figure 10.21 – Slicer view menu

360 Creating Interactive Reports and Enhancing Your Models in Power BI

7.	 We are going to change the view in the Date slicer as well. However, remember
that the Date field is a date data type. This adds additional options for the view –
Between, Before, After, and Relative Date. Choose Between:

Figure 10.22 – Date slicer using the Between view

8.	 Now, remove the Year slicer and make sure the Date slicer is near the left edge of
the report. Your report should look similar to the following screenshot at this point:

Figure 10.23 – Multidimensional report with the Date slicer

Creating Power BI visualizations using live connections 361

9.	 Now we can wrap up our dashboard by adding the salesperson filter. In Excel, we
used slicer buttons to create this filter. However, a direct equivalent does not exist in
Power BI. Drop a slicer control in place and add the Employee field to the slicer.

That wraps up our multidimensional report. Let's switch to using the tabular model for
our live connection.

Building our Power BI report with tabular data
Now that we have our multidimensional Power BI report complete, let's create the report
based on our tabular model. Open your Power BI Desktop file that is connected to your
tabular model. For some additional space on the design surface, we collapsed the Filters
panel by clicking the > at the top of the panel.

The following steps will create the visuals and filters to create the same dashboard in
Power BI using tabular data. Once again, the data will be focused on our black and blue
items:

Let's start by creating the matrix with salespeople, regions, and percentage (%) of items
sold:

1.	 In the Fields panel, expand Sales. The first difference you will notice is that % of
Blue Items is a key performance indicator (KPI).

2.	 Select % of Black Items.

362 Creating Interactive Reports and Enhancing Your Models in Power BI

3.	 Then expand the % of Blue Items KPI and select Value. This will create the default
column chart with % of Black Items and % of Blue Items. The Fields panel should
look like the following screenshot:

Figure 10.24 – Tabular measures in the Fields panel

Creating Power BI visualizations using live connections 363

4.	 While the column chart is the default visual, we will be using a matrix visual.
This is easy to change – with the visual highlighted, locate the matrix visual in
the Visualizations panel and click it. This will change the visual to look like the
following:

Figure 10.25 – Matrix visual with tabular model

364 Creating Interactive Reports and Enhancing Your Models in Power BI

5.	 Now let's add our additional fields. Locate the City table and select the Sales Region
hierarchy. This should add the Sales Region hierarchy to the Rows section of your
matrix. Unlike when we added this with the multidimensional data, the matrix
recognized the hierarchy and added the + symbol to allow interactive drilling as
shown here:

Figure 10.26 – Matrix control using tabular data with + highlighted

6.	 Next, find the Salesperson table and choose Employee. This should add the
salesperson's name to the columns in your matrix. The Employee field will be in the
Columns section of your matrix's properties.

7.	 Drag the matrix control to the bottom of your page and expand it so it fills the
bottom of the page.

8.	 The final step is to drill down the hierarchy to display similar information to what
we see in the pivot table in Excel. You can use the plus (+) symbol shown in the
previous screenshot to expand the first two levels of the hierarchy easily. You can
use the same expand button that we used with the multidimensional report as well.

As we did in the Building our Power BI report with multidimensional data section, we will
also add a line chart for our tabular model data.

Adding a line chart for the tabular model data
The steps to add a line chart are as follows:

1.	 Click on a blank space on the design surface. Then go to Sales and select % Blue
Items > Value and % Black Items. As before, this will add a column chart to the
report.

Creating Power BI visualizations using live connections 365

2.	 With the chart highlighted, select the Line Chart option in Visualizations. This will
change the chart to a line chart with two dots on it.

3.	 Now, let's add the calendar years to the axis. Go to the Date table and select
Calendar Year Label. Remember that in our tabular model, Date is marked as the
date table.

4.	 Let's add markers to the line chart. With the line chart still highlighted, click on the
paint roller, and expand Shapes. Click Show Marker to add markers to the chart.

5.	 In the same area, expand the Title section and change the title to Black & Blue
Analysis.

6.	 Next, go back to the Fields area for the visual properties.

7.	 Click the down arrow by Calendar Year Label, choose Rename, and rename the
field to Calendar Year, removing Label from the name. This will update the
axis title on our line chart. You can see the menu that includes the Rename option
for the field shown in the following screenshot:

Figure 10.27 – Rename axis in Power BI

366 Creating Interactive Reports and Enhancing Your Models in Power BI

8.	 Wrap up this visual by changing the size to fit in the upper-right corner of the
report. Now on to the next visual. At this point, your report should look like the
following screenshot:

Figure 10.28 – Tabular model Power BI report with two visualizations

Now let's add the counts and amount for black and blue items as cards in the report.

Adding cards to tabular data
As done previously, we will be using the card visualization for each metric – Blue Items,
Black Items, and Black & Blue Sales as follows:

1.	 On the Fields panel, find the Sales table and select the Total Black Items field. This
will add the Total Black Items value as the default chart.

Implicit measures are turned off
When we built our tabular model, we turned off implicit measures by setting
DiscourageImplicitMeasures to TRUE. By making this change, we are unable
to use Quantity as a measure. If you want to use Quantity as a measure in
Power BI, you will need to create a Total Quantity measure or similar in the
tabular model and redeploy the model. Multidimensional models always
explicitly call out measures in the design process, which is why we were able to
use Quantity in the multidimensional report. Implicit measures are frequently
used in Power BI report design, so this may cause confusion with some report
designers using live connected models.

2.	 Change the chart type to Card in Visualizations.

Creating Power BI visualizations using live connections 367

3.	 Click on the paintbrush to open the properties for the card. Find Title and turn it
on. Add Black Items as the title.

4.	 Change Alignment to centered and the font size to 30.

5.	 Turn off Category label.

6.	 Change Background color to a light blue.

7.	 Lastly, change Display units to None in the Data label area of the properties. This
will display the actual value on the card.

8.	 Finish this visual off by resizing the card so we can fit three of them side by side.
Your report should look like the following figure at this point:

Figure 10.29 – Tabular report with the card added

9.	 We need two more of those cards. We will copy and paste two more next to the
existing card. We will change the properties of these new cards to show the number
of blue items and the total amount sold for both black and blue items.

10.	 Let's update the middle card to the blue item quantity. In the filter, change the field
to Total Blue Items. Then update the title to Blue Items.

11.	 Now, for the last card, the card on the right, we will update this to support the
number of sales for black and blue items. Change the field to Total Sales
Amount. Update the card's title to Black & Blue Sales.

368 Creating Interactive Reports and Enhancing Your Models in Power BI

12.	 To complete this step, we need to add a filter to the card as well. Expand the Filters
panel and locate Filters on this visual. From the Fields panel, locate Item Brand
Color and drag the Color field into the Add data fields here area. Select Black and
Blue from the list. That completes the work on this card.

We will now add slicers to our report.

Adding slicers to the tabular data visuals
Follow the steps outlined to add slicers:

1.	 Add a slicer visual to your report. Once you have it there, add the Calendar
hierarchy from the Date table to the slicer. Unlike the issues we saw with the
multidimensional report, the Calendar hierarchy works in the slicer. The new
hierarchy slicer allows you to expand down the hierarchy to choose the date filter
you want to apply.

2.	 Finally, add another slicer for Salespeople. Add another slicer to the report.

3.	 Add the Employee field to the slicer.

4.	 Rename the Field to Salesperson by clicking the down arrow by the field and
choosing Rename. Both of your reports should look similar. Here is our finished
tabular model report:

Figure 10.30 – Completed report based on the tabular model

Understanding live connections and import for Power BI with SSAS models 369

This concludes the design of the basic Power BI report based on the tabular model. Let's
now have a rundown on live connections and import for Power BI.

Understanding live connections and import
for Power BI with SSAS models
The reports we created in the previous section connect live to the multidimensional
and tabular models in Analysis Services. When using this capability, queries are sent to
Analysis Services and the results are returned. While some caching is done to improve
performance, the overall solution is dependent on the performance of Analysis Services
and the network connectivity with Power BI.

The alternative approach is to import the data, which results in the data being loaded
into memory in Power BI. This is most valuable when you need to mash up data between
multiple data sources. However, if you are working with SSAS to import a lot of data, you
will find there are often performance issues when importing that much data. You will
likely be required to create MDX or DAX queries to make sure the data can be mashed up
as expected. Refreshing performance with multidimensional models has proven to be a
poor solution in many situations.

We recommend that you move to the underlying data source to create Power BI solutions
if you need to import a lot of data from SSAS. For example, in our solution, we have a
well-formed dimensional model in SQL Server. Rather than trying to import all the data
from the multidimensional database, it would make more sense to import the data from a
relational database using the star schema views.

Given the choice between import or live connections, you should use live connections.
Typically, we see more developers start with Power BI and move to tabular models when
they need additional scale. Only use import when you need a smaller subset of the data to
be mashed up with other data.

Power BI has an additional capability to enhance the model when using tabular models.
We will discuss that next.

370 Creating Interactive Reports and Enhancing Your Models in Power BI

Adding measures to Power BI when using
tabular models and live connections
As we saw earlier, with the lack of support for the hierarchy slicer, new measures can
only be added to tabular models when using a live connection. This functionality is
not supported with multidimensional models. In this section, we will add a measure to
our tabular model report. This allows us to expand on the model without changing the
underlying model. Let's begin:

1.	 Open your tabular model Power BI report.

2.	 Add a new page to the report so we have a clean design canvas to work with. Select
the Sales table as we will be adding a Total Quantity measure there.

3.	 There are two standard ways to create new measures in your report. On the Home
ribbon, you can see the Calculations section, which has two buttons – New
measure and Quick measure. We will start by creating a simple new measure. First,
click New measure:

Figure 10.31 – Create calculated measures buttons
When you click the New measure button, Power BI Desktop takes you to the
following window. This window simplifies measure creation by allowing you to
set Name, the datatype, and Home table at the top. The ribbon in this view has
formatting available as well:

Adding measures to Power BI when using tabular models and live connections 371

Figure 10.32 – The new measure window in Power BI Desktop

Mind your measures
Power BI has this annoying feature related to the location of measures. It puts
the measure in the table you have selected in the Fields panel. If you just click
the New measure button and have not explicitly selected the table you want to
see the new measure created in, it will drop the new measure in the first table in
your list. In our model, this is the Annual Calcs table. In step 2 of our process
here, you should have selected the Sales table. This is the reason why. If you
forget to do this, the New measure view in Power BI desktop has the ability to
change the Home table.

Now that we are here, we will begin creating our new measure.

Creating a new measure
The steps to create a new measure are as follows:

1.	 Change the name of our measure to Total Quantity by replacing the word
Measure in the formula bar or by changing the Name field in the ribbon.

2.	 Next, confirm that Home table is set for Sales.

3.	 Since Quantity is not a decimal number, change the data type to Whole number.

4.	 In the formula bar, we will be creating a simple sum measure with the Quantity
field. Here is the formula: SUM('Sales'[Quantity]).

372 Creating Interactive Reports and Enhancing Your Models in Power BI

5.	 Set the formatting to Whole number as well.

6.	 Find the new measure and add it to your report by selecting it. You will get the
default column chart.

7.	 Add Sales Territory from the City table and you can see how Total Quantity is
broken down by territory.

8.	 Now let's use the Quick measure option. Click Quick measure on the ribbon to
add another measure.

A quick word on Quick measures in Power BI
Quick measures are preconfigured DAX calculations to help Power BI
report designers easily create more complex calculations. There are time
intelligence, category, filter, and even text-based calculations included. These
calculations are created by Microsoft and its partners to support better Power
BI development. This is an area in which to expect changes on a regular basis in
Power BI.

9.	 Unlike New measure, Quick measure opens up a new dialog called Quick
Measures. You select the calculation and add fields from the model to complete
the creation of the measure. For our report, let's add the Average per category
calculation. Select that calculation from the list.

10.	 Add Total Sales Amount from the Sales table to the Base value field. You can either
scroll through the list on the right or use Search to find the value more quickly.

11.	 From the Item table, add Size to the Category field. Your dialog should look like the
following screenshot:

Adding measures to Power BI when using tabular models and live connections 373

Figure 10.33 – Quick measures dialog

12.	 Click OK. This will open the measure dialog with the new measure created. It
generates the following DAX:

Total Sales Amount average per Size = AVERAGEX(
KEEPFILTERS(VALUES('Item'[Size])),CALCULATE([Total Sales
Amount]))

374 Creating Interactive Reports and Enhancing Your Models in Power BI

You can add this measure to your report and explore how it interacts with your
data. If the calculation is close to what you want to do, you can modify it. Quick
measures generate the measure for you and are a great way to learn more complex
DAX syntax. They are also a great way to create a starter measure you can modify as
needed.

As you can see, you can add measures to enhance your report based on tabular models.
You can also use Power BI to prototype new measures you may want to add back into your
tabular model for others to use. Working with DAX in Power BI is much easier than using
Visual Studio.

In our next section, we will explore how to deploy our Power BI reports to the service.

Deploying your Power BI report to a Power BI
workspace
A Power BI report can be deployed to the Power BI service online or to Power BI Report
Server, which runs in SQL Server Reporting Services (SSRS). In this section, we will
look at deploying the report to the service, which is the most common and recommended
approach.

Power BI Report Server
Power BI Report Server is the on-premises deployment option for Power
BI reports. However, it requires specific licensing with SSRS or Power BI
Premium. This option allows customers who still have concerns about the
cloud an option to deploy locally. Be aware that a different Power BI Desktop
application is required because Power BI Report Server does not keep pace
with its online peer. Some of the functionality we have demonstrated in this
chapter may not be compatible depending on your current version of Report
Server. We will not be discussing this option due to these restrictions.

Deploying your Power BI report to a Power BI workspace 375

We have been working in Power BI Desktop, which is the free tool available to everyone.
If you want to share the work you have done, the best option is to deploy to the Power
BI service. In order to deploy to Power BI online, you will need a Power BI Pro license.
If your organization runs Microsoft 365, you may have a license and personal workspace
available. If not, check out Power BI's website for the latest free trial options to explore this
functionality.

Adding a gateway and deploying our tabular report
In order to access on-premises data sources, you will need to add a gateway to your
development server. This gateway allows Power BI to successfully request data from the
data sources. The gateway fully manages the connectivity and responds to requests from
Power BI. This is important as Power BI does not require direct connectivity to your
on-premises environment to work with the data.

You can download the gateway and find more details about the gateway at this location:
https://powerbi.microsoft.com/en-us/gateway/. There are two gateway
options – personal mode and standard mode. Live connections with SQL Server
Analysis Services (SSAS) are only supported in the standard mode.

The next steps download the gateway in Standard mode. Depending on security, network,
and other restrictions in your environment, you may not be able to continue:

1.	 Download the gateway in the standard mode.

2.	 Install the gateway on your development server. Keep in mind that we are using this
to demonstrate deployment. You should not consider this a production deployment
recommendation for the gateway.

https://powerbi.microsoft.com/en-us/gateway/

376 Creating Interactive Reports and Enhancing Your Models in Power BI

3.	 Register the gateway using the same account you have Power BI associated with.
When this process is complete, you should see a confirmation dialog showing that
Power BI is ready to go, as shown in the following screenshot:

Figure 10.34 – Power BI gateway install success

4.	 Now browse to https://app.powerbi.com/groups/me/gateways to view
the gateway online.

5.	 In the browser, you should see a link to Add data sources to use this gateway. Click
that link and complete the information for the connection to your tabular model.
You will need a local user on the server to map to this gateway. That user needs to
have access to your SSAS instance as well:

https://app.powerbi.com/groups/me/gateways

Deploying your Power BI report to a Power BI workspace 377

Figure 10.35 – Data Source Settings in the Power BI gateway

6.	 If you have your gateway configured with a data connection, the next step is to
deploy your Power BI Desktop file to Power BI. Click the Publish button on the
ribbon to continue.

If you have not logged into your Power BI environment yet, you will be prompted to
do so.

7.	 In the Publish to Power BI dialog, choose My workspace, and click Select. You will
now see the Publishing to Power BI dialog, which will show the progress of the
deployment. Click the Open 'WideWorldImporters-TAB.pbix' in Power BI link to
open the published report in the Power BI service.

8.	 If all the connectivity is working correctly, you should have the interactive
dashboard available on your Power BI site. If you are not connected to Active
Directory (common with development environments), you may not be able to
connect to the data even though all the settings and connectivity appear to be in
order.

This is the best way to share your dashboards within your organization. Troubleshooting
gateway issues is beyond the scope of this book.

378 Creating Interactive Reports and Enhancing Your Models in Power BI

Summary
In this chapter, you have used Power BI to visualize data from both Analysis Services
models. By creating similar dashboards with both model types, you should have seen the
differences when creating the dashboards. You will also have learned that connecting live
and deploying to the Power BI service are the preferred options to take advantage of the
best of Analysis Services and Power BI.

We also walked through expanding the measures in our Power BI models and then the
deployment options available for Power BI. Microsoft continues to make changes to Power
BI and tabular models in Analysis Services so those are the preferred technologies in most
cases.

In the next chapter, we will dive deeper into security options available to both types
of models. We will look at specific Analysis Services security features including
implementing row-level security.

Section 5:
Security,

Administration,
and Managing

Your Models
There are more advanced topics that are required to understand as you deploy your
solution to users. In this section, we will explore practices and tools for securing and
maintaining your models once they are deployed.

This section comprises the following chapters:

•	 Chapter 11, Securing Your SSAS Model

•	 Chapter 12, Common Administration and Maintenance Tasks

11
Securing Your

SSAS Models
Now that we have created our models and built reports and dashboards, we will wrap up
the book with chapters on security and maintenance. This chapter focuses on securing
the server and the data in your models. We will review the capabilities that SQL Server
Analysis Services (SSAS) brings and the unique features available to each type of model.
A significant part of this chapter will describe what you can do to implement different
or enhanced security. Some of the topics in this chapter will not have hands-on exercises
because of the complexity or enterprise nature of security implementations.

In this chapter, we're going to cover the following main topics:

•	 Reviewing security settings for SSAS

•	 Setting up user roles in servers and databases

•	 Implementing data security in multidimensional models

•	 Implementing data security in tabular models

382 Securing Your SSAS Models

Technical requirements
In this section, you will need to have your multidimensional model that was created
in Chapter 3, Preparing Your Data for Multidimensional Models, Chapter 4, Building a
Multidimensional Cube in SSAS 2019, and Chapter 5, Adding Measures and Calculations
with MDX, deployed and running (WideWorldImportersMD). You will also need
the tabular model we expanded in Chapter 6, Preparing Your Data for Tabular Models,
deployed and running (WideWorldImportersTAB). We will not be working with the
workspace version of your tabular models.

You will also need SQL Server Management Studio (SSMS) and Microsoft Excel to work
through the hands-on work in this chapter. To work through all of the examples in this
chapter, you will require the latest version of Excel in Office 365 ProPlus. At the time of
writing this chapter, all examples were carried out in Excel in the Office 365 ProPlus May
2020 release. Because Excel is updated continually via a subscription, some examples may
look different for you. You will need SSMS to review and make modifications to some
security settings and to validate security implementations in some cases.

You will also need the SQL Server relational database we created in Chapter 3, Preparing
Your Data for Multidimensional Models, for some of the security modifications. We will
need to add tables to the database and incorporate those tables into our Visual Studio
solutions to support some of the more advanced security techniques.

Reviewing security settings for SSAS
SSAS builds on a rich history of security built into the platform with a focus on keeping
vital business data secure. In this section, we will review the core security properties and
their impact on your environment.

Opening the security settings for the server
While the core engine that runs each mode (multidimensional and tabular) is different,
much of the management is shared. This means the properties can be found in the same
location and modified in the same way. You will see that some types of properties only
apply to one of the modes. However, for security settings, they are the same. But first, let's
open our security settings so that we can review the impact:

Reviewing security settings for SSAS 383

1.	 Open SSMS and connect to both instances of SSAS.

2.	 Right-click on the name of the instance and select Properties, as shown in the
following screenshot:

Figure 11.1 – Server properties in the shortcut menu
This will open the Analysis Services Properties dialog to the Information page.
While your first instinct would be to open the Security page, that is not what we are
reviewing in this section.

3.	 Click on the General page.

4.	 Select Show Advanced (All Properties).

384 Securing Your SSAS Models

5.	 Scroll down until you see the four properties listed in the Security section. Steps 3,
4, and 5 have been highlighted in the following screenshot:

Figure 11.2 – Security properties for SSAS

Before we leave this section, let's review how to modify these properties on the
General page:

•	 The first column is the Name column. This column organizes the properties
into groups and subgroups. In our current case, we are looking at the properties
that are part of the Security group. There are a number of other properties and
groups, some of which we will cover in Chapter 12, Common Administration and
Maintenance Tasks, which covers maintenance and operations.

•	 Next, you will see three value columns: Value, Current Value, and Default Value:

a) Use the Value column to make a change to the property.

b) Current Value is the value currently in use with this instance.

c) Default Value is a reference to what the default is, so you can determine whether
you should go to the default or not.

Reviewing security settings for SSAS 385

•	 The Restart column informs you if a restart is required to apply the change. Some
changes show immediately when changed and will be reflected in Current Value
after the value is changed. However, if a restart is required, the property may not yet
be applied. This column makes you aware of the impacted properties.

•	 The Type and Units columns describe the type of data expected in the property:

a) The Type column lets you know the data type required for the property, such as
int or bool.

b) The Units column lets you know what you should expect to see or put in the
column. For example, Sec is used for those properties whose value is expressed in
seconds; Folder is used to inform you that the property expects a folder location;
and MS is used for milliseconds.

•	 The Category column is used to separate Basic from Advanced properties. When
you click the Show Advanced (All) Properties box, the advanced properties are
made visible.

WARNING: Changing server properties can negatively impact your model
Be aware that changing these properties is similar to making registry changes
in Windows. You should test the impact of these changes prior to making any
changes in a production environment. Be especially cautious when working
with properties that require a restart as you will need to plan a maintenance
window to minimize the impact on your users when making these changes.

In the next section, we will start digging into some specific security properties in detail.

Allowing anonymous access to your model
When you first open the Analysis Services Properties window, you only see the basic
option, Security \ RequireClientAuthentication, which was pointed out in the previous
section. This property is set to true by default.

386 Securing Your SSAS Models

Disabling this property or setting it to false is the first step in enabling anonymous access
to your SSAS instance. Analysis Services is secured with Active Directory by default. This
is required because the data in most models is considered sensitive or important to the
business. If you have data that you want to make publicly available and not require an
Active Directory account to access it, you start by setting this to false. The full process
requires the following steps to complete:

1.	 Open Analysis Services Properties to the server you want to enable anonymous
access for.

2.	 Update the Security \ RequireClientAuthentication property to false.

3.	 Edit connection strings that are used to access this server. Add the
Impersonation Level = Anonymous parameter.

4.	 Create a new role in the SSAS database that you want to allow anonymous access
to and apply permissions to the role you want to use (we explore creating and
managing roles later in this chapter).

5.	 Add Anonymous Logon as a member of your newly created role.

WARNING
This allows unauthenticated access to your server and database. We
recommend only using this for specific datasets you would consider public.

This will effectively allow any client or user to access the data in this database based on the
role permissions allowed. We recommend that you do not use this except in special cases.
The default does not allow anonymous access and typically requires some level of named
access to view your models.

Understanding advanced security properties
This section covers the advanced security properties in SSAS and their impact on your
models. The first two properties are related to how administrator and service accounts are
treated within Analysis Services:

•	 Security \ BuiltInAdminsAreServerAdmins: This property determines whether
local administrators for the server or machine are Analysis Server admins. This is
set to true by default. You may need to change this if your company has specific
security requirements related to system admins and access to data.

Reviewing security settings for SSAS 387

•	 Security \ ServiceAccountsServiceAdmin: This property specifies whether the
service account that Analysis Services is running under is an administrator account.
This property is set to true by default as well. This is typically not an issue as the
service account is provided by the security management organization. However, as
with built-in admins, if you need to change this to meet internal security policies,
the capability is here.

•	 The third option visible in the advanced view is Security \ CellPermissionsMode.
We recommend leaving this with the default value of 0. There is no current
documentation on this property, so no updates are necessary or recommended.

While most of the security settings we adjust are in the properties window, some can only
be changed in the underlying msmdsrv.ini file. We will discuss these settings next.

Setting security properties in msmdsrv.ini
Some properties are only available in SSAS's configuration file – msmdsrv.ini. In other
cases, if your changes are not saved in the properties window, you can make the changes
in this file as well. To set the security properties, let's first find and open the file.

Finding and opening the file
This file exists for all your installed instances of SSAS regardless of the mode. If you
installed SQL Server with the default install locations, you will find the msmdsrv.
ini file in the following folder: C:\Program Files\Microsoft SQL Server\
MSAS15.<<instance name>>\OLAP\Config. Replace <<instance name>>
with the name of your instance – for example, DOWSQL2019.

WARNING
Changing this file directly could adversely affect your SSAS instance. Use
caution when making changes.

You can open this file with any text editor. For our demonstration purposes, I have created
a copy to prevent issues from working directly with this file in my environment.

388 Securing Your SSAS Models

Other properties related to security
In the ConfigurationSettings section, you will find a security section. It has some
additional settings for securing your server, as shown here:

<Security>

 <DataProtection>

	 <RequiredProtectionLevel>1</RequiredProtectionLevel>

 </DataProtection>

 <AdministrativeDataProtection>

	 <RequiredProtectionLevel>1</RequiredProtectionLevel>

 </AdministrativeDataProtection>

 <RequireClientAuthentication>1</RequireClientAuthentication>

 <SecurityPackageList/>

 <DisableClientImpersonation>0</DisableClientImpersonation>

 <BuiltinAdminsAreServerAdmins>1</
BuiltinAdminsAreServerAdmins>

 <ServiceAccountIsServerAdmin>1</ServiceAccountIsServerAdmin>

 <ErrorMessageMode>2</ErrorMessageMode>

 <CellPermissionMode>0</CellPermissionMode>

 <HighTrustTokenSignerCert/>

 <NormalTrustTokenSignerCert/>

 <ServerSchannelTokenSignerCert/>

</Security>

You can see the properties we worked with previously. The only property we will call out
here is DataProtection \ RequiredProtectionLevel. This is an important
setting as it defines the data encryption level for all client requests. The default level is 1,
which requires encryption. Encryption of data can cause some performance impacts. If
your environment needs better performance and the network infrastructure is secured
sufficiently, you can potentially use one of the other options. Here are the options for data
protection in Analysis Services:

•	 0: No encryption, cleartext allowed

•	 1: Encryption required, no cleartext (default)

•	 2: Cleartext is allowed but only with signatures, less secure than encryption

Setting up user roles in servers and databases 389

That wraps up the settings we will cover in this chapter for Analysis Services security. We
will now start looking at roles, permissions, and database security for your models.

Setting up user roles in servers and databases
In this section, we will cover the various roles that exist in the databases and servers.
Custom roles are also possible. These can limit the data that is seen by users, allowing you
to build a more complete solution, reducing overall maintenance. Let's now see how to
add members to the server administrator roles.

Adding members to the server administrator role
The server administrator role in SSAS has unlimited access to the server, databases, objects,
and all data in the instance. Because of this unlimited access to objects and data, it is very
important to understand who has that access. When we were installing the servers in
Chapter 1, Analysis Services in SQL Server 2019, we added the current user to this role.
This allowed us to have unfettered access and functionality while working through the
tasks in this book. However, in a production configuration, you need to be clear who has
access. In our case, we have at least three groups or individuals who were added during
the install process:

•	 Local administrators: This group has access by default. If you want to remove them
from this group, change Security \ BuiltInAdminsAreServerAdmins to false to
remove their access. This group is not listed on the Security page in the Analysis
Services Properties dialog. Remember that you need at least one other named
administrator before removing this group.

•	 Service account: This account is granted access by default as well. If you want
to remove this account from the server administrators, you will need to change
Security \ ServiceAccountsServiceAdmin to false. Be aware that the service
account can be used to grant access to various clients. Removing access will
effectively remove access from those customers as well.

•	 You: If you added your current user account during the installation, you should see
the user listed on the Security page of the Analysis Services Property window. This
user can be removed from the properties dialog. For now, we will leave this user in
place by design.

390 Securing Your SSAS Models

Now that you can see what users exist in the role, let's add another user to the
administrator role. These instructions work with both instance modes, multidimensional
and tabular:

1.	 Open the Analysis Server Properties window by right-clicking on the server name
and selecting Properties.

2.	 Go to the Security page.

3.	 Click Add… to add another user. This opens the standard Select Users or Groups
Windows dialog. This dialog allows you to search the local computer, domains, or
other supported security locations to allow access to valid users. If you click the
Advanced… button, you can use a more sophisticated search option.

4.	 Select the user or group to add to this role, then click OK. You should see the new
user added. Depending on the type of account added, you may see the name in a
different format than you were expecting. For example, joe@somewhere.com
may be added as Joe because this dialog does not support email-style usernames.

Remember that any groups or users added here have unlimited access to the data as well
as the objects in the server. Any other security applied to the user will be ignored because
Analysis Services uses optimistic security.

One last thing before we add roles to the models or databases – there are no other server-
level security options for Analysis Services. All other security and roles are applied from
the database to the data.

Adding a read-only role to the multidimensional model
For this section, you will be working with your multidimensional model. We will be
adding a role to the database that will allow read access to all our data. This is a typical
operation in databases. This role can be assigned to users or groups to provide access:

1.	 Open your Visual Studio multidimensional project.

2.	 Right-click on the Roles folder and select New Role….

3.	 This will open the Roles design view, as shown in the following screenshot. Be aware
that the dialog has options specific to multidimensional models. Multidimensional
models have a much richer security experience than tabular models:

Setting up user roles in servers and databases 391

Figure 11.3 – Multidimensional model – create role
Before we create the role, there are three permissions shown that we will not
be using in this case – Full control (Administrator), Process database, and
Read definition:

i) Full control is the equivalent of the server administrator role but scoped to
the database.

ii) Process database is specifically for system roles that can be used to refresh or
process the database. It allows users or groups in this role to refresh the data from
the sources.

iii) Finally, Read definition allows users and groups to see the objects and
structures in the database but not the data. This permission allows a user to connect
SSMS to the database and see the objects. When used with the Process database
permissions, a user can browse the Analysis Services database in SSMS and process
the desired object without visibility of the data. We don't need those permissions for
the read-only role we are creating.

4.	 Change the name of the role to Read Only. This can be done by right-clicking on
the Role.role name in Solution Explorer and choosing Rename.

5.	 Select the Cubes tab.

6.	 Select Read from the drop-down list in the Access column for our single cube –
Wide World Importers.

392 Securing Your SSAS Models

7.	 If you have users or groups in your environment to add, select the Membership
page and add them there. You do not need to add members to create the role,
which is important for supporting sophisticated security structures that are
required by many organizations. Once deployed, members can be added to the
production environment.

8.	 Once you are done, save your changes.

With multidimensional databases, you can have multiple cubes. If you want a global read-
only role, you will select Read access for all the cubes on the list. We only have one cube
currently. We will now add the read-only role to the tabular model.

Adding a read-only role to the tabular model
For this section, you will be working with your tabular model. As in the previous section,
we will be adding a read-only role to the database:

1.	 Open the Visual Studio tabular model solution.

2.	 Open the database to which you will be adding the role. In our example, this is
WideWorldImportersTAB.

3.	 Right-click on the Roles folder and select Roles to open Role Manager, as shown
in the following screenshot:

Figure 11.4 – Tabular model Role Manager dialog

Setting up user roles in servers and databases 393

4.	 Click on the New button to begin creating the new role.

5.	 Change the name of the role to Read Only.

6.	 Select the Read option from the Permissions drop-down list. Unlike the various
options available to multidimensional models, this allows query access to the data
in the entire tabular model. We will create roles that use row filters in a later section,
but those filters are applied to users with the Read permission selected.

7.	 If you have users or groups in your environment to add, select the Members tab
and add them there. You do not need to add members to create the role, which
is important to support more sophisticated security structures required by
many organizations. Once deployed, members can be added to the
production environment.

8.	 Once you are done with these changes, select OK to save your changes and add
the role.

Before we move on to the next section, there are two permissions shown that we will
not be using in this chapter but you should be aware of their use – Administrator
and Process:

•	 Administrator is the equivalent of the server administrator role but scoped to
the database.

•	 Process is specifically for system roles that can be used to refresh or process the
database. It allows users or groups in this role to refresh the data from the sources.

SSMS and Visual Studio access restricted
The roles we have created do not allow a user to access the data via design
tools such as SSMS and Visual Studio. For multidimensional models, you must
provide Read definition access to allow users to view the definition in SSMS's
Object Explorer if the user is not in an administrator role. For tabular models,
you need to have Administrator privileges or be in the server administrator
role.

Let's now implement data security in multidimensional models.

394 Securing Your SSAS Models

Implementing data security in
multidimensional models
Now that we have created a read-only role, let's go a little deeper with security. The read-
only role was secured at the cube level. As we mentioned before, users who are part of
this role have read access to all the content in the cube. In this section, we will work with
dimensional- and cell-level security. We will start with dimension hierarchy-level security,
and then demonstrate how to add dynamic security to support more complex scenarios.
We will wrap this section up by showing how to secure data at the cell level.

Adding a local or test user for security testing
Before we start creating the role, you will need to have a local user you can
test with. Because adding a user is unique to your environment, we cannot
add the specifics here for every situation. If you are using Windows 10 for
your development environment and you are disconnected from a domain, you
can use the following link to add a local user that can be used: https://
support.microsoft.com/en-us/help/4026923/windows-
10-create-a-local-user-or-administrator-account.
If you are attached to a domain and are able to request a test user account for
these purposes, we recommend that. For other systems, you will need to look
up what is required.

Adding customer roles with dimension hierarchy
security
We currently have two customers in our cube – Tailspin Toys and Wingtip Toys. In our
design, these are part of the Customer dimension and are at the Bill To Customer
level in Customer Hierarchy. We will create two roles to secure our data based on these
customers. Let's get started:

1.	 Open your Visual Studio multidimensional solution.

2.	 Right-click on the Roles folder and select New Role.

3.	 Let's start with Tailspin Toys. Name the role Tailspin Toys Group.

4.	 Select the Cubes tab.

5.	 Choose Read from the Access options for the Wide World Importers cube. This
will guarantee that users who are only members of the Tailspin Toys Group role
will be able to view the data in the cube. Permissions are accumulative, which
means each role that a user is a member of adds to their permissions.

https://support.microsoft.com/en-us/help/4026923/windows-10-create-a-local-user-or-administrator-acc
https://support.microsoft.com/en-us/help/4026923/windows-10-create-a-local-user-or-administrator-acc
https://support.microsoft.com/en-us/help/4026923/windows-10-create-a-local-user-or-administrator-acc

Implementing data security in multidimensional models 395

6.	 Select the Dimension Data tab.

7.	 Choose the Customer dimension in the top drop-down list. Your dialog should
look like the one in the following screenshot:

Figure 11.5 – Creating a dimension hierarchy role in Dimension Data
Before we move on to the next steps, we need to understand our options when
creating this role.

First, you will see that the Bill To Customer attribute hierarchy is already selected
(if it is not selected for you, select it from the list of hierarchies). For this role, we
will use the basic options. We have two choices: Select all members and Deselect
all members.

By default, Select all members is selected. If we use this option, we choose to
explicitly deny access to a hierarchy member. The effective result is that new
members will be visible to this role. This option is most effective if you have a
specific level that needs to be hidden from most users. If the users who would access
the hidden level are all administrators with full control, an additional group would
not be necessary.

396 Securing Your SSAS Models

When you select Deselect all members, the members in the list on the right
become deselected. In this case, explicit access will be granted for users in this role.
This would be the option used when managing access to the specific set of data.
When new members in the hierarchy are added, they will not be visible to users in
this role. We will be setting up roles with this type of access.

8.	 Choose Deselect all members.

9.	 In the attribute list, select Tailspin Toys (Head Office). Your Create Role dialog
should look as in the screenshot here:

Figure 11.6 – Tailspin Toys Group role attributes selected

10.	 Save your changes to apply the role to your project.

Now that we have created our role, how do we verify that it works? We can use SSMS to
verify whether our role works as expected. Here are the steps:

1.	 In Visual Studio, deploy and process the cube to apply your changes to the database.

2.	 In SSMS, expand the Cubes folder in the WideWorldImportersMD database.

3.	 Right-click the Wide World Importers cube and select Browse. This will open the
built-in cube browser in Management Studio.

4.	 In the Metadata panel on the left side of the screen, expand Measures and the
Sales folder. Drag Quantity onto the open panel on the right. Click the link
(Click to execute query) to update the view.

5.	 Next, in the Metadata panel, expand the Customer dimension and Customer
Hierarchy.

Implementing data security in multidimensional models 397

6.	 Drag Bill To Customer into the results area and execute the query. You should now
see three rows with the customers and quantities visible, as shown here:

 Figure 11.7 – Cube browser with Bill To Customer and Quantity

7.	 Click the Change User button, as shown in the following screenshot:

Figure 11.8 – Change user in the Cube browser

398 Securing Your SSAS Models

8.	 This will open the Security Context dialog for the browser. Current User is selected
when the dialog first opens. If you had a user you wanted to test, you could select
them here. We will be testing the use of the role we created. Select Roles and choose
Tailspin Toys Group, as shown here:

Figure 11.9 – Choose Tailspin Toys Group in the role security context

9.	 Click OK for both dialogs to change the context. This will clear the results window.

10.	 Drag Quantity and Bill To Customer back into the results pane and execute
the query. You can see that the query is now filtered for the role and only Tailspin
Toys data is being displayed. You can clear the grid by right-clicking the results pane
and choosing Clear Grid.

Now that we have the Tailspin Toys Group role created, we need to create a role for
Wingtip Toys. In this exercise, we will use the advanced options to create the role so that
you can see how complex security options can be applied to the cube:

1.	 Back in Visual Studio, right-click the Roles folder to add a new role.

2.	 Name the new role Wingtip Toys Group.

Implementing data security in multidimensional models 399

3.	 In the Cube tab, add Read access to the Wide World Importers cube:

Figure 11.10 – Allowing read access to the cube

4.	 Now, select the Dimension Data tab and choose the Advanced tab.

5.	 Choose the Customer dimension and the Bill To Customer attribute.

6.	 Like before, we will be allowing access to Wingtip Toys. Click the Edit MDX button
for Allowed member set. This will open an Expression Builder dialog to help
create the Multidimensional Expressions (MDX) used for the role.

7.	 In Expression Builder, expand the Customer dimension and Customer Hierarchy.

8.	 Expand the Bill To Customer level in the hierarchy and drag the Wingtip
Toys (Head Office) member to the Expression area. This will add the
following text to the expression area: [Customer].[Customer Hierarchy].
[Bill To Customer].&[Wingtip Toys (Head Office)].

9.	 Click Check to verify that the expression is valid for this use. If it passes the check,
click OK to add it to Allowed member set.

10.	 The code from Expression Builder has been added to Allowed member set. While
the code passed the MDX syntax check, it is not valid for setting dimension security.
The reason is that the expression includes the Customer hierarchy in the name.
You should secure data on the base attribute hierarchy. When you review the list of
attributes, custom hierarchies are not included in the list. You will need to update
the code and remove the Customer Hierarchy reference. The expression needs
to be updated to the following code, which also includes the curly braces to define
the set, which would be considered a best practice:

{[Customer].[Bill To Customer].&[Wingtip Toys (Head
Office)]}

400 Securing Your SSAS Models

The Role Properties dialog should look like the one in the following screenshot
when you have completed the changes:

Figure 11.11 – Wingtip Toys group role MDX set

11.	 Save your changes, then process the cube.

You can test this role using the same steps we used for testing the Tailspin Toys Group role
in the cube browser in SSMS after the changes have been deployed and processed. You can
see how you can use MDX to handle more complex security scenarios with dimensional
security. Next, we will be adding dynamic security to our cube.

Before moving on to dynamic dimension security, we have added these roles using Visual
Studio. However, you can create the same roles using SSMS. All the dialogs will look the
same for that process. If you choose to add your roles in SSMS, you will need to plan to
redeploy them if you need to redeploy the solution. Visual Studio will overwrite roles
created in SSMS only.

Adding sales group security with dynamic dimension
security
We have added security to filter for the two customers in the previous section. We will
now be using the dynamic dimension security concepts to add security for salespeople.
While our example is a small set of users, when there are a lot of possible security
combinations or there is a change in the organization, dynamic security is a better option.
For example, if you have hundreds of sales territories that can be reassigned to salespeople
each year, managing dimension security and roles can become tedious.

Implementing data security in multidimensional models 401

Dynamic dimension security gives you the ability to handle the complexity and movement
of users within your organization. It applies security to dimensions based on an allowed
list of users. This section walks through the process of creating dynamic security in your
multidimensional model.

Dynamic dimension security takes several steps to implement. For this exercise, you will
be working with the relational database and the Visual Studio solution. We will be adding
support for users and security mapping. Let's get started.

Adding a new dimension and measure group to support dynamic
security
Let's begin:

1.	 We need to add tables to the relational database. Open SSMS and connect to the
relational database, WideWorldImportersDW.

2.	 The first table we will add is Dimension.Users. This table will hold the user
information that we will use with dynamic dimension security. Here is the script we
will use for this table:

create table Dimension.Users (

	 [User Key] int identity(1,1) not null

	 , [User Login] varchar(100) not null

	 , [User Email] varchar(200) null

	 , constraint PK_Dimension_User primary key clustered
([User Key]))

3.	 The next table is used to map users to the sales territories. When we add it to the
cube, it will be a measure group. Therefore, this will be part of the Fact schema –
Fact.UserSalesTerritory:

create table Fact.UserSalesTerritory (

	 [User Key] int,

	 [Sales Territory] nvarchar(50),

	 [Is Allowed] bit)

402 Securing Your SSAS Models

4.	 Next, we need to add values to use in our solution. We will add two users and map
them to different territories. If you want to test this with visualization tools, you will
need to create local users.

Local or test users
The creation of local or test users will vary depending on your environment
and the steps to do so are beyond the scope of this chapter. If you need
additional guidance, we recommend getting guidance for your particular
solution. For example, we are using local users created in Windows 10 in our
examples. You may not be able to create local users or you may be running a
server environment. Refer to the most recent environment documentation to
create test users.

The following is the code to insert the users and map them to the sales territories.
This code uses sample users. Replace them with the local users you have created. Be
mindful of the domain and username you are using as they may be different from
the ones used in the example:

insert Dimension.Users ([User Login],[User Email])

select 'local\joe','joe@local.com'

union select 'local\sue','sue@local.com';

insert Fact.UserSalesTerritory ([Sales Territory],[User
Key],[Is Allowed])

select 'Great Lakes', [User Key], 1 from Dimension.Users
where [User Login] like 'local\joe'

union select 'Plains', [User Key], 1 from Dimension.Users
where [User Login] like 'local\sue';

5.	 We need to add views for our cube. The Cube.Users view is easy. Here is the code
for that view:

create view Cube.Users as (select [User Key], [User
Login], [User Email] from Dimension.Users);

6.	 In order to properly build the relationship in the cube to support dynamic security,
we need to add mappings at the key level. However, that can be tedious even in our
dataset. We have over 100,000 cities in the base dimension. We will use the view
to map the City level. This allows us to build clean relationships in the cube and
support changes to the dimension in our security structure. Here is the code for
that view:

Implementing data security in multidimensional models 403

create view Cube.[User Sales Territory] as

(select distinct ust.[User Key] , ust.[Sales Territory]

	 , ust.[Is Allowed], dc.[City Key]

from Fact.UserSalesTerritory ust inner join Dimension.
City dc on ust.[Sales Territory] = dc.[Sales Territory])

7.	 Now that we have the data in the database, we need to create the supporting SSAS
objects. Open WideWorldImportersMD.sln.

8.	 Add the two new views to Data Source View. If you need a refresher on how to do
this, review the instructions in Chapter 4, Building a Multidimensional Cube in
SSAS 2019.

9.	 Create a relationship between the two views on the User Key field.

10.	 Create a relationship between the User Sales Territory table and the
City table on the City Key field. Your data source view should have the following
diagram in it:

Figure 11.12 – Data Source View with new security tables

11.	 Add the Users dimension to the project based on the Users table. User Key will be
the key value and the User Login field can be used for the name.

12.	 Now, we will add our new fact table as a new measure group in our cube.
Open the cube designer and add the fact table as a new measure group and
the Users dimension as a new cube dimension (refer to Chapter 4, Building a
Multidimensional Cube in SSAS 2019, for detailed instructions if you need further
guidance to add these objects to the cube).

404 Securing Your SSAS Models

A new measure has been added to the User Sales Territory measure
group as part of this process – User Sales Territory Count. This is a simple row
count measure that we will use in the creation of the role, as shown in the
following screenshot:

Figure 11.13 – New User Sales Territory Count measure

13.	 Deploy the changes to the server and process the cube. Don't close Visual Studio
yet; we will come back to that tool to wrap up this section.

Adding dynamic security role
The next step is to add a dynamic security role. Here are the steps:

1.	 In Visual Studio, right-click the Roles folder in the WideWorldImportersMD
database to open a new Role design window.

2.	 Name the role Dynamic Sales Territory.

3.	 On the Cubes tab, allow Read access for the Wide World Importers cube.

4.	 On the Dimension Data tab, choose the City dimension and click the
Advanced tab.

5.	 In Allowed member set, add the following code:

NONEMPTY([City].[City].members,

(StrToMember("[Users].[User Key].["+UserName() + "]"),

[Measures].[User Sales Territory Count]))

This code uses the UserName() function to return the user for the query. It will
return the currently logged-in user. The set evaluates all city members where there
is a valid count associated with the user and returns those city members that the
current user is allowed to see.

Implementing data security in multidimensional models 405

6.	 Finally, we need to add our test users to Membership in the role. Because these
users are not members of any other role, they will not have access until they are
added here.

7.	 Save your project and deploy the changes to the cube. Be sure to fully process the
cube to make sure all changes have been applied.

Testing your new dynamic role
Now that the role has been created, let's test the role. For this test, we will use Excel:

1.	 Open a new Excel workbook.

2.	 Click the Get Data button and choose From Database and then From
Analysis Services.

3.	 In the Data Connection Wizard, change the Log on credentials option to Use the
following User Name and Password.

4.	 Enter the local user you created for the Plains sales region, enter your server name,
and click Next.

5.	 Choose the Wide World Importers cube and click Finish.

6.	 Select Pivot Table Report to add to your worksheet and click OK.

7.	 From PivotTable Fields, add Quantity from the Sales measure group to the
Values section.

8.	 Next, add the Sales Region hierarchy from the City dimension to the Rows section.

9.	 In the pivot table, expand the levels in the Sales Region hierarchy. What you will
notice is that you can still see all the regions. We are using the user who is limited
to the Plains sales region. Why do they see all the roll-up data? Because we are
secured at the lowest level, City, the roll-up data is still visible to users who have
restrictions on the data. In some cases, this works well.

406 Securing Your SSAS Models

For example, if you only want to hide the detailed data, this is great. But if you want
to hide the roll-up data and even the members of the dimension, you have to set one
other property in the role – Visual Totals. Visual Totals limits visibility in the client
tools to data that they are able to see. Here is how Excel displays the data currently:

Figure 11.14 – Excel with Visual Totals disabled in the Dynamic Sales Territory role

If you drill down into some of the levels, you will see that the City level is only visible
for the Plains territory, which is to be expected. Let's turn on Visual Totals and retest
with Excel.

Using Visual Totals
The following are the steps to turn on Visual Totals:

1.	 In Visual Studio, open the Dynamic Sales Territory role.

2.	 Go to the Dimension Data page and click the Advanced tab.

3.	 At the bottom of the window, you will see Enable Visual Totals. Click the checkbox
to enable visual totals and save your changes.

4.	 Deploy and process the cube to apply the changes to the deployed database.

Implementing data security in multidimensional models 407

5.	 Go back to your Excel workbook and refresh the data. You should now see that the
data is limited to the Plains sales territory. All of the roll-up data, including
level totals and grand totals, only includes aggregations from the data that the
user has permissions to view. Your Excel workbook should look as in the
following screenshot:

Figure 11.15 – Excel workbook with Visual Totals enabled

This wraps up the work with dimension security in multidimensional models. Before we
leave this section, we want to call out one other clean up task. In Visual Studio, you should
hide the measure group and dimension used for security. You can do this by changing
the Visible property to False. You can hide the User Sales Territory Count
measure in the User Sales Territory measure group and the Users dimension in
the Dimension Usage tab of the cube designer. Users do not need to have access to that
data as it clutters the user experience. Now that we have basic and dynamic security, let's
look at cell-level security next.

408 Securing Your SSAS Models

Adding inventory group security with cell-level security
We have implemented a few variations of data security that are focused on dimensions. In
most cases, this level of data security is sufficient for most businesses. However, Analysis
Service multidimensional models support cell-level security as well. This will allow you to
add additional restrictions to data at the cell level. Be aware that users will see replacement
values when querying data that returns results they are not able to see (for example,
#N/A). They will know that the data exists and that it is restricted or not available to them.

In our example, we are going to limit access to our new role to the Quantity measure in
sales. We will call our new role Inventory Group. Let's get started:

1.	 Open your Visual Studio multidimensional project.

2.	 Right-click on the Roles folder and select New Role.

3.	 Name the new role Inventory Group.

4.	 On the Membership page, add the user you want to test this role with. Do not use
the same users you used with dynamic security previously. If you need to reuse user
accounts, remove them from previous roles to prevent issues with security testing.

5.	 Next, give the role Read access to the Wide World Importers cube on the
Cubes tab.

6.	 On the Cell Data page, select Enable read permissions.

7.	 Unlike Dimension Data security, the MDX here is more specific. It will allow the
role to see a specific set of cells. Dimension Data used a set, whereas here, we will
be focused on a measure based on the context of the query. In our role, we will be
allowing this role to view the Quantity measure in the Sales measure group.
Here is the code you will add to the Allow reading of cube content box in
the window:

Measures.CurrentMember IS [Measures].[Quantity]

8.	 Save the changes to the role.

9.	 Deploy and fully process your cube to apply the changes to the database.

10.	 Check your work with Excel, as described in the previous section. Be sure to use the
account you used for this role. The following screenshot illustrates the applied cell-
level security:

Implementing data security in multidimensional models 409

Figure 11.16 – Cell-level security demonstrated in Excel

Important note
If the user account was used for one of the previous roles, you may get different
results. Remember that permissions in Analysis Services are accumulative.

Cell-level security is a powerful option in SSAS multidimensional models. However,
it comes with a performance impact. If you have a large cube, you may see serious
performance issues with this security model. It may be more valuable to create a
separate cube in the database to isolate the data as you need. It will also be a cleaner user
experience if you have a lot of users interacting with the data. The measures will not be
available in that case.

This concludes the section on multidimensional data security. As you can see,
multidimensional models have extensive flexibility in their security options. There are
two key takeaways as we wrap up this section. First, unless the user is in an administrator
role, they will not be able to access the model without explicitly being added to a role with
permissions. Second, role permissions are accumulative. Users get the sum of all the roles,
so plan your security with this in mind. Now, let's look at tabular model data security.

410 Securing Your SSAS Models

Implementing data security in tabular models
Just to recap, we have covered the administrator roles for Analysis Services, which give
full access to the model, and we have created a Read Only role for the tabular model. In
tabular models, dimensional and cell-level security are not available. When we created the
Read Only role, we set the database level permission as Read in the Role Manager.

In the following sections, we will create two additional roles – Tailspin Toys Group
and Dynamic Sales. The first will use the Row Filters option to limit a user's access to
the data based on the filter. The second role will be dynamic and will leverage some of the
work we did to support the multidimensional dynamic dimension security.

Creating a role to limit access to a customer
Now, we are going to limit what users can see by creating a new role that will limit the data
to Tailspin Toys. To do this, we will use row filters. Let's get started:

1.	 Open WideWorldImportersTAB.sln in Visual Studio.

2.	 Choose the WideWorldImportersTAB project in Solution Explorer.

3.	 In Tabular Model Explorer, right-click the Roles folder and click Roles…. This
will open the Roles Manager dialog, as shown in the following figure:

Figure 11.17 – Tabular model Role Manager in Visual Studio

Implementing data security in tabular models 411

4.	 Click New to create a new role.

5.	 Name the new role Tailspin Toys Group and give the role read permissions
to the database by selecting the Read option in the Permissions column.

6.	 Add one of the users you created in the multidimensional exercise to the
Members tab. If you did not create a user during the previous exercise, you will
need to create a local user to test the role.

7.	 Go to the Row Filters tab. You should see the list of tables with a DAX Filter
option. We will be applying a DAX filter to the Customer table. The filter must
return a Boolean value (true or false). The security will be applied to all queries
through the relationships in the model.

8.	 Click on the Customer table and add the following code to the DAX Filter –
Customer box at the bottom of the page:

=Customer[Bill To Customer]="Tailspin Toys (Head Office)"

9.	 Click OK to save the role.

10.	 Process the model in order to deploy the changes to the server.

Testing the new role in Excel
Now that we have deployed the changes to the server, let's test the new role in Excel,
as follows:

1.	 Open a new Excel workbook to test your new role.

2.	 Choose Get Data, then From Database and From Analysis Services.

3.	 Add the name of your tabular model Analysis Server and change the credentials
to the user you added to the role you created. Click Next and finish creating
your connection.

4.	 Create the PivotTable with the defaults.

5.	 Add Customer Hierarchy from the Customer table to the Rows section in
PivotTable Fields.

6.	 Add Total Sales Amount from the Sales table to the Values section in
PivotTable Fields.

412 Securing Your SSAS Models

7.	 Expand Customer Hierarchy in the pivot table. You will see that only Tailspin Toys
is visible in the results, as shown in the following screenshot:

Figure 11.18 – Excel showing Tailspin Toys Group role access

This type of security can be used to manage access to tabular data easily. You can add
filters to multiple tables to further refine the access of the data to your users. This is the
recommended approach to applying security to your tabular models. Next, we will look at
implementing dynamic security for sales territories.

Adding dynamic security for sales territories to the
tabular model
Dynamic dimension security takes several steps to implement. For this exercise, you will
be working with the relational database and the Visual Studio solution. We will be adding
support for users and security mapping.

Implementing data security in tabular models 413

Using the existing relational tables
Before we dig into this section too deeply, if you have not created the relational
tables to support dynamic security in multidimensional models, please review
that material earlier in the chapter to set up the tables in the Adding sales group
security with dynamic dimension security section. The same tables and views
will be used to apply dynamic security to our tabular model. We will be using
the Dimension.Users and Fact.UserSalesTerritory tables and
the Cube.Users and Cube.User Sales Territory views.

Let's get started:

1.	 Open WideWorldImportersTAB.sln in Visual Studio.

2.	 Choose the WideWorldImportersTAB project in Solution Explorer.

3.	 Switch to Tabular Model Explorer and expand the Data Sources folder.

4.	 Right-click on your data source and choose Import New Tables.

5.	 Select the Cube.Users and Cube.User Sales Territory views from the list and
click Load to add the tables to your model.

6.	 Rename Cube Users to Users and Cube.User Sales Territory to
User Sales Territory. You can also set the Hidden property for both tables
to True because users do not need access to these tables for analysis.

7.	 In the diagram view, add the relationships between Users and User Sales Territory
on User Key.

414 Securing Your SSAS Models

8.	 Add a relationship between the User Sales Territory table and the City
table on City Key. This effectively creates a many-to-many relationship between
Users and City through the User Sales Territory table. The relationship
should look as in the following screenshot:

Figure 11.19 – Relationships that support security

9.	 Return to Solution Explorer and deploy the WideWorldImportersTAB database.

10.	 In Tabular Model Explorer, right-click the Roles folder and click Roles…. This
will open the Roles Manager dialog.

11.	 Click New to add a new role.

12.	 Name your new role Dynamic Sales and select the Read database permission.

13.	 Add the users you created for this exercise to the Members tab.

Implementing data security in tabular models 415

14.	 The security we will be applying is to the two tables with values in them – Sales
and Invoice Sales. Locate the Sales table on Row Filters and add the
following code to the DAX Filter area by the table:

= Sales[City Key] = LOOKUPVALUE('User Sales
Territory'[City Key],'User Sales Territory'[City Key],
Sales[City Key], 'Users'[User Login], USERNAME())

15.	 Next, locate the Invoice Sales table and add the following code to the filter for
that table:

= 'Invoice Sales'[City Key] = LOOKUPVALUE('User Sales
Territory'[City Key],'User Sales Territory'[City
Key], 'Invoice Sales'[City Key], 'Users'[User Login],
USERNAME())

16.	 Click OK to save the role. Deploy the database to publish the changes.

17.	 Use Excel to test the security setting by connecting to your model with one of the
security logins you created.

The code in the DAX filters uses the LOOKUPVALUE function to return the matching key
value for the current context of the query. In our example, we have the dynamic security
anchored on City Key. The function returns the matching city key from the User
Sales Territory table using filters for the current user (USERNAME()) and the city
key from the Sales or Invoice Sales table, respectively. If no match is found, an
empty or NULL value is returned, which prevents the data from being displayed.

When working with dynamic security in tabular models, you should be aware that there
is no efficient way to validate that the solution is working as intended. Understanding the
structure of the query and how the filter works is very important for implementing this
correctly. You should assume that some trial and error will be required to verify that the
security is working as expected.

Summary
In this chapter, we covered the server, database, and data-level security options for both
types of Analysis Services models. Multidimensional models have a much richer and more
sophisticated set of options. You can use both the design of the database and the security
options to build a robust security solution. Tabular models have fewer options and must
be included in the overall design of the solution. In this chapter, you learned how to
manage the security setting at the server level and create roles in both types of models.
Data is the lifeblood of business, and these skills will help you protect this greatest
of assets.

In the next chapter, we will be looking at maintenance and operational tasks for SSAS.

12
Common

Administration and
Maintenance Tasks

Now that we have our models created and secured, we will wrap up the book with some
maintenance and administration tasks that are common to database and Analysis Services
solutions. We have some key topic areas to start the chapter, covering larger topics such
as backups and scaling. The chapter wraps up with a section on several smaller topics to
support your models as you move forward.

The tasks described in this chapter are key to making your SQL Server Analysis Services
(SSAS) models production ready. Whether you need to plan for business continuity,
expanding data needs, or better performance, the techniques you will learn in this chapter
will provide the basic skills you need in order to manage production deployments.

418 Common Administration and Maintenance Tasks

In this chapter, we're going to cover the following main topics:

•	 Understanding the languages

•	 Backing up and restoring SSAS databases

•	 Processing or refreshing the data in your models

•	 Scaling your models

•	 Discovering how your models are performing

We will wrap the chapter up with a section containing tips and tricks to use with SQL
Server Analysis Services.

Technical requirements
For this chapter, we will be using SQL Server Management Studio (SSMS) and Visual
Studio to perform the various operations in the chapter with the databases we created in
previous chapters. We will also be using SQL Server Performance Monitor for some of
the tuning and monitoring exercises.

Understanding the languages
When working with Analysis Services, you will frequently be using code that is not MDX
or DAX. XML for Analysis, or XMLA, has been around since the early days of Analysis
Services and is used for many maintenance operations for both modes – multidimensional
and tabular. As the name clearly states, this is an XML-based language. Multidimensional
models are actually defined using XMLA as well.

If you right-click an object in SSMS and choose the script option, it will generate a
Create script in XMLA. For example, scripting the City dimension as a Create script
generates the following XMLA (only the first few lines are displayed for brevity):

<Create xmlns="http://schemas.microsoft.com/
analysisservices/2003/engine">

 <ParentObject>

 <DatabaseID>WideWorldImportersMD</DatabaseID>

 </ParentObject>

 <ObjectDefinition>

 <Dimension xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ddl2="http://schemas.microsoft.com/analysisservices/2003/
engine/2" xmlns:ddl2_2="http://schemas.microsoft.com/

Understanding the languages 419

analysisservices/2003/engine/2/2" xmlns:ddl100_100="http://
schemas.microsoft.com/analysisservices/2008/
engine/100/100" xmlns:ddl200="http://schemas.microsoft.com/
analysisservices/2010/engine/200" xmlns:ddl200_200="http://
schemas.microsoft.com/analysisservices/2010/
engine/200/200" xmlns:ddl300="http://schemas.microsoft.com/
analysisservices/2011/engine/300" xmlns:ddl300_300="http://
schemas.microsoft.com/analysisservices/2011/
engine/300/300" xmlns:ddl400="http://schemas.microsoft.com/
analysisservices/2012/engine/400" xmlns:ddl400_400="http://
schemas.microsoft.com/analysisservices/2012/
engine/400/400" xmlns:ddl500="http://schemas.microsoft.com/
analysisservices/2013/engine/500" xmlns:ddl500_500="http://
schemas.microsoft.com/analysisservices/2013/engine/500/500">

 <ID>City</ID>

 <Name>City</Name>

The code for this dimension is much longer than shown here. It includes the SQL used to
load the data, estimated row counts, data types, and much more. Measure groups include
aggregations and partitions, both of which can be scripted individually. When working
with multidimensional models, XMLA can help you perform maintenance operations as
well as help you dig into potential design issues when it is not easy to work on a project in
Visual Studio.

In SSAS 2019, tabular models move away from XMLA in most operations and use
Tabular Model Scripting Language (TMSL). TMSL is JSON formatted. Like XMLA
for multidimensional models, TMSL is the underlying code used for storing and
manipulating the object model. Using the same aforementioned example, if you generate
a create script in SSMS for the City table in your tabular model, this will generate the
following TMSL (limited to the first few rows for brevity):

{

 "create": {

 "parentObject": {

 "database": "WideWorldImportersTAB"

 },

 "table": {

 "name": "City",

 "columns": [

 {

 "name": "City Key",

420 Common Administration and Maintenance Tasks

 "dataType": "int64",

 "sourceColumn": "City Key"

 },

Similar to XMLA in multidimensional models, TMSL in tabular models contains data types,
hierarchies, and partitions. One important distinction is that the tabular model stores all
tables in the same fashion and structure, whereas multidimensional models have distinct
storage options for dimensions, measure groups, aggregations, and so on. Because TMSL
uses JSON, the syntax is streamlined, resulting in smaller, more manageable file sizes.

TMSL and XMLA with Tabular
XMLA still works with tabular models. The preferred approach is to use TMSL;
however, TMSL is built on XMLA protocols. If you manage both types of
models, you may find it beneficial to focus on XMLA, so you can manage with
one language rather than two.

Now that you have been introduced to the languages, let's dig into the first maintenance
topic – backing up and restoring your models.

Backing up and restoring SSAS databases
We are often asked about backing up SSAS databases as part of normal operations.
Before we get into the how, we should understand when and why. Typically, both
multidimensional and tabular model types are for analysis only. The underlying data is the
source and that source retains all the data to refresh our models. If your models are small,
you can reload them entirely from the source, which is usually a data warehouse or an
operational data store.

Databases and models
A point of clarification here: the term model is interchangeable with database
in this section. While models refer to the design method, database is a more
generic term that covers both multidimensional and tabular models. Effectively,
both models are stored as databases. When working with administrative tasks,
such as backing up and restoring, the syntax uses database terminology, which
is like relational database terms and functions making administration simpler.

Backing up and restoring SSAS databases 421

In the case of small models, backups are not really necessary. If a model becomes
corrupted or unusable, you can redeploy the database and refresh it. Small models load
very efficiently. It is when these databases take more time to reload that you should begin
to use backup and restore the operations. The other way to protect your systems and data
is to use synchronization, which also supports scaling out. We will be discussing scaling
out using synchronization in detail in a later section in this chapter.

Backing up your databases
You can back up your databases using two primary methods – graphically with SSMS
or scripting with XMLA or TMSL. Using Management Studio is an easy way to create a
backup file or generate the script for usage in scheduling tools.

The following steps are used to create a backup of your multidimensional database. The
same instructions will work for your tabular model databases. The only difference is where
the backups will be located. Let's get started:

1.	 Open SQL Server Management Studio and connect to your multidimensional
Analysis Services instance.

2.	 Right-click on the WideWorldImportersMD database and choose Back Up…
This will open the Backup Database dialog, as shown here:

Figure 12.1 – Backup Database window for multidimensional databases

422 Common Administration and Maintenance Tasks

3.	 You can update the name of the file and the location of the backup here. Be sure
to use the .abf file extension for the filename. The folder list is limited to the
locations from server settings. You can see the information in the Save File As
dialog shown here:

Figure 12.2 – Save File As dialog for Analysis Services backups
In order to add options for the storage location, you will need to be a server
administrator and modify the AllowedBrowsingFolders setting in Server
Properties to add or change the location. This is an Advanced property, so you will
need to show Advanced properties to change the AllowedBrowsingFolders
values. Once there, you can change the list. The following is an example of the
default settings from our install:

C:\data\MSAS15.DOWSQL2019\OLAP\Backup\|C:\data\MSAS15.
DOWSQL2019\OLAP\Log\|C:\data\MSAS15.DOWSQL2019\OLAP\Data\

This list is pipe (|) delimited. This property only affects folders that are visible when
using a dialog box to open, create, or manage files in Analysis Services.

Backing up and restoring SSAS databases 423

There is one other server property to be aware of when backing up Analysis Services
databases – BackupDir. The BackupDir property contains a single directory
path that is the default backup location for SSAS databases when the location is
not explicitly called out in the backup dialog or scripts. If you choose to change
the default location of the backup file, you must allow the SSAS service account
permissions to read and write to that location.

4.	 Next, we need to determine what additional settings we want to use. Allow file
overwrite allows us to overwrite an existing backup file with the same name. This
is OFF by default to prevent accidental overwrite. In our scenario, we will leave this
as the default.

5.	 Apply compression is checked by default. This will keep the overall file size smaller.
We recommend that you leave this value checked.

6.	 Encrypt Backup File is also on by default. This is important to use. Often, large
amounts of confidential business data are stored in your models. This option
protects that data from being easily opened and viewed. Unlike relational databases,
SSAS models are text-based and can be opened and viewed by standard editors.
While not easy or convenient, this is a data security risk you should avoid. Password
protecting your backups with encryption is a simple step to deter unwanted access
to the content of the files.

7.	 The final option relates to multidimensional models only. Because multidimensional
models can support remote partitions, you have the option to back those up here as
well. This is an advanced design that we have not covered in this book. As a result,
this option is not enabled. This option will not be visible for tabular model backups.

8.	 Click OK to create the backup.

If you run through this process again, instead of clicking OK, use the Script button at the
top of the dialog box to generate the script. When you click the button, it will ask you if
you want to add the password to the script. If you choose to add the password, be aware
that the password will be included in the script in plain text. You may choose to leave
the password in place if you plan to schedule the process. In that case, include a generic
password you can use as placeholder in the script to be replaced during execution with
a parameter.

XMLA backup script with a password is as follows:

<Backup xmlns="http://schemas.microsoft.com/
analysisservices/2003/engine">

 <Object>

424 Common Administration and Maintenance Tasks

 <DatabaseID>WideWorldImportersMD</DatabaseID>

 </Object>

 <File>WideWorldImportersMD.abf</File>

 <Password>steve</Password>

</Backup>

XMLA backup script without a password is as follows:

<Backup xmlns="http://schemas.microsoft.com/
analysisservices/2003/engine">

 <Object>

 <DatabaseID>WideWorldImportersMD</DatabaseID>

 </Object>

 <File>WideWorldImportersMD.abf</File>

</Backup>

TMSL backup script with a password is as follows:

{

 "backup": {

 "database": "WideWorldImportersTAB",

 "file": "WideWorldImportersTAB.abf",

 "password": "steve",

 "allowOverwrite": false,

 "applyCompression": true

 }

}

As you can see in these scripts, none of them have the folder path, which means they will
be stored in the default folder specified by the BackupDir property. XMLA does not
explicitly call out the default properties; it assumes the defaults are used. If you change
the default, it adds the property to XMLA. TMSL has all the properties shown unless a
password is not used. In that case, the password property is not visible.

Change the filename in the XMLA script (for example, add 01 to the name), and
execute it in SSMS. This will return the following XMLA result, signifying that you have
successfully backed up your database:
<return xmlns="urn:schemas-microsoft-com:xml-analysis">

 <root xmlns="urn:schemas-microsoft-com:xml-analysis:empty" />

</return>

Backing up and restoring SSAS databases 425

If you execute the script again, you will receive an error in the Messages tab letting you
know that the file exists already. Now, perform the same process with the tabular model
backup code in TMSL. As we called out in the beginning section on languages, TMSL is
built on the XMLA protocols. Successfully executing TMSL returns the same result as the
XMLA execution. Furthermore, SSMS does not have an option to execute TMSL. You use
the XMLA query window to execute TMSL. This applies to all TMSL operations as we
work through other maintenance and operational tasks in this chapter.

Restoring your databases
Now that we have the backups created, let's restore a database. For this exercise, we will
once again be using the multidimensional database as the example. The same process will
work when restoring tabular models, but remember that if you restore multiple tabular
models, your memory consumption will increase substantially. Be cautious when restoring
tabular models.

1.	 Open SQL Server Management Studio and connect to the Analysis Services
multidimensional instance.

2.	 Right-click the databases folder and choose Restore. This will open the Restore
Database window shown here:

Figure 12.3 – Restore Database dialog

426 Common Administration and Maintenance Tasks

The Restore operation is divided into three sections: Restore Source, Restore
Target, and Encryption. We will work through each of these settings in the
next steps.

3.	 When you click Browse to choose your Restore Source, it displays the folders you
have specified in the AllowedBrowsingFolder server setting. Because we chose to
back up our databases to the default location, choose the Backup folder. Currently
no files are visible. Expand the folder to view the backup files in that folder and
choose a file to restore, then click OK to close the Locate Database Files window..

4.	 Now that we have the source file selected, we need to make decisions about Restore
Target. Only one database exists in our backup; select WideWorldImportersMD.
Rename that database WideWorldImportersMD01.

5.	 Next, choose the location for the data to be restored to. In this case, we will select
the Data folder from our list.

6.	 In the Options section, choose to allow the database to be overwritten. We are
choosing to leave the default and create a new database to make sure we do not
impact any of our existing work.

7.	 The Include security information option is related to keeping the roles that have
been created. You can choose to restore with no roles by deselecting the Include
option. When Include is selected, a drop-down menu is displayed where you have
the option to either copy everything (Copy All) or to copy only the roles without
members (Skip Members). The default is to leave all roles and members intact. For
our purposes, let's turn this option off.

8.	 The final step is to add the encryption password you created for this backup.

9.	 Before clicking OK to complete the process, script this restore process to a new
window so you can see the XMLA that is used in the Restore process. The code
should look similar to the following:

<Restore xmlns="http://schemas.microsoft.com/
analysisservices/2003/engine">

<File>C:\data\MSAS15.DOWSQL2019\OLAP\Backup\
WideWorldImportersMD01.abf</File>

 <DatabaseName>WideWorldImportersMD01</DatabaseName>

 <Security>IgnoreSecurity</Security>

 <Password>steve</Password>

Processing or refreshing the data in your models 427

 <DbStorageLocation xmlns="http://schemas.microsoft.com/
analysisservices/2008/engine/100/100">C:\data\MSAS15.
DOWSQL2019\OLAP\Data\</DbStorageLocation>

</Restore>

10.	 You can run the script or click OK in the dialog to complete the restore operation.
If it is successful, you will see the same XMLA result script that you saw during the
backup execution when running the script. Refresh Object Explorer in SSMS to see
your new database.

You can browse the database immediately. The backup operation restored the database,
including the data ready to go. When you are done exploring the data, you can delete
that database to save resources and space.

All the same options apply for tabular models in the restore operation. A file location is
required to hold the database when the server is shut down. While tabular models do not
use disk storage while they are in operation, they do have to store the data and structure
on disk when the server is not running.

When working with scheduling or ETL tools, you will find that Microsoft tools such as
SQL Server Agent and SSIS support the execution of XMLA scripts. Because SSAS is a
mature product, other scheduling tools often support XMLA, which is why it is still used
to manage tabular model instances. Next, we will look at the methods to refresh data in
your models.

Processing or refreshing the data in your
models
In both models, you reload or refresh the data in your models using processing. Processing
your cube, dimension, table, or database will refresh the data in the defined object. In this
section, we will be separating the processing options for multidimensional and tabular
models. Remember that multidimensional models focus on reloading data to disk,
whereas tabular models focus on loading data to memory.

Processing multidimensional models and their
components
Most storage objects in a multidimensional database can be processed from the top-level
object or database to aggregations within a measure group. Up to this point, we have been
processing the database by right-clicking the database and choosing Process. Now we will
look at other options for processing data and why you may choose certain options.

428 Common Administration and Maintenance Tasks

Let's review the processing options available to us. The following chart shows which
objects can be processed with the type of processing supported for each object:

Figure 12.4 – Processing types and multidimensional object cross reference

Each of the next sections break out the processing options and how they affect the data in
your multidimensional model object.

Process Default
As the name indicates, this is the default processing option when you choose to process
a multidimensional object. Analysis Services analyzes the cube to determine the best or
the most needed processing type.

Process Full
This option dumps all the data and reloads it. While we were building our cube, we used
this option frequently. This option is required when changes are made to the structure of
a cube, such as during development and testing. This option applies to all objects and is
the best way to repair or optimize a multidimensional object that may be having issues,
in particular, performance or data issues. Fully processing the database or targeted object
will clean up most cube issues.

Process Data and Process Index
Process Data drops and reloads only the data. It does not rebuild aggregations or indexes.
This option is used to reload partition data.

Processing or refreshing the data in your models 429

Process Index rebuilds the indexes and aggregations for the partitions and similar
measure data. These two options are often used together to refresh partition data and
make sure indexes and aggregations are rebuilt to improve query performance.

Using these options together allows you to refresh the partitions and aggregated data
without fully reloading the cube, measure group, or partition.

Process Clear
Process Clear is straightforward. It removes all data from the processed object and does
not reload it.

Process Add
Process Add is used to add new fact data to measure groups and partitions. It limits
processing to affected partitions.

When used with dimensions, it updates the dimension with new members and updates
the attribute properties as needed. Be aware, when used with dimensions, you must use
XMLA. For some reason, Microsoft chose to make this an XMLA-only option, so this
option is not available in the wizards.

Process Update
Process Update updates dimension attributes based on reading the data for the dimension.

Data mining processing options
Two processing options affect data mining structures in multidimensional
models – Process Structure and Process Clear Structure. Process structure
prepares cube data for model processing, including fully processing the
cube, but does not process the models. Process clear structure removes the
training data from the mining models. We do not cover data mining with
Analysis Services in this book. Typically, data mining models are now created
with specialized tools. While the functionality still exists in SSAS, it is used
infrequently.

430 Common Administration and Maintenance Tasks

Other processing options
Besides the processing types noted in the previous section, there are additional options
that can be used to customize or optimize cube processing. The following window has
two tabs: Processing options and Dimension key errors:

Figure 12.5 – Changing the processing options

As you can see, in the Processing options tab, you have three areas you can change:
Processing Order, Writeback Table Option, and Affected Objects. We have not
implemented writeback functionality in our exercises as this setting impacts how the
tables used to support writeback functionality are handled. Let's go through Processing
Order and Affected Objects in detail:

Processing Order has two key options: Parallel and Sequential.

Processing or refreshing the data in your models 431

Parallel processing allows Analysis Services to maximize the use of the CPU capacity
on the server and load data in parallel streams. You have the option here to manage the
number of parallel processes you want to run. This can be adjusted to optimize resources
available to the server. All the data will be committed in the same transaction when using
parallel processing.

When using Sequential processing, each object being processed is handled as an
independent object. Now, Sequential has two Transaction modes to choose from: One
Transaction and Separate Transactions. The two modes are explained here:

•	 If you choose One Transaction, the entire set of objects being processed must
be complete and processed as one. While this is happening, the objects are not
available for querying until all of them are complete.

•	 When using Separate Transactions, the objects are committed independently and
become available for querying when each object is complete. The default setting
here is a good place to start – Parallel, with the option Let the server decide.

The last setting on this tab is Affected Objects. One point that needs to be clarified
immediately with regard to this setting is that it refers to affected objects, not dependent
objects. If an object has an explicit dependency on another object, that object will be
processed. Affected objects include aggregations that may refer to a dimension. Processing
the dimension will not automatically trigger the aggregations for a partition to be rebuilt
by reprocessing the partition. However, if this property is set to True, the partition would
be processed even though the dependency is not there. Use this setting carefully as it
could unintentionally cause more objects to be processed than you planned for.

The other tab has an exhaustive list to support various types of error handling for
dimension key processing errors. When processing dimensions, errors such as duplicate
keys, missing keys, null keys, and similar can occur. Analysis Services uses several default
settings to handle these. Most result in a warning or a message. Use the options in this
section to customize your error handling to meet the business requirements in your
environment.

432 Common Administration and Maintenance Tasks

Changes made in this window are displayed as read only in the process dialog box, as
shown in the following screenshot. They are the settings displayed in the Batch Settings
Summary section:

Figure 12.6 – Process object dialog and batch settings

This gives you a chance to review your changes before completing the process.

Other processing considerations
Besides the options and processing types supported, there are other ways to improve
processing. One of the best options is to make sure that the source system is properly
indexed for the processing operations. Besides tuning the source system, you have the
options to manage the physical resources as well, such as CPU, RAM, and IO. We will
review how to use Performance Monitor and Dynamic Management Views (DMV)
in order to better understand processing demands and how to respond to them. Next,
we will look at processing tabular model objects.

Processing or refreshing the data in your models 433

Processing tabular models and their components
Processing tabular models is not as complex with tabular models. There are three objects
that can be processed in tabular models – databases, table, and partitions. Similar to
multidimensional models, each object in a tabular models has a set of processing types
available to them. The following table shows which processing type works with each object:

Figure 12.7 – Tabular model processing types

The next sections dig into the details of each type of processing supported by tabular models.

Process Default
When using Process Default, Analysis Services determines the current state of the object
to be processed and performs the appropriate action. This includes adding new data,
calculating hierarchies, setting relationships, and populating calculated columns. As the
name implies, Process Default is the default processing option for tabular model objects.

Process Full
Process Full replaces all data and recalculates hierarchies, relationships, and calculated
columns. This is the most complete refresh of the data and structures.

Process Clear
Process Clear removes all the data from the selected object. This is ideal when you need
to move the database and do not need to move the data with the structure.

434 Common Administration and Maintenance Tasks

Process Recalc
Process Recalc only works at the database level. This effectively recalculates hierarchies,
relationships, and calculated columns without reloading the data in the tables. This option
is typically used when there are performance issues with the model related to calculations
created in the model. For example, if a calculated table is particularly slow or not
returning data at all, processing with Process Recalc may resolve this issue.

Process Data
Process Data is the opposite of the Process Recalc option. However, it only works at
the table level. This loads data into the table, but does not recalculate relationships,
hierarchies, or calculated columns. When using Process Full, both Process Data and
Process Recalc are run as part of the process. If you have a lot of calculations in your
model, you may need to run Process Recalc to resolve calculation issues.

Process Defrag
Process Defrag is also for tables and is used to defragment the table after other operations
have been used. For example, using Process Add and Process Data causes the tables to be
out of sync. Process Defrag restructures the in-memory model to improve performance
and reduce the model size. The only other way to perform this operation is to fully process
the table.

Process Add
Process Add is used to incrementally add data to a table partition. Tables and databases
are clearly visible in SSMS. However, unlike partitions in the multidimensional measure
groups, there is no folder or other way to easily identify partitions in tabular models.

If you right-click on the table, there is a Partitions option that will display the partitions
for the table. Check out the following screenshot to see the partitions we created in our
tabular model in the Sales table:

Scaling your models 435

Figure 12.8 – Tabular model Partitions dialog for the Sales Table

The Partitions dialog will allow you to move between tables to see the partitions in each
table. You can also manage the partitions by including add, remove, copy, and edit. All
tables contain at least one partition – effectively the default partition. You can process
one or more dimensions in this dialog as well.

Now that you have a good understanding of how to refresh the data in your models,
we will move on to the techniques available to scale your models.

Scaling your models
There are two ways to scale in the database world – scale up or scale out – and they apply
to Analysis Services models. Both options bring more compute, memory, and storage to
support better performance or larger models.

436 Common Administration and Maintenance Tasks

Scaling up is a pure hardware play. This involves adding more resources to your
environment such as RAM or CPUs. In this scenario, bigger is better. For example, you
can choose to increase compute capacity by adding CPUs to a server, vCPUs to a virtual
machine, and swapping in newer CPUs with more cores. In these situations, you typically
leave the SSAS instance in place and it will consume the expanded resources. Scaling up
has limits, as you would suspect. You can only scale so far.

The next option is to scale out. Relational databases in many cases do not natively
support scale-out scenarios. However, SSAS scales out very well. Both tabular and
multidimensional models are designed to scale out to support processing, model
availability, and query optimization. One of the most common issues is that processing,
which is resource-intensive, interferes with the query performance for end users. Scaling
out is a great way to resolve this issue. Furthermore, SSAS works well with load balancers
to further support heavy query loads for which SSAS is designed.

The following diagram is a common scale-out approach that has been used for years:

Figure 12.9 – Load-balanced Analysis Services architecture

This design allows for more scale out query servers to support more users. A good rule
of thumb is to add query server nodes when concurrent user or query counts begin to
exceed fifty per server. To be clear, these are concurrent users, not potential users. This
is particularly true if users execute a large number of ad hoc queries, so caching is not
as effective.

Scaling your models 437

Understanding processing and query servers
The separation of processing and query operations can improve the customer experience
when working with Analysis Services. Processing operations focus on loading and
updating data. This often involves index rebuilds, aggregation rebuilds, and similar
operations that will lock database objects when they are being performed. This means that
users may experience queries fail or perform very poorly while processing is occurring.

By scaling out processing from querying, you allow users to keep querying without
interference. When using a two-query node structure with a separate processing server,
you are able to synchronize to a query node that is temporarily removed from the
load-balanced pool.

If you have issues with processing performance, this configuration also allows you to tune
the database servers differently. You can change the configuration on the processing server
to better support writing data while the query servers are focused on returning data,
including better caching for queries.

As your Analysis Services environment grows, understanding these configurations will
allow you to support more users and queries while continuing to improve performance
and availability.

Choosing scaling out versus clustering
One benefit of scaling out your cluster and using a load balancer is that you can remove
the need to cluster SSAS. Unlike the database engine, Analysis Services does not natively
support Windows clustering or Always On capabilities. The recommended approach to
supporting a highly available SSAS solution is to scale out with a load balancer. If an SSAS
server becomes unavailable, the load balancer can reroute traffic to the working server.
This also allows for minimal downtime maintenance by taking one of the nodes offline
at a time.

Note
The following section, Synchronizing your databases, requires multiple additional
instances to complete the exercises. If you are running low on resources, it is not
recommended that you execute the tasks set out in this section.

438 Common Administration and Maintenance Tasks

Synchronizing your databases
Now that we have reviewed the structure, let's look at the process to copy the new data
to the query servers. In this section, we will install another instance for each server
to show how each model type is configured. Because the amount of resources in your
development environment will be significant, you may need to shut down instances you
are not working with.

While the best practice is to use the three-server model as laid out in the preceding
diagram (Figure 12.8), we will be using a two-server model for this exercise. In this
scenario, we will not set up a load balancer, but we will set up a process server and a query
server. You can use a two-server model if you have specific windows when the processing
server can be unavailable for querying. This model uses the processing server as the
additional query server. This may fit your needs and save you hardware and licensing costs
if it meets the business service level agreement (SLA) on query performance during the
processing window.

In the next two sections, we will walk through the steps to set up and configure
synchronization for each model type.

Synchronizing multidimensional models
In this exercise, we will install another multidimensional instance and synchronize the
data to the new server:

1.	 In Chapter 1, Analysis Services in SQL Server 2019, we walked through the
instructions to install SSAS in multidimensional mode. Follow that process to add
another SQL Server instance to your development environment. You do not need to
install another SQL Server database instance, just the multidimensional instance.

2.	 In SSMS, connect to both multidimensional instances. The new instance should
have no databases or other objects in it. We will be synchronizing the existing
WideWorldImportersMD to this new instance.

Scaling your models 439

3.	 On the new instance, right-click the Databases folder and choose Synchronize.
This will open the Synchronize Database Wizard, shown in the following screenshot.

Figure 12.10 – Synchronize Database Wizard start page

4.	 Click Next.

5.	 On the next page, you will choose Synchronization Source. Synchronization
Destination is already in the wizard. Use the server with the database deployed as
the source and the new instance for the destination. You can change the folder for
the data in the destination if you need to. We will leave the default in this exercise.
Click Next when you are done.

6.	 This page will allow you to choose where to locate the partitions. We will use the
defaults. Click Next.

7.	 Synchronization Options can be changed on this page. There are two key
considerations here – security and compression. You have three options regarding
security, as shown in the following screenshot. In most cases, we want to synchronize
all the security as that will keep the query capability on the servers intact.

440 Common Administration and Maintenance Tasks

If you are synchronizing from the processing server to the query server, you may
have different security models in place. In that scenario, you can use the Ignore All
option to not synchronize any security operations. If you choose to not synchronize
security, you will have to use a script operation for the synchronization, which will
allow you to add the security back to the query servers via script as well.

8.	 We will be using the Copy All option in our example here. This will bring all the
security settings and permissions into the new database, which is the result we want:

Figure 12.11 – Database synchronization options for security and compression
The other option on this screen concerns compression during synchronization. This
is usually check marked as it reduces the size of the data being synchronized. It will
have limited impact if the data is synchronized on the same hardware. However, if
you are synchronizing across a network, this option will improve the performance
of the synchronization process.

When you have the setting selected, which are the defaults in this case, click Next
to move to the next page.

9.	 Now the decision is made about whether to Synchronize now or Save the script to
file. For our exercise, choose to save the file.

Scaling your models 441

10.	 Enter a filename with an .xmla extension and click Next. Then, click Finish to
create the script.

11.	 In SSMS, open the file we just created. If you did not give your filename a .xmla
extension, you may want to rename the file, so it opens in the correct query editor
in SSMS. Your script should look similar to the following script:

<Synchronize xmlns:xsi=name spaces removed">

 <Source>

 <ConnectionString>Provider=MSOLAP.8;Data
Source=[server name removed];Integrated
Security=SSPI;Initial Catalog=WideWorldImportersMD</
ConnectionString>

 <Object>

 <DatabaseID>WideWorldImportersMD</DatabaseID>

 </Object>

 </Source>

 <SynchronizeSecurity>CopyAll</SynchronizeSecurity>

 <ApplyCompression>true</ApplyCompression>

</Synchronize>

As you can see, the destination server is not in this code. You need to execute this
code that has a connection to the destination server.

Note
In the preceding script, namespaces and connection string information is
removed for readability and security.

12.	 In SSMS, if you are not currently connected to the destination instance, change the
connection of the query window to the correct server.

13.	 Before we execute the query, we need to make sure that the destination service
account has access to the source server. For our exercise, we will add the service
account to the Server Administrators group on the source server. (For details on
making this change, refer to Chapter 11, Securing Your SSAS Models, which deals
with security for servers.)

If you plan to use synchronization across multiple servers, we recommend that you
use a single service account for all instances to simplify management and allow you
to scale out in a standard pattern.

442 Common Administration and Maintenance Tasks

14.	 When you are connected to the correct server and you have security set up, execute
the query. Be aware that this is a significant operation and may take a few minutes
on your development system.

15.	 Once the process completes, refresh the destination server and you should now see
the synchronized database and all the objects there.

If you want to test this further, make changes to the source database (either data or
schema) and run the synchronize script again to see those changes populated in the
destination. Remember to process the original cube after changes are made prior to
synchronization.

Copying files with other tools
The synchronize option in SSAS is the simplest way to synchronize databases.
However, if your database is very large, you may be able to improve
performance by using Robocopy or similar file copy tools. Once the database
has been processed, you can copy the files to the target server. This is effectively
what synchronize does on your behalf. If you choose to use a different tool,
you will have to stop and restart Analysis Services in order to see the new
data. Synchronize is an online operation that permits querying during
synchronization.

Synchronizing tabular models
In this exercise, we will install another tabular model instance and synchronize the data to
the new server as follows:

1.	 In Chapter 1, Analysis Services in SQL Server 2019, we walked through the
instructions to install SSAS in tabular mode. Follow that process to add another
SQL Server instance to your development environment.

2.	 On the new instance, right-click the Databases folder and choose Synchronize.
This will open the Synchronize Database Wizard shown in Figure 12.10.
Click Next.

3.	 On the next page, choose Synchronization Source. Synchronization Destination
is already in the wizard. Use the server with the database deployed as the source
and your new instance for the destination. You can change the folder for the data in
the destination if you need to. We will leave the default in this exercise. Click Next
when you are done.

Discovering how your models are performing 443

4.	 Leave the default settings on Synchronization Options and click Next. Refer to the
multidimensional synchronize steps for details on these options.

5.	 Before we go to the next step, we need to make sure that the destination service
account has access to the source server in order to synchronize the databases.
For our exercise, we will add the service account to the Server Administrators
group on the source server. For details on making this change, refer to Chapter 11,
Securing Your SSAS Models, which deals with security for servers.

6.	 Now, a decision needs to be made about whether to Synchronize now or Save the
script to file. On this occasion, let's opt for Synchronize now. Click Next, and then
click Finish to create the synchronized database. While the synchronization process
is running, you can see the files being copied in the Database Synchronization
Progress window. When it completes, you can look at the file operations conducted
in the wizard.

7.	 Once the synchronization completes, refresh the destination server and you should
now see the synchronized database and all the objects there.

The synchronization code generated from the wizard is the same for both tabular and
multidimensional models.

Before leaving this section, if you did perform the steps here, we recommend stopping
the instances you created for synchronization as this will keep your resources at a better
level. If you no longer need those instances, you should uninstall them. If you plan to
keep them, but want to make sure they are disabled, we recommend disabling them in the
Services application or updating the PowerShell scripts we created in Chapter 1, Analysis
Services in SQL Server 2019, to manage them.

Discovering how your models are performing
Several open source tools are available to support monitoring and performance tuning in
Analysis Services. When working with multidimensional models, many of the tools are
many years old and may not have been updated recently. Multidimensional models are
very mature and have experienced little change in the past few years. Tabular models have
some key tools that can help you monitor and improve the performance of your models.
While all the tools are not covered in this section, we will bring up some industry accepted
tools in the topic list at the end of this chapter.

While those tools exist, you should be aware of out-of-the-box capabilities with SQL
Server. This includes the maintenance views and even performance monitoring.

444 Common Administration and Maintenance Tasks

Using Dynamic Management Views
Dynamic Management Views or DMVs are available for both multidimensional and
tabular models. While the entire list of DMVs is out of scope for this book, we will
introduce you to how they are used and some common queries.

DMVs in Analysis Services are based on the data mining parser. While the syntax is
similar to SQL, it has a limited set of functionality, such as SELECT (DISTINCT and
TOP), FROM $System, <<some table or view name>>, WHERE, and ORDER BY.
Aggregated queries are not supported. While the queries use the data mining parser,
you can run the queries in an MDX or DAX query window as well. We recommend using
the DAX query window because it works with both model types and does not open an
object browser.

The following is a short list of some common queries you might use while troubleshooting
your models:

•	 Currently connected sessions – both models: This query returns the session data
for the server or instance you are connected to:

Select * from $System.discover_sessions

•	 Tabular model table list: This query is specifically for tabular models at 1200
compatibility level or higher(New DMV row sets were released specifically for 1200
and higher):

SELECT * FROM $System.TMSCHEMA_TABLES

•	 Multidimensional model table list: This query is designed for multidimensional
models but works with tabular models as well. This will return a list of tables as
defined in each model type:

SELECT * FROM $System.DBSchema_Tables WHERE TABLE_TYPE =
'TABLE' ORDER BY TABLE_NAME ASC

•	 Memory consumption – both models: When troubleshooting potential
performance issues, you can use this query to ascertain memory consumption:

SELECT * FROM $System.DISCOVER_MEMORYUSAGE

•	 Object activity – both models: This is an interesting query. You can use this
information to see activity performed on the object since the last time the service
was started. It does not retain history:

SELECT * FROM $System.DISCOVER_OBJECT_ACTIVITY

Discovering how your models are performing 445

This has been an introduction to DMVs. There is a wealth of documentation and examples
available online (https://docs.microsoft.com/en-us/analysis-services/
instances/use-dynamic-management-views-dmvs-to-monitor-
analysis-services?view=asallproducts-allversions). These are built into
SSAS and are here to help you troubleshoot your solutions when needed.

Using SQL Server Profiler
SQL Server Profiler has been around for many years in SQL Server. While the information
from this tool can be quite extensive, most data professionals refrain from using this as the
first choice due to the impact on the performance of the systems it is profiling. However, it
can provide a wealth of data for you when troubleshooting your server. Let's look at SQL
Server Profiler with our tabular model as an example:

1.	 Open SQL Server Profiler by searching for SQL Server Profiler in Windows.

2.	 Click File, and then New Trace to start a tracing activity on your server. Choose
your tabular model server in the server dialog.

3.	 This will open a Trace Properties dialog with two tabs. Give your trace a name, and
then choose Event Selection.

4.	 Under Event Selection, you will see many different events already selected and
ready. These events are for SSAS solutions and are the default set from SQL Server.

i) If you click Show all events, you can see there are many more events to choose
from.

ii) In the Query Processing section, you can see events that target each model type,
such as aggregations for multidimensional models and Vertipaq for tabular models.
If you need to do some specific query tuning, these can help you dig into details.

iii) By clicking Show all columns, you can also see that some data specific to model
tuning will be exposed, such as Calculation Expression.

For our purposes, deselect all the options from all event categories except Queries
Events. This should leave Query Begin and Query End selected. Click Run. The
trace will show no events at the moment.

5.	 Go to Management Studio and connect to your tabular model database. Right-click
on the database and choose Browse.

https://docs.microsoft.com/en-us/analysis-services/instances/use-dynamic-management-views-dmvs-to-monitor-analysis-services?view=asallproducts-allversions
https://docs.microsoft.com/en-us/analysis-services/instances/use-dynamic-management-views-dmvs-to-monitor-analysis-services?view=asallproducts-allversions
https://docs.microsoft.com/en-us/analysis-services/instances/use-dynamic-management-views-dmvs-to-monitor-analysis-services?view=asallproducts-allversions

446 Common Administration and Maintenance Tasks

6.	 In the model browser, add an attribute and measure (your choice) and execute the
query. This should result in the two events in the profiler – Query Begin and Query
End. Explore the various columns. For example, this shows you the MDX that
was sent to the model for results. The SSMS browser uses MDX queries for both
model types.

7.	 Now, open a DAX query window. We will use a query we created in Chapter 8,
Adding Measures and Calculations with DAX:

DEFINE

MEASURE 'Sales'[Sales Total] = SUM('Sales'[Total
Excluding Tax])

EVALUATE(

	 SUMMARIZECOLUMNS(

		 'Date'[Calendar Year]

		 , 'Item'[Color]

		 , "Total Sales"

		 , CALCULATE([Sales Total])

))

You should now see the same query in the trace. You can use the trace to determine
query timings and resource consumption.

8.	 Stop your trace and close Profiler.

We only explored one set of events in SQL Server Profiler. This is a good tool for grabbing
the code, which you can then use in SSMS for further testing.

Reviewing other maintenance tasks or tools
In this section, we have a number of tasks and tools that can support the operational
needs of your SQL Server Analysis Server solutions. Let's look at each of them in detail.

Warming multidimensional models
One of the issues with multidimensional models is that they use caching extensively to
improve query performance. When a cube is reprocessed, the cache is cleaned up. When
users start to use the cube, they can experience significant performance issues because
the data is being retrieved from disk as opposed to memory. While this can happen at any
time, especially when uncommon queries are run, it can be frustrating if, every Monday
morning, the CEO needs to wait for this query. Once it is cached, it performs great.

Reviewing other maintenance tasks or tools 447

The solution to this issue is to warm the cache. This typically involves running several
queries right after the cube has been processed to load common or key data into the
cache, thereby improving the user experience (tabular models are all in-memory and
do not have this issue).

Using usage-based optimization with
multidimensional models
This technique collects several queries being executed in the cube and uses those queries
to recommend new aggregations to build.

Add a database connection and table for query logs
If you don't have a connection in the Log\QueryLog\
QueryLogConnectionString property of the server, you will
not be able to complete these steps. We added a connection to our
WideWorldImportersDW database for this example. If you plan to use
this feature regularly, you should create a database to support it. Once you
have this added, you can use the wizard. We created a new SQL login and
user to create the table. You will also need to set the Log\QueryLog\
CreateQueryLogTable setting to true in order to allow SSAS to create
the query log table. You can change the name of the query log table if you wish
to, but this is not required in order to continue. The table will be created when
the system reaches the default sampling count of 10. If you want to increase
the logging, you can reset this to 1. This value should never be set to 1 in
production environments. Verify that the table has been created in the database
before proceeding with the wizard. Run a few queries to give the wizard some
data to work with.

Here is the process to set this up and collect the information:

1.	 Open your multidimensional model solution in Visual Studio.

2.	 Open the cube design window and navigate to the Aggregations tab.

3.	 In the buttons on the left of the tab, select Usage Based Optimization to open
Usage Based Optimization Wizard.

4.	 Click Next on the opening page.

5.	 You can now see a list of partitions to modify. Choose a partition to optimize and
click Next.

6.	 You can limit the queries you are planning to optimize. Click Next.

448 Common Administration and Maintenance Tasks

7.	 The next screen will describe the queries that will be optimized. If you see a query
you don't want to optimize, deselect it here. Click Next.

8.	 Count the members and click Next.

9.	 Choose an aggregation option in the screen and click Start.

10.	 When the aggregation designer is complete, click Next.

11.	 Now you can create this as a new aggregation or add it to an existing design. This
choice is about how you want to manage custom aggregations.

12.	 Once you are ready, click Finish to complete the design. Wrap this up by deploying
the changes and reprocessing the cube.

This solution helps you to create targeted aggregations that can support specific query
operations or users. Be sure to update these as usage patterns tend to change over time.

Removing unused fields from your tabular models
This may seem obvious, but it is a common issue in tabular models. Including fields in
tabular models because you might need it later is a bad practice. Tabular models are
loaded into memory and even if they are highly compressed, larger models can have
performance issues. Removing unused fields reduces the memory load for the model
and generally improves query performance.

Using open source tools to support tabular models
Tabular models continue to see a lot of support in the community. As a result, there are
a few tools that have been released that support development and operations for tabular
models. A few of the tools are described here:

•	 DAX Studio – https://daxstudio.org

DAX Studio is a more elegant solution for creating, managing, and tuning
DAX queries for your tabular models. This tool supports query performance
investigations with more detail than you can find in SSMS.

•	 Tabular Editor – https://tabulareditor.org

This tool allows you to edit tabular models without the workspace database. This
is particularly helpful when working with large models and when you have to deal
with development performance issues.

https://daxstudio.org
https://tabulareditor.org

Summary 449

•	 ALM Toolkit – http://alm-toolkit.com

ALM Toolkit allows model developers to compare data and schemas. It provides a
clean method for seeing changes between models. This tool also supports advanced
capabilities, such as partial deployments.

All these tools are open source products and have recently been integrated into Power BI
Desktop as they all support Power BI as well.

Summary
With this chapter, we have come to the end of our journey with SQL Server Analysis
Services 2019. This chapter covered a lot of maintenance and operational tasks and
tools. When working with Analysis Services models, the tools are typically specific to the
model type. While not an exhaustive list of tasks or tools, you now know how to back up,
restore, synchronize, and performance tune your models. As you continue to work with
Analysis Services, you will find these and other techniques valuable when moving
to production environments.

The skills from this chapter wrap up the full life cycle when working with SQL Server
2019 Analysis Services. From install to backups, you now have a complete picture of the
techniques and skills required to install and build out an analytic model on Analysis
Services and deliver analytics to your customers and to your business.

http://alm-toolkit.com

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

SQL Server 2019 Administrator’s Guide- Second Edition

Marek Chmel, Vladimír Mužný

ISBN: 978-1-78995-432-6

•	 Discover SQL Server 2019’s new features and how to implement them

•	 Fix performance issues by optimizing queries and making use of indexes

•	 Design and use an optimal database management strategy

•	 Combine SQL Server 2019 with Azure and manage your solution using various
automation techniques

•	 Implement efficient backup and recovery techniques in line with security policies

•	 Get to grips with migrating, upgrading, and consolidating with SQL Server

•	 Set up an AlwaysOn-enabled stable and fast SQL Server 2019 environment

•	 Understand how to work with Big Data on SQL Server environments

https://www.packtpub.com/product/sql-server-2019-administrator-s-guide-second-edition/9781789954326

452 Other Books You May Enjoy

SQL Server on Azure Virtual Machines

Joey D’Antoni, Louis Davidson, Allan Hirt, John Martin, Anthony Nocentino, Tim
Radney, Randolph West

ISBN: 978-1-80020-459-1

•	 Choose an operating system for SQL Server in Azure VMs

•	 Use the Azure Management Portal to facilitate the deployment process

•	 Verify connectivity and network latency in cloud

•	 Configure storage for optimal performance and connectivity

•	 Explore various disaster recovery options for SQL Server in Azure

•	 Optimize SQL Server on Linux

•	 Discover how to back up databases to a URL

https://www.packtpub.com/in/catalogsearch/result/?q=%09SQL%20Server%20on%20Azure%20Virtual%20Machines

Leave a review - let other readers know what you think 453

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book’s Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

A
Active Directory 335
ALL function

using, with CALCULATE 283-285
Analysis Services

Power Pivot model, importing 264
Analysis Services project

attribute hierarchies, creating 135, 136
attribute hierarchies, updating 135, 136
attributes, adding 125
creating, in Visual Studio 110-112
cubes, adding 149
dimensions, adding 125
hierarchies, adding 125
hierarchies, building 139-142
measure groups, adding 149
preparing, to process

dimensions 142, 143
Analysis Services project, Visual Studio

data source views, adding 114
data source views, creating from

relational views 115-118
data source views, custom data

source views 123-125

Invoice Sales diagram
creating 122
relationships, creating 122

Sales diagram
creating 118-121

Sales diagram relationships
creating 118-121

SQL Server database connection
adding 112, 113

Application 99
Areas to Place Fields 314
attribute hierarchies

creating, in Analysis Services
project 135, 136

updating, in Analysis Services
project 135, 136

attributes
adding, Analysis Services project 125

Azure Analysis Services 72, 234

B
Business Intelligence (BI) 56

Index

456 Index

C
CALCULATE

ALL function, using with 283-285
calculated columns

tables, extending with 64
calculated tables

about 62
composite, creating 293, 294
creating 289
delivery date table, creating to

support role playing 289-291
filtered row set, creating 291
summary, creating 292

calculate function
ALL function, using with

CALCULATE 283-285
measures, creating with 281-283

calculation
creating, for next year’s sales 288, 289

calculation groups
creating 294-297
sort order, setting issues 297
testing, in Excel 298

cell-level security
inventory group security,

adding with 408, 409
chart of accounts 59
clustered columnstore indexes 91
clustered indexes 91
clustering

versus scaling out 437
columnstore index 86
compatibility level 234
completed models

deploying 265, 266
processing 265, 266

components, multidimensional models

Process Add 429
Process Clear 429
Process Data 428
Process Default 428
Process Full 428
Process Index 429
processing 427
Process Update 429

components, tabular models
Process Add 434, 435
Process Clear 433
Process Data 434
Process Default 433
Process Defrag 434
Process Full 433
processing 433
Process Recalc 434

composite models 66
conformed dimensions

about 82
product dimension, conforming 83
product source definitions 82, 83

considerations, DirectQuery
not limited by memory 219
one data source 219
real-time connection 219

considerations, for data preparation
for tabular models

about 212
non-star schema databases,

using 215, 216
nontraditional sources, using 217
self-service, versus managed

deployments 212, 213
star schema data warehouse,

using 214, 215
covering indexes 91
cube dimension usage

Index 457

action, creating 154
aggregations, creating 157, 159
aggregations, reviewing 157, 159
calculations and KPIs, reviewing 154
partitions, reviewing 155, 156
perspective, creating 159
perspectives, reviewing 159
reviewing 154
translations, reviewing 159

CUBE functions
using, in Excel advanced design 330

cubes
about 99, 164, 313
adding, in Analysis Services project 149
browsing 160, 161
calculated measures, creating 180-184
calculations, adding to 178
calculations section, using 178
creating 150, 151
KPIs, adding to 186
measures, adding to 178
named sets, creating 185, 186

Cube schema 237
cube’s measures

modifying 151, 152
Quantity measure, modifying 152
Tax Rate measure, modifying 153
Total Including Tax measure,

modifying 152
cube’s structure

reviewing 151
custom rollups 59

D
Data Analytic Expressions (DAX)

about 63, 269-271
model, querying 301-303

working with 286
databases

synchronizing 438
user roles, setting up 389

database views
using 94
using, as interface layer 96

data, loading into star schema
about 92
SQL Server methods and tools 92, 94
staging 92

data optimization considerations
about 218
query performance 218
refresh frequency 218
refresh time 218

data security, implementing in
multidimensional models

about 394
customer roles, adding with dimension

hierarchy security 394-400
inventory group security, adding

with cell-level security 408, 409
sales group security, adding with

dynamic dimension security 400, 401
data security, implementing

in tabular models
about 410
new excel role, testing 411, 412
role to limit access, creating

to customer 410, 411
data source views (DSVs)

about 114
cons 96
pros 95
using 94, 95

dimensional model 78
dimensional modeling

458 Index

about 21, 78
conformed dimensions 82
dimension 80
dimensions and facts, planning 86
Enterprise Data Warehouse

(Bus Matrix) 84, 85
fact 80
grain 81
key concepts 82
origin 78, 80
relational dimensional models, issues 85
slowly changing dimensions (SCD) 84
star schema 80
surrogate keys 81

dimension and facts
building 87
designing 87

dimension hierarchy security
customer roles, adding with 394-400

dimensions
adding, in Analysis Services project 125
attribute relationships, adding 137
creating, with Dimension

Wizard 126-130
dimensions, Analysis Services project

attribute relationships, adding 137, 138
fixing 145, 146
hierarchy lists, cleaning up 148, 149
hierarchy orders, fixing 145, 146
Parent-Child relationships,

using 147, 148
processing 142
processing impersonation

issues, solving 143, 144
ragged hierarchies 146
updating 144

Dimension Wizard, used for
creating dimensions

about 126-130
key and name attributes.

combining 131, 132
DirectQuery 219, 342

data source capabilities, using with 65
used, for creating tabular model 256

DirectQuery model
data, previewing with Excel 261
enhancing 260
sample partitions, adding 259, 260

DistinctCount aggregation
versus multidimensional 252

distinct count aggregations 153
dynamic dimension security

sales group security, adding
with 400, 401

Dynamic Management Views
using 444

dynamic security, for sales territories
adding, to tabular models 412, 415

dynamic security role
adding 404, 405
testing 405, 406

E
Employee slicer

updating 324-326
Excel

about 212
connecting, to models 308
connecting, to multidimensional

model 309-312
connecting, to tabular model 312, 313
tabular model, prototyping with

Power Pivot 220-227
Excel advanced design

Index 459

fields, formatting 334, 335
PivotTable, converting to

formulas 331-333
pivot tables, adding to new sheet 331
with CUBE functions 330

Excel dashboard
building 324
capabilities, checking 335
credentials, checking 335
deploying, to OneDrive 336
design, cleaning up 328, 330
Employee slicer, updating 324-326
enhancing 324
filter, moving 324
PivotTable, adjusting 327, 328
PivotTable, moving 324
sharing 335
workbook, deploying 336, 337

Excel visualizations
building, with multidimensional

model 314
PivotChart, adding 318, 319
PivotTable, creating 316
PivotTable Fields panel,

defining 314, 315
slicers, adding 320, 321
timelines, adding 322, 323

extraction, transformation, and
load (ETL) 64, 216

F
Field Buttons 319
fields

about 314

formatting 334, 335
filter

moving 324
First normal form rule 79
Fiscal Year (FY) 188

G
Geography hierarchy 136
Globally Unique Identifier (GUID) 313

H
hidden fields

in models 317, 318
hierarchies

adding, Analysis Services project 125
adding, to dimensions 133-135
building, in Analysis Services

project 139-142

I
indexes 90
integrated development

environment (IDE) 112
integrated workspace

selecting, on workspace server 233
Integration 99

K
key performance indicator (KPI)

about 186, 361
building 187-192, 300, 301
creating 298

Kimball Group
URL 78

460 Index

L
live connecting

to multidimensional model 342-345
to tabular model 346

live connections 340
for Power BI, with SSAS models 369
used, for adding measures

to Power BI 370
live import

for Power BI, with SSAS models 369

M
maintenance tasks

reviewing 446
maintenance tools

reviewing 446
MDX expressions

exploring 193
MDX expressions, hierarchies

children 194
descendants 195-197
FirstChild 197
FirstSibling 197
LastChild 197
LastSibling 197
members 193
parent 194
traversing 193

MDX functions
data, exploring with 198

MDX functions, aggregation function
calculations, creating with 202

MDX functions, crossjoin function
data, exploring with 198, 199

MDX functions, IIF statements

data, exploring with 200
MDX functions, IsEmpty statements

data, exploring with 200
MDX functions, lag function

data, exploring with 201
MDX functions, lead function

data, exploring with 201
MDX functions, math function

Avg function 203
BottomCount function 205
calculations, creating with 202
COUNT function 203
Divide function 204
Median function 203
SUM function 202
TopCount function 205

MDX functions, time calculations
Aggregate function 206
ParallelPeriod function 205, 206
PeriodsToDate function 206
working with 205

measure
creating 165, 371-374

measure groups
adding, in Analysis Services project 149
creating 150, 151

members
adding, to server administrator

role 389, 390
Microsoft Business Intelligence (MSBI) 18
model performance

monitoring 443
models

about 313
data, processing 427
hidden fields 317, 318
scaling 435
used, for connecting Excel 308

Index 461

visible fields 317, 318
model type for business, considerations

about 72
client tools 73
cloud readiness 72, 73
complex analysis 73
development and change 72

msmdsrv.ini file
finding 387
opening 387
security properties 388
security properties, setting 387

multidimensional data
Power BI report, building with 347

multidimensional expressions (MDX)
about 96, 269, 330
working with 164

multidimensional model
data security, implementing 394
challenges, discovering 57
city dimension view 100
column names 87-89
customer dimension view 101
database, prepping 97
date dimension view 101
dimension tables 89, 90
fact tables 90
foreign keys 92
indexing strategies 91
live connecting to 342-345
processing 427
read-only role, adding to 390-392
Sales fact views 104
salesperson dimension view 102
Stock Item dimension views 103
strengths, discovering 57
synchronizing 438-441
usage-based optimization,

using with 447
used, for building Excel

visualizations 314
used, for connecting Excel 309-312
views, creating 99, 100
warming 446

multidimensional model, challenges
about 60
distinct count, implementation

difficulty 61
MDX, difficulty 61
small-changes require full reload 61, 62

multidimensional model, strengths
about 57
actions, using to enhance

user experience 59
complex relationships, building 59
data modeling, techniques 60
large datasets, scaling 58
mature 57
rollups, building 59
what if scenarios, solving

with write back 59
multidimensional model,

versus tabular model
about 68
hardware, requisites 70, 71
OLAP concepts, versus

relational concepts 70
partitioning 69
role-playing dimensions 69, 70

Multidimensional Online Analytical
Processing (MOLAP) 157

multidimensional query concepts
about 164, 168
curly braces {} 167

462 Index

dimensions 164
levels 165
members 166
parentheses () 167
periods . 167
properties 168
sets 166
square brackets [] 167
tuples 166

N
non-clustered indexes 91
normal forms 79

O
Online Analytical Processing

(OLAP) 19, 70
open source tools, to support

tabular models
ALM Toolkit 449
DAX Studio 448
Tabular Editor 448

organization chart 59

P
PivotChart

about 311
adding 318, 319

PivotTable
about 311
adding, to new sheet 331
adjusting 327, 328
converting, to formulas 332, 333
creating 316
moving 324

visible and hidden fields, in
models 317, 318

PivotTable Fields panel
defining 314, 315

PivotTable report 311
Power BI

about 212
data sources, connecting to 342
impact 213
measures, adding with live

connections 370
measures, adding with

tabular models 370
using 227

Power BI blog
URL 341

Power BI report, building with
multidimensional data

about 347
base dashboard, creating in

Power BI 348-351
cards, adding to visuals 355, 356
line chart, adding 352-355
slicers, adding to visuals 357-361

Power BI report, building
with tabular data

about 361, 364
cards, adding to tabular data 366, 367
line chart, adding to tabular

model data 364, 366
slicers, adding to tabular data

visuals 368, 369
Power BI report, deploying to

Power BI workspace
about 374, 375
gateway, adding 375, 377
tabular report, deploying 375, 377

Power BI visualizations

Index 463

creating, with live connections 340,-342
Power BI, with SSAS models

live connections for 369
live imports for 369

Power Pivot
used, for prototyping tabular

model in Excel 220-227
Power Pivot model

importing, into Analysis Services 264
Power Query

data, mashing up with 64
Power Query feature 216
process clear structure 429
processing

about 437
considerations 432
options 430-432

process structure 429

Q
query

building 169-173
calculated members, adding to 175-178
explicit measures, adding to 173
NON EMPTY, using 174, 175

query servers 437
query structure

about 168
FROM 169
SELECT 168
WHERE 169

R
ragged hierarchies 62, 145
read-only role

adding, to multidimensional

models 390-392
adding, to tabular models 392, 393

relational database management
system (RDBMS) 18, 79

relational dimensional models
issues 85

Relational Online Analytical
Processing (ROLAP) 157

reports 99
role playing dimensions 98
Row Level Security 244

S
Sales fact views, multidimensional model

[Cube].[Invoice 105
[Cube].[Invoice Sales] 105-107
[Cube].[Sales] 104

sales group security
dimension and measure group,

adding 401-404
Sales Region hierarchy 136
scaling out

versus clustering 437
SCD Type 0 84
SCD Type 1 84
SCD Type 2 84
Second normal form rule 79
security settings

opening, for server 382-385
security settings, for SSAS

anonymous access, allowing
to model 385

reviewing 382
Select Related Tables button 237
server administrator role

members, adding to 389, 390
servers

464 Index

user roles, setting up 389
service-level agreements (SLAs) 213, 438
single-value visualizations

functions 330
slicers

adding 320, 321
solution

creating 230, 232
SQL Server 18
SQL Server 2019 Analysis Services

multidimensional mode
installing 28-36

SQL Server 2019 Analysis
Services tabular mode

installing 37-43
SQL Server 2019 database engine

installing 28-36
SQL Server 2019 Developer edition 27
SQL Server Analysis Services 2019

about 24
multidimensional models 24
tools, using with 27
Visual Studio Extensions,

adding for 48, 50
SQL Server Analysis Services

2019, tabular models
about 24
calculation groups 26
governance settings, for Power

BI cache refresh 26
many-to-many relationship support 26
online attach 26
query interleaving 25

SQL Server Analysis Services (SSAS)
about 18-20, 112, 233, 375
advanced security properties 386
data warehouse backup, restoring 52-54
installations, managing 43, 44

need for 20
tools 18
usage 20-24

SQL Server Data Tools (SSDT)
with Visual Studio 47

SQL Server Integration Services
(SSIS) 64, 92

SQL Server Management Studio
about 27, 31, 45, 169
installing 45, 46

SQL Server Management Studio
model

querying 301-303
SQL Server Profiler

using 445, 446
SQL Server Reporting Services

(SSRS) 31, 59, 374
SSAS databases

backing up 420-425
restoring 420, 425-427

star schema
about 21, 78
data, loading into 92

stoplight 300

T
tabular data

Power BI report, building with 361
tabular model

data, preparing for 212
data security, implementing 410
dynamic security for sales

territories, adding 412-415
challenges, discovering 62
columns, adding 271-274
converting, to DirectQuery 257-259
copy issues 256

Index 465

creating 230-234
creating, on transactional data 262-264
creating, with DirectQuery 256
data, importing 235,-244
date table, marking 245
hierarchies, adding 246-249
live connecting to 346
item calculations, creating 275, 276
measures, adding 249-252, 271-274
measures and columns, formatting 251
partitions, managing 252-256
processing 433
prototyping, in Excel with

Power Pivot 220-227
read-only role, adding to 392, 393
relationships 243
role-playing dimensions 215
strengths, discovering 62
synchronizing 442, 443
unused fields, removing 448
used, for adding measures

to Power BI 370
used, for connecting Excel 312, 313

tabular model, challenges
about 65
code, containing in single file 67, 68
size, limitation to memory

capacity 65, 66
subpar design experience in

Visual Studio 66
tabular model, item calculations

AVERAGE measures 277-280
COUNT measures 277-280
missing profits, identifying 280, 281

tabular model KPI

components 299
Tabular Model Scripting Language

(TMSL) 419, 420
tabular model, strengths

about 62
Data Analytic Expressions (DAX),

user experience 63
data, mashing up with Power Query 64
data source capabilities, using

with DirectQuery 65
distinct count, is simple expression 65
table 63
tables, extending with

calculated columns 64
The Microsoft Data Warehouse Toolkit 78
Third normal form rule 79
time intelligence 273

working with 286
timelines

adding 322, 323
Toolkit series 78
Transact-SQL. See also TSQL
translations 62
TSQL 18

U
unary operators 59
usage-based optimization

using, with multidimensional
models 447

user roles
setting up, in databases 389
setting up, in servers 389

466 Index

V
Vertipaq 24, 56, 252
visible fields

in models 317, 318
Visual Studio

Analysis Services project,
creating 110-112

subpar design experience in 66
with SQL Server Data Tools (SSDT) 47

Visual Studio Extensions
adding, for SQL Server Analysis

Services 2019 48, 50
Visual Studio, with SQL Server

Analysis Services 2019 support
configuring 48
installing 48

Visual Totals
using 406, 407

W
Wide World Importers Sales 97-99

X
XML for Analysis (XMLA) 26, 418, 420
xVelocity In-Memory Analytics

Engine. See also Vertipaq

Y
year over year (YOY) 187
YTD measure

creating 286, 287

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Foreword
	Contributors
	Table of Contents
	Preface
	Section 1:
Choosing
Your Model
	Chapter 01: Analysis Services in SQL Server 2019
	What is SQL Server Analysis Services anyway?
	SQL Server Analysis Services is not SQL Server
	SQL Server Analysis Services through the years

	Why use SQL Server Analysis Services?
	Optimized for reporting and analytics
	Works great with Excel
	Organized with end users in mind

	What's new in SQL Server Analysis
Services 2019?
	Multidimensional models in 2019
	Tabular models in 2019

	What are the tools used with SQL Server Analysis Services?
	SQL Server 2019 Developer edition
	SQL Server Management Studio (SSMS)
	Visual Studio with SQL Server Data Tools (SSDT)

	One last thing – our sample data
	Restoring the data warehouse backup

	Summary

	Chapter 02: Choosing the SQL Server 2019 Analytic Model for Your
BI Needs
	Technical requirements
	Understanding how we got here – two modes
	Discovering multidimensional model strengths and challenges
	Strengths of the multidimensional model
	Multidimensional model challenges

	Discovering tabular model strengths and challenges
	Strengths of tabular models
	Challenges with tabular models

	Understanding other differences that matter
	Partitioning
	Role-playing dimensions
	OLAP versus relational concepts
	Hardware requirements

	Choosing the model type for
business-specific reasons
	Rapid development and change
	Cloud readiness
	Complex analysis
	Client tools

	Summary
	Further reading

	Section 2:
Building and Deploying a Multidimensional Model
	Chapter 03: Preparing Your Data for Multidimensional Models
	Technical requirements
	A short primer on dimensional modeling
	Understanding the origin of dimensional modeling
	Defining dimensional modeling terms
	Key dimensional modeling concepts
	Common issues in relational dimensional models
	Planning dimensions and facts

	Designing and building dimensions and facts
	Column names – business-friendly or designer-friendly?
	Dimension tables
	Fact tables
	Indexing strategies

	Loading data into your star schema
	Staging your data
	SQL Server data loading methods and tools

	Using database views and data source views
	Data source views – pros and cons
	Database views as an interface layer

	Prepping our database for the multidimensional model
	Wide World Importers Sales
	Creating the views for the multidimensional model

	Summary

	Chapter 04: Building a Multidimensional Cube in SSAS 2019
	Technical requirements
	Creating the Analysis Services project in Visual Studio
	Adding the SQL Server database connection to the project
	Adding the DSVs to the project

	Adding dimensions, attributes, and hierarchies
	Creating dimensions with the Dimension Wizard
	Adding hierarchies to your dimensions
	Processing the dimensions
	Updating our dimensions

	Adding cubes and measure groups
	Creating the cube and measure groups
	Reviewing the cube's structure and modifying measures
	Reviewing dimension usage

	Summary

	Chapter 05: Adding Measures and Calculations with MDX
	Technical requirements
	Introducing MDX basics – SELECT, FROM, WHERE
	Understanding multidimensional query concepts
	Understanding query structure
	Building your first query

	Adding calculations and measures to your cube
	Using the calculations section
	Creating calculated measures
	Creating named sets

	Adding KPIs to our cube
	Understanding the basics of a KPI
	Building your KPI

	Exploring more MDX expressions
	Traversing hierarchies
	Exploring data with more MDX functions
	Creating more calculations with aggregation and math functions
	Working with time

	Summary

	Section 3:
Building and Deploying
Tabular Models
	Chapter 06: Preparing Your Data for Tabular Models
	Technical requirements
	Prepping data for tabular models
	Contrasting self-service and managed deployments
	Using a star schema data warehouse
	Using non-star schema databases
	Using nontraditional sources

	Data optimization considerations
	Prototyping your model in Excel with
Power Pivot
	Summary

	Chapter 07: Building a Tabular Model in SSAS 2019
	Technical requirements
	Creating the solution and first tabular model
	Importing data into your model
	Marking the date table
	Adding hierarchies to the model
	Adding some measures to our model
	Managing partitions in tabular models

	Creating a tabular model with DirectQuery
	Creating a new tabular model project
	Converting the new model to DirectQuery
	Adding sample partitions to the DirectQuery model
	Enhancing your DirectQuery model
	Previewing the data with Excel

	Creating a tabular model on
transactional data
	Importing a Power Pivot model into Analysis Services
	Deploying and processing your
completed models
	Summary

	Chapter 08: Adding Measures and Calculations with DAX
	Technical requirements
	Understanding the basics of DAX
	Adding columns and measures to the
tabular model
	Creating item calculations

	Creating measures with the
CALCULATE function
	Working with time intelligence and DAX
	Creating calculated tables
	Creating a delivery date table to support role playing
	Creating a filtered row set calculated table
	Creating a summary calculated table
	Creating a composite calculated table

	Creating calculation groups
	Creating KPIs
	Understanding the components in a tabular model KPI
	Building your KPI

	Querying your model with SQL Server Management Studio and DAX
	Summary

	Section 4:
Exposing Insights while Visualizing Data from
Your Models
	Chapter 09: Exploring and Visualizing Your Data with Excel
	Technical requirements
	Connecting Excel to your models
	Connecting to the multidimensional model
	Connecting to the tabular model

	Building visualizations with your models
	Understanding the PivotTable Fields panel
	Creating a PivotTable
	Adding a PivotChart
	Adding slicers
	Adding timelines

	Building and enhancing an Excel dashboard
	Moving the PivotTable and the filter
	Updating the Employee slicer
	Adjusting the other PivotTable
	Cleaning up our dashboard design

	Advanced design with CUBE functions
	Adding PivotTables to a new sheet
	Converting the PivotTable to formulas
	Formatting the new fields

	Sharing your Excel dashboards with others
	Checking your capabilities
	Checking your credentials
	Deploying your workbook

	Summary

	Chapter 10: Creating Interactive Reports and Enhancing Your Models in Power BI
	Technical requirements
	Creating Power BI visualizations using live connections
	Connecting to data sources in Power BI
	Live connecting to the multidimensional model
	Live connecting to the tabular model
	Building our Power BI report with multidimensional data
	Building our Power BI report with tabular data

	Understanding live connections and import for Power BI with SSAS models
	Adding measures to Power BI when using tabular models and live connections
	Creating a new measure

	Deploying your Power BI report to a Power BI workspace
	Summary

	Section 5:
Security, Administration,
and Managing
Your Models
	Chapter 11: Securing Your
SSAS Models
	Technical requirements
	Reviewing security settings for SSAS
	Opening the security settings for the server
	Allowing anonymous access to your model
	Understanding advanced security properties
	Setting security properties in msmdsrv.ini

	Setting up user roles in servers and databases
	Adding members to the server administrator role
	Adding a read-only role to the multidimensional model
	Adding a read-only role to the tabular model

	Implementing data security in multidimensional models
	Adding customer roles with dimension hierarchy security
	Adding sales group security with dynamic dimension security
	Adding inventory group security with cell-level security

	Implementing data security in tabular models
	Creating a role to limit access to a customer
	Adding dynamic security for sales territories to the tabular model

	Summary

	Chapter 12: Common Administration and Maintenance Tasks
	Technical requirements
	Understanding the languages
	Backing up and restoring SSAS databases
	Restoring your databases

	Processing or refreshing the data in your models
	Processing multidimensional models and their components
	Processing tabular models and their components

	Scaling your models
	Understanding processing and query servers
	Choosing scaling out versus clustering
	Synchronizing your databases

	Discovering how your models are performing
	Using Dynamic Management Views
	Using SQL Server Profiler

	Reviewing other maintenance tasks or tools
	Warming multidimensional models
	Using usage-based optimization with multidimensional models
	Removing unused fields from your tabular models
	Using open source tools to support tabular models

	Summary

	Other Books You May Enjoy
	Index

