


Database Design and Modeling 
with Google Cloud

Learn database design and development to take your data  
to applications, analytics, and AI

Abirami Sukumaran

BIRMINGHAM—MUMBAI



Database Design and Modeling with Google Cloud
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted 
in any form or by any means, without the prior written permission of the publisher, except in the case 
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information 
presented. However, the information contained in this book is sold without warranty, either express 
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable 
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and 
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot 
guarantee the accuracy of this information.

Group Product Manager: Reshma Raman
Publishing Product Manager: Heramb Bhavsar
Book Project Manager: Kirti Pisat
Content Development Editor: Manikandan Kurup, Joseph Sunil
Technical Editor: Rahul Limbachiya
Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Subalakshmi Govindhan
Production Designer: Jyoti Kadam
Senior DevRel Marketing Coordinator: Nivedita Singh

First published: December 2023

Production reference: 1121223

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-80461-145-6

www.packtpub.com

http://www.packtpub.com


To my mother, Janaki, for her unconditional love

To the memory of my father, Sukumaran, for inspiring me to be who I am

To the memory of my grandparents Lakshmi, Srinivasan, and family to whom I owe everything

To my beloved country and friends for nurturing my soul

And to God for giving me resilience



Forewords

Databases are essential to the modern enterprise, as we all know. They store and manage our data, which 
is the lifeblood of our businesses. However, designing and modeling a database is not straightforward. 
It requires a deep understanding of the business, technology, and data.

Database Design and Modeling with Google Cloud, by Abirami Sukumaran, provides a comprehensive 
and practical guide to cloud database design and modeling. It serves as a compass for data professionals 
aiming to design and model databases that not only meet but exceed the demands of the modern, 
fast-paced digital era. 

Abirami is a seasoned database practitioner and leader with almost two decades of experience in the 
databases and analytics field. She has worked with a wide range of businesses, from startups to large 
enterprises, and has helped them design and implement successful database applications. In this book, 
Abirami shares her wealth of experience by providing an organized approach to database design, and 
she shows you how to use Google Cloud to build scalable, reliable, and secure database applications.  

One of the book’s strengths lies in its inclusivity and relevance, addressing structured, semi-structured, 
and unstructured data considerations. The practical insights coupled with examples showcase the 
versatility of Google Cloud services in handling diverse data types, empowering readers to make 
informed decisions in their database design journey. 

The hands-on approach is evident as the book leverages Google Cloud services, such as Cloud SQL, 
Spanner, BigQuery, Firestore, and Cloud Storage, to illustrate concepts in real-world applications. It 
goes beyond the traditional boundaries of database design, extending into the integration of databases 
with artificial intelligence through Vertex AI APIs and generative AI examples. This forward-
thinking approach positions you to smoothly transition from data management to leveraging AI in 
their applications.

Whether you are a database novice or a seasoned professional, this book will help you take your 
database skills to the next level. I highly recommend this book to anyone who wants to learn more 
about cloud database design and modeling. It is a valuable resource that will help you design your 
databases thoughtfully and improve the performance of your applications centered around data.

Priyanka Vergadia

Head of North America Cloud Developer Advocacy 

Google 



It is an honor to write the foreword for this book, Database Design and Modeling with Google Cloud, 
by Abirami Sukumaran. She has poured her heart and soul into this work, a testament to her passion 
and dedication to empowering developers through technology. 

In the age of AI and cloud, data is the new currency. A well-designed and futuristically modeled database 
can provide a solid foundation for speed, agility, efficiency, and scalability. However, navigating this 
rapidly evolving data and technology landscape can be complicated and daunting. Abirami Sukumaran’s 
book emerges as a lighthouse, guiding practitioners through a holistic and pragmatic approach to 
designing databases that meet the demands of the digital age and empower organizations to thrive 
in a data-centric environment.

This book is a journey of discovery, learning, and growth. The journey commences with a strategic 
exploration of business and technical considerations that set the stage for effective database design. 
It equips you with the ability to ask the right questions, make informed decisions, and navigate the 
endless possibilities of cloud-based databases. It leads you through an immersive, hands-on experience, 
navigating the complexities of different data formats and real-world use cases. You will particularly love 
how the flow effortlessly takes them into designing databases for analytical and AI-centric applications. 
The book positions you on a path to creating intelligent, data-driven solutions.

Congratulations on getting started on this journey! This book is a strategic companion and hands-on 
guide for engineers, architects, and developers practicing the art and science of cloud database design.

Bagirathi Narayanan

SVP, Chief Architect, Teladoc Health 

Forbes Member Leader



Contributors

About the author
Abirami Sukumaran is a lead developer advocate at Google, focusing on databases and data to AI 
journey with Google Cloud. She has over 17 years of experience in data management, data governance, 
and analytics across several industries in various roles from engineering to leadership, and has 3 patents 
filed in the data area. She believes in driving social and business impact with technology.

She is also an international keynote, tech panel, and motivational speaker, including key events like 
Google I/O, Cloud NEXT, MLDS, GDS, Huddle Global, India Startup Festival, Women Developers 
Academy, and so on. She founded Code Vipassana, an award-winning, non-profit, tech-enablement 
program powered by Google and she run with the support of Google Developer Communities GDG 
Cloud Kochi, Chennai, Mumbai, and a few developer leads. She is pursuing her doctoral research in 
business administration with artificial intelligence, is a certified Yoga instructor, practitioner, and an 
Indian above everything else.

I want to thank Packt and its team along with the tech reviewers for their effort in ensuring that the 
content is wholesome. My sincere thanks to Martin Paynter (Customer Engineering Manager, Google) 
and Chris Taylor (VP, Engineering Fellow at Google) for going out of their way to complete the review 

and approval process smoothly.



About the reviewers
Alfons Muñoz, a dedicated technophile and cloud computing expert, is the Communities Director 
at C2C, the Google Cloud Customer community. His role involves enriching the GCP professional 
network through collaboration with Googlers and customers.

Alfons started his Google journey as a partner, specializing in Google Workspace solutions for diverse 
companies. He holds three Google Cloud certifications, including Google Workspace administrator 
and Professional Cloud Architect, backed by a B.Sc. in Computer Science. Renowned in the C2C 
community, Alfons actively engages in global events and conferences, sharing valuable insights into 
the dynamic world of Google Cloud.

Bitthal Khaitan is a Senior Cloud Engineer at CVS Health, USA. CVS Health is a prominent 
Fortune #4 healthcare solutions company. With more than 13 years of industry experience, Bitthal 
has played a pivotal role in driving cloud data-driven initiatives using a versatile technology stack 
encompassing Google Cloud, Teradata, Big Data, Hadoop, Spark, Scala, and Python. Before his 
tenure at CVS Health, Bitthal spent eight years at Tata Consultancy Services, Asia's largest IT 
company as a Data Engineer where he collaborated with Fortune 500 companies like Walmart, 
Cigna Healthcare, DaVita Kidney Care, and Kaiser Foundation Hospitals on critical projects 
involving enterprise data warehousing, big data lake development, and cloud migration.

I would like to thank my spouse and my 2 little daughters for being an amazing support system!





Preface� xiii

Part 1: Database Model: Business and Technical 
Design Considerations

1
Data, Databases, and Design� 3

Data� 4
Databases� 4
A teeny-tiny bit about the evolution of databases� 4
DBMS� 5

Database design� 5
Data modeling� 6
Database modeling� 6

Considerations for a good database 
design� 6

Business aspect� 7
Ingestion� 8

Technical aspect� 10
Choosing the right database� 12
Relational database� 12
NoSQL database� 13

Summary� 16

2
Handling Data on the Cloud� 17

Types of cloud services� 18
Use case categories� 18
The benefits of cloud computing� 20
Data applications on cloud� 21
Storage� 21

Backup and disaster recovery� 21
Analytics and insights� 21
Application development� 21
User experience and personalization� 22

Table of Contents



Table of Contentsx

Managed, unmanaged, and database 
as a service� 22
Managed databases� 22
Unmanaged databases� 23

Database as a service� 23

Cloud database considerations� 24
A quick follow-up� 26
Summary� 26

Part 2: Structured Data

3
Database Modeling for Structured Data� 29

Structured data� 29
Rows and columns� 29
Transactional applications� 30
Analytical applications� 30

Using an RDBMS for structured data� 30
Atomicity� 31
Consistency� 31

Isolation� 31
Durability� 31

Considerations for your RDBMS� 31
Structured query language� 34
Sample SQL queries� 34

Summary� 46

4
Setting Up a Fully Managed RDBMS� 47

Fully managed databases� 47
Fully managed RDBMS� 48
Cloud SQL� 48
Setting up and configuring a fully 
managed RDBMS� 49
Creating a Cloud SQL instance for MySQL� 50
Connecting to the  instance� 52
Creating a database� 54
Creating a table� 55
Inserting values� 55
Querying values� 56

Creating an application with the 
Cloud database� 57
Configuring the Cloud Functions service 
account� 57
Creating a Cloud Function� 57

Operational aspects of cloud 
relational databases� 64
Migration� 65
Monitoring� 65
Query Insights� 65
Security� 65

Summary� 66



Table of Contents xi

5
Designing an Analytical Data Warehouse� 67

Understanding how data warehouses 
are different from databases� 67
Significance of ETL in data warehouse� 70
Learning about BigQuery� 72
Features of BigQuery� 72
Setting up and configuring a fully managed 
data warehouse with BigQuery� 73
Enabling BigQuery from the console� 74

Creating a BigQuery dataset� 75
Using an existing public dataset� 77
Creating a table in the dataset� 78
Performing simple analytics� 82

Summary of operational aspects and 
design considerations� 85
Summary� 86

Part 3: Semi-Structured, Unstructured Data,  
and NoSQL Design

6
Designing for Semi-Structured Data� 89

Semi-structured data� 90
Pros and cons of semi-structured data� 91
Use cases of semi-structured data� 92

NoSQL for semi-structured data� 93
Data structures supported by NoSQL databases� 93

Firestore and its features� 94
Setting up Firestore� 95
Collection� 97
Document� 97
Subcollection� 97

Security� 98
Client libraries and APIs� 98
Indexing� 99
Single-field index� 99
Composite index� 100

Collection group query� 101

Data model considerations� 102
Hierarchical format� 102
Denormalized format� 103

Easy querying with RunQuery API� 104
API endpoint and method� 104
The parent parameter� 105
JSON body format� 105
StructuredQuery� 105
The from clause� 106
The where clause� 106
Putting the pieces together� 106

Implementing RunQuery API 
programmatically� 108
Summary� 111



Table of Contentsxii

7
Unstructured Data Management� 113
Use cases� 114
Processing unstructured data� 114

Storage options in Google Cloud� 115
Cloud Storage, classes, and features� 116

Unstructured data storage  
with BigQuery� 120

External sources� 121
External connections� 121

Unstructured data analytics with 
BigQuery� 123
Summary� 129

Part 4: DevOps and Databases

8
DevOps and Databases� 133

Upgrades, updates, and patching� 134
Security, privacy, and encryption� 138
Replication and availability� 139
Scalability� 142
Performance and throughput� 143
SLA, SLI, and SLO� 144
Data federation� 145

Continuous integration/continuous 
delivery (CI/CD)� 146
Migrating to cloud databases� 148
Database Migration Service� 150
System, query, and performance 
insights� 155
Summary� 155

Part 5: Data to AI

9
Data to AI – Modeling Your Databases for Analytics and ML� 159

Modeling considerations for 
analytics, AI, and ML� 160
Data to AI� 161
Google Cloud ETL services� 162
Google Cloud Dataflow at a glance� 163

Real-world use cases for Google Cloud 
Dataflow� 164
Step-by-step guide to Google Cloud Dataflow� 166

Taking your data to AI� 171
Summary� 176



Table of Contents xiii

10
Looking Ahead – Designing for LLM Applications� 177

Capturing the evolution of LLMs� 178
Getting started with LLMs� 178
Understanding the underlying principles of 
LLMs� 179

Comparing real-world applications 
of LLMs and traditional analytics� 180
Understanding the differences in data 
modeling for traditional analytics 
and LLMs� 181
Data model design considerations for 
applications that use LLMs� 183
Learning about data modeling 
principles and techniques� 184
Ethical and responsible practices� 186

Hands-on time – building an LLM 
application� 188
Step 1 – create a table� 189
Step 2 – insert data into the table� 190
Step 3 – create an external connection for 
BigQuery to access the Vertex AI model� 191
Step 4 – grant permissions to the service 
account to access the Vertex AI service� 194
Step 5 – create the remote model in BigQuery� 195
Step 6 – query the dataset� 196
Step 7 – generate text (create an LLM 
application) using only SQL� 197

Vector databases� 199
Summary� 199
Onward and upward!� 200

Index� 201

Other Books You May Enjoy� 210





Preface

This is the age of lightning-speed delivery. Whether it is the physical world of consumer products or 
the technological world that enables digitization, we want everything developed, built, and delivered 
at speed and at scale. Yes, I am talking about the software products and applications that are powering 
several million businesses these days. We all know that the knowledge, design, and choice of the 
database are critical in that journey. Is there a cookie-cutter template solution that gets you there 
quickly and correctly? The answer is no. But there are ways to get your idea into a product relatively 
faster and efficiently with the right design, and technical and business knowledge of your data. That 
is what I have addressed in this book.

This book focuses on taking the readers on a journey of taking idea through product, with a structured 
approach to guide you into asking the right questions and knowledge about your own data and business. 
It will also have a deep-dive discussion on each type and structure of data, and an immersive walk 
along the entire lifecycle of data in your application. You will also learn about database design best 
practices, considerations for data security, privacy and compliance with real-world examples and 
solutions with Google Cloud Database options for each category.

Who this book is for
This book is targeted towards database developers, data engineers, data architects, and data analysts 
who are looking to build solutions and insights using databases and Google Cloud services tailored 
to their organizational needs.

What this book covers
Chapter 1, Data, Databases, and Design, will help us explore all the basics related to data, database, and 
modeling. You will learn all the general considerations you need to have while working with them.

Chapter 2, Handling Data on the Cloud, will help us dive into the details of cloud computing, and its 
different types, and explore the use cases and applications. By the end of this chapter, you’ll have a 
clear understanding of cloud computing, its types, use cases, benefits, applications, and considerations.

Chapter 3, Database Modeling for Structured Data, discusses structured data, its properties, types, 
use cases, key considerations, data modeling best practices, SQL basics, and some hands-on data 
modeling and query experiments.



Prefacexiv

Chapter 4, Setting up a Fully Managed RDBMS, takes the structured database design to hands-on 
learning with a fully managed cloud relational database. You will learn how to set up and configure 
your instance, how to create databases and objects in the database, and how to programmatically 
connect to the database and access data.

Chapter 5, Designing an Analytical Data Warehouse, will move on to designing for analytical data and 
take it to hands-on learning with a fully managed cloud data warehouse. You will learn how to set up 
and configure, create datasets and objects, query, and perform sample analytics on the data.

Chapter 6, Designing for Semi-structured Data, will show you the fundamentals of semi-structured data 
with examples, real-world use cases, characteristics of semi-structured data, design considerations, 
and components of a document database.

Chapter 7, Unstructured Data Management, will show you the fundamentals of unstructured data with 
examples, real-world use cases, how to store, manage, and perform analytics and with unstructured data.

Chapter 8, DevOps and Databases, discusses DevOps and operational attributes of database management 
like upgrades, security, monitoring, scalability, performance, SLA and SLOs, data federation, CI/CD, 
migration, and so on. We will also discuss how Google Cloud simplifies the design decisions for these 
operational considerations.

Chapter 9, Data to AI – Modeling Your Databases for Analytics and ML, explores some key considerations 
and best practices while designing for analytics, ML, and AI with cloud databases, covering topics 
like modeling considerations for analytics and ML, analytics, ETL, and the journey of data to AI.

Chapter 10, Looking Ahead – Designing for LLM Applications, will set the stage for data modeling for LLM 
applications by covering the evolution and basics of LLM, the difference between ML and generative 
AI applications, the ethical and responsible practices and considerations, and finally the real-world 
use cases and hands-on implementation to extend your database application to include LLM insights.

To get the most out of this book
Basic understanding of data journey, types, databases, role in the product development cycle, cloud 
computing, and analytics basics would be useful in getting started with database design and modeling 
concepts and hands-on implementations.

Software/hardware covered in the book Operating system requirements
SQL (BigQuery) Windows, macOS, or Linux
Java 11
Google Cloud services (on browser): Spanner, Cloud SQL, 
Firestore, BigQuery, Cloud Storage, Cloud Functions, Cloud 
Run, Cloud Shell



Preface xv

If you are using the digital version of this book, we advise you to type the code yourself or access 
the code from the book’s GitHub repository (a link is available in the next section). Doing so will 
help you avoid any potential errors related to the copying and pasting of code.

If you manage to complete all the exercises in the book, head over to https://codevipassana.
dev for more hands-on resources and references.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Database-Design-and-Modeling-with-Google-Cloud. If 
there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Enter 
bigquery-public-data in the Type to Search field again and once it appears, Expand this project.”

A block of code is set as follows:

SELECT country_name, new_confirmed, date, cumulative_confirmed, 
population FROM `bigquery-public-data.covid19_open_data.covid19_open_
data` LIMIT 10

When we wish to draw your attention to a particular part of a code block, the relevant lines or items 
are set in bold:

SELECT country_name, MAX(cumulative_confirmed) AS TOTAL_CONFIRMED_
COVID19
FROM `bigquery-public-data.covid19_open_data.covid19_open_data`
WHERE cumulative_confirmed > 0
GROUP BY country_name
ORDER BY MAX(cumulative_confirmed) DESC
LIMIT 5;

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words 
in menus or dialog boxes appear in bold. Here is an example: “To start, click Activate Cloud Shell 
from Google Cloud Console in the top-right corner.”

https://codevipassana.dev
https://codevipassana.dev
https://github.com/PacktPublishing/Database-Design-and-Modeling-with-Google-Cloud
https://github.com/PacktPublishing/Database-Design-and-Modeling-with-Google-Cloud
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/


Prefacexvi

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Database Design and Modeling with Google Cloud, we’d love to hear your thoughts! 
Please click here to go straight to the Amazon review page for this book 
and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-804-61145-X


Preface xvii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application. 

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

 

https://packt.link/free-ebook/9781804611456

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804611456




Part 1: 
Database Model: Business 

and Technical Design 
Considerations

This part will help you understand the basics of data, database, data modeling, and design. You will 
learn to use an objective approach to asking the right Business Design and Technical Design Questions. 
You will also explore a sample application to demonstrate the business and technical aspects.

This part has the following chapters:

•	 Chapter 1, Data, Databases, and Design

•	 Chapter 2, Handling Data on the Cloud





1
Data, Databases, and Design

Data is the foundation of almost all web and mobile applications, and databases are required to handle 
the essence of your business. There are several database options to choose from, depending on the 
nature of your business, as well as its type, format, and structure of data, and other design considerations 
and dependencies of your business and data, on the cloud or otherwise. 

Starting with the foundations of databases and design, this book covers fundamentals of database 
design, data's types, structure, and applications on the cloud, and designing the cloud database model 
for your application. This will involve us demonstrating database modeling with real-world use cases 
and examples and integration with other layers of the tech stack like applications, runtimes, analytics 
and other services such as monitoring, security, access control, analytics, machine learning, and 
generative AI. The cloud databases and services we will be using to exercise these concepts are all 
from Google Cloud. 

By the end of this book, you'll have learned the fundamentals of cloud database design, taken the data 
to AI design journey and will have experimented with hands-on applications using Cloud databases 
and storage options like Cloud SQL, Spanner, Firestore, BigQuery and Cloud Storage. In summary, 
this book prepares you for designing the data, databases, and data to AI stacks of your product or 
application with practical examples and hands-on design considerations.

In this chapter, you’ll learn about the considerations that are critical in choosing a database at different 
stages in the life cycle of your data. We will cover the different stages, types, formats, structures and 
categories of data, types of databases, and the business and technical aspects of database design.

We’ll cover the following topics in this chapter:

•	 Basics of data modeling and design

•	 Types of data and applications

•	 Business aspects of data

•	 Technical considerations

•	 Types of databases

•	 Choosing the right database



Data, Databases, and Design4

Data
Raw data can be omnipresent, indefinite, and ubiquitous. Yes – I wake up every day to the smell of 
freshly ground cardamom as if it were my alarm (my alarm, on the other hand, fails the one job it 
was designated to do). Anyway, I get ready and drive to work using Google Maps for directions (I 
like to keep an eye out for traffic, so I choose my routes wisely), log the day’s ongoing work for my 
reference later, check the lunch menu at work in the app, connect with colleagues in Chat (and in 
person sometimes), work out with my favorite YouTube videos, order food/groceries online, post 
and connect via social media, and play sleep stories from my meditative collection as I get through 
and sway my day effortlessly into the non-REM (Rapid Eye Movement, the fourth stage of the sleep 
cycle) part of my sleep cycle while my subconscious brain starts to pick up where I left off. This cycle 
repeats as I wake up the next day to the smell of tea and freshly ground cardamom, wondering how 
nice it would be with some buttery soft sliced bread!

Hmm... if only it weren’t for my gluten allergy.

Anyway, the one thing that is half as old as sliced bread but twice as good as that is databases! Imagine 
the volume and variety of data I share, consume, and involuntarily indulge in throughout my life 
while undertaking the routine that just I shared (and perhaps I need to get a life)! What goes into 
accommodating those activities and what resources do I need to accomplish them?

Databases
That’s right! The set of application programs that store, access, manage, and update this data while 
dealing with structure, recovery, security, privacy, concurrency, and more, and attribute comprehensively 
to getting the day in the life of a modern-day human done right, is the database. It is also called the 
database management system or DBMS.

A teeny-tiny bit about the evolution of databases

Long before the term data was even coined, humans used the Ishango bone (what is assumed to be 
a notched baboon bone) as a tally stick speculated to have some mathematical engravings or even 
something of astrological relevance. Dating to 20,000 years before the present, it is regarded as the oldest 
mathematical “database” (logging numerical information for future use) tool for humankind, with the 
possible exception of the approximately 40,000-year-old Lebombo bone from southern Africa. Then, 
we have Acharya Pingala from the third to second century BC who first described the binary number 
system that lives on today – forming the foundations of any computing there is, including database 
systems. Slowly and steadily, we progressed into advanced computing, databases, and technology in 
general with calculators, computers, automation, wartime wonders, relational database management, 
the internet, Google Search (yes, it has come to be identified as an important event in the evolution 
of technology), artificial intelligence (AI), machine learning (ML), and big data.



Database design 5

Isn’t it fascinating how everything important dates back to monkeys or monkey bones, just like 
computers and homo sapiens themselves?

DBMS

Exactly 52 years ago, E.F. Codd, the father of DBMSs, propounded and formalized the 12 commandments, 
of which there are 13 (starting from 0. I know, right?), that make up a DBMS. You can read about it 
here: https://en.wikipedia.org/wiki/Codd%27s_12_rules. We have evolved since 
the 1960s, when we used one database to store and secure information, to modern times, where we use 
one database per stage in the data life cycle – that is, one database per data stage, type, and structure 
in most cases. We will dive deeper into each of these categories throughout this book with examples 
and exercises, so don’t panic if this is a jargon overdose at this point.

In this chapter, we are going to discuss the business attributes, technical aspects, design questions, 
and considerations to keep in mind while designing a database model.

Database design
Database design or modeling refers to the activity of designing a database and modeling the data and 
structure that stores, transforms, manages, and extracts data. Why is it important to design a database 
so elaborately, you ask? Here are some reasons:

•	 Data is any organization’s most valuable asset and to leverage it to derive the most benefit for 
the company, we need to ensure it is thoroughly planned and thought through

•	 As the current generation databases are easy to set up and use, the most common side effect 
is that business users tend to dive into creating databases with flawed and much-simplified 
structures without understanding the components of design

•	 With poorly designed databases, the systems end up having inaccurate results and difficult-to-
trace errors, which leads to inconsistent decision-making in the business

If that does not serve your purpose, then consider this: the database is the most critical lifeline of 
your entire technical architecture as it runs across and connects all the components of your design. 
It starts with user interfaces, operational systems, messaging services, monitoring systems, analytics 
solutions, AI/ML applications, and even executive dashboards in the visualization layer that you 
use for business decision-making. If that lifeline is not well-thought-out, then you are starting your 
business and technology journey on a path full of surprises, twists, and turns. I understand those are 
good on paper but very inconvenient when it comes to real-world applications. Imagine having to 
redesign the foundational component of your understanding 6 months into rolling out your product!

https://en.wikipedia.org/wiki/Codd%27s_12_rules


Data, Databases, and Design6

Data modeling

Data modeling is the process of organizing the elements of your data and establishing their relationship 
with each other and external systems. Within the chosen database environment, a data model 
represents the structure, attributes (characteristics), relationships, transformations, business rules, 
and exceptions. There are a lot of data modeling frameworks and tools available in the market, so 
pick the one that works with your database model, structure of data, business rules, operations, and 
components of the data.

Database modeling

Database modeling refers to the process of determining the choice and logical structure of your 
database and designing the way you store, organize, and transform data. I would like to think of a 
database model as something that needs to be well-vetted out, so that should be the case with the data 
model. But in a sense, a data model can go through many rounds of trial and error and can evolve as 
you build compared to a database model, which needs to be designed for scale and also to acclimatize 
the data model it contains.

Several questions and considerations go into the design and model of a database. That is exactly what 
we will focus on as a framework in the rest of this chapter.

Considerations for a good database design
Why is it important to take a lot of possible scenarios and probabilities into account while making 
design decisions? Let me tell you a story that I read in a book called How Not to Be Wrong, by Jordan 
Ellenberg, an interesting read that talks about real-life applications of mathematics.

Like many other things, our story dates back to World War II, when things happened frequently. In this 
case, the US fighter planes entered combat with loaded machine guns. They didn’t want their fighter 
planes to get shot down by the enemy fighters. So, a statistical research group (SRG) of extraordinary 
statisticians was organized to aid the war effort, where equations were developed (and not explosives) 
to find a solution. Here’s the question that was posed to them: “You don’t want the fighter planes to 
get shot down, so you need to armor them, but armor makes the plane heavier, and heavier planes are 
less maneuverable and consume more fuel. Not too much, not too little, but we need to armor the planes 
somewhere at the optimum level.”

The military gave some useful data to the SRG: when American planes came back from a mission, they 
were covered in bullet holes. However, the damage wasn’t uniformly distributed across the aircraft. 
There were more bullet holes in the fuselage than in the engines. The bullet-holes-per-square-foot 
distribution was as follows:

•	 1.11 in the engine

•	 1.73 in the fuselage



Business aspect 7

•	 1.55 in the fuel system

•	 1.8 on the rest of the plane

The officers saw an opportunity to quickly conclude that the armor concentration needed to be in the 
area with the most bullet holes per square foot. One specific answer from the smartest statistician in 
that room contradicted this popular opinion, yet it was very insightful. Abraham Wald stated that 
the armor doesn’t go where the bullet holes are the most concentrated, but where they aren’t. Wald’s 
insight was simply to ask: where are the missing holes? The missing holes were the ones that would 
have been all over the engine casing if the bullet hole distribution had been spread equally all over 
the plane. Wald was sure that the missing holes were on the planes that had been shot down. The 
officers simply observed the planes that had returned from the mission but the ones that got hit in 
the engine had not returned at all!

I am sure by now you have already connected the dots as to why it is important to assess all the 
“missing holes” before you settle on the choice of database and the database model – it is because 
you don’t want to armor the wrong part of your business and end up spending more effort in the long 
run. If you’re wondering whether there is a quick and dirty solution, the short answer is no. However, 
a good design comes with a set of considerations around business attributes and technical aspects 
while designing the database model.

Business aspect
Business requirements are the starting point for your application and also for choosing your database 
system. There are four stages in the life cycle of data in its business application that help determine 
the choice of database system:

•	 Data ingestion

•	 Storage

•	 Process

•	 Visualize



Data, Databases, and Design8

The following diagram represents the attributes in the four stages of data and the categories of questions 
in each stage in the life cycle of your data:

 

Figure 1.1 – Representation of the four stages of data and the categories of questions in each stage

Let’s look at some of these attributes in detail. Some of them are in the business attributes category, 
while others are technical.

Ingestion

This is the first stage in the data life cycle and it is all about acquiring (bringing in) data from 
different sources in one place into your system. In this stage, the questions that arise are bucketed 
into three categories:

•	 What type of data are you bringing in?

•	 What is the purpose of this data?

•	 What is the structure of your data?

Let’s take a look at each in detail.

Types of data

There are broadly three types of data we will be dealing with that highly influence the choice of 
database and storage.



Business aspect 9

Application data

This is the kind of data that is generated or downloaded as part of the application’s content and can 
contain transactional data that is generated by users and applications – for example, online retail 
applications, log data from applications, event data, and clickstream data. Let’s take a look at a specific 
example – consider a banking application in which user A transfers money from their account to 
user B’s account. In this case, the user data, such as the account ID, name, bank details, the recipient’s 
name, and transaction date, constitute the application data.

Live stream and real-time stream data

This data comes from real-time sources such as streaming data, which comes in continuously from 
data sources such as sensor data. These can also be event data responses and can be very frequent 
compared to batch data processing. It refers to data that is immediately available and not delayed by a 
system or process. The term real-time stream refers to streams of real-time data that are gathered and 
stored or processed as they come in. This includes monitoring data such as CPU utilization, memory 
consumption, Internet of Things (IoT) devices data such as humidity and pressure, and automated 
real-time environmental temperature monitoring data.

Batch data

This is data that comes in as bulk at scheduled intervals and could be event-triggered. For example, 
batch data is transactional data that comes in from applications after a transaction and is stored for 
use in later stages of the data life cycle. This can include data extracted from one application for use in 
another at a later point, data migration use cases, and file uploads for processing later. Such applications 
may not be designed for real-time operations on the data.

The purpose of data

The specific use case and the nature of implementing applications using the data being ingested is a 
critical factor in determining the choice and design of the database. There may be cases where the type 
and ingestion mode of data fall into a different choice of database design, whereas its functional use 
case would imply a different purpose. For example, you could have data streamed in from live events or 
housekeeping data coming in real-time from transactions, but the specific use case you are designing 
for might only involve visualization, analytical, or ML functionalities. So, make sure you understand 
what purpose you are solving with the data that is being ingested in a specific mode and type.

The structure of data

The structure of the data is a crucial factor in deciding the choice and design of a database. There are 
three widely recognized categories:

•	 Structured

•	 Semi-structured

•	 Unstructured



Data, Databases, and Design10

Let’s briefly explore these three categories.

Structured data

This type of data is typically composed of rows and columns; rows are entities or records and columns 
are attributes. Structured data is organized in such a way that you can be sure that the data structure will 
be consistent for the most part throughout the life cycle of that data, except for the possible addition 
or removal of some attributes altogether. This kind of data is mostly transactional or analytical.

Semi-structured data

Semi-structured data does not follow a fixed tabular format – that is, a column-row structure. Instead, 
it stores schema attributes along with data. The attributes for semi-structured data could vary for 
each record. The major differentiating factor for each kind of semi-structured data is the way they 
are accessed.

Unstructured data

Unstructured data includes images, audio files, and so on. Unstructured data does not have a definite 
schema or data model. The amount of unstructured data is much larger than that of structured data. 
So, the methods by which we store such data are more important than ever. Here are some examples 
of unstructured data:

•	 Text

•	 Audio

•	 Video

•	 Images

•	 Other binary large objects (BLOBs)

Now that we have had a sneak peek into the structure of data, be sure to include functional and design 
questions based on these categories while designing your database and application model.

Technical aspect
Whether you are engineering or architecting, ask the right data questions! There is always this question 
about the responsibilities concerning data. When designing data architecture, you must manage the 
business and technology requirements around the architecture, be involved in designing data extraction, 
transformation, and loading, and provide direction to the team for methods of organizing, formatting, 
and presenting data. Once you’ve done this, you’ll be an architect.

As an engineer, you create applications and develop solutions to enable data for distribution, processing, 
and analysis and participate in one or more of those activities directly.



Technical aspect 11

But in either case, you are an expert. You need to ask the right questions and set the right expectations 
as you approach the technical aspects of data. It is not always possible to get the best solution with 
the following questions, but they will help you get started and eliminate the mismatches easily right 
off the bat:

•	 Volume and scalability: Volume is the amount of data you need to store and process in a given 
period. Scalability is how much you expect your data to grow in the foreseeable future. Here 
are some questions you can ask in this area:

	� What is the size of data you are going to be dealing with at the time of design and at each 
stage in the life cycle of the data?

	� How much do you expect it to scale with time?

•	 Velocity: This is the rate at which data is transferred or processed by your application. Some 
questions that you can ask concerning the velocity of data are as follows:

	� What is the rate/schedule at which the data needs to be sent and processed?

	� If you are ingesting, processing, and writing into storage, do you need to match the velocity 
at each of these stages?

•	 Veracity: Veracity is the amount of variation you can expect in the data structure and attributes:

	� What variation is expected to be seen in the incoming data?

•	 Security: Access control, encryption, and security are key considerations at the database 
design stage:

	� How much access restriction (row-level, object-level, and fine-grained levels of access control), 
encryption, privacy, and compliance does your data need?

	� What kind of encryption is required for the data?

	� Do you need to design views based on the type of data and access control required for 
your data?

Other common areas of design consideration are availability, resilience, reliability, and portability.

•	 Data retrieval: Data can be retrieved in many different modes, depending on your use case. 
The design aspects to keep in mind concerning retrieval are as follows:

	� What is the volume of the data being read?

	� What is the volume of the data being written?

	� What is the frequency of reads?

	� What is the frequency of writes?



Data, Databases, and Design12

This is a key technical aspect to address in design because when it’s not done in design, often, engineers 
and architects are posed with performance challenges and go back to assessing their foundational 
architecture and configuration at a much-matured stage in development.

Choosing the right database
Having assessed all these questions and considerations, the logical next step is to choose from/eliminate 
from the database types out there, predominantly focusing on the structured and less structured 
types of data:

•	 Relational databases:

	� Online transaction processing (OLTP)

	� Online analytical processing (OLAP)

•	 NoSQL databases:

	� Document database

	� Key-value database

	� Wide-column database

	� Graph database

Let’s look at these different categories. We will see some examples of some of these categories in the 
next chapter.

Relational database

The first category we are going to look at is the relational database. There are two broad categories of 
relational databases: OLTP and OLAP systems.

Online transaction processing

We have the good old relational database for OLTP, which typically follows these normalization rules:

1.	 First normal form: Each column in the table has atomic value, contains no duplicates, and 
contains a primary key, which is one or more ordered columns that uniquely identify a row.

2.	 Second normal form: A relation is in the second normal form if the first normal form is satisfied 
and a separate table is used to store all the values that apply to multiple rows and linked using 
foreign keys. A foreign key is one or more ordered columns that relate to a primary key in 
another table.



Choosing the right database 13

3.	 Third normal form: A relation is in the third normal form if the second normal form is satisfied 
and if the column that is transitively dependent on the primary key should be eliminated and 
moved to another table, along with the determinant. So, if attribute A is the primary key, A 
is dependent on B, and B is dependent on C, then A to C form transitive dependency. So, the 
dependency between B and C should be moved to a different table.

Transactional structured data is usually operated one row at a time. For example, consider an application 
where you are looking up employee information. In this case, you will need a lot of attributes (columns) 
from a single row. So, it is efficient to store all row attributes together and retrieve them in a block. 
This is what is called row-oriented storage.

Online analytical processing

OLAP is typically used for data mart and data warehouse applications. This type requires Structured 
Query Language (SQL) to define, manipulate, query, and manage. They usually facilitate the following:

•	 Aggregations and roll-ups

•	 Drill down

•	 Pivots

•	 Slicing and dicing

For example, imagine a scenario where your business or data analyst needs to retrieve reporting 
summaries such as total employees joined in the last month and total cost to the company incurred. 
In this case, you will only query three columns. So, for all the rows selected, instead of retrieving all 
the columns, it makes sense to only retrieve three. This is a common pattern in analytical applications, 
and they use a column-oriented storage mechanism.

NoSQL database

There are NoSQL databases for semi-structured data – that is, data less structured than fully structured 
tabular data. There are a few types of NoSQL databases. There is no formal model or normalization 
requirement for this type.

Sometimes, it’s misleading when we hear that NoSQL options are schema-less. NoSQL options may 
not have a schema in the same pattern as relational databases, but they do have a structure to represent 
data. Four broad types of NoSQL databases are loosely based on a specific way of storing data. Let’s 
look at the logic for a data model in each case.

Document database

A document database stores data in document format, similar to a JSON document. Each document 
stores pairs of fields and values, with a wide variety of data types and data structures used as values. 
Document databases allow you to keep adding attributes as needed without making changes to the 
database schema each time.



Data, Databases, and Design14

For example, consider the scenario where you cannot fix all the attributes at the design stage and have 
to add more attributes as the process evolves, such as in the case of a retail store selling electronic 
equipment where a laptop has memory, a processor, a charger, and other configuration attributes and 
a washing machine has another set of attributes, such as weight, power, length, width, and so on. To 
search efficiently by these attributes, document databases allow for indexes. If you want to search an 
equipment by length, then you can create an index on length.

Key-value database

The key-value model consists of a key and a value, and it is the simplest type of database in terms of 
understanding and usage. The data model has two parts: data and a string associated with the data. 
Data can be accessed via direct request (send the key and get the data) rather than using any kind of 
query language. Key-value databases are simple if you have to search only on your key. However, if 
your value-data structure is complex, for example, a JSON object is stored as a value, and if you want 
to be able to search on items within the JSON structure, then a key-value database is not the best 
option. In that case, a document database would be a better option.

The following table is an example of a key-value database:

Key Value

Key1 Value1

Key2 Value2

Key3 Value1

Key4 Value3

Table 1.1 – Key-value example table

Let’s discuss key-value databases next.

Wide-column database

Wide-column databases follow a table form structure that is both flexible and scalable. Each row has 
a key and one or more associated columns, called column families. Each row’s key-column family 
is allowed to have as many numbers of columns and the columns can have as many kinds of data 
as possible. Data is accessed using a query language. This type of column structure allows for faster 
summary (aggregation) queries. Wide-column databases are designed in such a way that they respond 
to specific queries. Instead of using indexes to allow efficient lookup of rows, wide-column databases 
store data in such a way that rows with similar keys (row keys are like primary keys in relational 
databases) are close together.



Choosing the right database 15

For example, consider log data from an application. The following table represents data that is organized 
to answer queries looked up by event ID and then time:

Event ID Time Description
1 5431023867 Event successful
2 5431023869 Error looking up…
3 5431023868 Finished with error

Table 1.2 – Table organized by Event ID and Time

The preceding table is not applicable for querying events in the past hour because it is not organized 
by time first. The following table, on the other hand, is organized to answer queries by time range. 
Note that a new table with the desired schema needs to be created to accomplish this. Wide-column 
databases do not use indexes for queries:

Time Event ID Description
5431023867 1 Event successful
5431023868 3 Finished with error
5431023869 2 Error looking up…

Table 1.3 – Table organized by Time and Event ID

Let’s move on to graph database next.

Graph database

Graph databases consist of nodes and edges. Nodes are connected by edges. Data is stored in the nodes 
and information about how the nodes are related is stored in the edges. Node and edge data is typically 
retrieved using query languages, Graph Query Language (GQL), and sometimes SQL as well. There 
are two types of query methods we can use to retrieve data from graph databases:

•	 Cypher Query Language, which specifies SQL-like statements that describe patterns in a graph

•	 Traversal Language, which specifies how to navigate from one node to another in the graph

People and connections are a great example of a use case for graph databases. A person could be 
designed as the node and the relationship of that person with other persons could be the links, also 
known as edges.



Data, Databases, and Design16

In the following diagram, persons 1, 2, 3, 4, 5, and 6 are all people and the link between them 
denotes friends:

 

Figure 1.2 – Representation of nodes and edges in a graph database

We will look into some of these categories in detail later in this book. For now, let’s summarize what 
we’ve learned in this chapter.

Summary
Data and databases form the core of any system, product, process, application, and even idea these days. 
Also, there are a lot of them lately. So, choosing the one that fits your needs and adds value, precision, 
cost-effectiveness, and representation to your information is paramount. This chapter aimed to point 
you in the direction of the right questions to ask at the time of design and modeling. As you possibly 
already know, almost always drive business with technology and not the other way around. Make the 
right database choices and data design decisions in a way that works for you.

In the upcoming chapters, we will look into some of these categories in detail with hands-on examples 
while also providing how-to guides and best practices. Before that, we will look at cloud computing 
and basics of handling data on cloud in the next chapter.



2
Handling Data on the Cloud

What is cloud computing? By definition, it is the idea of getting things done with someone else’s 
computer. Have you noticed that little cloud-shaped icon in the “shapes and icons” collection in word 
editors that we use to represent the internet, in our flow charts and architecture diagrams? That is 
where it started. The idea of hosting any service on the internet became known as cloud computing, 
inspired by the icon. Cloud computing was created to accommodate the exponentially growing 
volumes of data, resources, and services that organizations use, which has been causing more expense 
and a lot of maintenance effort for several decades now. It is the kind of technology where we store, 
process, maintain, and visualize applications and data and other dependencies in a central, managed 
environment, basically with someone else’s resources (the provider who hosts and manages).

In this chapter, we’ll dive into the details of cloud computing, its different types, and explore its use 
cases and applications. By the end of this chapter, you’ll have a clear understanding of cloud computing.

In this chapter, we’ll cover the following topics:

•	 The types of cloud services

•	 Use cases

•	 The benefits of cloud computing

•	 Data applications on cloud

•	 Managed, unmanaged, and database as a service

•	 Cloud database considerations

You may think these topics sound quite theoretical. The first couple of chapters are mainly to create 
a foundation and get all the basic concepts out of the way, allowing you to enjoy the real-world use 
cases with hands-on exercises in the upcoming chapters. Just bear with me for a few more topics, and 
then we’ll dive right into practical database design.



Handling Data on the Cloud18

Types of cloud services
Cloud services are divided into three main types:

•	 A public cloud provides open and accessible public services on the internet. It is a cloud computing 
service that provides computing resources, such as virtual machines, storage, and networking, 
over the internet to multiple customers or users. It is operated and maintained by a cloud 
service provider and is made available to the public on a pay-as-you-go or subscription basis.

•	 A private cloud provides hosted services to a private group of people, mostly within an 
organization, with access restrictions and permissions in place in terms of infrastructure, network, 
and data. Unlike public clouds, which serve multiple customers, a private cloud is dedicated 
to a single tenant. It can be hosted on-premises within an organization’s own data center or 
infrastructure, or it can be hosted by a third-party provider off-site. This is preferred when 
organizations require greater control, security, and customization over their cloud infrastructure, 
particularly in situations where sensitive data and regulatory compliance are major concerns.

•	 A hybrid cloud is a combination that uses both public and private clouds. For example, 
organizations can run sensitive, mission-critical applications on private cloud services and use 
public services for other workloads and demands that are not sensitive in nature. The advantage 
of this type of cloud is that it unifies the workloads between the private and public clouds, 
allowing automation and the use of infrastructure and data between the two, while preserving 
the sensitivity of the applications that require it.

In addition to all this, we have organizations that look for a multi-cloud option. This enables them to 
integrate and migrate applications between different clouds, working as if they coexisted in terms of 
concurrency, access, and so on.

Use case categories
Use cases are divided broadly into three main categories:

•	 Infrastructure as a Service (IaaS) is based on a model where the infrastructure that the 
organization needs is rented, but virtually. In the IaaS model, cloud service providers deliver 
fundamental IT infrastructure components, including virtual machines, storage, and networking, 
to users on a pay-as-you-go basis.

With IaaS, organizations can offload the management and maintenance of physical hardware and 
data centers, allowing them to focus on building and managing their applications and services. 
Users have the flexibility to scale resources up or down based on their specific needs, making it 
an ideal choice for businesses with variable workloads or those seeking cost-effective solutions.

•	 Platform as a Service (PaaS) is based on a model where the platform for development, 
designing, and deploying software applications is offered without having to worry about the 
server, storage, maintenance, security, scaling, load balancing, and so on.



Use case categories 19

PaaS offerings include not only infrastructure components but also tools, services, and development 
frameworks that streamline the application development process. PaaS is particularly well suited 
for software developers and development teams who want to build scalable and agile applications. 
It offers tools for collaboration, continuous integration, and continuous deployment, making 
it easier to manage the entire application life cycle.

•	 Software as a Service (SaaS) is a model that delivers applications directly for use totally on 
demand, without you having to worry about downloading or installing files, software, or 
applications. Just accessing the site via a browser would do. These applications are hosted 
and maintained by cloud providers, relieving users of the burden of software installation, 
maintenance, and updates.

One of the key benefits of SaaS is its scalability and ease of adoption. Organizations can quickly 
add or remove user licenses as needed, and updates and improvements are automatically delivered 
by the provider. This eliminates the need for extensive IT support and reduces upfront software 
licensing costs. SaaS offers a wide range of software solutions, including productivity tools (e.g., 
email and office suites), customer relationship management (CRM) systems, collaboration 
platforms, and industry-specific applications.

This can be better represented with the following diagram:

Figure 2.1 – A classification of use cases

Now that we have looked at the broad classification by use cases, let’s dive further into their applications.



Handling Data on the Cloud20

The benefits of cloud computing
There are numerous benefits to cloud computing. Let’s look at a few of the most important ones to 
our topic:

•	 Ease of use: The programs and applications (in the case of SaaS) are exclusively managed by 
vendors, and you do not need to worry about how to run an application.

•	 Customization: Even updates to existing applications have become easy, with SaaS involving 
a point-and-click method and no need to change code extensively.

•	 Pay-as-you-go: You pay only for what you use and can terminate or pause services at any time.

•	 Avoiding the cost of infrastructure: Build and deploy applications without worrying about 
the cost of compute and other resources, such as servers, operating systems, and networks.

•	 Pay only for what you need: You choose what you want to use and pay only for those features 
and services, depending on the service, and you do not have to be concerned about paying 
for anything else.

•	 Upgrades and updates: You can fully rely on the cloud services to take care of all your 
maintenance, upgrades, updates, and other tracking tasks.

•	 Elastic scaling: Depending on your growing needs, your resources may grow past your initial 
assessment. Cloud services handle this automatically without causing disruption or downtime 
to your applications. Most services allow you to scale down to nothing when not in use.

•	 Service-level agreements: You will get a guaranteed uptime and performance of your applications 
and services with cloud providers’ service-level agreements, for each service as applicable.

•	 Self-service: Users can start their own compute resources on demand, without having to rely 
on an operations or administration team to provision and manage it all for them.

•	 Resilience: Cloud computing promises resilience and continuity of business by implementing 
the redundancy of resources across regions (as applicable) for storage, availability, and so on.

•	 Ease of migrations: Organizations often encounter changes in the implementation of solutions, 
in terms of workload shift or architectural shift, for better cost and performance. Cloud 
computing makes it relatively easier for them to migrate workloads and services across cloud 
platforms and on-premise to the cloud, without having to heavily involve an extended team of 
operations and administration.

•	 Multi-tenancy: Since data is  all on the cloud logically (even though physically stored somewhere), 
several users can share resources in terms of infrastructure and applications, with the assurance 
that their data is kept private and secure.

So far, we have learned about the fundamentals of the cloud, the different types, their use cases, and 
their benefits. In the upcoming sections, we will see how they can be applied in the data and database 
realm with real-world applications and considerations.



Data applications on cloud 21

Data applications on cloud
Storing information on the cloud allows you access from anywhere with internet connectivity. It 
allows data to scale up or down exponentially with elasticity. This is the main advantage for any 
organization migrating to the cloud because, this way, they can focus on ideas and innovation for 
business transformation and agility, rather than worrying about data management and infrastructure 
to support that. Let us take a look at some areas of application for data on the cloud in this section.

Storage

Cloud computing manages storage and access for organizations’ data in any format – files, audio, 
video, images, tables, documents, and so on. The need and application to have a storage area that can 
be accessed from anywhere on any device at any time (as per the agreed service-level agreements) are 
critical these days for all businesses across industries. Cloud providers also support this with easy-to-
use interfaces that allow interactive access and configuration of the stored information.

Backup and disaster recovery

Safe data backup is critical for organizations because of the possible permanent loss of data if there 
is a disaster. Cloud computing offers backup and storage right from the get-go, and it also enables 
easy recovery and even point-in-time and minimal-to-zero damage at times of disaster. Support for 
multi-region backup and availability is also extended, based on the privacy regulations and standards 
for the business in its region.

Analytics and insights

This is the most common application to handle data on the cloud. There is always room and need for 
data visualization, analysis, analytics, insights, prediction, and prescription across all businesses and 
industries. For all this, organizations need extremely large volumes, velocity, and variety of data, also 
known as big data, which is ideal for a cloud computing use case because of the unlimited storage 
capacity and scale that cloud services offer and support.

Application development

Cloud computing offers several services for easy application development, testing, and deployment. 
Conventionally, we used to have an infrastructure team or operations team that enabled this pipeline. 
This involved resources, infrastructure, time, and manpower. But with the cloud, these can be mostly 
self-serviced, and teams can focus on developing their product and innovating toward the growth 
and development of their business. The journey from code check-in to deploying an app and rolling 
out the product in the cloud, all at the click of a button, is the power of handling data on the cloud 
for application development.



Handling Data on the Cloud22

User experience and personalization

Customer experience and personalization are two important aspects of customer satisfaction in any 
business. Particularly in business use cases (e.g., banking, e-commerce, and education), storing data 
on the cloud enables you to make a lot of decisions and apply insights to personalize services to each 
user individually. Besides that, it also offers the power to keep sensitive information private and secure, 
valuing individual preferences and anticipating customers needs. These aspects set a business ahead 
of its competition. Cloud environments are ideal for areas that involve customer data, product data, 
marketing, and other operational data and insights.

These are some of the real-world applications of handling data on the cloud. In the following section, 
we will look into the different ways you can handle data on the cloud.

Managed, unmanaged, and database as a service
Handling data on the cloud involves storage and access, and this is enabled using databases. It is not 
a one-size-fits-all choice. There are several options and criteria to make the right database choice for 
your application and product, which we discussed in detail in Chapter 1, Data, Databases, and Design 
of this book. In this section, let us look at the managed and unmanaged types of database categories.

Managed databases

When your team needs to focus more on creating an application and product rather than focusing 
on operations and maintenance, you need a solution or a service that gives you those capabilities 
by shifting the infrastructure, maintenance, and latency requirements to the cloud provider. That is 
exactly what a managed database provides.

Managed databases provide users the ability to maintain clusters, routine updates, scalability, backup, 
recovery, replication, latency, availability, and administration in a very self-sufficient and cost-effective 
way. They are built to support some of the following features but are not limited to just these:

•	 Version maintenance (minor version automation)

•	 Retention, replication, backup, and recovery

•	 Scalability

•	 Automated clustering as applicable

•	 Availability

•	 Access control and security

•	 Resilience and flexibility



Managed, unmanaged, and database as a service 23

All of these and many more advantages come with having your databases fully managed by the 
provider. There are definitely use cases and real-world applications that benefit from this method of 
dealing with data.

Unmanaged databases

An unmanaged database is the kind where all the aforementioned features and more are not taken 
care of by the provider, and you are required to provision them on your own. When your requirements 
demand you to place the all the responsibility for support, maintenance, and setup on your developer, 
infrastructure, or operations teams, you would need to turn to the database installed as part of your 
application framework or initial setup. The entire list of actions, including installation, maintenance, 
upgrades, monitoring, reliability, and security, all fall under the responsibilities of your teams, and 
these actions could become time-consuming, slow, and exposed to vulnerabilities. However, there 
are situations that drive this kind of requirement. Some of them are listed here:

•	 Advanced data regulatory, sovereignty, and privacy requirements

•	 Private network or firewall requirements

•	 Unavailability of support for the required database or operating systems from cloud providers

•	 Non-production environments

•	 Out-of-scope requirements in terms of size, variety, and operations

With time, the need for unmanaged databases is narrowing only to selective domains or industries that 
have such strict regulatory requirements, which force them to manage systems on their own. Having 
said that, some scenarios, such as the need for extreme customization and flexibility, the maintenance 
of legacy systems, specific cost restrictions, classified government applications, healthcare or finance 
systems, and, in some cases, even the need for a specialized database or configurations that are not 
readily available as managed services, make it imperative to use unmanaged databases.

Database as a service

Database as a service is a managed database service that adheres to SaaS principles to a certain extent 
– that is, enabling a database application as a service to several customers via API provisioning and 
so on, without time needing to be spent configuring or managing the database. This means it is more 
ready-made than managed databases. The service isolates customers in terms of data, encryption, 
clusters, compute, and so on.



Handling Data on the Cloud24

Let’s take a quick glance at the three types of database services in this table of differences:

Feature Managed Unmanaged Database as a service
Deployment 
and maintenance

Fully managed Self-managed Fully managed

Infrastructure Fully managed Self-managed Fully managed
Provisioning 
and scaling

Fully managed Self-managed Fully managed

Patching 
and upgrades

Fully managed Self-managed Fully managed

Backup 
and recovery

Fully Managed Self-managed Fully managed

Monitoring 
and alerts

Fully managed Self-managed Fully managed

Security Built-in security features Self-managed Built-in security features
Customization 
and control

Flexible but limited Full Very limited

Expertise required Minimal High Minimal
Cost Mostly usage-based Infrastructure, 

management, and 
resource cost

Subscription 
and usage-based

Table 2.1 – The difference between managed, unmanaged, and database as a service

Now that we have covered the differences and properties of the different ways of handling data, let’s 
move on to considerations that enable the choice of database.

Cloud database considerations
There are a few considerations when we decide to move to cloud databases. The previous chapter covered 
the various business, technical, and design considerations you must go through before choosing the 
right database for your application or business. Here, we want to address a few more cloud-specific 
aspects to keep in mind while approaching a cloud database design:

•	 Security, regulations, privacy, and compliance: Security is the most important software 
design and delivery factor, and it sometimes can pose a challenge as well, depending upon the 
nature of the data and the complexity of your requirements. Teams and organizations should 
pay attention to cloud security standards, configurations, regulatory requirements for their 
product, regional (geo-specific) requirements, encryption features and stages, business policies, 
and other best practices and guidelines.



Cloud database considerations 25

•	 Cost: Even though we have established that you only pay as you go or pay per use for services as 
applicable, we also have to remember that cost can fluctuate with your scaling workload needs. 
This makes it less predictable if not strategized properly. For example, if you anticipate having 
a social media influencer advertise your application or product in the next three months or 
so, plan to accommodate the anticipated increase in cost, owing to the increase in web traffic 
in terms of page visits and even actionable transactions on your page during this time period. 
It is not always possible to plan all the other factors contributing to an increase in traffic or 
cost over a period of time, without observing the usage and history of transactions and user 
behavior for a time range. Consider involving descriptive, predictive, and prescriptive analytics 
to get the most out of your database design.

•	 Resources and expertise: With the availability of multiple services and cloud providers, it is 
possible to struggle with a mismatch in skillsets, resources, tools, and technologies. Making 
design decisions based on the workload, nature, and the business and technical requirements 
of your organization is already a pivotal task. In addition to that, you should also consider the 
skillset and availability of your resources, providing training requirements on demand for the 
choices you make.

•	 Data governance: With fully managed cloud databases, you get the privilege and capability of 
doing it all yourself, but this can quickly obstruct data governance and management guidelines. 
There is a very limited need to control provisioning and management with cloud-managed 
databases, which can lead to data quality, governance, and security challenges, and even risks. 
It is important to place a strong emphasis on evaluating governance needs when it comes to 
design so that teams are aware of the restrictions and best practices, and incorporate them at the 
configuration stage to prevent any late-stage impact on the quality of data or database processes.

•	 Migration, lock-in, and flexibility: When you make design decisions and choices about cloud 
databases and services, make sure you also evaluate for flexibility when moving data, schema, 
other services, and applications between clouds, from the public to the private cloud, or even 
from one cloud provider to another. Migration can sometimes incur very long processes and 
expenses if not evaluated for flexibility and ease of implementation at the design stage. It is 
more often than not overlooked and later ignored because of the unplanned cost it poses at a 
much later stage, resulting in poor performance or low-quality applications and solutions for 
your data and business. Also, keep in mind that there could be legal and regulatory issues, if 
not evaluated properly, for specific migrations, due to vendor-specific lock-in requirements 
that were overlooked at the design stage.

These considerations, in addition to cloud provider data center locations, multi-region replication 
capabilities, integration with third-party tools and other cloud services, data transfer, and egress 
costs, are crucial in determining the right cloud database that aligns with your specific requirements, 
offering the services that best suit your needs.



Handling Data on the Cloud26

A quick follow-up
Remember, in the last chapter, when we discussed the different database categories and decided to 
defer discussing examples of each of those categories to the following chapter? Let’s address that here! 
So, now that you know what cloud computing is and the role it plays in handling data and applications, 
we should be able to look at cloud database examples for each type:

•	 Relational database:

	� Online Transaction Processing (OLTP): Spanner, Cloud SQL, and Alloy DB

	� Online Analytical Processing (OLAP): BigQuery

•	 NoSQL database:

	� Document database: Firestore

	� Key-value database: Memorystore

	� Wide-column database: Bigtable

	� Graph database: JanusGraph

We will discuss some of these databases in detail with real-world use cases, hands-on exercises, and 
design practices in the upcoming chapters of this book.

Summary
Now that we have discussed what cloud computing is, and its implications, types, ways of handling data 
on the cloud, use cases that determine those methods, real-world applications, and considerations to 
make the right choice for your data requirements, you should be in a better position to design a robust, 
scalable, and cost-efficient cloud database infrastructure that meets the needs of your applications 
and users. However, before that, you should learn about the various data formats, the different types 
databases to handle that data and the real-world applications, hands-on. The following chapter is a short 
introduction to structured data, its database design considerations, its applications, and the Google 
Cloud options with real world use-cases and hands-on implementations that inform your design.



Part 2: 
Structured Data

This part details the characteristics of structured data. We will also explore the database options 
available in Google Cloud for structured data. Moving ahead, we will do a deep dive into Cloud SQL, 
Cloud Spanner, and BigQuery.

This part has the following chapters:

•	 Chapter 3, Database Modeling for Structured Data

•	 Chapter 4, Setting Up a Fully Managed RDBMS

•	 Chapter 5, Designing an Analytical Data Warehouse





3
Database Modeling for 

Structured Data

In this chapter, we will discuss the properties, types, use cases, and key considerations of structured 
data, data modeling best practices, and SQL basics, and we will look at some hands-on data modeling 
and query experiments. 

In this chapter, we’ll cover the following topics:

•	 Structured data

•	 RDBMS for structured data

•	 Considerations for your RDBMS

•	 Structured query language

Structured data
Structured data is data that has a well-defined structure, type, and format organized and standardized 
in a repository called a database for storage, retrieval, and processing. Structured Query Language 
(SQL) is used for interacting with this data. This means that structured data has a fixed set of attributes 
and is in the format of rows and columns.

Rows and columns

Rows are the entities or records and columns are attributes. Simply put, columns are the labels or 
headers in your table and rows are the values under those headers. Consider Table 3.1:

Name Age ZIP
John Doe 35 33306
Michael Angel 40 33309

Table 3.1 – A table with rows and columns



Database Modeling for Structured Data30

The Name, Age, and ZIP labels are the column names, while the values associated with them, including 
John Doe and Michael Angel, are rows. Data that’s in a structured format is typically associated with 
transactional and analytical applications.

Transactional applications

Transactional applications are those where the operation is mostly done one record at a time. 
Transactional applications may include use cases such as lookup, commit, submit, validate, modify, 
and search. Here are some examples of transactional applications:

•	 A banking application where data that’s sent and received is processed

•	 A shipping application where customer addresses are looked up

•	 An attendance application where a student’s attendance status is marked

In these kinds of applications, many or all columns from a single record will be accessed for a transaction. 
So, the ideal way to store them for performance and efficiency is in blocks of data so that retrieving 
a block will result in all associated data being retrieved. This is common in transactional databases, 
which follow row-oriented storage.

Analytical applications

Analytical applications are those that consolidate, aggregate, and summarize structured data for 
analysis. This kind of application may include use cases such as describe, predict, forecast, prescribe, 
aggregate, and cumulate. Here are some examples of analytical applications:

•	 Customer engagement metrics

•	 Usage analytics

•	 Sales forecast applications

•	 Marketing analytics

In these kinds of applications, the end user is only interested in fields that relate to the summarized 
information – for example, date, monthly sales, annual revenue, and monthly use activation. So, instead 
of getting all the fields for each record, it is ideal to store and retrieve only those columns that are relevant 
to the application. This is common in analytical databases, which follow column-oriented storage.

Using an RDBMS for structured data
A Relational Database Management System (RDBMS) is a type of database management system that 
stores data in a structured format, allowing relationships to be made with other data stored within the 
database while adhering to the Atomicity, Consistency, Isolation, and Durability (ACID) properties 
of all transactions. Let’s take a look at these properties.



Considerations for your RDBMS 31

Atomicity

This property means that the transactions are completed in a manner that ensures that all the changes 
to data are complete or none of them are. For example, if an application transfers money from Account 
A to Account B, and if the debit from Account A is successful, then it is assumed that Account B will 
be credited with the money being transferred.

Consistency

This property means that data is in a consistent state throughout the life cycle of the transaction. For 
example, in the transaction we spoke about in the previous example, if the state of the transaction is 
collectively the same – that is, the total value of the transaction remains the same at the start and end 
of the transaction – then the transaction is considered consistent.

Isolation

This property means that the state of a transaction is not visible to another transaction until it is 
entirely complete. For example, in the transaction we have been discussing, when transferring funds 
from Account A to B, the transferred fund is seen in A or B but not in both and not in neither.

Durability

This property means that the state of the transaction is permanent after it is successful. For example, 
in the transaction we have been discussing, once the transfer is successful, there is no reversal of the 
transaction, even if there is a system disaster.

By adhering to the ACID properties, an RDBMS ensures the reliability and integrity of data, even 
in the event of a system failure. Apart from these fundamental four properties, there are also other 
properties of an RDBMS, such as referential integrity, data independence, security, scalability, and 
more. We will briefly cover these in the upcoming section.

Considerations for your RDBMS
There are some considerations and best practices for RDBMS modeling. Here are some of these 
key considerations:

•	 Purpose, functionality, type, and structure: The first step in data modeling is to understand 
the business requirements. What data do you need to store? How will the data be used? What 
is the type, structure, and purpose of the data you are dealing with? Once you understand the 
business requirements, you can start to design the data model.



Database Modeling for Structured Data32

•	 Entities and attributes for the use case: The next step is to identify the entities and attributes in 
the data model. Entities are the basic building blocks of a data model. They represent real-world 
objects or concepts. Attributes are the properties of entities. They describe the characteristics 
of entities.

•	 Relationship and dependency of entities and attributes: Once you have identified the entities 
and attributes, you need to define the relationships between entities. Relationships are the 
connections between entities. They show how entities are related to each other.

•	 Usage of appropriate data types: Choose data types that accurately represent the nature 
of the data and its expected values. Avoid using excessively large data types that can lead to 
wasted storage and diminished query performance. Additionally, use appropriate constraints 
to enforce data integrity.

•	 Data profiling in terms of outliers, anomalies, and potential data quality issues: Start with a 
comprehensive understanding of your data. Profile your structured data thoroughly to identify 
outliers, anomalies, and potential data quality issues. This step lays the foundation for accurate 
modeling by ensuring that your data is clean, consistent, and representative of the real-world 
scenario it depicts.

•	 Data normalization requirement: Only you can decide the right normalization needs and 
constraints for your data, depending on the access type, frequency, and purpose of your 
applications. Strive for the right balance between normalization and denormalization. While 
normalization reduces redundancy, denormalization enhances query performance. Consider 
the specific usage patterns and query requirements of your data when deciding on the optimal 
level of normalization.

•	 Indexing strategy for faster data retrieval: Identify the most frequently queried columns and 
create indexes accordingly. However, be cautious not to over-index, as this can impact write 
performance. Regularly monitor and fine-tune indexes as data usage patterns evolve.

•	 Horizontal and vertical scaling/partitioning strategy: When dealing with large datasets, 
consider partitioning your data. Partitioning involves dividing a table into smaller, more 
manageable segments. This approach enhances query performance as it allows the database 
engine to focus on relevant partitions instead of scanning the entire dataset.

•	 Query optimization: Optimize your queries by structuring them efficiently and utilizing the 
power of database query optimization tools. Minimize the use of wildcard characters in WHERE 
clauses, use joins judiciously, and consider using stored procedures to encapsulate complex 
queries for reusability and performance gains.

•	 Caching mechanisms for frequent reads: Implement caching mechanisms to reduce the load 
on your database. Use in-memory caching solutions to store frequently accessed data, reducing 
the need for repeated database queries. This technique can significantly enhance response times 
and improve overall system performance.



Considerations for your RDBMS 33

•	 Ease of setup and access: The RDBMS you choose should be easy to set up and use for both 
developers and other users directly or indirectly. Make sure you assess all your high-level 
functional and non-functional requirements and build/run as many prototypes/tests as required 
to make an informed decision. Use realistic test datasets and representative workloads to gauge 
the impact on both precision and performance. This practice helps you avoid unforeseen issues 
in a production environment.

•	 Scalability, performance, and future-proofing: Design your data architecture with scalability 
in mind. Leverage cloud-native solutions and distributed databases that can handle growth 
seamlessly. Consider horizontal scaling options and prepare for data volume increases without 
compromising performance.

•	 Security, encryption, and access control: There are some critical aspects in the areas of security 
and access control for your data: robust authentication mechanisms (such as strong passport 
policies, multi-factor authentication (MFA), and integration with external identity providers), 
granular access control, data encryption at rest and in transit, data access audit and monitoring 
capabilities, data masking, row-level access security, vulnerability assessment, and backup and 
recovery security. You need to ensure the database choices and modeling assessments you are 
performing cover these primary capabilities as part of the offering.

•	 Replication: It is important to ensure you have a proper replication strategy for your data at 
the time of modeling your database. While preparing for it, make sure you evaluate the latency 
and synchronization needs, consistency requirements (strong, eventual, and so on), conflict 
resolution mechanism, automatic failover strategy, minimum downtime needs, read-write 
scalability, network, monitoring, and diagnostic needs, backup and restore policies, and more 
for your use case. By evaluating these replication considerations, you’ll be well-equipped to 
choose an RDBMS and create a model that aligns with your data distribution, availability, 
scalability, and consistency requirements.

•	 Integration flexibility: With your data needs, you will also have a wide variety of integration 
requirements and external dependencies. It is important to design and prototype for these 
during the data modeling phase to ensure the data dependencies and any other organizational 
or use-case-specific integrations are possible with the database of your choice.

The ideal choice of RDBMS should be a result of assessing these factors concerning your application. 
It is important to consider these attributes during data modeling to ensure that your data model is 
designed in a way that takes advantage of the strengths of the RDBMS you choose and minimizes 
its weaknesses.

But how can we talk about structured data and not discuss SQL or write some queries? We’ll do that next.



Database Modeling for Structured Data34

Structured query language
SQL is the protocol that’s used to access, query, and interact with data in your RDBMS. It is common 
because of the simplicity of performing even advanced data operations and analysis. There are a few 
main forms of SQL:

•	 Data Definition Language (DDL): This is a language that lets you define structures and make 
changes to the schema, tables, constraints, and more. Examples include create, alter, 
truncate, drop, and rename statements.

•	 Data Manipulation Language (DML): This language lets you manipulate data in your database. 
There are four major operations involved in this – Create, Read, Update, and Delete (CRUD). 
Examples include insert, update, and delete statements.

•	 Data Query: This is a type of statement that lets you query data and extract results for the 
desired analysis. An example is a select statement.

•	 Data Control Language (DCL): This is the language that lets you control access to data in your 
database in terms of authorization. Examples include grant, deny, and revoke statements.

Most relational databases support ANSI-compliant SQL.

Sample SQL queries

Here are some examples of SQL queries:

•	 SELECT * FROM PRODUCTS;

•	 SELECT * FROM PRODUCTS WHERE PID = 100;

•	 UPDATE PRODUCTS SET PRODUCT_NAME = 'table' where PID = 100;

Since we won’t be spending much time focusing only on SQL in this book, I wanted to use this section 
to solidify the basics of SQL. If you are an analyst or a database developer who’s familiar with these 
queries, you can extend these use cases to more complex SQL applications.

Shall we make this SQL immersion a little hands-on? Consider each of the following real-world 
scenarios and craft your best responses to them. Also, feel free to attempt the SQL queries in your 
favorite database/data warehouse, with modifications to the SQL constructs if needed.



Structured query language 35

Note
Please be advised that certain features and services described in the following  sections may 
have undergone modifications since writing this chapter. The screenshots may look different 
from what you see in the book. APIs and versions may have been updated at the time you are 
reading this. As such, kindly exercise flexibility and adapt your steps accordingly.

 Additionally, some services may incur charges if they are outside the free tier (if applicable). 
Therefore, it is recommended to be aware of the services you are enabling and to delete or deactivate 
services and instances that are no longer required for learning or demonstration purposes.

In this case, I am going to take BigQuery as my choice of data warehouse. The BigQuery sandbox lets 
you explore limited BigQuery capabilities at no cost to confirm whether BigQuery fits your needs. 
The BigQuery sandbox lets you experience BigQuery without the need for a credit card or creating a 
billing account for your project. If you’ve already created a billing account, you can still use BigQuery 
at no cost in the free usage tier:

1.	 Open the BigQuery console by entering the following URL in your browser:  https://
console.cloud.google.com/bigquery.

2.	 Authenticate yourself with your Google account or create one.

3.	 Enter the necessary details – Country, Terms of Service, and other options – and click AGREE 
AND CONTINUE.

4.	 Create your project by entering its name, organization (no organization in this case), and region.

5.	 You will be taken to the BigQuery console, and you’ll see a message stating that you have 
successfully enabled SANDBOX. Dismiss it and get started.

In the BigQuery console that opens, you should see the Explorer pane on the left and SQL Workspace 
on the right, as shown in the following screenshot:

Figure 3.1 – The BigQuery console

https://console.cloud.google.com/bigquery
https://console.cloud.google.com/bigquery


Database Modeling for Structured Data36

Open a new SQL Editor tab and try out the use cases.

Make sure you have a dataset created in BigQuery (or if you are not using BigQuery, have an instance 
and database created). In this case, I have created a dataset named db_model. Some of the queries 
in this section may have to be modified according to the database/warehouse product you are 
choosing. For example, in the DDL statements, STRING(255) in BigQuery will be represented as 
VARCHAR(255) or VARCHAR2(255) in some other product. The NOT ENFORCED keyword may 
have to be removed if you’re not using BigQuery.

Let’s look at the sample use cases and SQL statements now.

Use case 1

Imagine you’re designing a database for an e-commerce platform.

Data model: How would you structure your database to efficiently manage products, categories, and 
customer orders?

•	 Answer: The DDL for creating the tables is as follows (this has been provided as a guideline 
only; you may need to change it according to your database):

-- Products table
CREATE OR REPLACE TABLE db_model.products (
    product_id INT PRIMARY KEY NOT ENFORCED,
    product_name STRING(255),
    category_id INT,
    price DECIMAL(10, 2)
);

-- Categories table
CREATE TABLE db_model.categories (
    category_id INT PRIMARY KEY NOT ENFORCED,
    category_name STRING(255)
);

-- Orders table
CREATE TABLE db_model.orders (
    order_id INT PRIMARY KEY NOT ENFORCED,
    customer_id INT,
    order_date DATE
);

-- Order Items table
CREATE TABLE db_model.order_items (
    order_item_id INT PRIMARY KEY NOT ENFORCED,



Structured query language 37

    order_id INT,
    product_id INT,
    quantity INT
);

•	 Here’s how you can insert data into these tables:

-- Insert sample data into products table
INSERT INTO db_model.products (product_id, product_name, 
category_id, price)
VALUES
    (1, 'Laptop', 1, 899.99),
    (2, 'Smartphone', 1, 499.99),
    (3, 'Smart TV', 2, 799.99);

-- Insert sample data into categories table
INSERT INTO db_model.categories (category_id, category_name)
VALUES
    (1, 'Electronics'),
    (2, 'Home Appliances');

-- Insert sample data into orders table
INSERT INTO db_model.orders (order_id, customer_id, order_date)
VALUES
    (1, 101, '2023-08-15'),
    (2, 102, '2023-08-16');

-- Insert sample data into order_items table
INSERT INTO db_model.order_items (order_item_id, order_id, 
product_id, quantity)
VALUES
    (1, 1, 1, 2),
    (2, 1, 2, 1),
    (3, 2, 3, 3);

SQL question: Provide a SQL query to retrieve the two top-selling products in a specific category:

•	 Answer:

SELECT p.product_name, COUNT(o.order_id) AS sales_count
FROM db_model.products p
JOIN db_model.order_items oi ON p.product_id = oi.product_id
JOIN db_model.orders o ON oi.order_id = o.order_id
JOIN db_model.categories c ON p.category_id = c.category_id
WHERE c.category_name = 'Electronics'



Database Modeling for Structured Data38

GROUP BY p.product_name
ORDER BY sales_count DESC
LIMIT 2;

Let’s look at a different use case.

Use case 2

Our next use case revolves around a social media application.

Data model: How would you structure your database to handle user posts, comments, and likes?

•	 Answer:

-- Users table
CREATE TABLE db_model.users (
    user_id INT PRIMARY KEY NOT ENFORCED,
    username STRING(255)
);

-- Posts table
CREATE TABLE db_model.posts (
    post_id INT PRIMARY KEY NOT ENFORCED,
    user_id INT,
    post_content STRING,
    post_date TIMESTAMP
);

-- Comments table
CREATE TABLE db_model.comments (
    comment_id INT PRIMARY KEY NOT ENFORCED,
    post_id INT,
    user_id INT,
    comment_content STRING,
    comment_date TIMESTAMP
);

-- Likes table
CREATE TABLE db_model.likes (
    like_id INT PRIMARY KEY NOT ENFORCED,
    post_id INT,
    user_id INT,
    like_date TIMESTAMP
);



Structured query language 39

•	 Here’s how we can insert the necessary data into these tables:

-- Insert sample data into users table
INSERT INTO db_model.users (user_id, username)
VALUES
    (1, 'user1'),
    (2, 'user2'),
    (3, 'user3');

-- Insert sample data into posts table
INSERT INTO db_model.posts (post_id, user_id, post_content, 
post_date)
VALUES
    (1, 1, 'Hello, world!', '2023-08-15 10:00:00'),
    (2, 2, 'This is my first post.', '2023-08-16 14:30:00');

-- Insert sample data into comments table
INSERT INTO db_model.comments (comment_id, post_id, user_id, 
comment_content, comment_date)
VALUES
    (1, 1, 2, 'Nice post!', '2023-08-15 10:30:00'),
    (2, 1, 3, 'Welcome!', '2023-08-15 10:45:00');

-- Insert sample data into likes table
INSERT INTO db_model.likes (like_id, post_id, user_id, like_
date)
VALUES
    (1, 1, 3, '2023-08-15 11:00:00'),
    (2, 2, 1, '2023-08-16 14:35:00');

SQL question: Provide a SQL query to retrieve the two latest posts, along with the total number of 
comments and likes for each post:

•	 Answer:

SELECT p.post_id, p.post_date, p.post_content,
COUNT(c.comment_id) AS comment_count, COUNT(l.like_id) AS like_
count
FROM db_model.posts p
LEFT JOIN db_model.comments c ON p.post_id = c.post_id
LEFT JOIN db_model.likes l ON p.post_id = l.post_id
GROUP BY p.post_id, p.post_date, p.post_content
ORDER BY p.post_date DESC
LIMIT 2;

Let’s move on to the next use case.



Database Modeling for Structured Data40

Use case 3

Suppose you’re designing a database for a library.

Data model: How would you model books, authors, and borrowers?

•	 Answer:

-- Books table
CREATE TABLE db_model.books (
    book_id INT PRIMARY KEY NOT ENFORCED,
    title STRING(255),
    author_id INT
);

-- Authors table
CREATE TABLE db_model.authors (
    author_id INT PRIMARY KEY NOT ENFORCED,
    author_name STRING(255)
);

-- Borrowers table
CREATE TABLE db_model.borrowers (
    borrower_id INT PRIMARY KEY NOT ENFORCED,
    borrower_name STRING(255)
);

-- Loans table
CREATE TABLE db_model.loans (
    loan_id INT PRIMARY KEY NOT ENFORCED,
    book_id INT,
    borrower_id INT,
    loan_date DATE
);

•	 Here’s the data we need to insert into these tables:

-- Insert sample data into books table
INSERT INTO db_model.books (book_id, title, author_id)
VALUES
    (1, 'The Great Gatsby', 1),
    (2, 'To Kill a Mockingbird', 2),
    (3, '1984', 3);

-- Insert sample data into authors table



Structured query language 41

INSERT INTO db_model.authors (author_id, author_name)
VALUES
    (1, 'F. Scott Fitzgerald'),
    (2, 'Harper Lee'),
    (3, 'George Orwell');

-- Insert sample data into borrowers table
INSERT INTO db_model.borrowers (borrower_id, borrower_name)
VALUES
    (101, 'Alice Johnson'),
    (102, 'Bob Smith');

-- Insert sample data into loans table
INSERT INTO db_model.loans (loan_id, book_id, borrower_id, loan_
date)
VALUES
    (1, 1, 101, '2023-08-15'),
    (2, 2, 102, '2023-08-16');

SQL question: Provide a SQL query to find the most borrowed book, along with its author:

•	 Answer:

SELECT b.title AS book_title, a.author_name, COUNT(l.borrower_
id) AS borrow_count
FROM db_model.books b
JOIN db_model.authors a ON b.author_id = a.author_id
JOIN db_model.loans l ON b.book_id = l.book_id
GROUP BY b.title, a.author_name
ORDER BY COUNT(l.borrower_id) DESC
LIMIT 1;

Let’s explore the final use case in this chapter.

Use case 4

Imagine you’re building a database for an online music streaming service.

Data model: How would you structure your database to handle songs, artists, and user playlists?

•	 Answer:

-- Songs table
CREATE TABLE db_model.songs (
    song_id INT PRIMARY KEY NOT ENFORCED,



Database Modeling for Structured Data42

    song_title STRING(255),
    artist_id INT
);

-- Artists table
CREATE TABLE db_model.artists (
    artist_id INT PRIMARY KEY NOT ENFORCED,
    artist_name STRING(255)
);

-- Playlists table
CREATE TABLE db_model.playlists (
    playlist_id INT PRIMARY KEY  NOT ENFORCED,
    playlist_name STRING(255),
    user_id INT
);

-- Playlist Songs table (to associate songs with playlists)
CREATE TABLE db_model.playlist_songs (
    playlist_id INT,
    song_id INT,
    PRIMARY KEY (playlist_id, song_id) NOT ENFORCED
);

-- Plays table (to track song plays)
CREATE TABLE db_model.plays (
    play_id INT PRIMARY KEY NOT ENFORCED,
    song_id INT,
    user_id INT,
    play_date TIMESTAMP
);

•	 We must insert the following data into these tables:

-- Insert sample data into songs table
INSERT INTO db_model.songs (song_id, song_title, artist_id)
VALUES
    (1, 'Song A', 1),
    (2, 'Song B', 2),
    (3, 'Song C', 1);

-- Insert sample data into artists table
INSERT INTO db_model.artists (artist_id, artist_name)
VALUES



Structured query language 43

    (1, 'Artist X'),
    (2, 'Artist Y'),
    (3, 'Artist Z');

-- Insert sample data into playlists table
INSERT INTO db_model.playlists (playlist_id, playlist_name, 
user_id)
VALUES
    (1, 'My Favorites', 101),
    (2, 'Party Mix', 102);

-- Insert sample data into playlist_songs table
INSERT INTO db_model.playlist_songs (playlist_id, song_id)
VALUES
    (1, 1),
    (1, 2),
    (2, 3);

-- Insert sample data into plays table
INSERT INTO db_model.plays (play_id, song_id, user_id, play_
date)
VALUES
    (1, 1, 101, '2023-08-15 14:00:00'),
    (2, 2, 102, '2023-08-16 16:30:00');

SQL question: Provide a SQL query to list the two most popular songs by play count:

•	 Answer:

SELECT s.song_id, s.song_title, a.artist_name, COUNT(p.play_id) 
AS play_count
FROM db_model.songs s
JOIN db_model.artists a ON s.artist_id = a.artist_id
JOIN db_model.plays p ON s.song_id = p.song_id
GROUP BY s.song_id, s.song_title, a.artist_name
ORDER BY COUNT(p.play_id) DESC
LIMIT 2;

Try running these queries yourself with additional data if you like and analyze the query’s response.

Just a few quick reminders:

•	 You may have to change the data types in a way that is acceptable for your database of choice 
– mainly, you may have to replace STRING with VARCHAR in some databases and remove 
the NOT ENFORCED keyword.



Database Modeling for Structured Data44

•	 Try building data models and answering those queries in your own way, keeping in mind that 
the database model, objects, and dependencies you are building are going to impact the core 
functioning, performance, and precision of the applications and businesses for which you are 
designing this data model.

•	 Please note that these DDL statements provide a basic structure for each use case, and you would 
need to add constraints, indexes, and other elements as required by your specific application 
and database system. Additionally, these statements don’t include foreign key constraints or 
data types for all columns, which would be important in a production database.

Alright, let’s move on from the use cases to some core constructs of SQL. Now, since it is not the 
only focus of this book, I am not going to get into all the details of it, but I am going to quiz you with 
some conceptual SQL questions that can get you started if you are an absolute beginner or if you are 
a seasoned data practitioner who likes to engage in these kinds of exercises:

1.	 What is the difference between a SELECT and DELETE statement?

	� A SELECT statement is used to retrieve data from a database, while a DELETE statement 
is used to delete data from a database.

2.	 How do you use a JOIN statement to combine data from two tables?

	� A JOIN statement is used to combine data from two tables by matching the values of 
common columns. There are three types of JOIN statements: INNER JOIN, LEFT JOIN, 
and RIGHT JOIN.

3.	 How do you use a GROUP BY statement to group data by a common value?

	� A GROUP BY statement is used to group data by a common value. The GROUP BY statement 
can be used with the SELECT statement to retrieve the aggregated results of the query.

4.	 How do you use an ORDER BY statement to sort the results of a query?

	� An ORDER BY statement is used to sort the results of a query. The ORDER BY statement can 
be used with the SELECT statement to sort the results of the query by one or more columns.

5.	 How do you use a WHERE clause to filter the results of a query?

	� A WHERE clause is used to filter the results of a query. A WHERE clause can be used with a 
SELECT statement to filter the results of the query based on the values of one or more columns.

6.	 How do you use subqueries to nest queries within queries?

	� A subquery is a query that is nested within another query. Subqueries can be used to perform 
complex queries that would be difficult or impossible to perform with a single query.



Structured query language 45

7.	 How do you use views to create virtual tables?

	� A view is a virtual table that is created from one or more tables. Views can be used to simplify 
complex queries or provide a security layer for your database.

8.	 How do you use triggers to automate database operations?

	� A trigger is a special type of stored procedure that is executed when a particular event occurs 
in the database. Triggers can be used to automate database operations, such as updating a 
table when a new record is inserted into another table.

9.	 How do you use stored procedures to encapsulate database logic?

	� A stored procedure is a block of SQL code that is stored in the database. Stored procedures 
can be used to encapsulate database logic, making it easier to maintain and reuse your code.

10.	 How do you use functions to create reusable expressions?

	� A function is a special type of stored procedure that returns a value. Functions can be used 
to create reusable expressions, making it easier to write complex queries.

11.	 How do you use window functions to aggregate data over a group of rows?

	� Window functions are a type of function that can be used to aggregate data over a group 
of rows. Window functions can be used to calculate running totals, moving averages, and 
other aggregations.

12.	 How do you use common table expressions (CTEs) to improve the readability and performance 
of your queries?

	� CTEs are a way to temporarily store the results of a query in a virtual table. CTEs can be 
used to improve the readability and performance of your queries by breaking them down 
into smaller, more manageable chunks.

13.	 How do you use JSON functions to work with JSON data in your database?

	� JSON functions are a set of functions that can be used to work with JSON data in your 
database. They can be used to parse JSON data, extract data from JSON, and update JSON data.

14.	 How do you use XML functions to work with XML data in your database?

	� XML functions are a set of functions that can be used to work with XML data in your database. 
They can be used to parse XML data, extract data from XML data, and update XML data.

15.	 How do you use partitioning to improve the performance of your queries?

	� Partitioning is a way to divide a table into smaller pieces. Partitioning can be used to improve 
the performance of your queries by isolating hot spots and by allowing you to parallelize queries.



Database Modeling for Structured Data46

16.	 How do you use recursive CTEs to create self-joins?

	� Recursive CTEs can be used to create self-joins, which are joins between a table and itself. 
Recursive CTEs can be used to implement complex queries that would be difficult or 
impossible to implement with other types of joins.

17.	 How do you use materialized views to improve the performance of your queries?

	� Materialized views are a type of view stored in the database. Materialized views can be used 
to improve the performance of your queries by caching the results of a query.

18.	 How do you use distributed queries to process data across multiple servers?

	� Distributed queries are queries that can be processed across multiple servers. Distributed 
queries can be used to process large amounts of data or to improve the performance of 
queries that would be too slow to run on a single server.

19.	 How do you use encryption to secure your data in the database?

	� Encryption can be used to secure your data in the database by protecting your data from 
unauthorized access, modification, or disclosure. Make sure your choice of database or data 
warehouse service has encryption at rest and in transit, which means that your data will be 
encrypted while in storage or transaction.

20.	 How do you use auditing to track changes that have been made to your data?

	� Auditing can be used to track changes to your data. It can also be used to identify unauthorized 
access, modification, or disclosure of your data. Make sure your choice of database or 
warehouse has monitoring, auditing, and related features available. Cloud storage options 
in general take care of this and most of them are fully managed.

Okay – let’s say you got all of those questions right. If you’d like some more challenges, go ahead and 
consider those four use cases we covered right before these questions to create some SQL queries on 
your own that incorporate the database constructs and objects covered in these conceptual questions.

Summary
In this chapter, we comprehensively covered structured data, its properties, types, real-world use cases, 
some key considerations, and best practices for data modeling for structured data. We explored SQL 
basics, provided examples of SQL queries for various use cases, including e-commerce, social media, 
library, and music streaming platforms, and demonstrated how SQL queries can efficiently retrieve 
relevant data from structured databases.

Throughout this chapter, hands-on scenarios and SQL challenges were presented, encouraging you 
to apply your knowledge of data modeling and SQL to real-world use cases. In the next few chapters, 
we will look at some of these Google Cloud databases for structured data in detail with real-world 
hands-on use cases.



4
Setting Up a Fully Managed 

RDBMS

In the previous chapter, we discussed the considerations and best practices when designing a database for 
storing structured data, and some real-world SQL examples. In this chapter, we will take the structured 
database design to do some hands-on learning with a fully managed cloud relational database. You 
will learn how to set up and configureyour instance, and create databases and objects in the database 
and how to programmatically connect to the database and access data.

In this chapter, we’ll cover the following topics:

•	 Fully managed databases

•	 Fully managed RDBMS

•	 Cloud SQL as an example

•	 Setting up and configuring a fully managed RDBMS

•	 Creating an application with the cloud database

•	 Operational aspects of cloud relational databases

Fully managed databases
Fully managed databases reduce the need for manual effort and lower the costs involved in administering 
your databases. They also allow your teams to focus more on productive areas of work, contributing 
to your business. In a fully managed database, the provider takes care of infrastructure provisioning, 
maintenance, routine updates, scalability, backup, recovery, replication, latency, availability, security, 
privacy, regulatory settings, and administration in a very self-sufficient and cost-effective way, as opposed 
to self-managed databases, where all of these need to be done by the database administration teams. 



Setting Up a Fully Managed RDBMS48

Some examples of self-managed databases are the non-cloud version of MySQL, PostgreSQL, SQL Server, 
Maria DB, Oracle, and IBM DB2. Some of these databases have equivalent managed cloud services..

Fully managed RDBMS
A fully managed Relational Database Management System (RDBMS) is a provider-managed database 
system that does the following:

•	 Structures data in tables made of rows and columns

•	 Has the ability to join tables to derive information between related data

•	 Adheres to the atomicity, consistency, isolation, and durability (ACID) properties of your 
applications’ transactions

•	 Supports integrity constraints to maintain data consistency across multiple tables

•	 Supportive of rows having a unique identifier, columns have unique names, and values are atomic

•	 Has values that all have the same datatype in a given column

•	 Has a fixed schema definition for the relational data model, and the data definition language 
(DDL) changes for any further schema-level modifications

Let’s dive into the setting up, configuration, and application of the most preferred fully managed 
cloud relational database service for MySQL, PostgreSQL, and SQL Server databases, and Cloud SQL.

Cloud SQL
Cloud SQL is a fully managed database service that makes it easy to set up, maintain, manage, and 
administer your relational databases on the Google Cloud Platform. It supports up to 99.99% availability 
and supports up to 64 TB of storage, with the ability to automatically increase storage size as needed. 
You can use Cloud SQL with MySQL, PostgreSQL, and SQL Server.

As we already discussed, Cloud SQL is a fully managed database and Google will take care of all 
operational activities including minor version upgrades, backup, recovery, scaling (if user configures 
for it), failover, monitoring, authorization, networking, security, observability, and so on. The following 
are some of its key features:

•	 Cloud SQL provides integration to other Google Cloud services such as Cloud Run, GKE, 
Cloud Functions, BigQuery, and Compute Engine

•	 It has secure access

•	 It has high availability with its zonal/regional database replication feature



Setting up and configuring a fully managed RDBMS 49

•	 It can scale up by adding more memory, processing, storage, and so on, and scale out with 
highly available read replicas for high read traffic

•	 Its monitoring tools and Query Insights feature aid root cause analysis and offer the option to 
integrate with existing monitoring tools

•	 It supports performance-heavy workloads with very high input/output operations per second

•	 Its real-time change data capture feature allows for recovery and data syncing with minimal latency

•	 Its automated daily backup and point-in-time recovery allow instance restoration to a specific 
point in the past

•	 Its API support allows you to set up, build, and deploy programmatically with standard 
connection drivers and built-in migration tools

For a list of detailed features, refer to the Google Cloud documentation for Cloud SQL: https://
cloud.google.com/sql#section-2.

In the following section, we will see how to maintain your MySQL relational database on Google 
Cloud with Cloud SQL.

Note 
Please be advised that certain features and services described in the following sections may 
have undergone modifications since the time of drafting. The screenshots may look different 
from what you see in the book. APIs and versions may have been updated by the time you are 
reading this. As such, kindly exercise flexibility and adapt your steps accordingly.

 Additionally, some services may incur charges if they are outside the free tier (if applicable). 
Therefore, it is recommended to be aware of the services you are enabling and to delete or deactivate 
services and instances that are no longer required for learning or demonstration purposes.

Setting up and configuring a fully managed RDBMS
If you are new to Google Cloud, go to the Google Cloud console (https://console.cloud.
google.com/), select your organization, and create a new Google Cloud project with billing enabled.

You can follow the instructions here:

https://cloud.google.com/resource-manager/docs/creating-managing-
projects.

All the steps mentioned in the following subsections can be done with Cloud Shell commands or via 
the Google Cloud console.

https://cloud.google.com/sql#section-2
https://cloud.google.com/sql#section-2
https://console.cloud.google.com/
https://console.cloud.google.com/
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/resource-manager/docs/creating-managing-projects


Setting Up a Fully Managed RDBMS50

Creating a Cloud SQL instance for MySQL

Go to the Google Cloud console and, in the search bar, search for Cloud SQL. Then, follow these steps:

1.	 Go to the Cloud SQL instance page at https://console.cloud.google.com/sql. 
The following figure shows the Cloud SQL instance page:

Figure 4.1 – The Cloud SQL instance page

2.	 Click on the CREATE INSTANCE button. This will take you to the Create an instance page, 
as shown here:

Figure 4.2 – The Create an instance screen

https://console.cloud.google.com/sql


Setting up and configuring a fully managed RDBMS 51

3.	 Click Choose MySQL and enable the Compute Engine API by clicking the ENABLE API 
button if it prompts you to do so, as shown in the following figure:

Figure 4.3 – The ENABLE API button

4.	 Once you choose the database engine and enable the Compute engine API, you’ll be taken to 
the instance configuration page, as shown in the following figure:

Figure 4.4 – The instance configuration page

5.	 Enter a valid unique name for Instance ID.



Setting Up a Fully Managed RDBMS52

6.	 Enter a root password.

7.	 For the purposes of this demo, I have chosen a Cloud SQL edition of Enterprise and Sandbox. 
Choose the one that works for your needs. The Enterprise Plus option gives you a 99.99%-availability 
SLA, high-performance machines, and a broader timeline for point-in-time recovery. 

8.	 Choose the region, memory, storage, and zonal availability configuration per your needs.

9.	 Expand the Customize your instance section and validate your storage, connections, data 
protection, and instance delete protection configurations.

Note
If you leave the Enable instance delete protection checked, you will not be able to delete it after 
completing the demo. But this feature is really handy to prevent accidental instance deletion 
for production applications.

10.	 Finally, click Create.

Once the instance is created, you will be taken back to the instances list and you should be able to see 
the newly created instance.

Connecting to the  instance

We will use Cloud Shell commands to connect to the instance we just created:

1.	 Go to the Google Cloud console and click the Cloud Shell icon, circled in red here:

Figure 4.5 – The Cloud Shell icon

2.	 You should be able to see the terminal with the welcome message, as shown in the 
following screenshot:

Figure 4.6 – The cloud terminal



Setting up and configuring a fully managed RDBMS 53

3.	 At the prompt, enter the connect command as shown here. Make sure to replace <<instance_
name>> with the instance you created in the previous section:

gcloud sql connect <<instance_name>> --user=root

In this case, the instance name is mynewinstance:
gcloud sql connect mynewinstance --user=root

If it prompts you to enable sqladmin.googleapis.com, type y and hit Enter, as shown 
in the following screenshot:

Figure 4.7 – Enabling sql.admin.googleapis.com

4.	 Click Authorize when you are prompted to authorize Cloud Shell.

5.	 Enter the root password when prompted.

Note
If the instance is created and you skipped creating a password for root, you can always update 
it after creating the instance, as shown in the following figure:

Figure 4.8 – Changing the root password



Setting Up a Fully Managed RDBMS54

Now you are connected to the instance, you should see the mysql prompt, as shown here:

Figure 4.9 – MySQL prompt

Let’s now create the database.

Creating a database

We will continue in the Cloud Shell terminal to create a database. You can create a database on the 
Cloud SQL for MySQL instance using the following command:

CREATE Database <<database_name>>;

In this case, we’ll use the following command:

CREATE Database test_db;

This should create a database named test_db in the mynewinstance instance, as shown here:

Figure 4.10 – Creating the test_db database

Next, let’s create a table.



Setting up and configuring a fully managed RDBMS 55

Creating a table

You can use the following command to create a table in the newly created database:

Use <<database_name>>
CREATE TABLE <<table_name>>(
  <<column1>> INT NOT NULL AUTO_INCREMENT,
  <<column2>> <<datatype>>,
  PRIMARY KEY(<<column1>>)
  );

Replace <<table_name>>, <<column N>>, and <datatype>> with their respective values.

In this case, our DDL is as follows:

CREATE TABLE test_db.test_table (
  index_column INT NOT NULL AUTO_INCREMENT,
  string_column VARCHAR(255),
  PRIMARY KEY (index_column)
);

This should create a table called test_table in the test_db database we created, as seen in the 
following figure:

Figure 4.11 – Creating the test_table table

Let’s insert values into the test_db table now.

Inserting values

You can insert sample data into a table using the following SQL command:

INSERT INTO <<table_name>> (<<column2>>) VALUES (<<value2>>);

In our case, the query is as follows:

INSERT INTO test_db.test_table VALUES (1, 'This is a test 1');



Setting Up a Fully Managed RDBMS56

Let’s insert one more row. Since we have AUTO_INCREMENT set on the index_column field, you 
can insert values into the string_column field using the following SQL statement:

INSERT INTO test_db.test_table(string_column) VALUES ('This is a test 
2');

This automatically increments the index_column field corresponding to the data as 2 since our 
last inserted value is 1.

The following screenshot shows the result after both of the inserts:

Figure 4.12 – The output of the insert statements

Now, let’s view the data.

Querying values

Let’s query the data we just inserted:

SELECT * FROM <<table_name>>;

In our case, the table name is test_table:

SELECT * FROM test_db.test_table;

You should see the following result:

Figure 4.13 – Querying the table values



Creating an application with the Cloud database 57

Yay! We have created a Cloud SQL for MySQL instance, a relational database, and a table and inserted 
a few values into them.

Creating an application with the Cloud database
Let us create a small one-page application to see how to access Cloud SQL for MySQL programmatically. 
You can try it in any programming language of your choice. I am going to use Java as my preferred 
language for code samples.

Before stepping into the application, make sure you have the Cloud Functions service account 
configured for Cloud SQL connections.

Configuring the Cloud Functions service account

Perform the following steps to configure your Cloud Functions service account:

1.	 Go to the Google Cloud console’s IAM page using this link: https://console.cloud.
google.com/iam-admin/iam.

2.	 Edit the service account – Compute Engine default service account – to add a role.

3.	 Click on Add another role.

4.	 Add the Cloud SQL Client role.

5.	 Click Save.

Now that the service account is configured, let’s create the functions.

Creating a Cloud Function

Cloud Functions let you create and deploy quick applications on the cloud (without needing a server 
or container) using only your web browser. They allow you to scale from zero to a very large number 
of users We will now take a look at the steps involved in creating a Cloud Function to implement a 
simple Cloud SQL application in Java:

1.	 Go to the Cloud Functions page by searching for it in the Console search bar.

2.	 Click on Create a function. Enable the required APIs as prompted by clicking the ENABLE 
button to get started, as shown in the following figure:

https://console.cloud.google.com/iam-admin/iam
https://console.cloud.google.com/iam-admin/iam


Setting Up a Fully Managed RDBMS58

Figure 4.14 – Enabling the APIs

You should be able to configure your Cloud Functions once the APIs are enabled.

3.	 Select 2nd gen for Environment, as shown in the following figure:

Figure 4.15 – The 2nd gen environment selected with a function name and region populated

4.	 In the function name, enter mysql-db-conn-function, select unauthenticated invocation 
for demo purposes (the recommendation is to use authentication for real-world applications), 
and click Next.

5.	 You will land on a page that lets you select Runtime on the left pane. We will select Java 11.

6.	 In the source code menu, choose Inline Editor.



Creating an application with the Cloud database 59

7.	 In the pom.xml file, include the following dependencies inside the <dependencies> </
dependencies> section to ensure you have the necessary package to connect to the Cloud 
SQL database we created:

<dependency>
    <groupId>com.google.cloud.sql</groupId>
    <artifactId>mysql-socket-factory-connector-j-8</artifactId>
    <version>1.13.1</version>
</dependency>

<dependency>
      <groupId>mysql</groupId>
      <artifactId>mysql-connector-java</artifactId>
      <version>8.0.29</version>
</dependency>

<dependency>
    <groupId>com.zaxxer</groupId>
    <artifactId>HikariCP</artifactId>
    <version>5.0.1</version>
</dependency>

8.	 You will see some placeholder code similar to the one you see in the HelloHttpFunction.
java function in the following figure:

Figure 4.16 – The Edit function page with the default code populated in HelloHttpFunction.java



Setting Up a Fully Managed RDBMS60

9.	 Add the following additional import statements to the code:

import java.io.BufferedWriter;
import com.google.cloud.functions.HttpFunction;
import com.google.cloud.functions.HttpRequest;
import com.google.cloud.functions.HttpResponse;
import com.google.common.collect.ImmutableList;
import com.zaxxer.hikari.HikariConfig;
import com.zaxxer.hikari.HikariDataSource;
import java.sql.*;
import java.util.ArrayList;
import java.util.List;
import java.util.Properties;
import java.util.concurrent.TimeUnit;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.Connection;
import java.sql.SQLException;

10.	 Include a createConnection method invocation statement at the beginning of the code. 
There should already be a placeholder code in the HelloHttpFunction.java file. Just 
replace the code in that file with this code. This snippet represents the HelloHttpFunction 
class we are creating, and it implements the HttpFunction interface. Also, remember that 
saving credentials in environment variables is convenient, but not secure—consider a more 
secure solution, such as the one found at https://cloud.google.com/kms/, to help 
keep your secrets safe:

/* Class HelloHttpFunction starts here and it implements the 
interface HttpFunction*/
public class HelloHttpFunction implements HttpFunction {
/* Declare the static and final variables for instance 
connection name, user, password, and database and replace them 
with your values.
You can get the instance connection name from the Cloud SQL 
Instance Overview page.
*/
  private static final String INSTANCE_CONNECTION_NAME ="<<your_
project_name>>:<<region>>:<<instance-name>>";
  private static final String DB_USER = "root";
  private static final String DB_PASS = "<<your_password>>";
  private static final String DB_NAME = "test_db";
  private static final String INSTANCE_UNIX_SOCKET = null;
  private HikariDataSource connectionPool;

https://cloud.google.com/kms/


Creating an application with the Cloud database 61

/* The service method starts here and it has 2 arguments - 
HttpRequest object and HttpResponse object
It establishes the connection to the Cloud SQL MySQL instance
*/
  public void service(final HttpRequest request, final 
HttpResponse response) throws Exception {
    final BufferedWriter writer = response.getWriter();
    String jdbcURL = String.format("jdbc:mysql:///%s", DB_NAME);
    Properties connProps = new Properties();
    connProps.setProperty("user", DB_USER);
    connProps.setProperty("password", DB_PASS);
    connProps.setProperty("socketFactory", "com.google.cloud.
sql.mysql.SocketFactory");
    connProps.setProperty("cloudSqlInstance", INSTANCE_
CONNECTION_NAME);

    /* Initialize connection pool */
    HikariConfig config = new HikariConfig();
    config.setJdbcUrl(jdbcURL);
    config.setDataSourceProperties(connProps);
    config.setConnectionTimeout(10000); // 10s

    this.connectionPool = new HikariDataSource(config);
    String result = "";

/* This part of the function invokes the DB connection.
It stores the SELECT query in a variable called query and 
invokes the Prepared Statement.
The result is stored in a variable and returned to the 
BufferedWriter object.
*/

     try (Connection conn = connectionPool.getConnection()) {
      // PreparedStatements can be more efficient and project 
against injections.
      String query =  "select string_column from test_db.test_
table where index_column = 1;";
      PreparedStatement pStmt = conn.prepareStatement(query);
      ResultSet rs = pStmt.executeQuery();
       while(rs.next()) {
            //Set values from result
            result = rs.getString("string_column");
             }



Setting Up a Fully Managed RDBMS62

          } catch (SQLException ex) {
            throw new RuntimeException( "Unable to process. Run 
Time Error in Select.", ex);
          }

    writer.write("Hello! " + result);
  }
}

This class is designed to connect to the MySQL database and perform a Select Query action 
in the Cloud SQL database.

11.	 Once you have successfully completed the aforementioned steps, it is time to deploy the 
application. Hit Deploy at the bottom of the screen to submit the application to the cloud.

12.	 If there are errors, you will see them on the top of the screen or in the logs section.

13.	 If not, you will see your application running on the cloud, as shown in the following figure:

Figure 4.17 – The deployed URL of the Cloud Function

14.	 Click the HTTPS link in the URL section of the deployed Cloud Function. If it shows an error 
with permission, navigate to the PERMISSIONS tab, click GRANT ACCESS, and make sure 
you add the necessary users or allUsers and grant them the Cloud Functions Invoker role, 
as shown in the following screenshot:



Creating an application with the Cloud database 63

Figure 4.18 – Configuring permissions for the deployed Cloud Function

15.	 That is not all. Since we are using Cloud Functions 2nd Gen, we have to also check authentication 
for the underlying Cloud Run service as well. Navigate to the underlying Cloud Run service 
by clicking the service name link in the right corner of the Cloud Functions page (underlined 
in black in the following screenshot):

Figure 4.19 – Navigating to the Cloud Run service

In the Cloud Run service page that opens, navigate to the SECURITY tab and select Allow 
unauthenticated invocations for this demo (or Require authentication per your application’s 
requirements), as shown here:



Setting Up a Fully Managed RDBMS64

Figure 4.20 – Authenticating the Cloud Run service

Now you can return to the Cloud Functions page and click the URL on the TRIGGER tab of the 
Cloud Function you deployed in step 13. The result of the Cloud Function trigger on the browser 
looks like this:

Figure 4.21 – The output of the Cloud Function trigger

That’s it! We have successfully set up a database and created a small Cloud Functions application that 
is running on the cloud.

So far, you have learned about the fully managed relational Google Cloud database Cloud SQL, 
instance setup and configuration, database creation, basic functional queries and DDL statements, and 
a programmatic approach to connect and access data on your Cloud SQL instance. The program we 
created to connect to the database is in Java and can be deployed serverlessly with Cloud Functions. 
In the next section, we will look at some operational aspects of this database.

Operational aspects of cloud relational databases
Apart from the key features and setup details we discussed so far, there are some key operational 
considerations that every organization or startup needs to assess before starting their database design 
journey. We will look at only a few key operational considerations and how Cloud SQL supports 
these aspects.



Operational aspects of cloud relational databases 65

Migration

Cloud SQL’s Database Migration Service comes in handy from the Google Cloud perspective; it 
simplifies migrations on-premise or from other cloud providers to Google Cloud SQL. Its key features 
are that it is very simple, has minimal downtime migration, and is fully serverless to set up without 
any operational burden.

Monitoring

We can monitor Cloud SQL instances from the Cloud Monitoring dashboard to cover metrics such as 
CPU utilization, active connections, storage usage, memory usage, read and write operations, ingress 
and egress bytes, queries, questions, and so much more.

Query Insights

Beyond monitoring instances, Cloud SQL offers the Query Insights tool, which allows us to derive 
insights from queries’ performance problems and diagnostic information and helps us identify the 
root cause of the performance problems. We can monitor performance at the application component 
level identified by the model, view, and controller layers of the application. This makes it the first 
of its kind for top-down (app to query) and bottom-up (query to app layers) insights into database 
query performance.

Security

The most important operational aspect of any database application is security considerations. Along 
with this comes encryption requirements (both at rest and in transit), privacy, regulatory requirements, 
firewalls, access control, and so on. Cloud SQL data is encrypted when on Google’s internal networks 
and when stored in database tables, temporary files, and backups. It supports private connectivity with 
a virtual private cloud (VPC), and every Cloud SQL instance includes a network firewall, allowing 
you to control public network access. You can also configure where your data is stored to comply with 
data residency requirements. Cloud SQL is compliant with SSAE 16, ISO 27001, and PCI DSS and 
supports Health Insurance Portability and Accountability Act (HIPAA) compliance.

There are many operational considerations to look into while designing your database, such as high 
availability, change data capture, and replication, that will ensure your database is fully equipped to 
support your application and business needs.



Setting Up a Fully Managed RDBMS66

Summary
In this chapter, we have designed a structured database via hands-on learning by creating and 
configuring a fully managed cloud relational database. We discussed the essential features of a fully 
managed RDBMS: Google Cloud’s Cloud SQL. We covered the setup and configuration of Cloud SQL, 
created a database and objects, performed database operations on it programmatically, and assessed 
design considerations and operational highlights such as migration, monitoring, query insights, and 
security when working with Cloud SQL. We also created a one-page application to access Cloud SQL 
with a Java Cloud Function as an example.

In the upcoming chapters, we will move on to other formats of data, hands-on applications, and their 
operational aspects.



5
Designing an Analytical Data 

Warehouse

In the previous chapter, we discussed hands-on database design for structured data and design 
considerations. Then, we learned how to set up, configure, and create database objects, connect to 
the database, and access data programmatically. In this chapter, we will move on to designing for 
analytical data and start hands-on learning with a fully managed cloud data warehouse. In doing 
so, you will learn how to set up and configure databases, create datasets and objects, and query and 
perform sample analytics on data.

In this chapter, we’ll cover the following topics:

•	 Understanding how data warehouses are different from databases

•	 The significance of ETL in data warehouses

•	 BigQuery hands-on

•	 Summary of operational aspects and design considerations

Understanding how data warehouses are different from 
databases
Data warehousing is the process of storing and managing data from multiple sources in a centralized 
location. This makes it easier to analyze the data and gain insights that can be used to improve business 
operations. Data warehouse applications are designed to support mainly, but not limited to, online 
analytical processing (OLAP) data models, which are centered around the dimensions of data that 
the business organizes. Such modes of data warehouse tend to facilitate data aggregation for summary, 
drilling down into details, slicing and dicing across dimensions, querying for analysis, and making 
business decisions.



Designing an Analytical Data Warehouse68

In contrast to the database applications that support transactional models (OLTP), which are intended 
for a specific functional application or product of the business, data warehouses support models that 
are meant for the entire business and organization, not just for a specific group of users (access control 
for users and groups can be provisioned) or functionality; they are meant to store current and historical 
records of transactions and other dependent data from varied sources as applicable.

Data warehousing can be used by businesses of all sizes and in all industries. It is a powerful tool that 
can be used to improve business intelligence (BI), make better decisions, and gain a competitive 
advantage. Here are some real-world examples of data warehouse use cases across various industries:

•	 Retail analytics: A retail company uses a data warehouse to consolidate data from various 
sources, including sales transactions, online customer interactions, and inventory levels. They 
analyze this data to optimize inventory management, predict demand, and personalize marketing 
campaigns based on customer behavior.

•	 Healthcare management: A healthcare provider uses a data warehouse to store patient records, 
medical histories, and billing information. They apply data analytics to identify trends in patient 
outcomes, streamline administrative processes, and enhance patient care by predicting disease 
outbreaks and optimizing resource allocation.

•	 Financial services: A financial institution leverages a data warehouse to integrate data from 
multiple branches, customer accounts, and transaction records. They utilize this data to detect 
fraudulent activities, assess credit risk, and provide personalized financial recommendations 
to clients.

•	 Manufacturing quality control: A manufacturing company employs a data warehouse to 
collect data from sensors on the factory floor, such as machine performance, defect rates, and 
production output. This data helps them identify quality issues, improve production efficiency, 
and reduce downtime by predicting equipment maintenance needs.

•	 E-commerce recommendations: An e-commerce platform utilizes a data warehouse to store 
customer behavior data, purchase history, and product catalog information. They apply machine 
learning algorithms to make real-time product recommendations, leading to increased sales 
and improved customer satisfaction.

•	 Supply chain optimization: A logistics company centralizes data related to shipments, 
transportation routes, and warehouse inventory in a data warehouse. They use this data to 
optimize delivery routes, reduce shipping costs, and minimize inventory holding costs while 
ensuring products reach customers on time.

•	 Energy consumption analysis: An energy utility provider aggregates data from smart meters, 
weather forecasts, and customer demographics in a data warehouse. They use predictive analytics 
to anticipate energy demand, optimize energy distribution, and offer customers personalized 
energy-saving suggestions.



Understanding how data warehouses are different from databases 69

•	 Media and entertainment: A streaming platform stores user interaction data, content libraries, 
and add performance metrics in a data warehouse. They employ this data to improve content 
recommendations, target advertising more effectively, and measure viewer engagement.

•	 Government and public policy: A government agency compiles data from various departments, 
including healthcare, education, and transportation, in a data warehouse. They use this data to 
inform policy decisions, allocate resources efficiently, and measure the impact of government 
programs on citizens’ well-being.

•	 Customer experience enhancement: A customer-centric business aggregates data from 
customer support interactions, feedback surveys, and social media sentiment analysis in a data 
warehouse. They leverage this data to identify pain points in the customer journey, improve 
customer service, and enhance overall customer experience.

These examples demonstrate the versatility of data warehouses in helping organizations make informed 
decisions, optimize operations, and gain competitive advantages across diverse industries.

Let’s quickly take a look at some of the core characteristics and attributes of data warehouses:

•	 Data warehouses are mostly designed for analytics, analysis, reporting, and BI purposes

•	 Data warehouses serve the whole business and organization in making decisions

•	 Data warehouses provide a bigger picture as well as a detailed outlook of transactions and 
dependencies, both current and historical

•	 Since they are mostly analytical, they are read-intensive

•	 Data from multiple sources and formats are integrated as part of the loading process for 
data warehouses

The following table summarizes a few of the core differences in characteristics of a purely transactional 
versus analytical database system:

Figure 5.1 – Differences between a transactional and analytical database



Designing an Analytical Data Warehouse70

To summarize, transactional databases are used to support business-critical applications such as order 
processing, inventory management, and customer relationship management (CRM). Analytical 
databases are used to support data warehousing and BI applications. These applications help businesses 
understand their data and make better decisions.

Since these analytical applications are used by businesses to handle large data from different sources, 
we would need a process to move data from one system to another so that businesses can integrate 
data from different sources into a single data warehouse, where it can be analyzed to gain insights. 
This process is called ETL, which is exactly what we are going to discuss in the next section.

Significance of ETL in data warehouse
ETL is a process in data warehousing that represents extract, transform, and load. This process 
involves extracting data from multiple sources, transforming and performing computations, cleansing 
for data quality, and loading the data into a target system. ETL is important for data warehouses to 
collect, read, process, transform, migrate, and analyze data from several disparate sources into one 
target database or warehouse. ETL eliminates silos in sources and integrates data for easy access and BI.

The ETL process typically consists of the following steps:

•	 Extract/ingest: Data is extracted from the source systems. This can be done using a variety of 
methods, such as database queries, file transfers, or APIs.

•	 Transform: The data is transformed into a format that is compatible with the target system. This 
may involve cleaning the data, converting data types, or merging data from multiple sources.

•	 Load: The data is loaded into the target system. This can be done using a variety of methods, 
such as database inserts, file transfers, batch processes, or APIs.

ETL is important to analytical systems because it allows businesses to do the following:

•	 Integrate data from different sources: Businesses often have data stored in different systems, 
such as CRM systems, enterprise resource planning (ERP) systems, and point-of-sale (POS) 
systems. ETL allows businesses to integrate data from these different systems into a single data 
warehouse, where it can be analyzed to gain insights.

•	 Cleanse and transform data: Data from different sources may be in different formats and may 
contain errors. ETL allows businesses to cleanse and transform the data into a format that is 
compatible with the target system and that is suitable for analysis.

•	 Load data into the target system: ETL allows businesses to load data into the target system 
in a way that is efficient and reliable.



Significance of ETL in data warehouse 71

ETL is a critical component of many analytical systems. By integrating data from different sources, 
cleansing and transforming data, and loading data into the target system, ETL allows businesses to gain 
insights from their data that would not be possible otherwise. Depending on the nature of the data, 
requirements, and limitations for your business, you can choose the type of ETL tools and services, 
including custom on-demand development, batch processing, real-time, and cloud service options.

Some of the cloud offerings that can be used to extract, transform, and load data are as follows:

•	 Cloud Dataflow: This is a fully managed service for stream and batch data processing. Dataflow 
can be used to extract data from a variety of sources, including databases, messaging systems, 
and files, as well as to transform data in a variety of ways, such as cleaning data, converting 
data types, and merging data from multiple sources.

•	 Cloud Data Fusion: This is a fully managed, cloud-native, enterprise data integration service 
that helps you build and manage ETL data pipelines. Data Fusion can be used to extract and 
transform data from a variety of sources, including databases, SaaS applications, and cloud 
storage services.

•	 Cloud Data Catalog: This is a fully managed data discovery and metadata management 
service. Data Catalog can be used to discover and understand data sources, which can make 
the extraction process easier.

•	 Cloud Dataproc: This is a fully managed and highly scalable service for running Apache 
Hadoop, Apache Spark, Apache Flink, Presto, and several open source tools and frameworks. 
Dataproc can be used to transform data using a variety of big data processing tools.

•	 BigQuery: This is a fully managed, petabyte-scale analytics data warehouse. BigQuery can be 
used to load data from a variety of sources, including databases, files, and other cloud storage 
services. BigQuery can also be used to perform machine learning and generative AI analytics 
on analytics data and can store and process structured, semi-structured, and unstructured data.

•	 Cloud Storage: This is a durable and highly available object storage service. Cloud Storage can 
be used as a staging area for data before it is loaded into the target system.

Google Cloud offers a variety of services that can be used to implement an ETL pipeline. The specific 
services that you use will depend on your specific needs.

To summarize, ETL is a fundamental process in the analytical application life cycle that ensures data 
is collected, cleaned, transformed, and loaded into a suitable repository, making it ready for analysis 
and reporting. It plays a crucial role in turning raw data into valuable insights for businesses. Of all 
the services and tools that are available, we will be looking at the role of BigQuery in the ETL process 
of handling analytical data workloads with relational data structure in the upcoming sections.



Designing an Analytical Data Warehouse72

Learning about BigQuery
BigQuery is a fully managed, completely serverless (no need to think about the underlying infrastructure), 
cost-effective, petabyte-scale enterprise data warehouse with built-in machine learning and BI analytics 
that works across clouds and sources and scales with your data. It is an important service for the 
transform (process, analyze) stage in the life cycle of your data.

An entire book can be dedicated to BigQuery and it still wouldn’t be sufficient to cover everything 
that BigQuery has to offer for your data and businesses in its fullest sense. We will take a look at the 
key features in the next section and try some of these hands-on in this chapter.

Features of BigQuery

In this section, I have tried to address the features that database practitioners and developers associate 
with the most:

•	 With BigQuery, you can unify structured, unstructured, and semi-structured data and perform 
queries on them together. This means you can also use this unification to derive machine 
learning insights with attributes of varied structures and types.

•	 BigQuery has built-in machine learning capabilities that allow analysts and businesses to create 
models on planet-scale structured, semi-structured, and unstructured data using simple SQL 
queries in seconds.

•	 BigQuery Studio provides a single, unified interface for all data practitioners for taking data 
to AI, including ingestion, exploration, visualization, and machine learning model creation 
all in simplified workflows. It also supports access to Vertex AI’s foundation models for text 
generation and processing tasks.

•	 BigQuery has an AI collaborator named Duet AI integrated into it so that it can provide contextual 
code assistance for writing SQL and Python and generate auto-suggestions for functions, code 
blocks, and fixes. You can also use natural language to get help using chat assistance.

•	 BigQuery supports data movement and analysis across multi-cloud and hybrid data stores and 
shares the results in a single pane of glass view.

•	 BigQuery has real-time analytics capabilities with query acceleration that makes querying on 
streaming data fast and robust.

•	 BigQuery’s Connected Sheets allows users to analyze billions of rows without requiring SQLs. 
Users can also apply visualization to derive insights from its data.

•	 BigQuery provides low latency data synchronization across varied databases and storage with 
real-time change data capture and up-to-date replication for real-time analytics.

•	 BigQuery allows you to optimize query performance costs with materialized views for quickly 
getting answers to common business questions.



Learning about BigQuery 73

•	 BigQuery integrates with Google’s privacy and security services to provide fine-grained 
governance controls, and data is encrypted at rest and in transit.

•	 My personal favorite is that BigQuery provides access to a powerful data repository with all 
the public datasets from different industries with free storage and up to 1 TB of data querying 
per month at no cost, at the time of writing this book.

For a list of detailed features, refer to the Google Cloud documentation for BigQuery: https://
cloud.google.com/bigquery.

In the remainder of this section, we will learn how to set up and manage an analytical data warehouse 
on Google Cloud with BigQuery and take a sneak peek at some easy analytics.

Note 
Please be advised that certain features and services described in the below sections may have 
undergone modifications since the time of drafting. The screenshots may look different from 
what you see in the book. APIs and versions may have been updated by the time you are reading 
this. As such, kindly exercise flexibility and adapt your steps accordingly.

 Additionally, some services may incur charges if they are outside the free tier (if applicable). 
Therefore, it is recommended to be aware of the services you are enabling and to delete or deactivate 
services and instances that are no longer required for learning or demonstration purposes.

Setting up and configuring a fully managed data warehouse with 
BigQuery

If you are new to Google Cloud, go to Google Cloud Console (https://console.cloud.
google.com/), select your organization, and create a new Google Cloud project with billing enabled. 
You can follow the instructions here: https://cloud.google.com/resource-manager/
docs/creating-managing-projects.

You can use your free credits if you have it or BigQuery Sandbox (https://cloud.google.
com/bigquery/docs/sandbox) to use BigQuery for free.

All the steps mentioned here can be completed with Command Shell commands, Google Cloud 
Console, or programmatically. While we will use the BigQuery console option here, if you would like 
to experiment with the other two options, feel free to do so. The following are links to resources for 
the Command Shell method, Client library, and BigQuery API:

•	 https://cloud.google.com/bigquery/docs/bq-command-line-tool

•	 https://cloud.google.com/bigquery/docs/reference/libraries

•	 https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets

https://cloud.google.com/bigquery
https://cloud.google.com/bigquery
https://console.cloud.google.com/
https://console.cloud.google.com/
https://cloud.google.com/bigquery/docs/sandbox
https://cloud.google.com/bigquery/docs/sandbox
https://cloud.google.com/bigquery/docs/bq-command-line-tool
https://cloud.google.com/bigquery/docs/reference/libraries
https://cloud.google.com/bigquery/doc﻿s/reference/rest/v2/datasets


Designing an Analytical Data Warehouse74

Enabling BigQuery from the console

To enable BigQuery, follow these steps:

1.	 Go to Google Cloud Console and, in the search bar, search for BigQuery. If it is not already 
enabled, you will be prompted to enable the BigQuery API for your project.

2.	 Continue following the prompt. Alternatively, you can go to the BigQuery console: https://
console.cloud.google.com/bigquery. The following screenshot shows the 
BigQuery console:

Figure 5.2 – The BigQuery console

As you can see, the BigQuery console has the Explorer pane on the left and the query editor 
on the right.

3.	 Now that you have successfully landed on the console, you can start creating the dataset. 
The steps provided here can be performed in many ways – from the BigQuery console or 
programmatically using APIs or using the bq command-line commands.

4.	 bq is a Python-based command-line tool that can be used for interacting with BigQuery data. 
The commands can be entered in Cloud Shell. To start, click Activate Cloud Shell from Google 
Cloud Console in the top-right corner, as shown here:

https://console.cloud.google.com/bigquery
https://console.cloud.google.com/bigquery


Learning about BigQuery 75

Figure 5.3 – The Activate Cloud Shell from Google Cloud Console icon

Once activated, you can either use bq commands from the Cloud Shell terminal or the BigQuery 
console to complete the remaining steps.

Alternatively, you can try out the steps programmatically using client libraries or APIs. I have chosen 
to use the BigQuery console for the rest of the steps.

Creating a BigQuery dataset

A BigQuery dataset is a top-level container that lives within a specific project. This can be compared 
to a schema in traditional relational databases and data warehouses as it organizes and manages the 
tables, views, and other objects of that schema.

Remember that a dataset is created in a specific location. The location of a dataset cannot be changed 
after creation; you can only copy or recreate the dataset manually to a different location. Dataset names 
should be unique within a project.

The following screenshot shows how to create a dataset:

Figure 5.4 – BigQuery dataset creation



Designing an Analytical Data Warehouse76

As you can see, when you click the three dots next to the project name and the star, you can view the 
list of actions you can take on the project – Create dataset and Refresh contents.

Select the Create dataset option. This will open the Create dataset configuration page, as shown here:

Figure 5.5 – Create dataset

On the Create dataset configuration page, as seen in the preceding screenshot, you have Dataset ID, 
Location type, and other configuration options. Make sure the location and other choices you make 
here are a result of the design considerations and security requirements for your data and business 
requirements. In this case, this is a test entry.

As you might have noticed, we have created a dataset explicitly for our application’s needs. Imagine 
a scenario where you don’t have data to begin with, but want to leverage openly available data. You 
could use BigQuery’s public datasets for that instead of creating a dataset that will contain your data.



Learning about BigQuery 77

Using an existing public dataset

Public datasets are hosted and stored in BigQuery. These are available for access from your projects 
and can be integrated into applications. Google takes care of storing these datasets and you only pay 
for the queries you perform on it.

You can access public datasets from Google Cloud Console by following these steps:

1.	 In BigQuery’s Explorer pane, in the Type to search field, enter bigquery-public-data to 
see if the dataset is starred. It won’t be unless you have already starred bigquery-public-
data to Explorer. The following screenshot shows bigquery-public-data entered in 
the Type to search field:

Figure 5.6 – BigQuery public dataset search

As you can see, I have already starred (saved it as a favorite) the BigQuery public data project.

2.	 If it is not present, search for a specific dataset or table contained in the public dataset by typing 
in the Type to Search field. As an example, type covid19_open_data and click SEARCH 
ALL PROJECTS.

3.	 In the Explorer pane, you will see bigquery-public-data. Click the star icon next to it.

4.	 Enter bigquery-public-data in the Type to Search field again and once it appears, 
Expand this project.

5.	 Once you have expanded it, you can query the dataset from the Query Editor by clicking 
Compose new query, as shown here:



Designing an Analytical Data Warehouse78

Figure 5.7 – Public dataset expanded with Compose new query highlighted

As you can see, the covid19_open_data public dataset has been expanded. I have also highlighted 
the Compose new query icon for your reference.

Once the dataset is ready, be it public or your own new dataset, you should be able to create other 
objects and dependencies that are required for your application. In the next few sections, we will create 
objects on the custom dataset we created previously and play with the data using BigQuery queries.

Creating a table in the dataset

Tables contain records (rows) and fields (columns). There are three types of tables in BigQuery:

•	 Standard

•	 External

•	 Views

Standard tables are for structured data containing rows and columns. External tables are stored 
outside of BigQuery and the data can be structured or unstructured. Views are logical tables that are 
run only when the queries are executed. Materialized views, however, have a pre-computed cache of 
results of the view query.



Learning about BigQuery 79

To create a table, you can either run the respective DDL statement or do so from the BigQuery console’s 
Explorer pane:

Figure 5.8 – The Create table option listed in the dataset



Designing an Analytical Data Warehouse80

Click Create table,  you should see the Create table dialogue appear. Enter the necessary details, as 
shown here:

Figure 5.9 – The Create table configuration page

Here, you can define the table schema – you can define columns, data types, and constraints by clicking 
on the + sign in the Edit Schema section, as shown here:



Learning about BigQuery 81

Figure 5.10 – The Edit Schema page

As shown in the preceding screenshot, you enter the field names and the relevant details and click Save.

Now that the table has been created, let’s insert data into it.

Inserting values in BigQuery tables

You can load data into BigQuery tables using DML statements, programmatically with the client 
libraries/APIs, or using the bq Cloud Shell command.

In this section, for a change, we’ll use the bq command to load data into the BigQuery table we just 
created – that is, test_table. We can execute bq commands from the Cloud Shell terminal. 
Create a CSV file containing sample data for the id (numeric), name (string), title (string), and 
department (string) fields and upload it to the folder from where you are executing the following 
command in Cloud Shell. Alternatively, you can download any sample CSV file and match the structure 
(that is, the field names and data type) using the BigQuery load command:

bq load --source_format=CSV --skip_leading_rows=1 autor_test1.test_
table \
./author_test.csv \
id:numeric,name:string,title:string,department:string

This command will load the data you have in the author_test.csv file into the test_table 
table we just created. Please note that the command assumes you have the CSV file in the directory 
from which you are running this command in the terminal.



Designing an Analytical Data Warehouse82

Alternatively, you can use the traditional INSERT DML statement to insert rows into the table. You 
can also insert data programmatically into BigQuery tables using the BigQuery API. I provided the 
reference links to these other options at the very beginning of this section, Setting up and configuring 
a fully managed data warehouse with BigQuery. Try the other options out as a hands-on assignment 
at the end of this chapter.

In this subsection, we inserted data from a CSV file into our BigQuery table. There are multiple ways to 
load data into BigQuery, including BigQuery’s data transfer service, batch load, using the Storage API 
to read and write data, and more. While we won’t be discussing all these options in this book, we can 
talk about one of the options – streaming data into BigQuery – at a high level in the next sub-section.

Streaming data into BigQuery

It is possible to stream data into BigQuery. Here, you send small batches of continuous data in real 
time. This means the real-time data is immediately available for querying and analytics or other 
purposes for your application. To stream data into BigQuery, you can use the Storage Write API 
programmatically in your application. You have to consider whether your application needs at least once 
streaming of a record or exactly once streaming, depending on which you will either use the Default 
or the Committed type for your implementation, respectively. This could be a major design decision 
based on the requirement for your application’s analytics. For instance, the at least once streaming of 
a record indicates that your application can accept duplicates that appear in the destination table in 
BigQuery. You can use the Default stream for this. The exactly once streaming of a record indicates 
that your application requires the record to be streamed exactly once and you can use the Committed 
stream type.

To learn more about different ways of loading data into BigQuery, refer to the necessary documentation: 
https://cloud.google.com/bigquery/docs/loading-data. You must assess the 
type of ingestion that would work best for your business needs at design time itself.

Now that we have created a dataset, created a table, and loaded data into that table, we will perform 
analytics on the data.

Performing simple analytics

To perform simple analytics, we’ll use a BigQuery public dataset called covid19_open_data. Follow 
these steps:

1.	 Search for covid19_open_data in the Type to search field in the Explorer pane and 
star bigquery-public-data.

2.	 Expand bigquery-public-data and search for covid19_open_data again.

3.	 Click on the three dots next to the covid19_open_data table and click Open.

4.	 Click the SCHEMA tab to view the columns and details of the table.

5.	 Click the QUERY option at the top and select open in new tab.

https://cloud.google.com/bigquery/docs/loading-data


Learning about BigQuery 83

Note
If you are running this as a sample experiment, make sure you are using the sandbox environment 
by checking for the SANDBOX tag at the top left of your BigQuery console.

Execute the following query to view a portion of the table’s contents:

SELECT country_name, new_confirmed, date, cumulative_confirmed, 
population FROM `bigquery-public-data.covid19_open_data.covid19_open_
data` LIMIT 10

This is a basic SELECT statement for viewing the fields we are going to use to create the analytical 
query. The following screenshot shows the results for this query:

Figure 5.11 – Select query results

Let’s try to summarize and display the top five countries with the most confirmed COVID-19 numbers:

SELECT country_name, MAX(cumulative_confirmed) AS TOTAL_CONFIRMED_
COVID19
FROM `bigquery-public-data.covid19_open_data.covid19_open_data`
WHERE cumulative_confirmed > 0
GROUP BY country_name
ORDER BY MAX(cumulative_confirmed) DESC
LIMIT 5;



Designing an Analytical Data Warehouse84

Once you execute this query, you will see the following output:

Figure 5.12 – Basic analytics query with results

The same query can be executed in several ways – running the query from the BigQuery console 
(which is what we have done), using the bq query command, or using the BigQuery API to run it 
programmatically for your application. As in the previous section, I have left the other two options 
as a challenge for you to implement.

Now that we have discussed the data warehouse setup and how to run basic analytics, we are ready to 
end this chapter with a quick summary of the operational and design aspects of this process.



Summary of operational aspects and design considerations 85

Summary of operational aspects and design 
considerations
When you are evaluating a cloud data warehouse or analytical storage for your application, make sure 
you design for the following key operational aspects:

•	 Data warehouse migration: Ensure the choice and configuration for your data warehouse 
supports easy migration of your data to the cloud data warehouse in case your application 
requires it.

•	 Transferring data: Consider the need to efficiently move and synchronize data between different 
systems and platforms. The format and way you ingest data into BigQuery is an important 
aspect, as we discussed earlier.

•	 Data governance and security options: Make sure your choice of data warehouse or analytics 
system allows you to implement robust security measures and governance practices to protect 
your data.

•	 Real-time and predictive analytics: While designing an analytics solution, also consider 
enabling real-time data processing and predictive analytics for actionable insights with your 
data. Prescriptive analytics is the order of the day.

•	 Logging data for analytics: One very flexible feature a cloud data warehouse system could 
boast would be that it could collect log data from other services within the cloud platform that 
your application uses. This would help you analyze log data to monitor and improve overall 
system performance from within the scope of your warehouse. Consider discussing this as 
part of your design aspects.

•	 Separation of storage and compute functions: Design for flexibility by separating storage 
and computational resources.

•	 BI features: Incorporate tools and features for advanced BI and reporting.

•	 Fully-managed, serverless: Opt for a fully managed serverless solution to reduce 
operational overhead.

•	 Support for multi-cloud data analytics: Ensure compatibility with multiple cloud providers 
for flexibility, if applicable.

•	 Scalable from free-tier coverage to planet-scale usage: It is very important to design for 
scaling your data infrastructure from small-scale to global operations as your business grows. 
Make sure your analytics system is capable of supporting this consideration.

These are critical as your business and application need to meet growing demands. BigQuery supports 
all of these aspects while working across clouds, scaling with your data, and providing built-in BI, 
machine learning, and AI.



Designing an Analytical Data Warehouse86

Summary
In this chapter, we covered the topic of designing for analytical data, understanding the differences 
between data warehouses and databases, and the importance of data warehouses with real-world use 
cases. We outlined the core characteristics of data warehouses, highlighting their analytical focus, 
data integration capabilities, and comprehensive data insights. We also discussed the significance of 
ETL in a data warehouse application and introduced a few cloud services for ETL, including Cloud 
Dataflow, Cloud Data Fusion, Cloud Data Catalog, Cloud Dataproc, and BigQuery, all of which aim 
to provide efficient data movement and transformation capabilities.

We focused on BigQuery, a fully managed serverless data warehouse that provides advanced features 
such as data unification, built-in machine learning, AI collaboration, real-time analytics, and robust 
security as it is a powerful tool for handling analytical workloads. We discussed it with a hands-on 
guide on setting up and configuring a BigQuery data warehouse, including creating datasets, and 
tables, loading data into tables, hands-on analytics, and SQL snippets. Finally, we covered operational 
and design aspects.

As a takeaway, I sincerely hope you can try out either one or both of the two other ways to operate on 
your data in BigQuery – that is bq commands/client libraries and APIs. With this, we can conclude 
our discussion on relational database design for structured data. Next, we will learn how to design 
for semi-structured, unstructured, and other types of data.



Part 3: 
Semi-Structured, Unstructured 

Data, and NoSQL Design

This part covers what semi-structured data is. You will learn about the difference between SQL and 
NoSQL. You will also learn all the options available for modeling your semi-structured data application.

This part has the following chapters:

•	 Chapter 6, Designing for Semi-Structured Data

•	 Chapter 7, Unstructured Data Management





6
Designing for Semi-Structured 

Data

So far, we have discussed relational databases and analytics design for structured data. Now, we will 
look at semi-structured data and design considerations for it by looking at a hands-on example. In this 
chapter, you will learn about the fundamentals of semi-structured data with examples and real-world 
use cases, the characteristics of semi-structured data, design considerations, and the components of a 
document database. We will also explore setting up and configuring a serverless document database 
(Firestore), creating indexes, and querying your data with APIs.

In this chapter, we’ll cover the following topics:

•	 Semi-structured data

•	 NoSQL for semi-structured data

•	 Firestore and its features

•	 Firestore setup

•	 Security

•	 Client libraries and APIs

•	 Indexing

•	 Data model considerations

•	 Easy querying with RunQuery API



Designing for Semi-Structured Data90

Semi-structured data
Semi-structured data does not follow the typical row–column table format or conform to a rigid 
schema structure; therefore, it cannot fit completely in the  relational databases category. However, it 
is not entirely unstructured either. Semi-structured data is somewhere in between these two categories 
and is characterized by the following features:

•	 Schema flexibility: It is adaptable to changes and accepts structure in the form of hierarchical 
data format and keys.

•	 Nestedness and hierarchy: Semi-structured data often has a hierarchical or a nested structure 
and its data elements are often grouped within other elements, forming a tree-like structure. 
This results in representations such as eXtensible Markup Language (XML) or JavaScript 
Object Notation (JSON).

•	 Without a fixed datatype: Semi-structured data can have elements of varying data types within 
the same dataset. For example, a JSON document can contain strings, Booleans, numbers, and 
nested objects.

•	 Sparse data: This means that semi-structured data need not have all data elements in every 
instance. This means data storage is used only when there is relevant information.

•	 Schema growth/change: This means that schema can evolve over time with new attributes 
added over time without breaking existing data, making it easier for scenarios with frequent 
data and data structure changes.

Semi-structured data is particularly valuable in modern data-driven applications, as it allows for the 
handling of diverse and evolving data sources. Tools and technologies for managing and querying 
semi-structured data have gained prominence in data analytics and are crucial in scenarios where 
data doesn’t neatly fit into structured databases but still requires organization and analysis.

Some common examples and sources of semi-structured data include XML data, JSON, email data, 
files, and web pages. Here is an example of semi-structured data:

{
  "order": {
    "order_number": "ORD20231006",
    "order_date": "2023-10-06",
    "customer": {
      "name": "XYZ Enterprises",
      "address": "456 Elm Street",
      "city": "Sometown",
      "state": "NY",
      "postal_code": "54321"
    },
    "items": [



Semi-structured data 91

      {
        "product_id": "P123",
        "description": "Widget A",
        "quantity": 20,
        "unit_price": 10.99
      },
      {
        "product_id": "P456",
        "description": "Gadget B",
        "quantity": 15,
        "unit_price": 19.95
      }
    ],
    "notes": "Please expedite shipping for this order."
  }
}

For this JSON example, consider the following:

•	 order is the root object, containing fields such as order_number, order_date, 
customer, items, and notes

•	 customer is an embedded object with fields for the customer’s name, address, and 
contact information

•	 items is an array of objects representing the ordered items with fields such as product_id, 
description, quantity, and unit_price

•	 notes contains additional information as a single string

This JSON structure maintains the semi-structured nature of the data, allowing for flexibility while 
following JSON formatting.

Pros and cons of semi-structured data

One of the powerful advantages of this type of data management is that it is not constrained by fixed 
schema and is flexible for changes to objects. It supports the heterogeneous nature of the sources and 
allows users to represent their data needs in NoSQL format. It is highly scalable and quicker because 
its nature makes indexing and querying much easier and flexible.

As with anything, semi-structured data format also comes with its cons. Since there is no support 
for a fixed form of schema or storage, identifying relationships between data is difficult and querying 
is relatively inefficient. Since this kind of data has several sources, it is complex to manage and has 
far less support in terms of tools and technologies that can handle the use cases. Security issues can 
arise from storing data in the form of tags and XML, as the nested, unstructured portions of the data 
might contain sensitive information.



Designing for Semi-Structured Data92

Let’s look at a few use cases to understand the real-world usage of semi-structured data.

Use cases of semi-structured data

Semi-structured data is produced in several real-world applications including the following:

•	 Internet of Things (IoT) sensors in manufacturing: Semi-structured data from remote IoT 
sensors is used to derive actionable insights and optimize operations in manufacturing

•	 Industrial automation and robotics: It helps automate industrial processes and control robotic 
systems efficiently

•	 Healthcare: Semi-structured data plays a crucial role in healthcare for managing patient data 
and medical records

•	 Wearable sports and fitness devices: Data from wearables helps individuals track their fitness 
and sports performance

•	 Web-based content: Semi-structured data on the web with diverse markup schemas is essential 
for collecting and analyzing online content

•	 E-commerce: In e-commerce, it’s used to manage product catalogs and customer data

•	 Finance: It’s employed for tracking web behavioral data in finance, aiding in risk assessment 
and fraud detection

•	 Engagement and adoption analytics: In software products, semi-structured data is utilized 
to analyze user engagement and adoption patterns

•	 Social media analytics: Semi-structured data from social media platforms is leveraged for 
sentiment analysis, user engagement metrics, and marketing insights

•	 Search engines and information retrieval: In the field of search engines and information 
retrieval, semi-structured data helps index and retrieve web content efficiently, improving 
search accuracy and relevance

These are only some use cases that highlight the diverse applications of semi-structured data across 
various industries and domains. Managing semi-structured data, as seen in these diverse use cases, 
often involves leveraging NoSQL databases and efficient indexing methods to handle the inherent 
flexibility and complexity of this data.



NoSQL for semi-structured data 93

NoSQL for semi-structured data
NoSQL is a type of database management system that is designed to cater to the needs of semi-structured 
and unstructured forms of data modeled in formats other than the tabular one supported by relational 
databases. NoSQL databases are mainly used to manage big data and real-time web applications. You 
can think of NoSQL as a system or language that not only supports SQL but also unstructured and 
semi-structured queries and data. The objective of NoSQL databases can be simply put as follows:

•	 Robust and simple design

•	 Flexible in terms of format and source

•	 Object-oriented application—database dependency limitation

•	 Better control over availability

•	 Partition tolerance

NoSQL databases adhere to the CAP theorem, which guarantees two of the following three principles 
for any distributed data store:

•	 Consistency: This is different from the consistency addressed by the atomicity, consistency, 
isolation, and durability (ACID) principles followed by the relational database management 
systems. Here, it means that every data read receives the most recently updated data or an error.

•	 Availability: Every request receives a response. Whether it is recent or not might not be guaranteed.

•	 Partition Tolerance: This means that the system continues to respond to requests even when 
there is network partition failure by doing one of two things:

	� Canceling the operation and ensuring a high consistency but lower availability

	� Continuing the operation and providing availability over consistency

So, such systems mandate a choice of consistency or availability if partitions are part of the design, 
but if there are no partitions, both consistency and availability can be satisfied.

Data structures supported by NoSQL databases

NoSQL can be further categorized broadly into the following four data structures. Some databases 
support each of these data structure types:

•	 Document store: Document databases store data in a format similar to the JSON document 
data type, storing data as pairs of fields and values. The values themselves have the flexibility 
of being in a variety of data structures. With the increased usage of JSON, document databases 
have gained increased popularity in web application design.



Designing for Semi-Structured Data94

•	 Key-value: Key-value databases pair keys with their associated values. Owing to their simplicity, 
they are extremely useful in scenarios that need high scalability and performance. Discretely 
ordered keys in the key-value model can prove to be computationally powerful in terms of 
retrieval of key ranges.

•	 Wide-column: Wide-column databases follow the table structure in the form of rows and 
columns similar to relational databases, except that as opposed to row-oriented storage, wide-
column databases store columns separately. It proves very effective for use cases and applications 
that require querying column by column.

•	 Graph: Graph databases store data points and relationships between two data points. The data 
points are referred to as nodes and relationships are referred to as edges. Since these databases 
store the relationships between nodes, they are mostly applied in use cases that require the 
representation of complex hierarchies and relationships in data, such as social network sites 
and customer relationship representation applications.

Some examples of NoSQL databases are Google Cloud Firestore, Cloud Bigtable, MongoDB, CouchDB, 
Neo4j, and DynamoDB. Firestore and Cloud Bigtable are Google Cloud NoSQL offerings, and both 
databases are fully managed. Cloud Bigtable is a petabyte-scale wide-column database that powers 
many core Google services, such as Search, Analytics, Gmail, and Maps.

In the upcoming sections, we will cover some feature highlights and the hands-on fundamentals of 
setting up a Firestore database for a sample application.

Note:
Please be advised that certain features and services described in the following sections may 
have undergone modifications since the time of drafting. The screenshots may look different 
from what you see in the book. APIs and versions may have been updated by the time you are 
reading this. As such, kindly exercise flexibility and adapt your steps accordingly.

Additionally, some services may incur charges if they are outside the free tier (if applicable). 
Therefore, it is recommended to be aware of the services you are enabling and to delete or deactivate 
services and instances that are no longer required for learning or demonstration purposes.

Firestore and its features
Firestore is a serverless document database that scales easily and flexibly to meet any growing demand 
with no maintenance. In the Firestore database, data is stored as documents that are organized into 
collections. Documents contain subcollections, nested objects, and complex objects such as lists. 
If you don’t start by creating a collection or document for your use case, Firestore automatically 
creates it as needed. The following are some key features that stand out to me in using Firestore as  
a document database:

•	 Firestore, being fully managed and serverless, allows developers to focus fully on application 
development and effortlessly scale up and down without any maintenance or downtime.



Setting up Firestore 95

•	 Since it supports live sync and offline mode, it is ideal for mobile and web applications in several 
real-time use cases and remote low-accessibility situations.

•	 The powerful query engine allows you to run ACID transactions on document data.

•	 It offers support for several client libraries and server-side libraries.

•	 It has customizable identity-based access controls and integration with the Firebase authentication 
and identity platform.

•	 It has automatic multi-region replication support.

•	 Strong consistency and high availability (99.999%, which is the best in the industry) are 
guaranteed. Strong consistency is a property of a database system that ensures that when 
data is read from the database after a write operation, the read will always return the most 
recent and up-to-date version of the data. In other words, if multiple users or applications 
are accessing and modifying the same data concurrently, strong consistency guarantees that 
every read operation will reflect the effects of all previous write operations in the order they 
were performed. This level of consistency is crucial for applications where data accuracy and 
correctness are paramount, such as financial systems or critical healthcare databases. However, 
achieving strong consistency can sometimes come at the cost of increased latency or reduced 
availability, as the database system may need to wait for acknowledgments from multiple 
servers to ensure consistency. High availability in a database system refers to its ability to 
remain operational and accessible even in the face of hardware failures, network issues, or 
other unforeseen events. It is achieved through redundancy and fault-tolerant design. High 
availability ensures that users and applications can continue to interact with the database and 
retrieve data even when some components of the system are experiencing problems. Firestore, 
for instance, provides high availability through data replication across multiple data centers or 
regions. This means that even if one data center or server becomes unavailable, the system can 
continue to serve requests from other available locations, minimizing downtime and ensuring 
uninterrupted access to data.

In the next section, we will learn how to set up your application-supporting document data to use 
the Firestore database for operations.

Setting up Firestore
If you are new to Google Cloud, first of all, go to Google Cloud Console (https://console.
cloud.google.com/), select your organization, and create a new Google Cloud project with 
billing enabled.

You can follow the instructions here:

https://cloud.google.com/resource-manager/docs/creating-managing-
projects

https://console.cloud.google.com/
https://console.cloud.google.com/
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/resource-manager/docs/creating-managing-projects


Designing for Semi-Structured Data96

All the following steps can be done with Command Shell commands or in Google Cloud Console:

1.	 In the Google Cloud Console, search for Firestore in the search bar.

2.	 From the Firestore Viewer page, in the Select a cloud Firestore mode screen, select Firestore 
in Native mode: https://console.cloud.google.com/firestore/.

3.	 Select a location for your Firestore data. Remember that this choice is permanent.

4.	 Click on Create database.

5.	 When you create the Firestore project, the Firestore API is enabled.

6.	 Once you set this up, you should be able to see the database, collection, and document view where 
you can add the collection, document, and subcollection, as represented in the following figure:

Figure 6.1 – Firestore Data panel view

This figure represents the structure of the data stored in the Firestore collection poses, its documents 
(the selected document is halasana), and its subcollection fitness_part.

In Figure 6.1, the object underlined by a black line is the collection that acts as containers for the 
documents. The one underlined in red refers to the documents that are contained within a collection. 
Then, for each document, there are fields represented by key-values, underlined in blue. Documents 
can also contain subcollections, which you can find underlined in green.

The following figure shows the structure of the fitness_part subcollection, its spine document, 
and its corresponding field:

https://console.cloud.google.com/firestore/


Setting up Firestore 97

Figure 6.2 – Firestore Data Panel View showing the subcollection fitness_part

Let’s discuss the components of this dataset in detail.

Collection

Collections contain documents and nothing more. Collections cannot contain raw fields and values 
or other collections. In the sample record, we created in the preceding figure, poses is the collection, 
and it is supposed to contain different Yoga postures as its documents.

Document

Documents are lightweight JSON records, and they contain data in key-value pairs of different data 
types. They can contain subcollections, nested objects, primitive type fields, complex objects (such 
as lists), and maps. In our sample record, we have a document under poses named halasana. It 
has the breath, name, and posture keys with respective values of exhale, halasana, and 
lying down.

Subcollection

Subcollections are collections associated with a specific document, and they allow the data to be 
structured hierarchically and nested. In our sample record, under the halasana pose, we have 
created a collection named fitness_part, which is the subcollection that has the document with 
the part key and the value of spine.

Now that we have understood the components of the semi-structured dataset in Firestore, let’s move 
on to other key design aspects.



Designing for Semi-Structured Data98

Security
After we have configured the database and set up sample collections and objects, it is important 
to provision security rules for your data to control access. Firestore offers two types of security, 
authentication, and access control methods depending on your choice of client libraries:

•	 Mobile and web client libraries: These are Firebase authentication and security rules that 
perform serverless authentication, authorization, and data validation

•	 Server client libraries: Identity and access management (IAM) is a method of access control 
for your database

You should be able to create, edit, and monitor security rules easily from the Firebase interface. Follow 
this link to get started: https://cloud.google.com/firestore/docs/security/
get-started.

You can read more about it in this documentation: https://cloud.google.com/firestore/
docs/security/overview.

Remember to always test and monitor your security rules before deploying or rolling out your 
application from the development phase.

Client libraries and APIs
Firestore supports several mobile and web SDKs, server client libraries, Admin SDKs, Google Cloud 
client libraries, REST APIs, and other third-party library integrations.

Reference their documentation for finding your language or platform-specific sample and library in 
the documentation:

https://cloud.google.com/firestore/docs/reference/libraries

If you’d like to try out a sample web application that I built using Firestore REST API on a Java Spring 
Boot framework, check out this project:

https://github.com/AbiramiSukumaran/firestore-project

https://cloud.google.com/firestore/docs/security/get-started
https://cloud.google.com/firestore/docs/security/get-started
https://cloud.google.com/firestore/docs/security/overview
https://cloud.google.com/firestore/docs/security/overview
https://cloud.google.com/firestore/docs/reference/libraries
https://github.com/AbiramiSukumaran/firestore-project


Indexing 99

Indexing
A database index helps connect items to their locations. It is used to improve the speed of search 
in queries. If the index does not exist, databases typically search for items one by one. But Firestore 
supports high-performance queries by indexing all your queries, which means the following:

•	 Indexes for your basic queries are all automatically created for you

•	 Query performance is dependent on query results and not on the record volume in the database

•	 There are the two types of indexes:

	� A single-field index is an ordered mapping of all the documents in a collection consisting 
of a specific field

	� A composite index is also an ordered mapping of documents, but it is based on an ordered 
list of fields to index (basically field-combinations as opposed to one specific field)

•	 A collection group query refers to the hierarchy of collections, documents, subcollections, 
and so on, and querying such collection groups is possible through collection group indexes

Let’s look at these indexes in a little more detail.

Single-field index

A single-field index in Firestore is a database index created on a single field within a document:

•	 It is used to optimize queries that involve filtering, sorting, or ordering data based on a specific field.

•	 Single-field indexes are automatically created for fields (and subfields) you query on, but you can 
also create custom single-field indexes for frequently used fields to improve query performance.

•	 Firestore allows querying for documents based on equality, inequality, or range conditions 
using single-field indexes.

•	 Single-field indexes are essential for efficiently retrieving data and are a fundamental part of 
Firestore’s query performance optimization.

•	 You can also choose to create a single-field index exemption to exclude any field from your 
automatic index settings. It also overrides the database-wide default indexing setting.



Designing for Semi-Structured Data100

The following figure shows single-field indexes created for the collection we created:

Figure 6.3 – Firestore Indexes: single-field indexes

As you can see in the figure, a single-field index has been created for all fields, one for each (ascending, 
descending, and array contain queries), automatically enabling most simple queries by default. You 
can also note that in the Exemptions section, you can exclude fields from the automatic index settings.

Composite index

A composite index in Firestore is an index that combines multiple fields within a document to optimize 
complex queries. It has the following properties:

•	 It is used when you need to filter or sort data based on multiple fields simultaneously.

•	 Composite indexes are manually created, and Firestore requires you to define them explicitly 
for compound queries involving more than one field.

•	 These indexes help Firestore execute complex queries efficiently by reducing the need to scan 
all documents and enabling faster data retrieval.

•	 When you attempt to execute a compound query without a pre-existing composite index, 
Firestore will prompt you to create one to ensure query performance.

•	 You can also choose to create a single-field index exemption to exclude any field from your 
automatic index settings. It also overrides the database-wide default indexing setting.



Indexing 101

The following figure shows composite indexes created for the collection we created:

Figure 6.4 – Firestore Indexes: composite indexes

As you can see in the figure, the composite indexes that I created are already listed in the composite 
indexes section. You can create a new composite index by clicking the CREATE INDEX button and 
entering the details required in the Create a composite index popup.

Collection group query

A collection group query is a powerful feature in Firestore that allows you to query across multiple 
collections with the same name:

•	 It is used when you want to search for documents in multiple collections with similar structures

•	 Collection group queries are handy for scenarios such as retrieving all user comments from 
various subcollections or accessing data distributed across different parts of your database

•	 These queries enable you to efficiently search and aggregate data across collections with a 
common name, making it easier to work with related data spread across your Firestore database

•	 Collection group queries are performed by specifying the collection name as a target and can 
be combined with filters and sorting to retrieve the desired data

•	 If a query is executed without the required index in place, Firestore fails it and provides a link 
to create the index automatically



Designing for Semi-Structured Data102

The following figure shows the collection group query option for the collection we created:

Figure 6.5 – Firestore Indexes: Collection group option

As you can see in this figure, in the Create a composite index pop-up, you can choose the Collection 
group option to enable queries across all collections with the same collection ID.

Firestore’s indexing, including single-field and composite indexes, and collection group queries 
empower developers to efficiently retrieve and manipulate data in a flexible and scalable manner while 
maintaining control over query performance.

Data model considerations
When it comes to the data model design choice, we always struggle to choose between a hierarchical 
(collection group) format and a format closer to a denormalized form (top-level collection) of storing 
data. Before we get into that, let’s talk about the hierarchical and denormalized formats!

Hierarchical format

The hierarchical format represents information in a structured, nested format. This format is ideal 
for scenarios where data has clear parent–child relationships or when you want to maintain a well-
defined structure. The following is an example of hierarchical data using JSON to represent an 
organizational hierarchy:

{
  "organization": {
    "name": "XYZ Corporation",
    "departments": [



Data model considerations 103

      {
        "name": "HR",
        "employees": [
          {
            "name": "Alice",
            "position": "HR Manager"
          },
          {
            "name": "Bob",
            "position": "HR Specialist"
          }
        ]
      },
      {
        "name": "Engineering",
        "employees": [
          {
            "name": "Charlie",
            "position": "Engineering Manager"
          },
          {
            "name": "David",
            "position": "Software Engineer"
          }
        ]
      }
    ]
  }
}

Denormalized format

The denormalized format combines related data into a single structure to optimize for read operations 
and reduce the need for complex joins in database queries. It’s often used in scenarios where read 
performance is critical, but it can result in data duplication. The following is an example of denormalized 
data in a database table for an e-commerce website:

[
  {
    "order_id": 1,
    "customer_name": "Alice",
    "product_name": "Widget A",
    "quantity": 5,



Designing for Semi-Structured Data104

    "price": 10.99,
    "order_date": "2023-10-06"
  },
  {
    "order_id": 2,
    "customer_name": "Bob",
    "product_name": "Gadget B",
    "quantity": 3,
    "price": 19.95,
    "order_date": "2023-10-07"
  }
]

In this denormalized JSON structure, each object represents an order with all relevant data, including 
customer information and product information, combined into a single structure. This approach 
optimizes read operations because all the required data is readily available in each object. However, 
it may result in data redundancy if multiple orders share the same customer or product details.

The choice depends on your business requirements. But remember the following:

•	 If you are going to query your documents with a common parent and expect to rarely use the 
cross-collection query, go with the subcollection collection group format and enable collection 
group indexes as the scope for your query

•	 If your application involves a lot of cross-collection query, choose the top-level collection 
structure as the scope for your query

Now that we have learned hands-on how to set up and create a Firestore database and understood its 
components, indexes, and data model design consideration, let’s find out how to query semi-structured 
data using the RunQuery API method that Firestore offers.

Easy querying with RunQuery API
Firestore offers a straightforward way to query your data using a REST API-based mechanism called 
the RunQuery API. This API allows you to retrieve specific data from your Firestore database using 
HTTP requests.

API endpoint and method

To use the RunQuery API, you make a POST request to the following endpoint:

https://firestore.googleapis.com/v1/{parent=projects/*/databases/*/
documents}:runQuery



Easy querying with RunQuery API 105

The parent parameter

In the API request, you’ll need to provide the parent parameter with a value in this format:

projects/{project_id}/databases/{databaseId}/documents

Replace {project_id} and {databaseId} with your specific project and database identifiers.

JSON body format

The request body should be in JSON format and include the structuredQuery object, which defines 
the specifics of your query. The structuredQuery object contains various query parameters, such 
as select, from, where, orderBy, startAt, endAt, offset, and limit.

The JSON body format is as follows:

{
  "structuredQuery": {
    object (StructuredQuery)
  },
  // Union field consistency_selector can be only one of the 
following:
  "transaction": string,
  "newTransaction": {
    object (TransactionOptions)
  },
  "readTime": string
  // End of list of possible types for union field consistency_
selector.
}

StructuredQuery

The StructuredQuery section is where you define your query using a JSON object with specific fields:

•	 select: This specifies which fields or projections you want to retrieve

•	 from: This identifies the collections or documents you want to query from

•	 where: This allows you to set filter conditions for your query

•	 orderBy: This specifies the sorting order for the results

•	 startAt and endAt: These define the cursors to paginate through results

•	 offset and limit: These control the number of results returned and the starting point 
for pagination



Designing for Semi-Structured Data106

The structure of StructuredQuery is as follows:

{
  "select": { object (Projection) },
  "from": [ {  object (CollectionSelector)   } ],
  "where": { object (Filter)  },
  "orderBy": [  { object (Order)  } ],
  "startAt": { object (Cursor) },
  "endAt": { object (Cursor) },
  "offset": integer,
  "limit": integer
}

The from clause

Within the from clause, you specify the collection or document you want to query from. The 
collectionId parameter indicates the collection name, and allDescendants is a Boolean 
flag that determines whether to include documents from all descendant collections:

 {
  "collectionId": string,
  "allDescendants": boolean
}

The where clause

The where clause allows you to filter your query based on specific criteria. It comprises three 
main components:

•	 Object: This represents the field you want to filter on

•	 Op: This defines the operator (e.g., equality, inequality) for comparison

•	 Value: This specifies the value you want to compare the field against

Putting the pieces together

Putting them together, let us construct a sample JSON input for our poses collection:

{
    "structuredQuery": {
      "select":
      {
        "fields":  [
        {



Easy querying with RunQuery API 107

          "fieldPath": "name"
        },
        {
          "fieldPath": "breath"
        },
        {
          "fieldPath": "posture"
        }
      ]
      },
        "from": [{
              "collectionId": "poses"
         }
        ]
    }
}

We have written an HTTP RunQuery method query input for selecting the field name, breath, and 
posture from the poses collection without any where clause filter condition.

To test this, let’s create a simple curl command with a POST method to the URL we created:

curl --header "Content-Type: application/json" \
  --request POST \
  --data '{"structuredQuery": {"select":{"fields":  [{ "fieldPath": 
"name"}, { "fieldPath": "breath"}, { "fieldPath": "posture" }] }, 
"from": [{"collectionId": "poses" } ] } } ' \
"https://firestore.googleapis.com/v1/projects/<<YOUR_PROJECT_ID>>/
databases/(default)/documents:runQuery"

Click on the Activate Cloud Shell icon (circled in Figure 6.6) to open the Cloud Shell terminal. Copy 
and paste your curl command and hit Enter to run the CURL command, as shown here:

Figure 6.6 – Cloud shell terminal with the curl command (1)



Designing for Semi-Structured Data108

You should see the result in the following figure:

Figure 6.7 – Cloud shell terminal with the curl command (2)

Go ahead and try more queries or modify this query by introducing a where clause and check the 
query results for yourself!

Implementing RunQuery API programmatically
Now, let’s invoke this Firestore RunQuery API programmatically by implementing this in a standalone 
application that is deployed serverlessly on Google Cloud. After reading Chapter 4, Setting Up a Fully 
Managed RDBMS, you should be familiar with the steps involved in setting up Cloud Functions. If 
not, go to the Create an application with the cloud database section in Chapter 4, Setting Up a Fully 
Managed RDBMS and follow the instructions to create a Java Cloud Functions application.

Replace the pom.xml dependencies section with the following dependencies to include the libraries 
required for this implementation:

<dependency>
     <groupId>com.google.cloud.functions</groupId>
     <artifactId>functions-framework-api</artifactId>
     <version>1.0.4</version>
   </dependency>
<dependency>
  <groupId>org.springframework</groupId>



Implementing RunQuery API programmatically 109

  <artifactId>spring-web</artifactId>
  <version>5.0.2.RELEASE</version>
</dependency>

Replace the HelloHttpFunction.java class with the following code. This is the class in which we will 
implement the Firestore RunQuery API invocation to execute the SELECT statement programmatically:

package gcfv2;
import java.io.BufferedWriter;
import com.google.cloud.functions.HttpFunction;
import com.google.cloud.functions.HttpRequest;
import com.google.cloud.functions.HttpResponse;
import org.springframework.http.HttpHeaders;
import org.springframework.http.MediaType;
import org.springframework.http.HttpEntity;
import org.springframework.http.ResponseEntity;
import org.springframework.http.RequestEntity;
import org.springframework.http.HttpMethod;
import org.springframework.web.client.RestTemplate;
import java.util.Arrays;

/*
This is the HelloHttpFunction class that implements the HttpFunction 
interface.
*/
public class HelloHttpFunction implements HttpFunction {
  public void service(final HttpRequest request, final HttpResponse 
response) throws Exception {
    final BufferedWriter writer = response.getWriter();
/*
Call the callURL method that has the API invocation steps.
*/
    writer.write(callURL());
  }
/*
The callURL() method calls the Firestore RunQuery API to execute the 
SELECT statement and returns the JSON string with the result of the 
query.
*/
public String callURL(){
   try{
        String paramString = "https://firestore.googleapis.com/v1/
projects/<<YOUR_PROJECT_ID>>/databases/(default)/documents:runQuery";
        String jsonString = "{\"structuredQuery\": 
{\"select\":{\"fields\":  [{ \"fieldPath\": \"name\"}, { 



Designing for Semi-Structured Data110

\"fieldPath\": \"breath\"}, { \"fieldPath\": \"posture\" }] }, 
\"from\": [{\"collectionId\": \"poses\" } ] } }";
        System.out.println("paramString: " + paramString);
        System.out.println("JSON: " + jsonString);
        HttpHeaders headers = new HttpHeaders();
        headers.setAccept(Arrays.asList(MediaType.APPLICATION_JSON));
        HttpEntity<String> entity = new HttpEntity<>(jsonString, 
headers);
    RestTemplate restTemplate = new RestTemplate();
        ResponseEntity<String> result = restTemplate.
exchange(paramString, HttpMethod.POST, entity, String.class);
        System.out.println(result);
        return result.toString();
        }catch(Exception e){
            System.out.println("EXCEPTION in edit" + e);
            return "errmessage";
        }
     }
}

Click the DEPLOY button to deploy it and get the HTTPS REST endpoint for the serverless Cloud 
Function. Click the URL and see the query result as a JSON string in your browser, as shown here:

Figure 6.8 – JSON response for the query invoked in a Cloud Function

Feel free to process the JSON and use it in your application. Also, as an exercise, try including the 
where clause and other constructs in your query.



Summary 111

Summary
In this chapter, we explored semi-structured data and its fundamental aspects, real-world use cases, 
and design considerations. Semi-structured data, characterized by its adaptability and hierarchical 
nature, bridges the gap between structured and unstructured data, making it an invaluable resource 
in today’s data-driven landscape.

We then talked about NoSQL databases, which are designed to handle semi-structured and unstructured 
data efficiently. These databases prioritize robust design, flexibility, and high availability. We explored 
the principles of consistency, availability, and partition tolerance, which are crucial for distributed 
data stores.

Firestore, a serverless document database, stood out as a prime example of a NoSQL database. Its 
features, including scalability, strong consistency, and multi-region replication, make it a top choice 
for various applications. The chapter also shed light on Firestore’s data model, indexing techniques, 
and collection group queries, which enable developers to optimize data retrieval while maintaining 
control over query performance.

As we wrap up this chapter, remember that the choice between hierarchical and denormalized data 
models depends on your specific business needs. Whether you choose subcollections or top-level 
collections, Firestore offers powerful querying capabilities through its RunQuery API, as demonstrated 
in our practical examples.

With a solid understanding of semi-structured data and Firestore’s capabilities, you are well-equipped 
to utilize flexible data structures in your applications. I encourage you to build a simple web application 
and integrate it with the data model we just created.

In the upcoming chapter, we will learn all about unstructured data, its storage, and its design considerations.





7
Unstructured Data 

Management

Unstructured data is said to constitute a huge portion of data generated today. Some industry studies 
say at least 85% of data available today is unstructured. So, what is this unstructured data? Data with 
no predefined external structure in the form of a schema or table (rows and columns), object structure 
(JSON, XML, and so on), or data model is termed unstructured data, even though such data can have 
an internal structure. It can be generated by machines, humans, or applications.

Some common examples and sources of unstructured data are images, audio, video, files, and rich 
media. The fact that it is not constrained by fixed schema and is flexible for analyzing and drawing 
insights from raw data as-is is one of the major advantages of this type of data management. However, 
industries and organizations are not able to take full advantage of data of this kind for many reasons:

•	 The complexity involved in terms of data storage, management, processing, analytics, and inference

•	 Limited availability of infrastructure and resources required to handle the integration of such 
unstructured data with the existing applications and data

•	 Unavailability of talent and expertise required to handle this management and integration

•	 Scaling (a few bytes to terabytes) and high availability become a challenge as the data grows 
exponentially and the unconventional methods and sources from which the data is ingested

•	 Querying, performing basic analytics, advanced machine learning, and prediction become 
difficult with the unconventional formats, size, and volume of unstructured data

So, how can we prepare to use this kind of data in applications? That is exactly what we will discuss 
in detail here while covering the following topics:

•	 Use cases and real-world applications

•	 Services available for processing unstructured data

•	 Diving deep into Google Cloud Storage for storing and managing unstructured data



Unstructured Data Management114

•	 Storing and managing unstructured data with BigQuery

•	 Analytics and insights into unstructured data with BigQuery

We will discuss these topics by providing real-world examples and step-by-step guides to hands-on 
exercises, similar to what we’ve done previously in this book.

Use cases

Unstructured data is generated in the real world in the form of social media posts, tweets, IoT data, 
camera feeds, movies, music, AI-generated data, and more. Organizations and businesses can use this 
kind of data to solve problems transactionally and also to derive analytical insights. Some transactional 
applications use unstructured data for the following reasons:

•	 Verify biometric information such as facial recognition for checked-in passengers in airports

•	 Process music and video files to identify songs, videos, and faces

•	 Image classification and identification

•	 Video and audio suggestions and personalization

•	 Behavior-based usage prediction

•	 Behavior-based fraud detection

•	 Posture detection and tracking in sports and fitness applications

•	 Movement and symptoms-based health alert generation and tracking

Analytical applications for unstructured data are unlimited as organizations have the potential to 
scale, evolve, and transform their businesses with the analysis and insights from unstructured data.

Processing unstructured data

Unstructured data can be stored and managed as-is in object storage services. However, the problem 
with object storage is the cost and complexity involved in the storage, access, and archival strategy for 
unstructured data. Since most applications that use unstructured data involve searching, we also have 
to think about indexing options for such forms of data. Depending on the type of unstructured data 
you want to store (files, blocks of VMs or databases, images, videos, and so on), the type of application 
you are dealing with for processing (mobile apps, analytical apps, transactional web applications, and 
so on) and the purpose of its usage (storage, archival, backup and disaster recovery and transfer, and 
so on), there are several services of unstructured data to choose from.

In the next section, we will look at some of the Google Cloud options available for unstructured 
data design.



Storage options in Google Cloud 115

Storage options in Google Cloud
In Google Cloud, there are several options for unstructured data storage, depending on your 
requirements, format, and purpose of application or storage. Let’s look at a few:

•	 Cloud Storage: Cloud Storage is a fully managed object storage service in Google Cloud that 
allows you to store any type, duration, and volume of data. It is mainly used in service use cases 
such as streaming videos, images for web applications, and data storage in data lakes.

•	 Filestore: It is a fully managed high-performance service for file storage that supports  
high-performance scalability, high availability, backup, and security.

•	 Block Storage: It is a fully managed, high-performance persistent disk for virtual machines. 
High scalability, pay-per-use, high flexibility, and high performance are some of the key features 
of Block Storage.

•	 Storage Transfer Service: To transfer data across multiple services and service providers quickly 
and securely, Google Cloud provides Storage Transfer Service or Data Transfer Service, which 
moves data from cloud to cloud, on-premises to the cloud, and between Cloud Storage buckets.

•	 BigQuery: BigQuery allows you to store, reference, query, and perform analytics on unstructured 
data (images, videos, and so on) by integrating smoothly with Cloud Storage using external 
connection and object table (external table) features. This means that besides being able to take 
advantage of the fact that you can query structured, semi-structured, and unstructured data 
independently, you can unify and integrate this data under one roof (BigQuery). This opens 
up new opportunities for businesses to take advantage of handling all formats of data together, 
easing the integration step and also improving the precision and accuracy of machine learning 
(ML) and advanced analytics results.

In this chapter, we will cover two of my favorite fully managed Google Cloud services for handling 
unstructured data storage and management. Besides being my absolute favorites, there is another 
reason for these services to have been shortlisted in the discussion here: since we are focusing on 
databases and data modeling in this book, I want to deep dive into SQL-driven application options, 
irrespective of the structure and type of your data source.

Note: 
Please be advised that certain features and services described in the following sections may 
have undergone modifications since the time of drafting. The screenshots may look different 
from what you see in the book. APIs and versions may have been updated by the time you are 
reading this. As such, kindly exercise flexibility and adapt your steps accordingly.

 Additionally, some services may incur charges if they are outside the free tier (if applicable). 
Therefore, it is recommended to be aware of the services you are enabling and to delete or deactivate 
services and instances that are no longer required for learning or demonstration purposes.



Unstructured Data Management116

Cloud Storage, classes, and features

Cloud Storage is one of the most preferred fully managed services for companies of all sizes to store 
and retrieve objects that are in an unstructured format. Cloud Storage stores your objects in containers 
called buckets. Let’s take a hands-on journey through this simple and powerful service for handling 
unstructured objects.

Before we jump into the actual steps, please make sure you complete the following prerequisites:

1.	 Set up a Google Cloud Platform account: If you don’t already have one, sign up for a Google 
Cloud Platform (GCP) account at https://console.cloud.google.com/. Create 
a new project or select an existing project to work with. Make sure that billing is enabled for 
your project. You can follow the instructions here to create a new project or select an existing 
one: https://cloud.google.com/resource-manager/docs/creating-
managing-projects.

All the steps mentioned here can be completed with Command Shell commands or via Google 
Cloud Console.

2.	 Enable APIs: Next, we need to enable a few APIs. To enable the required APIs in the GCP 
Console, navigate to the project you’ve selected:

A.	 Go to the APIs & Services section.

B.	 Click the ENABLE APIS AND SERVICES button.

C.	 Enable the Cloud Storage API, BigQuery API, and BigQuery Connection API options.

As you progress through this exercise and experiment further, you will have to enable the APIs for 
all the Google Cloud services you are engaging with. It is pretty self-explanatory to do so when you 
follow the console prompts.

Follow these steps to create your unstructured objects in Cloud Storage:

1.	 Open the Google Cloud console and search for Cloud Storage, as shown in the 
following screenshot:

https://console.cloud.google.com/
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/resource-manager/docs/creating-managing-projects


Storage options in Google Cloud 117

Figure 7.1: Search result for Cloud Storage in the Google Cloud console

2.	 Go to the Cloud Storage Buckets page and click CREATE. The Create a Bucket page will 
open, as shown here:

Figure 7.2: The Create a Bucket page in Cloud Storage



Unstructured Data Management118

3.	 On the Create a Bucket page, enter your preferred bucket name, region, and other details and 
create it:

Figure 7.3: The Create a Bucket page with details entered

4.	 Once the bucket has been created, you can store your images, videos, and other files inside it 
by simply clicking the UPLOAD FILES/UPLOAD FOLDER option, as shown here:



Storage options in Google Cloud 119

Figure 7.4: The UPLOAD FILES and UPLOAD FOLDER options

5.	 Alternatively, you can store your objects in the bucket through Cloud Shell commands or 
programmatically. The following screenshot shows the gsutil URI option for the bucket. You 
will use this in the Cloud Shell command or your program:

Figure 7.5: The Cloud Storage Bucket page with gsutil URI highlighted



Unstructured Data Management120

As we can see, the gsutil URI part of the bucket we just created (gs://bucket-demo-gc) will be used 
to reference this bucket and the objects it contains in all of its applications.

Cloud Storage supports four classes of storage options:

•	 Standard storage: This storage is used for data that is accessed transactionally and stored for 
shorter periods of time. It is mostly used by applications streaming videos, audio, websites, 
and mobile apps.

•	 Nearline storage: This class of storage is for data that is accessed less frequently and that needs 
to be stored for 30 days. This option is cheaper than the standard storage class.

•	 Coldline storage: Coldline storage is similar to nearline storage in terms of access frequency 
and is suitable for data that needs to be stored for 90 days. This costs less than coldline storage.

•	 Archival storage: Archival storage is the lowest-cost storage class option available and is 
suitable for data that can be stored for a year and for archival, backup, and recovery purposes.

Considering your applications’ business, functional, and technical requirements, the cost involved, 
and compliance specifications, you should be able to choose the storage option and configurations 
that work best for you.

There are some features where Cloud Storage stands out:

•	 Cloud Storage helps you save costs by allowing automatic storage class transitions. It does this 
by enabling policy-based automatic object movement to colder storage.

•	 Cloud Storage has a high replication and short recovery time, so applications can access data 
in alternate regions in case of outages.

•	 Configurable security features in terms of access policies, encryption, retention policies, and more.

•	 Since this storage class keeps your unstructured objects on Google Cloud, it has direct integration 
with all leading serverless, analytics, and AI/ML services.

•	 With BigQuery supporting unstructured data storage and analytics, Cloud Storage enables that 
by connecting to BigQuery using an external connection with BigLake.

In the next section, we will discuss how BigQuery provides a structured way to store and manage 
unstructured data.

Unstructured data storage with BigQuery
BigQuery supports unstructured data storage and management using object tables. The exciting part 
for me about this is that you can store unstructured data such as relational data and reference it in 
rows and columns with structured queries.



Unstructured data storage with BigQuery 121

External sources

External sources such as Cloud Storage house unstructured data while the data is accessed in BigQuery 
with metadata fields and references to the unstructured objects. BigQuery uses object tables to achieve 
this. Object tables are read-only tables over unstructured data that you have stored in Cloud Storage. 
These tables allow you to analyze the unstructured data just like you would do with regular structured 
data. You can perform analytics and ML, use other ML models on this data, and join the results with 
structured data in BigQuery. This helps you improve the accuracy of your model, gain deep insights, 
and make informed decisions based on the combination of structured and unstructured data.

External connections

Object tables are built on BigLake. You need an external connection to connect to and access the objects 
in Cloud Storage. You can do this with a service account, after which you can access your Cloud Storage 
data. You can use these connections to perform queries on external data sources without copying the 
data over to BigQuery. This external connection can be created from the BigQuery console by clicking 
the ADD button in the Explorer pane of the BigQuery console:

Figure 7.6: The ADD button in the Explorer pane in the BigQuery console

Once you’ve clicked the ADD button (highlighted in the preceding screenshot), click Connections to 
external data sources on the page that opens. This is highlighted in the following screenshot:

Figure 7.7: Connections to external data sources highlighted in the Add step



Unstructured Data Management122

Select BigLake and remote functions (cloud resource) from the list of options that appear once 
you click the Connections to external data sources option, provide your Connection ID, and hit 
CREATE CONNECTION:

Figure 7.8: The External data source page showing the CREATE CONNECTION button



Unstructured data analytics with BigQuery 123

Once the connection has been created, go to the newly created connection by clicking on the GO 
TO CONNECTION button as soon as the connection gets created, or by navigating to the External 
connections section under the project in the Explorer pane. You can view the Service account id 
details in the Connection Info section of the external connection:

Figure 7.9: The Connection Info section

In the next section, we will learn how to store unstructured objects in Cloud Storage buckets and 
query them from BigQuery using object tables and external connections.

Unstructured data analytics with BigQuery
In this section, we will put the theory of storing unstructured data in BigQuery and querying it into 
action. If you are wondering why we are storing unstructured data in BigQuery, refer to the Storage 
options in BigQuery section:

1.	 Go to Cloud Storage from the Google Cloud console and select the bucket we created 
previously (bucket-demo-gc).

2.	 Click Upload Files under the Objects section and select your files.

3.	 Once the upload is complete, you should be able to see the files in the bucket, as shown here:



Unstructured Data Management124

Figure 7.10: The Cloud Storage Bucket page with its objects listed

4.	 Head over to the BigQuery console by searching for it in the Google Cloud console and enable 
the APIs as required (it is pretty self-explanatory with the console prompts).

5.	 Create a dataset by clicking the three dots next to your project name and click Create data set.



Unstructured data analytics with BigQuery 125

6.	 Provide your Data set ID, Location type, and other details, and click CREATE DATA SET:

Figure 7.11: BigQuery’s Create data set page

7.	 Remember the external connection steps we discussed in the previous section? Make sure your 
dataset and the external connection are in the same region.

8.	 A service account ID will be created as part of the external connection. You have to grant the 
necessary permissions to this service account to be able to access the images stored in Cloud 
Storage. You can do so using the following Cloud Shell commands:

export sa=<<"SERVICE_ACCOUNT">>
gsutil iam ch serviceAccount:$sa:objectViewer "gs://bucket-
demo-gc"



Unstructured Data Management126

9.	 Remember the Cloud Storage bucket gsutil URI you noted? Copy that for the query in the 
next step.

10.	 You can create the object table using the following query:

CREATE OR REPLACE EXTERNAL TABLE `unstructured_dataset.test_
table`
WITH CONNECTION `us.unstructured-data-conn`
OPTIONS(
object_metadata="SIMPLE", uris=["gs://bucket-demo-gc/*.jpg"]);

11.	 This creates the object table and the references to the unstructured objects (images) stored in 
Cloud Storage buckets, as shown here:

Figure 7.12: BigQuery object table schema

12.	 Use the following query to view the table’s contents:

SELECT * FROM `unstructured_dataset.test_table` Limit 1;



Unstructured data analytics with BigQuery 127

You can validate the table’s content with the query results, as shown here:

Figure 7.13: The BigQuery SQL editor pane

Another way to visually interpret the result is to export the results that are displayed in the preceding 
screenshot to a CSV file. You should be able to upload the results to a CSV file by clicking on the SAVE 
RESULT option above the result set. Alternatively, you can query and extract results programmatically 
in your favorite programming language.

Are you intrigued yet about visually validating the result set stored in the CSV file? Let’s try it out in 
a small Python code snippet so that we can view the data as an image.

Go to https://colab.research.google.com/ and open a new notebook by clicking New 
Notebook from the File menu. Copy and paste the following code into a cell, update <<your_csv>> 
with the CSV file extracted in the previous step, and run the cell’s contents:

from IPython.display import display
from PIL import Image
import io
import pandas as pd
import base64
df = pd.read_csv('/content/sample_data/<<your_csv>>')
imgdata = base64.b64decode(str(df.data[0]))
image = Image.open(io.BytesIO(imgdata))
display(image)

https://colab.research.google.com/


Unstructured Data Management128

This resulted in the Yoga Pose image I was querying from the object table:

Figure 7.14: Query result as an image using a Python code snippet executed from the Colab editor

If you have a structured data table, you can unify structured and unstructured data in a single query 
using a join query:

SELECT SPLIT(uri, "/")[OFFSET(ARRAY_LENGTH(SPLIT(uri, "/")) - 2)] as 
pose,
a.health_benefit, breath, focus, data

The ability to unify structured and unstructured data with minimal effort and query them together gives 
organizations the power to derive impactful insights, which has been difficult to achieve traditionally.



Summary 129

Summary
Unstructured data has most certainly found its way through the heart and soul of every business these 
days. To take advantage of the data that is available to your business, irrespective of its size, format, 
structure, and source, you should ensure you have made the right design decisions for the storage 
service of your choice and the application that leverages it for your business. Keep in mind that the role 
of technology and platform providers when handling unstructured data should always be as follows:

•	 To enable businesses to get the most value out of their data by leveraging sources of all formats 
and types

•	 To manage and operate these services with efficient and automatic scaling, monitoring, encryption, 
security, and more, lifting the burden off of the shoulders of businesses

•	 To smoothly integrate across platforms, programming languages, and services, providing the 
business with diverse options to choose from while it’s designing its applications

The unstructured data storage and processing services we chose to discuss in this chapter cater to the 
three crucial design expectations that I listed here.

This is where the use cases, hands-on guides, and exercises in this chapter will come in handy. If you 
have a use case with unstructured data in your application, try one of the services we discussed here. 
If you are a beginner at unstructured data hands-on usage, choose one from the list covered in the 
Use cases section of this chapter and try to implement a demo application for it.

In the upcoming chapter, we will discuss database operations, DevOps, and data modeling for 
advanced analytics.





Part 4: 
DevOps and Databases

This part covers various design considerations, best practices, and tips for performance in DevOps. 
You will also learn about continuous integration and how it will help you in working with databases.

This part has the following chapters:

•	 Chapter 8, DevOps and Databases





8
DevOps and Databases

Just like with applications and other components of software engineering, databases also have a set of 
operational considerations and requirements. Starting from database setup, replication, backup, user 
access control configuration, monitoring, updates, patching, scalability, availability, resilience, disaster 
recovery, privacy, localization, performance, throughput, archival up to CI/CD, orchestration, and 
more, databases has its own laundry list of administrative demands. With the cloud, a vast majority 
of this list becomes automatic and fully managed by the service provider.

In this chapter, we will take a look at some of these attributes:

•	 Upgrades, updates, and patching

•	 Monitoring

•	 Security, privacy, and encryption

•	 Replication and availability

•	 Scalability

•	 Performance and throughput

•	 SLA, SLI, and SLO

•	 Data federation

•	 CI/CD

•	 Database migration service

•	 Systems, query, and performance insights

We will also discuss how Google Cloud simplifies the design decisions for these operational considerations.



DevOps and Databases134

Upgrades, updates, and patching
Upgrades, updates, and patching are essential for ensuring the security, performance, and availability of 
cloud databases. By keeping your databases up-to-date, you can help to prevent security vulnerabilities, 
performance degradation, and outages.

There are a number of different ways to manage upgrades, updates, and patching for cloud databases. 
Some of the most common methods include the following:

•	 Automatic updates: This means that the provider will automatically update your databases with 
the latest security patches and bug fixes. Google Cloud offers automatic updates for many of its 
databases. You can choose to have Google automatically update your databases on a schedule, 
or you can choose to be notified before updates are applied.

•	 Manual updates: If your cloud provider does not offer automatic updates, you will need to 
manually update your databases. This can be a time-consuming and complex process, but it 
gives you more control over the update process.

If you do not want Google to automatically update your databases, you can manually update them. 
To do this, you will need to use the Google Cloud console or the gcloud command-line tool.

•	 Third-party tools: There are a number of third-party tools that can help you manage upgrades, 
updates, and patching for cloud databases. These tools can automate the update process and 
make it easier to keep your databases up-to-date.

•	 Use the Google Cloud console or the gcloud command-line tool: The Google Cloud console 
and the gcloud command-line tool are the most convenient ways to manage upgrades, updates, 
and patching for Google Cloud databases.

•	 Create a plan: Before you start any upgrades, updates, or patching, create a plan. This plan 
should include the following:

	� The types of updates that you need to perform

	� The order in which you need to perform the updates

	� The resources that you need to perform the updates

	� The steps that you need to take to recover from any problems that may occur during the 
update process

•	 Test the updates: Before you deploy any updates to your production databases, test them in 
a staging environment. This will help you to identify any potential problems with the updates 
before they impact your production databases.

•	 Have a backup plan: In the event that something goes wrong during an update, you should 
have a backup plan in place. This plan should include the steps that you need to take to restore 
your databases from a backup.



Upgrades, updates, and patching 135

By following these tips, you can ensure that your cloud databases are always up-to-date and secure. The 
best method for managing upgrades, updates, and patching for cloud databases will vary depending on 
your specific needs. If you are not sure which method is right for you, consult with your cloud provider.

Note: 
Please be advised that certain features and services described in the following sections may 
have undergone modifications since the time of drafting. The screenshots may look different 
from what you see in the book. APIs and versions may have been updated by the time you are 
reading this. As such, kindly exercise flexibility and adapt your steps accordingly.

Additionally, some services may incur charges if they are outside the free tier (if applicable). 
Therefore, it is recommended to be aware of the services you are enabling and to delete or deactivate 
services and instances that are no longer required for learning or demonstration purposes.

Depending on your choice of cloud database, you will have different ways you can configure your 
database for auto upgrades and updates. In the case of Google Cloud’s Cloud SQL, you can choose 
to do so from the Google Cloud console, on the Cloud SQL CREATE INSTANCE page under the 
CUSTOMIZE YOUR INSTANCE section, as shown in the following screenshot:

Figure 8.1 – Cloud SQL MySQL instance configuration



DevOps and Databases136

Let’s discuss how we can monitor these databases.

Monitoring
Monitoring cloud databases is essential for ensuring their availability, performance, and security. 
There are a number of tools and services available to help you monitor your cloud databases. Some 
of the most popular tools include the following:

•	 Cloud Monitoring: Cloud Monitoring provides a comprehensive set of tools for collecting 
and analyzing data about Google Cloud resources, including databases. Cloud Monitoring can 
be used to track database performance, identify potential problems, and troubleshoot issues.

•	 Cloud Logging (Stackdriver Logging): Cloud Logging provides a centralized logging service 
for Google Cloud Platform. Cloud Logging can be used to collect and analyze logs from cloud 
databases. This data can be used to identify potential problems, troubleshoot issues, and 
understand how users are interacting with databases.

•	 Cloud Monitoring (Stackdriver Monitoring): Cloud Monitoring provides a centralized 
monitoring service for Google Cloud Platform. Cloud Monitoring can be used to collect and 
analyze metrics from cloud databases. This data can be used to track database performance, 
identify potential problems, and troubleshoot issues.

When choosing a monitoring tool, it is important to consider your specific needs. Some factors to 
consider include the size of your database, the type of database you are using, and your budget. Once 
you have chosen a monitoring tool, you need to configure it to collect the data you need. The data 
you collect will vary depending on your specific needs. However, some common metrics to collect 
include the following:

•	 Database performance: This includes metrics such as CPU usage, memory usage, and disk I/O

•	 Database health: This includes metrics such as database availability, database corruption, and 
database security

•	 Database usage: This includes metrics such as the number of database connections, the number 
of database queries, and the amount of data stored in the database

Once you have collected the data, you need to analyze it to identify potential problems. This may 
involve looking for trends, identifying outliers, and comparing the data to historical data. If you identify 
a potential problem, you need to take action to resolve it. This may involve adjusting the database 
configuration, upgrading the database software, or adding more database resources.

By monitoring your cloud databases, you can ensure that they are running smoothly and efficiently. 
This will help you avoid outages, performance degradation, and security vulnerabilities.



Upgrades, updates, and patching 137

Let’s look at it hands-on with monitoring for Cloud SQL. Go to the Google Cloud console and search 
for Cloud Monitoring, click Dashboards on the left pane, and select Cloud SQL from the list of 
dashboards that show up on the right. Pick the instance that you want to monitor from the inventory 
list. You should be able to see the metrics and details with visualization on the right pane, as shown 
in the following screenshot:

Figure 8.2 – Cloud SQL instance Monitoring dashboard

As you can see in Figure 8.3, you can choose from several other monitoring options such as integrations, 
services, metrics management, alerts, and uptime checks. It is interesting to note that with Google 
Cloud’s Cloud Monitoring, you can monitor several services together by grouping the related services 
in the Groups section using the CREATE GROUP option. You can see a group that I have created for 
demo purposes in the following screenshot:

Figure 8.3 – Cloud Monitoring Groups page



DevOps and Databases138

Depending on your application requirements, choose the services that would make the most sense 
to be monitored as a group. It will come in handy when you want to understand whether there are 
other dependencies external to the service reflecting an issue while monitoring.

Security, privacy, and encryption
Security and privacy should be a major focus of any type of database design. There are some basic 
areas that need to be taken into account while choosing the design for databases:

•	 Data breaches, loss, and corruption: This includes design considerations to plan and assess 
your choices for data protection and back-up to prepare for factors such as hardware failure, 
software errors, human error, or natural disasters.

•	 Data privacy: This includes considerations to comply with data privacy regulations such as 
the General Data Protection Regulation (GDPR).

•	 Data security: This includes ensuring your databases and data are secure and encrypted.

Here are some tips for mitigating cloud database security and privacy concerns:

•	 Choose a reputable cloud provider: When choosing a cloud provider, it is important to 
choose one that has a good reputation for security, and is a solution that encrypts your data 
and dependencies in transit and at rest.

•	 Encrypt your data: Encrypting your data at rest and in transit or making sure it is encrypted 
before it is stored in the cloud can help to protect it from unauthorized access.

•	 Use strong passwords: Use strong passwords for your cloud accounts and database access.

•	 Monitor your cloud usage: Monitor your cloud usage to detect any suspicious activity.

•	 Back up your data: Back up your data regularly to prevent data loss in case of potential data 
corruption or outages.

•	 Stay up-to-date with security patches: Install security patches for your cloud software as soon 
as they are available. Google Cloud services generally ensure these are in place for you unless 
configured otherwise.



Replication and availability 139

Let’s take a look at some of the features that Google Cloud databases offer to help protect your data:

•	 Data encryption: Google Cloud databases encrypt your data at rest and in transit.

•	 Data isolation: Google Cloud databases isolate your data from other users. This means that 
only you and your authorized users can access your data.

This is done by using a variety of techniques, including the following:

	� Project isolation: Each Google Cloud project is isolated from other projects. This means 
that only users who have access to a specific project can access its data.

	� Database isolation: Each database within a project is isolated from other databases.  
This means that only users who have access to your specific database, table, and row (or 
specific object-level access) can access data.

•	 Data auditing: This allows you to track who has accessed your data and what they have done 
with it. You can use these logs to identify any unauthorized access to your data and to investigate 
any security incidents. Google Cloud databases provide detailed auditing logs.

•	 Data compliance: Google Cloud databases are compliant with a number of compliance and 
data privacy regulations such as the GDPR, ISO, SOC, HIPAA, FedRamp, HiTrust, and many 
such controls required globally and specifically to certain countries. This means that you can 
be confident that your data is protected in accordance with the law.

So far, we have seen some of the considerations for security, privacy, and other regulatory controls 
and how Google Cloud databases enable the security and protection of your data.

Replication and availability
Database replication is the process of copying data from one database to another. This can be done 
for a variety of reasons, including the following:

•	 To improve performance: By replicating data to multiple servers, you can distribute the load 
and improve performance

•	 To improve availability: By replicating data to multiple servers, you can ensure that your data 
is always available, even if one server fails

•	 To improve disaster recovery: By replicating data to multiple locations, you can protect your 
data from disasters



DevOps and Databases140

The primary reasons behind using data replication are to support high availability, disaster recovery, 
and  to allow your data to scale without affecting the performance.

There are a number of different ways to replicate data for cloud databases depending on your need, 
some of them are listed as follows. The instance being replicated is referred to here as the primary 
instance and the replication copies are referred to as the read replicas:

•	 Read replication: This is primarily used for query and other application read purposes. It is 
the exact copy of the primary instance. It is used to process queries, read requests, and analyze 
traffic enabling load reduction on the primary instance. This could be created in the same 
region as the primary instance.

•	 Cross-region replication: This lets you create read replicas in a region different from the 
primary instance. The main advantage of this type could be that it allows for your data to be 
made available in a region that is closest to your application and provides disaster recovery 
capability for your data.

•	 Cascading read replication: This allows you to create a read replica under an already existing 
read replica in the same or a different region. The main advantage of this type of read replica 
is that it simulates the hierarchy of the main instance and its read replicas and the selected 
read replica could act as the new primary instance (with an exact similar hierarchy of read 
replicas) in case of an outage.

•	 External replication: External replication is the process of replicating data outside the 
network or platform of your primary instance. This could be a database hosted in a completely 
different network and platform setup, and the support for this type can vary depending on the 
configuration of the source and target networks and database platform providers. This type of 
replication can come in handy mainly in migration use cases.

Google Cloud databases offer a number of features that make database replication possible, including 
the following:

•	 Globally distributed databases: Google Cloud offers a number of databases for different 
formats, types, and structure of data that are globally distributed. This means that your data 
can be replicated to multiple regions around the world. This can help improve performance by 
distributing the load across multiple regions. It can also help improve availability by ensuring 
that your data is always available, even if one region is unavailable.

•	 Automatic replication: Google Cloud databases offer automatic replication for a number of 
databases. This means that you do not need to manually configure replication. This can save 
a lot of time and effort.



Replication and availability 141

•	 High availability: Google Cloud databases are designed for high availability. This means that 
your data will be available even if one server fails. This is achieved through a number of features, 
including the following:

	� Redundant hardware: Google Cloud databases use redundant hardware to ensure that your 
data is always available.

	� Automatic failover: If one server fails, Google Cloud databases will automatically fail over 
to another server. This ensures that your data will always be available.

	� Data replication: Google Cloud databases replicate your data to multiple servers. This 
ensures that your data will be available even if one server fails.

In scenarios of disaster recovery, a replica can be promoted to become the primary in place of an 
instance that is going through an outage or corruption. Let’s look at an example. In the case of Cloud 
SQL, if you want to set up a read replica, you can do so from Cloud SQL by choosing the instance 
and from the options available, selecting Replicas, entering the details, and clicking on CREATE 
REPLICA, as shown in the following screenshot:

Figure 8.4 – The CREATE REPLICA page of a Cloud SQL MySQL instance



DevOps and Databases142

Let’s look at how we can scale databases.

Scalability
Scalability is the ability of a system to handle increasing demands for resources. In the context of 
databases, scalability refers to the ability of a database to handle increasing demands for data storage 
and processing. There are two fundamental types of scalability that are vastly discussed:

•	 Vertical scalability: Vertical scalability is the ability of a system to handle increasing demands 
by increasing the capacity of its resources. For example, a database can be vertically scaled by 
increasing the amount of memory or storage available to it.

•	 Horizontal scalability: Horizontal scalability is the ability of a system to handle increasing 
demands by adding more nodes to the system. For example, a database can be horizontally 
scaled by adding more database servers to the cluster. Replication can also be considered as 
one of the ways of performing horizontal scaling, making the data more available within and 
across regions.

Simply put, horizontal scaling means adding more servers or machines to your resource pool, and 
vertical scaling means increasing the strength of your existing server or machine.

Google Cloud databases offer a number of features that support scalability, including the following:

•	 Automatic scaling: Google Cloud databases offer automatic scaling for a number of databases. 
This means that the database will automatically scale up or down in response to changes in 
demand. For example, if your database is suddenly receiving a lot of traffic, Google Cloud 
databases can be configured to automatically add more machines to the cluster to handle the 
load. If the traffic decreases, Google Cloud databases will automatically decrease the cluster by 
removing unused machines to save resources. These databases support horizontal and vertical 
auto-scaling. The type of scaling you would want Google Cloud to manage for you would 
depend on your data, application, security, operational, and cost requirements. The best way 
to address this would be to assess all of these considerations for your needs at design time.

•	 Elastic pools: Google Cloud databases offer elastic pools for a number of databases. This means 
that you can create a pool of database servers and then scale the pool up or down in response 
to changes in demand. For example, if you need to increase the capacity of your database, you 
can simply add more servers to the pool. If you need to decrease the capacity of your database, 
you can simply remove servers from the pool.

•	 Sharding: Google Cloud databases offer sharding for a number of databases. This means that 
the database can be divided into smaller pieces, called shards, which can be stored on different 
servers. This can help to improve performance and scalability. For example, if you have a large 
database with a lot of data, you can shard the database across multiple servers. This can help 
to improve performance by distributing the load across multiple servers. It can also help to 
improve scalability by making it easier to add more servers to the cluster.



Performance and throughput 143

In addition to the aforementioned features, Google Cloud databases also offer a number of other 
features that can help to improve the scalability of your database, including the following:

•	 Geo-replication: Google Cloud databases offer geo-replication for a number of databases. 
This means that your data can be replicated to multiple regions around the world if required. 
This can help improve availability by ensuring that your data is always available, even if one 
region is unavailable.

•	 High availability: Some Google Cloud databases offer availability as high as 99.999% SLA with 
zero downtime for maintenance.

•	 Strong transactional consistency: Google Cloud databases provide the most efficient and 
strict concurrency-control guarantees. This means the system behaves as if all transactions 
are handled sequentially even though they are scaled and replicated across instances for 
performance and availability.

Read more about how these features are made available in the Google Cloud 
documentation: https://cloud.google.com/spanner/docs/true-time-
external-consistency.

By using Google Cloud databases, you can easily and securely scale your database to meet the growing 
demands of your application.

Performance and throughput
Performance and throughput are two important factors to consider when choosing a cloud database. 
Performance refers to how quickly the database can respond to queries, while throughput refers to 
how much data the database can process per unit of time.

There are a number of factors that can affect the performance and throughput of a cloud database, 
including the following:

•	 The type of database: Different types of databases are suited for different workloads. For 
example, relational databases are well-suited for storing and querying structured data, while 
NoSQL databases are well-suited for storing and querying unstructured data.

•	 The size of the database: The larger the database, the more resources it will require and the 
slower it will be.

•	 The number of users: The more users that are accessing the database, the more resources it 
will require and the slower it will be.

•	 The types of queries: Different types of queries can require different amounts of resources. 
For example, simple queries that only require reading data will be less resource-intensive than 
complex queries that require reading and writing data.

https://cloud.google.com/spanner/docs/true-time-external-consistency
https://cloud.google.com/spanner/docs/true-time-external-consistency


DevOps and Databases144

Google Cloud databases offer a number of features that can help to improve the performance 
and throughput of your database such as automatic scaling, high availability, replication, external 
consistency, and so on.

There are a number of ways to measure the performance and throughput of cloud databases with 
Google Cloud. Some of the most common methods include the following:

•	 Querying the database: You can measure the performance of a cloud database by querying it 
with a variety of different queries. You can then measure the time it takes for the database to 
respond to each query.

•	 Running benchmarks: You can run benchmarks on a cloud database to measure its performance 
and throughput. There are a number of different benchmarks that you can run, including 
the following:

	� Transaction Processing Performance Council - Benchmark C (TPC-C): The TPC-C 
benchmark is a commonly used benchmark for measuring the performance of online 
transaction processing (OLTP) systems

	� Transaction Processing Performance Council - Benchmark H (TPC-H): The TPC-H 
benchmark is a commonly used benchmark for measuring the performance of decision 
support systems (DSS)

•	 Using monitoring tools: Google Cloud offers a number of monitoring tools that you can use 
to measure the performance and throughput of your cloud database. These tools can help you 
to track the performance of your database over time and identify any potential problems.

Once you have measured the performance and throughput of your cloud database, you can use this 
information to make decisions about how to improve its performance. For example, if you find that 
your database is not performing as well as you would like, you can increase the amount of memory or 
storage that is available to it. You can also try to optimize your queries to make them more efficient.

By measuring the performance and throughput of your cloud database, you can ensure that it is 
performing at its best and that it is able to meet the demands of your application.

SLA, SLI, and SLO
A service-level agreement (SLA) is a contract between a cloud provider and a customer that guarantees 
a certain level of service. For example, an SLA might guarantee that a database will be available 99.9% 
of the time.

Imagine you are the owner of a business that relies heavily on a cloud-based customer relationship 
management (CRM) system to manage interactions with your clients. You sign an SLA with your 
cloud service provider, and it guarantees that the CRM system will be available and accessible to your 
team 99.9% of the time over the course of a year. This means that you expect no more than 8 hours 
and 45 minutes of downtime in a year, ensuring that your business operations run smoothly.



Data federation 145

A service-level indicator (SLI) is a metric that is used to measure the performance of a service. For 
example, an SLI for a database might be the average response time for queries.

Let’s consider a video streaming platform. An SLI for such a platform could be the average video 
playback quality experienced by users. This metric measures factors such as buffering time and 
resolution. The SLI could state that the average video playback quality should be 720p or higher for 
at least 95% of the user sessions. This indicator helps the platform continuously monitor and improve 
the user experience.

A service-level objective (SLO) is a target value for an SLI. For example, an SLO for a database might 
be that the average response time for queries should be less than 100 milliseconds.

Imagine you are the owner of an e-commerce website, and you want to ensure a seamless shopping 
experience for your customers. You set an SLO for your website’s load time, specifying that the average 
page load time should be less than 2 seconds for 90% of all user sessions. This SLO helps you maintain 
a fast and responsive website, reducing bounce rates and increasing customer satisfaction.

Google Cloud databases offer a number of SLAs, SLIs, and SLOs for different database services. For 
example, Google Cloud Spanner offers an SLA that guarantees that its globally distributed database 
service will be available 99.999% of the time. Cloud SQL offers an SLI that measures the average 
response time for queries. For Google Cloud Bigtable, an SLO could be defined as maintaining an 
average read latency of less than 10 milliseconds for 99% of all read operations. This SLO ensures that 
applications using Bigtable experience fast data retrieval.

Google Cloud databases are a reliable and scalable cloud database service that offers a number of 
SLAs, SLIs, and SLOs. By understanding these metrics, you can ensure that your database is meeting 
your business’s operational requirements and user expectations.

By understanding SLAs, SLIs, and SLOs, you can make informed decisions about which cloud database 
service is right for your needs. You can also use SLAs, SLIs, and SLOs to track the performance of 
your cloud database and identify any potential problems.

Data federation
Data federation is a technique that allows you to query data from multiple sources as if it were all 
stored in a single database. This can be useful if you have data that is stored in different systems, or if 
you want to be able to query data from multiple sources without having to move it to a single database.

Federated queries are queries that are executed against multiple data sources. It can be used to join 
data from different sources or to perform complex queries that would be difficult or impossible to 
execute against a single data source.



DevOps and Databases146

Google Cloud databases support federated queries through the use of the BigQuery Federated Query 
Service. The BigQuery Federated Query Service allows you to query data from a variety of data sources, 
including the following:

•	 Google Cloud BigQuery

•	 Google Cloud Spanner

•	 Google Cloud SQL

•	 Amazon Redshift

•	 Microsoft Azure SQL Database

The BigQuery Federated Query Service is a powerful tool that can be used to query data from multiple 
sources. By using this service, you can simplify your data access and improve the performance of your 
queries. To use the BigQuery Federated Query Service, you first need to create a federated connection. 
A federated connection is a connection between BigQuery and a data source. Once you have created 
a federated connection, you can then use the BigQuery Federated Query Service to query data from 
the data source.

The performance of federated queries depends on a number of factors, including the size of the data 
sources, the complexity of the queries, and the network bandwidth between BigQuery and the data 
sources. Overall, by using this, you can simplify your data access and improve the performance of 
your queries. As a DevOps engineer or administrator, you would be really thrilled to be able to utilize 
such a capability for transactions and analytics that require data access across systems, databases, or 
source types.

Continuous integration/continuous delivery (CI/CD)
Continuous integration (CI) and continuous delivery (CD) are two important software development 
practices that can help to improve the quality and reliability of your software. CI involves automating 
the process of building, testing, and deploying your software. CD involves automating the process 
of delivering your software to production. By automating these processes, you can ensure that your 
software is always up-to-date and of the highest quality. You can also reduce the risk of errors and 
improve the speed of development.

CI/CD can help to simplify the management of cloud databases by automating the process of deploying 
database changes. This can help to ensure that database changes are made in a consistent and controlled 
manner and that they are tested before being deployed to production.



Continuous integration/continuous delivery (CI/CD) 147

Google Cloud offers a number of CI/CD tools and services that can be used to automate the process 
of building, testing, and deploying software. These tools include the following:

•	 Cloud Build: Cloud Build is a service that can be used to automate the process of building 
and deploying your software. Cloud Build can be used to build and deploy your Google Cloud 
databases using a variety of languages and frameworks.

•	 Cloud Code: Cloud Code is a set of tools that can be used to develop and deploy applications 
on Google Cloud. Cloud Code includes a number of features that can help you to automate 
the process of building and deploying your Google Cloud databases.

•	 Cloud Deploy: Cloud Deploy is a service that can be used to automate the process of deploying 
your software to production. Cloud Deploy can be used to deploy your Google Cloud databases 
to production using a variety of deployment methods.

By using these tools and services, you can easily and efficiently implement CI/CD for your Google 
Cloud databases. They offer a number of benefits, including the following:

•	 Scalability: Cloud-based CI/CD platforms can easily scale to meet the needs of any project

•	 Flexibility: Cloud-based CI/CD platforms offer a variety of features and options that can be 
customized to meet the specific needs of any project

•	 Cost-effectiveness: Cloud-based CI/CD platforms can be a cost-effective way to automate the 
CI/CD process

When choosing a cloud-based CI/CD platform, it is important to consider the specific needs of your 
project. Some factors to consider include the following:

•	 The size and complexity of your project: If you have a large or complex project, you will need 
a cloud-based CI/CD platform that can scale to meet your needs.

•	 The features and options that you need: Different cloud-based CI/CD platforms offer different 
features and options. Make sure to choose a platform that has the features and options that 
you need.

•	 The cost: Cloud-based CI/CD platforms can vary in price. Make sure to choose a platform 
that fits your budget.

You might be wondering what kind of code and deployment you will be doing when you are managing 
cloud databases. Some examples are as follows:

•	 Writing queries/code: You will need to write queries or code to access the data in your Google 
Cloud database. These can be written in a variety of languages, including SQL, Python, and Java.

•	 Creating and managing users: You will need to create and manage users for your Google Cloud 
database. This includes creating user accounts, assigning permissions, and managing passwords.



DevOps and Databases148

•	 Backing up and restoring data: You will need to back up your data regularly in case of a disaster. 
You can use Google Cloud’s backup and restore services to automate this process.

•	 Monitoring your database: You will need to monitor your database to ensure that it is performing 
as expected. You can use Google Cloud’s monitoring tools to track performance metrics such 
as CPU usage, memory usage, and disk space usage.

Once you have chosen a cloud-based CI/CD platform, you can start automating the CI/CD process 
for your project. This will help you to improve the speed, quality, and reliability of your software and 
database deployments and services.

Migrating to cloud databases
Migrating databases to the cloud has become a pivotal strategy for organizations across the globe. In 
an age defined by digital transformation, businesses must be agile, scalable, and resilient to remain 
competitive. Cloud database migration is the key to achieving these goals and ensuring the long-term 
success of your enterprise. With all its benefits and tangible impact on business outcomes, it’s only 
natural that more and more organizations and businesses are moving to cloud databases and the tools 
or services that they use for enabling this migration come with a lot of responsibilities.

When considering a cloud database migration service or tool, there are several important considerations 
and requirements to ensure a successful transition. Here’s a comprehensive list of factors to keep in mind:

•	 Compatibility assessment: The tool or service should provide a compatibility assessment 
to analyze the existing database and identify any potential issues or incompatibilities when 
migrating to the cloud platform.

•	 Data migration support: It should offer robust data migration capabilities, allowing the smooth 
transfer of data from on-premises databases to the cloud while ensuring data consistency and 
minimal downtime.

•	 Schema and object migration: The tool should support the migration of database schemas, 
tables, views, stored procedures, and other database objects to the cloud platform.

•	 Downtime minimization: Minimizing downtime is critical. Look for features that enable 
online migrations or provide options for scheduled maintenance during low-traffic periods.

•	 Data validation and verification: A reliable tool should include data validation and verification 
features to ensure the accuracy and integrity of the migrated data.

•	 Transformation and mapping: For complex migrations, the tool should support data 
transformation and mapping capabilities to convert data types and structures to match the 
target database.

•	 Security and compliance: Ensure that the tool complies with security standards and data 
privacy regulations. It should support data encryption during migration and provide robust 
access controls.



Migrating to cloud databases 149

•	 Scalability: Consider whether the tool can handle migrations of varying sizes, from small 
databases to large enterprise-level databases, without performance degradation.

•	 Cloud provider compatibility: Make sure the tool is compatible with the specific cloud provider 
you plan to use.

•	 Backup and restore capabilities: Having the ability to back up your data before migration and 
quickly restore it in case of issues is crucial for risk management.

•	 Monitoring and reporting: Look for tools that offer real-time monitoring and reporting 
features, allowing you to track the progress of the migration and address any issues promptly.

•	 Cost estimation: The tool should provide cost estimation features to help you understand the 
potential expenses associated with the migration process.

•	 Version control and rollback: It should support version control and rollback options to revert 
to a previous state in case of unexpected issues during migration.

•	 Documentation and training: Ensure that the tool or service offers comprehensive documentation 
and training resources to help your team use it effectively.

•	 Support and maintenance: Check for available support channels and the vendor’s reputation 
for providing timely assistance in case of technical problems or questions.

•	 Testing environment: Consider tools that provide a testing or staging environment to validate 
the migration process and identify potential issues before performing the actual migration.

•	 Customization: Look for flexibility in configuring migration settings to accommodate the 
unique requirements and constraints of your database environment.

•	 Post-migration optimization: Some tools may offer features to help optimize the performance 
of the migrated database in the cloud such as auto-scaling and indexing recommendations.

•	 Ecosystem integration: The tool should integrate with your existing ecosystem, including data 
analytics and visualization tools, to ensure a smooth transition.

•	 Long-term strategy: Consider the long-term strategy and scalability of the tool or service to 
accommodate future database migrations and evolving cloud requirements.

Selecting the right cloud database migration service or tool is a critical decision, and it’s important 
to align your choice with your organization’s specific needs and goals. Thoroughly evaluating these 
considerations will help ensure a successful and efficient database migration to the cloud.

In the case of Google Cloud, there are different tools and open source services you can use to migrate to 
different Google Cloud databases. For example, migration to Cloud SQL can be done using Database 
Migration Service. Migration to Cloud Spanner can be done using the Spanner migration tool. 
These services are designed to cover some of the important responsibilities expected of the services 
you consider using for migration assistance to cloud databases.



DevOps and Databases150

Database Migration Service
In this section, we’ll take a quick walkthrough of the steps involved in migrating a sample MySQL 
database to Cloud SQL for a MySQL database instance using Database Migration Service. We won’t 
go through the full implementation/testing phase of the migration. We will just look at an overview 
of the configuration steps:

1.	 Go to the Google Cloud console and make sure your project is selected, or select or create your 
project, as shown in the instructions here: https://cloud.google.com/resource-
manager/docs/creating-managing-projects.

2.	 In the search bar of the console, search for Database Migration Service.

3.	 Enable the API if you are prompted to, as shown in the following screenshot:

Figure 8.5 – Database Migration API ENABLE screen

4.	 Go to the IAM page at https://console.cloud.google.com/iam-admin/iam 
and make sure your user account has the Database Migration admin role assigned to it, as 
shown in the following screenshot:

https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://console.cloud.google.com/iam-admin/iam 


Database Migration Service 151

Figure 8.6 – Grant access page in IAM console

5.	 The source database can be on-premises or in a cloud provider. We’ll assume that you are using 
a standalone MySQL database. You need to select this as the source database engine and IP 
allowlist as the networking method.

6.	 Next, we need to create a connection profile that contains the information required to connect 
to the source database and migrate to Cloud SQL. Click CREATE PROFILE on the page 
at the following link: https://console.cloud.google.com/dbmigration/
connection-profiles.

https://console.cloud.google.com/dbmigration/connection-profiles
https://console.cloud.google.com/dbmigration/connection-profiles


DevOps and Databases152

7.	 Enter the source MySQL connection details on the page and click CREATE, as shown in the 
following screenshot:

Figure 8.7 – Create a connection profile screen

8.	 Once the source connection profile is created, you should be able to see the list of connection 
profiles in the Connection profiles dashboard.

9.	 Create a migration job that allows you to migrate data from your source database to your destination 
Cloud SQL instance. Go to the Migration Jobs tab and click CREATE MIGRATION JOB.



Database Migration Service 153

10.	 Enter the details for the migration job in the migration job configuration page, as shown in 
the following screenshot:

Figure 8.8 – Create a migration job screen

As shown in the screenshot, enter the Migration job name, select the Source database engine, 
and set the Migration job type. If you want the source database’s ongoing changes to be migrated 
to the destination Cloud SQL database, set the Migration job type to Continuous instead.



DevOps and Databases154

11.	 Define your source and create your destination database instance, as shown in the 
following screenshot:

Figure 8.9 – Create a destination screen

Provide the necessary configuration details and click on CREATE AND CONTINUE.

12.	 Define the connectivity method, as shown in the following screenshot:

Figure 8.10 – Define connectivity method screen



System, query, and performance insights 155

In this case, I have chosen IP allowlist as the connectivity method. You can use this method to 
collect IP addresses to allow access to your data. Once the details are entered, click on SAVE 
AND CONTINUE.

13.	 Once all the preceding steps are complete, test and create the migration job.

We have only gone through the configuration steps for Database Migration Service. As an assignment 
for this chapter, try this out on your sample database and verify the migration results. To learn about 
these steps in more detail, refer to https://cloud.google.com/database-migration/
docs/mysql/quickstart.

System, query, and performance insights
Understanding the functioning of your database system, application, performance, cost, and security-
related factors are key considerations when it comes to database operations and observability. Google 
Cloud provides insights on system, query, performance, cost, security, and so on. System insights allow 
you to track important attributes such as system usage, availability, CPU utilization, disk utilization, 
database load, and so on, and proactively focus on finding patterns and taking actions. Query insights 
provide help in the detection and diagnosis of issues in the performance of your instance by examining 
queries in your application. There are more such insights. These insights provide information using 
historical and near real-time data, and at the same time, provide actionable prescriptive alerts with 
regard to your services. If you can enable these for your data and application, where available, you will 
be able to enhance the performance, availability, and quality of your databases, data, and application.

Summary
As for any DevOps team’s dreams, the goal of this chapter has been to help you get started with 
understanding the fundamentals and importance of enabling organizations and teams to just focus 
on the business priorities and code, and leave the rest to the cloud platform. This way, DevOps teams 
can focus on more innovative activities that enable business growth while the platform keeps the 
lights on for you.

In this chapter, we have comprehensively explored the crucial intersection of DevOps practices 
and database operations with focused information on managing databases in the Google Cloud 
ecosystem. We have covered operational aspects such as maintenance, monitoring, security, privacy, 
encryption, replication, availability, consistency, scalability, performance, throughput, SLA, SLI, SLO, 
data federation, CI/ CD, migration, insights, and how to address some of these with Google Cloud 
databases and services.

In the upcoming chapters, we will look at data modeling and design considerations for AI/ML and 
advanced analytics applications.

https://cloud.google.com/database-migration/docs/mysql/quickstart
https://cloud.google.com/database-migration/docs/mysql/quickstart




Part 5: 
Data to AI

This part will teach you how to design the best database that is optimized for various end-user tasks 
like analytics, ML, and more. You will learn to create collections focused on the needs of the customer. 
You will also learn how to utilize LLM applications for traditional applications.

This part has the following chapters:

•	 Chapter 9, Data to AI – Modeling Your Databases for Analytics and ML

•	 Chapter 10, Looking Ahead - Designing for LLM Applications





9
Data to AI – Modeling Your 

Databases for Analytics and ML

Businesses rely on analytics to gain valuable insights and make informed decisions. Cloud databases 
have emerged as a powerful platform for storing and analyzing large volumes of data. To leverage the 
full potential of cloud databases for analytics, effective data modeling is crucial. It involves a deep focus 
on the needs of data analysts, business intelligence, and data operations teams. It involves designing 
a database that is optimized for data analysis, such as querying, reporting, and visualization, and by 
extension for advanced analytics, such as machine learning (ML) and artificial intelligence (AI). In 
this chapter, we’ll explore some key considerations and best practices for data modeling for analytics, 
ML and AI in cloud databases.

In this chapter, we’ll cover the following topics:

•	 Modeling considerations for analytics, AI, and ML

•	 Data to AI

•	 Google Cloud ETL services

•	 Google Cloud Dataflow at a glance

•	 Real-world use cases for Google Cloud Dataflow

•	 Step-by-step guide to Google Cloud Dataflow

•	 Taking your data to AI



Data to AI – Modeling Your Databases for Analytics and ML160

Modeling considerations for analytics, AI, and ML
As with relational transactional applications, analytics applications require data to be modeled, stored, 
and accessed to address the application’s design aspects. While the business, functional, technical, 
and regulatory requirements vary for each application, there are some fundamental operational and 
design needs that are generally considered the baseline for all analytical data modeling. We’ll look at 
a few of them in this section:

•	 Understand the analytical requirements: Before diving into data modeling, it’s important to 
have a clear understanding of your analytical requirements. Define the specific questions you 
want to answer or the insights you want to derive from your data. This understanding will 
guide your data modeling efforts and help you design a database structure that aligns with 
your analytical goals.

•	 Denormalize your data: Normalization is a widely adopted practice in traditional database 
design to eliminate redundancy and ensure data consistency. However, in the context of 
analytics, denormalization is often preferred. Denormalization involves combining related data 
into a single table or document and optimizing query performance by reducing joins. Consider 
denormalizing your data model strategically to enhance analytical query speed and efficiency.

•	 Partition and index data: Partitioning and indexing are essential techniques for improving 
query performance in cloud databases. Partitioning involves dividing a large dataset into 
smaller, more manageable chunks based on a specific criterion (e.g., time-based partitioning). 
This enables parallel processing and faster querying of relevant data subsets. Indexing, on the 
other hand, creates data structures that facilitate quick data retrieval based on specific columns. 
Carefully select partitioning and indexing strategies based on your data access patterns and 
analytical requirements.

•	 Choose the right data storage format: Cloud databases offer various data storage formats, such 
as relational tables, document stores, or columnar databases. Consider the nature of your data 
and the types of analytical queries you’ll be performing when selecting the appropriate storage 
format. For structured data, a relational database might be suitable, whereas unstructured or 
semi-structured data might be better suited for a document store or a NoSQL database. Assess 
your data characteristics and leverage the strengths of different storage formats to optimize 
your analytics workflow.

•	 Leverage serverless and fully managed database services: Cloud providers offer serverless and 
managed database services that eliminate the need for infrastructure management, allowing 
you to focus on data modeling and analytics. Services such as Google Cloud’s BigQuery 
provide scalability, high availability, and automated backups for planet-scale data, simplifying 
the management of your database environment. Evaluate such services based on your specific 
requirements and choose the one that best aligns with your analytics needs.



Data to AI 161

•	 Consider data governance and security: Data modeling for analytics should also address data 
governance and security aspects. Define proper access controls, encryption mechanisms, and 
data retention policies to ensure compliance with industry regulations and protect sensitive 
information. Implement a robust data governance framework that includes data lineage, data 
quality checks, and audit trails. These measures not only safeguard your data but also promote 
trust and confidence in your analytics outputs.

Effective data modeling plays a critical role in optimizing analytics workflows in cloud databases. By 
understanding your analytical requirements, denormalizing data where necessary, leveraging partitioning 
and indexing techniques, choosing the right storage format, and considering data governance and 
security, you can build a robust data model that empowers your analytics initiatives in the cloud.

Now that we have discussed some of the most crucial design considerations for analytics data, let’s 
dive deep into taking your data through advanced analytics.

Data to AI
This section is a perspective on data modeling for journeying from data to AI through several stages, 
including ingestion to storage, integration, transformation, and archival considerations:

1.	 Data ingestion: Data ingestion is the process of acquiring and importing data from various 
sources into an analytics database or data warehouse. When designing the data model for 
ingestion, consider the frequency and volume of data updates, data formats, and data integration 
requirements. Choose appropriate ingestion mechanisms such as batch processing, real-time 
streaming, or event-based ingestion based on the timeliness and velocity of your data. Ensure 
data validation and cleansing mechanisms are in place to maintain data quality during ingestion.

2.	 Storage: Choosing the right storage infrastructure is crucial for efficiently managing and 
accessing large volumes of data in AI workflows. Cloud object storage and database services 
such as Google Cloud Storage and BigQuery offer scalable options for storing structured, 
unstructured, and semi-structured data. Consider factors such as data durability, availability, 
retrieval latency, and cost when selecting the storage solution that aligns with your data modeling 
and AI requirements.

3.	 Analytics database or warehouse: The choice of an analytics database or data warehouse 
architecture is fundamental for AI analytics. Options such as traditional relational databases, 
columnar databases, and distributed data warehouses such as BigQuery provide different capabilities 
in terms of query performance, scalability, and cost. Consider the analytical requirements, data 
volume, concurrency, and budgetary constraints when selecting the appropriate database or 
warehouse architecture. Design the data model to optimize query performance, enable efficient 
data retrieval, and facilitate integration with AI frameworks or tools.



Data to AI – Modeling Your Databases for Analytics and ML162

4.	 Integration: Integration involves consolidating data from multiple sources to create a unified 
view for AI analytics. Data integration can be achieved through extract, transform, load (ETL) 
processes, data pipelines, or data integration platforms. When modeling the data integration 
process, identify the relevant data sources, define data mappings, and establish data transformation 
rules to harmonize the data for AI modeling. Ensure compatibility between the data integration 
approach and the analytics database or warehouse to enable smooth data flow.

5.	 Transformation: Data transformation is a crucial step in preparing data for AI analytics. It 
involves cleaning, aggregating, and enriching the data to make it suitable for AI model training 
or analysis. Data transformation tasks may include filtering out irrelevant data, handling missing 
values, normalizing numerical values, or performing feature engineering. When designing the 
data model for transformation, consider the computational resources required, scalability, and 
automation capabilities to streamline the data preparation process.

6.	 Archival considerations: For long-term data retention and compliance purposes, archival 
considerations are essential. Not all data needs to reside in the analytics database or warehouse 
indefinitely. Define data retention policies based on regulatory requirements and business needs. 
Archive less frequently accessed or historical data to cost-effective storage options such as cold 
storage or tape backups. When modeling data archiving, ensure proper indexing or metadata 
management to facilitate future data retrieval if necessary.

By paying attention to these additional perspectives on your data modeling approach, you can establish 
a robust data pipeline that efficiently moves data from various sources to an analytics database or 
warehouse, ensuring optimal storage, integration, transformation, and archival processes. This sets 
the foundation for effective AI analytics, enabling organizations to extract valuable insights and derive 
maximum value from their data assets.

In the journey of taking data to AI, we have addressed storage and querying for transactions and 
analytics in previous chapters. In the upcoming sections, we will look at the ETL-related data modeling 
considerations with real-world use cases and Google Cloud services. So, instead of focusing on analytics 
queries, we will focus on the ETL pipeline services and components in detail.

Google Cloud ETL services
Google Cloud offers a comprehensive set of services to support ETL workflows, enabling organizations 
to efficiently process and transform data at scale. These services provide integration, scalability, and 
managed infrastructure for performing ETL tasks in the cloud. Here are some Google Cloud ETL services:

•	 Google Cloud Dataflow: Google Cloud Dataflow is a fully managed service for executing 
parallel data processing pipelines. It enables developers to build and execute batch or streaming 
ETL jobs using a unified programming model. Dataflow provides automatic scaling, fault 
tolerance, and data parallelism, allowing efficient processing of large datasets. It integrates 
with other Google Cloud services, such as BigQuery, Cloud Storage, and Pub/Sub, making it 
an ideal choice for ETL workflows.



Google Cloud Dataflow at a glance 163

•	 Google Cloud Dataproc: Google Cloud Dataproc is a managed Apache Hadoop and Apache 
Spark service. It offers a scalable and cost-effective environment for processing large datasets 
using familiar Hadoop or Spark APIs. Dataproc allows you to perform ETL tasks using Spark, 
leveraging its powerful data processing capabilities. It integrates with other Google Cloud 
services, such as BigQuery, Cloud Storage, and Pub/Sub, enabling smooth data ingestion 
and transformation.

•	 Google Cloud Pub/Sub: Google Cloud Pub/Sub is a messaging service that provides reliable, 
scalable, and asynchronous messaging between independent systems. Pub/Sub can be utilized in 
ETL workflows for decoupling data producers and consumers. It allows real-time data ingestion 
from various sources and enables smooth data flow between different stages of ETL pipelines.

•	 Google Cloud BigQuery: Google Cloud BigQuery is a fully managed, serverless data warehouse 
that offers high-performance analytics and SQL querying capabilities. BigQuery can be used as 
both a source and destination for ETL workflows. It supports data ingestion from various sources, 
including Cloud Storage, Cloud Pub/Sub, and Dataflow, and provides powerful transformation 
capabilities through SQL queries and user-defined functions (UDFs).

•	 Google Cloud Storage: Google Cloud Storage is a scalable object storage service that provides 
reliable and durable storage for unstructured data. It can be used as a source or intermediate 
storage location in ETL workflows. Cloud Storage allows efficient data ingestion and staging 
before performing transformation and loading processes. It easily integrates with other Google 
Cloud services, providing flexibility and reliability in ETL pipelines.

For your use cases and design, you can use some or all of these services to achieve your business 
requirements for performing analytics, AI, and ML on your data. In the following section, we will 
take a little more detailed dive into Google Cloud’s Dataflow service.

Google Cloud Dataflow at a glance
Google Cloud Dataflow is a powerful and fully managed service for executing ETL pipelines. It allows 
developers to focus on data processing logic without worrying about infrastructure management. 
Dataflow offers a unified programming model based on Apache Beam, enabling consistent ETL 
development across batch and streaming data processing scenarios.

The key features of Google Cloud Dataflow are as follows:

•	 Scalability: Dataflow automatically scales resources based on the input data size and processing 
requirements. It can handle data processing tasks ranging from small to petabyte-scale datasets, 
ensuring efficient ETL operations without the need for manual resource provisioning.

•	 Fault tolerance: Dataflow ensures fault tolerance by automatically recovering from failures and 
providing reliable data processing. It divides the input data into small, parallelizable chunks and 
distributes them across multiple compute resources. In case of failures, Dataflow redistributes 
the failed workloads to healthy resources, ensuring data integrity and continuous processing.



Data to AI – Modeling Your Databases for Analytics and ML164

•	 Data parallelism: Dataflow leverages data parallelism to process large volumes of data 
efficiently. It partitions the input data into manageable chunks and processes them in parallel 
across multiple worker nodes. This parallel execution improves the overall ETL performance 
and reduces the processing time for large datasets.

•	 Integration with Google Cloud services: Dataflow easily integrates with various Google 
Cloud services, including Google Cloud Storage, Google BigQuery, and Google Pub/Sub. This 
allows for easy data ingestion, transformation, and loading from and to these services as part 
of the ETL workflow. Dataflow also integrates with other data processing frameworks, enabling 
interoperability and flexibility in building data pipelines.

•	 Unified programming model: Dataflow adopts the Apache Beam programming model, which 
provides a unified API for developing both batch and streaming data processing pipelines. This 
unified model simplifies the development process, allowing developers to write code once and 
execute it in both batch and streaming modes. It provides flexibility and consistency in building 
ETL workflows for different data processing requirements.

•	 Monitoring and visibility: Dataflow offers comprehensive monitoring and visualization 
capabilities for ETL pipelines. It provides real-time insights into pipeline execution, including 
progress, data throughput, and resource utilization. Dataflow integrates with Google Cloud 
Monitoring and Logging, enabling the proactive monitoring, alerting, and troubleshooting of 
ETL jobs.

•	 Managed service: As a fully managed service, Dataflow handles infrastructure provisioning, 
scaling, and maintenance. This allows developers to focus on data processing logic and ETL 
pipeline development, without the burden of managing underlying infrastructure. Dataflow 
takes care of resource optimization and autoscaling, ensuring cost-effective and efficient 
data processing.

With these key features, it provides a very powerful and flexible platform for building scalable and 
reliable ETL pipelines.

Real-world use cases for Google Cloud Dataflow

You can use Dataflow to process and analyze data and systems in various real-world scenarios. I have 
categorized real-world use cases broadly in six areas, but this is not the limit given the capabilities of 
the Dataflow service:

•	 Real-time data processing: Google Cloud Dataflow is well suited for real-time data processing use 
cases. For example, a retail company can utilize Dataflow to process and analyze incoming sales 
data in real time, enabling them to track inventory levels, generate personalized recommendations, 
and trigger real-time notifications for out-of-stock items. Dataflow’s ability to handle streaming 
data and its scalability make it ideal for real-time analytics scenarios.



Google Cloud Dataflow at a glance 165

•	 Batch data processing: Organizations can leverage Dataflow to transform and analyze large 
volumes of historical data. For instance, a financial institution can use Dataflow to process and 
aggregate transactional data from multiple sources, calculate metrics such as daily balances, 
and generate reports for regulatory compliance or risk analysis purposes.

•	 ETL pipelines: Companies can use Dataflow to extract data from various sources, perform 
transformations or enrichments, and load the processed data into target systems such as data 
warehouses or analytics platforms. This enables data consolidation, data cleansing, and data 
integration across different systems, facilitating comprehensive analysis and reporting.

•	 IoT data processing: With the proliferation of Internet of Things (IoT) devices, there is a 
growing need to process and analyze vast amounts of sensor data in real time. Dataflow can be 
employed to ingest, preprocess, and analyze IoT data streams, allowing organizations to gain 
valuable insights for predictive maintenance, anomaly detection, or optimization of IoT systems.

•	 Clickstream analysis: Web-based businesses often rely on clickstream data to understand 
user behavior, improve website performance, and enhance user experience. Dataflow can be 
utilized to process and analyze clickstream data in real time, enabling organizations to derive 
insights into user navigation patterns, perform sessionization, and deliver personalized content 
or recommendations.

•	 Data warehousing: Google Cloud Dataflow can be integrated with Google BigQuery, a powerful 
data warehousing solution. Dataflow can be used to perform ETL tasks to load data from various 
sources into BigQuery, apply transformations or aggregations, and optimize the data model for 
efficient querying. This combination of Dataflow and BigQuery allows organizations to build 
scalable and performant data warehousing solutions.

Leveraging these capabilities of Dataflow and other Google Cloud ETL services, organizations can 
derive valuable insights for business growth and decision-making.

In the next section, we will look at the setup, design, and implementation of the Google Cloud Dataflow 
service in the context of ETL in taking your data to advanced analytics and AI.

Note: 
Please be advised that certain features and services described in the following sections may 
have undergone modifications since the time of drafting. The screenshots may look different 
from what you see in the book. APIs and versions may have been updated by the time you are 
reading this. As such, kindly exercise flexibility and adapt your steps accordingly.

Additionally, some services may incur charges if they are outside the free tier (if applicable). 
Therefore, it is recommended to be aware of the services you are enabling and to delete or deactivate 
services and instances that are no longer required for learning or demonstration purposes.



Data to AI – Modeling Your Databases for Analytics and ML166

Step-by-step guide to Google Cloud Dataflow

Let’s get started with the steps involved in setting up Dataflow, creating a pipeline, deploying, testing, 
and monitoring a Dataflow pipeline. We will take a basic text processing use case for learning purposes 
and implement it in Java (my favorite programming language of all time – wait, what’s yours?). The 
program reads any sample text you pass into it, tokenizes it into individual words, and counts the 
frequency of each word:

1.	 Set up a Google Cloud Platform account: If you don’t already have one, sign up for a Google 
Cloud Platform (GCP) account at https://console.cloud.google.com/. Create a 
new project or select an existing project to work with. Make sure the billing is enabled for your 
project. You can follow the instructions here for creating new projects or selecting an existing 
one: https://cloud.google.com/resource-manager/docs/creating-
managing-projects.

All the following steps can be done with command shell commands or in the Google Cloud console.

2.	 Enable the APIs: Next, we need to enable a few APIs. To enable the required APIs in the GCP 
console, navigate to the project you’ve selected:

A.	 Go to the APIs & Services section.

B.	 Click on the ENABLE APIS AND SERVICES button as seen in Figure 9.1.

C.	 Enable the following APIs:

	� Dataflow API

	� Cloud Storage API (if you plan to use Cloud Storage for data input/output)

Figure 9.1: Enable APIs & Services from the Google Cloud console

The preceding figure shows where you can enable APIs and services in the Google Cloud console.

https://console.cloud.google.com/
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/resource-manager/docs/creating-managing-projects


Google Cloud Dataflow at a glance 167

3.	 Development environment: To develop and run Dataflow pipelines, you can install and set 
up your own local development environment, if you prefer. This typically involves installing 
the necessary software and libraries.

Here are the general steps, if you prefer to set up a local IDE or use an existing one:

IV.	 Install the Java Development Kit (JDK) if not already installed.

V.	 Install the Apache Maven build tool.

VI.	 Set up a code editor or Integrated Development Environment (IDE) of your choice.

If you use the Google Cloud Shell editor and terminal as your development environment (instead 
of setting up your own local IDE), you need not undergo the installation and setup steps. You 
can just click the Activate Cloud Shell icon, as shown in the following screenshot, to get started:

Figure 9.2: The Activate Cloud Shell button highlighted

When you click on the Activate Cloud Shell icon in the top-right corner of your Google 
Cloud console, you can open your Cloud Shell terminal, and from there you can navigate to 
the Cloud Shell editor.

4.	 Create a Maven project: In your preferred command-line tool or IDE that you just set up, 
create a new Maven project for your Dataflow application.

Note
A Maven project is a software project management and build automation tool used by beginners 
for its simplicity and standardized project structure, making it easier to manage dependencies 
and build processes in Java and other programming languages such as C# and Ruby, thanks to 
its flexibility and extensibility through plugins. Some popular alternatives to Maven are Gradle, 
Apache Ant, Apache Ivy, and Make. The choice of build tool depends on your specific project 
requirements, programming language, and personal preferences. Each tool has its strengths 
and weaknesses, so it’s important to evaluate them based on your project’s needs.

Use the following command to create a basic Maven project:
mvn archetype:generate "-DarchetypeGroupId=org.apache.beam" 
"-DarchetypeArtifactId=beam-sdks-java-maven-archetypes-examples" 
"-DarchetypeVersion=2.35.0" "-DgroupId=com.example.dataflow" 
"-DartifactId=my-dataflow-project" "-Dversion=1.0"



Data to AI – Modeling Your Databases for Analytics and ML168

As you can see in the preceding command, the initial project structure as defined in the 
archetypeArtifactId parameter is taken from the beam-sdks-java-maven-
archetypes-examples archetype and so the basic functionality for the example projects 
will be already coded as part of this project. Execute the preceding command from Cloud Shell 
as shown in the following screenshot:

Figure 9.3: Cloud Shell terminal with the command to create a basic Maven project

This creates a project in your Cloud Shell machine.

It contains an example pipeline that we will look at here. We will run the example pipeline 
called WordCount present in the my-dataflow-project/src/main/java/com/
example/dataflow/WordCount.java path. This class reads the sample text you pass 
to it, tokenizes it into words, and counts the frequency of each word.

5.	 Define the Dataflow pipeline: Inside your project’s source directory, locate the generated Java 
file (such as MyDataflowPipeline.java) that contains the main pipeline code. In this 
example, you should see some basic boilerplate code in that file, prepopulated. Only if you want 
to add more functionality, modify the pipeline code to define your specific data processing logic 
using the Apache Beam programming model. This may involve reading data from a source 
(e.g., Pub/Sub or Cloud Storage), applying transformations, and writing the results to a sink 
(e.g., BigQuery or Cloud Storage). In our case, we won’t change anything and use the example 
project that gets created as it is.

6.	 Build and test the Dataflow pipeline locally: Use Maven to build your Dataflow project. Run 
the following command in your project’s root directory:

mvn clean compile

Run the preceding command from the Cloud Shell terminal inside your project’s root directory. 
This compiles your code and resolves dependencies.



Google Cloud Dataflow at a glance 169

7.	 Configure pipeline options: You can configure various pipeline options such as the runner, input/
output locations, and resource settings. This can be done using command-line arguments or by 
setting options programmatically in your pipeline code. Refer to the Dataflow documentation 
for more information on available pipeline options and their configurations.

8.	 Deploy and run the Dataflow pipeline: To deploy and run your Dataflow pipeline on Google 
Cloud, you need to create a Dataflow job. Execute the following command in your project’s 
root directory:

 mvn compile exec:java \
      -Pdataflow-runner compile exec:java \
      -Dexec.mainClass=com.example.dataflow.WordCount \
      -Dexec.args="--project=<YOUR_PROJECT_ID> \
      --stagingLocation=gs://<YOUR_BUCKET>/<YOUR_TEXT_FILE>\
      --output=gs://<YOUR_BUCKET>/output \
      --runner=DataflowRunner \
      --region=<YOUR_REGION> \
      --gcpTempLocation=gs://<YOUR_BUCKET>/temp"

Replace <YOUR_PROJECT_ID> with your GCP project ID, <YOUR_REGION> with the 
desired region for job execution, <YOUR_BUCKET> with the name of the Cloud Storage bucket 
to be used for staging and output data, and <YOUR_TEXT_FILE> with the text file you want 
to process with Dataflow. If the command throws errors (eg. Missing pom.xml etc.), 
try putting quotes around arguments (like for eg. “-Dexec.mainClass=com.example.
dataflow.WordCount”).

Once you run the command, you should be able to see the job running in your Dataflow 
console jobs list, as seen here:

Figure 9.4: Jobs list in the Dataflow console

When you click the name of the job, you should be able to see the job graph, execution details, 
metrics, cost, and recommendations, as seen in the following figure:



Data to AI – Modeling Your Databases for Analytics and ML170

Figure 9.5: Job graph view

Once the job is completed, you should see its status as Succeeded. You can now validate the 
result file in your Cloud Storage bucket, which contains the tokenized words and the respective 
counts, as shown in the following figure:

Figure 9.6: The Cloud Storage output bucket with its contents



Taking your data to AI 171

Once you download the text file highlighted in the preceding figure, you can see the words and 
respective counts as seen in the following screenshot:

Figure 9.7: Text file from the output bucket

I hope you enjoyed getting started with creating your first Dataflow pipeline. Now you can 
move on to the operational aspects of the pipeline.

9.	 Monitor and troubleshoot the Dataflow job: After submitting the job, you can monitor its 
progress through the Dataflow monitoring interface or by using command-line tools such as 
the Cloud SDK’s gcloud command. This allows you to track the job’s status, progress, and 
resource utilization. In case of any issues or errors, you can refer to the logs and diagnostics 
information for troubleshooting.

That’s it! You have successfully created a Google Cloud Dataflow project and deployed a Dataflow 
pipeline for processing data at scale. Remember to manage the life cycle of your Dataflow jobs, including 
starting, stopping, and updating them as needed. In this guideline, we provided a high-level overview 
of the steps involved in creating a Dataflow project. For more detailed information and specific use 
cases, refer to the official Google Cloud Dataflow documentation: https://cloud.google.
com/dataflow/docs.

Taking your data to AI
Now that we have taken our data on a journey through a sample ETL pipeline, let’s take it through 
one last step, which is to perform ML on the data output from the previous step, that is, tokenized 
words and their counts.

In this section, we will create a model to identify the context from the given list of words using 
word2vec and cosine similarity techniques. We will use the top 1,000 frequently occurring words 
(from the output of the previous step) to predict the context of the tokenized words generated from 
the pipeline we created in the previous section.

https://cloud.google.com/dataflow/docs
https://cloud.google.com/dataflow/docs


Data to AI – Modeling Your Databases for Analytics and ML172

In this exercise, we will take the data we have generated through the pipeline as input data to the 
context prediction application we will build in Python. Don’t worry, I have kept the code simple to 
understand and very minimal, so we don’t spend hours explaining the steps and the code. Open a new 
Colab Notebook from https://colab.research.google.com/. Enter the code snippets in 
the following steps, one in each cell of your notebook and run each cell as you go:

1.	 Import the required dependencies.

The dependencies included here will help us transform the text data in the file, convert them 
to vectors, and find similarities between words in order to create the context:

import numpy as np
import pandas as pd
from spacy.lang.en.stop_words import STOP_WORDS as stopwords
from sklearn.metrics.pairwise import cosine_similarity
from gensim.models import Word2Vec

2.	 Open the text file that we obtained from the previous segment of this pipeline using Dataflow. 
Before you run this cell, make sure you rename the output file downloaded in step 8 of the 
previous section (Dataflow implementation steps)  to “t8.shakespeare.output.
txt”. If you don’t want to rename the file, remember to change the name of the file reference 
in the following snippet. Upload this output file into the current working directory (which is 
/content/). Alternatively you can write a few lines of code to read the file directly from 
Cloud Storage as mentioned in the documentation: https://cloud.google.com/
appengine/docs/legacy/standard/python/googlecloudstorageclient/
read-write-to-cloud-storage#required_imports:

# opening the text file
path = '/content/t8.shakespeare.output.txt'
text = open(path).read().lower()
print('length of the corpus is: :', len(text))

word_text = []
word_count = []

with open(path,'r') as file:

    # reading each line
    for line in file:

        # reading each word
        for word in line.split():

https://colab.research.google.com/
https://cloud.google.com/appengine/docs/legacy/standard/python/googlecloudstorageclient/read-write-to-cloud-storage#required_imports
https://cloud.google.com/appengine/docs/legacy/standard/python/googlecloudstorageclient/read-write-to-cloud-storage#required_imports
https://cloud.google.com/appengine/docs/legacy/standard/python/googlecloudstorageclient/read-write-to-cloud-storage#required_imports


Taking your data to AI 173

            # storing the words
            if word.isnumeric():
              word_count.append(word)
            else:
              word = word.replace(":","")
              if word not in stopwords:
                word_text.append(word)
              else:
                word_count.pop()

print((word_text))
print(len(word_count))

word_count = [int(x) for x in word_count]

In this step, we open the file containing the text, eliminate the training : in the words, remove 
stop words from the text, and store the words and respective counts in separate lists. The last 
step also converts the word count to a numeric list.

3.	 Retain only the top 1,000 high-frequency words:

df = pd.DataFrame()
df['word_text'] = word_text
df['word_count'] = word_count
print(len(df))

df = df.sort_values(by="word_count", ascending=False, 
kind="mergesort" )
df = df.head(500)
print(len(df))

In this step, we sort the word list by decreasing frequency and only retain the top 1,000 words 
in the DataFrame.

4.	 Create a word embeddings model.

Here is a simple analogy that might help a 10-year-old understand word embeddings. Imagine 
you have a big book of synonyms. Each word in the book is listed with a list of other words 
that have similar meanings. This book is like a word embedding. It allows you to understand 
the meaning of words by looking at the other words that are related to them.

In this step, we will create a word2vec model from the list we created in the previous step:
wlist = []
word_list = df["word_text"].values.tolist()
wlist.append(word_list)
# Load pre-trained word embeddings model



Data to AI – Modeling Your Databases for Analytics and ML174

model = Word2Vec(sentences=wlist, vector_size=1, window=5, min_
count=1, workers=4)
model.save("word2vec.model")

embedding_model = Word2Vec.load("word2vec.model")

The model = Word2Vec(sentences=wlist, vector_size=1, window=5, 
min_count=1, workers=4) line of code creates a word2vec model from the wlist 
list. The model has the following parameters:

	� vector_size: The vector_size parameter specifies the dimensionality of the word 
vectors. This is the number of features that will be used to represent each word. A higher 
vector_size will result in more accurate word representations, but it will also require 
more training data and computation time.

	� window: The size of the context window. This is the number of words that will be considered 
when predicting a word.

	� min_count: The minimum number of times a word must appear in the training data to 
be included in the model.

	� workers: The number of worker threads to use for training the model.

The model will be trained using the skip-gram algorithm. The skip-gram algorithm predicts 
the surrounding words of a given word based on the context window. This allows the model 
to learn the meaning of words by looking at the words that are related to them.

Overall, the code initializes a word2vec model using the provided arguments and trains it on 
the given input corpus (wlist). The model will learn word embeddings with a dimensionality 
of one, considering a window of five words, and including all words that appear at least once 
in the corpus. The training will be performed using four worker threads for faster processing.

Once the model is trained, it can be used to do things such as find similar words, understand 
the meaning of sentences, and generate text.

5.	 Calculate the cosine similarity for the words.

In this step, we will compute the average cosine similarity between a word and its surrounding words:
word_vectors = [embedding_model.wv[word] for word in word_list]
similarity_scores = []
for i, word_vector in enumerate(word_vectors):
    wv_list = []
    wv_list.append(word_vector)
    other_vectors = word_vectors[:i] + word_vectors[i+1:]
    for other_vector in other_vectors:
      ov_list = []



Taking your data to AI 175

      ov_list.append(other_vector)
      #print(cosine_similarity(wv_list, ov_list))
      similarity_scores = cosine_similarity(wv_list, ov_list).
flatten()
      context_similarity = np.mean([similarity_scores])
    similarity_scores = np.append(similarity_scores, context_
similarity)

The average cosine similarity between each word and all the other words in the list in order to 
understand the meaning of words in context and to identify related words.

The snippet works on two main attributes:

	� word_list: A list of words

	� embedding_model: A word embedding model

It first creates a list of word vectors, one for each word in word_list. Then, for each word, 
the function calculates the average cosine similarity between the word and its surrounding 
words. The average cosine similarity is then appended to a list of similarity scores. Finally, the 
list of similarity scores is returned.

6.	 Extract the top words based on the similarity scores.

In this step, we will extract the top-k words from the list based on their similarity scores to 
understand the meaning of words in context:

top_k = 10

# Get top-k words based on similarity scores
context_indices = np.argsort(similarity_scores)[-top_k:]
context = [word_list[index] for index in context_indices]

# Display the extracted context
print("Extracted context from the given word cloud:")
print(context)

The preceding code snippet retrieves the top-k words with the highest similarity scores from 
the similarity_scores list. It then prints the extracted context, which consists of the 
words that have the highest similarity in the word cloud.



Data to AI – Modeling Your Databases for Analytics and ML176

In this case, I used excerpts from the work King Lear by William Shakespeare, and the following 
figure shows the output with the context highlighted:

Figure 9.8: Code snippet displaying the context output

That is it! We have taken our raw data through a pipeline and implemented ML on it. As for the use 
case, we have used the Dataflow pipeline to transform the raw data to a word cloud and to store the 
result in a text format. We then used the words in that text file to extract the context from it.

Summary
Building upon the foundation of previous chapters, where we explored storage solutions for transactions 
and analytics, this chapter takes a deeper dive into data modeling considerations related to ETL processes 
and advanced analytics. Through the lens of real-world use cases, we examine how data modeling plays 
a crucial role in ensuring efficient ETL operations. Furthermore, we highlight the utilization of Google 
Cloud services as a means to address these considerations effectively with hands-on implementation.

At this point, having covered almost all the foundational aspects of designing for applications driven 
by data and databases of different types and structures, I look forward to engaging you with the 
most popular topic of discussion – generative AI. In particular, I would like to discuss the basics of 
generative AI and deep-dive into the world of Large Language Models (LLMs), covering the basics, 
design practices, and a hands-on implementation for extending your database application to perform 
LLM-based analytics.



10
Looking Ahead – Designing  

for LLM Applications

Imagine a digital solution that can comprehend, generate, and manipulate human language with 
great fluency and accuracy that has expanded the world of natural language processing (NLP) and 
artificial intelligence (AI): enter large language models (LLMs), where algorithms have evolved to 
transform the way we interact with systems utilizing the power of language.

So, what are these LLMs? An LLM is a type of AI model that can generate text, translate from and to 
languages, create different formats of content, and answer your questions informatively. It is trained on 
a massive amount of data, and it can learn the statistical relationships between words and phrases. This 
allows it to generate text that is similar to the text it was trained on. LLMs are still under development, 
but they have the potential to revolutionize the way we interact with computers.

In this final chapter, we will set the stage for data modeling for LLM applications by covering the following:

•	 The evolution, basics, and principles of LLMs

•	 The difference between data modeling for traditional analytical applications and LLMs

•	 Real-world use cases

•	 Data model design considerations for LLM applications

•	 Ethical and responsible practices

•	 Hands-on implementation to extend your database application so that it includes LLM insights

The main goal of this chapter is to equip you for the world of LLMs and their applications, aiming to 
help you prepare your data and design to handle the scaling use cases, challenges, and responsibilities.



Looking Ahead – Designing for LLM Applications178

Capturing the evolution of LLMs
LLMs are not mere algorithms; they are innovations, fueled by decades of research and breakthroughs. 
From their humble origins to today’s awe-inspiring models, LLMs have surpassed expectations, with 
unparalleled computational power and vast datasets. They are gateways to a new era of language 
processing, enabling machines to comprehend, generate, and manipulate text like never before. LLMs 
have evolved but they started as early as the 1950s.

The following diagram takes us through a high-level journey regarding the evolution of LLMs:

Figure 10.1: Evolution of LLMs

Some key research contributions have shaped the evolution of LLMs, such as the backpropagation 
algorithm (for training neural networks), the transformer architecture (for deriving context and 
meaning in sequential data), and the development of really large datasets. The evolution of LLMs is 
an ongoing process. As LLMs become more powerful, they will be able to perform more tasks and 
have a greater impact on our lives.

Now, let’s understand data modeling for LLM applications.

Getting started with LLMs
Throughout this chapter, we will cover components and terminologies around LLMs and concepts 
that are crucial for data modeling for LLM-based applications. However, the detailed architecture 
involved in creating LLM-based applications is outside the scope of this chapter. Here is an overview 
of the architecture and functioning of LLMs, which are typically composed of three main components:

•	 Encoder: The encoder is responsible for converting the input text into a sequence of numbers. 
This is done by representing each word in the input text as a vector of numbers.



Getting started with LLMs 179

•	 Decoder: The decoder is responsible for generating the output text from the sequence of 
numbers. This is done by predicting the next word in the output text, given the previous words.

•	 Transformer: The transformer is a neural network that is used to train the encoder and decoder. 
It can learn long-range dependencies between words.

To give a high-level summary, LLMs work by learning the statistical relationships between words and 
phrases. This is done by training the encoder and decoder on a massive dataset of text. The encoder 
and decoder learn to represent words and phrases as vectors of numbers. The transformer then learns 
to predict the next word in a sentence, given the previous words.

Now that we have covered the foundational components of LLM, let’s brush through some of the 
underlying principles.

Understanding the underlying principles of LLMs

Self-supervised learning is one of the underlying principles of LLM training. It is a type of machine 
learning (ML) where the model is trained on data that is not labeled. This means that the model is 
not given any explicit instructions on what the data means. Instead, the model learns to find patterns 
in the data on its own. LLM training relies on self-supervised learning, utilizing unlabeled data to 
predict missing portions of text and capture language patterns.

To give an overview, labeled training involves data with clear annotations or labels that’s used to train 
ML models, while unlabeled training relies on data without explicit annotations, requiring models 
to extract patterns independently from the data. In other words, we can consider labeled training as 
similar to providing an answer key to an ML model, as it guides the model by explicitly indicating 
correct outcomes or classifications for specific data points. Unlabeled training is like handing an ML 
model a set of questions without any answers, requiring the model to figure out the responses on its 
own through patterns, associations, and contexts in the data.

LLMs excel at capturing such contextual information, assigning higher weights to words relevant to 
the context for generating coherent responses. Transformers utilize attention mechanisms to capture 
dependencies between words or tokens within a sequence. The self-attention mechanism allows the 
LLM to weigh the importance of each word based on its relevance to other words in the input. This 
attention-based approach enables LLMs to effectively model long-range dependencies and contextual 
relationships in text.

LLM training involves pretraining on unlabeled data to learn language properties, followed by fine-
tuning specific tasks using labeled data. Language encoding and tokenization transform the text into 
numerical representations, enabling LLMs to process and understand textual information.



Looking Ahead – Designing for LLM Applications180

Let’s consider the example of training an LLM for a text classification task, such as sentiment analysis:

1.	 Pretraining on unlabeled data: In this initial phase, the LLM is exposed to a massive corpus 
of unlabeled text from the internet. This data includes all sorts of text, from articles and 
books to social media posts and more. During this phase, the model learns to understand 
the fundamental structure of language, including grammar, syntax, and various contextual 
relationships between words.

Example: The model encounters sentences such as “The weather today is amazing!” and “I 
can’t believe how terrible the traffic is.” It learns from these examples to recognize positive and 
negative sentiments, even though the data is unlabeled.

2.	 Fine-tuning on labeled data: After the pretraining phase, the model’s general language 
understanding is quite advanced. However, to make it useful for specific tasks, such as sentiment 
analysis, it needs further training on labeled data. In this phase, the model is given a dataset 
where each example is labeled with the sentiment (positive, negative, or neutral).

Example: The model is fed labeled data such as “I love this product; it’s fantastic!” (labeled as 
positive), “This movie was a disappointment” (labeled as negative), and “The book was okay,  
nothing special” (labeled as neutral). Through exposure to many such labeled examples, the 
model refines its ability to predict sentiment based on the context of the text.

3.	 Tokenization and encoding: Throughout both training phases, the text undergoes tokenization 
and encoding. Tokenization involves breaking text into smaller units (tokens), such as words 
or subwords. Encoding converts these tokens into numerical representations that the model 
can work with.

Example: The sentence “The weather today is amazing!” might be tokenized into [“The”, 
“weather”, “today”, “is”, “amazing”, “!”], and each token is encoded as a unique numerical value. 
For instance, “amazing” might be represented as “Token 12345.”

By the end of this process, the LLM becomes capable of taking a new, unlabeled text (for example, 
“I’m feeling great today!”) and, based on its learned language properties and fine-tuning, accurately 
determining the sentiment (in this case, positive) of the text.

With that, we have demonstrated how LLMs can leverage both labeled and unlabeled data to understand 
and perform language tasks, in theory. Now, let’s look at some real-world applications.

Comparing real-world applications of LLMs and 
traditional analytics
To understand the applications of LLMs in the real world, let’s do a comparative study of the applications 
of LLMs with traditional analytics systems.



Understanding the differences in data modeling for traditional analytics and LLMs 181

Here are some examples of traditional analytical applications:

•	 Customer segmentation is the process of dividing customers into groups based on their shared 
characteristics. This can be done to target marketing campaigns or to develop new products 
and services.

•	 Risk assessment is the process of identifying and assessing the potential risks to an organization. 
This can be done to develop mitigation strategies or to make informed decisions.

•	 Fraud detection is the process of identifying and preventing fraudulent transactions. This is 
implemented to protect users and reduce financial losses.

Now, let’s discuss some real-world LLM-based applications:

•	 Chatbots are computer programs that can simulate conversations with humans. They are often 
used in customer service applications to answer questions and resolve issues.

•	 Virtual assistants are computer programs that can perform tasks on behalf of humans. They 
are often used to set alarms, make appointments, and control smart home devices.

•	 Creative content generation is the process of automatically generating text, code, and images. 
This can be used to create new products and services, improve the user experience, and generate 
new ideas.

As shown from the use cases in both scenarios, the main difference between how we would model 
our data for traditional analytics/ML applications and modeling data for LLM applications lies in the 
nature of the data and the tasks these applications perform. We’ll discuss this in a bit more detail in 
the next section.

Understanding the differences in data modeling for 
traditional analytics and LLMs
Data modeling for traditional analytical applications focuses on creating models that can be used to 
understand and predict trends in data. This type of modeling typically involves creating tables and 
relationships between tables to represent the data in a way that is easy to understand and query. Data 
modeling for LLM-based applications, on the other hand, focuses on preparing data for applications 
that can be used to generate text, translate languages, answer questions, and create different kinds 
of content.



Looking Ahead – Designing for LLM Applications182

There are some key differences between data modeling for traditional analytical applications and data 
modeling for applications that utilize LLMs, as depicted in Table 10.1:

Considerations Traditional 
Analytical Applications

LLM Applications

Data structure In traditional analytics and ML, 
data is often well-defined. The 

data includes features and labels, 
and the modeling process focuses 
on learning patterns, correlations, 
and relationships within the data.

LLMs work with unstructured 
and natural language text data. 

LLMs are designed to understand 
language, context, and semantics 
in text, making them suitable for 
tasks involving human language 
understanding and generation.

Task specificity Traditional analytics and ML 
models are typically task-specific. 

They are trained for a specific 
purpose, such as predicting 
customer churn, classifying 
images, or recommending 

products. Each model is tailored 
to a particular task and often 
requires feature engineering.

LLMs are versatile and adaptable. 
They can be fine-tuned for various 
natural language processing tasks, 
such as text classification, language 

translation, summarization, and 
more. Unlike task-specific models, 

LLMs excel at a wide range of 
language-related tasks without 
extensive feature engineering.

Training data 
and fine-tuning

These typically operate on a 
specific dataset tailored for the 

given problem domain.

LLMs require large-scale 
pre-training on vast amounts of text 

data from diverse sources. Fine-
tuning with smaller labeled datasets 

adapts them to specific tasks.
Bias and fairness They require some bias analysis, 

but the focus is often on data 
preprocessing and ensuring 

representative samples rather than 
language-specific biases.

Data modeling for LLM applications 
should address bias mitigation 
techniques to ensure fair and 

unbiased outcomes.

Language 
generation 

and creativity

These generally focus on 
extracting and presenting insights 
from data rather than generating 

new text.

LLMs generate text and exhibit 
creative language patterns. Hence, 

data modeling for LLM applications 
involves understanding and 

controlling the language generation 
process so that it aligns with 

specific objectives.



Data model design considerations for applications that use LLMs 183

Considerations Traditional 
Analytical Applications

LLM Applications

Computational  
requirements

These are relatively less 
demanding as compared to 

LLM-based applications, but this 
can depend on the use case and 

design considerations, such as the 
volume and variety of the dataset.

LLMs demand significant 
computational resources during 

training and inference. Data 
modeling for LLM applications 

needs to account for the 
computational infrastructure and 

scalability requirements.
Human interaction Traditional models are often used 

behind the scenes for decision 
support or automation and may 

not directly interact with humans.

LLMs are designed for human 
interaction. They power chatbots, 

virtual assistants, and content 
generation systems, enabling direct 

engagement with users through 
natural language conversations.

Table 10.1: Differences between data modeling for traditional analytics and LLM applications

The choice between the two depends on the specific requirements and data characteristics of the 
application. By considering these key differences in data modeling for traditional analytical applications 
versus LLM-based applications, you can effectively design and optimize your data models to leverage 
the capabilities of LLM-based applications and cater to the specific requirements of natural language 
processing tasks.

Now that we have addressed a few real-world examples in both cases (data analytics and LLMs), let’s 
provide an overview of some considerations of data modeling for real-world applications using LLMs.

Data model design considerations for applications that 
use LLMs
The best-suited data modeling techniques and principles for data model design for applications that 
use LLMs will vary depending on the specific application. However, some general considerations 
include (but are not limited to) the following:

•	 The type of data that will be used: The data modeling technique that is chosen will need to be 
able to represent the different types of data that will be used in the application.

•	 The scalability of the app: The data modeling technique that is chosen will need to be able to 
scale as the app grows. For example, if the app is expected to have a large number of users and 
growing attributes, then a NoSQL database may be a better choice than a relational database.



Looking Ahead – Designing for LLM Applications184

•	 Data security and privacy: The data modeling technique that is chosen will need to be able 
to protect the data from unauthorized access. For example, the data may need to be encrypted 
or stored in a secure location, may have privacy and regulatory requirements, and local laws 
preventing storage in specific formats and locations. Address data privacy and compliance 
requirements, especially if your application deals with sensitive or regulated data. Implement data 
anonymization, access controls, and auditing mechanisms to meet privacy and regulatory standards.

•	 Data volume and velocity: Consider the volume of data that the LLM application will handle. 
Large-scale language models often require significant computational resources and storage. 
Ensure your data modeling approach can accommodate the anticipated data volume and 
velocity, especially if the application generates or processes data in real time.

•	 Real-time interaction and latency: If your LLM application involves real-time interactions 
with users, prioritize low latency and responsiveness. Choose data modeling techniques that 
support efficient real-time data retrieval and processing to provide a smooth user experience.

•	 Multimodal data integration: If your LLM application involves processing both textual and 
non-textual data, such as images, audio, or video, consider how the data model will handle 
multimodal data integration. Some applications require combining structured information 
with other modalities, and your data model should support this seamlessly.

•	 Versioning and data governance: Implement version control and data governance practices 
within your data model design. LLM applications may evolve, and maintaining versioned 
datasets ensures reproducibility and tracking of changes. Additionally, consider data lineage 
and audit trails for compliance and accountability.

By considering such design questions and more, including the considerations addressed in the previous 
section, you can choose the relevant technique and principle of modeling that works best for the use 
case using LLMs. We’ll discuss some of these in the next section.

Learning about data modeling principles and techniques
Data modeling techniques don’t just help you with technology choices and frameworks – they also 
enable you to prepare the premises for the industry-specific use case that you are going to address 
with the dataset. Some data modeling techniques and principles can be effective in maximizing the 
potential of using LLMs in such applications while modeling the data for them:

•	 Data quality and preprocessing: Ensure data quality by performing rigorous preprocessing 
steps, including data cleaning, normalization, and deduplication. High-quality data improves 
the performance and reliability of LLMs and prevents them from learning spurious patterns.

•	 Fine-tuning: Leverage pre-trained LLMs as a starting point and fine-tune them on domain-
specific or task-specific data. Fine-tuning allows the model to adapt and specialize for specific 
applications, reducing the need for extensive training from scratch.



Learning about data modeling principles and techniques 185

•	 Data augmentation: Apply data augmentation techniques to increase the diversity and volume 
of training data. Techniques such as back-translation, word replacement, or paraphrasing can 
introduce variations and enrich the data that’s used for LLM training.

•	 Data abstraction: This is the process of representing data in a way that is independent of the 
physical implementation of the data. Data abstraction is important for applications that use 
LLMs as it can help make the application more portable and scalable.

•	 Data normalization: This is the process of organizing data in a way that minimizes redundancy 
and ensures that data is consistent. Normalized data modeling may be preferable when data 
consistency, scalability, and long-term maintainability are critical considerations for the LLM-based 
analytics application. Denormalized data modeling can be suitable when the emphasis is on 
optimizing query performance, simplifying data access, and supporting LLM model training. 
Ultimately, the decision between denormalized and normalized data modeling depends on 
factors such as the nature of the data, the specific analytics requirements, the performance 
considerations, and the long-term scalability needs of the application. You need to carefully 
evaluate these factors and choose a data modeling approach that aligns with the objectives and 
constraints of your specific LLM-based analytics use case.

•	 Domain-specific adaptation: Incorporate domain-specific knowledge and adapt the data model 
accordingly. This involves curating domain-specific datasets, incorporating domain-specific 
features, and aligning the data model with the specific requirements of the target domain.

•	 Bias detection and mitigation: Develop techniques to detect and mitigate bias present in the 
data used for training. This can involve analyzing and addressing bias related to gender, race, 
or other sensitive attributes, promoting fairness and inclusivity in the application’s outputs. 
Make sure that you eliminate bias from your data as part of this process so that you don’t get 
skewed results for your models.

•	 Data integrity: This is the principle that data should be accurate, complete, and consistent. 
Data integrity is important for applications that use LLMs as it can help ensure that the results 
of the application are accurate and reliable.

•	 Explainability and interpretability: Use methods to explain and interpret the decisions made 
by LLMs. Techniques such as attention mechanisms (paying close attention to specific parts), 
saliency analysis (analyzing what stands out), model-agnostic approaches (general methods 
that work with any model), and more help us see how the model makes decisions, making it 
clearer and more trustworthy.

•	 Continuous evaluation and feedback loop: Establish mechanisms for continuous evaluation 
and feedback to iteratively improve the data model. Collect user feedback, monitor performance 
metrics, and incorporate insights into the data model’s design to enhance its effectiveness 
over time.



Looking Ahead – Designing for LLM Applications186

•	 Ethical and responsible data practices: Embrace ethical considerations in data modeling, such 
as user privacy, data security, and fair data usage. Adhere to legal and regulatory requirements, 
promote transparency, and ensure responsible handling of sensitive information.

These are some of the top considerations, techniques, and principles to address when we are data 
modeling LLM-based applications.

Next, we will focus on ethical and responsible data practices.

Ethical and responsible practices
In today’s world, where AI plays a pivotal role, it’s crucial to incorporate ethical practices to ensure 
that businesses and developers use LLMs in a way that benefits society and minimizes harm. Ethics 
in AI involves making responsible and morally sound choices when developing and deploying AI 
systems. In this section, we will discuss some of the core ethical and responsible data model design 
considerations for applications that use LLMs:

•	 Ensure that data that’s used for training LLMs is collected and stored following ethical and 
legal guidelines, respecting user privacy rights. Implement robust security measures to protect 
sensitive data from unauthorized access:

	� It is imperative to obtain informed consent from users when collecting their data, clearly 
stating how their information will be used. Transparency in data collection practices builds 
trust with users and safeguards their privacy.

	� Regularly update data handling and storage practices to comply with evolving privacy 
regulations. Privacy laws and regulations, such as the General Data Protection Regulation 
(GDPR) and the California Consumer Privacy Act (CCPA), are constantly evolving. Staying 
up-to-date and in compliance with these regulations is crucial to protect user privacy and 
avoid legal complications.

	� Consider adopting data anonymization techniques when handling personal data. Anonymizing 
user data means removing personally identifiable information (PII) to minimize the risk of 
data breaches or misuse. However, it’s important to note that even anonymized data should 
be handled with care to prevent re-identification.

•	 Take proactive steps to identify and mitigate bias present in the training data. Carefully curate 
diverse and representative datasets to avoid perpetuating biased outcomes or discriminatory 
behavior in LLM applications.

	� Bias can unintentionally infiltrate AI models when training data reflects existing societal 
biases, such as gender, race, or socioeconomic disparities. This can lead to biased predictions 
and reinforce harmful stereotypes, undermining the fairness and credibility of AI applications. 
Hence, proactively identifying and mitigating biases is imperative to ensure equitable and 
ethical outcomes in LLM applications.



Ethical and responsible practices 187

•	 Strive for transparency in LLM models by providing clear explanations of how they make 
predictions or generate responses. Develop methods to interpret and understand the reasoning 
behind LLM outputs, promoting accountability and trust.

	� Explainability in LLM models is crucial because it allows users and stakeholders to understand 
why a particular prediction or response was generated. This transparency fosters trust in AI 
systems and enables accountability in decision-making processes.

•	 Establish proper data governance frameworks and obtain informed consent when collecting 
or using data for LLM training. Respect user preferences regarding data usage, providing 
mechanisms for opt-in and opt-out to ensure transparency and control:

	� Data governance refers to the set of policies, procedures, and practices that organizations establish 
to manage their data effectively. It involves defining data ownership, roles, responsibilities, 
and data quality standards.

	� Various frameworks are available to help organizations implement robust data governance. 
Some widely recognized frameworks are Control Objectives for Information and Related 
Technologies (COBIT), The Open Group Architecture Framework (TOGAF), and 
ISO 27001. These frameworks offer structured methodologies and best practices for data 
governance, ensuring data is managed ethically and securely.

•	 Conduct periodic audits of applications using the models to assess their performance, behavior, 
and potential bias. Continuously monitor and evaluate the impact of LLM applications, making 
necessary adjustments so that you align with ethical standards.

•	 Deploy LLM applications responsibly, taking into account potential social, cultural, and ethical 
implications. Consider the potential risks and unintended consequences associated with 
widespread adoption, and actively work to address them.

•	 Empower users by providing clear information about how their data is being used and shared 
within LLM applications. Educate users about the capabilities and limitations of LLMs, enabling 
them to make informed decisions regarding their interactions with such applications.

•	 Encourage collaboration within the industry to establish standards and guidelines for ethical 
data modeling practices in LLM applications. Promote open dialogue, knowledge sharing, and 
responsible innovation to collectively address challenges and foster ethical practices.

•	 Regularly assess the ethical implications of data models and LLM applications as technology 
evolves. Stay updated on emerging ethical considerations and adapt data model designs 
accordingly to ensure the responsible and sustainable use of LLMs.

By following these ethical and responsible data model design practices, applications that utilize LLMs 
can strive to maximize their benefits while minimizing potential harms, fostering trust, fairness, and 
accountability in the development and deployment of LLM technologies.



Looking Ahead – Designing for LLM Applications188

Now that we have covered the basics and design considerations for enabling data so that we can build 
LLM applications, it’s hands-on time!

Hands-on time – building an LLM application
All the databases we have discussed in this book so far support Generative AI in some form or the 
other. Either store, manage, and process the data that you end up using for your LLM application or 
provide remote methods and APIs that directly support LLMs on your data. There are also vector 
databases. I have explained these briefly toward the end of this chapter.

In this section, we will take a hands-on approach to creating an LLM application in BigQuery with 
BigQuery Machine Learning (BQML) only using SQL queries, directly on the data stored in a 
BigQuery table.

Note: 
Please be advised that certain features and services described in the following sections may 
have undergone modifications since the time of drafting. The screenshots may look different 
from what you see in the book. APIs and versions may have been updated by the time you are 
reading this. As such, kindly exercise flexibility and adapt your steps accordingly.

Additionally, some services may incur charges if they are outside the free tier (if applicable). 
Therefore, it is recommended to be aware of the services you are enabling and to delete or deactivate 
services and instances that are no longer required for learning or demonstration purposes.

Why did we choose BigQuery for this? While there are many reasons why BigQuery is the key to a lot 
of data design considerations, the answer here is simple and three-fold:

•	 LLM meets your data, where it lives!

•	 Since you are creating this only using SQL, it doesn’t require programming expertise

•	 Since BigQuery supports storing and managing all data structures, you can unify your data with 
other formats of data, which could help in creating more precise analytics, ML, and LLM models

How are we going to implement this? We will use Google Cloud’s generative AI APIs from Vertex AI 
as hosted remote functions in BigQuery to implement the LLM application.

The following is from the Google documentation:

•	 The generative AI APIs from Vertex AI lets you test, customize, and deploy instances of 
Google’s LLMs so that you can leverage the generative AI capabilities in your applications. 
You can read more about it here: https://cloud.google.com/vertex-ai/docs/
generative-ai/start/quickstarts/api-quickstart.

•	 You can register a Vertex AI endpoint as a remote model and call it directly from BigQuery with 
ML.PREDICT construct. You can read more about this here: https://cloud.google.
com/bigquery/docs/bigquery-ml-remote-model-tutorial.

https://cloud.google.com/vertex-ai/docs/generative-ai/start/quickstarts/api-quickstart
https://cloud.google.com/vertex-ai/docs/generative-ai/start/quickstarts/api-quickstart
https://cloud.google.com/bigquery/docs/bigquery-ml-remote-model-tutorial
https://cloud.google.com/bigquery/docs/bigquery-ml-remote-model-tutorial


Hands-on time – building an LLM application 189

•	 We will use the CLOUD_AI_LARGE_LANGUAGE_MODEL_V1 (the name may be different 
when you are reading this. Please refer to the BigQuery documentation to make sure you are 
invoking the latest text generation API available as a remote service for BigQuery) remote 
service type from Vertex AI in this implementation.

What are we going to implement? We will build a text generation model that will read a word from a 
BigQuery table and generate a two-line explanation for it.

Prerequisites:

•	 This chapter assumes you’ve already created a Google Cloud project, enabled BigQuery, and 
created a BigQuery dataset. Since we covered these steps in detail in Chapter 5, Designing an 
Analytical Data Warehouse, in the Setting up and configuring a fully managed data warehouse 
with BigQuery section, I encourage you to follow the steps in that chapter.

•	 Before you begin, it is assumed that you have a dataset named bq_llm created.

•	 It’s also assumed that you have all the necessary APIs enabled – that is, the BigQuery API, 
BigQuery Connection API, and Vertex AI API, as mentioned in the documentation at 
https://cloud.google.com/endpoints/docs/openapi/enable-api. This 
was also covered in some of the previous chapters of this book.

Step 1 – create a table

Let’s create a table named words in the BigQuery dataset we just created – that is, bq_llm. In the 
BigQuery console’s query editor pane, type the following command:

create table bq_llm.words(id integer, word string);

Click RUN, as shown here:

Figure 10.2: BigQuery SQL editor with the CREATE TABLE statement

https://cloud.google.com/endpoints/docs/openapi/enable-api


Looking Ahead – Designing for LLM Applications190

As you can see, once you run the CREATE TABLE statement, you should be able to go to the Query 
results pane and see that the statement created a new table named words.

Step 2 – insert data into the table

Let’s insert two rows into the words table we just created. Paste the following statements in the 
query editor:

insert into bq_llm.words values(1, 'LLM');
insert into bq_llm.words values(2, 'Generative AI');
insert into bq_llm.words values(3, 'Observability');

Click RUN:

Figure 10.3: BigQuery SQL editor with the INSERT statement

As you can see, once you run the INSERT statement, the three rows will be inserted into the words table.



Hands-on time – building an LLM application 191

Step 3 – create an external connection for BigQuery to access the 
Vertex AI model

Let’s create an external connection and make a note of the Service Account ID from the connection 
configuration details. Make sure the BQ Connection API is enabled for this step to be successful. To 
do this, just search for BigQuery connection API in the search bar of Google Cloud Console 
and enable the API when you’re prompted:

1.	 Click the + ADD button in the Explorer pane of BigQuery, as shown here:

Figure 10.4: The BigQuery Explorer pane with the + ADD button highlighted

The preceding screenshot shows the + ADD button that you need to click to create the 
external connection.



Looking Ahead – Designing for LLM Applications192

2.	 Once you click that, you should be able to see the Add page. Under Popular sources, choose 
Connections to external data sources, as shown here:

Figure 10.5: The Connections to external data sources option



Hands-on time – building an LLM application 193

Once you’ve done this, you will be taken to the External data source page, as shown here:

Figure 19.6: The External data source page

Enter the necessary details and click CREATE CONNECTION, as shown in the preceding 
screenshot. Make sure your connection type is set to BigLake and remote functions (cloud 
resource) and that Location type is the same as that of your BigQuery dataset.



Looking Ahead – Designing for LLM Applications194

3.	 Upon clicking CREATE CONNECTION, you will be taken to the Connection info page, as 
shown here:

Figure 10.7: The Connection info page

As you can see, a service account ID has been created for your connection. Make a note of that.

Step 4 – grant permissions to the service account to access the 
Vertex AI service

For BigQuery to access the Vertex AI service as a remote function, we need to provide the necessary 
permissions to the external connection that’s been created.

To do that, select IAM from Google Cloud Console’s hamburger menu (the three lines in the top-left 
corner), and on the IAM page that opens, on the right, click GRANT ACCESS in the VIEW BY 
PRINCIPALS tab. Enter the service account ID you noted in the previous step in the New principals 
section. All these pointers are highlighted in the following figure with a black checkmark:



Hands-on time – building an LLM application 195

Figure 10.8: IAM configuration page

Enter the necessary details to add the permissions, as shown in the preceding figure, and click SAVE.

At this point, we have the data, external connection, and permissions to create the LLM model in 
BigQuery by accessing the Vertex AI service as a remote function.

Step 5 – create the remote model in BigQuery

Create a remote model in BigQuery and name it text_descriptor. This will use the CLOUD_AI_
LARGE_LANGUAGE_MODEL_V1 remote service type (it is the Vertex AI LLM for text generation: 
text-bison) as a hosted remote function in BigQuery.

In the BigQuery query editor, run the following statement:

CREATE OR REPLACE MODEL bq_llm.text_descriptor
REMOTE WITH CONNECTION `us.bq_llm_connection`
OPTIONS (remote_service_type = 'CLOUD_AI_LARGE_LANGUAGE_MODEL_V1');



Looking Ahead – Designing for LLM Applications196

Note that the CONNECTION keyword is followed by the connection’s name – that is, us.bq_llm_
connection. This is because we created the connection in the US region with the name bq_llm_
connection. If you have chosen different values for this, use your connection attributes correctly. 
Click RUN; this will create the model, as shown here:

Figure 10.9: BigQuery model creation

As we can see, the model has been created, and you have a GO TO MODEL button in the RESULTS 
tab. Upon clicking that, you should be able to see the model’s details.

Step 6 – query the dataset

Now that the model has been created, you should be able to use the model and generate text on the 
dataset we created earlier. But before that, let’s view the dataset on which we are creating the Generative 
AI application. We created the words table and inserted three rows in it. Let’s run the query in the 
BigQuery query editor:

select * from bq_llm.words;



Hands-on time – building an LLM application 197

You should see the results shown in the following screenshot:

Figure 10.10: Querying the table words to view our data

Step 7 – generate text (create an LLM application) using only SQL

Now that the model has been created and we know the data that we are working with, let’s go ahead 
and use the model to generate text on the data we have stored.

Run the following query in the BigQuery query editor to generate text for the three words we have 
stored in the words table:

SELECT *
FROM
ML.GENERATE_TEXT(
MODEL `bq_llm.text_descriptor`,
(
SELECT
CONCAT('Can you read the word and create a two line description for 
it:', word)
AS prompt
from `bq_llm.words`
),
STRUCT(
0.8 AS temperature,
100 AS max_output_tokens,
TRUE AS flatten_json_output));



Looking Ahead – Designing for LLM Applications198

Let’s look at the components of the SELECT query:

•	 ML.GENERATE_TEXT is the construct for accessing the Vertex AI model in BigQuery to 
perform text generation.

•	 CONCAT is the construct that appends the prompt and the database value. We are concatenating 
the prompt, Can you read the word and create a two-line description 
for it:, and the value in the word field from the words table.

•	 prompt is the construct that tells the model what to generate. There is a whole subject called 
prompt engineering or prompt design that deserves to be discussed in detail, but this is outside 
the scope of this chapter. You can learn more about it here: https://cloud.google.com/
vertex-ai/docs/generative-ai/learn/introduction-prompt-design.

•	 temperature is the prompt parameter that controls the randomness of the model’s response. 
If you want your model to respond less wildly, choose a smaller value.

•	 max_output_tokens is the number of words you want from the model in response.

•	 flatten_json_output is a Boolean that, if set to true, returns a flattened text that is 
relatively more understandable, and it is extracted from the JSON response.

Once you run the aforementioned query, you should be able to see the results from the model:

Figure 10.11: Generating text using ML.GENERATE_TEXT

The preceding screenshot shows the query results, including two notable fields, ml_generate_
text_llm_result and ml_generate_text_rai_result, in the response. Let’s look at 
these response attributes:

•	 ml_generate_text_llm_result is the response field that contains the generated 
text content.

https://cloud.google.com/vertex-ai/docs/generative-ai/learn/introduction-prompt-design
https://cloud.google.com/vertex-ai/docs/generative-ai/learn/introduction-prompt-design


Vector databases 199

•	 ml_generate_text_rai_result is the response field that contains the safety attributes 
with a pre-built content filter and adjustable threshold that is enabled in the API to avoid unsafe 
responses from the API. The text response will be blocked if the response exceeds the safety 
threshold. This also accounts for how smoothly we have incorporated responsible AI in our 
solution using the Vertex AI API in BigQuery.

That’s it! We have created a simple LLM application in BigQuery using only SQL queries.

This was a simple hands-on exercise that was included to engage your learning about databases, data 
warehouses, and data modeling in creating an LLM application. Try it out for your own use cases.

Vector databases
As I promised, let me brief you a little about vector databases. I have taken the approach of explaining 
it to a 10-year-old; you can skip to the last paragraph of this section if you are not comfortable with 
this explanation.

Imagine that you have a big box of toys. Each toy has many different features, such as its shape, color, 
size, and material. You could describe each toy in words, but that would be very time-consuming and 
difficult to search through. A vector database is a way to represent each toy as a set of numbers, called 
a vector. Each number in the vector represents a different feature of the toy.

For example, the first number might represent the toy’s shape, the second number might represent 
its color, and so on. Vector databases are very efficient for searching. For example, you could search 
for all the toys that are red and ball-shaped. The vector database would simply compare the vectors 
of all of the toys to find the ones that match your query.

Vector databases are specialized databases for storing and querying vectors, which are mathematical 
representations of data. Vector databases store and query vectors, which represent data in a high-
dimensional space. This enables Generative AI models to learn complex relationships between data 
and generate new content. Google Cloud offers vector database options such as Vertex AI Vector 
Search, Cloud SQL for PostgreSQL vector extension (pgvector), and more. You can also choose to 
use the Vertex AI Vector Search service to store for and search vectors in BigQuery.

Summary
In this chapter, we walked through the phenomenon that has taken the world by storm – LLMs. We 
covered some fundamental topics around the evolution, basics, and principles of LLMs, the differences 
between data model design for good old analytical applications, and looked at LLM applications with 
some real-world use cases. Then, we discussed some data model considerations, techniques, best 
practices, and ethical considerations for data modeling design for LLM use cases. We also extended 
our learning to a simple hands-on LLM application development exercise.



Looking Ahead – Designing for LLM Applications200

LLMs and Generative AI services such as BigQuery and Vertex AI open up countless opportunities 
and potential business insights across industries by enabling us to work with diverse data formats 
and sources. I hope this chapter was able to equip you with a foundational insight into the world of 
LLMs and their applications while helping you prepare your data and design to handle the scaling 
use cases, challenges, and responsibilities.

Onward and upward!
I hope you enjoyed learning about cloud database design and modeling, hands-on, through these 
chapters. Try to apply this learning and awareness to projects at work, learning, or business applications. 
If you end up getting ground-breaking ideas or solving complex day-to-day data problems with ideas 
and concepts you’ve learned, feel free to reach out to me on my socials at https://abirami.
dev. I would be thrilled to feature your experience in some of our developer community programs. 
You can learn about this at https://codevipassana.dev.

https://abirami.dev
https://abirami.dev
https://codevipassana.dev


Index

A
AI data modeling

considerations  160
analytical applications  30

examples  30
analytical data modeling

considerations  160
API, enabling in Google Cloud 

project on Vertex AI
reference link  189

API endpoint and method  104
APIs

enabling, in GCP Console  116
applications of data, on cloud  21

analytics and insights  21
backup and disaster recovery  21
development  21
storage  21
user experience and personalization  22

archival storage  120
artificial intelligence (AI)  4
Atomicity, Consistency, Isolation, and 

Durability (ACID) properties  31, 48, 93
automatic scaling  142
automatic updates  134
availability  93

B
backup plan  134
big data  21
BigQuery  72, 115

dataset, creating  75, 76
data, streaming into  82
enabling, from console  74, 75
existing public dataset, using  77, 78
features  72, 73
fully managed data warehouse, 

configuring   73
fully managed data warehouse, setting up  73
simple analytics, performing  82-84
table in dataset, creating  78-81
unstructured data analytics with  123-128

BigQuery Federated Query Service  146
BigQuery Machine Learning (BQML)  188
BigQuery tables

values, inserting  81, 82
binary large objects (BLOBs)  10
Block Storage  115
buckets  116
business aspect  7, 8

ingestion  8
business intelligence (BI)  68



Index202

C
California Consumer Privacy 

Act (CCPA)  186
Cloud Build  147
Cloud Code  147
cloud computing  17

benefits  20
cloud database migration service/tools

consideration factors  148, 149
cloud databases

availability  141
considerations  24, 25
migrating to  148
monitoring  136-138
patching  134, 135
performance and throughput  143, 144
security and privacy  138, 139
updates  134, 135
upgrades  134, 135
used, for creating one-page application  57

cloud database security and privacy
mitigating, tips  138

Cloud Deploy  147
Cloud Function

creating  57-64
Cloud Functions service account

configuring  57
Cloud Logging  136
Cloud Monitoring  136
cloud relational databases, 

operational aspects  64
migration  65
monitoring  65
query insights  65
security  65

cloud services
hybrid cloud  18
private cloud  18
public cloud  18

Cloud Shell Command
connecting  52-54

Cloud SQL  48
features  48
reference link  49

Cloud SQL instance
creating, for MySQL  50

Cloud Storage  115, 116
archival storage  120
coldline storage  120
features  120
nearline storage  120
standard storage  120
unstructured data, creating  116-120

collection group query  101, 102
column-oriented storage mechanism  13
columns  30
common table expressions (CTEs)  45
composite index  100, 101
consistency  93
continuous integration/continuous 

delivery (CI/CD)  146-148
benefits  147
consideration factors  147

Control Objectives for Information and 
Related Technologies (COBIT)  187

Create, Read, Update, and 
Delete (CRUD)  34

cross-region replication  140
customer relationship management 

(CRM)  19, 70, 144



Index 203

D
data  4
data auditing  139
database  4, 29

design  5
evolution  4
modeling  6
selecting  12
versus data warehouses  67-70

database as a service  23
database design

considerations  6, 7
data modeling  6
reasons  5

database management system (DBMS)  5
Database Migration Service  149-155

reference link  155
database replication  139, 140
data breaches  138
data compliance  139
Data Control Language (DCL)  34
data corruption  138
data definition language (DDL)  34, 48
data encryption  139

data at rest  139
data in transit  139

data federation  145, 146
data governance  187
data isolation  139

database isolation  139
project isolation  139

data loss  138
Data Manipulation Language (DML)  34
data model design considerations  102

denormalized format  103, 104

for real-world applications, 
using LLMs  183, 184

hierarchical format  102
data modeling  6

principles and techniques  184-186
data modeling, for data to AI

analytics database or warehouse  161
archival considerations  162
data ingestion  161
integration  162
storage  161
transformation  162

data modeling, for traditional 
analytical applications

versus data modeling for LLM-based 
applications  181-183

data privacy  138
Data Query  34
data security  138
data structure, ingestion

semi-structured data  10
structured data  10
unstructured data  10

data to AI journey  161, 171-176
data type, ingestion

application type  9
batch data  9
live stream and real-time stream data  9

data warehouse
ETL, significance in  70, 71
operational aspects and design 

considerations  85
use cases, across various industries  68
versus databases  67-70

decision support systems (DSS)  144
decoder  179
denormalized format  103, 104
document database  13



Index204

E
edges  15
elastic pools  142
encoder  178
enterprise resource planning (ERP)  70
ethical and responsible data practices  186

considerations for applications, 
using LLMs  186, 187

external replication  140
external tables  78
extract, transform, and load (ETL)  162

cloud offerings for  71
significance, in data warehouse  70, 71

F
Filestore  115
Firestore database  94, 95

APIs  98
client libraries  98
collection  97
documents  97
features  94, 95
security  98
setting up  95-97
subcollection  97

Firestore database index  99
Firestore database index, types  99

collection group query  101, 102
composite index  100, 101
single-field index  99, 100

from clause  106
fully managed database  47
fully managed RDBMS

Cloud Shell command, connecting  52-54
Cloud SQL instance, creating 

for MySQL  50-52

configuring  49
database, creating  54
features  48
setting up  49
table, creating  55
values, inserting  55, 56
values, querying  56

G
gcloud command-line tool

using  134
General Data Protection Regulation 

(GDPR)  138, 186
geo-replication  143
Google Cloud

unstructured data, storage options  115
URL  116

Google Cloud console
using  134

Google Cloud databases
features  140, 141
features, supporting scalability  142, 143

Google Cloud Dataflow  163
features  163, 164
job monitoring  171
pipeline, defining  168
real-world use cases  164, 165
reference link  171
setting up  166-171
troubleshooting  171

Google Cloud ETL services  162
Google Cloud BigQuery  163
Google Cloud Dataflow  162
Google Cloud Dataproc  163
Google Cloud Pub/Sub  163
Google Cloud Storage  163



Index 205

Google Cloud Platform account
setting up  116

Google Cloud Platform (GCP)  116, 166
Google Cloud projects, creating 

and managing
reference link  116

graph database  15, 16
Graph Query Language (GQL)  15

H
Health Insurance Portability and 

Accountability Act (HIPAA)  65
hierarchical format  102
hybrid cloud  18

I
identity and access management (IAM)  98
Infrastructure as a Service (IaaS)  18
ingestion  8

data structure  9
data type  8
purpose of data  9

Integrated Development 
Environment (IDE)  167

Internet of Things (IoT)  9, 165

J
Java Development Kit (JDK)  167
JSON body format  105

K
key-value database  14

L
labeled training  179
large language models (LLMs)  177

evolution  178
principles  179, 180
working with  178

LLM application
building  188, 189
data, inserting into table  190
dataset, querying  196, 197
external connection, creating for BigQuery 

to access Vertex AI model  191-194
permissions, granting to service account 

to access Vertex AI service  194, 195
remote model, creating in 

BigQuery  195, 196
table, creating  189, 190
text, generating with SQL  197-199

LLM training  179

M
machine learning (ML)  4, 115, 179
managed databases  22, 23
manual updates  134
Maven project

creating  167, 168
ML data modeling

considerations  160
mobile and web client libraries  98
multi-factor authentication (MFA)  33
MySQL

used, for creating Cloud SQL instance  50-52



Index206

N
nearline storage  120
NoSQL database  13, 26

data structures supported by  93, 94
document database  13, 14
for semi-structured data  93
graph database  15, 16
key-value database  14
objective  93
wide-column database  14

O
object tables  121
one-page application

Cloud Function, creating  57-64
Cloud Functions service account, 

configuring  57
creating, with cloud database  57

online analytical processing 
(OLAP)  13, 26, 67

online transaction processing 
(OLTP)  12, 26, 144

first normal form  12
second normal form  12
third normal form  13

P
parent parameter  105
Partition Tolerance  93
performance  143, 155

measuring, methods with Google Cloud  144
personally identifiable 

information (PII)  186
Platform as a Service (PaaS)  18

point-of-sale (POS) systems  70
predictions, making with remote 

models on Vertex AI
reference link  188

primary instance  140
private cloud  18
prompt engineering/prompt design   198

reference link  198
public cloud  18

Q
querying, with RunQuery API  104

API endpoint and method  104
from clause  106
JSON body format  105
parent parameter  105
StructuredQuery  105
where clause  106

query insights  155

R
read replication  140

cascading  140
real-world applications, with LLMs  181

data model design considerations  183, 184
real-world use cases, Dataflow  164

batch data processing  165
clickstream analysis  165
data warehousing  165
ETL pipelines  165
IoT data processing  165
real-time data processing  164

relational database  12, 26
online analytical processing (OLAP)  13
online transaction processing (OLTP)  12



Index 207

relational database management 
system (RDBMS)  48

considerations and best practices  31-33
using, for structured data  30

row-oriented storage  13
rows  29
RunQuery API

implementing, programmatically  108-110

S
scalability  142

Google Cloud databases features, 
supporting  142, 143

horizontal scalability  142
vertical scalability  142

security  98
self-supervised learning  179
semi-structured data  90, 91

cons  91
features  90
NoSQL databases  93
pros  91
use cases  92

server client libraries  98
service level agreement (SLA)  144, 145
service level indicator (SLI)  145
service-level objective (SLO)  145
shards  142
single-field index  99, 100
Software as a Service (SaaS)  19
Spanner migration tool  149
SQL queries

examples  34-36
Stackdriver Logging  136
Stackdriver Monitoring  136
standard storage  120

standard tables  78
statistical research group (SRG)  6
Storage Transfer Service  115
structured data  29

analytical applications  30
column  30
RDBMS, using for  30
rows  29
transactional applications  30

StructuredQuery  105
Structured Query Language (SQL)  13, 29, 34

Data Control Language (DCL)  34
Data Definition Language (DDL)  34
Data Manipulation Language (DML)  34
Data Query  34

system insights  155

T
technical aspect  10-12
The Open Group Architecture 

Framework (TOGAF)  187
third-party tools  134
throughput  143

measuring, methods with Google Cloud  144
TPC-C benchmark  144
TPC-H benchmark  144
traditional analytical applications  181
transactional applications  30

examples  30
transformer  179
TrueTime and external consistency

reference link  143



Index208

U
unmanaged database  23
unstructured data  113

analytical applications  114
creating, in Cloud Storage  116-120
disadvantages  113
processing  114
storage options, in Google Cloud  115
use cases  114
using, reasons in transactional 

applications  114
unstructured data analytics

with BigQuery  123-128
unstructured data storage, 

with BigQuery  120
external connections  121-123
external sources  121

updates
testing  134

use case, SQL queries
database, building for online music 

streaming service  41-43
database, designing for eCommerce 

platform  36, 37
database, designing for library  40, 41
social media application  38, 39

user-defined functions (UDFs)  163

V
vector  199
vector databases  199
Vertex AI API

reference link  188
views tables  78
virtual private cloud (VPC)  65

W
where clause  106
wide-column database  14



Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as 
industry leading tools to help you plan your personal development and advance your career. For more 
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over 

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files 
available? You can upgrade to the eBook version at Packtpub.com and as a print book customer, you 
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range 
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packtpub.com
http://Packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com


Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Data Engineering with Google Cloud Platform

Adi Wijaya

ISBN: 9781800561328

•	 Load data into BigQuery and materialize its output for downstream consumption

•	 Build data pipeline orchestration using Cloud Composer

•	 Develop Airflow jobs to orchestrate and automate a data warehouse

•	 Build a Hadoop data lake, create ephemeral clusters, and run jobs on the Dataproc cluster

•	 Leverage Pub/Sub for messaging and ingestion for event-driven systems

•	 Use Dataflow to perform ETL on streaming data

•	 Unlock the power of your data with Data Studio

•	 Calculate the GCP cost estimation for your end-to-end data solutions

https://www.packtpub.com/product/data-engineering-with-google-cloud-platform/9781800561328


211Other Books You May Enjoy

Machine Learning with BigQuery ML

Alessandro Marrandino

ISBN: 9781800560307

•	 Discover how to prepare datasets to build an effective ML model

•	 Forecast business KPIs by leveraging various ML models and BigQuery ML

•	 Build and train a recommendation engine to suggest the best products for your customers 
using BigQuery ML

•	 Develop, train, and share a BigQuery ML model from previous parts with AI Platform Notebooks

•	 Find out how to invoke a trained TensorFlow model directly from BigQuery

•	 Get to grips with BigQuery ML best practices to maximize your ML performance

https://www.packtpub.com/product/machine-learning-with-bigquery-ml/9781800560307


212

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and 
apply today. We have worked with thousands of developers and tech professionals, just like you, to 
help them share their insight with the global tech community. You can make a general application, 
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Database Design and Modeling with Google Cloud, we’d love to hear your thoughts! 
If you purchased the book from Amazon, please click here to go straight to the 
Amazon review page for this book and share your feedback or leave a review on the site that 
you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-804-61145-X
https://packt.link/r/1-804-61145-X


213

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application. 

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804611456

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804611456

	Cover
	Title Page
	Copyright and Credits
	Dedications
	Forewords
	Contributors
	Table of Contents
	Part 1:
 Database Model: Business and Technical Design Considerations
	Data, Databases, and Design
	Data
	Databases
	A teeny-tiny bit about the evolution of databases
	DBMS

	Database design
	Data modeling
	Database modeling

	Considerations for a good database design
	Business aspect
	Ingestion

	Technical aspect
	Choosing the right database
	Relational database
	NoSQL database

	Summary

	Chapter 2: Handling Data on the Cloud
	Types of cloud services
	Use case categories
	The benefits of cloud computing
	Data applications on cloud
	Storage
	Backup and disaster recovery
	Analytics and insights
	Application development
	User experience and personalization

	Managed, unmanaged, and database as a service
	Managed databases
	Unmanaged databases
	Database as a service

	Cloud database considerations
	A quick follow-up
	Summary

	Part 2:
 Structured Data
	Chapter 3: Database Modeling for Structured Data
	Structured data
	Rows and columns
	Transactional applications
	Analytical applications

	Using an RDBMS for structured data
	Atomicity
	Consistency
	Isolation
	Durability

	Considerations for your RDBMS
	Structured query language
	Sample SQL queries

	Summary

	Chapter 4: Setting Up a Fully Managed RDBMS
	Fully managed databases
	Fully managed RDBMS
	Cloud SQL
	Setting up and configuring a fully managed RDBMS
	Creating a Cloud SQL instance for MySQL
	Connecting to the  instance
	Creating a database
	Creating a table
	Inserting values
	Querying values

	Creating an application with the Cloud database
	Configuring the Cloud Functions service account
	Creating a Cloud Function

	Operational aspects of cloud relational databases
	Migration
	Monitoring
	Query Insights
	Security

	Summary

	Chapter 5: Designing an Analytical Data Warehouse
	Understanding how data warehouses are different from databases
	Significance of ETL in data warehouse
	Learning about BigQuery
	Features of BigQuery
	Setting up and configuring a fully managed data warehouse with BigQuery
	Enabling BigQuery from the console
	Creating a BigQuery dataset
	Using an existing public dataset
	Creating a table in the dataset
	Performing simple analytics

	Summary of operational aspects and design considerations
	Summary

	Part 3: 
Semi-Structured, Unstructured Data, and NoSQL Design
	Chapter 6: Designing for Semi-Structured Data
	Semi-structured data
	Pros and cons of semi-structured data
	Use cases of semi-structured data

	NoSQL for semi-structured data
	Data structures supported by NoSQL databases

	Firestore and its features
	Setting up Firestore
	Collection
	Document
	Subcollection

	Security
	Client libraries and APIs
	Indexing
	Single-field index
	Composite index
	Collection group query

	Data model considerations
	Hierarchical format
	Denormalized format

	Easy querying with RunQuery API
	API endpoint and method
	The parent parameter
	JSON body format
	StructuredQuery
	The from clause
	The where clause
	Putting the pieces together

	Implementing RunQuery API programmatically
	Summary

	Chapter 7: Unstructured Data Management
	Use cases
	Processing unstructured data

	Storage options in Google Cloud
	Cloud Storage, classes, and features

	Unstructured data storage with BigQuery
	External sources
	External connections

	Unstructured data analytics with BigQuery
	Summary

	Part 4: 
DevOps and Databases
	Chapter 8: DevOps and Databases
	Upgrades, updates, and patching
	Security, privacy, and encryption
	Replication and availability
	Scalability
	Performance and throughput
	SLA, SLI, and SLO
	Data federation
	Continuous integration/continuous delivery (CI/CD)
	Migrating to cloud databases
	Database Migration Service
	System, query, and performance insights
	Summary

	Part 5: 
DevOps and Databases
	Chapter 9: Data to AI – Modeling Your Databases for Analytics and ML
	Modeling considerations for analytics, AI, and ML
	Data to AI
	Google Cloud ETL services
	Google Cloud Dataflow at a glance
	Real-world use cases for Google Cloud Dataflow
	Step-by-step guide to Google Cloud Dataflow

	Taking your data to AI
	Summary

	Chapter 10: Looking Ahead – Designing 
for LLM Applications
	Capturing the evolution of LLMs
	Getting started with LLMs
	Understanding the underlying principles of LLMs

	Comparing real-world applications of LLMs and traditional analytics
	Understanding the differences in data modeling for traditional analytics and LLMs
	Data model design considerations for applications that use LLMs
	Learning about data modeling principles and techniques
	Ethical and responsible practices
	Hands-on time – building an LLM application
	Step 1 – create a table
	Step 2 – insert data into the table
	Step 3 – create an external connection for BigQuery to access the Vertex AI model
	Step 4 – grant permissions to the service account to access the Vertex AI service
	Step 5 – create the remote model in BigQuery
	Step 6 – query the dataset
	Step 7 – generate text (create an LLM application) using only SQL

	Vector databases
	Summary
	Onward and upward!

	Index
	Other Books You May Enjoy



