MATT GOLDWASSER | UPOM MALIK
BENJAMIN JOHNSTON

THE
APPLIED SQL

DATA ANALYTICS ¥
WORKSHOP

SECOND EDITION

DEVELOP YOUR PRACTICAL SKILLS AND PREPARE
TO BECOME A PROFESSIONAL DATA ANALYST

Packt)

a 7

DATA SCIENCE & ARTIFICIAL INTELLIGENCE

THE

APPLIED SOL

DATA ANALYTICS
WORKSHOP

SEGOND EDITION

Develop your practical skills and prepare

to become a professional data analyst

Matt Goldwasser, Upom Malik, and Benjamin Johnston

THE APPLIED SQL DATA ANALYTICS WORKSHOP
SECOND EDITION
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy

of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages caused
or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Matt Goldwasser, Upom Malik, and Benjamin Johnston

Reviewers: Halil Burak Cetinkaya, Joshua Gérner, Siddharth Poddar,
and Fiodar Sazanavets

Managing Editor: Aditya Shah
Acquisitions Editors: Anindya Sil and Karan Wadekar
Production Editor: Roshan Kawale

Editorial Board: Megan Carlisle, Samuel Christa, Mahesh Dhyani, Heather Gopsill,
Manasa Kumar, Alex Mazonowicz, Monesh Mirpuri, Bridget Neale, Dominic Pereira,
Shiny Poojary, Abhishek Rane, Brendan Rodrigues, Erol Staveley, Ankita Thakur,
Nitesh Thakur, and Jonathan Wray

First published: August 2019
Second edition: February 2020
Production reference: 2301120
ISBN: 978-1-80020-367-9

Published by Packt Publishing Ltd.
Livery Place, 35 Livery Street
Birmingham B3 2PB, UK

Table of Contents

Preface i
Chapter 1: Introduction to SQL for Analytics 1
[T} o 1¥ e o o PR 2
The WOorld of Datacccceeereeiiieerierceeeeeeteeeee st ee e 2
TYPES OF DALA ..covueiiiiiiiiiiictctcrctcrc e 3
Data Analytics and StatiStiCSccccceeverrreerereercreenreerceenceereeesseeseeessneenane 4
Types Of STatiStiCS ...coccevviiiiiiiiiiiicrtc s 4
Activity 1.01: Classifying a New Datasetcccccocveerveerveerneenseenseensnennne 6
Methods of Descriptive StatistiCsccvveriviiiiieniniiniieniieiecece, 7
UNIVariate ANalYSiS.....ccccvcvereierrnirrneersrereeereneesessesssaesssnesesnesessesssessssssssasesssneses 7

Data Frequency Distributionccocceeviiiiniiniinicniinicnecececcecseeseene 7
Exercise 1.01: Creating @ HiStOZramccccccevreviericneerccneenncnneenenneeesssnnens 8
QUANTIIES .ottt ecccrrreeeeessssrrreeeessssssssseeeesssssssssesesssssssssssaesssssssssans 12
Exercise 1.02: Calculating the Quartiles for Add-on Sales 14
Central TENAENCYcoviiiiiiiitiictitetnttt et ssr s 16
Exercise 1.03: Calculating the Central Tendency of Add-on Sales 18

DT] =T 5] o T o 20
Exercise 1.04: Dispersion of Add-on Salescccccevveerveerreercreenneennes 22
Bivariate ANalysiscocvviiiiininiiiniiintncncc s 23
SCALLEIPIOLS ..eeeeeieeieeceeereteee e e e e s see e s e e s sae e s sseessreesssnessneesnaessnnesane 23

Pearson Correlation COEFfiCIENTuueeeeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeee e eeeeeesesesssssssns 29

Exercise 1.05: Calculating the Pearson Correlation

Coefficient for Two Variables ...t 31
Interpreting and Analyzing the Correlation Coefficient.........ccccocvirernenennen. 34
Activity 1.02: Exploring Dealership Sales Datacccceeereveereceerenerennene 39
Working with MisSSing Datacccccciiviiiiiiiicnieincncecnee e 39
Statistical Significance TesStingcocvvevevveiririincieercceecceeseeeeeeeee 40
Common Statistical Significance Testsccccceeviiiiiiiiiniieniierceeceee 42
Relational Databases and SQLeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeseeesesssesseeee. 42
Advantages and Disadvantages of SQL Databasescccocceveuennene. 43
Basic Data Types Of SQL ..ccuuiiiiiireceeerceerceeeccnreseseeseceeessneesssnneenes 45
NUIMEIIC .ttt ettt ettt et ettt e e e s e e s s 45

L6 T= T - Tl =] PSPPSR PRTSORR 46
BOOICAN ... 46
DAtetime ...ooeiiiiiiiiicttt s 47
Data Structures: JSON and Arrayscccccccceerireninnnnieesiesseeeeeesseesenees 47
Reading Tables: The SELECT QUEIYccccvveerivreerrenneerinneresneesesneesssnneens 48
Basic Anatomy and Working of @ SELECT QUErYccceccvevirereerneennnen. 48
Basic Keywords in @ SELECT QUEIYcoecereeeeerneerseessneessnensneessnnesssnessnnes 49
The SELECT and FROM Statementsccceeveeveeererenrenercnteeeeeeeeeeeeeeeseeeeaeenne 49

The WHERE ClaUSe.....ccccciiiiieeccnireeceetnteeetsts et ese et s e ae et snesnesanan 50

The AND/OR ClaUSe.......ooeieriereeeieeteeteeeee et et e et et e et et et e et s se st st ennenns 51

The IN/NOT IN ClaUSE ..ottt eesnesnean 52

The ORDER BY ClaUSe.....c.coeereeeeeeteeteeieetee e et ee st e te st et sese s neseneennenns 53

The LIMIT ClaUSe.....coiieiiiieeeecntneeeee ettt st sse et st seesae s snesaesnnan 55

The IS NULL/IS NOT NULL ClAUSEueiecreeeeieienirienireencseessseessseessssesssssesssnesssnenes 56

Exercise 1.06: Querying the salespeople Table Using Basic
Keywords in @ SELECT QUENYooiiiiiiiiiinte ettt 58

Activity 1.03: Querying the customers Table Using Basic

Keywords in @ SELECT QUEIYcevceeerreerreeeneteneteeseeessseessneessseesssnessssessnnes 60
Creating TabIes ... 61
Creating Blank TabIescccooieiviiiieenreeneeneceseeeseeesseeesseeessneessneessneenane 61
Exercise 1.07: Creating a Table in SQLccccoverviiveriinienncniecnnecneenneen. 62
Creating Tables With SELECTcccvceiverrvernrennieenreeenseeessseessneessseessnnennne 63
Updating TabIes ...ttt 64
Adding and Removing COIUMNSccoevereveerrieernreerneereeeesseeeseesessessnenns 64
Adding NeW Dataccoceivuiriiiiiiiiiiiniciicnicnecnecsecseesre e e seesseens 65
Updating EXiStiNG ROWSccccuereveeriieriierieerneenseeeseessseesseessseesssessssessnees 67
Exercise 1.08: Updating the Table to Increase the Price of a Vehicle .. 69
Deleting Data and Tablescociiroiiriniirireerceeeceeccceee e e 70
Deleting Values from @ ROWccccocevviiiiiiiniinicniecncsecnecnecsecseesneens 70
Deleting ROWS from @ Tableccociieviirvienierteeceeeceeeeeeeee e snee e 71
Deleting Tables ...t 71
Exercise 1.09: Deleting an Unnecessary Reference Table 72
Activity 1.04: Creating and Modifying Tables for
Marketing OPerationsccccecceeeeeerseerreerseensreeseeesneessnessssessseesssnessnnes 73
SQL and ANAIYLICS .ccocueiiieiiiiiieneieenceeneee s s 74
SUMMAKY ceeeiiiiiiiiiiiiiieeeeteeessssessnnneesessnns 75
Chapter 2: SQL for Data Preparation 79
INErOAUCTION ..ottt e s e s nn e s neesene 80
AsSeMDBIING DAtaccccovirviiiiiiiiiiiniintnce e 80
Connecting Tables USiNg JOINccccoiiiiiiiiiiiiiinceeenecseeeeceseee 80
TYPES OF JOINS ..t s ne s e s 84
1] o T=T g [0 [- F OO PR USROS 85

OULEE JOINS ..ueiiiicieeeecceteeecrrteeecrteeeesrteeessseeeessaseesssssnesessssaessssssesssssassssrsassssssasasnn 89

CFOSS JOINS .eeieieereiecntteeccreeeecrreeeeeseeesesseesesssreessssnessssssasssssseesssssassssssessssnnnenssnn 94

Exercise 2.01: Using Joins to Analyze a Sales Dealership 96
SUDQUETIES ...eeeeeieeeeeeeeeeeeseee e e s see s ee s see s seesssnesssnesssanssnesssnesssnsesnns 98
LU 7110 0 99

Exercise 2.02: Generating an Elite Customer Party Guest

List USING UNION ...ccuniiiiiiiieicieerceeeecneesecneesecnnesessneessssneessssnesssssnessans 101
Common Table EXPressionsccciiiviininniniinninnennesneesessesesesees 103
Transforming Dataccccceecvveiriieiiineiencterceeceeeeccree s sreeessaeesesnneens 104
The CASE WHEN FUNCLION ..cceiiiiiiiiiiiiinicnicnrcnecneenresecsecseeseeseenee 105
Exercise 2.03: Using the CASE WHEN Function
to Get RegioNal LiStSccceiiiiiieiiiceeeeeeete e 106
The COALESCE FUNCLIONoivuiiiiiiiiiinicnitneceiesecsnesiesees s sneeene 108
The NULLIF FUNCEION ..cuviiiiiiiiinicnicnicnicntcnecnrcnicsecseeseeseeseessne e 110
The LEAST/GREATEST FUNCLIONcoviiiiiiiiiiiiienreceeneeceeceeeeee e 111
The Casting FUNCLIONooiiiiiiiiiteeeceteee e 112
The DISTINCT and DISTINCT ON FUNCLIONSccccevvurreereeieeneeneennnenne 113
Activity 2.01: Building a Sales Model Using SQL Techniques 117
SUMIMAKY ceeeiiiiiiiiiiiiiiieerteeeesssiesssnnsetseesssssssssssssssessssssssssssssssssssssssssnns 118
Chapter 3: Aggregate and Window Functions 121
(Ta}d g [Tl u{o] o HO USRS P SRR SRRRRR 122
Aggregate FUNCLIONScoiiiiiiiiiiitennccrctsecree e ane e ssnne 122
Exercise 3.01: Using Aggregate Functions to Analyze Data 126
Aggregate Functions with GROUP BYcccccceevvviriivenicniercnnennenneenn. 127
The GROUP BY ClauSecovirieiiiniiniinicnicnicnicnicnnesncsecseeseessnesnee 128
Multiple Column GROUP BYcccciiriiriiereeeeeenseesneeseeesneessneessneesnes 133

Exercise 3.02: Calculating the Cost by Product Type
USiNg GROUP BY ..ottt ssesssssnesenes 134

LCT o TUT o1 7= = N 135

Ordered Set AgEregatesccceicviiieiiiieiiicneenee e 137
The HAVING ClausSeoiiieiiirinieriitenceeenereseceeesesneessssnessesseesesseenes 138
Exercise 3.03: Calculating and Displaying Data Using
the HAVING ClauSeccccvviriiiiieiiiiiiinintncnicnncsesstsscesesstessessseeene 140
Using Aggregates to Clean Data and Examine Data Quality 141
Finding Missing Values with GROUP BYcccccoveivinicnncnnecnnecnnecnnenne 141
Measuring Data Quality with Aggregatescccccccevverveercreenceencneennne 143
Activity 3.01: Analyzing Sales Data Using Aggregate Functions 144
WiINAOW FUNCLIONSoiieiiiiiiiieeereeneenceeeee et e e sene e 146
The Basics of Window FUNCLIONScoocieeiiiiiniiiiieneeenceeneeeeceeeeeeene 147
Exercise 3.04: Analyzing Customer Data Fill Rates over Time 154
The WINDOW KeYWOrdcoeeiiieieiieneieneeeseeeseeeseeeseseeseseesesnesssnesnes 156
Statistics with Window FUNCLIONScocccevevinivieiciiencieieeeeeeeeeee 157
Exercise 3.05: Rank Order of HiriNgcccccevivviriiniiniinienncniinicninenne 158
WINAOW Frami@cccoocuiiiiiiirinietrteestse st s st s e st essessneenne 160
Exercise 3.06: Team Lunch Motivationcccccceeveieiieinienncnenneeneeenne. 163

Activity 3.02: Analyzing Sales Using Window Frames

and Window FUNCLIONScoiiiiiiiiiiteeeeteeee ettt 165
SUMMAKY ceeeiiiiiiiiiiiiiiieerreeeesssseessnnssesesssssssssssssnsssssssssssssssssnsssssssssssns 166
Chapter 4: Importing and Exporting Data 169
INEFOAUCEION ..ot re s sre e e s aee e s s re e s s nnas 170
The COPY COMMANGcoivuiiiiiiiiiiiiiicncteneestest e sae e seessnesane 170

Copying Data With pSql ..o 172

Configuring COPY and \COPY ..ccccerererereerereereeereeereeeseeeseeesesnesesneseneenes 175

Using COPY and \copy to Bulk Upload Data to Your Database 176

Exercise 4.01: Exporting Data to a File for Further Processing

TN EXC@I ettt ettt 178
Using R with Our Databaseccocciririiniiiiiiiiincieceeereeeeee, 182
WHRY USE R? ...eeeteetertesctescee s eessee s nessnesssnesssnesssnessssessssesssasessnsansns 182
Getting Started With R ..o 183
Using Python with Our Databaseccccceveveericeeincneencneeeeceeeeenee, 185
Why USe PYtRON? ...ttt enee 186
Getting Started with PYthon ... 186
Improving Postgres Access in Python with SQLAlchemy
ANA PANAAS ...eeeereeeeierereerrerereresreeeeeesseessssesssaessssessssessssessssesssnessssesssneses 190
What is SQLAICREMY?oiiiiieeeeee ettt eee 191
Using Python with Jupyter NotebooKccccoeeeereeinceenceenceerceeneneene 191
Reading and Writing to our Database with pandascccccceeuunn..e. 194
Exercise 4.02: Reading Data and Visualizing Data in Python 195
Writing Data to the Database Using Pythonccccccooviiiiinininnnennnee. 199
Improving Python Write Speed with COPYcccccerevereverevernseerereenne 200
Reading and Writing CSV File with Pythonccccceeviiiiiiiinnninninnne. 202
Best Practices for Importing and Exporting Dataccceeuueeneeee. 203
GOING PaSSWOIAIESScooiiiiiiiiiiieeeeer et 204

Activity 4.01: Using an External Dataset to Discover Sales Trends 205

Y U] 0] 00 = 1 P PTP 206
Chapter 5: Analytics Using Complex Data Types 209
(TR o To [U Lot] o PR 210
Date and Time Data Types for Analysiscccccceevereverevercrercseeneneen. 210
Starting with the date TYPe ... 21
Transforming Date TYPES ...cccccecereireirnirrirrteceneteceserteete e st sneseneeene 214

[N =] aYZ= 1 SN 216

Exercise 5.01: Analytics with Time Series Datac.cccoccevvuerveerecnnnenne 218

Performing Geospatial Analysis in PostgreSQLcccccceeveereeennenn. 220
Latitude and LONGItUEcooeeereiereenereereeecee e nee 220
Representing Latitude and Longitude in PostgreSQLccccceeuueun..e. 221
Exercise 5.02: Geospatial ANalySisccccevevereverrrerererenenereeeeenereenenee 224

Using Array Data Types in PostgreSQLccccovvvveriiviniiieeniciecencnnen. 226
SEArting With Arrayscoeevererereercerereee e ee s ee s eesesee e 226
Exercise 5.03: Analyzing Sequences Using Arraysccccceevceernueennes 230

Using JSON Data Types in PostgreSQLcccccvevveiiriicrinenincnnneennnns 232
JSONB: Pre-Parsed JSONiiiiiiiireeecccieeeeescccreee e s sccsneeeeessssanaaeesseans 235
Accessing Data from a JSON or JSONB Fieldcccccocevuiriiniveneennnenne 235
Leveraging the JSON Path Language for JSONB Fields 238
Creating and Modifying Data in a JSONB Fieldcccceeevveeeveereeennnenn. 241
Exercise 5.04: Searching through JSONBccccocviiiiiiiniiiieiiienceenne 242

Text Analytics Using POStgreSQLcccccevevieiicriencnierineeeeeneeneneenes 244
TOKENIZING TEXLE oot eee 245
Exercise 5.05: Performing Text Analyticscccccceevereierrcreercreerceencnennnnes 247
Performing Text SEArchc.occvvvieviininiiiiecercteeecee st 252
Optimizing Text Search on PostgreSQLcccccvevereverererereerereereeereneenes 254
Activity 5.01: Sales Search and Analysisccccccoviiiiiiiiiniiinininnnennee. 256

SUMMAKY ceuviiiiiiiiiiiiiiieereeeeisssessssseeesssssssssssssssessssssssssssssssssssssssssns 258

Chapter 6: Performant SQL 261

([aY e o [F]l u o] o N SRR PP RSTRRRR 262

Database Scanning Methodsccccoviiiviiininiiinininnncniicnecnneen, 263
QUETY PIANNINGveieeiieecieeceeeeeerceesseesseesseessssessssessssessssessssessssessssenes 264

Scanning and Sequential SCaNs ... 264

Exercise 6.01: Interpreting the Query Plannerc.ccocceveveeneernenennnne. 266

Activity 6.01: QUEry Planningccoccceeviiiiiiiiinieiieeneeeeesceeeeeeenee 271
INAE@X SCANNING ..ot ree s ree s see s e s see s sne s s saesssneesnne 273
B The B-tree INdeXcocvvieviiiiiiniiniiiniiinictcntcnecsccnecsesstesscesseenne 274
Exercise 6.02: Creating an INdeX SCancccceevereverenererererenereeneneennee 276
Activity 6.02: Implementing INndex SCanscccoccviviiiiinniiniiennncnnee. 281
The Hash INAEX ...ttt 282
Exercise 6.03: Generating Several Hash Indexes
to Investigate Performancecvivinninninninninncnncnncnceenene 284
Activity 6.03: Implementing Hash Indexesccccceveerveerveerceersneennne 288
Effective INdeX USEcovviiiiiiiiiiiiiiiintntntctcc et 289
Performant JOINSuueeeeiiieiiteeeeeeeecccccrreeeee e e eese e esrsaseeeeeeeesessnnnnnes 291
Exercise 6.04: Determining the Use of Inner Joinsc...ceccvuenuuennenee. 293
Activity 6.04: Implementing Performant Joinsc.cccceeveevveerceercneennee. 300
Functions and TriZEEerScuciiirviiieiiernitercrerere e seeesseneesenees 301
Function Definitionscccceveviiiininiiniinininiccceccseeeenes 301
Exercise 6.05: Creating Functions without Argumentsc........... 303
Activity 6.05: Defining a Maximum Sale Functioncccceevueeuennenne. 307
Exercise 6.06: Creating Functions with Argumentsccccceueunenee. 308
The \df and \sf commands............ccccevvirininininnininininncceenees 310
Activity 6.06: Creating Functions with Argumentscccccecvevvennnnne. 31
THIGEOIS ittt e et ecere s s sreessssneesssanessessnesssssnessssnnesassnnassnnns 312
Exercise 6.07: Creating Triggers to Update Fieldsc..cccocevvueruennnenee. 315
Activity 6.07: Creating a Trigger to Track Average Purchases 321

Killing QUEKIES ..ot ne e 322

Exercise 6.08: Canceling a Long-Running QUEerycccccceeeeereeerenennnne 323
Activity 6.08: Terminating a Long-Running QuUeryccccccevvervuennnee. 326
SUMMAKY ceeeiiiiiiiiiiiiiiieerreeesisssessasssteesssssssssssssssessssssssssssssssssssssssssns 327

Chapter 7: The Scientific Method and Applied

Problem Solving 329
[T o 0 Yo [V ot o o] o P 330
CaSE STUAY eriiiieiieceeereetercreeresreeesseeesssneessssneessneesssssasssnnaesssnsenanns 330

The SCIeNtific MEENOAccouueeiiieiieceeeieeeeeeeeereeeeeeeeereereaseeesseessssssssssenes 330

Exercise 7.01: Preliminary Data Collection Using SQL Techniques 331

Exercise 7.02: Extracting the Sales Informationccccevuerienuennnenne. 334
Activity 7.01: Quantifying the Sales Dropc.cccceccevveerveenseenceeensneennne 340
Exercise 7.03: Launch Timing Analysiscccoccvvinvinncnncnncnnecnnecnnenne 342
Activity 7.02: Analyzing the Difference in the Sales
Price HYPOthESISoociiiiiiiieeeeeeneeee e e 351
Exercise 7.04: Analyzing Sales Growth by Email Opening Rate 354
Exercise 7.05: Analyzing the Performance of the Email
Marketing CamPaiSNccceeveerereererrererereeerereeeeseeseseeseseeseseesesnesssnesssnesanes 363
CONCIUSIONS ...ttt 368
IN-Field T@STING ..cooeeereeeereereeeeere e ee e e s see e s ee s neeenne 369
N U] 0 00 = 370
Appendix 373

Index 431

PREFACE

ii | Preface

ABOUT THE BOOK

Every day, businesses operate around the clock and a huge amount of data is
generated at a rapid pace. Hidden in this data are key patterns and behaviors that
can help you and your business understand your customers at a deep, fundamental
level. Are you ready to enter the exciting world of data analytics and unlock these
useful insights?

Written by a team of expert data scientists who have used their data analytics

skills to transform businesses of all shapes and sizes, The Applied SQL Data Analytics
Workshop, Second Edition is a great way to get started with data analysis, showing you
how to effectively sieve and process information from raw data, even without any
prior experience.

The book begins by showing you how to form hypotheses and generate descriptive
statistics that can provide key insights into your existing data. As you progress,

you'll learn how to write SQL queries to aggregate, calculate and combine SQL data
from sources outside of your current dataset. You'll also discover how to work with
different data types, like JSON. By exploring advanced techniques, such as geospatial
analysis and text analysis, you'll finally be able to understand your business at a
deeper level. Finally, the book lets you in on the secret to getting information faster
and more effectively by using advanced techniques like profiling and automation.

By the end of The Applied SQL Data Analytics Workshop, Second Edition, you'll have the
skills you need to start identifying patterns and unlocking insights in your own data.
You will be capable of looking and assessing data with the critical eye of a skilled
data analyst.

AUDIENCE

If you are a database engineer who is looking to transition into analytics or someone
who knows SQL basics but doesn't know how to use it to create business insights,
then this book is for you.

ABOUT THE CHAPTERS

Chapter 1, Introduction to SQL for Analytics, helps you learn the basics of data analytics
and SQL. You will learn how to use mathematical and graphical techniques to analyze
data using Excel. You will then learn the role of SQL in the world of data and how to
use basic SQL to manipulate data in a relational database.

About the Book | iii

Chapter 2, SQL for Data Preparation, shows you how to clean and prepare data for
analysis using SQL techniques. You will begin by first learning how to combine
multiple tables and queries together into a dataset, before moving on to more
advanced material.

Chapter 3, Aggregate and Window Functions, covers SQL's aggregate and window
functions, which are powerful techniques for summarizing data. You will be able to
apply these functions to gain new insights into data and understand the properties of
datasets, such as data quality.

Chapter 4, Importing and Exporting Data, provides you with the necessary skills to
interact with your database from other software tools (such as Excel, R, and Python).

Chapter 5, Analytics Using Complex Data Types, gives you a rich understanding of the
various data types available in SQL and shows you how to extract insights from
datetime data, geospatial data, arrays, JSON, and text.

Chapter 6, Performant SQL, helps you optimize your queries so that they run faster. In
addition to learning how to analyze query performance, you will also learn how you
can use additional SQL functionality, such as functions and triggers, to expand the
default functionality.

Chapter 7, The Scientific Method and Applied Problem Solving, reinforces your acquired
skills to help you solve real-world problems outside of those described in this book.
Using the scientific method and critical thinking, you will be able to analyze your data
and convert it into actionable tasks and information.

CONVENTIONS

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Three of the columns, Year of Birth, Height, and Number of Doctor
Visits, are quantitative because they are represented by numbers."

Words that you see on the screen (for example, in menus or dialog boxes) also
appear in the text like this: "Choose the Delimited option in the Text Import
Wizard dialog box, and make sure that you start the import at row 1."

iv | Preface

A block of code is set as follows:

SELECT *
FROM products
WHERE production end date IS NULL;

New terms and important words are shown like this: "Statistics can be further divided
into two subcategories: descriptive statistics and inferential statistics."

SETTING UP YOUR ENVIRONMENT

Before we explore the book in detail, we need to set up specific software and tools. In
the following section, we shall see how to do that.

INSTALLING POSTGRESQL 12

The following sections list the instructions for installing and setting up PostgreSQL 12
on Windows, Linux, and MacOS.

DOWNLOADING AND INSTALLING POSTGRESQL ON WINDOWS

First, let's download and install PostgreSQL on Windows.

1. Navigate to https://www.postgresgl.org/download/. Select Windows from the list of
Packages and Installers.

@ Home About Download Documentation Community Developers Support Donate Youraccount Q

Search for.
25th June 2020: PostgreSQL 13 Beta 2 Released!

Quick Links Downloads &

o Downloads PostgreSQL Downloads
o Packages
o Source
o Software Catalogue
o File Browser

PostgresQL s avallable for download as ready-to-use packages or installers for various platforms, as well as a source code archive if you want to build it yourself.
Packages and Installers

Select your operating system family:

N N B I N

Source code

The source code can be found in the main file browser or you can access the source control repository directly at git.postgresgl.org. Instructions for building from source can be found in the documentation.

Beta/RC Releases and development snapshots (unstable)

There are source code and binary packages of beta and release candidates, and of the current development code available for testing and evaluation of new features. Note that these builds should be used for
testing purposes only, and not for production systems.

Figure 0.1: PostgreSQL Downloads page

https://www.postgresql.org/download/

About the Book | v

2. Click Download the Installer.

w Home About Download Documentation Community Developers Support Donate Youraccount Search for. Q

25th June 2020: PostgreSQL 13 Beta 2 Released!

Quick Links Windows installers &
s Interactive installer by EDB
© Source

o Software Catalogue Download the installer certified by EDB for all supported PostgreSQL versions.

o File Browser This installer includes the PostgreSQL server, pgAdmin; a graphical tool for managing and developing your databases, and StackBuilder; a package manager that can be used to download
and install additional PostgreSQL tools and drivers. Stackbuilder includes management, integration, migration, replication, geospatial, connectors and other tools,

This installer can run in graphical or silent install modes.

The installer is designed to be a straightforward, fast way to get up and running with PostgreSQL on Windows.

Advanced users can also download a zip archive of the binaries, without the installer. This download is intended for users who wish to include PostgreSQL as part of another application
installer.

Platform support

The installers are tested by EDB on the following platforms. They can generally be expected to run on other comparable versions

PostgreSQL Version 64 Bit Windows Platforms 32 Bit Windows Platforms
12 2019, 2016, 2012 R2

1 2019, 2016, 2012 R2

10 2016,2012R2 &R1,7, 8,10 2008R1,7,8,10

9.6 2012 R2 &R1, 2008 R2, 7, 8, 10 2008R1,7,8,10

9.5 2012 R2 &R1, 2008 R2 2008 R1

Figure 0.2: PostgreSQL Interactive Installer Download

3. Select version 12.x as this is the version we will be using in the course.

PostgreSQL Database Download

Version Linux x86-64 Linux x86-32 Mac 0S X Windows x86-64 Windows x86-32
12.3 /A N/A [oowntoad | [pownoat | N/A
118 N/A A [pownload | [ownload | /A
9..26 (Not Supported] [oownoad | [powntoas | [oowntoad | [pownoat | [pownoas |
9.3.25 (Mot Supported) [ownload | [powntoas] [pownload | [ownload | [Downioad |

Figure 0.3: PostgreSQL Downloads page

vi | Preface

4. Click Next for most of the installation steps. You will be asked to specify a
data directory. It is recommended that you specify a path that you will easily
remember in the future.

¥
Data Directory »

Fleaze select a directory under which to store your data.
Data Directory |::‘Program FiIes‘PostgreSQL‘\lZ\daIﬁ”

VMware InstallBuilder

| <Back | MNext> | Cancel

Figure 0.4: PostgreSQL Installation - Windows

About the Book | vii

5. Specify a password for the postgres superuser.

dy
Password »

Please provide a password for the database superuser (postgres).

|ttttt |

Password

Retype password | | |

VMware InstallBuider

<Back | Next> | Cancel

Figure 0.5: Setting the superuser password

viii | Preface

6. Do not change the port number that is specified by default, unless it conflicts
with an application that is already installed on your system.

Please select the port number the server should listen on.

Port | 5432

VYMware InstallBuilder
< Back Mext = Cancel

Figure 0.6: PostgreSQL Port Settings

7. Click Next to proceed through the rest of the steps and wait for the installation
to finish.

SETTING THE PATH VARIABLE

To validate if the PATH variable has been set correctly, open the command line, type
or paste the following command, and press the return key:

psgl -U postgres

About the Book | ix

If you get the following error, you need to add the PostgreSQL binaries directory to
the PATH.

external command,

Figure 0.7: Error - Path Variable Not Set
The following steps will help you do that:

1. Search for the term environment variables in Windows Search.

2

All Apps Documents Web Maore *

Best match

L:j Edit the system environment
~ variables -

Control panel

Edit the system environment variables

Settings
Cantrol panel
3 Edit environment variables for your >
account
Search the web [Open
L environment variable - See web results >

X environment variable|

Figure 0.8: Windows Search for Environment Variables

x | Preface

2. C(Click Environment Variables:

System Properties

Computer Name Hardware Advanced System Protection Remote

You must be logged on as an Administrator to make most of these changes.

Performance
Visual effects, processor scheduling, memory usage, and virtual memary

Settings...

Uzer Profiles
Desktop settings related to your sign-n

Startup and Recovery
System startup, system failure, and debugging information

: Environment Variables. . {

Ok || Cancel | fepk

Figure 0.9: Windows System Properties

About the Book | xi

3. Click Path and then click Edit.

Environment Variables

User variables for abhis

Variable Value 2
MOZ_PLUGIM_PATH
OneDrive Ci\Users\abhis\OneDrive
Path C\Users\abhis\AppData\Local\Micresoft\WindowsApps; C:\Progra...
PhpStarm C\Program Files\JetBrains\PhpStorm 2018.3.3\bin;
TEMP C\Users\abhis\AppData\Local\Temp
TMP C\Users\abhis\AppData\Local\Temp
w

System variables

Variable Value 2
PSModulePath %ProgramFiles%a\WindowsPowerShell\Modules; CA\WINDOWS\syst...
TEMP CAWINDOWS\TEMP
T™MP CAWINDOWS\TEMP
USERNAME SYSTEM
VBOX_MSI_INSTALL_PATH D:\Program Files\VirtualBox\
windir CA\WINDOWS
v
New... Edit... Delete
0K Cancel

Figure 0.10: Setting the PATH Variable

xii | Preface

4. Click New.

Edit environment variable

ChUsershabhis\AppData\Local\Microsoft\WindowsApps N
C\Program Files\JetBrains\PhpStorm 2018.3.3\bin
Ch\Users\abhis\AppData\Reaming\Composerivendoribin
ChUsershabhis\AppData\Local\ProgramsiMicrosoft V5 Code\bin
ChUsershabhis\AppData\Local\GitHubDesktop\bin
Ci\Users\abhis\AppDataiLocal\Microsoft\WindowsApps
D:\Program Files\Java\bin Delete

Move Down

[oK | Cancel

Figure 0.11: Setting the PATH Variable

About the Book | xiii

5. Using Windows Explorer, locate the path where PostgreSQL is installed. Add the
path to the bin folder of the PostgreSQL installation.

C:h\Users\abhis\AppData‘\Local\Microsoft\WindowsApps Delete
D:MProgram Files\Java\bin
| C:\Program Files\PostgreSOL\12\bin| _
Move Up
Move Down
Edit text...
OK Cancel

Figure 0.12: Entering the path
Click OK and restart the system.

6. Now, open the command line where you can either type or paste the following
command. Press the return key to execute it:

psql -U postgres

Enter the password you set in Step 5 of the Downloading and Installing PostgreSQL
on Windows section. Then, press the return key. You should be able to login to
the PostgreSQL console:

C:\Users\abhis>psql -U postgres

Password for user postgres:

psql (12.3)

WARNING: Console code page (850) differs from Windows code page (1252)

8-bit characters might not work correctly. See psql reference
page "Notes for Windows users" for details.
Type "help" for help.

postgres=#

Figure 0.13: PostgreSQL shell

xiv | Preface

7. Type \qand press the return key to exit the shell:

sqlda=# \q

C:\Users\abhis>

Figure 0.14: Exiting the PostgreSQL shell

INSTALLATION ON LINUX

The following steps will help you install PostgreSQL on Ubuntu or a Debian-based
Linux system.

1. Open the Terminal. Then, type or paste the following command on a new line
and press the return key:

sudo apt-get install postgresqgl-12

2. Upon installation, PostgreSQL will create a user called postgres. You'll need to
login as that user to access the PostgreSQL shell:

sudo su postgres
You should see your shell prompt change as follows:

abhishek@abhishek-vMm: ~

:~$ sudo su postgres
postgres@abhishek-VM: /home/abhishek$

Figure 0.15: Accessing the PostgreSQL shell on Linux
3. Typing the following command will take you to the PostgreSQL shell:

psql

About the Book | xv

You can type \l (that's a backslash and a lowercase L) to see a list of all the databases

that are loaded by default:

=1

postgres@abhishek-vM: fhome/abhishekS psql
psql (12.2 (Ubuntu 12.2-4))
Type "help" for help.

List of databases
Oowner | Encoding Collate |
___________ fmmm e
postgres | postgres | UTF8
template® | postgres | UTF8 en_IN

templatel | postgres | UTF8 en_IN
I I

(3 rows)

postgres=#

abhishek@abhishek-VM: ~

Access privileges

=c/postgres
postgres=CTc/postgres
=c/postgres
postgres=CTc/postgres

Figure 0.16: List of databases on Linux

NOTE

We've covered how to install PostgreSQL on Ubuntu and Debian-based
systems here. For instructions to install it on other distributions, please refer
to your distribution's documentation. The PostgreSQL download page for
Linux can be found at: https://www.postgresqgl.org/download/linux/.

https://www.postgresql.org/download/linux/

xvi | Preface

INSTALLATION ON MACOS

This section will help you install PostgreSQL on MacOS. Before you start installing the
software, make sure you have the Homebrew package manager installed on your
system. If you don't, head over to https://brew.sh/ and paste the script provided on the
webpage in a MacOS Terminal (the Terminal app) and press the return key. Follow
the prompts that appear and wait for the script to finish installation.

NOTE

The following instructions are written based on MacOS Catalina version
10.15.6, which was the latest version at the time of writing. For more help
on using Terminal, refer to the following link: https://support.apple.com/en-in/
guide/terminal/apd5265185d-f365-44cb-8b09-71a064a42125/mac.

\
B
Homebrew

The Missing Package Manager for macOS {or Linux)

Search Homebrew

English ~

Install Homebrew

/binfbash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"

Paste that in a macOS Terminal or Linux shell prompt. The script explains what it wil n pauses before it
does it. Read about other ins tions

What Does Homebrew Do?

Homebrew installs the 1 need that Apple (or your
Linux system) didn’t

Figure 0.17: Installing Homebrew

https://brew.sh/
https://support.apple.com/en-in/guide/terminal/apd5265185d-f365-44cb-8b09-71a064a42125/mac
https://support.apple.com/en-in/guide/terminal/apd5265185d-f365-44cb-8b09-71a064a42125/mac

About the Book | xvii

Once Homebrew is installed, follow these steps to install PostgreSQL:

1. Open a new Terminal window. Type in the following three commands in
succession followed by the return key to install the PostgreSQL package:

brew doctor
brew update

brew install postgres

Wait for the installation to complete. Depending on your local setup and
connection speed, you will see messages similar to those shown below (note that
only the partial installation log is shown here):

Updated Formulae
angular-cli earthly hasura-cli cha
aspectj elasticsearchal haxe onscripter
aws-okta ethereum igv openjdkall
awsclial feedgnuplot imgproxy patchutils
buildifier Flyway jsdocd prometheus
buildozer fork-cleaner kibanaa8 pueue
check fortio libfabric pulumi
citus freerdp 1ibupnp pumba
clib frugal metabase pyenv
cmake gitlab-runner mill relc
convox goreleaser mpd reorder-python-imports
copilot grin nifi-registry ruby-install
dectl groovy nodeald slacknimate
dscanner groovysdk numpy terraform
Deleted Formulae

sflowtool

Downloading https://homebrew.bintray.com/bottles/postgresql-12.3_4.catalina.bottle. tar.gz
Already downloaded: /Users/maahedev/Library/Caches/Homebrew/downloads/c1c03224d6c336846eae489487602745780267ded
ec241cbbdfdcdb8ddcBe731 - -postgresql -12.3_4.catalina.bottle. tar.gz

Pouring postgresql-12.3_4.catalina.bottle.tar.gz

Caveats
To migrate existing data from a previous major version of PostgreSQL run:

brew postgresql -upgrade-database

To have launchd start postgresql now and restart at login:
brew services start postgresql

Or, if you don't want/need a background service you can just run:

pg_ctl -D /usr/local/var/postgres start

Summary

® /usr/local/Cellar/postgresql/12.3_4: 3,220 files, 37.8MB

~ took 36s

Figure 0.18: Installation Progress (partially shown) - PostgreSQL

xviii | Preface

2. Once the installation completes, start the PostgreSQL process by typing the
following command in Terminal and pressing the return key:

pg_ctl -D /usr/local/var/postgres start

You should see an output similar to the following:

pg_ctl -D /usr/local/var/postgres start 1

waiting for server to start....2020-07-22 21:53:38.064 IST [35123] LOG: starting PostgreSQL 12.3 on x86_8
4-apple-darwini9.4.0, compiled by Apple clang version 11.0.3 (clang-1103.0.32.59), B4-bit

2020-07-22 21:63:38.0568 IST [36123] LOG: listening on IPv8 address "::41", port 5432

2020-07-22 21:53:38.056 IST [36123] LOG: 1listening on IPv4 address "127.0.0.1", port 5432

2020-07-22 21:53:38.058 IST [36123] LOG: 1listening on Unix socket "/tmp/.s.PBSQL.5432"

2020-07-22 21:53:38.070 IST [35124] LOG: database system was shut down at 2020-07-22 21:25:45 IST
2020-07-22 £1:53:38.074 IS8T [36123] LOG: database system is ready to accept connections

done

server started

Figure 0.19: Starting the PostgreSQL process

3. Once the process is started, login to the PostgreSQL shell using the default
superuser called postgres as follows (press the return key to execute
the command):

psgl postgres

About the Book | xix

4. You can type \l (that's a backslash and a lowercase L) followed by the return
key to see a list of all the databases that are loaded by default:

[psql postgres
psql (12.3)
Type "help” for help.

[postgres=# |1
List of databases

Encoding | Collate [Ctype | Access privileges

maahedev | maahedev
postgres | maahedev
template® | maahedev c c =c/maahedev
[maahedev=CTc/maahedev
templatel | maahedev =c/maahedev +

[maahedev=CTc/maahedev

(4 rows)

postgres=# I

Figure 0.20: List of databases loaded by default

Enter \g and then press the return key to quit the PostgreSQL shell.

NOTE
pgAdmin will get installed automatically along with PostgreSQL 12.

xx | Preface

INSTALLING PYTHON

Installing Python on Windows:

1.

Find your desired version of Python on the official installation page
at https://www.anaconda.com/distribution/#windows.

Ensure that you select Python 3.7 from the download page.

Ensure that you install the correct architecture for your computer system—
that is, either 32-bit or 64-bit. You can find out this information in the System
Properties window of your OS.

After you download the installer, simply double-click on the file and follow the
user-friendly prompts on-screen.

Installing Python on Linux:

To install Python on Linux, you have a couple of good options:

1.

Open Command Prompt and verify that p\Python 3 is not already installed by
running python3 --version.

To install Python 3, run this:

sudo apt-get update
sudo apt-get install python3.7

If you encounter problems, there are numerous sources online that can help you
troubleshoot the issue.

You can also install Python by downloading the Anaconda Linux installer from
https://www.anaconda.com/distribution/#linux and following the instructions.

https://www.anaconda.com/distribution/#windows
https://www.anaconda.com/distribution/#linux

About the Book | xxi

Installing Python on macOS:

Similar to Linux, you have a couple of methods for installing Python on a Mac. To
install Python on macOS, do the following:

1.

Open the Terminal for Mac by pressing CMD + Spacebar, type terminal in the
open search box, and hit Enter.

2. Install Xcode through the command line by running xcode-select
--install.

3. The easiest way to install Python 3 is using Homebrew, which is installed through
the command line by running ruby -e "$(curl -fsSL https://raw.
githubusercontent.com/Homebrew/install/master/install)".

4., Add Homebrew to your $PATH environment variable. Open your profile in the
command line by running sudo nano ~/.profile and inserting export
PATH="/usr/local/opt/python/libexec/bin:$PATH" at the
bottom.

5. The final step is to install Python. In the command line, run brew
install python.

6. Again, you can also install Python via the Anaconda installer available from
https://www.anaconda.com/distribution/#macos.

INSTALLING GIT

Installing Git on Windows or macOS X:

Git for Windows/Mac can be downloaded and installed via https://git-scm.com/.
However, for improved user experience, it is recommended that you install Git
through an advanced client such as GitKraken (https://www.gitkraken.com/).

Installing Git on Linux:

Git can be easily installed via the command line:

sudo apt-get install git

https://www.anaconda.com/distribution/#macos
https://git-scm.com/

xxii | Preface

If you prefer a graphical user interface, GitKraken (https://www.gitkraken.com/) is also
available for Linux.

Loading the Sample Datasets - Windows

Most exercises in this course use a sample database, sglda, which contains fabricated
data for a fictional electric vehicle company called ZoomZoom. Let's set it up by
performing the following steps:

1. First, let's create a database titled sqlda. Open the command line and type or
paste the following command. Then, press the return key to execute it.

createdb -U postgres sqglda

You will be prompted to enter the password that you set for the postgres superuser
during installation.

gres sglds

Figure 0.21: PostgreSQL shell password request

To check if the database has been successfully created, login to the shell by typing or
pasting the following command and pressing the return key:

psgl -U postgres

Enter your password when prompted. Press the return key to proceed.

https://www.gitkraken.com/

About the Book | xxiii

Type \l (that's a backslash and a lowercase L) and then press the return key to check
if the database is created. The sqlda database should appear along with a list of the
default databases.

List of databases
Encoding Collate

postgres postgres English_India.1252 | English_India.
sqlda postgres English_India.1252 English_India.
template0 postgres English_India.1252 English_India. =c/postgres

postgres English_India.1252

English_India. =c/postgres

|
|
| postgres=CTc/postgres
|
| postgres=CTc/postgres

Figure 0.22: PostgreSQL list of databases

Download the data.dump file from the Datasets folder in the GitHub repository of this
course by clicking this link: https://packt.live/30Uhcfl. Modify the highlighted path in the
following command based on where the file is located on your system. Type or paste
the command into the command line and press the return key to execute it.

psgl -U postgres -d sglda -f C:\<path>\data.dump

NOTE

Alternatively, you can use the command line and navigate to the local folder
where you have downloaded the file using the cd command. For example,

if you have downloaded it in the Downloads folders of your computer, you
can navigate to it using cd C:\Users\<your username>\Downloads. In such
a case, remove the highlighted path prefix in the step. The command should
look like this: psql -U postgres -d sqlda -f data.dump

https://packt.live/30UhcfI

xxiv | Preface

You should get an output similar to the one that follows:

glda -f data.

Figure 0.23: PostgreSQL database import

About the Book | xxv

Let's check if the database has been loaded correctly. Login to the PostgreSQL
console by typing or pasting the following command. Press the return key to

execute it.

psgl -U postgres

In the shell, type the following command to connect to the sqlda database:

\c sqglda

Then type \dt. This command should list all the tables in the database, as follows:

C:\Users\abhis>psql -U postgres

: Console code page (850) differs from Windows code page (1252)

8-bit characters might not work correctly. See psql reference
page "Notes for Windows users" for details.
Type "help" for help.

postgres=# \c sqlda
You are now connected to database "sqlda" as user "postgres”.

NOTE

List of relations

closest_dealerships
countries
customer_sales
customer_survey
customers
dealerships

emails

products
public_transportation_by zip
sales

salespeople
top_cities_data

postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres

Figure 0.24: Validating that the database has been imported

We are importing the database using the superuser postgres for
demonstration purposes only. It is advised in production environments to
use a separate account.

xxvi | Preface

LOADING THE SAMPLE DATASETS — LINUX

Most exercises in this course use a sample database, sqlda, which contains
fabricated data for a fictional electric vehicle company called ZoomZoom. Let's set it
up by performing the following steps:

1. Switch to the postgres user by typing the following command in the terminal.
Press the return key to execute it.

sudo su postgres

You should see your shell change as follows:

abhishek@abhishek-VM: ~

:~$ sudo su postgres
postgres@abhishek-VM: /home/abhishek$

Figure 0.25: Loading the sample datasets on Linux

2. Type or paste the following command to create a new database called sqlda.
Press the return key to execute it.

createdb sglda

You can then type the psql command to enter the PostgreSQL shell, followed
by \1 (that's a backslash followed by lowercase L) to check if the database was
successfully created.

postgres@abhishek-vM: fhome/abhishek$ createdb sqlda
postgres@abhishek-vM: fhome/abhishek$ psql

psql (12.2 (Ubuntu 12.2-4))

Type "help" for help.

List of databases
Encoding Collate | Access privileges

postgres postgres
sqlda postgres L
template®@ | postgres en_1IN =c/postgres
| postgres=CTc/postgres
templatel | postgres en_1IN =c/postgres +
| postgres=CTc/postgres
(4 rows)

postgres=# |J

Figure 0.26: Accessing the PostgreSQL shell on Linux

About the Book | xxvii

Enter \g and then press the return key to quit the PostgreSQL shell.

3. Download the data.dump file from the Datasets folder in the GitHub
repository of this course by clicking this link: https://packt.live/30Uhcfl. Navigate to
the folder where you have downloaded the file using the cd command. Then,
type the following command:

psgl -d sglda data.dump

4. Then wait for the dataset to be imported:

postgres@abhishek-vM: fhome/abhishek /Downloads$ psql -U postgres -d sqlda < data.dump

CREATE EXTENSION

COMMENT

CREATE EXTENSION

COMMENT

CREATE TEXT SEARCH DICTIONARY

TABLE
TABLE
TABLE
MATERIALIZED VIEW
TABLE
MATERIALIZED VIEW

Figure 0.27: Importing the dataset on Linux

https://packt.live/30UhcfI

xxviii | Preface

5. To testif the dataset was imported correctly, type psql and then press the
return key to enter the PostgreSQL shell. Then, run \e¢ sqlda followed by
\dt to see the list of tables within the database.

/M abhishek@abhishek-VM: ~
postgres=# \c sqlda
You are now connected to database "sqlda" as user "postgres".
sqlda=# \dt
List of relations
Schema

closest_dealerships postgres
countries postgres
customer_sales postgres
customer_survey postgres
customers postgres

emails postgres
products postgres
public_transportation_by_zip postgres
sales postgres
salespeople postgres

I
+
I
I
I
I
I
| dealerships postgres
I
I
I
I
I
| top_cities_data postgres
)

(12 rows

sqlda=#

Figure 0.28: Validating the import on Linux

NOTE

We are importing the database using the superuser postgres for
demonstration purposes only. It is advised in production environments to
use a separate account.

About the Book | xxix

LOADING THE SAMPLE DATASETS — MACOS

M

ost exercises in this course use a sample database, sqlda, which contains fabricated

data for a fictional electric vehicle company called ZoomZoom. Let's set it up by
performing the following steps:

1.

Enter the PostgreSQL shell by typing the following command in Terminal. Press
the return key to execute it:

psql postgres

2. Now, create a new database called sqlda by typing the following command and

pressing return. (Don't forget the semicolon at the end.)

create database sglda;

3. You should see the following output. Type \1 (that's a backslash followed by

lowercase L) in Terminal and press the return key to check if the database was
successfully created (you should see the sqlda database listed there).

[postgres=# create database sqlda;
CREATE DATABASE
[postgres=# |1
List of databases
Encoding | Collate [Ctype | Access privileges
___________ dcoooooooooiioooosooooo

maahedev maahedev

/
postgres [maahedev
/

sqlda maahedev

templated | maahedev =¢/maahedev +
/ maahedev=CTec/maahedev

templatel | maahedev =c/maahedev +
/ maahedev=CTe/maahedev

(5 rows)

postgres=# I

Figure 0.29: Checking if a new database is successfully created

xxx | Preface

4. Type or paste \qin the PostgreSQL shell and press the return key to exit.

5.

Download the data . dump file from the Datasets folder in the GitHub
repository of this course by clicking this link: https://packt.live/30Uhcfl. Navigate to
the folder where you have downloaded the file using the cd command. Then,
type the following command:

psgl sglda < ~/Downloads/data.dump

NOTE

The preceding command assumes that the file is saved in the Downloads
directory. Make sure you change the highlighted path based on the location
of the data . dump file on your system.

About the Book | xxxi

Then, wait for the dataset to be imported:

psql sqlda < ~/Downloads/data.dump

SET
SET
SET
SET
SET

set_config

SET

SET

SET

CREATE EXTENSION

COMMENT

CREATE EXTENSION

COMMENT

CREATE TEXT SEARCH DICTIONARY
SET

SET

CREATE TABLE

CREATE TABLE

CREATE TABLE

CREATE MATERIALIZED VIEW
CREATE TABLE

CREATE MATERIALIZED VIEW
CREATE TABLE

CREATE TABLE

CREATE TABLE

CREATE TABLE

CREATE TABLE

CREATE TABLE

Figure 0.30: Importing the dataset

xxxii | Preface

6. To testif the dataset was imported correctly, type psql and then press the
return key to enter the PostgreSQL shell again. Then, run \¢ sqglda followed
by \dt to see the list of tables within the database.

[postgres=# |c sqlda
You are now connected to database "sqlda" as user "maahedev".
[sqlda=#

List of relations

Schema

closest_dealerships maahedev
countries maahedev
customer_sales maahedev
customer_survey maahedev
customers maahedev
dealerships maahedev
emails maahedev
products maahedev
public_transportation_by_zip maahedev
sales maahedev
salespeople maahedev
top_cities_data maahedev

(12 rows)

sqlda=# I

Figure 0.31: List of tables within the sqlda database

RUNNING SQL FILES

Commands and statements can be executed via a * . sql file from the command line
using the following command:

psql -d your database name -U your username < commands.sql
Alternatively, they can be executed via the SQL interpreter:
database=#
To get to the interactive interpreter, type the following command:

psgl -d your database name -U your username

About the Book | xxxiii

INSTALLING LIBRARIES

pip comes pre-installed with Anaconda. Once Anaconda is installed on your
machine, all the required libraries can be installed using pip, for example, pip
install numpy. Alternatively, you can install all the required libraries using pip
install -r requirements.txt. You can find the requirements. txt file at
https://packt.live/33012FI.

The exercises and activities will be executed in Jupyter Notebooks. Jupyter is a
Python library and can be installed in the same way as the other Python libraries -
thatis, with pip install jupyter, but fortunately, it comes pre-installed with
Anaconda. To open a notebook, simply run the command jupyter notebook in
the Terminal or Command Prompt.

ACCESSING THE CODE FILES

You can find the complete code files of this book at https://packt.live/2UCHVer.

The high-quality color images used in this book can be found at https://packt.
live/2HZVdLs.

If you have any issues or questions about installation, please email us at
workshops@packt.com.

INTRODUCTION TO SQL FOR
ANALYTICS

OVERVIEW

By the end of this chapter, you will be able to explain data, its types and
classify data based on its characteristics. We will calculate basic univariate
statistics about data and identify outliers. You will use this bivariate analysis
to understand the relationship between two variables. You will explore the
purpose of SQL and learn how it can be used in an analytics workflow.
Finally, you will learn how to explain the basics of a relational database and
perform operations to create, read, update, and delete (CRUD) a table.

2 | Introduction to SQL for Analytics

INTRODUCTION

Data has fundamentally transformed the 21st century. Thanks to easy access to
computers, companies, and organizations have been able to change the way they
work with larger and more complex datasets. Using data, insights that would have
been virtually impossible to derive 50 years ago can now be found with just a few
lines of computer code. Two of the most important tools in this revolution are the
relational database and its primary language, Structured Query Language (SQL).

While we could, in theory, analyze all data by hand, computers are far better at the
task and are certainly the preferred tool for storing, organizing, and processing
data. Among the most critical of these data tools are the relational database and
language used to access it, SQL. These two technologies have been cornerstones of
data processing and continue to be the backbone of most companies that deal with
substantial amounts of data.

Companies use SQL as the primary method for storing much of their data.
Furthermore, companies now take much of this data and put it into specialized
databases called data warehouses and data lakes so that they can perform
advanced analytics on their data. Virtually all of these data warehouses and data
lakes are accessed using SQL. We'll be looking at working with SQL using analytics
platforms such as data warehouses.

We assume that every person following this chapter has had some basic exposure to
SQL. However, for those users who have very limited exposure to SQL, or have just
not used it for some time, this chapter will provide a basic refresher of what relational
databases and SQL are, along with a basic review of SQL operations and syntax. We
will also go over practice exercises to help reinforce these concepts.

Let's first understand data and its types in the next section.

THE WORLD OF DATA

We will start with a simple question: what is data? Data can be thought of as the
recorded measurements of something in the real world. For example, a list of heights
is data; that is, height is a measure of the distance between a person's head and their
feet. The object of the data is describing a unit of observation. In the case of these
heights, a person is the unit of observation.

The World of Data | 3

As you can imagine, there is a lot of data that we can gather to describe a person—
including their age, weight, whether they are a smoker and more. One or more of
these measurements used to describe one specific unit of observation is called a
data point, and each measurement in a data point is called a variable (this is also
often referred to as a feature). When you have several data points together, you have
a dataset.

TYPES OF DATA

Data can also be broken down into two main categories, quantitative
and qualitative:

Data

Qualitative Quantitative

Discrete Continuous

Figure 1.1: The classification of types of data

Quantitative data is a measurement that can be described as a number; qualitative
data is data that is described by non-numerical values, such as text. Your height is
data that would be described as quantitative. However, describing yourself as either a
"smoker" or a "non-smoker" would be considered qualitative data.

Quantitative data can be further classified into two subcategories: discrete and
continuous. Discrete quantitative values are values that can take on a fixed level of
precision—usually integers. For example, the number of times you've had surgery in
your life is a discrete value; for instance, you can have surgery 0, 1, or more times, but
you cannot have surgery 1.5 times. A continuous variable is a value that, in theory,
could be divided into an arbitrary amount of precision. For example, your body

mass could be described with arbitrary precision to be 55, 55.3, 55.32, and so on. In
practice, of course, measuring instruments limit our precision. However, if a value
could be described with higher precision, then it is generally considered continuous.

4 | Introduction to SQL for Analytics

It's important to note that qualitative data can generally be converted into
quantitative data, and quantitative data can also be converted into qualitative data.

Let's think about this using the example of being a "smoker" versus a "non-smoker."
While you can describe yourself to be in the category of "smoker" or "non-smoker,"
you could also reimagine these categories as responses to the statement "you smoke
regularly," and then use the Boolean values of 0 and 1 to represent "true" and
"false," respectively.

Similarly, in the opposite direction, quantitative data (such as height) can be
converted into qualitative data. For example, instead of thinking of an adult's height
as a number in inches or centimeters (cm), you can classify them into groups, with
people greater than 72 inches (that is, 183 cm) in the category of "tall," people
between 63 inches and 72 inches (that is, between 160 and 183 cm) as "medium,"
and people shorter than 63 inches (that is, 152 cm) as "short."

DATA ANALYTICS AND STATISTICS

Raw data by itself is simply a group of values. However, it is not very interesting in
this form. It is only when we start to find patterns in the data and begin to interpret
them that we can start to do interesting things such as make predictions about the
future and identify unexpected changes. These patterns in the data are referred to

as information. A large organized collection of persistent and extensive information
and experience that can be used to describe and predict phenomena in the real world
is called knowledge. Data analysis is the process by which we convert data into
information and, thereafter, knowledge. When data analysis is combined with making
predictions, we then have data analytics.

There are a lot of tools that are available to make sense of data. One of the most
powerful tools of data analysis is using mathematical techniques on datasets. One of
these mathematical techniques is statistics.

TYPES OF STATISTICS

Statistics can be further divided into two subcategories: descriptive statistics and
inferential statistics.

Descriptive statistics are used to describe data. Descriptive statistics on a single
variable in a dataset is called univariate analysis, while descriptive statistics that look
at two or more variables at the same time is called multivariate analysis.

The World of Data | 5

In contrast, inferential statistics think of datasets as a sample or a small portion of
measurements from a larger group called a population. For example, a survey of
10,000 voters in a national election is a sample of the entire population of voters in
a country. Inferential statistics are used to try to infer the properties of a population-
based on the properties of a sample.

NOTE

In this book, we will be primarily focusing on descriptive statistics. For more
information on inferential statistics, please refer to a statistics textbook, such
as Statistics by David Freedman, Robert Pisani, and Roger Purves.

Imagine that you are a health policy analyst and are given the following dataset with
information about patients:

Year of |Country of Height(cm) |Eye Color Number of Doctor
Birth Birth Visits in the
Year 2018

1997 Egypt 182 Blue 1

11988 China 1196 | Hazel 2

1986 USA 180 Brown 2

11990 USA 166 Brown 1

1975 India 181 Green 3

1951 Germany 184 Brown |1

2000 Australia 174 Gray 5

1995 India 183 Brown 1

1992 China 187 Brown 2

1987 USA 169 Blue 2

Figure 1.2: Healthcare data

When given a dataset, it's often helpful to classify the underlying data. In this case,
the unit of observation for the dataset is an individual patient because each row
represents an individual observation, which is a unique patient. There are 10 data
points, each with 5 variables. Three of the columns, Year of Birth, Height, and
Number of Doctor Visits, are quantitative because they are represented

by numbers. Two of the columns, Eye Color and Country of Birth,

are qualitative.

6 | Introduction to SQL for Analytics

ACTIVITY 1.01: CLASSIFYING A NEW DATASET

In this activity, we will classify the data in a dataset. You are about to start a job in

a new city at an up-and-coming start-up. You're excited to start your new job, but
you've decided to sell all of your belongings before you head off. This includes your
car. You're not sure what price to sell it at, so you decide to collect some data. You ask
some friends and family who have recently sold their cars what the makes of their
cars were and how much they sold them for. Based on this information, you now
have a dataset. The data is as follows:

Date Make Sales Amount (Thousands of $)

2/1/18 Ford 12
2/2/18 Honda 15
2/2/18 Mazda 19
2/3/18 Ford 20
2/4/18 Toyota 10
2/4/18 Toyota 10
2/4/18 Mercedes 30
2/5/18 Ford 11
2/6/18 Chewy 12.5
2/6/18 Chewy 19

Figure 1.3: Used car sales data
These are the steps to perform:
1. Determine the unit of observation.
2. Classify the three columns as either quantitative or qualitative.

3. Convert the Make column into quantitative data columns.

NOTE

The solution for this activity can be found via this link.

In this activity, we learned how to classify our data. In the next section, we will learn
about various methods of descriptive statistics.

Methods of Descriptive Statistics | 7

METHODS OF DESCRIPTIVE STATISTICS

As previously mentioned, descriptive statistics is one of the ways in which we can
analyze data in order to understand it. Both univariate analysis and multivariate
analysis can give us an insight into what might be going on with a phenomenon. In
this section, we will take a closer look at the basic mathematical techniques that we
can use to better understand and describe a dataset.

UNIVARIATE ANALYSIS

As previously mentioned, one of the main branches of statistics is univariate analysis.
These methods are used to understand a single variable in a dataset. In this section,
we will look at some of the most common univariate analysis techniques.

DATA FREQUENCY DISTRIBUTION

The distribution of data is simply a count of the number of values that are in a
dataset. For example, say that we have a dataset of 1,000 medical records, and one of
the variables in the dataset is eye color. If we look at the dataset and find 700 people
have brown eyes, 200 people have green eyes, and 100 people have blue eyes, then
we have just described the distribution of the dataset. Specifically, we have described
the absolute frequency distribution. If we were to describe the counts not by

the actual number of occurrences in the dataset but as the proportion of the total
number of data points, then we are describing its relative frequency distribution.

In the preceding eye color example, the relative frequency distribution would be 70%
brown eyes, 20% green eyes, and 10% blue eyes.

It's easy to calculate the distribution when the variable can take on a small number of
fixed values, such as eye color. But what about a quantitative variable that can take
on many different values, such as height? The general way to calculate distributions
for these types of variables is to make interval "buckets" that these values can be
assigned to, and then calculate distributions using these buckets. For example,

height can be broken down into 5-cm interval buckets to make the following absolute
distribution. We can then divide each row in the table by the total number of data
points (that is, 10,000) and get the relative distribution.

8 | Introduction to SQL for Analytics

Another useful thing to do with distributions is to graph them. We will now create a
histogram, which is a graphical representation of the continuous distribution using
interval buckets.

EXERCISE 1.01: CREATING A HISTOGRAM

In this exercise, we will use Microsoft Excel to create a histogram. Imagine, as a
healthcare policy analyst, that you want to see the distribution of heights to note any
patterns. To accomplish this task, we need to create a histogram.

NOTE

We can use spreadsheet software such as Excel, Python, or R to create
histograms. For convenience, we will use Excel. Also, all the datasets used
in this chapter can be found on GitHub: https://packt.live/2B1apb3.

Perform the following steps:

1. Open Microsoft Excel to a blank workbook:

Figure 1.4: A blank Excel workbook

https://packt.live/2B1apb3

Methods of Descriptive Statistics | 9

Go to the Data tab and Click From Text.

Find the heights. csv dataset file in the Datasets folder of the GitHub
repository. After navigating to it, Click OK.

Choose the Delimited option in the Text Import Wizard dialog box and
make sure that you start the import at row 1. Now, Click Next:

Figure 1.5: Selecting the Delimited option

Select the delimiter for your file. As this file is only one column, it has no
delimiters, although CSVs traditionally use commas as delimiters (in the future,
use whatever is appropriate for your dataset). Now, Click Next.

Select the General for the Column Data Format field. Click Finish.

For the dialog box asking Where do you want to put the data?, select
Existing Sheet and leave what is in the textbox next to it as is. Now,
Click OK.

In column C, write the numbers 140, 145, 150, and so on in increments of 5 all
the way to 220 in cells C2 to C18, as shown in Figure 1.6:

10 | Introduction to SQL for Analytics

o8 o AEdSJ s

Hormae Insert Draw Page Layout Formulas

From From New Database Refresh
HTML Text Cluary All

height
1E2. 3951534 140
177.3691979 145
1E2. 1988381 150
176. 9880643 155
163. 6896562 160
164, 6299616 165
1724109371 10
171.62 74655 175
164, 8407846 180
1B0.0735317 185
166.9932 163 130
167. 2775094 195
184593192 200
167. 1756296 5
1B5.9641509 210
1726022519 215
1773290828 220
1B5. 4790156
1E2.3701171
166.95TER34
1E6.1121965
166.41 70676
177.630848
1747356434
177.0052025
1E7. 4965118
1746652207
1E0.6395124
1B5.1718008
174.1492238
177.0131918
178911813
1E2. 2811601
1656842938
169.2112126
1595085723
184.183758
1E2.33784
156. 6755905
190.0826142

O A IE

Shoot1

=
=}

==

o

WA o kP s

Woooh

Gk B B B B B Rl R R Rd B s

[T
[=1

[T

oo

[*1]
o

[}

" -~

[T
1

Figure 1.6: Entering the data into the Excel sheet

Methods of Descriptive Statistics | 11

10.
11.

12.

13.

On the Data tab, Click Data Analysis (if you don't see the Data Analysis
tab, follow these instructions to install it: https://support.office.com/en-us/article/
load-the-analysis-toolpak-in-excel-6a63e598-cd6d-42e3-9317-6b40bala66b4).

From the selection box that pops up, select Histogram and Click OK.

For Input Range, Click the selection button on the far-right side of the
textbox. You should be returned to the Sheetl worksheet along with a blank
box with a button that has a red arrow in it. Drag and highlight all the data in
Sheetl from A2 to A10001. Now, Click the arrow with the red button.

For Bin Range, Click the selection button on the far-right side of the textbox.
You should be returned to the Sheetl worksheet along with a blank box with a
button that has a red arrow in it. Drag and highlight all the data in Sheetl from
C2 to C18. Now, Click the arrow with the red button.

Under Output Options, select New Worksheet Ply, and make sure
Chart Output is marked, as shown in Figure 1.7. Now, Click OK:

$AST:5A$10001

182395153 | $C3$2:3C$18

177369198
182.198838
176988964
163.689656
164620962
172.410937

171627466 | vew

New Workbook

Figure 1.7: Select New Worksheet Ply

https://support.office.com/en-us/article/load-the-analysis-toolpak-in-excel-6a63e598-cd6d-42e3-9317-6b40ba1a66b4
https://support.office.com/en-us/article/load-the-analysis-toolpak-in-excel-6a63e598-cd6d-42e3-9317-6b40ba1a66b4

12 | Introduction to SQL for Analytics

14. Click Sheet2. Find the graph and double-Click the title where it says
Histogram. Type the word Heights. You should produce a graph that is
similar to the one in the following figure:

Heights

2500 -

2000 -

M Frequency

Plot Area

500 -

140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 More
Bin

Figure 1.8: The distribution of height for adult males

Looking at the shape of the distribution can help you to find interesting patterns.
Notice here the symmetrical bell-shaped cut of this distribution. This distribution is
often found in many datasets and is known as a normal distribution. This book won't
go into too much detail about this distribution, but keep an eye out for it in your data
analysis; it shows up quite often.

QUANTILES

One way to quantify data distribution numerically is to use quantiles. N-quantiles
are a set of n-7 points used to divide a variable into n groups. These points are
often called cut points. For example, a 4-quantile (also referred to as quartiles) is
a group of three points that divide a variable into four approximately equal groups
of numbers. There are several common names for quantiles used interchangeably,
which are as follows:

Methods of Descriptive Statistics | 13

N Common Name
3 Terciles

4 Quartlies

5 Quintlies

10 Deciles

20 Ventiles

100 | Percentiles

Figure 1.9: Common names for n-quantiles

The procedure for calculating quantiles actually varies from place to place. We will
use the following procedure to calculate the n-quantiles for d data points for a
single variable:

1.
2.

Order the data points from lowest to highest.

Determine the number n of n-quantiles you want to calculate and the number of
cut points, n-1.

Determine the number k cut-points you want to calculate, that is, a number from
1 to n-1. If you are starting the calculation, set k to be equal to 1.

Find the index, i, for the k* cut point using the following:
k
i:[—(d—l)l+1
n

Figure 1.10: The index

If i calculated is a whole number, simply pick that numbered item from the
ordered data points. If the k-th cut point is not a whole number, find the
numbered item that is lower than /i, and the one after it. Multiply the difference
between the numbered item and the one after it, and then multiply by the
decimal portion of the index. Add this number to the lowest numbered item.

Repeat Steps 2 to 5 with different values of k until you have calculated all the
cut points.

14 | Introduction to SQL for Analytics

These steps are a little complicated to understand by themselves, so let's work
through an exercise. With most modern tools, including SQL, computers can quickly
calculate quantiles with built-in functionality.

EXERCISE 1.02: CALCULATING THE QUARTILES FOR ADD-ON SALES

In this exercise, we will classify the data and calculate the quartiles for a car purchase
using Excel. Your new boss wants you to look at some data before you start on
Monday so that you have a better sense of one of the problems you will be working
on—that is, the increasing sales of add-ons and upgrades for car purchases. Your
boss sends over a list of 11 car purchases and how much they have spent on add-ons
and upgrades to the base model of the new ZoomZoom Model Chi. The following are
the values of Add-on Sales ($):5000, 1700, 8200, 1500, 3300, 9000, 2000, 0, 0,
2300, and 4700.

NOTE

All the datasets used in this chapter can be found on GitHub:
https://packt.live/2B1apb3.

Perform the following steps to complete the exercise:
1. Open Microsoft Excel to a blank workbook.
2. GototheData tab and Click From Text.

3. You canfind the auto_upgrades.csv dataset file in the Datasets folder of
the GitHub repository. Navigate to the file and Click OK.

4. Choose the Delimited option in the Text Import Wizard dialog box, and
make sure that you start the import at row 1. Now, Click Next.

5. Select the delimiter for your file. As this file is only one column, it has no
delimiters, although CSVs traditionally use commas as delimiters (in the future,
use whatever is appropriate for your dataset). Now, Click Next.

https://packt.live/2B1apb3

Methods of Descriptive Statistics | 15

6. Select General for the option Column Data Format. Click Finish.

7. Inthe dialog box asking Where do you want to put the data?, select
Existing Sheet, and leave what is in the textbox next to it as is. Now,

Click OK.
8. Click cell A1l. Then Click the Data tab, and select Sort from the tab.

9. Asorted dialog box will pop up. Now, Click OK. The values will now be sorted
from lowest to highest. The list in Figure 1.11 shows the sorted values:

e e A Ho

Home Insert Draw Page Layout

k

Refresh
All

Add-on Sales (S

:Ewmummhwwul
[l
el
8

Ll sl
U b W R
é

Figure 1.11: The Add-on Sales figures sorted

10. Now determine the number of n-quantiles and cut-points you need to calculate.
Quartiles are equivalent to 4-tiles, as shown in Figure 1.9. Because the number of
cut points is just 1 less than the number of n-quantiles, we know there will be 3
cut points.

16 | Introduction to SQL for Analytics

11. Calculate the index for the first cut point. In this case, k=7; d, the number of
population-based values, equals 11; and n, the number of n-quantiles, equals 4.
Plugging this into the equation from Figure 1.12, we get 3. 5:

£=[f—1{d—1}]+1

£=E{11—1)]+1

L
T3
10

i=—+1

i=25+1=35

Figure 1.12: Calculating the index for the first cut point

12. Because index 3.5 is a non-integer, we first find the 3rd and 4th items (1,500 and
1,700, respectively). We find the difference between them, which is 200, and then
multiply this by the decimal portion of 0.5, yielding 100. We add this to the 3rd
numbered item, 1,500, and get 1,600.

13. Repeat Steps 2 to 5 from the procedure for k=2 and k=3 to calculate the 2nd and
3rd quartiles. You should get 2,300 and 4,850, respectively.

In this exercise, we learned how to classify data and calculate quartiles using Excel.

CENTRAL TENDENCY

One of the common questions asked of a variable in a dataset is what a typical value
for that variable is. This value is often described as the central tendency of the
variable. There are many numbers calculated from a dataset that is often used to
describe its central tendency, each with its own advantages and disadvantages. Some
of the ways to measure central tendency include the following;:

Methods of Descriptive Statistics | 17

Mode: The mode is simply the value that comes up most often in the distribution
of a variable. In Figure 1.2, the eye color example, the mode would be "brown
eyes" because it occurs the most often in the dataset. If multiple values are tied
for the most common variable, then the variable is called multimodal, and

all of the highest values are reported. If no value is repeated, then there is no
mode for that set of values. Mode tends to be useful when a variable can take

on a small, fixed number of values. However, it is problematic to calculate when
a variable is a continuous quantitative variable, such as in our height problem.
With these variables, other calculations are more appropriate for determining
the central tendency.

Average/Mean: The average of a variable (also called the mean) is the value
calculated when you take the sum of all the values of the variable and divide by
the number of data points. For example, say you had a small dataset of ages:
26, 25, 31, 35, and 29. The average of these ages would be 29.2 because that is
the number you get when you sum the 5 numbers and then divide by 5, that is,
the number of data points. The mean is easy to calculate and, generally, does a
good job of describing a "typical" value for a variable. No wonder it is one of the
most commonly reported descriptive statistics in the literature. The average as a
central tendency, however, suffers from one major drawback: it is sensitive

to outliers.

An outlier is a data point that is significantly different in value from the rest

of the data and occurs very rarely. Outliers can often be identified by using
graphical techniques (such as scatterplots and box plots) and identifying any
data points that are very far from the rest of the data. When a dataset has an
outlier, it is called a skewed dataset. Some common reasons why outliers occur
include unclean data, extremely rare events, and problems with measurement
instruments. Outliers often skew the average to a point when they are no longer
representative of a typical value in the data.

Median: The median (also called the 2" quartile and the 50% percentile) is sort
of a strange measure of central tendency but has some serious advantages over
the average. To calculate the median, take the numbers of a variable and sort
them from the lowest to the highest, and then determine the middle number.
For an odd number of data points, this number is simply the middle value of the
ordered data. If there are an even number of data points, then take the average
of the two middle numbers.

18 | Introduction to SQL for Analytics

While the median is a bit unwieldy to calculate, it is less affected by outliers,
unlike the mean. To illustrate this fact, we will calculate the median of the
skewed age dataset of 26, 25, 31, 35, 29, and 82. This time when we calculate
the median of the dataset, we get the value of 30. This value is much closer to
the typical value of the dataset than the average of 38. This robustness toward
outliers is one of the major reason's the median is calculated.

As a general rule, it is a good idea to calculate both the mean and median of
avariable. If there is a significant difference in the value of the mean and the
median, then the dataset may have outliers.

We will now demonstrate how to perform central tendency calculations in the
following exercise.

EXERCISE 1.03: CALCULATING THE CENTRAL TENDENCY OF ADD-ON SALES

In this exercise, we will calculate the central tendency of the given data using Excel.
To better understand the Add-on Sales data (the items that are sold in addition to
the main purchase), you will need to gain an understanding of what the typical value
for this variable is. Calculate the mode, mean, and median of the Add-on Sales
data. Here is the data for the 11 cars purchased: 5000, 1700, 8200, 1500, 3300, 9000,
2000, 0, 0, 2300, and 4700.

Perform the following steps to implement the exercise:

1.

First, calculate the mode to find the most common value. Because 0 is the most
common value in the dataset, the mode is 0.

Now, calculate the mean. Sum the numbers in Add-on Sales, which should
equal 37700. Then, divide by the number of values (11), and you get a mean of
3427.27.

Methods of Descriptive Statistics | 19

3. Finally, calculate the median by sorting the data, as shown in Figure 1.13:

Home Insert

i

Figure 1.13: Add-on Sales figures sorted

Determine the middle value. Because there are 11 values, the middle value will
be 6th in the list. We now take the 6th element in the ordered data and get a
median of 2300.

20 | Introduction to SQL for Analytics

Now that we know about central tendency, let's discuss a different property of
data: dispersion.

NOTE

When we compare the mean and the median, we can see that there is a
significant difference between the two. As previously mentioned, it is a sign
that we have outliers in our dataset. We will discuss how to determine which
values are outliers in future sections.

DISPERSION

Another property that is of interest in a dataset is discovering how close together
data points are in a variable. For example, the number sets [100, 100, 100] and [50,
100, 150] both have a mean of 100, but the numbers in the second group are spread
out more than the first. This property of describing how the data is spread is

called dispersion.

There are many ways to measure the dispersion of a variable. Here are some of the
most common ways to evaluate dispersion:

+ Range: The range is simply the difference between the highest and lowest values
for a variable. It is incredibly easy to calculate but is very susceptible to outliers.
It also does not provide much information about the spread of values in the
middle of the dataset.

+ Standard Deviation/Variance: Standard deviation is simply the square root of
the average of the squared difference between each data point and the mean.
The value of standard deviation ranges from 0 all the way to positive infinity. The
closer the standard deviation is to O, the less the numbers in the dataset vary. If
the standard deviation is 0, it means all the values for a dataset variable are
the same.

Methods of Descriptive Statistics | 21

One subtle distinction to note is that there are two different formulas for
standard deviation, which are shown in Figure 1.14. When the dataset represents
the entire population, you should calculate the population standard deviation
using formula A in Figure 1.74. If your sample represents a portion of the
observations, then you should use formula B for the sample standard deviation,
as displayed in Figure 1.14. When in doubt, use the sample standard deviation, as
it is considered to be more conservative. Also, in practice, the difference between
the two formulas is very small when there are many data points.

The standard deviation is generally the quantity used most often to describe
dispersion. However, like range, it can also be affected by outliers, though not
as extreme as the range. It can also be fairly involved to calculate. Modern tools,
however, usually make it easy to calculate the standard deviation.

One final note is that, occasionally, you may see a related value (variance) listed
as well. This quantity is simply the square of the standard deviation:

A) JZ?:1(xr‘—ux)z B)Jz?ﬂ(-’fr‘_ uy)?

n n-1

Figure 1.14: The standard deviation formulas for A) population and B) sample

+ Interquartile Range (IQR): The interquartile range is the difference between the
first quartile, Q1 (this is also called the lower quartile) and the third quartile, Q3
(this is also called the upper quartile).

Note

For more information on calculating quantiles and quartiles, refer to the
Data Distribution section in this chapter.

22 | Introduction to SQL for Analytics

IQR, unlike range and standard deviation, is robust toward outliers, and so, while
it is one of the most complicated of the functions to calculate, it provides a more
robust way to measure the spread of datasets. In fact, IQR is often used to define
outliers. If a value in a dataset is smaller than Q1 - 1.5 X IQR or larger than Q3 +
1.5 X IQR, then the value is considered an outlier.

To better illustrate dispersion, we will work through an example in the next exercise.

EXERCISE 1.04: DISPERSION OF ADD-ON SALES

In this exercise, we will calculate the range, standard deviation, and IQR. To better
understand the sales of additions and upgrades, you need to take a closer look at the
dispersion of the data. Here is the data for the 11 cars purchased: 5000, 1700, 8200,
1500, 3300, 9000, 2000, 0, 0, 2300, and 4700.

Follow these steps to perform the exercise:

1.

Calculate the range by finding the minimum value of the data, 0, and subtracting
it from the maximum value of the data, 9000, yielding 9000.

The standard deviation calculation requires you to do the following: determine
whether we want to calculate the sample standard deviation or the population
standard deviation. As these 11 data points only represent a small portion of all
purchases, we will calculate the sample standard deviation.

Next, find the mean of the dataset, which we calculated in Exercise 1.02,
Calculating the Quartiles for Add-on Sales, to be 3427.27.

Now subtract each data point from the mean and square the result. The results
are summarized in the following figure:

Add-on Sales () Difference with Mean Difference with Mean Squared

5000 1572.727273 2473471.074
1700 -1727.272727 2983471.074
8200 4772.727273 22778925.62
1500 -1927.272727 3714380.165
3300 -127.2727273 16198.34711
9000 5572.727273 31055289.26
2000 -1427.272727 2037107.438

o| -3427.2727271 11746198.35

0 -3427.272727 11746198.35
2300 -1127.272727 1270743.802
4700 1272.727273 1619834.711

Figure 1.15: The sum of the squared calculation

Methods of Descriptive Statistics | 23

5. SumuptheDifferences from Mean Squared values, yielding 91,441,818.

6. Divide the sum by the number of data points minus 1, which, in this case, is 10,
and take its square root. This calculation should result in 3,023.93 as the sample
standard deviation.

7. To calculate the IQR, find the 1st and 3rd quartile. This calculation can be found
in Exercise 1.02, Calculating the Quartiles for Add-on Sales, to give you 1600 and
4850. Then, subtract the two to get the value of 3,250.

In this exercise, we calculated the range, standard deviation, and the IQR using SQL.
In the next section, we will learn how to use the bivariate analysis to find patterns.

BIVARIATE ANALYSIS

So far, we have talked about methods for describing a single variable. Now we will
discuss how to find patterns with two variables using bivariate analysis.

SCATTERPLOTS

A general principle you will find in analytics is that graphs are incredibly helpful for
finding patterns. Just as histograms can help you to understand a single variable,
scatterplots can help you to understand two variables. Scatterplots can be produced
pretty easily using your favorite spreadsheet.

NOTE

Scatterplots are particularly helpful when there is only a small number

of points, usually a number between 30 and 500. If you have a large
number of points and plotting them appears to produce a giant blob in your
scatterplot, then take a random sample of 200 of those points and plot them
to help discern any interesting trends.

24 | Introduction to SQL for Analytics

A lot of different patterns are worth looking out for within a scatterplot. The most
common pattern people look for is an upward or downward trend between the two
variables; that is, as one variable increases, does the other variable decrease? Such
a trend indicates there may be a predictable mathematical relationship between the
two variables. For example, there is an upward trend between age and the income a
person makes. Figure 1.16 shows an example of a linear trend:

[] .‘.'.
° ...‘-"'
®
e * % *
L)
- o [] % L]
L) *e
® ® oe
.‘.. ©
® %
L] .. ®
L4 °
[.... . L
o0 .. .on-.
e ® .
L] []
- o
° ®
®
X

Figure 1.16: The upward linear trend between two variables, the age and the income
of a person

Methods of Descriptive Statistics | 25

There are also many trends that are worth looking out for that are not linear,
including quadratic, exponential, inverse, and logistic trends. The following figure
shows what some of these trends look like:

a) quadratic b) power

c) inverse d) logistic

Figure 1.17: Other common trends

NOTE

The process of approximating a trend with a mathematical function is
known as regression analysis. Regression analysis plays a critical part

in analytics but is outside the scope of this book. For more information on
regression analysis, refer to an advanced text such as Regression Modeling
Strategies by Frank E. Harrell Jr.

26 | Introduction to SQL for Analytics

While trends are useful for understanding and predicting patterns, detecting changes
in trends is often more important. Changes in trends usually indicate a critical change
in whatever you are measuring and are worth examining further for an explanation.
A real-world example of such a change would be when the stock of a company begins
to drop after rising for a long time. The following figure shows an example of a
change in a trend, where the linear trend wears off after x=50:

e g L o © ° . * » ®
250 * o0 ..0.-.... o‘.q.o.o'.'-"'"
~oﬁ L ~] ..] 0.
o
200 —aTe
L)
"
150
‘..o.
= ”*
]
.
100 %
oo ®
e ®
L]
50 S
L] Lad ..
)
']
0
L]
0 20 40 60 80 100

Figure 1.18: An example of a change in a trend

Methods of Descriptive Statistics | 27

Another pattern people tend to look for is periodicity—that is, repeating patterns in
the data. Such patterns can indicate that two variables may have cyclical behavior

and can be useful in making predictions. The following figure shows an example of
periodic behavior:

Figure 1.19: An example of periodic behavior

28 | Introduction to SQL for Analytics

Scatterplots are also used to detect outliers. When most points in a graph appear

to be in a specific region of the graph, but some points are quite far, it may indicate
those points are outliers in regard to the two variables. When doing further bivariate
analysis, it may be wise to remove these points in order to reduce any noise and
produce better insights. The following figure shows some points that may be
considered outliers:

s T
-~
oﬁo
. . .o.
L J
~ Coy
. o ®
....
L]
® e
e o %
-~ .o.'...o i
L
0...P.. o®
«* * ¢
.
¢.~.
"
e Y o
‘.-F...
L]
.
.
an
.,
S
X

Figure 1.20: A scatterplot with two outliers

These techniques with scatterplots allow data professionals to understand the
broader trends in their data and take the first steps to turn data into information.

Methods of Descriptive Statistics | 29

PEARSON CORRELATION COEFFICIENT

One of the most common trends in analyzing bivariate data is linear trends. Often,
though, some linear trends are weak, while other linear trends are strong in terms
of how well a linear trend fits the data. In Figure 1.21 and Figure 1.22, we will see
examples of scatterplots with their line of best fit. This is a line calculated using a
technique known as Ordinary Least Squares (OLS) regression. Although OLS is
beyond the scope of this book, understanding how well bivariate data fit a linear
trend is a valuable tool for understanding the relationship between two variables:

Figure 1.21: A scatterplot with a strong linear trend

30 | Introduction to SQL for Analytics

The following figure shows a scatterplot with a weak linear trend:

[] . ®
.]
L °
e ®
- [L . e ®
e @
o .o “ ®
]
e ° L4
® & L
&o A L
® s ¢ o
[% .. e o - ¥
v @
[] o L S ° °
> o ® ®
L 4 - ® .
[] ° . ®
. = ° e o -
® ® ®
°
» °
e
® e @ -
]
- °
°
X

Figure 1.22: A scatterplot with a weak linear trend

NOTE

For more information on OLS regression, please refer to a statistics
textbook, such as Statistics by David Freedman, Robert Pisani, and
Roger Purves.

Methods of Descriptive Statistics | 31

One method for quantifying linear correlation is to use the Pearson correlation
coefficient. The Pearson correlation coefficient, often represented by the letter r, is a
number ranging from -1 to 1, indicating how well a scatterplot fits a linear trend. To
calculate the Pearson correlation coefficient, r, we use the following formula:

E; l(x f)(y 3_"')
V{EL 1(1'1_1')2 N"‘E =1 (i —

Figure 1.23: The formula for calculating the Pearson correlation coefficient
This formula is a bit heavy, so let's work through an example to turn the formula into
specific steps.
EXERCISE 1.05: CALCULATING THE PEARSON CORRELATION COEFFICIENT FOR
TWO VARIABLES

In this exercise, we will calculate the Pearson correlation coefficient for the
relationship between Hours Worked Per Week and Sales Per Week ($).
In the following figure, we have listed some data for 10 sales people at a ZoomZoom
dealership in Houston, and how much they netted in sales that week:

Hours Worked Per Week Sales Per Week ($)

40 179,480.58
56 2,495,037.73
50 2,285,369.51
82 2,367,896.33
41 1,309,745.16
51 623,013.69
45 2,980,943.37
90 1,970,316.24
47 1,845,840.39
72 2,553,231.33

Figure 1.24: Data for 10 salesmen at a ZoomZoom dealership

32 | Introduction to SQL for Analytics

The dataset salesman. csv dataset can directly be downloaded from
GitHub to perform this exercise. Here is the link to the Datasets folder:
https://packt.live/2B1apb3.

Perform the following steps to complete the exercise:

1. First, create a scatterplot of the two variables in Excel by using the data given in
the scenario. This will help us to get a rough estimate of what to expect for the
Pearson correlation coefficient:

2250000 <
2000000
1750000
1500000

1250000 o

Sales Per Week (3)

1000000
750000
500000

40 50 60 70 80 90
Hours Worked Per Week

Figure 1.25: A scatterplot of Hours Worked Per Week and Sales Per Week

There does not appear to be a strong linear relationship, but there does appear
to be a general increase in Sales Per Week ($) versus Hours Worked
Per Week.

2. Now calculate the mean of each variable. You should get 57.40 for Hours
Worker Per Week and 1,861,987.3 for Sales Per Week. If you are not sure
how to calculate the mean, refer to the Central Tendency section.

https://packt.live/2B1apb3

Methods of Descriptive Statistics | 33

3. Now, for each row, calculate four values: the difference between each value and
its mean and the square of the difference between each value and its mean.
Then, find the product of these differences. You should get a table of values, as
shown in the following figure:

Hours Worked Per Week Sales Per Week ($) x-mean(x) (x-mean(x))*2 y-mean(y) (v-mean(y))*2 [x-mean(x)][y-mean(y)]
40 179,480.58 -17.40 302.76 -1,682,506.85 2,830,829,303,631.31 29,275,619.21
56 2,495,037.73 -1.40 1.96 633,050.29 400,752,674,381.30 -886,270.41
50 2,285,369.51 =7.40 54.76 423,382.07 179,252,379,435.48 -3,133,027.34
82 2,367,896.33 24.60 605.16 505,908.90 255,943,812,657.79 12,445,358.88
4 1,309,745.16 -16.40 268.96 -552,24227 304,971,527,314.18 9,056,773.27
51 623,013.69 -6.40 4096 -1,238,973.75 1,535,055,945,620.25 7,929,431.88
45 2,989,043.37 -12.40 153.76 1,127,955.94 1,272,284,593,638.99 -13,986,653.61
90 1,970,316.24 32.60 1,062.76 108,328.81 11,735,131,115.82 3,531,519.21
47 1,845,840.39 -10.40 108.16 -16,147.04 260,726,862.48 167,929.20
72 2,553,231.33 14.60 213.16 691,243.90 477,818,127,736.76 10,092,160.92

Figure 1.26: Calculations for the Pearson correlation coefficient

4. Find the sum of the squared terms and the sum of the product of the
differences. You should get 2,812.40 for Hours Worked Per Week (x),
7,268,904,222,394.36 for Sales Per Week (y), and 54,492,841.32 for the
product of the differences.

5. Take the square root of the sum of the differences to get 53.03 for Hours
Worked Per Week (x)and 2,696,090.54 for Sales Per Week (y).

6. Input the values into the equation from Figure 1.27 to get 0. 38. The following
figure shows the calculation:

_ i (xi —®) (v —¥) 5449284132
T JE (= %)2 Y (7 — 92 (53.03) * (2696090.54)

Figure 1.27: The final calculation of the Pearson correlation coefficient

0.38

34 | Introduction to SQL for Analytics

We learned how to calculate the Pearson correlation coefficient for two variables in
this exercise and got the final output as 0.38 after using the formula.

INTERPRETING AND ANALYZING THE CORRELATION COEFFICIENT

Calculating the correlation coefficient by hand can be very complicated. It is generally
preferable to calculate it on the computer. As you will learn in Chapter 2, SQL for Data
Preparation, it is possible to calculate the Pearson correlation coefficient using SQL.

To interpret the Pearson correlation coefficient, compare its value to the table in
Figure 1.28. The closer to 0 the coefficient is, the weaker the correlation. The higher
the absolute value of a Pearson correlation coefficient, the more likely it is that the
points will fit a straight line:

Value of Correlation | Interpretation

-1.0<=r<=-0.7 Very Strong Negative Correlation
-0.7<=r<=-04 Strong Negative Correlation
-0.4<r<-0.2 Moderate Negative Correlation
-0.2<r<0.2 Weak to Non-Existent Correlation
0.2<r<04 Moderate Positive Correlation
04<r<0.7 Strong Positive Correlation
0.7<r<1.0 Very Strong Positive Correlation

Figure 1.28: Interpreting a Pearson correlation coefficient

There are a couple of things to watch out for when examining the correlation
coefficient. The first thing to watch out for is that the correlation coefficient measures
how well two variables fit a linear trend. Two variables may share a strong trend but
have a relatively low Pearson correlation coefficient. For example, look at the points in
Figure 1.29. If you calculate the correlation coefficient for these two variables, you will
find it is -0.08. However, the curve has a very clear quadratic relationship. Therefore,
when you look at the correlation coefficients of bivariate data, be on the lookout for
nonlinear relationships that may describe the relationship between the two variables:

Methods of Descriptive Statistics | 35

600

500

400 L] s

200 s .

100 . L]

Figure 1.29: A strong nonlinear relationship with a low correlation coefficient

Another point of importance is the number of points used to calculate a correlation.
It only takes two points to define a perfectly straight line. Therefore, you may be able
to calculate a high correlation coefficient when there are fewer points. However, this
correlation coefficient may not hold when more bivariate data is presented. As a rule
of thumb, correlation coefficients calculated with fewer than 30 data points should be
taken with a pinch of salt. Ideally, you should have as many good data points as you
can in order to calculate the correlation.

36 | Introduction to SQL for Analytics

Notice the use of the term "good data points." One of the recurring themes of this
chapter has been the negative impact of outliers on various statistics. Indeed, with
bivariate data, outliers can impact the correlation coefficient. Take a look at the graph
in Figure 1.30. It has 11 points, one of which is an outlier. Due to that outlier, the
Pearson correlation coefficient, r, for the data falls to 0.59; however, without it,

it equals 1.0. Therefore, care should be taken to remove outliers, especially from
limited data:

Figure 1.30: Calculating r for a scatterplot with an outlier

Methods of Descriptive Statistics | 37

Finally, one of the major problems associated with calculating correlation is the logical
fallacy of correlation implying causation. That is, just because x and y have a strong
correlation does not mean that x causes y. Take our example of the number of hours
worked versus the number of sales per week. Imagine that, after adding more data
points, it turns out the correlation is 0.5 between these two variables. Many beginner
data professionals and experienced executives would conclude that more working
hours cause more sales and start making their sales team work nonstop. While it is
possible that working more hours causes more sales, a high correlation coefficient is
not hard evidence for that.

Another possibility may even be a reverse set of causation; it is possible that because
you produce more sales, there is more paperwork and, therefore, you need to stay
longer at the office in order to complete it. In this scenario, working more hours may
not cause more sales.

Another possibility is that there is a third item responsible for the association
between the two variables. For example, it may actually be that experienced
salespeople work longer hours, and experienced salespeople also do a better job of
selling. Therefore, the real cause is having employees with lots of sales experience,
and the recommendation should be to hire more experienced sales professionals.

As an analytics professional, you will be responsible for avoiding pitfalls such as
confusing correlation and causation, and you need to think critically about all the
possibilities that might be responsible for the results you see.

Time Series Data

One of the most important types of bivariate analysis is a time series. A time series is
simply a bivariate relationship where the x-axis is time. An example of a time series
can be found in Figure 1.31, which shows a time series from January 2010 to late 2012.
While, at first glance, it may not seem to be the case, date and time information is
guantitative in nature. Understanding how things change over time is one of the most
important types of analysis done in organizations and provides a lot of information
about the context of the business.

38 | Introduction to SQL for Analytics

All of the patterns discussed in the previous section can also be found in time-series
data. Time series are also important in organizations because they can be indicative
of when specific changes happened. Such time points can be useful in determining
what caused these changes:

60

40
30
20

10

Jan Jul Jan Jul Jan Jul

2010 2011 2012

Figure 1.31: An example of a time series

We'll now look at a small dataset to demonstrate how to perform basic
statistical analysis.

Methods of Descriptive Statistics | 39

ACTIVITY 1.02: EXPLORING DEALERSHIP SALES DATA

In this activity, we will explore a dataset in full using statistics. As a data analyst for the
ZoomZoom, a company specializing in electric vehicles, you are doing some high-level
analysis on annual sales at dealerships across the country using a csv file.

1. Openthe dealerships.csv documentin a spreadsheet or text editor. You
can find it in the Datasets folder of the GitHub repository.

2. Make a frequency distribution for the number of female employees at
a dealership.

Determine the average and median annual sales for a dealership.
Determine the standard deviation of sales.
Do any of the dealerships seem like an outlier? Explain your reasoning.

Calculate the quantiles of the annual sales.

N oo un ok~ W

Calculate the correlation coefficient of annual sales to female employees and
interpret the result.

NOTE

The solution for this activity can be found via this link.

8. With this activity, we have complete data. But what if we didn't? How do we
handle missing data? This next section helps us to understand how to deal with
this possibility.

WORKING WITH MISSING DATA

In all of our examples so far, our datasets have been very clean. However, real-world
datasets are almost never this nice. One of the many problems you may have to
deal with when working with datasets is missing values. We will further discuss the
specifics of preparing data in Chapter 2, SQL for Data Preparation. However, in this
section, we will take some time to discuss a number of strategies that you can use to
handle missing data. Some of your options include the following:

40 | Introduction to SQL for Analytics

+ Deleting Rows: If a very small number of rows (that is, less than 5% of your
dataset) are missing data, then the simplest solution may be to just delete the
data points from your set. Such a result should not impact your results
too much.

+ Mean/Median/Mode Imputation: If 5% to 25% of your data for a variable is
missing, another option is to take the mean, median, or mode of that column
and fill in the blanks with that value. It may provide a small bias to your
calculations, but it will allow you to complete more analysis without deleting
valuable data.

+ Regression Imputation: If possible, you may be able to build and use a model
to impute missing values. This skill may be beyond the capability of most data
analysts, but if you are working with a data scientist, this option could be viable.

+ Deleting Variables: Ultimately, you cannot analyze data that does not exist.
If you do not have a lot of data available, and a variable is missing most of its
data, it may simply be better to remove that variable than to make too many
assumptions and reach faulty conclusions.

You will also find that a decent portion of data analysis is more art than science.
Working with missing data is one such area. With experience, you will find a
combination of strategies that work well for different scenarios.

STATISTICAL SIGNIFICANCE TESTING

Another piece of analysis that is useful in data analysis is statistical significance
testing. Often, an analyst is interested in comparing the statistical properties of
two groups, or perhaps just one group before and after a change. Of course, the
difference between these two groups may just be due to chance.

An example of where this comes up is in marketing A/B tests. Companies will often
test two different types of landing pages for a product and measure the click-
through rate (CTR). You may find that the CTR for variation A of the landing page is
10%, and the CTR for variation B is 11%. So, does that mean variation B is 10% better
than A or is this just a result of day-to-day variance? Statistical testing helps us to
determine just that.

Statistical Significance Testing | 41

In statistical testing, there are a couple of major parts you need to have (Figure 1.32).
First, we have the test statistic we are examining. It may be a proportion, an average,
the difference between two groups, or a distribution. The next necessary part is a null
hypothesis, which is the idea that the results observed are the product of chance.
You will then need an alternative hypothesis, which is the idea that the results

seen cannot be explained by chance alone. Finally, a test requires a significance level,
which is the value the test statistic needs to take before it is decided that the null
hypothesis cannot explain the difference. All statistical significance tests have these
four aspects, and it is simply a matter of how these components are calculated that
differentiate significance tests:

Test Statistic

0.40 b

035

0.30 1

025

0.20 1

0.15 Alternative

010 4 Hypothesis

0.05 1

0.00 L

-3 - 3. -1 0 1 p| 3
Null
Hypothesis
Significance
Level

Figure 1.32: Parts of statistical significance testing

42 | Introduction to SQL for Analytics

COMMON STATISTICAL SIGNIFICANCE TESTS

Some common statistical significance tests include the following:

+ Two-Sample Z-Test: A test for determining whether the average of the two
samples is different. This test assumes that both samples are drawn from a
normal distribution with a known population standard deviation.

« Two-Sample T-test: A test for determining whether the average of two samples
is different when either the sample set is too small (that is, less than 30 data
points per sample) or if the population standard deviation is unknown. The two
samples are also generally drawn from distributions assumed to be normal.

+ Pearson's Chi-Squared Test: A test for determining whether the distribution
of data points to categories is different than what would be expected due to
chance. This is the primary test for determining whether the proportions in tests,
such as those in an A/B test, are beyond what would be expected from chance.

NOTE

To learn more about statistical significance, please refer to a statistics
textbook, such as Statistics by David Freedman, Robert Pisani, and
Roger Purves.

In the next section, we will learn the basics of relational databases and SQL. Later, we
will learn about data types, commands, and queries.

RELATIONAL DATABASES AND SOL

Arelational database is a database that utilizes the relational model of data. The
relational model, invented by Edgar F. Codd in 1970, organizes data as relations, or
sets of tuples. Each tuple consists of a series of attributes that generally describe

the tuple. For example, we could imagine a customer relationship where each tuple
represents a customer. Each tuple would then have attributes describing a single
customer, giving information such as the last name, first name, and age, perhaps in
the format (Smith, John, 27). One or more of the attributes is used to uniquely identify
a tuple in a relation and is called the relational key. The relational model then allows
logical operations to be performed between relations.

Relational Databases and SQL | 43

In a relational database, relations are usually implemented as tables, as in an Excel
spreadsheet. Each row of the table is a tuple, and the attributes are represented

as columns of the table. While not technically required, most tables in a relational
database have a column referred to as the primary key, which uniquely identifies a
row of the database. Every column also has a data type, which describes the type of
data in the column. Tables are then usually collected together in common collections
in databases called schemas. These tables usually are loaded with processes known
as Extract, Transform, Load jobs (or ETL for short).

Tables are usually referred to in queries in the format [schema] . [table]. For
example, a products table in the analytics schema would be generally referred to
as analytics.product. However, there is also a special schema called the public
schema. This is a default schema where, if you do not explicitly mention a schema,
then the database uses the public schema; for example, the public.products
table and the products table are the same.

The software used to manage relational databases on a computer is referred to as a
relational database management system (RDBMS). SQL is the language utilized by
users of an RDBMS to access and interact with a relational database.

NOTE

Virtually all relational databases that use SQL deviate from the relational
model in some basic way. For example, not every table has a specified
relational key. Additionally, a relational model does not technically allow for
duplicate rows, but you can have duplicate rows in a relational database.
These differences are minor and will not matter for the vast majority of
readers of this book.

ADVANTAGES AND DISADVANTAGES OF SQL DATABASES

Since the release of Oracle Database in 1979, SQL has become an industry standard
for data in nearly all computer applications—and for good reason. SQL databases
provide a ton of advantages that make it the de facto choice for many applications:

+ Intuitive: Relations represented as tables are a common data structure that
almost everyone understands. As such, working with and reasoning about
relational databases is much easier than doing so with other models.

44 | Introduction to SQL for Analytics

Efficient: Using a technique known as normalization, relational databases allow
the representation of data without unnecessarily repeating it. As such, relational
databases can represent large amounts of information while utilizing less space.
This reduced storage footprint also allows the database to reduce operation
costs, making well-designed relational databases quick to process.

Declarative: SQL is a declarative language, meaning that when you write code,
you only need to tell the computer what data you want, and the RDBMS takes
care of determining how to execute the SQL code. You never have to worry
about telling the computer how to access and pull data in the table.

Robust: Most popular SQL databases have a property known as atomicity,
consistency, isolation, and durability (ACID) compliance, which guarantees
the validity of the data, even if the hardware fails.

That said, there are still some downsides to SQL databases, which are as follows:

Relatively Lower Specificity: While SQL is declarative, its functionality can often
be limited to what has already been programmed into it. Although most popular
RDBMS software is updated constantly with new functionality being built all the
time, it can be difficult to process and work with data structures and algorithms
that are not programmed into an RBDMS.

Limited Scalability: SQL databases are incredibly robust, but this robustness
comes at a cost. As the amount of information, you have doubles, the cost of
resources more than doubles. When very large volumes of information are
involved, other data stores such as NoSQL databases may actually be better.

Object-Relation Mismatch Impedance: While tables are a very intuitive data
structure, they are not necessarily the best format for representing objects in a
computer. This primarily occurs because objects often have attributes that have
many-to-many relationships. For instance, a customer for a company may own
multiple products, but each product may have multiple customers. For an object
in a computer, we could easily represent this as a 1ist attribute under the
customer object. However, in a normalized database, a customer's products
would potentially have to be represented using three different tables, each of
which must be updated for every new purchase, recall, and return.

Basic Data Types of SQL | 45

BASIC DATA TYPES OF SQL

As previously mentioned, each column in a table has a data type. We review the
major data types here.

NUMERIC

Numeric data types are data types that represent numbers. The following figure
provides an overview of some of the major types:

autoincrementing

integer

Name Storage Size Description Range
smallint 2 bytes Small-range integer |-32,768 to +32,767
integer 4 bytes Typical choice for -2,147,483,648 to
integer +2,147,483,647
bigint 8 bytes Large-range integer |-9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807
decimal variable User-specified Up to 131,072 digits before the
precision, exact decimal point; up to 16,383 digit s
after the decimal point
numeric variable User-specified Up to 131,072 digits before the
precision, exact decimal point; up to 16,383 digits
after the decimal point
real 4 bytes Variable precision, 6 decimal digits precision
inexact
double precision |8 bytes Variable precision, 15 decimal digits precision
inexact
smallserial 2 bytes Small 1to0 32,767
autoincrementing
integer
serial 4 bytes Autoincrementing 1t02,147,483,647
integer
bigserial 8 bytes Large 1to

9,223,372,036,854,775,807

Figure 1.33: Major numeric data types

46 | Introduction to SQL for Analytics

CHARACTER

Character data types store text information. The following figure summarizes

character data types:

Name

Description

character varying(n), varchar(n)

Variable length with limit

character(n), char(n)

Fixed length, blank padded

text

Variable unlimit ed length

Figure 1.34: Major character data types

Under the hood, all of the character data types use the same underlying data
structure in PostgreSQL and many other SQL databases, and most modern

developers do not use char (n).

BOOLEAN

Booleans are a data type used to represent True or False. The following table
summarizes values that are represented as Boolean when used in a query with a data

column type of Boolean:

Boolean Value | Accepted Values

True t, true, y, yes, on, 1

False f, false, n, no, off, 0

Figure 1.35: Accepted Boolean values

While all of these values are accepted, the values of True and False are considered
to be compliant with best practice. Booleans can also take on NULL values.

Basic Data Types of SQL | 47

DATETIME

The datetime data type is used to store time-based information such as dates and
times. The following are some examples of datetime data types:

Name Size Description

Timestamp without timezone |8 bytes | Both date and time (no time zone)
Timestamp with timezone 8 bytes | Both date and time, with time zone
date 4 bytes | Date (no time of day)

Time without timezone 8 bytes | Time of day (no date)

Time with timezone 12 bytes | Times of day only, with time zone
interval 16 bytes | Time interval

Figure 1.36: Popular datetime data types

We will discuss this data type more in Chapter 5, Analytics Using Complex Data Types.

DATA STRUCTURES: JSON AND ARRAYS

Many versions of modern SQL also support data structures such as JavaScript
Object Notation (JSON) and arrays. Arrays are simply lists of data usually written as
members enclosed in square brackets. For example, ['cat', 'dog', 'horse']
is an array. A JSON object is a series of key-value pairs that are separated by commas
and enclosed in curly braces. For example, { 'name': 'Bob', 'age': 27,
'city': 'New York'} isavalid JSON object. These data structures show up
consistently in technology applications and being able to use them in a database
makes it easier to do many kinds of analysis work.

We will discuss data structures in more detail in Chapter 5, Analytics Using Complex
Data Types.

We will now look at the basic operations in an RDBMS using SQL.

48 | Introduction to SQL for Analytics

READING TABLES: THE SELECT QUERY

The most common operation in a database is reading data from a database. This is
almost exclusively done through the use of the SELECT keyword.

BASIC ANATOMY AND WORKING OF A SELECT QUERY

Generally speaking, a query can be broken down into five parts:

Operation: The first part of a query describes what is going to be done. In this
case, this is the word SELECT followed by the names of columns combined
with functions.

Data: The next part of the query is the data, which is the FROM keyword followed
by one or more tables connected together with reserved keywords indicating
what data should be scanned for filtering, selection, and calculation.

Conditional: This is a part of the query that filters the data to only rows that
meet a condition usually indicated with WHERE.,

Grouping: This is a special clause that takes the rows of a data source and
assembles them together using a key created by a GROUP BY clause, and then
calculates a value using the values from all rows with the same value. We will
discuss this step more in Chapter 3, Aggregate and Window Functions.

Postprocessing: This is a part of the query that takes the results of the data and
formats them by sorting and limiting the data, often using keywords such as
ORDER BY and LIMIT.

The steps of a SELECT query are as follows:

1.

Create a data source by taking one or more tables and combining them together
into one large table.

Filter the table based on the large data source created in Step 7 by seeing which
rows meet the WHERE clause.

Calculate values based on columns in the data source in Step 1. If there is a
GROUP BY clause, divide the rows into groups and then calculate an aggregate
statistic for each group. Otherwise, return a column or value that has been
calculated by performing functions on one or more columns together.

Take the rows returned and reorganize them based on the query.

Reading Tables: The SELECT Query | 49

To break down those steps, let's look at a typical query and follow the logic
we've described:

SELECT
first name
FROM
customers
WHERE
state='AZ"
ORDER BY

first_name;
The operation of this query follows a sequence:
1. We start with the customers table.
2. The customers table is filtered to where the state column equals 'AZ".
3. We capture the first name column from the filtered table.
4. The first name column is ordered alphabetically.

Here, we've demonstrated how a query can be broken down into a series of steps for
the database to process.

We will now look at the query keywords and patterns found in a SELECT query.

BASIC KEYWORDS IN A SELECT QUERY

There are many keywords that we use while writing a SELECT query. Let's start by
understanding the SELECT and FROM keywords.

THE SELECT AND FROM STATEMENTS

The most basic SELECT query follows this pattern:
SELECT..FROM <table name>;. This query is a way to pull data from a single
table. For example, if you want to pull all the data from the products table in our
sample database, simply use
this query:

SELECT

FROM

products;

50 | Introduction to SQL for Analytics

This query will pull all the data from a database. The * symbol seen here is shorthand
to return all the columns from a database. The semicolon operator (;) is used to tell
the computer it has reached the end of the query, much as a period is used for a
normal sentence. It's important to note that the rows will be returned in no specific
order. If we want to return only specific columns from a query, we can simply replace
the asterisk (*) with the names of the columns we want to be separated in the order
we want them to be returned in. For example, if we wanted to return the product__
id column followed by the model column of the products table, we would write
the following query:

SELECT product id, model
FROM products;

If we wanted to return the model column first and the product_id column second,
we would write this:

SELECT model, product id
FROM products;

In the next section, we will learn about the WHERE clause.

THE WHERE CLAUSE

The WHERE clause is a piece of conditional logic that limits the amount of data
returned. All of the rows that are returned in a SELECT statement with a WHERE
clause in it meet the conditions of the WHERE clause. The WHERE clause can usually
be found after the FROM clause of a single SELECT statement.

The condition in the WHERE clause is generally a Boolean statement that can either
be True or False for every row. In the case of numeric columns, these Boolean
statements can use equals, greater than, or less than operators to compare the
columns against a value.

We will use an example to illustrate this. Let's say we wanted to see the model names
of our products with the model year of 2014 from our sample dataset. We would
write the following query:

SELECT
model
FROM
products
WHERE
year=2014;

Reading Tables: The SELECT Query | 51

In the next section, we will learn how we can use the AND/OR clause in our queries.

THE AND/OR CLAUSE

The previous query had only one condition. We are often interested in multiple
conditions being met at once. For this, we put multiple statements together using the
AND or OR clause.

Now we will illustrate this with an example. Let's say we wanted to return models that
were not only built-in 2014 but also have a manufacturer's suggested retail price
(MSRP) of less than $1,000. We can write the following:

SELECT
model
FROM
products
WHERE
year=2014
AND msrp<=1000;

Now, let's say we wanted to return any models that were released in the year 2014 or
had a product type of automobile. We would write the following query:

SELECT
model
FROM
products
WHERE
year=2014
OR product type='automobile';

When using more than one AND/OR condition, use parentheses to separate and
position pieces of logic together. This will ensure that your query works as expected
and that it is as readable as possible. For example, if we wanted to get all products
with models between the years of 2014 and 2016, as well as any products that are
scooters, we could write the following:

SELECT
*

FROM
products

WHERE
year>2014

52 | Introduction to SQL for Analytics

AND year<201l6
OR product type='scooter';

However, to clarify the WHERE clause, it would be preferable to write the following:

SELECT
*
FROM
products
WHERE
(year>2014 AND year<2016)
OR product type='scooter';

In the next section, we will learn about the IN and NOT ON clauses.

THE IN/NOT IN CLAUSE

As mentioned earlier, Boolean statements can use equals signs to indicate that a
column must equal a certain value. However, what if you are interested in returning
rows where a row has a column that can be equal to any group of values? For
instance, let's say you were interested in returning all models from the years 2014,
2016, or 2019. You could write a query such as this:

SELECT
model
FROM
products
WHERE
year = 2014
OR year = 2016
OR year = 2019;

However, this is long and tedious to write. Using IN, you can instead write
the following:

SELECT
model
FROM
products
WHERE
year IN (2014, 2016, 2019);

This is much cleaner to write and makes it easier to understand what is going on.

Reading Tables: The SELECT Query | 53

Conversely, you can also use the NOT IN clause to return all the values that are
not in a list of values. For instance, if you wanted all of the products that were not
produced in the years 2014, 2016, and 2019, you could write the following:

SELECT
model
FROM
products
WHERE
year NOT IN (2014, 2016, 2019);

In the next section, we will learn how to use the ORDER BY clause in our queries.

THE ORDER BY CLAUSE

As previously mentioned, SQL queries will order rows as the database finds them if
they are not given more specific instructions to do otherwise. For many use cases,
this is acceptable. However, you will often want to see rows in a specific order.
Let's say you want to see all of the products listed by the date when they were first
produced, from earliest to latest. The method for doing this in SQL would be using
the ORDER BY clause as follows:

SELECT
model

FROM
products

ORDER BY

production start date;

If an order sequence is not explicitly mentioned, the rows will be returned in
ascending order. Ascending order simply means the rows will be ordered from the
smallest value to the highest value of the chosen column or columns. In the case

of things such as text, this means alphabetical order. You can make the ascending
order explicit by using the ASC keyword. For our last query, this could be achieved by
writing the following:

SELECT
model

FROM
products

ORDER BY
production start date ASC;

54 | Introduction to SQL for Analytics

If you want to extract data in descending order, you can use the DESC keyword. If we
wanted to fetch manufactured models ordered from newest to oldest, we would write
the following:

SELECT
model

FROM
products

ORDER BY
production start date DESC;

Also, instead of writing the name of the column you want to order by, you can refer
to what number column it is in the natural order of the table. For instance, say you
wanted to return all the models in the products table ordered by product ID. You
could write the following;:

SELECT
model

FROM
products

ORDER BY
product id;

However, because product_id is the first column in the table, you could instead
write the following:

SELECT
model

FROM
products

ORDER BY
1g

Finally, you can order by multiple columns by adding additional columns after ORDER
BY separated with commas. For instance, let's say we wanted to order all of the rows
in the table first by the year of the model from newest to oldest, and then by the
MSRP from least to greatest. We would then write the following:

SELECT
*

FROM
products

ORDER BY

Reading Tables: The SELECT Query | 55

year DESC,
base msrp ASC;

The following is the output of the preceding code:

product_id model year product_type base_msrp production_start_date production_end_date
bigint text bigint text numeric timestamp without time zone timestamp without time zone
12 Lemon .. 2019 scooter 349.99 2019-02-04 00:00:00 [nu
11 Model .. 2019 automobile 95000.00 2019%-02-04 00:00:00 null]
8 BatLimi.. 2017 scooter 699.99 20170215 00:00:00 [nu
9 Model E.. 2017 automobile 35000.00 2017-02-15 00:00:00 null]
10 Model .. 207 automobile 85750.00 2017-02-15 00:00:00 [nul
7 Bat 2016 scooter 599.99 2016-10-10 00:00:00 [null]
6 Model 5.. 2015 automobile 65500.00 201504-15 00:00:00 2018-10-01 00:00:00
5 Blade 2014 scooter 699.99 2014-06-23 00:00:00 2015-01-27 00:00:00
4 Model .. 2014 automobile 115000.00 2014-06-23 00:00:00 2018-12-28 00:00:00
3 Lemon 2013 scooter 49999 2013-05-071 00:00:00 2018-12-28 00:00:00
2 Lemon . 2011 scooter 799.99 2011-01-03 00:00:00 2011-03-30 00:00:00

Figure 1.37: Ordering multiple columns using ORDER BY

In the next section, we will learn about the LIMIT keyword in SQL.

THE LIMIT CLAUSE

Most tables in SQL databases tend to be quite large and, therefore, returning every
single row is unnecessary. Sometimes, you may want only the first few rows. For this
scenario, the LIMIT keyword comes in handy. Let's imagine that you wanted to only
get the first five products that were produced by the company. You could get this by
using the following query:

SELECT
model
FROM
products
ORDER BY
production start date
LIMIT
5;

56 | Introduction to SQL for Analytics

The following is the output of the code:

model
text

Lemon

Lemon Limited Edition
Lemon

Blade

Model Chi

Figure 1.38: Query with LIMIT

As a general rule, you probably want to use the LIMIT keyword for a table or query
you have not worked with.

THE IS NULL/IS NOT NULL CLAUSE

Often, some entries in a given column may be missing. This could be for a variety

of reasons. Perhaps the data was not collected or not available at the time that the
data was collected. Perhaps the ETL job failed to collect and load data into a column.
It may also be possible that the absence of a value is representative of a certain
state in the row and actually provides valuable information. Whatever the reason,
we are often interested in finding rows where the data is not filled in for a certain
value. In SQL, blank values are often represented by the NULL value. For instance,

in the products table, the production_end date column having a NULL
value indicates that the product is still being made. In this case, if we want to list all
products that are still being made, we can use the following query:

SELECT
*
FROM
products
WHERE
production end date IS NULL;

Reading Tables: The SELECT Query | 57

The following is the output of the code:

product_id model
bigint text

7 Bat

8 BatLimi..
9 ModelE.
10 Model ...
11 Model ..

12 Lemon ..

If we are only interested in products that are not being produced, we can use the IS

year

bigint
2016
2017
2017
2017
2019
2019

product_type
text

scooter
scooter
automobile
automobile
automobile

scooter

base_msrp
text

599.99
699.99
35,000.00
85,750.00
95,000.00
349.99

production_start_date

timestamp without time zone

2016-10-10 00:00:00
2017-02-15 00:00:00
2017-02-15 00:00:00
2017-02-1500:00:00
2019-02-04 00:00:00
2019-02-04 00:00:00

production_end_date

timestamp without time zone

[l
[l
[null]
[null]
[null]

[l

Figure 1.39: Products with NULL production_end_date

NOT NULL clause, as shown in the following query:

SELECT *

FROM products

WHERE production end date IS NOT NULL;

The following is the output of the code:

product_id model
bigint text

1 Lemon
Lemon ...
Lemon
Model ...
Blade

o o B W N

Model S...

year
bigint

2010
20Mm
2013
2014
2014
2015

product_type
text

scooter
scooter
scooter
automobile
scooter

automobile

base_msrp
text

399.99
799.99
499,99
115,000.00
699.99
65,500.00

production_start_date

timestamp without time zone

2010-03-03 00:00:00
2011-01-03 00:00:00
2013-05-01 00:00:00
2014-06-23 00:00:00
2014-06-23 00:00:00
2015-04-15 00:00:00

production_end_date

timestamp without time zone

2012-06-08 00:00:00
2011-03-30 00:00:00
2018-12-28 00:00:00
2018-12-28 00:00:00
2015-01-27 00:00:00
2018-10-01 00:00:00

Figure 1.40: Products with non-NULL production_end_date

We now will look at how to use these new keywords in the following exercise.

58 | Introduction to SQL for Analytics

EXERCISE 1.06: QUERYING THE SALESPEOPLE TABLE USING BASIC KEYWORDS IN
A SELECT QUERY

In this exercise, we will create various queries using basic keywords in a SELECT
query. Let's say that after a few days at your new job, you finally get access to the
company database. Today, your boss has asked you to help a sales manager who
does not know SQL particularly well. The sales manager would like a couple of
different lists of salespeople. First, create a list of the online usernames of the first 10
female salespeople hired, ordered from the first hired to the latest hired.

NOTE

For all future exercises in this book, we will be using pgAdmin 4.

Perform the following steps to complete the exercise:
1. Open your favorite SQL client and connect to the sqlda database.

2. Examine the schema for the salespeople table from the schema drop-down
list. Notice the names of the columns in the following figure:

v [salespeople
v [{ Columns (10)

] salesperson_id
f dealership_id
i title
f first_name
7 last_name
H suffix
| username
| gender
f hire_date
f termination_date

Figure 1.41: Schema of the salespeople table

Reading Tables: The SELECT Query | 59

Execute the following query to get the usernames of female salespeople sorted
by their hire date values, and then set LIMIT to 10:

SELECT

username
FROM

salespeople
WHERE

gender= 'Female'
ORDER BY

hire date

LIMIT 10;

The following is the output of the preceding code:

username
4 text

-—

nlie2|
adufaire3r
bgrimoldby4q
jmedgewick...
bhain3y
kelyburn54
adobbing4g

skinner1h

o W N o A W N

alimon7j

Figure 1.42: Usernames of female salespeople sorted by hire date

We now have a list of usernames for female salespeople ordered from the
earliest hire to the most recent hire.

60 | Introduction to SQL for Analytics

NOTE

To access the source code for this specific section, please refer
to https://packt.live/2B4gMUKk.

In this exercise, we used different basic keywords in a SELECT query to help the sales
manager get the list of salespeople as per their requirements.

ACTIVITY 1.03: QUERYING THE CUSTOMERS TABLE USING BASIC KEYWORDS IN
A SELECT QUERY

The marketing department has decided that they want to do a series of marketing
campaigns to help promote a sale. To do this, they need details of all customers in
New York city. The following are the steps to complete the activity:

1. Open your favorite SQL client and connect to the sqlda database. Examine the
schema for the customers table from the schema drop-down list.

2. Write a query that pulls all emails for ZoomZoom customers in the state of
Florida in alphabetical order.

3. Write a query that pulls all the first names, last names and email details for
ZoomZoom customers in New York City in the state of New York. They should be
ordered alphabetically, with the last name followed by the first name.

4. Write a query that returns all the customers with a phone number ordered by
the date the customer was added to the database.

NOTE

The solution for this activity can be found via this link.

In this activity, we used various basic keywords in a SELECT query and helped the
marketing manager to get the data they needed for the marketing campaign.

https://packt.live/2B4qMUk

Creating Tables | 61

CREATING TABLES

Now that we know how to read data from tables, we will look at how to create
new tables. There are two ways to do this: by creating blank tables or by using
SELECT queries.

CREATING BLANK TABLES

To create a new blank table, we use the CREATE TABLE statement. This statement
takes the following structure:

CREATE TABLE {table name} (

{column name 1} {data type 1} {column constraint 1},
{column name 2} {data type 2} {column constraint 2},
{column name 3} {data type 3} {column constraint 3},
{column name last} {data type last} {column constraint last},

)i

Here, {table name} is the name of the table, {column name} is the name
of the column, {data_type} is the data type of the column, and {column __
constraint} is one or more optional keywords giving special properties to the
column. Before we discuss how to use the CREATE TABLE query, we will first
discuss column constraints.

Column Constraints

Column constraints are keywords that give special properties to a column. Some
major column constraints are as follows:

+ NOT NULL: This constraint guarantees that no value in a column can be NULL.

« UNIQUE: This constraint guarantees that every single row for a column has a
unique value and that no value is repeated.

« PRIMARY KEY: This is a special constraint that is unique for each row and helps
you to find the row quicker. Only one column in a table can be a primary key.

Suppose we want to create a table called state_populations with columns for
the initials and populations of states. The query would look as follows:

CREATE TABLE state populations (
state VARCHAR(2) PRIMARY KEY,
population NUMERIC

) i

62 | Introduction to SQL for Analytics

This query produces the following results:

Query returned successfully in 122 msec.

NOTE

Sometimes, you may run a CREATE TABLE query and get the error
relation {table name} already exists. This simply means
that a table with the same name already exists. You will either have to
delete the table with the same name or change the name of your table.

We will now discuss the second way to create a table, which is by using a SQL query.
But, first, let's perform an exercise to create a table in SQL.

EXERCISE 1.07: CREATING A TABLE IN SOL

In this exercise, we will create a table using the CREATE TABLE statement. The
marketing team at ZoomZoom would like to create a table called countries to
analyze the data of different countries. It should have four columns: an integer key
column, a unique name column, a founding year column, and a capital column.

Perform the following steps to complete the exercise:
1. Open your favorite SQL client and connect to the sqlda database.

2. Execute the following query to drop the countries table if it already exists in
the database:

DROP TABLE IF EXISTS countries;
3. Run the following query to create the countries table;

CREATE TABLE countries (
key INT PRIMARY KEY,
name text UNIQUE,
founding year INT,
capital text

)i

Creating Tables | 63

You should get a blank table as follows:

key name founding_year capital
4 integer text integer text

Figure 1.43: Blank countries table with column names

Note

To access the source code for this specific section, please refer
to https://packt.live/3cWFoSE.

In this exercise, we learned how to create a table using different column constraints
and the CREATE TABLE statement. In the next section, we will create tables using
the SELECT query.

CREATING TABLES WITH SELECT

We know how to create a table. However, say you wanted to create a table using
data from an existing table. This can be done by using a modification of the CREATE

TABLE statement:

CREATE TABLE {table name} AS (
{select query}
)i

Here, {select_query} is any SELECT query that can be run in your database. For
instance, say you wanted to create a table based on the products table that only
had products from the year 2014. Let's call this table products_2014. You could
then write the following query:

CREATE TABLE products 2014 AS (
SELECT

*

https://packt.live/3cWFoSE

64 | Introduction to SQL for Analytics

FROM
products
WHERE
year=2014
)

This can be done with any query, and the table will inherit all the properties of the
output query.

UPDATING TABLES

Over time, you may also need to modify a table by adding columns, adding new data,
or updating existing rows. We will discuss how to do that in this section.

ADDING AND REMQVING COLUMNS

To add new columns to an existing table, we use the ADD COLUMN statement, as
shown in the following query:

ALTER TABLE {table name}
ADD COLUMN {column name} {data type};

Say, for example, we wanted to add a new column to the products table that we
will use to store the products' weights in kilograms called weight. We could do this
by using the following query:

ALTER TABLE products
ADD COLUMN weight INT;

This query will make a new column called weight in the products table and will
give it the integer data type so that only numbers can be stored within it.

If you want to remove a column from a table, you can use the
DROP COLUMN statement:

ALTER TABLE {table name}
DROP COLUMN {column name};

Here, {table_name} is the name of the table you want to change, and
{column_name} is the name of the column you want to drop.

Imagine that you decide to delete the weight column you just created. You could get
rid of it using the following query:

ALTER TABLE products
DROP COLUMN weight;

Updating Tables | 65

ADDING NEW DATA
You can add new data to a table using several methods in SQL.

One method is to simply insert values straight into a table using the INSERT INTO..
VALUES statement. It has the following structure:

INSERT INTO {table name} (

{column 1], {column 2}, ..{column last}
)
VALUES (

{column value 1}, {column value 2},

. {column value last}

) i
Here, {table_name} is the name of the table you want to insert your data into,
{column 1}, {column 2}, .. {column last} is a list of the columns whose
values you want to insert, and {column_value 1}, {column_value 2},
{column_value last} is the list of row values you want to insert into the table. If
a column in the table is not put into the INSERT statement, the column is assumed
to have a NULL value.

As an example, let's say you wanted to insert a new scooter into the products table.
This could be done with the following query:

INSERT INTO products (
product id, model, year,
product type, base msrp,
production start date, production end date
)
VALUES (
13, 'Nimbus 5000', 2019,
'scooter', 500.00,
'2019-03-03"', '2020-03-03"
) ;

66 | Introduction to SQL for Analytics

This query changes the products table accordingly:

product_id model year product_type base_msrp production_start_date production_end_date
bigint text bigint text text timestamp without time zone timestamp without time zone
1 Lemon 2010 scooter 399.99 2010-03-03 00:00:00 2012-06-08 00:00:00
2 Lemon .. 2011 scooter 799.99 2011-01-03 00:00:00 2011-03-30 00:00:00
3 Lemon 2013 scooter 499.99 2013-05-01 00:00:00 2018-12-28 00:00:00
4 Model ... 2014 automobile 115,000.00 2014-06-23 00:00:00 2018-12-28 00:00:00
5 Blade 2014 scooter 699.99 2014-06-23 00:00:00 2015-01-27 00:00:00
6 ModelS.. 2015 automobile 65,500.00 2015-04-15 00:00:00 2018-10-01 00:00:00
7 Bat 2016 scooter 599.99 2016-10-10 00:00:00 [l
8 BatLimi.. 2017 scooter 699.99 2017-02-15 00:00:00 [null]
9 Model E... 2017 automobile 35,000.00 2017-02-15 00:00:00 [null]
10 Model ... 2017 automobile 85,750.00 2017-02-15 00:00:00 [null]
11 Model ... 2019 automobile 95,000.00 2019-02-04 00:00:00 [null]
12 Lemon .. 2019 scooter 349.99 2019-02-04 00:00:00 [l
13 Nimbus... 2019 scooter 500.00 2019-03-03 00:00:00 2020-03-03 00:00:00

Figure 1.44: The products table after a successful single INSERT query

Another way to insert data into a table is to use the INSERT statement with a
SELECT query using the following syntax:

INSERT INTO {table name} ({column 1], {column 2}, ..{column last})

{select query};

Here, {table name} is the name of the table into which you want to insert the
data, {column 1}, {column_ 2}, {column last} is a list of the columns
whose values you want to insert, and {select query} is a query with the same
structure as the values you want to insert into the table.

Updating Tables | 67

Take the example of the products_2014 table we discussed earlier. Imagine that
instead of creating it with a SELECT query, we created it as a blank table with the
same structure as the products table. If we wanted to insert the same data as we
did earlier, we could use the following query:

INSERT INTO products 2014 (
product id, model, year,
product type, base msrp,
production start date, production end date

)

SELECT
*

FROM
products

WHERE
year=2014;

This query produces the following result:

product_id model year product_type base_msrp production_start_date production_end_date

bigint text bigint text text timestamp without time zone timestamp without time zone
4 Model .. 2014 automobile 115,000.00 2014-06-23 00:00:00 2018-12-28 00:00:00
5 Blade 2014 scooter 699.99 2014-06-23 00:00:00 2015-01-27 00:00:00

Figure 1.45: The Products_2014 table after a successful INSERT INTO query

Next, we will learn how to update the content in a row.

UPDATING EXISTING ROWS

Sometimes, you may need to update the values of the data present in a table. To do
this, you can use the UPDATE statement:

UPDATE {table name}

SET {column 1} = {column value 1},
{column 2} = {column value 2},
{column last} = {{column value last}}

WHERE

{conditional};

68 | Introduction to SQL for Analytics

Here, {table name} is the name of the table with data that will be changed,
{column_1}, {column_ 2},.. {column last} is the list of columns whose
values you want to change, {column value 1}, {column value 2},..
{column_value last} is the list of new values you want to insert into those
columns, and {WHERE} is a conditional statement like the one you would find in a

SQL query.

To illustrate its use of the UPDATE statement, let's say that, for the rest of the year,
the company has decided to sell all scooter models before 2018 for $299.99. We
could change the data in the products table using the following query:

UPDATE
products
SET
base msrp
WHERE
product ty
AND year<2

This query produces the following output:

product_id model
bigint text

-

Lemon

Lemon

Model ...

Blade

Bat

Y- R - Y I 7 T =]

10 Model ...
11 Model ...

12 Lemon ...

13 Nimbus...

Lemon ...

Model S...

Bat Limi...

Model E...

= 299.99

pe = 'scooter'

018;

year
bigint

2010
20M

2013
2014
2014
2015
2016
2017
2017
2017
2019
2019
2019

product_type
text

scooter
scooter
scooter
automobile
scooter
automobile
scooter
scooter
automobile
automobile
automobile
scooter

scooter

base_msrp
text

29999
299.99
29999
115,000.00
299.99
65,500.00
299.99
299.99
35,000.00
85,750.00
95,000.00
349.99
500.00

production_start_date

timestamp without time zone

2010-03-03 00:00:00
2011-01-03 00:00:00
2013-05-01 00:00:00
2014-06-23 00:00:00
2014-06-23 00:00:00
2015-04-15 00:00:00
2016-10-10 00:00:00
2017-02-15 00:00:00
2017-02-15 00:00:00
2017-02-15 00:00:00
2019-02-04 00:00:00
2019-02-04 00:00:00
2019-03-03 00:00:00

production_end_date
timestamp without time zone

2012-06-08 00:00:00
2011-03-30 00:00:00
2018-12-28 00:00:00
2018-12-28 00:00:00
2015-01-27 00:00:00
2018-10-01 00:00:00
[null]
[null]
[null)
[null]
[null]
[null]

2020-03-03 00:00:00

Figure 1.46: Successful update of the products table

We now take a closer look at how to use UPDATE statements in a SQL database in the

next exercise.

Updating Tables | 69

EXERCISE 1.08: UPDATING THE TABLE T0 INCREASE THE PRICE OF A VEHICLE

In this exercise, we will update the data in a table using the UPDATE statement. Due
to the higher cost of rare metals needed to manufacture an electric vehicle, the new
2019 Model Chi will need to undergo a price hike of 10%, the current price is 95,000.
Update the products table to increase the price of this product.

Perform the following steps to complete the exercise:
1. Open your favorite SQL client and connect to the sqlda database.

2. Run the following query to update the price of Model Chi inthe
products table:

UPDATE

products
SET

base msrp = base msrp*1.10
WHERE

model="'Model Chi'

AND year=2019;

3. Now write the SELECT query to check whether the price of Model Chi in
2019 has been updated:

SELECT
*
FROM
products
WHERE
model="'Model Chi'
AND year=2019;

The following is the output of the preceding code:

product_id model year product_type base_msrp production_start_date production_end_date

11 Model Chi 2019 automobile 104500 2019-02-04 00:00:00

Figure 1.47: The updated price of Model Chi in 2019

70 | Introduction to SQL for Analytics

As you can see from the output, the price of Model Chi is now 104,500,
which was previously 95, 000.

NOTE

To access the source code for this specific section, please refer
to https://packt.live/2XR]VI7.

In this exercise, we learned how to update a table using the UPDATE statement.
We will now discuss how to delete tables and data from tables.

DELETING DATA AND TABLES

We often discover that data in a table is incorrect and, therefore, can no longer be
used. At such times, we need to delete data from a table.

DELETING VALUES FROM A ROW

Often, we will be interested in deleting a value in a row. The easiest way to
accomplish this task is to use the UPDATE structure we have already discussed and
set the column value to NULL, like so:

UPDATE {table name}
SET {column 1} = NULL,
{column 2} = NULL,

{column last} = NULL
WHERE

{conditional};

Here, {table name} is the name of the table with the data that needs to be
changed, {column 1}, {column 2},.. {column_ last} is the list of columns
whose values you want to delete, and {WHERE} is a conditional statement like the
one you would find in a SQL query.

https://packt.live/2XRJVl7

Deleting Data and Tables | 71

Let's say, for instance, that we have the wrong email on file for the customer with the
customer ID equal to 3. To fix that, we can use the following query:

UPDATE
customers
SET
email = NULL
WHERE

customer id=3;

In the next section, we will learn how to delete rows from a table.

DELETING ROWS FROM A TABLE

Deleting a row from a table can be done using the DELETE statement, which looks
like this:

DELETE FROM {table name}
WHERE {conditional}l;

Let's say, for instance, that we have to delete the details of a customer whose email is
bjordan2@geocities.com. To perform that, we can use the following query:

DELETE FROM
customers
WHERE

email="bjordan2@geocities.com';

If we wanted to delete all the data in the customers table without deleting the table,
we could write the following query:

DELETE FROM customers;

Alternatively, if you want to delete all the data in a query without deleting the table,
you could use the TRUNCATE keyword, like so:

TRUNCATE TABLE customers;

DELETING TABLES

To delete all the data in a table and the table itself, you can just use the DROP TABLE
statement with the following syntax:

DROP TABLE {table name};

72 | Introduction to SQL for Analytics

Here, {table_name} is the name of the table you want to delete. If we wanted to
delete all the data in the customers table along with the table itself, we would write
the following:

DROP TABLE customers;

Let's perform an exercise to delete/drop the table using the DROP TABLE statement.

EXERCISE 1.09: DELETING AN UNNECESSARY REFERENCE TABLE

In this exercise, you will learn how to delete a table using SQL. The marketing team
has finished analyzing the potential number of customers they have in every state,
and they no longer need the state_populations table. To save space on the
database, delete the table.

Perform the following steps to complete the exercise:
1. Open your favorite SQL client and connect to the sqlda database.
2. Run the following query to drop the state_populations table:
DROP TABLE state populations;
The state_populations table should now be deleted from the database.

3. Since the table has just been dropped, a SELECT query on this table throws an
error, as expected:

SELECT

*

FROM

state populations;

You will find the error shown in the following figure:

ERROR: relation "state_populations" does not exist
LINE 1: select * from state_populations;

Figure 1.48: Error shown as the state_populations table was dropped

Deleting Data and Tables | 73

NOTE

To access the source code for this specific section, please refer
to https://packt.live/2XWLVZA.

In this exercise, we learned how to delete a table using the DROP TABLE statement.
In the next activity, we will create and modify tables using SQL.

ACTIVITY 1.04: CREATING AND MODIFYING TABLES FOR MARKETING OPERATIONS

In this activity, you will test your ability to create and modify tables using SQL. You did
a great job of pulling data for the marketing team. However, the marketing manager,
who you helped, realized that they had made a mistake. It turns out that instead of
just the query, the manager needs to create a new table in the company's analytics
database. Furthermore, they need to make some changes to the data that is present
in the customers table. It is your job to help the marketing manager with the table:

1. Create a new table called customers_nyc that pulls all the rows from the
customers table where the customer lives in New York City in the state of

New York.

2. Delete all customers in postal code 10014 from the new table. Due to local laws,
they will not be eligible for marketing.

3. Add a new text column called event.

4. Setthe value of the event column to thank-you party. The following is the
expected output:

customerid title firstname lastname suffix
bigint text text text text
52 Giusto Backe
406 [null Rozina Jeal
456 Rev Cybil Noke
472 Rawiey Yegorov
436 Layton Spoton
1028 Issy Andrieux
1037 Magdalene Veryard
1063 Jduliet Beadles
21 Gwyneth McCobb
1262 Conrado Escoffier

Figure 1.49:

email
text

gbacke.

fiealbs..

cnokec.
ryegor.

Ispolto
iandrie.
mverya.
Ibeadie.

gmeco

cescoff..

gender
text

™

zmmmmz oz

ip_address
text

26.56.68.189
50235.32.29
531.139.106
183.199.243
108.112.8.165
19950537
93201.120.2
47.96.88.226
38.182.151.2
231201244

phone

212959,

917:610..

212:306.
212:560.
646-900,
212.206,

212:645.

646-523,

street_address

6 Onsgard Terrace
64653 Homewoo.
88 Sycamore Park
872 0ld Shore Par.
70ld Gate Drive
33337 Dahle Way
41028 Katie Junct
34984 Goodland
4 Jana Park

2 Atwood Court

city
text

New

New ..

New
New
New
New
New
New

New

New .

state
text

nY
NY
NY
Ny
NY
NY
%
NY
NY
Ny

postal_code

text
10131
10108
10260
10034
10024
10115
10038
10120
10160
10060

latitude
double precision

40,7808
107628
40.7808
40,8662
40.7864
40811
40,8265
40.7506
40.7808
40,7808

longitude. date_added
double precision timestamp without time zone

73,9772 2010-07-06 00:00:00
73,9788 -

event
text

thank:you party

738772 2017:01:21 00:00:00
-73.9221 2014-11:24 00:00:00
73.9764 2010-12-20 00:00:00
-73.9642 2017-11:27 00:00:00
73,9383 2014.03-04 00:00:00
739894 2014-0817 00:00:00
73,9772 2014-01-08 00:00:00
739772 20150217 00:00:00

The customers_nyc table with event set to thank-you party

thank-you party
thank-you party
thankyou party
thank-you party
thankeyou party
thankyou party
thank-you party

thank-you party

https://packt.live/2XWLVZA

74 | Introduction to SQL for Analytics

5. You've told the manager that you've completed these steps. He tells the
marketing operations team, who then uses the data to launch a marketing
campaign. The marketing manager thanks you and then asks you to delete the
customers_nyc table.

NOTE

The solution for this activity can be found via this link.

In this activity, we used different CRUD operations to modify a table as requested
by the marketing manager. We will now come full circle to talk about how SQL and
analytics connect.

SQL AND ANALYTICS

Throughout this chapter, you may have noticed some parallels between SQL tables
and datasets. More specifically, it should be clear that SQL tables can be thought of as
a dataset, rows can be considered as individual units of observation, and columns can
be considered as features. If we view SQL tables in this way, we can see that SQL is a
natural way to store datasets in a computer.

However, SQL can go further than just providing a convenient way to store datasets.
Modern SQL implementations also provide tools for processing and analyzing data
through various functions. Using SQL, we can clean data, transform data into more
useful formats, and analyze data with statistics to find interesting patterns. The

rest of this book will be dedicated to understanding how SQL can be used for these
purposes productively and efficiently.

Summary | 75

SUMMARY

Data analytics is a powerful method through which to understand the world. The
ultimate goal for analytics is to turn data into information and knowledge. To
accomplish this goal, statistics can be used to better understand data, especially
descriptive statistics and statistical significance testing.

One branch of descriptive statistics (univariate analysis) can be utilized to understand
a single variable of data. Univariate analysis can be used to find outliers; the
distribution of data by utilizing frequency distributions and quantiles; the central
tendency of a variable by calculating the mean, median, and mode of data; and the
dispersion of data using the range, standard deviation, and IQR.

Bivariate analysis can also be used to understand the relationship between data.
Using scatterplots, we can determine trends, changes in trends, periodic behavior,
and anomalous points in regard to two variables. We can also use the Pearson
correlation coefficient to measure the strength of a linear trend between the

two variables. The Pearson correlation coefficient, however, is subject to scrutiny

due to the outliers or the number of data points used to calculate the coefficient.
Additionally, just because two variables have a strong correlation coefficient does not
mean that one variable causes the other variable.

Statistical significance testing can also provide important information about data.
Statistical significance testing allows us to determine how likely certain outcomes
could occur by chance and can help us to understand whether the changes seen

between groups are of consequence.

Data analytics can be further enhanced by the power of relational databases.
Relational databases are mature and ubiquitous technology for storing and querying
data. Relational databases store data in the form of relations, also known as tables,
which allow an excellent combination of performance, efficiency, and ease of use.
SQL is the language used to access relational databases. SQL is a declarative language
that allows users to focus on what to create as opposed to how to create it. SQL
supports many different data types, including numeric data, text data, and even

data structures.

76 | Introduction to SQL for Analytics

When querying data, SQL allows a user to pick which fields to pull, as well as how to
filter the data. This data can also be ordered, and SQL allows for as much or as little
data as we need to be pulled. Creating, reading, updating, and deleting data is also
fairly simple and can be quite surgical.

Having reviewed the basics of data analytics and SQL, we will move on to the next
chapter's discussion of how SQL can be used to perform the first step in data
analytics: the cleaning and transformation of data.

SQL FOR DATA PREPARATION

OVERVIEW

In this chapter, you will learn how to clean and prepare data for analysis
using SQL techniques. We will begin by first learning to combine multiple
tables and queries together into a dataset using joins, unions, subqueries,
and functions to transform data before moving on to more advanced
material. By the end of this chapter, you will be able to transform and clean
data using SQL functions and remove duplicate data using the DISTINCT
and DISTINCT ON commands.

80 | SQL for Data Preparation

INTRODUCTION

In the previous chapter, we discussed the basics of data analysis and SQL. We

also used CRUD (create, read, update, and delete) operations on a table. These
techniques are the foundation for all the work undertaken in analytics. One such task
we will implement is the creation of clean datasets.

According to Forbes, it is estimated that almost 80% of the time spent by analytics
professionals involves preparing data for use in analysis and building models with
unclean data, which harms analysis by leading to poor conclusions. SQL can help in
this tedious but important task by providing efficient ways to build clean datasets.

We will start by discussing how to assemble data using JOIN and UNION. Then, we
will use different functions, such as CASE WHEN, COALESCE, NULLIF, and LEAST/
GREATEST, in order to clean data. We will then discuss how to transform and remove
duplicate data from queries using the DISTINCT command.

ASSEMBLING DATA

We have previously discussed how to perform operations with a single table. But
what if you need data from two or more tables? In this section, we will assemble data
in multiple tables using joins and unions.

CONNECTING TABLES USING JOIN

In the previous chapter, we discussed how to query data from a table. However,
most of the time, the data you are interested in is spread across multiple tables.
Fortunately, SQL has methods for bringing related tables together using the
JOIN keyword.

Assembling Data | 81

To illustrate, let's take a look at two tables in our database—dealerships and
salespeople.

Column

=8

~ship id
_address

double p ision
double precision
timestamp without time zone
timestamp without time zone

Column

~son_id
1p_1d

i

=l = T
= T
I.ﬂ rT.-

rt
m M n

LA
=t

estamp without time zone
—1mun:amp without time zone

Figure 2.2: Salespeople table structure

82 | SQL for Data Preparation

In the salespeople table, we observe that we have a column called dealership _
id. This dealership id columnis a direct reference to the dealership id
column in the dealerships table. When table A has a column that references

the primary key of table B, the column is said to be a foreign key to table A. In

this case, the dealership id columnin salespeople is a foreign key to the
dealerships table.

NOTE

Foreign keys can also be added as a column constraint to a table in order to
improve the integrity of the data by making sure that the foreign key never
contains a value that cannot be found in the referenced table. This data
property is known as referential integrity. Adding foreign key constraints
can also help to improve performance in some databases. Foreign key
constraints are not used in most analytical databases and are beyond the
scope of this book. You can learn more about foreign key constraints in the
PostgreSQL documentation at https://www.postgresql.org/docs/9.4/tutorial-
fk.html.

As these two tables are related, you can perform some interesting analyses with
them. For instance, you may be interested in determining which salespeople work

at a dealership in California. One way of retrieving this information is to first query
which dealerships are located in California. You can do this using the following query:

SELECT
*

FROM
dealerships

WHERE
state="'CA';

This query should give you the following results:

dealership_id street_address city state postal_code latitude longitude date_opened date_closed
4 bigint text text text text double precision double precision timestamp without time zone timestamp without time zone

1 808 South Hobart.. Los.. CA 90005 34.057754 -118.305423 2014-06-01 00:00:00 [null]

N

2210 Bunker Hill .. San.. CA 94402 37.524487 -122.343609 2014-06-01 00:00:00 [null]

o

2

Figure 2.3: Dealerships in California

https://www.postgresql.org/docs/9.4/tutorial-fk.html
https://www.postgresql.org/docs/9.4/tutorial-fk.html

Assembling Data | 83

Now that you know that the only two dealerships in California have the IDs of 2 and

5, respectively, you can then query the salespeople table as follows:

SELECT
*
FROM
salespeople
WHERE
dealership id in (2, 5)
ORDER BY
1;

The following is the output of the code:

salesperson_id dealership_id title first_name last_name suffix username gender hire_date termination_date
bigint bigint text text text text text text timestamp without time zone = timestamp without time zone

23 2 [null] Beauregard Peschke [null] bpeschkem Male 2018-09-12 00:00:00 [null]

51 5 [nulll Lanette Gerriessen [null] Igerriessen1e Female 2018-06-24 00:00:00 [null]

57 5 [nulll Spense Pithcock [null] spithcocklk Male 2017-12-15 00:00:00 [null]

61 5 [nulll Ludvig Baynam [null] Ibaynam1o Male 2016-08-25 00:00:00 [null]

62 2 [nulll Carroll Pudan [null] cpudanip Female 2016-05-17 00:00:00 [null]

63 2 [nulll Adrianne Otham [ull] aotham1q Female 2014-12-20 00:00:00 [null]

71 2 [null] Georgianna Bastian [null gbastianly Female 2018-12-23 00:00:00 [nul]

75 2 [nulll Saundra Shoebottom [null] sshoebotto.. Female 2018-03-18 00:00:00 [null]

108 2 [null] Hale Brigshaw [null] hbrigshaw2z ~ Male 2015-07-30 00:00:00 [ull]

Figure 2.4: Salespeople in California

While this method gives you the results you want, it is tedious to perform two
queries in order to get these results. What would make this query easier would be to
somehow add the information from the dealerships table to the salespeople
table and then filter for users in California. SQL provides such a tool with the JOIN
clause. The JOIN clause is a SQL clause that allows a user to join one or more tables

together based on distinct conditions.

84 | SQL for Data Preparation

TYPES OF JOINS

In this chapter, we will discuss three fundamental joins, which are illustrated in the
following figure, that is, inner joins, outer joins, and cross join:

Inner Join Left Outer Join
Table A TableB Table A TableB
Right Outer Join Full Outer Join
Table A TableB Table A TableB
Cross Join

Table A Table B

Figure 2.5: Major types of joins

Assembling Data | 85

INNER JOINS

An inner join connects rows in different tables together, based on a condition known
as the join predicate. In many cases, the join predicate is a logical condition of
equality. Each row in the first table is compared against every other row in the second
table. For row combinations that meet the inner join predicate, that row is returned in
the query. Otherwise, the row combination is discarded.

Inner joins are usually written in the following form:

SELECT {columns}
FROM {tablel}
INNER JOIN {table2} ON {tablel}.{common key 1l}={table2}.{common key 2};

Here, {columns} is the columns you want to get from the joined table, { tablel}
is the first table, {table2} is the second table, {common_key 1} is the columnin
{tablel} you wantto join on, and {common key 2} isthe columnin {table2}
to join on.

Now, let's go back to the two tables we discussed previously—dealerships and
salespeople. As mentioned earlier, it would be good if we could append the
information from the dealerships table to the salespeople table in order to
know which state each dealer works in. For the time being, let's assume that all the
salespeople IDs have a valid dealership id value.

NOTE

At this point in the book, you have not learned the necessary skills to verify
that every dealership ID is valid in the salespeople table, and so we
assume it. However, in real-world scenarios, it will be important for you to
validate these things on your own. Generally speaking, there are very few
datasets and systems that guarantee clean data.

86 | SQL for Data Preparation

We can join the two tables using an equals condition in the join predicate, as follows:

SELECT
*
FROM
salespeople
INNER JOIN
dealerships
ON salespeople.dealership id = dealerships.dealership id
ORDER BY
1;

This query will produce the following output:

salesperson_id dealership_id title first_name last_name suffix username gender hire_date termination_date dealership_id street_address city state postal_code

bigint bigint text text text text text text timestamp without time zone timestamp without time zone bigint text text text text
1 17 [nul] Electra Elleyne ull eelleyned Female 2017-053100:00:00 [nuil] 17 2120 Walnut Street Phila.. PA 19092
2 6 [null Montague Alcoran i) malcoraml Male 2018-12-31 00:00:00 [null] 6 7315California A Seatt.. WA 98136
3 17 [nul] - Ethyl sloss v esloss2 Female 2016-08-10 00:00:00 [nuil] 17 2120 Walnut Street Phila... PA 19092
4 10 [null Nester Dugood] ndugood3 Male 2017-06-03 00:00:00 [t 10 7425 Wilson Aven... Chic.. IL 60706
5 17 [null] Cornall Swanger Al cswangerd Male 2018-05-17 00:00:00 [null] 17 2120 Walnut Street Phila.. PA 19092
6 8 [nul] Ellary Nend [nul]l enends Male 2016-05-07 00:00:00 [nuil] 8 5938 CornfootRo.. Portl. OR 97218
7 1 [null Granville Fidell i gfidelle Male 2017-06-17 00:00:00 [nuill 1 52Hillside Terrace Millb.. NJ 07039
8 18 [null Lanie Tisun A Mtisun? Male 2017-12-12 00:00:00 [t 18 1447 Hardesty Av... Kans.. MO 64195
9 14 [null] Lamar Treleven d - ltrelevens Male 2018-05-08 00:00:00 e 14 800NorthMaysS.. Roun.. TX 78664

Figure 2.6: The salespeople table joined to the dealerships table

As you can see in the preceding output, the table is the result of joining the
salespeople table to the dealerships table. Note that the first table listed

in the query, salespeople, is on the left-hand side of the result, while the
dealerships table is on the right-hand side. This is important to understand for
the next section, on outer joins.

More specifically, dealership idinthe salespeople table matches
dealership idinthe dealerships table. This shows how the join predicate is
met. By running this join query, we have effectively created a new "super dataset"
consisting of the two tables merged together where the two dealership id
columns are equal.

We can now query this "super dataset" the same way we would query one large table
using the clauses and keywords from Chapter 1, Introduction to SQL for Analytics. For
example, going back to our multi-query issue to determine which sales query works
in California, we can now address it with one easy query:

SELECT

*

FROM

salespeople

Assembling Data | 87

INNER JOIN

dealerships

ON salespeople.dealership id = dealerships.dealership id
WHERE

dealerships.state = 'CA'
ORDER BY

1;

This gives us the following output:

salesperson_id dealership_id title firstname lastname suffix username gender hire_date termination_date dealership_id ~street_address city

4 bigint bigint text text text text text text timestamp without time zone timestamp without time zone bigint text text

1 23 2 [nul] Beauregard Peschke null] bpeschkem Male 2018-09-12 00:00:00 [null] 2 808 South Hobart.. Los
2 51 5 [null] Lanette Gerriessen [null Igerriessente Female 2018-06-24 00:00:00 [nul] 5 2210 Bunker Hill .. San..
3 57 5 [null] Spense Pithcock null] spithcocklk Male 2017-12-15 00:00:00 [null] 5 2210 Bunker Hill .. San..
4 61 5 [oull] Ludvig Baynam null] lbaynamlo Male 2016-08-25 00:00:00 [null] 5 2210 Bunker Hill . San..
5 62 2 [nulll Carroll Pudan null] cpudanip Female 2016-05-17 00:00:00 [null] 2 808 South Hobart.. Los..

6 63 2 [null] Adrianne Otham null] sothamlq Female 2014-12-2000:00:00 [null] 2 808 South Hobart.. Los
7 7 2 [nul] Georgianna Bastian null] gbastianly ~ Female 2018-12-2300:00:00 [nul] 2 808 South Hobart.. Los..

8 75 2 [null] Saundra Shoebottom [nul] sshoebotto.. Female 2018-03-18 00:00:00 [null] 2 808 South Hobart... Los
9 108 2 [nulll Hale Brigshaw null hbrigshaw2z Male 2015-07-30 00:00:00 [nuil] 2 808 South Hobart... Los..

Figure 2.7: Salespeople in California with one query

You will observe that the output in Figure 2.2 and Figure 2.5 is nearly identical, with the
exception being that the table in Figure 2.5 has the dealerships data appended as
well. If we want to retrieve only the salespeople table portion of this, we can select
the salespeople columns using the following star syntax:

SELECT

salespeople.*
FROM

salespeople
INNER JOIN

dealerships

ON dealerships.dealership id = salespeople.dealership id
WHERE

dealerships.state = 'CA'
ORDER BY

1;

88 | SQL for Data Preparation

There is one other shortcut that can help when writing statements with several join
clauses: you can alias table names so that you do not have to type out the entire
name of the table every time. Simply write the name of the alias after the first
mention of the table after the join clause, and you can save a decent amount of
typing. For instance, for the last preceding query, if we wanted to alias salespeople
with s and dealerships with d, you could write the following statement:

SELECT
Bo%
FROM
salespeople s
INNER JOIN
dealerships d
ON d.dealership id = s.dealership id
WHERE
d.state = 'CA'
ORDER BY
1;

Alternatively, you could also put the AS keyword between the table name and alias to
make the alias more explicit:

SELECT
§o™
FROM
salespeople AS s
INNER JOIN
dealerships AS d
ON d.dealership id = s.dealership id
WHERE
d.state = 'CA'
ORDER BY
1;

Now that we have cleared up the basics of inner joins, we will discuss outer joins.

Assembling Data | 89

OUTER JOINS

As discussed, inner joins will only return rows from the two tables, and only if the join
predicate is met for both rows. Otherwise, no rows from either table are returned.
Sometimes, however, we want to return all rows from one of the tables regardless

of join predicate meeting. In this case, the join predicate is not met; the row for the
second table will be returned as NULL. These joins, where at least one table will be
represented in every row after the join operation, are known as outer joins.

Outer joins can be classified into three categories: left outer joins, right outer joins,
and full outer joins.

Left outer joins are where the left table (that is, the table mentioned first in a join
clause) will have every row returned. If a row from the other table is not found, a
row of NULL is returned. Left outer joins are performed by using the LEFT OUTER
JOIN keywords, followed by a join predicate. This can also be written in short as
LEFT JOIN.

To show how left outer joins work, let's examine two tables: the customers tables
and the emails table. For the time being, assume that not every customer has been
sent an email, and we want to mail all customers who have not received an email.
We can use a left outer join to make that happen since the left side of the join is the
customers table. To help manage output, we will only limit it to the first 1,000 rows.
The following code snippet is utilized:

SELECT
*
FROM
customers c
LEFT OUTER JOIN
emails e ON e.customer id=c.customer id
ORDER BY
c.customer id
LIMIT
1000;

90 | SQL for Data Preparation

The following is the output of the preceding code:

customerid title firstname lastname suffix email gender ip_address phone streetaddress city state postalcode latitude longitude date_added email_id

bigint text text text text ext text text text text text text text double precision double precision timestamp without time zone bigint
1wl Adena Riveles. il arivele.. F 98.36.172.246 [null] oull] | foull] ol null [null] 2017-04-23 00:00:00 282584
1 [hull Arena Riveles null - arivele.. F 98.36.172.246 [null] null | [ul] (ol null [null] 2017-04-23 00:00:00 370722
1 [null] Arena Riveles null] arivele.. F 98.36.172.246 [nul] [null] pull] oull] [oull] nwll] [null) 2017-04-23 00:00:00 323983
2 bor Ode Stovin nulll ostovin.. M 16.97.59.186 314-534.. 2573FordemPar.. Saint. MO 63116 385814 -90.2625 2014-10-02 00:00:00 323984
2 Dr Ode Stovin null ostovin.. M 16.97.59.186 314-534.. 2573FordemPar.. Saint.. MO 63116 385814 -90.2625 2014-10-02 00:00:00 245816
2 Or Ode Stovin nulll ostovin.. M 16.97.50.186 314-534.. 2573FordemPar.. Saint. MO 63116 385814 -90.2625 2014-10-02 00:00:00 144183
2 Dr Ode Stovin nulll ostovin.. M 16.97.50.186 314-534.. 2573FordemPar.. Saint. MO 63116 385814 -90.2625 2014-10-02 00:00:00 370723
2 Or Ode Stovin wi] ostovin.. M 16.97.50.186 314-534.. 2573FordemPar.. Saint. MO 63116 385814 -90.2625 2014-10-02 00:00:00 282585
2 0r Ode Stovin wil ostovin.. M 16.97.50.186 314-534.. 2573FordemPar.. Saint. MO 63116 385814 -90.2625 2014-10-02 00:00:00 117146
2 0 Ode Stovin wil ostovin.. M 16.97.59.186 314-534.. 2573FordemPar.. Saint.. MO 63116 385814 -90.2625 2014-10-02 00:00:00 209804
2 Or Ode Stovin wil ostovin.. M 16.97.50.186 314-534.. 2573FordemPar.. Saint. MO 63116 385814 -90.2625 2014-10-02 00:00:00 174737
2 Dr Ode Stovin wil - ostovin.. M 16.97.50.186 314-534.. 2573FordemPar.. Saint. MO 63116 385814 -90.2625 2014-10-02 00:00:00 91913
3 [null] Braden Jordan null bjorda. M 1928624859 [null 5651 Kennedy Park _ Pens... FL 32590 306143 -87.2758 2018-10-27 00:00:00 323985

Figure 2.8: Customers left-joined to emails

When you look at the output of the query, you should see that entries from the
customers table are present. However, for some of the rows, such as for customer
row 27, which can be seen in Figure 2.7, the columns belonging to the emails table
are completely full of NULL values. This arrangement explains how the outer join is
different from the inner join. If the inner join was used, the customer_id column
would not be blank.

This query, however, is still useful because we can now use it to find people who have
never received an email. Because those customers who were never sent an email
have a null customer_id column in the emails table, we can find all of these
customers by checking the customer_id column in the emails table, as follows:

SELECT
c.customer id,
.title,
.first name,
.last name,
. suffix,
.email,
.gender,
.ip address,
.phone,
.street address,
.city,
.state,
.postal code,
.latitude,
.longitude,
.date added,

T Q0 QO Q 0 a0 0 aa Q0 a0 o o0 o o0

.email id,

Assembling Data | 91

e.email subject,

e.opened,

e.clicked,

e.bounced,

e.sent date,

e.opened date,
e.clicked date

FROM

customers c

LEFT OUTER JOIN

emails e ON c.customer id

WHERE

e.customer id IS NULL
ORDER BY

c.customer id

LIMIT

1000;

e.customer id

The following is the output of the query:

customer_id title fistname lastname suffix emall gender ip.address phone streetaddress eity state postalcode latitude longitude ~date_added emailid customerid email
bigint text text text text text text text text text text text text double preci double prec timestamp without time zone bigint bigint text
27 [ull Anson Fellbrand (ol afellibr.. M 64808550 203107.. 65ShelleyRoad New.. CT 06505 413057 727799 2019-04-07 00:00:00 [l ull] (i)
32 [null Hamnet Puselowe [null hpurse.. M 225215.209... 239-462.. SJohnsonWay Napl. FL 34102 26134 817953 2019-02-0700:00:00 nul] ul] - (nui]
70 [null Caty Woolveridge [null] ewoolv.. F 1042111834 757:238... [null o] [l ol nuill [nuil] 2019-04-09 00:00:00 [l el [nuil]
77 [null Donal Lattey [l diattey.. M 531114103 304575.. 48889 LaurelPass Charl.. WV 25326 382968 -81.5547 2019-052500:00:00 nul] ull] (o]
112 [null Harcourt Cripps. [null] heripp. M 219.20.188.2.. 951-922.. 9 Hoard Place San CA 92410 341069 -117.2975 2019-02-2100:00:00 [null] [null] [null]
113 [null Giffy Bennington Jr gbenni.. M 181.117.182... 202-767.. 7861 Michigan Po.. Was. nc 20231 38.8933 <77.0146 2019-02-13 00:00:00 [nui] [null] [null]
125 [nul] Bernard Jirka [null] bjirka3.. M 124682378 [null] 112 Lunder Hill Pitts.. PA 15215 40.5048 <79.9138 2019-03-17 00:00:00 [nuil] [rull] [rull]
192 [null Selina Hearl [null] shearl. F 174.136.106... 585208.. 842 Moulton Court Roch.. NY 14646 43.286 ~77.6843 2019-04-09 00:00:00 [nui] [null] [null]
199 [nul] Mercy Martschik [nul] mmart. F 63732398 352750.. 66667 StoneCom... Broo.. FL 34605 285050 -82.4226 2019-04-0100:00:00 [null] frul] | [oul]
212 [null Norma Goldis [null] ngoldi. F 90.182.242.61 215737.. 4865SauthoffCir.. Phila.. PA 19125 39.9788 <75.1262 2019-03-26 00:00:00 [nui] [null] [oull]

As you can see, all entries are blank in the customer_id column of emails table,

Figure 2.9: Customers with no emails sent

indicating that they have not received any emails. We could simply grab the emails

from this join to get all of the customers who have not received an email.

92 | SQL for Data Preparation

Aright outer join is very similar to a left join, except the table on the "right" (the
second listed table) will now have every row show up, and the "left" table will have
NULL values if the join condition is not met. To illustrate, let's "flip" the last query by
right-joining the emails table to the customers table with the following query:

SELECT c.customer id,
c.title,

.first name,

.last name,

. suffix,

.email,

.gender,

.ip address,

.phone,

.street address,

.city,

.state,

.postal code,

.latitude,

.longitude,

.date added,

.email id,

.email subject,

.opened,

.clicked,

.bounced,

.sent date,

.opened date,

®o o o o ® ® ® ® Q Q Q QO QO Q0 Q0 Q0 o o Q0 a Q0 Q

.clicked date
FROM
emails e
RIGHT OUTER JOIN
customers ¢ ON e.customer id=c.customer id
ORDER BY
c.customer id
LIMIT
1000;

Assembling Data | 93

When you run this query, you will get something similar to the following result:

emailid customerid email_subject opened clicked bounced sentdate opened_date clicked_date customer_id tile fistname lastname suffix
bigint bigint text text text text timestamp without time zone timestamp without time zone timestamp without time zone bigint text text text text
282584 1 Black Friday. Gre.. t f f 2017-11-24 15:00:00 20171126 01:12:32 null 1 [null Arena Riveles]
370722 1 ANew Year And.. f f f 2019-01-07 15:00:00 [null] [null] 1 [null Arlena Riveles [nul)
323983 1 SavethePlanet.. f f f 2018-11-23 15:00:00 {null {null 1 [nul] Arena Riveles {nul]
323984 2 Savethe Planet.. f f f 2018-11-23 15:00:00 [rull [rull 2 D Ode Stovin {nuil]
245816 2 We Really Outdid... t f f 20170115 15:00.00 2017-01-16 09:23:16 [null 2 Dr Ode Stovin nul]
144183 2 Tis'the Seasonf.. f f f 201511-26 15:00:00 [null] [null] 2 Dr Ode Stovin [nul]
370723 2 ANew Year And.. f f f 2019-01-07 15:00:00 nul] ol 2 0r Ode Stovin null]
282585 2 Black Friday. Gre.. f f f 2017-11-24 15:00:00 rull {rull 2 D Ode Stovin il
17146 2 AnElectric Carf.. f f f 20150401 15:00:00 null {null 2 D Ode Stovin]
209804 2 25%offallEVs.I.. f f f 2016-11-25 15:00:00 [null [null] 2 Dr Ode Stovin [nul]
174737 2 LkeaBatoutof.. f f f 2016-09-21 15:00:00 [null) [null] 2 o Ode Stovin [null]
91913 2 ZoomZoomBla.. f f f 2014-11-28 15:00:00 ol {rull 2 D Ode Stovin i)
323985 3 Savethe Planet.. f f f 201811-23 15:00:00 null {null 3 [ull Braden Jordan il
370724 3 ANew Year, And.. f f f 2019-01-07 15:00:00 [null [null] 3 [null Braden Jordan [nul]
323086 4 Savethe Planet .. f f f 201811-23 15:00.00 ol {rull 4 [nul] Jessika Nussen ol
282586 4 Black Friday. Gre... f f f 2017-11-24 15:00:00 [rull {rull 4 [ull Jessika Nussen il
370725 4 ANew Year And.. f f f 2019:01-07 15:00:00 ull {null 4 [l Jessika Nussen]
323987 § SavethePlanet.. t f f 2018-11-23 15:00:00 201811-25 04:31:57 [null] § [null Lonnie Rembaud [null]
174738 5 LikeaBatoutof . t f f 2016:09-21 15:00.00 20160922 10:12:21 {rull 5 [nul] Lonnie Rembaud [nul]

Figure 2.10: Emails right-joined to the customers table

Notice that this output is similar to what was produced in Figure 2.7, except that the
data from the emails table is now on the left-hand side, and the data from the
customers table is on the right-hand side. Once again, customer_id 27 has NULL
for the email. This shows the symmetry between a right join and a left join.

Finally, there is the full outer join. The full outer join will return all rows from the left
and right tables, regardless of whether the join predicate is matched. For rows where
the join predicate is met, the two rows are combined in a group. For rows where
they are not met, the row has NULL filled in. The full outer join is invoked by using
the FULL OUTER JOIN clause, followed by a join predicate. Here is the syntax of
this join:
SELECT
FROM
emails e
FULL OUTER JOIN
customers c

ON e.customer id=c.customer id;

94 | SQL for Data Preparation

The following is the output of the code:

email_id customer_id email_subject
bigint bigint text
1 18 Introducing A Li...
2 30 Introducing A Li..
4 52 Introducing A Li...
9 103 Introducing A Li...
14 137 Introducing A Li...
20 215 Introducing A Li...
25 311 Introducing A Li...
26 315 Introducing A Li...
27 338 Introducing A Li...
32 380 Introducing A Li...
37 422 Introducing A Li...
49 596 Introducing A Li...
56 673 Introducing A Li.

In this section, we learned how to implement three different outer joins. In the next

opened clicked bounced sent_date

text
f

text
f

text
f

2011-01-03 15:00:00
2011-01-03 15:00:00
2011-01-03 15:00:00
2011-01-03 15:00:00
2011-01-03 15:00:00
2011-01-03 15:00:00
2011-01-03 15:00:00
2011-01-03 15:00:00
2011-01-03 15:00:00
2011-01-03 15:00:00
2011-01-03 15:00:00
2011-01-03 15:00:00
2011-01-03 15:00:00

opened_date

[null]
[null
[null
[null
[null]
[null]
[null]
[l
2011-01-04 21:59:51
[null]
[null
2011-01-04 23:29:26

2011-01-04 12:03:22

clicked_date

[null]
[null]
[null]
[null]
[null]
[null]
[null]
[null]
[nul]
[null]
[null]
[null]
2011-01-04 12:06:54

Figure 2.11: Emails are full outer joined to the customers table

section, we will work with the cross join.

CROSS JOINS

customer_id
timestamp without time zone timestamp without time zone ~ timestamp without time zone bigint

18

30

52
103
137
215
3
315
338
380
422
596
673

The final type of join we will discuss in this book is the cross join. The cross join is also

referred to as the Cartesian product; it returns every possible combination of rows
from the "left" table and the "right" table. It can be invoked using a CROSS JOIN
clause, followed by the name of the other table. For instance, let's take the example

of the products table.

Let's say we wanted to know every possible combination of two products that you
could create from a given set of products (such as the one found in the products
table) in order to create a 2-month giveaway for marketing purposes. We can use a

cross join to get the answer to the question using the following query:

SELECT

p.product id, p.model,

c.city,
FROM

products
CROSS JOIN

products

c.number of customers

pl

p2;

Assembling Data | 95

The output of this query is as follows:

product_id model product_id model
bigint text bigint text
1 Lemon 1 Lemon
1 Lemon 2 Lemon Li..
1 Lemon 3 Lemon
1 Lemon 4 Model Chi
1 Lemon 5 Blade
1 Lemon 6 Model Sig...
1 Lemon 7 Bat
1 Lemon 8 Bat Limite...
1 Lemon 9 Model Ep...
1 Lemon 10 Model Ga...
1 Lemon 11 Model Chi
1 Lemon 12 Lemon Ze...
2 Lemon .. 1 Lemon

Figure 2.12: The cross join of a product to itself

You will observe that, in this particular case, we have joined every value of every field
in one table to every value of every field in another table. The result of the query has
240 rows, which is the equivalent of multiplying the 12 products by the 20 top cities
(12 * 20). We can also see that there is no need for a join predicate; indeed, a cross
join can simply be thought of as just an outer join with no conditions for joining.

In general, cross joins are not used in practice, and can also be very dangerous if you
are not careful. Cross joining two large tables together can lead to the origination of
hundreds of billions of rows, which can stall and crash a database. Take care when
using them.

NOTE

To learn more about joins, please refer to the PostgreSQL documentation at
https://www.postgresql.org/docs/9.1/queries-table-expressions.html.

https://www.postgresql.org/docs/9.1/queries-table-expressions.html

96 | SQL for Data Preparation

So far, we have covered the basics of using joins to bring tables together. We will now
talk about methods for joining queries together in a dataset.

EXERCISE 2.01: USING JOINS TO ANALYZE A SALES DEALERSHIP

In this exercise, we will use joins to bring related tables together. The head of sales at
your company would like a list of all customers who bought a car. We need to create
a query that will return all customer IDs, first names, last names, and valid phone
numbers of customers who purchased a car.

NOTE

For all exercises in this book, we will be using pgAdmin 4. All the code files
for the exercises and the activity in this chapter are also available on GitHub
at https://packt.live/3hf91Ch.

To solve this problem, perform the following steps:
1. Open your favorite SQL client and connect to the sqlda database.

2. Use aninner join to bring the tables sales and customers together, which
returns data for the following: customer IDs, first names, last names, and valid
phone numbers:

SELECT

c.customer id, c.first name,

c.last name, c.phone
FROM

sales s
INNER JOIN

customers ¢ ON c.customer id=s.customer id
INNER JOIN

products p ON p.product id=s.product id
WHERE

p.product type='automobile'

AND c.phone IS NOT NULL;

https://packt.live/3hf91Ch

Assembling Data | 97

You should get an output similar to the following:

customer_id
bigint
35824
13206
2958
32636
26730
23832
35844
43229
6038

Figure 2.13: Customers who bought a car

first_name
text

Wyatan
Stace
Kirstyn
Kile
Raina
Harrietta
Maura
Field

Carey

last_name
text

Dickie
Tuison
Draysay
Fishlee
Titterell
Leverette
Clyne
Lopes

Swadling

phone
text

405-786...
810-769...
208-534...
937-207...
304-871...
803-298...
904-169...
757-409...
727-426...

We can see that after running the query, we were able to join the data from the
sales and customers tables and obtain a list of customers who bought a car.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/2XTzNbr.

In this exercise, using joins, we were able to bring together related data easily

and efficiently.

https://packt.live/2XTzNbr

98 | SQL for Data Preparation

SUBQUERIES

So far, we have been pulling data from tables. However, you may have observed
that all SELECT queries produce tables as an output. Knowing this, you may wonder
whether there is some way to use the tables produced by the SELECT queries
instead of referencing an existing table in your database. The answer is yes. You

can simply take a query, insert it between a pair of parentheses, and give it an alias.
For example, if we wanted to find all the salespeople working in California and get
the results the same as in Figure 2.5, we could have written the query using the
following alternative:

SELECT
*
FROM
salespeople
INNER JOIN (
SELECT
*
FROM
dealerships
WHERE
dealerships.state = 'CA'
) d
ON d.dealership id = salespeople.dealership id
ORDER BY
1;

Here, instead of joining the two tables and filtering for rows with the state equal to
'CA', we first find the dealerships where the state equals 'CA', and then inner
join the rows in that query to salespeople.

If a query only has one column, you can use a subquery with the IN keyword
in a WHERE clause. For example, another way to extract the details from the

salespeople table using the dealership ID for the state of California would be
as follows:

SELECT

*

FROM
salespeople
WHERE dealership id IN (
SELECT dealership id FROM dealerships

Assembling Data | 99

WHERE dealerships.state = 'CA'

)
ORDER BY
1;

As all of these examples show, it's quite easy to write the same query using multiple
techniques. In the next section, we will talk about unions.

UNIONS

So far, we have been talking about how to join data horizontally. That is, with joins,
new columns are effectively added horizontally. However, we may be interested in

putting multiple queries together vertically, that is, by keeping the same number of
columns but adding multiple rows. An example may help to clarify this.

Say that you wanted to visualize the addresses of dealerships and customers
using Google Maps. To do this, you would need both the addresses of customers
and dealerships. You could build a query with all customer addresses as follows:

SELECT

street address, city, state, postal code
FROM

customers
WHERE

street address IS NOT NULL;

You could also retrieve dealership addresses with the following query:

SELECT

street address, city, state, postal code
FROM

dealerships
WHERE

street address IS NOT NULL;

However, it would be nice if we could assemble the two queries together into one
list with one query. This is where the UNION keyword comes into play. Using the two
previous queries, we could create the following query:

(
SELECT

street address, city, state, postal code
FROM

customers

100 | SQL for Data Preparation

WHERE

street address IS NOT NULL
)
UNION

(
SELECT

street address, city, state, postal code

FROM
dealerships
WHERE
street address IS NOT NULL

)
ORDER BY
1;

This produces the following output:

street_address
text

00003 Continenta...
00003 Sullivan Ro...
00006 Birchwood ...
00006 Roth Plaza

00006 Vidon Place
00027 Judy Place

00031 Redwing D...
0003 Novick Trail

0004 Northport Al...
0004 Superior Alley
0005 Eagle Crest ...

city
text

Suff...
Des ...
Lake...
Fort ...
Dallas

Hou...

Minn...

Mont...

Boise

New ...

Ralei...

state
text

VA
1A
FL
AR
X
X
MN
VT
ID
NJ
NC

postal_code
text

23436
50981
33805
72916
75358
77293
55446
05609
83705
08922
27626

Figure 2.14: Union of addresses

Assembling Data | 101

There are some caveats to using UNION. First, UNION requires that the subqueries
there have the same name columns and the same data types for the column. If it
does not, the query will not run. Second, UNION technically may not return all the
rows from its subqueries. UNION, by default, removes all duplicate rows in the
output. If you want to retain the duplicate rows, it is preferable to use the UNION
ALL keyword. In the next exercise, we will implement union operations.

EXERCISE 2.02: GENERATING AN ELITE CUSTOMER PARTY GUEST LIST USING UNION

In this exercise, we will assemble two queries using unions. In order to help build
up marketing awareness for the new Model Chi, the marketing team would like
to throw a party for some of ZoomZoom's wealthiest customers in Los Angeles, CA.
To help facilitate the party, they would like you to make a guest list with ZoomZoom
customers who live in Los Angeles, CA, as well as salespeople who work at the
ZoomZoom dealership in Los Angeles, CA. The guest list should include first and last
names and whether the guest is a customer or an employee.

To solve this problem, execute the following:
1. Open your favorite SQL client and connect to the sqlda database.

2. Write a query that will make a list of ZoomZoom customers and company
employees who live in Los Angeles, CA. The guest list should contain first and last
names and whether the guest is a customer or an employee:

(
SELECT
first name, last name, 'Customer' as guest type
FROM
customers
WHERE
city='Los Angeles'
AND state='CA'

UNION
(
SELECT
first name, last name,
'Employee' as guest type
FROM
salespeople s
INNER JOIN

102 | SQL for Data Preparation

dealerships d ON d.dealership id=s.dealership id
WHERE

d.city="'Los Angeles'

AND d.state='CA'
)

You should get the following output:

first_name last_name guest_type
text text text

Euell MacWhirter Customer
Martainn Tordoff Customer
Truman Cutmore Customer
Asher Drogan Customer
Kelley Christley Customer
Megan McCourtie Customer
Free Errol Customer
Dick Steward Customer
Bing Connal Customer
Rea Arnason Customer
Powell Sendley Customer
Alastair Blacklawe Customer
Ada Beeze Customer
Orran Worrall Customer
Hyman Gabbitus Customer
Brandise Yude Customer
Barron Dawney Customer
Bob Adamolli Customer
Carroll Pudan Employee
Abbott Poupard Customer

Figure 2.15: Customer and employee guest list in Los Angeles, CA

Assembling Data | 103

We can see the guest list of customers and employees from Los Angeles, CA,
after running the UNION query.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/3ffQq79.

In the exercise, we used the UNION keyword to combine rows from different queries
effortlessly. In the next section, we will learn about common table expressions.

COMMON TABLE EXPRESSIONS

Common table expressions are, in a certain sense, just a different version of
subqueries. Common table expressions establish temporary tables by using the WITH
clause. To understand this clause better, let's take a look at the following query, which
we've used before to find California-based salespeople:

SELECT
*
FROM
salespeople
INNER JOIN (
SELECT
*
FROM
dealerships
WHERE
dealerships.state = 'CA'
) d
ON d.dealership id = salespeople.dealership id
ORDER BY
1;

https://packt.live/3ffQq79

104 | SQL for Data Preparation

This could be written using common table expressions as follows:

WITH d as (
SELECT
*
FROM
dealerships
WHERE
dealerships.state = 'CA'
)
SELECT
*
FROM
salespeople
INNER JOIN
d ON d.dealership id = salespeople.dealership id
ORDER BY
1g

The one advantage of common table expressions is that they are recursive.
Recursive common table expressions can reference themselves. Because of this
feature, we can use them to solve problems that other queries cannot. However,
recursive common table expressions are beyond the scope of this book.

Now that we know several ways to join data together across a database, we will look
at how to transform the data from these outputs.

TRANSFORMING DATA

Often, the raw data presented in a query output may not be in the form we would
like it to be. We may want to remove values, substitute values, or map values to other
values. To accomplish these tasks, SQL provides a wide variety of statements and
functions. Functions are keywords that take in inputs (such as a column or a scalar
value) and change those inputs into some sort of output. We will discuss some very
useful functions for cleaning data in the following sections.

Transforming Data | 105

THE CASE WHEN FUNCTION

CASE WHEN is a function that allows a query to map various values in a column to
other values. The general format of a CASE WHEN statement is as follows:

CASE WHEN conditionl THEN valuel
WHEN condition2 THEN value?2

WHEN conditionX THEN valueX
ELSE else value END;

Here, conditionl and condition2, through conditionX, are Boolean
conditions; valuel and value2, through valueX, are values to map the Boolean
conditions; and else_value is the value that is mapped if none of the Boolean
conditions are met. For each row, the program starts at the top of the CASE WHEN
statement and evaluates the first Boolean condition. The program then runs through
each Boolean condition from the first one. For the first condition from the start of the
statement that evaluates as true, the statement will return the value associated with
that condition. If none of the statements evaluate as true, then the value associated
with the ELSE statement will be returned.

As an example, let's say that you wanted to return all rows for customers from the
customers table. Additionally, you would like to add a column that labels a user as
being an Elite Customer type if they live in postal code 33111, or as a Premium
Customer type if they live in postal code 33124. Otherwise, it will mark the
customer as a Standard Customer type. This column will be called customer
type. We can create this table by using a CASE WHEN statement as follows:

SELECT

*
’

CASE WHEN postal code='33111"' THEN 'Elite Customer'
WHEN postal code='33124' THEN 'Premium Customer'
ELSE 'Standard Customer' END

AS customer type

FROM customers;

106 | SQL for Data Preparation

This query should give the following output:

customerid tile firstname lastname suffix emall gender ip.address phone streetaddress city state postalcode latitude longitude date_added customer_type
bigint text text text text text text text text text text text text double precision double precision timestamp without time zone text

1 [oull] Arlena Riveles ul] arivele.. F 9836172246 [nu o] w il {ruil] ull] 2017-04-23 00:00:00 Standard Customer

2 0r Ode Stovin wi ostovin.. M 1697.59.186 314-534.. 2573FordemPar.. Saint. MO 63116 385814 -90.2625 2014-10-02 00:00:00 Standard Customer

3 [null Braden Jordan wil bjorda. M 1928624859 [nui 5651 Kennedy Park Pens.. FL 32590 30.6143 -87.2758 2018-10-27 00:00:00 Standard Gustomer

4 [null Jessika Nussen ull jusse.. F 159.165.136... 615824.. 224 VillageGircle Nash.. TN 37215 36.0986 -86.8219 2017-09-03 00:00:00 Standard Gustomer

5 [l Lonnie Rembaud null Iremba.. F 18131.58.65 786499.. 38Lindbergh Way ~ Miami FL 33124 25,5584 -80.4562 2014-03-06 00:00:00 Premium Customer

6 [null Cortie Locksley - clocksl.. M 1401945982 [6537 Delladonna... Miami FL 33158 256364 -80.3187 2013-03-3100:00:00 Standard Customer

7 [l Wood Kennham null - wkenn.. M 191190.135... 407-552.. 001Onsgard Park Orla.. FL 32891 285663 -81.2608 2011-08-25 00:00:00 Standard Customer

8 [l Rutger Humblestone [null thumbl.. M 7710235191 203-551.. 21376 Esker Center New.. CT 06510 41.3087 <72.9271 201312-1500:00:00 Standard Customer

9 [null Melantha Tibb dll - mitibbs.. F 155176371 913-500.. 05915 Havey Hill Sha.. KS 66225 38.8999 -94.832 2016:02-1100:00:00 Standard Customer

10 Ms Barbara-anne Gowlett Jr bgowle... F 6711062119 915714.. 9 Kim Point ElPa.. TX 79940 31,6048 1063 2012:06-28 00:00:00 Standard Customer

Figure 2.16: The customer type query

As you can see in the preceding table, there is a column called customer_type
indicating the type of customer a user is. The CASE WHEN statement effectively
mapped a postal code to a string describing the customer type. Using a CASE WHEN
statement, you can map values in any way you please.

EXERCISE 2.03: USING THE CASE WHEN FUNCTION TO GET REGIONAL LISTS

The aim of this exercise is to create a query that will map various values in a column
to other values. The head of sales has an idea to try and create specialized regional
sales teams that will be able to sell scooters to customers in specific regions, as
opposed to generic sales teams.

To make his idea a reality, he would like a list of all customers mapped to regions. For
customers from the states of MA, NH, VT, ME, CT, or Rl, he would like them labeled as
New England. For customers from the states of GA, FL, MS, AL, LA, KY, VA, NC, SC,
TN, VI, WV, or AR, he would like the customers labeled as Southeast. Customers
from any other state should be labeled as Other.

To complete this exercise, perform the following steps:
1. Open your favorite SQL client and connect to the sqlda database.

2. Create a query that will produce a customer_id column and a column called
region, with the states categorized as in the following scenario:

SELECT
c.customer id,

CASE WHEN c.state in (
'MA', 'NH', 'VT', 'ME',
'CT', 'RI')

THEN 'New England'

WHEN c.state in (
'GA', 'FL', 'MS',

Transforming Data | 107

'AL', 'LA', 'KY', 'VA',
'NC', 'SC', 'IN', 'VI',
'wv', 'AR'")
THEN 'Southeast'
ELSE 'Other' END as region
FROM
customers c
ORDER BY
1g

This query will map a state to one of the regions based on whether the state is
in the CASE WHEN condition listed for that line. You should get the
following output:

customer_id region
bigint text

Other

—

Other

Southe...
Southe...
Southe...
Southe...
Southe...
New En...

Other

o v 0 N o g BB oW M

—_—

Other
Figure 2.17: The regional query output

In the preceding output, in the case of each customer, a region has been
mapped based on the state where the customer resides.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/3dW1ciN.

https://packt.live/3dW1ciN

108 | SQL for Data Preparation

In this exercise, we learned to map various values in a column to other values using
the CASE WHEN function. In the next section, we will discuss a useful function,
COALESCE, which will help us to replace the NULL values.

THE COALESCE FUNCTION

Another useful technique is to replace the NULL values with a standard value. This
can be accomplished easily by means of the COALESCE function. COALESCE allows
you to list any number of columns and scalar values, and, if the first value in the list
is NULL, it will try to fill it in with the second value. The COALESCE function will keep
continuing down the list of values until it hits a non-NULL value. If all values in the
COALESCE function are NULL, then the function returns NULL.

To illustrate a simple usage of the COALESCE function, let's return to the
customers table. Some of the records don't have the value of the phone
field populated:

first_name last_name phone

text text text

Aaren Norrey NO PHONE
Aaren Sadat 504-559-3464
Aaren Whelpdale 607-761-2568
Aaren Lamlin 414-937-4628
Aaren Deeman NO PHONE
Aarika Guerin 501-121-5841
Aarika Danaher 904-175-3112
Aarika Chadwell 915-856-7492
Aarika Emmanuel NO PHONE
Aarika Mawhinney 205-355-4381

Figure 2.18: The COALESCE query

Transforming Data | 109

Let's say the marketing team would like a list of the first names, last names, and
phone numbers of all-male customers. However, for those customers with no phone
number, they would like the table to instead write the value of 'NO PHONE'. We can
accomplish this request with COALESCE:

SELECT

first name, last name,

COALESCE (phone, 'NO PHONE') as phone
FROM

customers
ORDER BY

1;

This query produces the following results:

first_name last_name phone

text text text

Aaren Norrey NO PHONE
Aaren Sadat 504-559-3464
Aaren Whelpdale 607-761-2568
Aaren Lamlin 414-937-4628
Aaren Deeman NO PHONE
Aarika Guerin 501-121-5841
Aarika Danaher 904-175-3112
Aarika Chadwell 915-856-7492
Aarika Emmanuel NO PHONE
Aarika Mawhinney 205-355-4381

Figure 2.19: The COALESCE query

When dealing with creating default values and avoiding NULL, COALESCE will always
be helpful.

110 | SQL for Data Preparation

THE NULLIF FUNCTION

NULLIF is, in a sense, the opposite of COALESCE. NULLIF is a two-value function
and will return NULL if the first value equals the second value.

As an example, imagine that the marketing department has created a new direct

mail piece to send to the customer. One of the quirks of this new piece of advertising
is that it cannot accept people who have titles (Mr, Dr, Mrs, and so on) longer than
three letters. However, some records may have a title that is longer than three letters.
If the system cannot accept them, they should be removed during the retrieval

of results.

In our database, the only known title longer than three characters is ' Honorable'.
Therefore, they would like you to create a mailing list that is just all the rows

with valid street addresses and to blot out all titles with NULL that are spelled as
'Honorable'. This could be done with the following query:

SELECT customer id,
NULLIF(title, 'Honorable') as title,
first name,
last name,
suffix,
email,
gender,
ip_address,
phone,
street address,
city,
state,
postal code,
latitude,
longitude,
date added

FROM

customers c

ORDER BY

1;

Transforming Data | 111

This will blot out all mentions of ' Honorable' from the title column.

Explain Data Output Notifications Messages Query History — Query Editor

customer_id title first_name last_name suffix email a gender ip_address a phone street_address

4 bigint & text a text a text a text a text text a text text 8 text a
1 1 [null Arlena Riveles [nul] ariveles0.. F 98.36.172.246 [null] [null]
2 2 Dr Ode Stovin [nui] ostovinl.. M 16.97.59.186 314-534-4... 2573 Fordem Parkw...
3 3 [null] Braden Jordan [nuil] bjordan2.. M 192.86.248.59 [null] 5651 Kennedy Park
4 4 [nul] Jessika Nussen [null] jnussen3.. F 159.165.138.166 615-824-2... 224 Village Circle
5 5 [null] Lonnie Rembaud [null] Irembaud.. F 18.131.58.65 786-499-3.. 38 Lindbergh Way
6 6 [null] Cortie Locksley [null] clocksley.. M 140.194.59.82 [null] 6537 Delladonna Dri...
7 7 [null] Wood Kennham [null] wkennha.. M 191.190.135.172 407-552-6... 001 Onsgard Park
8 8 [null Rutger Humblestone [null] rhumbles.. M 77.10.235.191 203-551-6... 21376 Esker Center
9 9 [null Melantha Tibb [nul mtibb8@... F 186.176.37.197 913-590-8.. 05915 Havey Hill
10 10 Ms Barbara-anne Gowlett Jr bgowlett.. F 67.110.62.119 915-714-5.. 9 Kim Point
11 11 Mrs Urbano Middlehurst [nuil] umiddieh.. M 185.118.6.23 918-339-5... 5203 7th Trail
12 12 Mr Tyne Duggan [null] tdugganb... F 13.29.231.228 [null] [null]
13 13 [null] Gannon Braker [null] gbrakerc.. M 69.199.173.60 619-666-7... 1 Columbus Drive
14 14 [null] Derry Lyburn [null] dlyburnd... M 230.59.185.87 501-457-5... 8507 Garrison Junct...
15 15 [null] Nichols Espinay [null] nespinay.. M 243.147.74.203 818-658-6.. 43 Anthes Road

Figure 2.20: The NULLIF query

Next, we will discuss the LEAST and GREATEST functions.

THE LEAST/GREATEST FUNCTION

Two functions that come in handy for data preparation are the LEAST and
GREATEST functions. Each function takes any number of values and returns the least
or the greatest of the values, respectively.

For example, if we use LEAST function with two parameters, such as 600 and 900,
600 will be returned as the value. It's the other way round for GREATEST function.
The parameters can either be literal values or the values stored inside numeric fields.

The simple use of this variable would be to replace the value if it's too high or low. For
example, the sales team may want to create a sales list where every scooter is $600
or less. We can create this using the following query:

SELECT
product id, model,
year, product type,
LEAST (600.00, base msrp) as base msrp,
production start date,
production end date

FROM

products

112 | SQL for Data Preparation

WHERE

product type='scooter'
ORDER BY

1;

This query should give the following output:

product_id model year product_type base_msrp production_start_date production_end_date

4 bigint text bigint text numeric timestamp without time zone ~ timestamp without time zone
1 1 Lemon 2010 scooter 399.99 2010-03-03 00:00:00 2012-06-08 00:00:00
2 2 Lemon ... 2011 scooter 600.00 2011-01-03 00:00:00 2011-03-30 00:00:00
3 3 Lemon 2013 scooter 499.99 2013-05-01 00:00:00 2018-12-28 00:00:00
4 5 Blade 2014 scooter 600.00 2074-06-23 00:00:00 2015-01-27 00:00:00
5 7 Bat 2016 scooter 599.99 2016-10-10 00:00:00 [null]

6 8 BatLimi.. 2017 scooter 600.00 2017-02-15 00:00:00 [null]

7 12 Lemon ... 2019 scooter 349.99 2019-02-04 00:00:00 [null]

Figure 2.21: Cheaper scooters
THE CASTING FUNCTION

Another useful data transformation is to change the data type of a column within a
query. This is usually done to use a function only available to one data type, such as
text, while working with a column that is in a different data type, such as numeric. To
change the data type of a column, you simply need to use the column: :datatype
format, where the column is the column name, and datatype is the data type you
want to change the column to. For example, to change the year in the products
table to a text column in a query, use the following query:

SELECT
product id, model,
year: :TEXT, product type,
base msrp, production start date,
production end date
FROM

products;

Transforming Data | 113

This query produces the following output:

product_id model year | product_type base_msrp production_start_date production_end_date
bigint text text text text timestamp without time zone = timestamp without time zone
4 Model.. 2014 automobile 115,000.00 2014-06-23 00:00:00 2018-12-28 00:00:00
6 Model S.. 2015 automobile 65,500.00 2015-04-15 00:00:00 2018-10-01 00:00:00
9 Model E.. 2017 automobile 35,000.00 2017-02-15 00:00:00 [null
10 Model .. 2017 automobile 85,750.00 2017-02-15 00:00:00 [null]
11 Model ... 2019 automobile 95,000.00 2019-02-04 00:00:00 [null]
12 Lemon.. 2019 scooter 349.99 2019-02-04 00:00:00 [null]
13 Nimbus.. 2019 scooter 500.00 2019-03-03 00:00:00 2020-03-03 00:00:00
1 Lemon 2010 scooter 299.99 2010-03-03 00:00:00 2012-06-08 00:00:00
2 Lemon.. 2011 scooter 299.99 2011-01-03 00:00:00 2011-03-30 00:00:00
3 Lemon 2013 scooter 299.99 2013-05-01 00:00:00 2018-12-28 00:00:00
5 Blade 2014 scooter 299.99 2014-06-23 00:00:00 2015-01-27 00:00:00
7 Bat 2016 scooter 299.99 2016-10-10 00:00:00 [null

Figure 2.22: The year column as text

This will convert the year column to text. You can now apply text functions to this
transformed column. There is one final catch; not every data type can be castto a
specific data type. For instance, datetime cannot be cast to float types. Your SQL
client will throw an error if you ever make an unexpected strange conversion.

THE DISTINCT AND DISTINCT ON FUNCTIONS

Often, when looking through a dataset, you may be interested in determining the
unique values in a column or group of columns. This is the primary use case of the
DISTINCT keyword. For example, if you wanted to know all the unique model years
in the products table, you could use the following query:

SELECT DISTINCT vyear
FROM products
ORDER BY 1;

114 | SQL for Data Preparation

This should give the following result:

year

bigint
2010
2011
2013
2014
2015
2016
2017
2019

Figure 2.23: Distinct model years

You can also use it with multiple columns to get all of the distinct column
combinations present. For example, to find all distinct years and what product types
were released for those model years, you can simply use the following:

SELECT DISTINCT year, product type
FROM products
ORDER BY 1, 2;

Transforming Data | 115

This should give the following output:

year product_type
bigint text

2010 scooter
2011 scooter
2013 scooter
2014 automobile
2014 scooter
2015 automobile
2016 scooter
2017 automobile
2017 scooter
2019 automobile
2019 scooter

Figure 2.24: Distinct model years and product types

A keyword related to DISTINCT is DISTINCT ON.DISTINCT ON allows you to
ensure that only one row is returned and one or more columns are always unique in
the set. The general syntax of a DISTINCT ON query is as follows:

SELECT DISTINCT ON (distinct column)
column 1,

column 2,

column n
FROM table
ORDER BY order_column;

116 | SQL for Data Preparation

Here, distinct_column is the column or columns you want to be distinct in your
query, column_1 through column_n are the columns you want in the query, and
order column allows you to determine the first row that will be returned

for aDISTINCT ON query if multiple columns have the same value for
distinct_column.

For order_column, the first column mentioned should be distinct_ column.
If an ORDER BY clause is not specified, the first row will be decided randomly. To
clarify, let's say that you wanted to get a unique list of salespeople where each
salesperson has a unique first name. In the case that two salespeople have the
same first name, we will return the one that started at the company earlier. This
query would look as follows:

SELECT DISTINCT ON (first name)

*

FROM
salespeople
ORDER BY

first name, hire date;

It should return the following:

salesperson_id dealership_id title first.name last_name suffix usemame gender hire_date termination_date
bigint bigint text text text text text text timestamp without time zone = timestamp without time zone
189 17 [null]l Abby Drewery [null] adrewery58 Male 2015-09-01 00:00:00 [null]
137 4 [null] Abie Brydell [nulll abrydell3s Male 2016-11-04 00:00:00 [null]
27 4 [null] Ad Loding [null] alodingq Male 2017-06-27 00:00:00 [null]
63 2 [nulll Adrianne Otham [null] aothamiq Female 2014-12-20 00:00:00 [null
272 7 [nulll Afton Limon [null] alimon7j Female 2014-09-01 00:00:00 [null
35 17 [null] Agnella Linke [null] alinkey Female 2018-10-23 00:00:00 [null]
161 18 [nulll Aile Dobbing [null] adobbingdg Female 2014-08-14 00:00:00 2016-10-03 00:00:00
136 3 [nulll Alanna Dufaire [null] adufaire3r Female 2014-06-27 00:00:00 [null]
147 6 [nulll Alaric Sterrick [null] asterrick42 Male 2014-06-17 00:00:00 [null]
221 19 [nulll Alberik Polglase [null] apolglase64 Male 2015-11-19 00:00:00 [null]
139 18 [nulll Alexina Coatsworth [null] acoatswort.. Female 2015-07-27 00:00:00 [null]
100 18 [null] Alie Bellfield [null] abellfield2r Female 2017-12-11 00:00:00 [null]
287 7 [null] Allayne Billingham [nulll abilingham7y Male 2014-08-06 00:00:00 [null]

Figure 2.25: DISTINCT ON first_name

Transforming Data | 117

This table now guarantees that every row has a distinct username. If there are
multiple users with the same first name, then the user who was hired first by the
company will be pulled by the query. For example, if the salespeople table has
multiple rows with the first name 'Abby ', the row in Figure 2.25 with the name of
'Abby ' (thatis, the first row in the outputs) is for the first person employed at the
company with the name 'Abby'. Likewise, when we have two employees with the
same first name, the query results will order them by the start date. For example,
when two employees, Andrey Haack with the start date of 2016-01-10 and Andrey
Kures with the start date of 2016-05-17, exist in the database, Andrey Haack will be
listed first, since his start date is earlier.

In the next section, we will go through an activity demonstrating how SQL can be used
to make a dataset for a model.

ACTIVITY 2.01: BUILDING A SALES MODEL USING SQL TECHNIQUES

In this activity, we will clean and prepare our data for analysis using SQL techniques.
The data science team wants to build a new model to help predict which customers
are the best prospects for remarketing. A new data scientist has joined their team.
The responsibility has fallen to you to help the new data scientist prepare and build a
dataset to be used to train a model. Write a query to assemble a dataset. Here are the
steps to perform:

1. Open a SQL client and connect to the database.
Use INNER JOIN to join the customers table to the sales table.
Use INNER JOIN to join the products table to the sales table.

2

3

4. Use LEFT JOIN to join the dealerships table to the sales table.

5. Now, return all columns of the customers table and the products table.
6

Then, return the dealership_id column from the sales table, butfill in
dealership idin sales with -1 if it is NULL.

7. Add a column called high savings that returns 1 if the sales amount was
500 less than base_msrp or lower. Otherwise, it returns 0. Please make sure
that we perform the query on joined table.

118 | SQL for Data Preparation

Expected Output:

customer_id title firstname lastname suffix email gender ip_address phone strectaddress ity state postalcode latitude longitude date_added
bigint text text text text text text text text text text text text double precision double precision timestamp without time zone

1 [nul] Arlena Riveles [nwll] arivele.. F 98.36.172.246 [nulll [null] [null] [null] [null] [null] null] 2017-04-23 00:00:00

4 [null Jessika Nussen [rui] Jnusse. F 159.165.138... 615-824.. 224 Village Circle Nash.. TN 37215 36.0986 -86.8219 2017-09-03 00:00:00

5 [l Lonnie Rembaud [nul]l Iremba.. F 18131.5865 786499, 38LindberghWay Miami FL 33124 25.5584 -80.4582 2014-03-06 00:00:00

6 [null Cortie Locksley [null] clocksl.. M 140.194.59.82 [null] 6537 Delladonna .. Miami FL 33158 25.6364 -80.3187 2013-03-31 00:00:00

7 [null] Wood Kennham [ui] wkenn. M 191.190.135... 407-552.. 001 Onsgard Park Orla. FL 32891 28.5663 -81.2608 2011-08-25 00:00:00

7 [null Wood Kennham [nwll] wkenn.. M 191.190.135... 407-552.. 001Onsgard Park Orla.. FL 32891 28.5663 -81.2608 2011-08-25 00:00:00

7 [nwll] Wood Kennham [null] wkenn.. M 191.190.135... 407-552.. 001 Onsgard Park Orla. FL 32891 28.5663 -81.2608 2011-08-25 00:00:00

11 Mis Ubeno Middlehurst [nul] umiddl., M 185.118.623 918339, 5203 7th Trail Tulsa 0K 74156 36.3024 -95.9605 2011-10-22 00:00:00

12 Mr Tyne Duggan [nwll] tdugga.. F 13.29.231.228 [nulll null] [null null] [null] [null) null] 2017-10-25 00:00:00

NOTE

Figure 2.26: Building a sales model query

The solution for this activity can be found via this link.

We have now shown how SQL can be used to clean and organize data for
analytical purposes.

SUMMARY

SQL provides us with many tools for mixing and cleaning data. We have learned how
joins allow users to combine multiple tables, while UNION and subqueries allow us
to combine multiple queries. We have also learned how SQL has a wide variety of
functions and keywords that allow users to map new data, fill in missing data, and
remove duplicate data. Keywords such as CASE WHEN, COALESCE, NULLIF, and
DISTINCT allow us to make changes to data quickly and easily.

Now that we know how to prepare a dataset, we will learn how to start making
analytical insights in the next chapter, using aggregates and window functions.

AGGREGATE AND WINDOW
FUNCTIONS

OVERVIEW

In this chapter, you will learn the conceptual logic of aggregation and
window functions, write SQL to execute these functions, and modify them
using keywords such as HAVING and GROUP BY.

By the end of this chapter, you will be able to apply these functions to gain
new insights into data and understand the properties of datasets, such as
data quality.

122 | Aggregate and Window Functions

INTRODUCTION

In the previous chapter, we discussed how to use SQL to prepare datasets for
analysis. Once the data has been prepared, the next step is to analyze the data.
Generally, data scientists and analytics professionals will try to understand the data
by summarizing it and trying to find high-level patterns. SQL can help with this task
primarily through the use of aggregate and window functions. These functions take
multiple rows as input and return new information based on those input rows. To
begin with, let's look at aggregate functions.

AGGREGATE FUNCTIONS

We are often interested in understanding the properties of an entire column or

table as opposed to just seeing individual rows of data. As a simple example, let's

say you were wondering how many customers ZoomZoom has. You could select all
the data from the table and then see how many rows were pulled back, but it would
be incredibly tedious to do so. Luckily, there are functions provided by SQL that can
be used to perform calculations on large groups of rows. These functions are called
aggregate functions. Aggregate functions take in one or more columns with multiple
rows and return a number based on those columns. As an illustration, we can use the
COUNT function to count the total number of ZoomZoom customers by counting the
total rows in the customers table:

SELECT COUNT (customer id) FROM customers;

The COUNT function will return the number of rows without a NULL value in the
column. Since the customer_id column is a primary key and cannot be NULL, the
COUNT function will return the number of rows in the table. In this case, the query will
return the following output:

count
bigint

As shown here, the COUNT function works with a single column and counts how many
non-NULL values it has. However, if every single column has at least one NULL value,
then it would be impossible to determine how many rows there are. To get a count

of the number of rows in that situation, you could use the COUNT function with an
asterisk, (*), to get the total count of rows:

SELECT
COUNT (*)

Aggregate Functions | 123

FROM

customers;
This query will also return 50, 000.

Say that you were interested in the number of unique states in the customer list. This
answer could be queried using COUNT (DISTINCT expression):

SELECT
COUNT (DISTINCT state)
FROM

customers;
This query returns the following output:

count
bigint

The following table provides a summary of the major aggregate functions that are
used in SQL:

Function - Explanation

COUNT (columnX) Counts the number of rows in columnX that have
a non-NULL value.

COUNT(*) Counts the number of rows in the output table.

MIN (columnX) Returns the minimum value in columnX. For text

columns, it returns the value that would appear
| first alphabetically.

MAX (columnX) | Returns the maximum value in columnX.

SUM (columnX) Returns the sum of all values in columnX.

AVG (columnX) Returns the average of all values in columnx.

STDDEV (columnX) Returns the sample standard deviation of all
values in.

VAR (columnX) Returns the sample variance of all values in
columnX.

REGR_SLOPE (columnX, columnY) Returns the slope of linear regression for columnx

as the response variable and columny as the
| predictor variable.
REGR_INTERCEPT (columnX, columnY) |Returns the intercept of linear regression for
columnX as the response variable and columny
| as the predictor variable.
CORR (columnX, columnY) Calculates the Pearson correlation between
columnX and columnY in the data.

Figure 3.1: Major aggregate functions

124 | Aggregate and Window Functions

Aggregate functions can also be used with the WHERE clause in order to calculate
aggregate values for specific subsets of data. For example, if you wanted to know how
many customers ZoomZoom had in California, you could use the following query:

SELECT
COUNT (*)
FROM
customers
WHERE
state="'CA';

This results in the following output:

count
bigint

You can also do arithmetic with aggregate functions. In the following query, you can
divide the count of rows in the customers table by two:

SELECT
COUNT (*) /2
FROM

customers;
This query will return 25, 000.

You can also use aggregate functions with each other in mathematical ways. In the
following query, instead of using the AVG function to calculate the average MSRP of
products at ZoomZoom, you could “build” the AVG function using SUM and COUNT,
as follows:

SELECT SUM(base_msrp)::FLOAT/COUNT(*) AS avg base msrp FROM products

Aggregate Functions | 125

You should get the following result:

Avg base msrp

Double precision

NOTE

The reason we have to cast the sum is that PostgreSQL treats integer
division differently than float division. For example, dividing 7 by 2 as
integers in PostgreSQL will give you 3. In order to get a more precise
answer of 3.5, you have to cast one of the numbers to float.

In the next section, we will show you how to use aggregate functions as a part of
data analysis.

NOTE

For all the exercises in this book, we will be using pgAdmin 4.
All the exercises and activities are also available on GitHub at
https://packt.live/2XUYdla.

126 | Aggregate and Window Functions

EXERCISE 3.01: USING AGGREGATE FUNCTIONS TO ANALYZE DATA

In this exercise, we will analyze and calculate the price of a product using different
aggregate functions. Since you're always curious about the data at your company,
you are interested in understanding some of the basic statistics around ZoomZoom
product prices. Now, you want to calculate the lowest price, the highest price,

the average price, and the standard deviation of the price for all the products the
company has ever sold.

Perform the following steps to complete this exercise:
1. Open your favorite SQL client and connect to the sqlda database.

2. Calculate the lowest, highest, average, and standard deviation of the price using
the MIN, MAX, AVG, and STDDEV aggregate functions, respectively, from the
products table:

SELECT
MIN (base msrp), MAX(base msrp),
AVG (base msrp), STDDEV (base msrp)
FROM products;

The preceding code will produce an output similar to this.

min max avg stddev
numeric numeric numeric numeric
349.99 115000.00 33358.327500000000 44484.40866379

Figure 3.2: Statistics of the product price

NOTE

Your results may vary in comparison to the preceding output probably
because your PostgreSQL instance may be configured to show different
number of decimal points in the output. The other reason for the difference
in outputs could be that the data contained in the database has been
modified from what it was when the original database was created from the
dump file. However, the key objective here is to demonstrate how you can
use the aggregate functions to analyze data.

Aggregate Functions with GROUP BY | 127

From the preceding output, we can see that the minimum price is 349. 99, the
maximum price is 115000. 00, the average price is 33358.32750, and the
standard deviation of the price is 44484 .408.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/30GGU8W.

In this exercise, we've used aggregate functions to understand the basic statistics of
prices. Next, we will use aggregate functions with the GROUP BY clause.

AGGREGATE FUNCTIONS WITH GROUP BY

So far, we've used aggregate functions to calculate statistics for an entire column.
However, often, we are not interested in the aggregate values for a whole table, but
for smaller groups in the table. To illustrate this, let's go back to the customers
table. We know that the total number of customers is 50,000. However, we

might want to know how many customers we have in each state. How would we
calculate this?

We could determine how many states there are with the following query:

SELECT DISTINCT
state
FROM

customers;
We are expected to see 52 distinct states returned as a result of the preceding query.

Once you have the list of states, you could then run the following query for
each state:

SELECT
COUNT (*)
FROM
customers
WHERE

state="{state}’

128 | Aggregate and Window Functions

Although you can do this, it is incredibly tedious and can take an incredibly long
time if there are many states. The GROUP BY clause provides a much more
efficient solution.

THE GROUP BY CLAUSE

GROUP BY is a clause that divides the rows of a dataset into multiple groups based

on some sort of key that's specified in the GROUP BY clause. An aggregate function
is then applied to all the rows within a single group to produce a single number. The
GROUP BY key and the aggregate value for the group are then displayed in the SQL
output. The following diagram illustrates this general process:

D
B
ED

Dataset

Figure 3.3: General GROUP BY computational model

In the preceding diagram, we can see that the dataset has multiple groups (Group 1,
Group 2,..,Group N). Here, the Aggregate 1 function is applied to all the rows
in Groupl, the Aggregate 2 function is applied to all the rows in Group 2, and
so on.

The GROUP BY statements usually have the following structure:

SELECT {KEY}, {AGGFUNC (columnl)} FROM {tablel} GROUP BY {KEY}

Aggregate Functions with GROUP BY | 129

Here, {KEY} is a column or a function on a column that's used to create individual
groups, {AGGFUNC (columnl) } is an aggregate function on a column that is
calculated for all the rows within each group, and {table} is the table or set of
joined tables from which rows are separated into groups.

To illustrate this point, let's count the number of customers in each US state using
a GROUP BY query. Using GROUP BY, a SQL user could count the number of
customers in each state by querying:

SELECT state, COUNT (%)
FROM

customers
GROUP BY

state

The computational model looks like this:

NULL Smmm 5467

Figure 3.4: Customer count by the state computational model

Here, AK, AL, AR, and the other keys are abbreviations for US states.

130 | Aggregate and Window Functions

You should get the following output:

state count

text bigint

| KS 619
[null] 5467
CA 5038
NH T
OR 386
ND 93
X 4865
NV 643
KY 598

Figure 3.5: Customer count by the state query output
You can also use the column number to perform a GROUP BY operation:

SELECT
state,
COUNT (*)

FROM
customers

GROUP BY
1

If you want to return the output in alphabetical order, simply use the following query:

SELECT
state,
COUNT (*)

FROM
customers

GROUP BY
state

ORDER BY

state

Aggregate Functions with GROUP BY | 131

Alternatively, we can write the following:
SELECT state, COUNT(*) FROM customers GROUP BY 1ORDER BY 1

Either of these queries will give you the following result:

state count

text bigint

AK 188
AL 022
AR 232
AZ 931
CA 5038
co 1042
CT 576
DC 1447
DE 149

Figure 3.6: Customer count by the state query output in alphabetical order

Often, though, you may be interested in ordering the aggregates themselves.
The aggregates can be ordered using ORDER BY, as follows:

SELECT

state, COUNT (*)
FROM

customers
GROUP BY

state
ORDER BY

COUNT (*)

132 | Aggregate and Window Functions

This query gives us the following output:

state count

text bigint

VT 16
WY 23
ME 25
RI 47
NH Vi
ND 93
MT 122
SD 124
DE 149

Figure 3.7: Customer count by the state query output in increasing order

You may also want to count only a subset of the data, such as the total number of
male customers. To calculate the total number of male customers, you can use the
following query:

SELECT

state, COUNT (*)
FROM

customers
WHERE

gender="'M'
GROUP BY

state
ORDER BY

state

Aggregate Functions with GROUP BY | 133

This gives you the following output:

state count

text bigint

AK 87
AL 489
AR 120
AZ 415
CA 2572
co 526
CT 301
DC 713
DE 74

Figure 3.8: Male customer count by the state query output in alphabetical order

As shown here, grouping by one column can provide some great insight. In the next
section, we will see that GROUP BY can be generalized to multiple columns to provide
more granular insight.

MULTIPLE COLUMN GROUP BY

While GROUP BY with one column is powerful, you can go even further and GROUP
BY multiple columns. Say you wanted to get a count of not just the number of
customers ZoomZoom had in each state, but also of how many male and female
customers it had in each state. Multiple GROUP BY columns can query the answer
like so:

SELECT
state, gender, COUNT (*)
FROM
customers
GROUP BY
state, gender
ORDER BY

state, gender

134 | Aggregate and Window Functions

This gives us the following result:

state gender count

text text bigint

AK F 101
AK M 87
AL F 433
AL M 489
AR F 112
AR M 120
AZ F 516
AZ M 415
CA F 2466

Figure 3.9: Customer count by the state and gender query outputs in alphabetical order

Any number of columns can be used in a GROUP BY operation in this fashion. Now,
we will implement the GROUP BY clause in an exercise.

EXERCISE 3.02: CALCULATING THE COST BY PRODUCT TYPE USING GROUP BY

In this exercise, we will analyze and calculate the cost of products using aggregate
functions and the GROUP BY clause. The marketing manager wants to know the
minimum, maximum, average, and standard deviation of the price for each product
type that ZoomZoom sells for a marketing campaign. Perform the following steps to
complete this exercise:

1. Open your favorite SQL client and connect to the sample database, sqlda.

2. Calculate the lowest, highest, average, and standard deviation price using the
MIN, MAX, AVG, and STDDEV aggregate functions from the products table and
use GROUP BY to check the price of all the different product types:

SELECT
product type, MIN (base msrp),
MAX (base msrp), AVG(base msrp),

Aggregate Functions with GROUP BY | 135

STDDEV (base msrp)
FROM

products
GROUP BY

1
ORDER BY

1;

You should get the following result:

product_type min max avg stddev

text numeric numeric numeric numeric

automobile 35000.00 115000.00 79250.000000000000 30477.45068079
scooter 349.99 799.99 578.5614285714285714 167.971085947212

Figure 3.10: Basic price statistics by product type

From the preceding output, the marketing manager can check and compare the
price of various products that ZoomZoom sells for the campaign.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/2Yv6]pM.

In this exercise, we calculated the basic statistics by product type using aggregate
functions and the GROUP BY clause. Next, we will learn how to implement
grouping sets.

GROUPING SETS

Now, say you wanted to count the total number of customers you have in each state,
while simultaneously, in the same aggregate functions, counting the total number of
male and female customers you have in each state. You could accomplish this using

the UNION ALL keyword we discussed in Chapter 1, Introduction to SQL for Analytics,

as follows:

(
SELECT
state,

NULL as gender,

136 | Aggregate and Window Functions

COUNT (*)
FROM
customers
GROUP BY 1, 2
ORDER BY 1, 2
)
UNION ALL
(
(
SELECT
state,
gender,
COUNT (*)
FROM
customers
GROUP BY 1, 2
ORDER BY 1, 2
)

)
ORDER BY 1, 2

This query produces the following result:

state gender count

text text bigint

AK F 101
AK M 87
AK [null] 188
AL F 433
AL M 489
AL [null] 922
AR F 112
AR M 120
AR [null] 232

Figure 3.11: Customer count by the state and gender query outputs in alphabetical order

Aggregate Functions with GROUP BY | 137

However, using UNION ALL is tedious and can involve writing very long queries. An
alternative way to do this is to use grouping sets. Grouping sets allow a user to create
multiple categories of viewing, similar to the UNION ALL statement we just saw.

For example, using the GROUPING SETS keyword, you could rewrite the previous
UNION ALL query, like so:

SELECT
state,
gender,
COUNT (*)
FROM
customers
GROUP BY GROUPING SETS (
(state),
(gender) ,
(state, gender)
)
ORDER BY 1, 2

This creates the same output as the previous UNION ALL query. We'll learn how the
ordered set aggregates work in the next section.

ORDERED SET AGGREGATES

Up to this point, none of the aggregates we have discussed depend on the order of
the data. We can order the data using ORDER BY, but this is not required. However,
there is a subset of aggregates statistics that do depend on the order of the column
to calculate. For instance, the median of a column is something that requires the
order of the data to be specified. To calculate these use cases, SQL offers a series of
functions called ordered set aggregates functions. The following table lists the main
ordered-set aggregate functions:

Function | Explanation

mode () Returns the value that appears most often. In the
case of a tie, it returns the first value in order.
Percentile cont(fraction) |Returns a value corresponding to the specified
fraction in the ordering, interpolating between
adjacent input items if needed.

Percentile disc(fraction) |Returns the firstinputvalue whose position in the
ordering equals or exceeds the specified fraction.

Figure 3.12: Major ordered set aggregate functions

138 | Aggregate and Window Functions

These functions are used in the following format:

SELECT
{ordered set function} WITHIN GROUP (ORDER BY {order column})
FROM {table};

Here, {ordered set function} isthe ordered set aggregate function,
{order_column} is the column to order results for the function by, and {table}
is the table the columniis in.

To illustrate this, let's say you wanted to calculate the median price of the products
table. You could use the following query:

SELECT
PERCENTILE CONT (0.5)
WITHIN GROUP (ORDER BY base msrp)
AS median

FROM

products;

The reason we use 0.5 is that the median is the 50th percentile, whichis 0.5 as a
fraction. This gives us the following result:

median

double precision

With ordered set aggregate functions, we now have the tools for calculating virtually
any aggregate statistic of interest for a dataset. In the next section, we'll look at how
to use aggregates to deal with data quality.

THE HAVING CLAUSE

We can now perform all sorts of aggregate operations using GROUP BY. Sometimes,
though, certain rows in aggregate functions may not be useful, and you may want to
remove them from the query output. For example, when doing the customer counts,
perhaps you are only interested in places that have at least 1,000 customers. Your

first instinct may be to write something such as this:

SELECT
state, COUNT (*)
FROM

customers

The HAVING Clause | 139

WHERE

COUNT (*)>=1000
GROUP BY

state
ORDER BY

state;

However, you will find that the query does not work and gives you the following error:

ERROR: aggregate functions are not allowed in WHERE

LINE 3: WHERE COUNT (*)>=1000
A

SQL state: 42803
Character: 45

Figure 3.13: Error showing the query not working

In order to use the filter on aggregate functions, you need to use a new clause:
HAVING. The HAVING clause is similar to the WHERE clause, except it is specifically
designed for GROUP BY queries. The general structure of a GROUP BY operation
with a HAVING statement is as follows:

SELECT {KEY}, {AGGFUNC (columnl) }

FROM {tablel}

GROUP BY {KEY}

HAVING {OTHER AGGFUNC (column2) CONDITION}

Here, {KEY} is a column or function on a column that is used to create individual
groups, {AGGFUNC (columnl) } is an aggregate function on a column that

is calculated for all the rows within each group, {table} is the table or set

of joined tables from which rows are separated into groups, and {OTHER _
AGGFUNC (column2) CONDITION} is a condition similar to what you would put
in a WHERE clause involving an aggregate function. Now, let's implement an exercise
while using the HAVING clause.

140 | Aggregate and Window Functions

EXERCISE 3.03: CALCULATING AND DISPLAYING DATA USING THE HAVING CLAUSE

In this exercise, we will calculate and display data using the HAVING clause. The sales
manager of ZoomZoom wants to know the customer count for the states that have
at least 1000 customers who have purchased any product from ZoomZoom. Help the
manager extract the data. Perform the following steps to complete this activity:

1. Open your favorite SQL client and connect to the sqlda database.

2. Calculate the customer count by the state with at least 1000 customers using
the HAVING clause:

SELECT

state, COUNT (*)
FROM

customers
GROUP BY

state
HAVING

COUNT (*)>=1000
ORDER BY

state;

This query will give you the following output:

state count

text bigint

CA 5038
co 1042
DC 1447
FL 3748
GA 1251
IL 1094
NC 1070
NY 2395
OH 1656

Figure 3.14: Customer count by the state with at least 1,000 customers

Using Aggregates to Clean Data and Examine Data Quality | 141

Here, we can see the states that have more than 1,000 ZoomZoom customers,
with CA having 5038, the highest number of customers, and CO having 1042, the
lowest number of customers.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/3hmF7fq.

In this exercise, we used the HAVING clause to calculate and display data
more efficiently.

USING AGGREGATES TO CLEAN DATA AND EXAMINE DATA QUALITY

In Chapter 1, Introduction to SQL for Analytics, we discussed how SQL can be used
to clean data. While the techniques mentioned in that chapter do an excellent job
of cleaning data, aggregates add a number of techniques that can make cleaning
data even easier and more comprehensive. In this section, we will look at some of
these techniques.

FINDING MISSING VALUES WITH GROUP BY

As we mentioned in Chapter 1, Introduction to SQL for Analytics, one of the biggest
issues with cleaning data is dealing with missing values. Although we discussed how
to find missing values and how we could get rid of them, we did not say too much
about how we could determine the extent of missing data in a dataset. Primarily, this
was because we did not have the tools to deal with summarizing information in a
dataset - that is, until this chapter.

Using aggregates, identifying the amount of missing data can tell you not only which
columns have missing data, but also whether columns are even usable because so
much of the data is missing. Depending on the extent of missing data, you will have
to determine whether it makes the most sense to delete rows with missing data, fill
in missing values, or just delete columns if they do not have enough data to make
definitive conclusions.

142 | Aggregate and Window Functions

The easiest way to determine whether a column is missing values is to use a modified
CASE WHEN statement with the SUM and COUNT functions to determine what
percentage of data is missing. Generally speaking, the query looks as follows:

SELECT

SUM (CASE WHEN {columnl}

IS NULL OR {columnl}

IN ({missing values})

THEN 1

ELSE O END) : : FLOAT/COUNT (*)
FROM

{tablel}

Here, {columnl} is the column that you want to check for missing values,
{missing_values} is a comma-separated list of values that are considered
missing, and {tablel} is the table or subquery with the missing values.

Based on the results of this query, you may have to vary your strategy for dealing
with missing data. If a very small percentage of your data is missing (<1%), then you
might consider just filtering out or deleting the missing data from your analysis. If
some of your data is missing (<20%), you may consider filling in your missing data
with a typical value, such as the mean or the mode, to perform an accurate analysis.
If, however, more than 20% of your data is missing, you may have to remove the
column from your data analysis, as there would not be enough accurate data to make
accurate conclusions based on the values in the column.

Let's look at missing data in the customers table. Specifically, let's look at the
missing data in the state column. We will do so by dividing the number of records
that have the value in the state column missing by the total number of the records:

SELECT
SUM (CASE WHEN state IS NULL OR state IN (''")
THEN 1
ELSE 0 END) : :FLOAT/COUNT (*)
AS missing state
FROM

customers;

Using Aggregates to Clean Data and Examine Data Quality | 143

This gives us the following output:

missing state
double precision

0.10934

As shown here, a little under 11% of the state data is missing. For analysis purposes,
you may want to consider that these customers are from CA, since CA is the most
common state in the data. However, the far more accurate thing to do would be to
find and fill in the missing data.

MEASURING DATA QUALITY WITH AGGREGATES

One of the major themes you will find in data analytics is that analysis is
fundamentally only useful when there is a strong variation in data. A column where
every value is exactly the same is not a particularly useful column. To this end, it
often makes sense to determine how many distinct values there are in a column.

To measure the number of distinct values in a column, we can use the COUNT
DISTINCT function to find how many distinct values there are. The structure of such
a query would look as follows:

SELECT COUNT (DISTINCT {columnl})
FROM {tablel}

Here, {columnl} is the column you want to count and {tablel} is the table with
the column.

Another common task that you might want to perform is to determine whether
every value in a column is unique. While in many cases this can be solved by setting
a column with a PRIMARY KEY constraint, this may not always be possible. To solve
this problem, we can write the following query:

SELECT COUNT (DISTINCT {columnl})=COUNT (*)
FROM {tablel}

Here, {columnl} is the column you want to count and {tablel} is the table with
the column. If this query returns True, then the column has a unique value for every
single row; otherwise, at least one of the values is repeated. If values are repeated

in a column that you are expecting to be unique, there may be some issues with the
data Extract, Transform, and Load (ETL) or there may be a join that has caused a
row to be repeated.

144 | Aggregate and Window Functions

As a simple example, let's verify that the customer _id column in customers
is unique:

SELECT
COUNT (DISTINCT customer id)=COUNT (*)
AS equal ids

FROM

customers;
This query gives us the following output:

equal ids
boolean

Now that we have learned the many ways we can use aggregate queries; we will apply
this to some sales data in the following activity.

ACTIVITY 3.01: ANALYZING SALES DATA USING AGGREGATE FUNCTIONS

In this activity, we will analyze data using aggregate functions. The CEO, COO, and
CFO of ZoomZoom would like to gain some insight into what might be driving sales
now that the company feels they have a strong enough analytics team with your
arrival. The task has been given to you, and your boss has politely let you know that
this project is the most important project the analytics team has worked on. Perform
the following steps to complete this activity:

1. Open your favorite SQL client and connect to the sqlda database.
2. Calculate the total number of unit sales the company has made.

3. Calculate the total sales amount in dollars for each state.
4

Identify the top five best dealerships in terms of the most units sold (ignore
internet sales).

5. Calculate the average sales amount for each channel, as shown in the sales
table, and look at the average sales amount, first by channel sales, then by
product_id, and then by both together.

Using Aggregates to Clean Data and Examine Data Quality | 145

Expected Output:

channel product_id avg_sales_amount

text bigint double precision
dealership 3 477.253737607644
dealership 4 109822.274881517
- dealership 5 664.330132075472
dealership 6 62563.3763837638
dealership 7 573.744146637002
dealership 8 668.850500463391
dealership 9 33402.6845637584
dealership 10 81270.1121794872

dealership 11 91589.7435897436

Figure 3.15: Sales after the GROUPING SETS channel and product_id

NOTE

The solution for this activity can be found via this link.

Using aggregates, you have unlocked patterns that will help your company
understand how to make more revenue and make the company better overall.

146 | Aggregate and Window Functions

WINDOW FUNCTIONS

Aggregate functions allow us to take many rows and convert those rows into one
number. For example, the COUNT function takes in the rows of a table and returns
the number of rows. However, sometimes, we want to be able to calculate multiple
rows but still, keep all the rows after following the calculation. For example, let's

say you wanted to rank every user in order according to the time they became a

customer, with the earliest customer being ranked 1, the second-earliest customer
being ranked 2, and so on. You can get all the customers using the following query:

SELECT
*

FROM
customers

ORDER BY
date added;

You can order customers from the earliest to the most recent and there are several
ways you can achieve it. Later in the chapter, you will learn how to assign numbers
to ordered records by using the RANK function. However, you can also use an
aggregate function to get the dates and order them that way:

SELECT
date added, COUNT (*)
FROM
customers
GROUP BY
date added
ORDER BY
date added

Window Functions | 147

The following is the output of the preceding code:

date_added

timestamp without time zone

2010-03-15 00:00:00
2010-03-16 00:00:00
2010-03-17 00:00:00
2010-03-18 00:00:00
2010-03-19 00:00:00
2010-03-20 00:00:00
2010-03-21 00:00:00
2010-03-22 00:00:00
2010-03-23 00:00:00
2010-03-24 00:00:00
2010-03-25 00:00:00

count
bigint

11
13
12
19
23
16
20
14
11
21
15

Figure 3.16: Aggregate date-time ordering

While this gives the dates, it gets rid of the remainder of the columns, and still
provides no rank information. This is where window functions come into play.
Window functions can take multiple rows of data and process them, but still retain all
the information in the rows. For things such as ranks, this is exactly what you need.

For a better understanding of this, we'll see what a windows function query looks like

in the next section.

THE BASICS OF WINDOW FUNCTIONS

The following is the basic syntax of a window function:

SELECT {columns},
{window func} OVER (PARTITION BY {partition key} ORDER BY {order key})

FROM tablel;

148 | Aggregate and Window Functions

Here, {columns} are the columns to retrieve from tables for the query, {window_
func} is the window function you want to use, {partition_key} is the column or
columns you want to partition on (more on this later), {order_key} is the column
or columns you want to order by, and tablel is the table or joined tables you want
to pull data from. The OVER keyword indicates where the window definition starts.

To illustrate this, let's look at an example. You might be saying to yourself that you do
not know any window functions, but the truth is that all aggregate functions can be
used as window functions. Let's use COUNT (*) in the following query:

SELECT
customer id,
title,
first name,
last name,
gender,
COUNT (*) OVER () as total customers
FROM
customers
ORDER BY

customer id;

This results in the following output:

customer_id title first_name last_name gender total_customers

bigint text text text text bigint
1 [nulll Arlena Riveles F 50000
2 Dr Ode Stovin M 50000
3 [nulll Braden Jordan M 50000
4 [nulll Jessika Nussen F 50000
5 [null] Lonnie Rembaud F 50000
6 [nulll Cortie Locksley M 50000
7 [nulll Wood Kennham M 50000
8 [null] Rutger Humblestone M 50000
9 [null] Melantha Tibb F 50000
10 Ms Barbara-anne Gowlett F 50000
11 Mrs Urbano Middlehurst M 50000

Figure 3.17: Customers listed using the COUNT(*) window query

Window Functions | 149

As shown in the preceding screenshot, the customers query returns title,
first name, and last_name, just like a typical SELECT query. However, there is
now a new column called total customers. This column contains the count of
users that would be created by the following query:

SELECT COUNT (*)

FROM customers;

This returns 50, 000. As we mentioned previously, the query returned all of the rows
and the COUNT (*) in the query, instead of just returning the count as a normal
aggregate function would.

Now, let's examine the other parameters of the query. What happens if we use
PARTITION BY, such as in the following query?

SELECT

customer id, title, first name, last name, gender,
COUNT (*) OVER (PARTITION BY gender) as total customers
FROM

customers
ORDER BY

customer id;

The following is the output of the preceding code:

customer_id title first_name last_name gender total_customers

bigint text text text text bigint
1 [nulll Arlena Riveles F 25044
2 Dr Ode Stovin M 24956
3 [nulll Braden Jordan M 24956
4 [nulll Jessika Nussen F 25044
5 [null]l Lonnie Rembaud F 25044
6 [nulll Cortie Locksley M 24956
7 [nulll Wood Kennham M 24956
8 [nulll Rutger Humblestone M 24956
9 [nulll Melantha Tibb F 25044
10 Ms Barbara-anne Gowlett F 25044
11 Mrs Urbano Middlehurst M 24956

Figure 3.18: Customers listed using COUNT(*) partitioned by the gender window query

150 | Aggregate and Window Functions

Here, you can see that total_customers has now changed counts to one of two
values, 24,956 or 25, 044. These counts are the counts for each gender, which you
can see with the following query:

SELECT

gender, COUNT (*)
FROM

customers
GROUP BY

1

For females, the count is equal to the female count, and for males, the count is
equal to the male count. What happens now if we use ORDER BY in the partition,
as follows?

SELECT

customer id, title,

first name, last name, gender,

COUNT (*) OVER (ORDER BY customer id) as total customers
FROM

customers
ORDER BY

customer id;

Window Functions | 151

The following is the output of the preceding code:

customer_id title first_name last_name gender total_customers

bigint text text text text bigint
1 [nulll Arlena Riveles F 1
2 Dr Ode Stovin M 2
3 [nulll Braden Jordan M 3
4 [nulll Jessika Nussen F 4
5 [nulll Lonnie Rembaud F 5
6 [nulll Cortie Locksley M 6
7 [nulll Wood Kennham M 7
8 [nulll Rutger Humblestone M 8
9 [nulll Melantha Tibb F 9
10 Ms Barbara-anne Gowlett F 10
11 Mrs Urbano Middlehurst M 11

Figure 3.19: Customers listed using COUNT(*) ordered by the customer_id window query

You will notice something akin to a running count for the total customers. What's
going on? This is where the “window"” in window function comes from. When you
use a window function, the query creates a “window” over the table that it bases the
count on. PARTITION BY works like GROUP BY, dividing the dataset into multiple
groups. For each group, a window is created. When ORDER BY is not specified, the
window is assumed to be the entire group.

However, when ORDER BY is specified, the rows in the group are ordered according
to it, and for every row, a window is created over which a function is applied. Without
specifying a window, the default behavior is to create a window to encompass every
row from the first row based on ORDER BY to the current row being evaluated by a
function, as shown in the following screenshot. It is over this window that the function
is applied.

152 | Aggregate and Window Functions

As shown in the following screenshot, the window for the first row contains one row
and returns a count of 1, the window for the second row contains two rows and
returns a count of 2, and the window for the third row contains three rows and thus
returns a count of 3 in the total customers column:

customer_id title first_name last_name gender total_customers

bigint text text text text bigint
1 [nulll Arlena Riveles F 1} Window for row 1
2 Dr Ode Stovin M 2 d[W!ndow for row 2
3 [null Braden Jordan M 3 Window for row 3

—

Figure 3.20: Windows for customers using COUNT(*) ordered
by the customer_id window query

What happens when you combine PARTITION BY and ORDER BY? Let's ook at the
following query:

SELECT customer id, title, first name, last name, gender,
COUNT (*) OVER (PARTITION BY gender ORDER BY customer id)
as total customers

FROM customers

ORDER BY customer id;

When you run the preceding query, you get the following result:

customer_id title first_name last_name gender total_customers

bigint text text text text bigint
1 [nulll Arlena Riveles F 1
2 Dr Ode Stovin M 1
3 [nulll Braden Jordan M 2
4 [nulll Jessika Nussen F 2
5 [nulll Lonnie Rembaud F 3
6 [nulll Cortie Locksley M 3
7 [nulll Wood Kennham M 4
8 [nulll Rutger Humblestone M 5
9 [nulll Melantha Tibb F 4
10 Ms Barbara-anne Gowlett F 5
11 Mrs Urbano Middlehurst M 6

Figure 3.21: Customers listed using COUNT(*) partitioned by gender ordered by the
customer_id window query

Window Functions | 153

Like the previous query we ran, it appears to be some sort of rank. However, it seems
to differ based on gender. What is this query doing? As we mentioned when running
the previous query, first, the query divides the table into two subsets based on
PARTITION BY. Each partition is then used as a basis for doing a count, with each
partition having its own set of windows.

This process is illustrated in the following screenshot. This process produces the
count we can see. The three keywords, OVER (), PARTITION BY, and ORDER BY,
are the foundation of the power of window functions:

customer_id title first_name last_name gender
bigint text text text text
1 [oull] Arena Riveles F
2 Dr Ode Stovin M
3 Braden Jordan M
4 Jessika Nussen F
5 Ir Lonnie Rembaud F
6 Ir Cortie Locksley M
> .
reve_jel ttie hret_nsme lnst_nars e gender iotaleustomes 0 pustemer i e Bewt_name inst_nsma gendes fotal_customer
Ode Stowin] 1 l— Window forrow 1 1 Ariena Riveles F 1
Braden Jerdan M 2 | Window for row 2 1_ 4 Jessica Hussen ¥ 2
L] Cortie Locksley L 3 L_ Window for row 3 —_ s Lorwie Rerbaud F 3

Figure 3.22: Windows for customers listed using COUNT(*) partitioned by gender and
ordered by the customer_id window query

Now that we understand window functions, we will apply them in the next exercise.

154 | Aggregate and Window Functions

EXERCISE 3.04: ANALYZING CUSTOMER DATA FILL RATES OVER TIME

In this exercise, we will apply window functions to a dataset and analyze the data.
For the last 6 months, ZoomZoom has been experimenting with various features
in order to encourage people to fill out all fields on the customer form, especially
their address. To analyze this data, the company would like a running total of how
many users have filled in their street address over time. Write a query to produce
these results.

NOTE

For all the exercises in this chapter, we will be using pgAdmin 4.

Perform the following steps to complete this exercise:
1. Open your favorite SQL client and connect to the sqlda database.

2. Use window functions and write a query that will return customer information
and how many people have filled out their street address. Also, order the list by
date. The query will look as follows:

SELECT

customer id, street address, date added::DATE,

COUNT (CASE WHEN street address IS NOT NULL

THEN customer id

ELSE NULL END)

OVER (ORDER BY date added::DATE) as total customers filled street
FROM

customers
ORDER BY

date added;

Window Functions | 155

You should get the following result:

customer_id street_address date_added total_customers_filled_street
bigint text date bigint

2625 0353 lowa Road 2010-03-15 10
17099 130 Marcy Crossing 2010-03-15 10
18685 86 Michigan Junction 2010-03-15 10
35683 1 Cordelia Crossing 2010-03-15 10

6173 79865 Hagan Terrace 2010-03-15 10
12484 [null] 2010-03-15 10
13390 38463 Forest Dale Way 2010-03-15 10

7486 61 Village Crossing 2010-03-15 10
30046 13961 Steensland Trail 2010-03-15 10
30555 294 Quincy Hill 2010-03-15 10
48307 8487 Warbler Plaza 2010-03-15 10
48229 943 Cody Trail 2010-03-16 22
42776 6010 Carey Drive 2010-03-16 22
46277 5799 Thackeray Crossing 2010-03-16 22
34189 0 Park Meadow Street 2010-03-16 22

8571 39223 Lunder Street 2010-03-16 22
17626 086 East Hill 2010-03-16 22
17832 62 Delladonna Road 2010-03-16 22

Figure 3.23: Street address filter ordered by the date_added window query

Now, we have every customer ordered by signup date and can see how the
number of people filling out the street field changes over time.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/30xeLBm.

In this exercise, we have learned how to use window functions to analyze data. In the
next section, we will learn how to use the WINDOW keyword in our queries.

156 | Aggregate and Window Functions

THE WINDOW KEYWORD

Now that we understand the basics of window functions, we will introduce some
syntax that will make it easier to write them. For some queries, you may be interested
in calculating the exact same window for different functions. For example, you may
be interested in calculating a running total number of customers and the number of
customers with a title in each gender with the following query:

SELECT customer id, title, first name, last name, gender,

COUNT (*) OVER (PARTITION BY gender ORDER BY customer_id) as total
customers,
SUM (CASE WHEN title IS NOT NULL THEN 1 ELSE O END)

OVER (PARTITION BY gender ORDER BY customer id) as total customers
title
FROM customers

ORDER BY customer id;

The following is the output of the preceding code:

customer_id title first_name last_name gender total_customers total_customers_title

bigint text text text text bigint bigint
1 [null] Arlena Riveles F 1 0
2 Dr Ode Stovin M 1 1
3 [null] Braden Jordan M 2 1
4 [null] Jessika Nussen F 2 0
5 [nulll Lonnie Rembaud F 3 0
6 [null] Cortie Locksley M 3 1
7 [null] Wood Kennham M 4 1
8 [null] Rutger Humblestone M 5 1
9 [nulll Melantha Tibb F 4 0
10 Ms Barbara-anne Gowlett F 5 1
11 Mrs Urbano Middlehurst M 6 2
12 Mr Tyne Duggan F 6 2
13 | [null] Gannon Braker M 7 2
14 [nulll Derry Lyburn M 8 2
15 [nulll] | Nichols Espinay M] 2

Figure 3.24: Running total of customers overall with the title by gender window query

Although the query gives you the result, it can be tedious to write—especially the
WINDOW clause. Fortunately, we can simplify this with another WINDOW clause. The
WINDOW clause facilitates the aliasing of a window.

Statistics with Window Functions | 157

We can simplify the preceding query by writing it as follows:

SELECT
customer id, title,
first name, last name, gender,
COUNT (*) OVER w as total customers,
SUM (CASE WHEN title IS NOT NULL THEN 1 ELSE O END)
OVER w as total customers title
FROM
customers
WINDOW w AS (PARTITION BY gender ORDER BY customer_id)
ORDER BY customer id;

This query should give you the same result we can see in the preceding screenshot.
However, we did not have to write a long PARTITION BY and ORDER BY query for
each window function. Instead, we simply made an alias with the defined WINDOW w.

STATISTICS WITH WINDOW FUNCTIONS

Now that we understand how window functions work, we can start using them to
calculate useful statistics, such as ranks, percentiles, and rolling statistics.

In the following table, we have summarized a variety of statistical functions that are
useful. Itis also important to emphasize again that all aggregate functions can also be
used as window functions (AVG, SUM, COUNT, and so on):

Function | Explanation
ROW_NUMBER () | Gives the current row number within a partition.
RANK () Gives a ranking within the partition based on ORDER BY, creating gaps

when there are ties (for example, if row 1 and row 2 are both tied for 1,
then row 3 will get the ranking 3).

DENSE_RANK () Gives a ranking within the partition based on ORDER BY, creating no gaps
when there are ties (for example, if row 1 and row 2 are both tied for 1,
then row 3 will get the ranking 2).

NTILE (num_buckets) Assigns an n-tile within a partition based on ORDER BY, where nis

| determined by the num_buckets integer.

LAG(columnl, offset) [Returns the value of column 1, thatis, aninteger offset by rows before
the current row based on ORDER BY.

LEAD (columnl, offset) |Returns the value of column 1, thatis, an integer offset by rows after the
current row based on ORDER BY.

Figure 3.25: Statistical window functions

158 | Aggregate and Window Functions

Normally, a call to any of these functions inside a SQL statement would be followed
by the OVER keyword. This keyword will then have brackets with PARTITION BY
and ORDER BY statements, either of which may be optional, depending on which
function you are using.

For example, the ROW_NUMBER () function will look like this:

ROW NUMBER () OVER (
PARTITION BY column 1, column 2
ORDER BY column_3,column 4

)

We will show you how to use these statistical functions in the next exercise.

EXERCISE 3.05: RANK ORDER OF HIRING

In this exercise, we will show you how to use statistical window functions to

understand a dataset. ZoomZoom would like to promote salespeople at their regional

dealerships to management and would like to consider tenure in their decision. They
want you to write a query that will rank the order of users according to their hire date
for each dealership. Perform the following steps to complete this exercise:

1. Open your favorite SQL client and connect to the sqlda database.

2. Calculate a rank for every salesperson, with a rank of 1 going to the first hire, 2
to the second hire, and so on, using the RANK () function:

SELECT *,
RANK () OVER (
PARTITION BY dealership id ORDER BY hire date
)
FROM
salespeople
WHERE
termination date IS NULL;

Statistics with Window Functions | 159

The following is the output of the preceding code:

salesperson_id dealership_id title first_name last_name suffix username gender hire_date termination_date rank
bigint bigint text text text text text text timestamp without time zone timestamp without time zone bigint

65 Dukle Oxteby doxtebyls Male 201501-24 00:00:00 1

74 Marces Spong mspong21 Male 20150318 00.00:00 2

60 Eveleen Mace emaceln Female 2015-07-15 00:00:00 3

ar Quent Wogden qwogdenZe Male 20150817 00:00:00 4

98 Englebert Lotaine eloraine2p Male 2016-01-23 00.00:00 5

N Lelia Sheriff Isheriffu Female 2016-06-18 00:00:00 &

168 Shetf MeCoughan [rull] smccougha.. Male 2016-07-22 00:00:00 4

49 Nadia Rennick [nul) nrennicklc Female 2016-07-24 00:00:00 8

10 Jereme Onele [rull] joneled Male 2016-08-15 00:00:00 9

7 Granville Fidell [rvalt] gfidelis Male 2017-06-17 00:00:00 o

155 Ira Meere [ralt] imeereda Male 2017-09-11 00:00:00 1

297 Shay Nafziger S snafzigerB8 Male 2017-12-02 00,00:00 12

182 Eleen Mcandie [rull] emcandie52 Female 2018-07-08 00:00:00 13

170 Giselbert Schule [null] gschuledp Male 2018-08-01 00:00:00 14

162 Cristine Gibbens [mul] cgibbensdh Female 20181007 00.00:00 15

258 Dorie Dosedale [oull] ddosedale7S Male 2018-10-15 00:00:00 [t 16

92 Sandye Duny i) sduny2j Female 2019-01-03 00.00:00 Tutl) 17

39 Massimiliano McSpirron [ull] mmespirron.. Male 2019-02-12 00.00:00 [ruush) 18

Figure 3.26: Salespeople rank-ordered by tenure

Here, you can see every salesperson with their information and rank in the rank
column based on their hire date for each dealership.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/2B50yyX.

In this exercise, we used the RANK () function to rank the data in a datasetin a
certain order. In the next section, we will learn how to use the window frame.

NOTE
DENSE_RANK () could also be used just as easily as RANK () .

160 | Aggregate and Window Functions

WINDOW FRAME

When we discussed the basics of window functions, it was mentioned that, by default,
a window is set for each row to encompass all the rows from the first to the current
row in the partition, as shown in Figure 3.20. However, this is the default and can be
adjusted using the window frame clause. A window function query using the window
frame clause would look as follows:

SELECT {columns},

{window_ func} OVER (PARTITION BY {partition key}
ORDER BY {order key} {rangeorrows}

BETWEEN {frame start} AND {frame end})

FROM {tablel};

Here, {columns} are the columns to retrieve from tables for the query, {window_
func} is the window function you want to use, {partition_key} is the column or
columns you want to partition on (more on this later), {order_key} is the column
or columns you want to order by, { rangeorrows} is either the RANGE keyword

or the ROWS keyword, { frame_start} is a keyword indicating where to start the
window frame, {frame_end} is a keyword indicating where to end the window
frame, and {tablel} is the table or joined tables you want to pull data from.

One point of difference to consider is the difference between using a RANGE or ROW
in a frame clause. ROW refers to actual rows and will take the rows before and after
the current row to calculate values. RANGE differs when two rows have the same
values based on the ORDER BY clause used in the window. If the current row that's
being used in the window calculation has the same value in the ORDER BY clause as
one or more rows, then all of these rows will be added to the window frame.

Another point is to consider the values that { frame_start} and {frame_end}
can take. To give further details, {frame_start} and {frame_end} can be one of
the following values:

* UNBOUNDED PRECEDING: A keyword that, when used for { frame_start},
refers to the first record of the partition, and when used for {frame_end},
refers to the last record of the partition.

+ {offset} PRECEDING: A keyword referring to {offset} (an integer) rows or
ranges before the current row.

* CURRENT ROW: The current row.

+ {offset} FOLLOWING: A keyword referring to {offset} (an integer) rows or
ranges after the current row.

Statistics with Window Functions | 161

By adjusting the window, various useful statistics can be calculated. One such
useful statistic is the rolling average. The rolling average is simply the average for a
statistic in a given time window. Say you want to calculate the 7-day rolling average
of sales over time for ZoomZoom. This calculation can be accomplished with the

following query:

WITH
daily sales as (
SELECT sales transaction date::DATE,
SUM (sales amount) as total sales
FROM sales
GROUP BY 1
)
moving average calculation 7 AS (
SELECT
sales transaction date, total sales,
AVG (total sales)
OVER (ORDER BY
sales transaction date
ROWS BETWEEN 7 PRECEDING
and CURRENT ROW) AS sales moving average 7,
ROW NUMBER () OVER (ORDER BY sales_ transaction date) as row number
FROM
daily sales
ORDER BY 1)
SELECT
sales transaction date,
CASE WHEN row number>=7
THEN sales moving average 7
ELSE NULL END
AS sales moving average 7
FROM

moving average calculation 7;

162 | Aggregate and Window Functions

The following is the output of the preceding code:

sales_transaction_date sales_moving_average_7

date double precision

2010-03-10 [null]
2010-03-12 [null]
2010-03-15 [null]
2010-03-17 [null]
2010-03-18 [null]
2010-03-19 [null]
2010-03-21 394.275857142857
2010-03-23 394.990125
2010-03-24 399.99
2010-03-25 399.99
2010-03-29 449.98875
2010-04-01 544.986375
2010-04-02 594.985125
2010-04-03 594.985125
2010-04-04 589.98525
2010-04-05 589.98525
2010-04-06 639.984
2010-04-07 689.98275

Figure 3.27: The 7-day moving average of sales

The reason the first 7 rows are null is that the 7-day moving average is only defined if
there are 7 days' worth of information, and the window calculation will still calculate
values for the first 7 days using the first few days.

In the following exercise, we will show you how to use a rolling window to calculate
statistics with ordered data.

Statistics with Window Functions | 163

EXERCISE 3.06: TEAM LUNCH MOTIVATION

In this activity, we will use a window frame to find some important information in our
data. To help improve sales performance, the sales team has decided to buy lunch for
all salespeople at the company every time they beat the figure for the best daily total
earnings achieved over the last 30 days. Write a query that produces the total sales

in dollars for a given day and the target the salespeople have to beat for that day,
starting from January 1, 2019. Perform the following steps to complete this exercise:

1.
2.

Open your favorite SQL client and connect to the sqlda database.
Calculate the total sales for a given day and the target using the following query:

WITH daily sales as (
SELECT sales transaction date::DATE,
SUM (sales amount) as total sales
FROM sales
GROUP BY 1
) s

sales stats 30 AS (

SELECT
sales transaction date, total sales,
MAX (total sales)

OVER (ORDER BY sales transaction date ROWS BETWEEN 30 PRECEDING and
1 PRECEDING)
AS max_sales 30

FROM
daily sales
ORDER BY 1)

SELECT
sales transaction date, total sales,
max sales 30
FROM
sales stats 30
WHERE
sales transaction date>='2019-01-01";

164 | Aggregate and Window Functions

You should get the following results:

sales_transaction_date total_sales max_sales_30

date double precision double precision
2019-01-01 87694.844 316464.847
2019-01-02 76149.854 316464.847
2019-01-03 161269.809 316464.847
2019-01-04 193209.912 316464.847
2019-01-05 49469.77 316464.847
2019-01-06 96319.835 316464.847
2019-01-07 42239.837 316464.847
2019-01-08 101729.748 316464.847
2019-01-09 118634.902 316464.847
2019-01-10 100089.78 316464.847
2019-01-11 183209.871 283849.84

Figure 3.28: Best sales over the last 30 days

Notice the use of a window frame from 30 PRECEDINGto 1l PRECEDING to
remove the current row from the calculation.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/3cWKbDC.

As you can see, window frames make calculating moving statistics simple, and even
kind of fun.

Now, we will conclude this chapter with an activity that will test your ability to use
window functions.

Statistics with Window Functions | 165

ACTIVITY 3.02: ANALYZING SALES USING WINDOW FRAMES AND WINDOW FUNCTIONS

In this activity, we will use window functions and window frames in various ways
to gain insight into sales data. It's the holidays, and it's time to give out Christmas
bonuses at ZoomZoom. The sales team wants to see how the company has
performed overall, as well as how individual dealerships have performed within
the company. To achieve this, ZoomZoom's head of Sales would like you to run an
analysis for them. Perform the following steps to complete this activity:

1. Open your favorite SQL client and connect to the sqlda database.

2. Calculate the total sales amount by day for all of the days in the year 2018 (that
is, before the date January 1, 2019).

3. Calculate the rolling 30-day average for the daily number of sales deals.

4. Calculate which decile each dealership would be in compared to other
dealerships based on their total sales amount.

Expected Output:

dealership_id total_sales_amount ntile

double precision double precision integer
13 538079.414 1
9 618263.995 1
8 671619.251 2
4 905158.609 2
17 907058.842 3
20 949849.053 3
12 1086033.376 4
15 1197118.234 4
6 1316253.465 5
14 1551108.481 5
3 1622872.801 6
16 1981062.341 6

Figure 3.29: Deciles for dealership sales amount

166 | Aggregate and Window Functions

NOTE

The solution for this activity can be found via this link.

SUMMARY

In this chapter, we learned about the incredible power of aggregate functions. We
learned about several of the most common aggregate functions and how to use
them. We used the GROUP BY clause and saw how it can be used to divide datasets
into groups and calculate summary statistics for each group. Then, we learned how to
use the HAVING clause to further filter a query. Finally, we used aggregate functions
to help us clean data and analyze data quality.

We also learned about window functions. We looked at how to construct a basic
window function using OVER, PARTITION BY, and ORDER BY. Then, we looked at
how to calculate statistics using window functions, as well as how to adjust a window
frame to calculate rolling statistics.

In the next chapter, we will look at how to import and export data in order to utilize
SQL with other programs. We will use the COPY command to upload data to our
database in bulk. We will also use Excel to process data from our database and then
simplify our code using SQLAlchemy.

IMPORTING AND EXPORTING DATA

OVERVIEW

In this chapter, we will look at ways in which we can move data between
our database and our analytics tools. The first tool that we will look at is the
command-line psql tool, which enables you to quickly query data from our
database. With psql, we can also leverage the COPY command, which
allows for the efficient importing and exporting of data. With these simple
tools, you will be able to interact with the database and efficiently move data
back and forth. By the end of this chapter, you will be able to import and
export data. We will process and analyze data using Excel, Python, and R.
Later in the chapter, we will explore SQLAIchemy's advanced functionality
for interacting with your database in Python.

170 | Importing and Exporting Data

INTRODUCTION

In order to extract insights from your database, you need data. And, while many
companies store and update data within a central database, there are scenarios in
which you will need more data than is currently in your database. In this chapter, we
are going to explore how we can efficiently upload data to our centralized database
for further analysis.

Not only will we want to upload data to our database for further analysis, but if we
are doing advanced analytics, there will also be situations wherein we will need to
download data from our database (for example, if we want to perform a statistical
analysis that is unavailable in SQL). For this reason, we will also explore the process
of extracting data from our database. This will allow you to use other software to
analyze your data.

In this chapter, we will look at how you can integrate your workflows with two
specific programming languages that are frequently used for analytics: Python and

R. These languages are powerful because they are easy to use, allow for advanced
functionality, are open source and have large communities supporting them due

to their popularity. We will examine how large datasets can be passed between our
programming languages and our databases efficiently so that we can have workflows
that take advantage of the analytics software tools that are available to us.

We will start by looking at the bulk uploading and downloading functionality in

the Postgres COPY command as well as the command-line client, psql, and then
move on to importing and exporting data using Python and R. Let's first explore the
workings of the COPY command.

THE COPY COMMAND

At this point, you are probably familiar with the SELECT statement (covered in
Chapter 1, Introduction to SQL for Analytics), which allows us to retrieve data from

our database. While this command is useful for small datasets that can be scanned
quickly, we will often want to save a large dataset to a file. By saving these datasets
to files, we can further process or analyze the data locally using Excel, Python, or R.
In order to retrieve these large datasets, we can use the Postgres COPY command,
which efficiently transfers data from a database to a file, or from a file to a database.

The COPY statement retrieves data from your database and dumps it into the file
format that you choose. For example, consider the following statement:

COPY (SELECT * FROM customers LIMIT 5) TO STDOUT WITH CSV HEADER;

The COPY Command | 171

The following is the output of the code:

customer_id, title,first_nome,last_name,suffix,email,gender,ip_address,phone,street_address,city,state,postal_code, latitude,longitude, date_added
1,,Arlena,Riveles, ,ariveles@@stumbleupon,.com,F,98.36.172.246, ,,,,,,,2017-04-23 00:00:00

2,0r,0de,Stovin, ,ostovinlénpr.org,M,16.97.59,186,314-534-4361, 2573 Fordem Parkway,Scint Louis,M0,63116,38.5814,-99.2625,2014-10-02 00:00:00

3, ,Braden, Jordan, ,bjordan2@geocities.com,M,192.86.248.59, ,5651 Kennedy Park,Pensacola,FL,32599,30.6143,-87.2758,2018-10-27 00:00:00

4, ,Jessika,Nussen, , jnussen3€salon.com, F,159.165.138.166, 615-824-2506, 224 Village Circle,Nashville,TN,37215,36.8986,-86.8219,2817-09-83 00:00:20
5, ,Lonnie,Rembaud, , 1 rembaud4@discovery.com,F,18.131.58.65,786-499-3431,38 Lindbergh Way,Miami,FL,33124,25.5584,-80.4582,2014-83-06 00:00:00

Figure 4.1: Using COPY to print the results to STDOUT in a CSV file format

This statement returns five rows from the customers table, with each record on a
new line, and each value separated by a comma, in a typical . esv file format. The
header is also included at the top.

+ Because the target of the COPY command is specified as STDOUT, the results
will only be copied into the command-line interface and not into a file.

Here is a breakdown of this command and the parameters that were passed in:

+ COPY is simply the command used to transfer data to a file format.

(SELECT * FROM customers LIMIT 5) isthe query that we want
to copy.

+ TO STDOUT indicates that the results should be printed rather than saved to a
file on the hard drive. "Standard Out" is the common term for displaying output
in a command-line Terminal environment.

* WITH is an optional keyword used to separate the parameters that we will use in
the database-to-file transfer.

+ CSvV indicates that we will use the CSV file format. We could have also specified
BINARY or left this out altogether and received the output in text format.

+ HEADER indicates that we want the header printed as well.

NOTE

You can learn more about the parameters available for the COPY command
in the Postgres documentation: https://www.postgresqgl.org/docs/current/sql-

copy.html.

https://www.postgresql.org/docs/current/sql-copy.html
https://www.postgresql.org/docs/current/sql-copy.html

172 | Importing and Exporting Data

While the STDOUT option is useful, often, we will want to save data to a file. The
COPY command offers the functionality to do this, but data is saved locally on the
PostgreSQL server. You must specify the full file path (relative file paths are not
permitted). If you have your Postgres database running on your computer, you can
test this out using the following command:

COPY (SELECT * FROM customers LIMIT 5) TO '/path/to/my file.csv' WITH CSV
HEADER;

In the next section, we will learn how to copy data with psql.

NOTE

The value in single quotes that follows the TO keyword is an absolute path
to the output file. The format of the path will be different depending on which
operating system you are using. On Linux and Mac, the directory separator
would be a forward-slash (/) character, and the root of the main drive would
be /. On Windows, however, the directory separator would be back-slash (\)
character and the path will start with the drive letter.

COPYING DATA WITH PSQL

While you have probably been using a frontend client to access your Postgres
database, you might not be aware that one of the first Postgres clients was actually

a command-line program called psql. This interface is still in use today, and psql
enables users to run PostgreSQL scripts that can interact with the local computing
environment. It allows for the COPY command to be called remotely using the psql-
specific \copy instruction, which invokes the COPY command.

To launch psql, you can run the following command in the terminal:
psgl -h my host -p 5432 -d my database -U my username

In this command, we pass in flags that provide the information needed to make the
database connection. In this case:

« -his the flag for the hostname. The string that comes after it (separated by a
space) should be the hostname for your database, which can be an IP address, a
domain name, or 'localhost' if it is run on the local machine.

+ -pisthe flag for the database port. Usually, this is 5432 for
Postgres databases.

The COPY Command | 173

+ -—dis the flag for the database name. The string that comes after it should be the
database name.

+ -Uis the flag for the username. It is succeeded by the username.

Once you have connected to your database using psql, you can test out the \copy
instruction by using the following command:

\copy (SELECT * FROM customers LIMIT 5) TO 'my file.csv' WITH CSV HEADER;
The following is the output of the code:

COPY 5
Time: 22.208 ms

Here is a breakdown of this command and the parameters that were passed in:

* \copy invokes the Postgres COPY ... TO STDOUT... command to output
the data.

* (SELECT * FROM customers LIMIT 5) isthe query that we want
to copy.

* TO 'my file.csv' indicates that psql should save the output from
standard output intomy file.csv.

+ The WITH CSV HEADER parameters operate the same as before.

We can also look atmy_file.csv, which you can open with any text editor of
your choice:

customer_id, title, first_name,last_name,suffix,email,gender,ip_oddress,phone,street_oddress,city,state,postal_code, lotitude, longitude,date_added
1,,Arlena,Riveles, ,ariveles@@stumbleupon. com,F,98.36.172.246, ,,,,,,,2017-04-23 00:00:00

2,Dr,0de,Stovin, ,ostovini@npr.org,M,16.97.59.186,314-534-4361,2573 Fordem Parkway,Saint Louis,M0,63116,38.5814,-90.2625,2014-10-02 00:00:00

3, ,Braden, Jordan, ,bjordanZ@geocities.com,M,192.86.248.59, ,5651 Kennedy Park,Pensacola,FL,32590,30.6143,-87.2758,2018-10-27 00:00:00

4, ,Jessika,Nussen, , jnussen3@salon.com,F,159.165.138.166,615-824-2506,224 Villaoge Circle,Nashville,TN,37215,36.0986,-86.8219,2017-03-03 00:00:00
L Lonnie‘Fulenbuud, , Lrembaud4@discovery. com,F,18.131,58,65,786-499-3431,38 Lindbergh Way,Miomi,FL,33124,25.5584, -80.4582,2014-03-06 00:00:00
[sqlda] #

Figure 4.2: The CSV file that we created using our \copy command

It is worth noting here that the \copy command does not allow the query to contain
newlines. A simple way to leverage multiline queries is to create a view containing
your data before the \copy command and drop the view after your \copy
command has finished.

174 | Importing and Exporting Data

We can create a VIEW command called customers_sample using the
following syntax:

CREATE TEMP VIEW customers sample AS (
SELECT *
FROM customers
LIMIT 12

)i

In this example, the output from this query is stored in a temporary view, which can
be queried in a similar way to the syntax used to query a table. For example, take a
look at the following:

SELECT COUNT (1) FROM customers sample;
This would output 12.

Aview is similar to a table, except that the data is not created. Instead, every
time the view is referenced, the underlying query is executed. The TEMP keyword
indicates that the view can be removed automatically at the end of the session.

We can also manually delete the VIEW using a simple command:
DROP VIEW customers sample;
For example, consider these commands:

CREATE TEMP VIEW customers_sample AS (
SELECT *
FROM customers
LIMIT 5
)7
\copy customers sample TO 'my file.csv' WITH CSV HEADER
DROP VIEW customers sample;

The output of this would be identical to the output in the first export example that we
mentioned earlier. While you can perform this action either way, for readability, we
will use the latter format in this book for longer queries.

The COPY Command | 175

CONFIGURING COPY AND \COPY

There are several options that you can use to configure the COPY and
\copy commands:

FORMAT format name can be used to specify the format. The options for
format name are csv, text, or binary. Alternatively, you can simply specify
CSV or BINARY without the FORMAT keyword, or not specify the format at all
and let the output default to a text file format.

DELIMITER 'delimiter character' can be used to specify the delimiter
character for CSV or text files (for example ', ' for CSV files, or ' | ' for pipe-
separated files).

NULL 'null string' can be used to specify how NULL values should be
represented (for example, ' ' if blanks represent NULL values, or 'NULL"' if
that's how missing values should be represented in the data).

HEADER specifies that the header should be output.

QUOTE 'quote character' can be used to specify how fields with special
characters (for example, a comma in a text value within a CSV file) can be
wrapped in quotes so that they are ignored by COPY.

ESCAPE 'escape_character' specifies the character that can be used to
escape the following character.

ENCODING 'encoding name' allows the specification of the encoding, which
is particularly useful when you are dealing with foreign languages that contain
special characters or user input.

For example, the following would create a pipe-separated file, with a header, with
empty (0 lengths) strings to represent a missing (NULL) value, and the double quote
(") character to represent the quote character:

\copy customers TO 'my file.csv' WITH CSV HEADER DELIMITER '|' NULL ''
QUOTE Ty

The following is the output of the code:

COPY 50000

In the next section, we will use the COPY and \copy commands to upload large data
to our database.

176 | Importing and Exporting Data

USING COPY AND \COPY T0 BULK UPLOAD DATA TO YOUR DATABASE

As we have seen, the COPY and \copy commands can be used to efficiently
download data, but they can also be used to upload data.

The COPY and \copy commands are far more efficient at uploading data than an
INSERT statement. There are a few reasons for this:

+ When using COPY, there is only one commit, which occurs after all the rows have
been inserted.

* There is less communication between the database and the client, so there is
less network latency.

+ Postgres includes optimizations for COPY that would not be available
through INSERT.

Here's an example of using the \copy command to copy rows into the table
from a file:

\copy customers FROM 'my file.csv' CSV HEADER DELIMITER '|'
This outputs the following:
COPY 50000
Here is a breakdown of this command and the parameters that were passed in:

* \copy is invoking the Postgres COPY ... FROM STDOUT... command to
load the data into the database.

+ customers is the name of the table that we want to append to.

* FROM 'my file.csv' specifies that we are uploading records frommy__
file.csv. The FROM keyword specifies that we are uploading records, as
opposed to the TO keyword, which we use to download records.

+ The WITH CSV HEADER parameters operate the same as before.

The COPY Command | 177

+ DELIMITER ', ' specifies what the delimiter is in the file. For a CSV file, this
is assumed to be a comma, so we do not need this parameter. However, for
readability, it might be useful to explicitly define this parameter, if for no other
reason than to remind yourself how the file has been formatted.

NOTE

While COPY and \ copy are great for exporting data to other tools, there

is additional functionality in Postgres for exporting a database backup.

For these maintenance tasks, you can use pg_dump for a specific table
and pg_dumpall for an entire database or schema. These commands
even let you save data in a compressed (tar) format, which saves space.
Unfortunately, the output format from these commands is typically SQL, and
it cannot be readily consumed outside of Postgres. Therefore, it does not
help us with importing or exporting data to and from other analytics tools,
such as Python and R.

Since we have now learned how to import and export data, we will implement an
exercise to export data to a file and process it in Excel.

NOTE

For the exercises and activities in this chapter, you will need to be able to
access your database with psql. Here is the GitHub link to access the files
of this chapter: https://packt.live/2B5PGTd.

https://packt.live/2B5PGTd

178 | Importing and Exporting Data

EXERCISE 4.01: EXPORTING DATA TO A FILE FOR FURTHER PROCESSING IN EXCEL

In this exercise, the goal is to apply our new knowledge of exporting data with the
psql command and \copy in order to perform data visualization on our computer.
We will save a file containing the cities with the highest number of ZoomZoom
customers. This analysis will help the ZoomZoom executive committee to decide
where they might want to open the next dealership.

1.

Open a command-line tool to implement this exercise (such as CMD for
Windows or Terminal for Mac), and connect to your database using the
psgl command.

Create the top_cities view. Copy the customers table from your
zoomzoom database to a local file in . esv format. You can do this by creating a
temporary view using the following command. Please note that OS-specific path
needs to be prepended before the 'top_cities.csv' file name to choose
the location to save the file to.

CREATE TEMP VIEW top cities AS (
SELECT city,
count (1) AS number of customers
FROM customers
WHERE city IS NOT NULL
GROUP BY 1
ORDER BY 2 DESC
LIMIT 10
)i

\copy (SELECT * FROM top cities) TO 'top cities.csv' WITH CSV HEADER
DELIMITER ','

Create the top_cities view. Copy the customers table from your zoomzoom
database to a local file in the.csv format:

\copy top cities TO 'top cities.csv' WITH CSV HEADER DELIMITER ','
Drop the view:

DROP VIEW top cities;

Here's a breakdown for these statements:

CREATE TEMP VIEW top cities AS (..) indicates that we are creatinga
new temporary view.

The COPY Command | 179

SELECT city, count(l) AS number of customers ..isaquerythat
gives us the number of customers for each city. Because we add the LIMIT 10
statement, we only grab the top 10 cities, as ordered by the second column (the
number of customers). We also filter out the customers without a city filled in.

\copy .. copies data from this view to the top_cities.csv file on our
local computer.

DROP VIEW top_ cities; deletes the view because we no longer need it.

If you open the top_cities.csv text file, you should see the following output:

00 B top_cities.csv v

city,number_of_customers
Washington, 1447
Houston, 904

New York City,731
El Paso,713
Dallas,607
Atlanta,571
Sacramento,506
Los Angeles, 466
San Antonio, 426
Miami, 426

Figure 4.3: Output from the \copy command

NOTE

Here, the output file is top_cities.csv. We will be using this file in the
upcoming exercises in this chapter.

Now that we have the output from our database in a CSV file format, we can
open it with a spreadsheet program, such as Excel.

180 | Importing and Exporting Data

5. Using Microsoft Excel or your favorite spreadsheet software or text editor, open
the top_cities.csvfile:

e M4 S -
Home Insert Page Layout Formula
=) Cut —
N - 3 cu Calibri (Body) + 12~
L1 Copy ~
Paste . v
<’ Format B r|v —
K22 = S
A B C D
1 city number_of_customers
2 Washington 1447
3 Houston 504
4 New York Cit 731
5 ElPaso 713
6 Dallas 607
7 Atlanta 571
8 Sacramento 506
9 Los Angeles 466
10 San Antonio 426
11 Miami 426
12

Figure 4.4: The top_cities.csv file open in Excel

6. Next, select all of the data; in this case, from cell A1 to cell B11:

A B C

1 feity number_of_ustomers
2 |Washington 1447

3 |Houston 904

4 |New York Cit 731

5 |El Paso 713

6 |Dallas 607

7 |Atlanta 571

8 |Sacramento 506

9 |Los Angeles 466

10 |San Antonio 426

11 |Miami 425.

12

Figure 4.5: Select the entire dataset by clicking and dragging from cell A1 to cell B11

The COPY Command | 181

7. Next, in the top menu, go to Insert and then click on the bar charticon (11-) to
create a 2-D Column chart:

1st step % top citie
ome Insert Page Layo 0 a Data Revie o 2nd step
[rem—— =gy - —* LaeT v
" === v e I Store Bing Maps AR 02
I iz b es) B 0 = | 2
. : 2-DAColumn
PivotTable Recommended Table Pictures Shapes =M a My Add-ins ~ E People Graph Recommended
PivotTables Charts
Al . fe city 3rd step
A B c D E F G H I] LI u
1 |city |number_of_ustomers Clustel olu
2 |Washington 1447
3 |Houston | 504
¢ [Newvorket 731 SREN
S |[ElPaso | 713

Figure 4.6: Insert a bar chart to visualize the selected data

8. Finally, you should end up with the following output:

Home

M E wo-

Page Layout

iR top_cities

Review View

Insert Formulas Data Chart Design

O = @ - — J— - ——
15 s~ e 0 " | £
Add Chart Quick Change g JITTVITY Switch
Element Layout Colors Row/Column
Chart2 o Jx
A B C D E F G H |
1 city ‘I_'number_oi_-'.ustomers
2 Washington | 1447
3 Houston 504
4 New York Cit 731 :
5 El Paso 713]
6 Dallas 607 number_of_customers
7 Atlanta 571 1600
8 Sacramento 506 1400
9 Los Angeles 466 1200
10 San Antonio 426 e
11 Miami 426 gy 8@ .
12 11 600
13 400
. = 111
15 & 4 A & # a? oF & oF &
16 _\._;:-' “_}\-:‘ J ‘___-:.- 7 -.“\'"{ ..\"'-S '.‘3\;\ +:\--.- &
17 F & &
18 - =]
19

Figure 4.7: The final output from our visualization

182 | Importing and Exporting Data

We can see from this chart that Washington D.C. has a very high number of
customers. Based on this simple analysis, Washington D.C. would probably be
the obvious next target for ZoomZoom expansion.

NOTE

To access the source code for this specific section, please refer
to https://packt.live/2AsBNP9.

In this exercise, we leveraged our data in an analytical tool. We did this by exporting
the data using psql and the \copy command in order to perform data visualization
in Excel. This analysis could be useful for helping an executive to make a data-driven
decision regarding where they should open up their next retail location. Next, we will
look at how we can use advanced programmatic analytical tools to leverage our data.

USING R WITH OUR DATABASE

At this point, you can now copy data to and from a database. This gives you the
freedom to expand beyond SQL to other data analytics tools (such as Excel) and
incorporate any program that can read a CSV file as input into your pipeline. While
almost any analytics tool can read a CSV file, you will still need to download the data.
Adding more steps to your analytics pipeline can make your workflow more complex.
Complexity can be undesirable because it necessitates additional maintenance and
because it increases the number of failure points.

Another approach is to connect to your database directly in your analytics code. In
this part of the chapter, we are going to look at how to do this in R—a programming
language designed specifically for statistical computing. Later in the chapter, we will
look at integrating our data pipelines with Python as well.

WHY USE R?

While we have managed to perform aggregate-level descriptive statistics on our data
using pure SQL, R allows us to perform other statistical analyses, including machine
learning, regression analysis, and significance testing. R also allows us to create data
visualizations that make trends clear and easier to interpret. R has arguably more
statistical functionality than just about any other analytics software available.

https://packt.live/2AsBNP9

Using R with Our Database | 183

GETTING STARTED WITH R

Because R is an open-source language with support for Windows, macQS, and Linux,
it is very easy to get started. Here are the steps to quickly set up your R environment:

1. Download the latest version of R from https://cran.r-project.org/.

2. Once you have installed R, you can download and install RStudio,
an Integrated Development Environment (IDE) for R programming,
from http://rstudio.org/download/desktop.

3. Next, we are going to install the RPostgreSQL package in R. We can do this in
RStudio by navigating to the Packages tab and clicking on the Install icon:

ion details.

English locale

butors.
d

n publications. Files Plots Packages Help Viewer _— |

-line help, or Update

to help. ame Description Version

System Library

boot Bootstrap Functions (Originally by 1.3-20
Angelo Canty for 5)
class Functions for Classification 7.3-15

Figure 4.8: Installing R packages in RStudio in the Packages pane

4. Next, we will search for the RPostgreSQL package in the Install
Packages window and install the package:

Install Packages

Install from: ? Configuring Repositories
Repository (CRAN) ﬂ

Packages (separate multiple with space or comma):
RPostgreSQL

Install to Library:
JUsers/ ﬂ

Figure 4.9: The Install Packages prompt in RStudio allows us to search for a package

v!Install dependencies

https://cran.r-project.org/
http://rstudio.org/download/desktop

184 | Importing and Exporting Data

5. Next, we can use the RPostgreSQL package to load some data into R. You can
use the following commands:

library (RPostgreSQL)

con <- dbConnect (PostgreSQL (), host="my host", user="my username",
password="my password", dbname="zoomzoom", port=5432)
result <- dbGetQuery(con, "select * from customers limit 10;")

result

The following is the output:

® L RStudio
e - O - . . = Addins -
Console Terminal = Environment History Connections
"ol # Import Dataset = &
Iype "qL)" %o quit K. "} Global Environment =
> library(RPostgreSQL) Data
Loading reguired packege: DBI con Formal
> con <= dbConnect(PostgreSQL(), host="ilil N Sl = i - result 16 obs.
y USer=" sk, dbnome="=mi=", port=5432)
> result <- dbGetQuery(con, "select * from customers limit 10;")
> result
id title first_nome last_name suffix email gender
1 1 «<NA> Worthington Hanssmann <NA> whanssmannd@bbc.co.uk Male
2 2 <Nh Ariela Gallear <NA> ogallearl@goodreads.com Femole
3 3 Ms Garrott Belleny <NA> gbellenyZ@sciencedirect.com Male
4 4 <NA- Melodie Heinel — <NA> mheinel38de.vu Female
5 5 <NA> Bessie Hallsworth <NA» bhallsworth48i2i.jp Female
6 6 <HA> Marius Barkworth <MAs mbarkworthS8shop-pro.ip Male Files | Pots | Packages | Help
77 < Caleb Verbrugge <NA> cverbrugget@lycos.com Male Ol Install (@ Update
B B <NA- Cherry Easen <NA> ceasen7@reuters.com Female Narne Descriptian
9 9 <NAs Mindy Ordemann <NA> mordemannSBgmpg.org Female
10 10 <MA> Ilene Knaggs <MAs> iknaggs98gooale. com.au Female User Library
ip_address phone street_address state_abbrev < DBl R Database
1 193.39.147.224 714-508-1090 58 Ronald Regan Circle CA +| RPostgresQL R Interface
2 27.189.22.136 <Nl 73 Atwood Parkway IN

Figure 4.10: Output from our database connection in R
Here is a breakdown of these commands:
library (RPostgreSQL) is the syntax for loading a library in R.

con <- dbConnect (PostgreSQL(), host="my host", user="my
username ", password="my password", dbname="zoomzoom",
port=5432) establishes the connection to the database. All of the database
parameters are entered here, so you should replace the parameters as required
for your setup. If you have set up a . pgpass file, you can leave out the
password parameter.

result <- dbGetQuery(con, "select * from customers limit
10;") is where we run a simple query to test our connection and check the
result. The data is then stored in the result variable as an R DataFrame.

Using Python with Our Database | 185

In the last line, the result is simply the name of the variable that stores our
DataFrame, and the R Terminal will print the contents of a variable or expression
if there is no assignment.

At this point, we have successfully exported data from our database into R. This
will lay the foundation for just about any analysis that you might want to perform.
After you have loaded your data into R, you can continue processing the data by
researching other packages and techniques using other R packages. For example,
dplyr can be used for data manipulation and transformation, and the ggplot2
package can be used for data visualization.

Next, we will look at another programming language commonly used for data
analytics—Python.

USING PYTHON WITH OUR DATABASE

While R has a breadth of functionality, many data scientists and data analysts are
starting to use Python. Why? Because Python offers a similarly high-level language
that can be easily used to process data. While the number of statistical packages and
functionality in R can still have an edge over Python, Python is growing fast and has
generally overtaken R in most recent polls. A lot of Python's functionality is also
faster than R, in part because so much of it is written in C, a lower-level
programming language.

The other large advantage that Python has is that it is very versatile. While R is
generally only used in the research and statistical analysis communities, Python can
be used to do anything from statistical analysis to building a web application. As a
result, the developer community is much larger for Python. A larger development
community is a big advantage because there is better community support (for
example, on Stack Overflow), and there are more Python packages and modules
being developed every day. The last major benefit of Python is that, because it

is a general programming language, it can be easier to deploy Python code to a
production environment, and certain controls (such as Python namespaces) make
Python less susceptible to errors.

As a result of these advantages, it might be preferable to learn Python, unless the
functionality that you require is only available in R or if the rest of your team is
using R.

186 | Importing and Exporting Data

WHY USE PYTHON?

While SQL can perform aggregate-level descriptive statistics, Python (like R) allows

us to perform other statistical analyses and data visualizations. On top of these
advantages, Python can be used to create repeatable pipelines that can be deployed
to production, and it can also be used to create interactive analytics web servers.
Whereas R is a specialist programming language, Python is a generalist programming
language—that is, a jack of all trades. Whatever your analytics requirements, you can
almost always complete your task using the tools available in Python.

GETTING STARTED WITH PYTHON

While there are many ways to get access to Python, the Anaconda distribution of
Python makes it particularly easy to obtain and install Python and other analytical
tools, as it comes with many commonly used analytics packages preinstalled
alongside a great package manager. For that reason, we will be using the
Anaconda distribution.

You can use the following steps to get set up using the Anaconda distribution and to
connect to Postgres:

1. Download and install Anaconda: https://www.anaconda.com/distribution/. During
the installation, make sure that the ' Add Anaconda to PATH' option
is selected.

2. Once you have gone through the installation steps, open the Anaconda Prompt
for Mac/Windows. Type python into the command line and check that you can
access the Python interpreter, which should look like this:

terminal — python
[bash:~$ python
Python 3.6.3 |Anaconda custom (64-bit)| (default, Oct 6 2017, 12:04:38)
[GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/final)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

Figure 4.11: The Python interpreter is now available and ready for input

https://www.anaconda.com/distribution/

Using Python with Our Database | 187

NOTE

If you get an error, it may be because you need to specify your Python path.
You can enter quit () to exit.

Next, download and install the PostgreSQL database client for Python,
psycopg2, using the Anaconda package manager, conda. Enter the following
command in the command line to install the Postgres database client:

pip install psycopg?2

Open the Python interpreter and load in some data from the database. Type
python into the command line to open the Python interpreter.

Start writing the Python script in order to load the data:

import psycopg?2

with psycopg2.connect (host="my host", user="my username",
password="my password", dbname="zoomzoom", port=5432) as conn:
with conn.cursor () as cur:

cur.execute ("SELECT * FROM customers LIMIT 5")

records = cur.fetchall ()

records

188 | Importing and Exporting Data

The following screenshot displays both the code and the output:

on darwin

im por IE

with

with conn.cu
cur.

None, '"ariwve

Figure 4.12: The code and the output from our database connection in Python

These commands can be broken down as follows:

First, we import the psycopg2 package using the following command:

import psycopg2. Next, we set up our connection object using psycopg?2 .
connect (host="my host", user="my username", password="my
password", dbname="zoomzoom", port=5432).

Using Python with Our Database | 189

All of the database parameters are entered here, so you should replace the
parameters as required for your setup. If you have set up a . pgpass file, you
can leave out the password parameter. This is wrapped inwith .. as

conn in Python; the with statement automatically tears down the object (in this
case, the connection) when the indentation returns. This is particularly useful for
database connections, where an idle connection could inadvertently consume
database resources. We can store this connection object in a conn variable
using the as conn statement.

Now that we have a connection, we need to create a cursor object, which will
let us read from the database. conn. cursor () creates the database cursor
object, which allows us to execute SQL in the database connection, and the with
statement allows us to automatically tear down the cursor when we no longer
need it.

cur.execute ("SELECT * FROM customers LIMIT 5") sends the
"SELECT * FROM customers LIMIT 5" query to the database and
executes it.

records = cur.fetchall () fetches all of the remaining rows in a query
result and assigns those rows to the records variable.

Now that we have sent the query to the database and received the records,

we can reset the indentation level. We can view our result by entering the
expression (in this case, just the variable name, records) and hitting Enter. This
output is the five customer records that we have collected.

While we were able to connect to the database and read the data, there were several
steps required, and the syntax was a little bit more complex than that for some of the
other approaches we have tried. While psycopg2 can be powerful, it can be helpful
to use some of the other packages in Python to facilitate interfacing with

the database.

190 | Importing and Exporting Data

IMPROVING POSTGRES ACCESS IN PYTHON WITH SQLALCHEMY AND PANDAS

While psycopg2 is a powerful database client for accessing Postgres from Python,
we can simplify the code by using a few other packages—namely, pandas and
SQLAIchemy.

First, we will look at SQLAIchemy, a Python SQL toolkit and Object-Relational
Mapper (ORM) that maps representations of objects to database tables. In particular,
we will be looking at the SQLAIchemy database engine and some of the advantages
that it offers. This will enable us to access our database seamlessly without worrying
about connections and cursors.

Next, we will look at pandas—a Python package that can perform data manipulation
and facilitate data analysis. The pandas package allows us to represent our data
table structure (called a DataFrame) in memory. pandas also have high-level APIs
that will enable us to read data from our database in just a few lines of code:

Python

Jamal
1 Jamal Object-Relational Mapper e A
2 Nandita (ORM)

Customer
3 Binh Objects
4 Carlos
5 Larry Larry Binh
6 Rita

Carlos

Figure 4.13: An ORM maps rows in a database to objects in memory

While both of these packages are powerful, it is worth noting that they still use the
psycopg?2 package in order to connect to the database and execute queries. The big
advantage that these packages provide is that they abstract some of the complexities
of connecting to the database. By abstracting these complexities, we can connect

to the database without worrying that we might forget to close a connection or tear
down a cursor.

Using Python with Our Database | 191

WHAT IS SQLALCHEMY?

SQLAIchemy is a SQL toolkit and ORM. While it offers some great functionality, the key
benefit that we will focus on here is the SQLAlchemy Engine object.

A SQLAIchemy Engine object contains information about the type of database

(in our case, PostgreSQL) and a connection pool. The connection pool allows for
multiple connections to the database that operate simultaneously. The connection
pool is also beneficial because it does not create a connection until a query is sent
to be executed. Because these connections are not formed until the query is being
executed, the Engine object is said to exhibit lazy initialization. The term "lazy" is
used to indicate that nothing happens (the connection is not formed) until a request
is made. This is advantageous because it minimizes the time of the connection and
reduces the load on the database.

Another advantage of the SQLAIchemy Engine object is that it automatically
commits (auto commits) changes to the database due to CREATE TABLE, UPDATE,
INSERT, and other statements that modify our database.

In our case, we will want to use it because it provides a robust Engine object to
access databases. If the connection is dropped, SQLAIchemy Engine object can
instantiate that connection because it has a connection pool. It also provides a nice
interface that works well with other packages (such as pandas).

USING PYTHON WITH JUPYTER NOTEBOOK

In addition to interactively using Python on the command line, we can use Python in
notebook form in our web browser. This is useful for displaying visualizations and
running exploratory analyses.

In this section, we are going to use Jupyter notebooks that were installed as part of
the Anaconda installation. On the command line, run the following command:

Jjupyter notebook

192 | Importing and Exporting Data

You should see something like this pop up in your default browser:

| 5 vome <[+ v -
< > O W localhost:3888/tree P = 7
i JUpyter Logout
Files Running Clusters
Select items to perform actions on them. Upload Newwv &
O - @

O [Anaconda
Figure 4.14: The Jupyter Notebook pop-up screen in your browser

Next, we will create a new notebook:

Files Running Clusters
Select items to perform actions on them. Uploa@

+ Im 4
O anaconda3 reate a new notebook with Python
o Text File »
] Folder 10

Terminal

(] 1

Figure 4.15: Opening a new Python 3 Jupyter notebook
At the command prompt, enter the following import statements:

from sglalchemy import create engine

import pandas as pd

You'll notice that we are importing two packages here. The first is the create_
engine module within the sqlalchemy package, and the second is pandas,
which we rename to pd because this is the standard convention (and it has fewer
characters). Using these two packages, we will be able to read and write data to and
from our database and visualize the output.

3

Using Python with Our Database | 193

Hit Shift + Enter to run these commands. A new active cell should pop up:

In [1]: from sglalchemy import create engine
import pandas

In []:

Figure 4.16: Running our first cell in the Jupyter notebook

Next, we will configure our notebook to display plots and visualizations inline. We can
do this with the following command:

$matplotlib inline

This tells the matplotlib package (which is a dependency of pandas) to create
plots and visualizations inline in our notebook. Hit Shift + Enter again to jump to the
next cell.

In this cell, we will define our connection string:

cnxn_string = ("postgresgl+psycopg2://{username}: {pswd}"
"Q@{host}:{port}/{database}")

print (cnxn_ string)

Press Shift + Enter again, and you should now see our connection string printed. Next,
we need to fill in our parameters and create the database Engine object. You can
replace the strings starting with your__using the parameters specific to

your connection:

engine = create engine(cnxn string.format (
username="your username",
pswd="your password",
host="your host",
port=5432,

database="your database name"))

194 | Importing and Exporting Data

In this command, we run create_engine to create our database Engine
object. We pass in our connection string and we format it for our specific database
connection by filling in the placeholders for {username}, {pswd}, {host},
{port}, and {database}. The host is either an IP address, domain name, or the
word 'localhost!' if the database is hosted locally.

Because SQLAIchemy is lazy, we will not know whether our database connection
was successful until we try to send a command. We can test whether this database
Engine object works by running the following command and hitting Shift + Enter:

engine.execute ("SELECT * FROM customers LIMIT 2;").fetchall ()

We should see something like this:

[(1, None, 'Arlena', 'Riveles', None, 'arivelesO@stumbleupon.com', 'F', '98.36.172.246', None, None, None, None, None
, None, None, datetime.datetime(2017, 4, 23, 0, 0)),

(2, 'Dr', 'Ode', 'Stovin', None, 'ostovinlénpr.org', 'M', '16.97.59.186', '314-534-4361', '2573 Fordem Parkway', 'Sa
int Louis', 'MO', '63116', 38.5814, -90.2625, datetime.datetime(2014, 10, 2, 0, 0))]

Figure 4.17: Executing a query within Python

The output of this command is a Python list containing rows from our database in
tuples. While we have successfully read data from our database, we will probably find
it more practical to read our data into a pandas DataFrame in the next section.

READING AND WRITING TO OUR DATABASE WITH PANDAS

Python comes with great data structures, including lists, dictionaries, and tuples.
While these are useful, our data can often be represented in a table form, with
rows and columns, similar to how we would store data in our database. For these
purposes, the DataFrame object in pandas can be particularly useful.

In addition to providing powerful data structures, pandas also offer the following:
« Functionality to read data directly from a database
+ Data visualization
+ Data analysis tools

If we continue from where we left off with our Jupyter notebook, we can use the
SQLAlchemy Engine object to read data into a pandas DataFrame:

customers data = pd.read sgl table('customers', engine)

Using Python with Our Database | 195

We have now stored our entire customers table as a pandas DataFrame in the
customers_data variable. The pandas read _sql_table function requires
two parameters: the name of a table and the connectable database (in this case,
the SQLAIchemy Engine object). Alternatively, we can use the read_sql_query
function, which takes a query string instead of a table name.

Here's an example of what your notebook might look like at this point:

In [1):

In [2]:

In [3]):

In [4):

out(4]:

In [5]):

In []:

from sqlalchemy import create engine
import pandas as pd
% matplotlib inline

cnxn_string = ("postgresql+psycopg2://{username}:{pswd}"
"@{host}:{port}/{database}")
print(cnxn_string)

postgresql+psycopg2://{username}: {pswd}@{host}: {port}/{database}

engine = create_engine(cnxn_string.format(
username=" o
pswd=" ",
host="w: i« - - - ",
port=5432,
database=" "))

engine.execute("SELECT * FROM customers LIMIT 2;").fetchall

[(1, None, 'Arlena', 'Riveles', None, 'arivelesO@stumbleupon.com', 'F', '98.36.172.246', None, None, None, None, None
, None, None, datetime.datetime(2017, 4, 23, 0, 0)),

(2, 'Dr', 'Ode', 'Stovin', None, 'ostovinl@npr.org', 'M', '16.97.59.186', '314-534-4361', '2573 Fordem Parkway', 'Sa
int Louis', 'MO', '63116', 38.5814, -90.2625, datetime.datetime(2014, 10, 2, 0, 0))]

customers_data = pd.read_sql_table('customers', engine)

Figure 4.18: The entirety of our Jupyter notebook

Now that we know how to read data from the database, we can start to do some
basic analysis and visualization. Let's implement an exercise to read and visualize
data using Python.

EXERCISE 4.02: READING DATA AND VISUALIZING DATA IN PYTHON

In this exercise, we will be reading data from the database output and visualizing
the results using Python, Jupyter notebooks, SQLAlchemy, and pandas. We will be
analyzing the demographic information of customers by their city in order to better
understand our target audience:

1. Open the Jupyter notebook from the previous section and click on the last
empty cell.

196 | Importing and Exporting Data

2. Enter the following query surrounded by triple quotes (triple quotes allow strings
that span multiple lines in Python):

query = """
SELECT city,
COUNT (1) AS number of customers,
COUNT (NULLIF (gender, 'M')) AS female,
COUNT (NULLIF (gender, 'F')) AS male
FROM customers

WHERE city IS NOT NULL

GROUP BY 1

ORDER BY 2 DESC

LIMIT 10

wwn

For each city, this query calculates the count of customers and calculates the
count for each gender. It also removes customers with missing city information
and aggregates our customer data by the first column (the city). In addition to
this, it sorts the data by the second column (the count of customers) from largest
to smallest (descending). Then, it limits the output to the top 10 (that is, the 10
cities with the highest number of customers).

3. Read the query result into a pandas DataFrame with the following command and
execute the cells using Shift + Enter:

top cities data = pd.read sql query(query, engine)

Using Python with Our Database | 197

View the data of top_cities_data by enteringitin a new cell and simply
hitting Shift + Enter. Just as with the Python interpreter, entering a variable or
expression will display the output value:

Out(7]:
city number of customers female male

0 Washington 1447 734 713
1 Houston 904 446 458
2 New York City 731 369 362
3 El Paso 713 369 344
4 Dallas 607 309 298
5 Atlanta 571 292 279
6 Sacramento 506 244 262
7 Los Angeles 466 241 225
8 San Antonio 426 207 219
9 Miami 426 195 231

Figure 4.19: Storing the result of a query as a pandas DataFrame

You will notice that pandas also number the rows by default. In pandas, this is
called an index.

Now, plot the number of men and women in each of the top 10 cities. To view
the stats for each city separately, we can use a simple bar plot:

ax = top cities data.plot.bar('city', y=I['female', 'male'],\
title='Number of Customers by Gender and City"')

198 | Importing and Exporting Data

Here is a screenshot of what our resulting output notebook should look like:

Number of Customers by Gender and City

700 - mm female
B male
600 -
500 -
400 -
300 -
200 -
100 4
0_.
s 5 Z 8§ 3 £ £ £ £ %
=) @ © a = @] [o @
£ 2 ¥ — a = £ 2 [=
s = £ " T g < <
S 2 8 5
= z A 3 n
2
city

Figure 4.20: Data visualization in the Jupyter notebook

The results show that there is no significant difference in the gender of our
customers for the cities that we are considering expanding into.

NOTE

To access the source code for this specific section, please refer
to https://packt.live/3dWFweéb.

In this exercise, we were able to read data from our database programmatically and
perform data visualization on the result. Next, we will look at how we can write data
(such as results from statistical analysis) back to the database.

https://packt.live/3dWFw6b

Using Python with Our Database | 199

WRITING DATA TO THE DATABASE USING PYTHON

There will also be many scenarios in which we will want to use Python to write data
back to the database; luckily for us, pandas and SQLAIchemy make this a relatively
easy task.

If we have our data in a pandas DataFrame, we can write data back to the database
using the pandas to_sql (...) function, which requires two parameters: the name
of the table to write to and the connection. Best of all, the to_sql (...) function
also creates the target table for us by inferring column types using a DataFrame's
data types.

We can test out this functionality using the top_cities_data DataFrame that we
created earlier. Let's use the following to_sql (..) command in our existing
Jupyter notebook:

top_cities data.to _sqgl('top cities data', engine,\

index=False, if exists='replace')

In addition to the two required parameters, we added two optional parameters to
this function - the index parameter specifies whether we want the index to be

a column in our database table as well (a value of False means that we will not
include it), and the if_exists parameter allows us to specify how to handle a
scenario in which there is already a table with data in the database. In this case, we
want to drop that table and replace it with the new data, so we use the 'replace’
option. In general, you should exercise caution when using the ' replace' option as
you can inadvertently lose your existing data.

Now, we can query this data from any database client, including psql. Here is the
result when we try to query this new table in our database:

select * from top cities data LIMIT 10;

200 | Importing and Exporting Data

The following is the output of the code:

Washington
Houston

New York City
El Paso
Dallas
Atlanta

Sacramento

Los Angeles

San Antonio
Miami
(10 rows)

Figure 4.21: Data created in Python that has now been imported into our database

While this functionality is simple and works as intended, it is using insert
statements to send data to the database. For a small table of 10 rows, this is OK;
however, for larger tables, the psgl \copy command is going to be much faster.

IMPROVING PYTHON WRITE SPEED WITH COPY

We can actually use the COPY command in conjunction with Python, SQLAlchemy,
and pandas to deliver the same speed that we get with the \copy command in
psql. For instance, say we define the following function:

import csv

from io import StringIO

def psgl insert copy(table, conn, keys, data iter):
gets a DBAPI connection that can provide a cursor
dbapi conn = conn.connection
with dbapi conn.cursor() as cur:
s buf = StringIO()
writer = csv.writer (s_buf)
writer.writerows (data iter)

s _buf.seek(0)

columns = ', '.Jjoin('"{}"'.format (k) for k in keys)
if table.schema:
table name = '{}.{}'.format (table.schema, table.name)

else:

Using Python with Our Database | 201

table name = table.name

sql = 'COPY {} ({}) FROM STDIN WITH CSV'.format (table name, columns)
cur.copy expert (sqgl=sql, file=s buf)

We can then leverage the method parameter in to_sql, as shown here:

top cities data.to sqgl('top cities data', engine,
index=False, if exists='replace',

method=psql insert copy)

The psql_insert_copy function defined here can be used without modifications
to any of your PostgreSQL imports from pandas. Here is a breakdown of what this
code does:

1. After performing some necessary imports, we begin by defining the function
using the def keyword followed by the function name (psql_insert_ copy)
and the parameters (table, conn, keys, anddata_iter).

2. Next, we establish a connection (dbapi_conn) and cursor (cur) that we can
use for execution.

3. Next, we write all of the data in our rows (represented in data_iter) to a string
buffer (s_buf), which is formatted like a CSV file, but that exists in memory and
not in a file on our hard drive.

4. Then, we define the column names (columns) and the table name
(table name).

5. Lastly, we execute the COPY statement by streaming the CSV file contents
through standard input (STDIN).

While it is helpful to read and write directly from the database, or import data

into the database from a file, sometimes we will want to read a file into Python for
preprocessing before the data is sent to our database (for example, if the file contains
errors and cannot be read directly by the database or if the file requires additional
analytics to be appended to it). In these instances, we can leverage Python to read
and write CSV files.

202 | Importing and Exporting Data

READING AND WRITING CSV FILE WITH PYTHON

Until now, we have covered the usage of Python in conjunction with SQL. However,
Python can also process data in other ways.

In addition to reading and writing data to our database, we can use Python to read
and write data from our local filesystem. The commands for reading and writing CSV
files with pandas are very similar to those used for reading and writing from

our database:

+ Forwriting, pandas .DataFrame.to_csv(file_path, index=False)
would write the DataFrame to your local filesystem using the supplied file
path. DataFrame is a property of pandas that temporarily stores data. The to__
csv () method of DataFrame has the following parameters: £ile path, which
is a string representing the path to the output file in a format specific to the OS
and index, which, if set to true, will write row numbers into the output data.

+ Forreading, pandas.read csv(file path, dtype={}) wouldreturn
a DataFrame representation of the data supplied in the CSV file located at the
file path.

When reading a CSV file, pandas will infer the correct data type based on the values
in the file. For example, if the column contains only integer numbers, it will create the
column with an int64 data type.

Similarly, it can infer whether a column contains floats, timestamps, or strings.
Pandas can also infer whether or not there is a header for the file, and generally, this
functionality works pretty well. If there is a column that is not read-in correctly (for
example, a five-digit US zip code might be read-in as an integer causing the leading
zeros to fall off - that is, "07123" would become "7123" without the leading zeros),
you can specify the column type directly using the dtype parameter. For example,
if you have a zip_code column in your dataset, you could specify that it is a string
using dtype={'zip code': str}.

NOTE

There are many different ways in which a CSV file might be formatted.
While pandas can generally infer the correct header and data types, there
are many parameters offered to customize the reading and writing of a CSV
file for your needs.

Best Practices for Importing and Exporting Data | 203

Using the top_cities_data dataset in our notebook, we can test out
this functionality:

top cities data.to csv('top cities analysis.csv', index=False)
my data = pd.read csv('top cities analysis.csv')

my data

my_data now contains the data that we wrote to a CSV file and then read back in.
We do not need to specify the optional dtype parameter in this case because our
columns could be inferred correctly using pandas. You should see an identical copy of
the data thatisin top_cities_data:

city number_of_customers |female | male
0 |Washington 1447 734 713
1 |Houston 904 446 458
2 |New York City [731 369 362
3 |El Paso 713 369 344

Figure 4.22: Checking that we can write and read CSV files in pandas

In this example, we were able to read and write a CSV file from Python, using data
we queried from our database. With these skills, we can now import and export data
between a file and our database, between Python and our database, and between
Python and a file.

BEST PRACTICES FOR IMPORTING AND EXPORTING DATA

At this point, we have seen several different methods for reading and writing data
between our computer and our database. Each method has its own use case and
purpose. Generally, there are going to be two key factors that should guide your
decision-making process:

* You should try to access the database with the same tool that you will use to
analyze the data. As you add more steps to get your data from the database to
your analytics tool, you increase the ways in which new errors can arise. When
you can't access the database using the same tool that you will use to process
the data, you should use psql to read and write CSV files to your database.

« When writing data, you can save time by using the COPY or \copy commands.

204 | Importing and Exporting Data

GOING PASSWORDLESS

In addition to everything mentioned so far, it is also a good idea to set up a .pgpass
file. A . pgpass file specifies the parameters that you use to connect to your
database, including your password. All of the programmatic methods of accessing
the database discussed in this chapter (using psql, R, and Python) will allow you to
skip the password parameter if your . pgpass file contains the password for the
matching hostname, database, and username. This not only saves you time, but it
also increases the security of your database, because you can freely share your code
without having to worry about passwords embedded in the code.

On Unix-based systems and macOS, you can create the . pgpass file in your home
directory. On Windows, you can create the file in $APPDATA% \postgresql\
pgpass.conf. The file should contain one line for every database connection that
you want to store, and it should follow this format (customized for your

database parameters):

hostname:port:database:username:password

For Unix and Mac users, you will need to change the permissions on the file using the
following command on the command line (in Terminal):

chmod 0600 ~/.pgpass

For Windows users, it is assumed that you have secured the permissions of the file so
that other users cannot access it. Once you have created the file, you can test that it
works by calling psql, as follows, in the Terminal:

psgl -h my host -p 5432 -d my database -U my username

If the . pgpass file was created successfully, you will not be prompted for
your password.

With this, we can now connect to our database without typing the password, which
both speeds up our development and mitigates the risk that we will accidentally share
a password.

In the following activity, we will leverage all of our learnings from this chapter to see
how we can discover sales trends by importing new datasets.

Best Practices for Importing and Exporting Data | 205

ACTIVITY 4.01: USING AN EXTERNAL DATASET TO DISCOVER SALES TRENDS

In this activity, we are going to use the United States Census data on public
transportation usage by zip code to see whether the level of use of public transport
shows any correlation to ZoomZoom sales in a given location. This will allow us to
practice the following skills:

* Importing and exporting data to and from our database

+ Interacting with our database programmatically (for example, using Python in
conjunction with SQLAIchemy and pandas)

Before you begin, you will need to download the public transportation statistics by zip
code dataset from GitHub: https://packt.live/37ruT94.

This dataset contains three columns:

* zip code: Thisis the five-digit United States postal code that is used to identify
the region.

* public_transportation_ pct: Thisis the percentage of the populationin a
postal code that has been identified as using public transportation to commute
to work.

* public_transportation population: This is the raw number of people
in a zip code that uses public transportation to commute to work.

Perform the following steps to complete this activity:

1. Copy the data from the public transportation dataset to the ZoomZoom
customer database by importing this data into a new table in the
ZoomZoom database.

2. Find the maximum and minimum values for public_transportation_pct
in this data. Values less than 0 will most likely indicate missing data.

3. Calculate the average sales amounts for customers that live in high public
transportation usage regions (over 10%) as well as low public transportation
usage regions (less than, or equal to, 10%).

4. Read the data into pandas and plot a histogram of the distribution (hint: you can
usemy data.plot.hist(y='public_transportation pct') toplota
histogram if you read the data into amy_data pandas DataFrame).

https://packt.live/37ruT94

206 | Importing and Exporting Data

5. Using pandas, test using the to_sql function with and without the
method=psql_ insert_copy parameter. How do the speeds compare? (Hint:
in a Jupyter notebook, you can add $time in front of your command to see how
long it takes to execute the code.)

6. Group customers based on their zip code public transportation usage rounded
to the nearest 10% and look at the average number of transactions per
customer. Export this data to Excel and create a scatterplot to better understand
the relationship between public transportation usage and sales.

7. Based on this analysis, determine what recommendations you would have for
the executive team at ZoomZoom when considering expansion opportunities.

NOTE

The solution for this activity can be found via this link.

SUMMARY

In this chapter, we learned how to interface our database with other analytical tools
for further analysis and visualization. While SQL is powerful, there will still be those
odd analyses which need to be undertaken in other systems. To solve this problem,
SQL allows you to transfer data in and out of the database for whatever tasks you
may require.

Initially, we looked at how we can use the psgl command-line tool to query our
database. From there, we were able to explore the COPY command and the psql-
specific \copy command, which enabled us to import and export data to and from
our database in bulk. Next, we looked at programmatically accessing our database
using analytical software such as R and Python. From there, we were able to explore
some of the advanced functionality in Python, including SQLAlchemy and pandas,
which enabled us to perform data visualization.

In the next chapter, we will examine data structures that can be used to store
complex relationships in our data. We will learn how to mine insights from text data,
as well as looking at the JSON and array data types so that we can make full use of all
of the information that is available to us.

ANALYTICS USING COMPLEX DATA
TYPES

OVERVIEW

This chapter covers how to make the most of your data by analyzing
complex and alternative data types. While we typically think of data as
numbers, in real-world examples, it frequently exists in other formats: text,
dates and times, latitude, and longitude. In addition to these specialty data
types, other data types provide the context in regard to the sequence or
relationship. The goal of this chapter is to learn how we can use SQL and
analytics techniques to produce insights from these other data types.

By the end of this chapter, you will be able to perform descriptive analytics
on time series data using datetime. You will use geospatial data to
identify relationships, then extract insights from complex data types (that is,
arrays, JSON, and JSONB), and perform text analytics.

210 | Analytics Using Complex Data Types

INTRODUCTION

In the previous chapter, we learned how to import and export data into other
analytical tools in order to leverage analytical tools outside of our database. It is often
easiest to analyze numbers; however, in the real world, data is frequently found

in other formats, such as words, locations, dates, and, sometimes, complex data
structures. In this chapter, we will look at these other formats and examine how we
can use this data in our analysis.

First, we will look at commonly found column types: the latitude, and longitude
columns. These data types will give us a foundational understanding of our data

from both a temporal and a geospatial perspective. Next, we will look at complex
data types, such as arrays and JSON, and learn how to extract data points from

these complex data types. These data structures are often used for alternative data,
or log-level data, such as website logs. Finally, we will look at how we can extract
meaning out of text in our database and use text data to extract insights.

By the end of the chapter, you will have broadened your analysis capabilities so that
you can leverage just about any type of data available to you.

DATE AND TIME DATA TYPES FOR ANALYSIS

We are all familiar with dates and times, but we don't often think about how these
quantitative measures are represented. Yes, they are represented using numbers, but
not with a single number. Instead, they are measured with a set of numbers, with one
number each for the year, month, day, hour, minute, and so on.

What we might not realize, though, is that this is a complex representation,
comprising several different components. For example, knowing the current minute
without knowing the current hour is useless. Additionally, there are complex ways
of interacting with dates and times, for example, different points in time can be
subtracted from one another. The current time can be represented differently
depending on where you are in the world.

As a result of these intricacies, we need to take special care when working with this
type of data. In fact, PostgreSQL, like most databases, offers special data types that
can represent these types of values. We'll start by examining the date type.

Date and Time Data Types for Analysis | 211

STARTING WITH THE DATE TYPE

Dates can be easily represented using strings (for example, January 1, 2000,
which clearly represents a specific date), but dates are a special form of text in that
they represent a quantitative and sequential value. You can add a week to the current
date, for example. A given date has many different properties that you might want

to use in your analysis—for instance, the year or the day of the week that the date
represents. Working with dates is also necessary for time series analysis, which is one
of the most common types of analysis that comes up.

The SQL standard includes a DATE data type, and PostgreSQL offers great
functionality for interacting with this data type. First, we can set our database to
display dates in the format that we are most familiar with. PostgreSQL uses the
DateStyle parameter to configure these settings. To view your current settings,
you can use the following command:

SHOW DateStyle;
The following is the output of the preceding query:

DateStyle
ISO, DMY

(1 row)

The first parameter specifies the International Organization Standardization
(ISO) output format, which displays the date as Year, Month, Day, and the second
parameter specifies the ordering (for example, Month, Day, Year versus Day, Month,
Year) for input or output. You can configure the output for your database using the
following command:

SET DateStyle='ISO, MDY';

For example, if you wanted to set it to the European format of Day, Month, Year, you
would set DateStyle to 'GERMAN, DMY'. For this chapter, we will use the ISO
display format (Year, Month, Day) and the Month, Day, Year input format. You can
configure this format by using the preceding command.

Let's start by testing out the DATE format:

SELECT '1/8/1999'::DATE;

212 | Analytics Using Complex Data Types

The following is the output of the query:

1999=0 =0

(1 row)

As you can see, when we input a string, '1/8/1999"', using the Month, Day, Year
format, PostgreSQL understands that this is January 8, 1999 (and not August 1, 1999).
It displays the date using the ISO format specified previously, in the form of
YYYY-MM-DD.

Similarly, we could use the following formats with dashes and periods to separate the
date components, with the same result:

SELECT '1-8-1999'::DATE;

The following is the output of the query:

1999-01-08

(1 row)
The following query shows a different format to print the date:
SELECT '1.8.1999'::DATE;

The following is the output of the query:

1999-01-08

(1 row)

In addition to displaying dates that are input as strings, we can display the current
date very simply using the current_date keywords in PostgreSQL:

SELECT current date;
The following is the output of the query:

current date

2020-02-04

(1 row)

Date and Time Data Types for Analysis | 213

In addition to the DATE data type, the SQL standard offers a TIMESTAMP data type. A
timestamp represents a date and a time, down to a microsecond.

We can see the current timestamp using the now () function, and we can specify our
time zone using AT TIME ZONE 'UTC'. Here's an example of the now () function
with the Eastern Standard time zone specified:

SELECT now() AT TIME ZONE 'EST';
The following is the output of the query:

timezone

2019-04-28 13:47:44.472096

(1 row)

We can also use the timestamp data type without the time zone specified. You can
get the current time zone with the now () function:

SELECT now () ;

The following is the output of the query:

2019-04-28 19:16:31.670096+00

(1 row)

NOTE

In general, it is recommended that you use the timestamp with the

time zone specified. If you do not specify the time zone, the value of

the timestamp could be questionable (for example, the time could be
represented in the time zone where the company is located, in Universal
Time Coordinated (UTC) time, or the customer's time zone).

The DATE and TIMESTAMP data types are helpful not only because they display
dates in a readable format, but also because they store these values using fewer
bytes than the equivalent string representation (a DATE type value requires only 4
bytes, while the equivalent text representation might be 8 bytes for an 8-character
representation such as '20160101 '). Additionally, PostgreSQL provides a special
functionality to manipulate and transform dates, and this is particularly useful for
data analytics.

214 | Analytics Using Complex Data Types

TRANSFORMING DATE TYPES

Often, we will want to decompose our dates into their component parts. For example,
we may be interested in only the year and month, but not the day, for the monthly
analysis of our data. To do this, we can use EXTRACT (component FROM date).
Here's an example:

SELECT current date,
EXTRACT (year FROM current date) AS year,
EXTRACT (month FROM current date) AS month,
EXTRACT (day FROM current date) AS day;

The following is the output of the code:

current date | year | month | day
—————————————— R
2019-04-28 | 2019 | 4 | 28

(1 row)

Similarly, we can abbreviate these components as y, mon, and d, and PostgreSQL will
understand what we want:

SELECT current date,
EXTRACT (y FROM current date) AS year,
EXTRACT (mon FROM current date) AS month,
EXTRACT (d FROM current date) AS day;

The following is the output of the code:

current date | year | month | day
—————————————— e —————
2019-04-28 | 2019 | 4 | 28

(1 row)

In addition to the year, month, and day, we will sometimes want additional
components, such as day of the week, week of the year, or quarter. You can extract
these date parts as follows:

SELECT current date,
EXTRACT (dow FROM current date) AS day of week,
EXTRACT (week FROM current date) AS week of year,
EXTRACT (quarter FROM current date) AS quarter;

Date and Time Data Types for Analysis | 215

The following is the output of the code:

current date | day of week | week | quarter
—————————————— e et e
2019-04-28 \ 0| 17 | 2

(1 row)

Note that EXTRACT always outputs a number, so, in this case, day_of_week starts
at 0 (Sunday) and goes up to 6 (Saturday). Instead of dow, you can use isodow,
which starts at 1 (Monday) and goes up to 7 (Sunday).

In addition to extracting date parts from a date, we may want to simply truncate our
date or timestamp. For example, we want to only view the year and month from the
date so we need to remove the day and timestamp. It can be done using the DATE _
TRUNC () function:

SELECT NOW (), DATE TRUNC ('month', NOW());
The following is the output of the code:

now | date trunc
_______________________________ +________________________
2019-04-28 19:40:08.691618+00 | 2019-04-01 00:00:00+00

(1 row)

Notice that the DATE_TRUNC (.. .) function does not round off the value. Instead,
it outputs the greatest rounded value less than or equal to the date value that
you input.

NOTE

The DATE_TRUNC (...) function is similar to the flooring function in
mathematics, which outputs the greatest integer less than or equal to the
input (for example, 5.7 would be floored to 5).

The DATE_TRUNC (...) functionis particularly useful for GROUP BY statements.
For example, you can use it to group sales by quarter and get the total quarterly sales:

SELECT DATE TRUNC ('quarter', NOW()) AS quarter,
SUM (sales amount) AS total quarterly sales

FROM sales

GROUP BY 1

ORDER BY 1 DESC;

216 | Analytics Using Complex Data Types

The DATE_TRUNC (..) function requires a string representing the field you want to
truncate to, while EXTRACT (...) accepts either the string representation (with quotes)
or the field name (without quotes).

INTERVALS

In addition to representing dates, we can also represent fixed time intervals using the
INTERVAL data type. This is useful if we want to analyze how long something takes;
for example, if we want to know how long it takes a customer to make a purchase.

Here's an example:
SELECT INTERVAL 'S5 days';
The following is the output of the code:

interval

Intervals are useful for subtracting timestamps, for example:

SELECT TIMESTAMP '2016-03-01 00:00:00' - TIMESTAMP '2016-02-01
00:00:00" AS days in feb;

The following is the output of the code:

days in feb

29 days

(1 row)
Or, alternatively, intervals can be used to add the number of days to a timestamp:

SELECT TIMESTAMP '2016-03-01 00:00:00' + INTERVAL '7 days' AS new date;
The following is the output of the code:

new date

2016-03-08 00:00:00

(1 row)

Date and Time Data Types for Analysis | 217

While intervals offer a precise method for doing timestamp arithmetic, the DATE
format can be used with integers to accomplish a similar result. In the following
example, we simply add 7 (an integer) to the date to calculate the new date:

SELECT DATE '2016-03-01' + 7 AS new date;

The following is the output of the code:

2016-03-08

(1 row)
Similarly, we can subtract two dates and get an integer result:

SELECT DATE '2016-03-01' - DATE '2016-02-01' AS days_in_ feb;
The following is the output of the code:

days in feb
29

(1 row)

While the DATE data type offers ease of use, the timestamp with the time zone
data type offers precision. If you need your date/time field to be precisely the same
as the time at which the action occurred, you should use the timestamp with the time
zone. If not, you can use the date field.

NOTE

All the exercises and activity code for this chapter can also be found on
GitHub: https://packt.live/2B3doiY.

https://packt.live/2B3doiY

218 | Analytics Using Complex Data Types

EXERCISE 5.01: ANALYTICS WITH TIME SERIES DATA

In this exercise, we will perform basic analysis using time series data to gain insight
into how ZoomZoom has ramped up its efforts to sell more vehicles during the
year 2018.

Perform the following steps to complete the exercise:

1.

First, look at the number of monthly sales. We can use the following aggregate
query with the DATE_TRUNC method:

SELECT

DATE TRUNC ('month', sales transaction date)

AS month date,

COUNT (1) AS number of sales
FROM sales
WHERE EXTRACT (year FROM sales transaction date) = 2018
GROUP BY 1
ORDER BY 1;

After running this SQL, we get the following result:

month_date

2018-01-01 00:
2018-02-01 B@
2018-03-01
2018-04-0
2018-05-0
2018-06-0
2018-07-0

2018-09-0
2018-10-0
2018-11-0
2018-12-0
(12 rows)

SSSSSSSSSS
233233322388
S33333888888

1
1
1
1
2018-08-01
1
1
1
1

Figure 5.1: Monthly number of sales

Date and Time Data Types for Analysis | 219

Compare this result with the number of new customers joining each month:

SELECT

DATE TRUNC ('month', date added)

AS month date,

COUNT (1) AS number of new customers
FROM customers
WHERE EXTRACT (year FROM date added) = 2018
GROUP BY 1
ORDER BY 1;

The following is the output of the preceding query:

month_date

2018-01-01
2018-02-01
2018-03-01
2018-04-01
2018-05-01
2018-06-01
1
1
1
1
1

2018-07-
2018-08-
2018-09-
2018-10-
2018-11-0
2018-12-01 B@.@B.@@
12 rows

3SSSSSSSSSSS
3338383388888
38338888888

Figure 5.2: Number of new customer sign-ups every month

220 | Analytics Using Complex Data Types

We can probably deduce that customers are not being entered into our database
when they make a purchase, but are instead signing up with us before they
make a purchase. The flow of new potential customers is fairly steady and
hovers around 400-500 new customer sign-ups every month, while the number
of sales (as queried in step 1) varies considerably; in July, we have 2.3 times as
many sales (1,119) as we have new customers (478).

NOTE

To access the source code for this specific section, please refer to
https://packt.live/30ArB1y.

From this exercise, we can see that we get a steady number of customers entering
our database, but sales transactions vary considerably from month to month.

PERFORMING GEOSPATIAL ANALYSIS IN POSTGRESQL

In addition to looking at time-series data to better understand trends, we can also
use geospatial information (such as city, country, or latitude and longitude) to better
understand our customers. For example, governments use geospatial analysis to
better understand regional economic differences, while a ride-sharing platform might
use geospatial data to find the closest driver for a given customer.

We can represent a geospatial location using latitude and longitude coordinates, and
this will be the fundamental building block for us to begin geospatial analysis.

LATITUDE AND LONGITUDE

When we think about locations, we often think about them in terms of the address—
the city, state, country, or postal code that is assigned to the location that we are
interested in. From an analytics perspective, this is sometimes OK. For example, you
can look at the sales volume by city and come up with meaningful results about which
cities are performing well.

https://packt.live/30ArB1y

Performing Geospatial Analysis in PostgreSQL | 221

Often, however, we need to understand geospatial relationships numerically in order
to understand the distances between two points or to understand relationships that
vary based on where you are on a map. After all, if you live on the border between
two cities, it's rare that your behavior will suddenly change if you move to the

other city.

Latitude and longitude allow us to look at the location in a continuous context. This
allows us to analyze the numeric relationships between the location and other factors
(for example, sales). Latitude and longitude also enable us to look at the distances
between two locations.

Latitude tells us how far north or south a pointis. A point at +90° latitude is at the
North Pole, while a point at 0° latitude is at the equator, and a point at -90° is at the
South Pole. On a map, lines of constant latitude run east and west.

Longitude tells us how far east, or west, a point is. On a map, lines of constant
latitude run east and west. Greenwich, England, is the point of 0° longitude. Points
can be defined using longitude as west (-) or east (+) of this point and values range
from -180° west to +180° east. These values are actually equivalent because they both
point to the vertical line that runs through the Pacific Ocean, which is halfway around
the world from Greenwich, England.

REPRESENTING LATITUDE AND LONGITUDE IN POSTGRESQL

In PostgreSQL, we can represent latitude and longitude using two floating-point
numbers. In fact, this is how latitude and longitude are represented in the ZoomZoom
customers table:

SELECT
latitude,
longitude

FROM customers

LIMIT 10;

222 | Analytics Using Complex Data Types

Here is the output of the preceding query:

latitude | longitude

38.5814
30.6143 -87.2758
36.0986 -86.8219
25,5584 -80.4582
25.6364 -80.3187
28.5663 -81.2608
41.3087 -72.9271
38.8999 -94,832
31.6948 -106.3
(19 rows)

Figure 5.3: The latitudes and longitudes of ZoomZoom customers

Here, we can see that all of the latitudes are positive because the United States is
north of the equator. All of the longitudes are negative because the United States
is west of Greenwich, England. We can also see that some customers do not have
latitude and longitude values filled in, because their location is unknown.

While these values can give us the exact location of a customer, we cannot do much
with that information, because distance calculations require trigonometry and make
simplifying assumptions that the earth is perfectly round.

Thankfully, PostgreSQL has tools to solve this problem. We can calculate distances in
PostgreSQL by installing these packages:

CREATE EXTENSION cube;
CREATE EXTENSION earthdistance;

These two extensions only need to be installed once, by running the two preceding
commands. The earthdistance module depends on the cube module. Once we
install the earthdistance module, we can define a point data type:

SELECT

point (longitude, latitude)
FROM customers
LIMIT 10;

Performing Geospatial Analysis in PostgreSQL | 223

Here is the output of the preceding query:

(-90.2625,38.5814)
(-87.2758,30.6143)
(-86.8219, 36.0986)
(-80.4582,25.5584)

(-80.3187,25.6364)

(-81.2608,28.5663)

(-72.9271,41.3087)

(-94.832,38.8999)

(-106.3,31.6948)
(10 rows)

Figure 5.4: Customer latitude and longitude represented as points in PostgreSQL

NOTE

A point data type is defined with longitude first and then latitude. This

is contrary to the convention of latitude first and then longitude. The
rationale behind this is that longitude more closely represents points along
an x-axis, and latitude more closely represents points on the y-axis, and

in mathematics, graphed points are usually noted by their x coordinate
followed by their y coordinate.

The earthdistance module also allows us to calculate the distance between
points in miles:

SELECT
point (-90, 38) <@> point(-91, 37) AS distance in miles;

Here is the output of the preceding query:

distance in miles

88.1949338379752

(1 row)

224 | Analytics Using Complex Data Types

In this example, we defined two points, (38° N, 90° W) and (37° N, 91° W), and we
were able to calculate the distance between these points using the <@> operator,
which calculates the distance in miles (in this case, these two points are

88.2 miles apart).

In the following exercise, we will see how we can use these distance calculations in a
practical business context.

EXERCISE 5.02: GEOSPATIAL ANALYSIS

In this exercise, we will identify the closest dealership for each customer. ZoomZoom
marketers are trying to increase customer engagement by helping customers find
their nearest dealership. The product team is also interested to know what the
average distance is between each customer and their closest dealership.

Follow these steps to implement the exercise:
1. Create a table with the longitude and latitude points for every customer:

CREATE TEMP TABLE customer_points AS (
SELECT
customer id,
point (longitude, latitude) AS 1lng lat point
FROM customers
WHERE longitude IS NOT NULL
AND latitude IS NOT NULL
)i

2. Next, create a similar table for every dealership:

CREATE TEMP TABLE dealership points AS (
SELECT
dealership id,
point (longitude, latitude) AS 1lng lat point
FROM dealerships
) ;

3. Now cross join these tables to calculate the distance from each customer to each
dealership (in miles):

CREATE TEMP TABLE customer dealership distance AS (
SELECT
customer id,

dealership id,

Performing Geospatial Analysis in PostgreSQL | 225

c.lng lat point <@> d.lng lat point AS distance
FROM customer points c
CROSS JOIN dealership points d
)i

Finally, for each customer ID, we select the dealership with the shortest distance:

CREATE TEMP TABLE closestidealerships AS (
SELECT DISTINCT ON (customer id)
customer id,
dealership id,
distance
FROM customer dealership distance

ORDER BY customer id, distance
)i

Remember that the DISTINCT ON clause guarantees only one record for each
unique value of the column in parentheses. In this case, we will get one record
for every customer id value, and because we sort by distance, we will get the
record with the shortest distance.

Now that we have the data to fulfill the marketing team's request, we can now
calculate the average distance from each customer to their closest dealership:

SELECT
AVG (distance) AS avg dist,
PERCENTILE DISC(0.5) WITHIN GROUP (ORDER BY distance)
AS median dist

FROM closest dealerships;

Here is the output of the preceding query:

146.778266080342 | 91.2395829323349
(1 row)

Figure 5.5: The average and median distances between customers
and their closest dealership

226 | Analytics Using Complex Data Types

The result is that the average distance is about 147 miles away, but the median
distance is about 91 miles.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/3fkQliL.

In this exercise, we identified the closest dealership for each customer, then
calculated the distance for each customer and every possible dealership, identified
the closest dealership for each customer, and found the average and median
distances to a dealership for our customers.

USING ARRAY DATA TYPES IN POSTGRESQL

While the PostgreSQL data types that we have explored so far allow us to store

many different types of data, occasionally we will want to store a series of values in

a table. For example, we might want to store a list of the products that a customer
has purchased or the employee ID numbers associated with a specific dealership. For
this scenario, PostgreSQL offers the ARRAY data type, which allows us to store just
that—a list of values.

STARTING WITH ARRAYS

PostgreSQL arrays allow us to store multiple values in a field in a table. For example,
consider the following first record in the customers table:

customer id |1

title | NULL

first name | Arlena

last name | Riveles

suffix | NULL

email arivelesO@stumbleupon.com

B
ip address 98.36.172.246

|
gender |
|
phone | NULL
|
|
|
|

street address NULL
city NULL
state NULL
postal code NULL

https://packt.live/3fkQliL

Using Array Data Types in PostgreSQL | 227

latitude | NULL
longitude | NULL
date_added | 2017-04-23 00:00:00

Each field contains exactly one value (the NULL value is still a value); however, there
are some attributes that might contain multiple values with an unspecified length. For
example, imagine that we wanted to have a purchased products field. This could
contain zero or more values within the field. For example, imagine the customer
purchased the Lemon and Bat Limited Edition scooters; we can represent
that as follows:

purchased products | {Lemon,"Bat Limited Edition"}

We can define an array in a variety of ways. To get started, we can simply create an
array using the following command:

SELECT ARRAY['Lemon', 'Bat Limited Edition'] AS example purchased
products;

The following is the output of the code:

example purchased products

{Lemon, "Bat Limited Edition"}

PostgreSQL knows that the 'Lemon' and 'Bat Limited Edition' values are of
the text data type, so it creates a text array to store these values.

While you can create an array for any data type, the array is limited to values for that
data type only. So, you could not have an integer value followed by a text value (this
would likely produce an error).

We can also create arrays using the ARRAY AGG aggregate function. This aggregate
function will create an array of all of the values in the group. For example, the
following query aggregates all of the vehicles for each product type:

SELECT product type, ARRAY AGG (DISTINCT model) AS models FROM products
GROUP BY 1;

The following is the output of the preceding query:

product_type |

automobile

scooter | {Bat,"Bat Limited Edition" Blade Lemon, "Lemon Limited Edition","Lemon Zester"}
(2 rows)

Figure 5.6: Output of the ARRAY_AGG function

228 | Analytics Using Complex Data Types

We can also specify how to order the elements by including an ORDER BY statement
in the ARRAY AGG function. For example:

SELECT product type, ARRAY AGG(model ORDER BY year) AS models FROM
products GROUP BY 1;

This outputs the following:

product_type |
______________ pememm=msmessmmssem—ao oo Lo
automobile | {"Model Chi","Model Sigma","Model Epsilon","Model Gamma","Model Chi"}

scooter | {Lemon,"Lemon Limited Edition",Lemon,Blade,Bat,"Bat Limited Edition","Lemon Zester"}
(2 rows)

Figure 5.7: Output of the ARRAY_AGG function with ORDER BY

You can also reverse this operation using the UNNEST function, which creates one
row for every value in the array:

SELECT UNNEST (ARRAY[123, 456, 789]) AS example ids;
Here is the output of the preceding query:

example ids
123
456
789

(3 rows)

You can also create an array by splitting a string value using the STRING_TO_ARRAY
function. Here's an example:

SELECT STRING TO ARRAY ('hello there how are you?', ' ');

In this example, the sentence is split using the second string (' '), and we end up
with the following result:

string to array
{hello, there, how,are, you?}

(1 row)

Using Array Data Types in PostgreSQL | 229

Similarly, we can run the reverse operation and concatenate an array of strings into a
single string:

SELECT ARRAY TO STRING(ARRAY['Lemon', 'Bat Limited Edition'], ', ') AS
example purchased products;

In this example, we can join the individual string with the second string using ', ':

example purchased products

Lemon, Bat Limited Edition

There are other functions that allow you to interact with arrays. Here are a few
examples of the additional array functionality that PostgreSQL provides:

Desired Operation Postgres Function Example Example Output

Concatenate two arrays array_cat(ARRAY[1, 2], ARRAY[3, 41)or |{1,2, 3,4}
ARRAY[1, 2] | | ARRAY[3, 4]

Append a value to an array |array_append(ARRAY[1, 2], 3) or {123}
ARRAY[1,2] || 3

Check if avalue is contained | 3 = ANY(ARRAY[1, 21) f

in an array

Check if two arrays overlap | ARRAY[1, 2, 3] && ARRAY[3, 4] t

Check if an array contains ARRAY[1, 2, 3] @> ARRA Y[2, 1] t

another array

Figure 5.8: Examples of additional array functionality

Next, we will apply these operators and array functionality to capture sequences of
marketing touchpoints.

230 | Analytics Using Complex Data Types

EXERCISE 5.03: ANALYZING SEQUENCES USING ARRAYS

In this exercise, we will use arrays to analyze sequences. Suppose the ZoomZoom
marketing team wants to identify the three most common email sequences. Next, we
will help them to better understand how different these sequences are, by looking at
whether these sequences are supersets of one another:

1. First, let's create a table that represents the email sequence for every customer:

CREATE TEMP TABLE customer email sequences AS (
SELECT
customer id,
ARRAY AGG (email subject ORDER BY sent date) AS email sequence
FROM emails
GROUP BY 1
);

2. Next, we want to identify the three most common email sequences:

CREATE TEMP TABLE top email sequences AS (
SELECT
email sequence,
COUNT (1) AS occurrences
FROM customer email sequences
GROUP BY 1
ORDER BY 2 DESC
LIMIT 3
)i

SELECT email sequence FROM top email sequences;
The following is the output of the code:

{"The 2013 Lemon Scooter is Here","Shocking Holiday Savings On Electric Scooters","A Brand New Scooter...and Car","We cut yo
u a deal: 20%% off a Blade","Zoom Zoom Black Friday Sale","An Electric Car for a New Age","Tis' the Season for Savings","Like
a Bat out of Heaven","25% off all EVs. It's a Christmas Miracle!”,"We Really Outdid Ourselves this Year","Black Friday. Gree

n Cars.","Save the Planet with some Holiday Savings.","A New Year, And Some New EVs"}

{"Save the Planet with some Holiday Savings.","A New Year, And Some New EVs"}

{"Black Friday. Green Cars.","Save the Planet with some Holiday Savings.","A New Year, And Some New EVs"}
(3 rows)

Figure 5.9: The top three results from email sequences

3. Lastly, we want to check which of these arrays is a superset of the other arrays.
To do this, it's helpful to number our rows:

ALTER TABLE top email sequences ADD COLUMN id SERIAL PRIMARY KEY;

Using Array Data Types in PostgreSQL | 231

4. Next, we can cross join the table to itself, and use the @> operator to
check whether an array containing an email sequence contains another
email sequence:

SELECT
super email seq.id AS superset id,
sub email seq.id AS subset id
FROM top email sequences AS super email seq
CROSS JOIN top email sequences AS sub email seq
WHERE super email seqg.email sequence @> sub email seqg.email sequence

AND super email seq.id != sub email seq.id;

The following is the output of the code:

superset_id | subset_id

(3 rows)

Figure 5.10: These results indicate which of the top email sequences
are supersets of each other

From this, we can gather that the top email sequence contains the second and
third most common email sequences, while the third most common email
sequence is actually a superset of the second most common sequence. This type
of analysis is generally helpful when looking at what customer touchpoints might
lead someone to make a purchase or not, also known as attribution modeling.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/2MRT1rK.

While arrays are great for lists of values and sequences, the JSON data type can
enable us to manage data in key-value pairs.

https://packt.live/2MRT1rK

232 | Analytics Using Complex Data Types

USING JSON DATA TYPES IN POSTGRESQL

While arrays can be useful for storing a list of values in a single field, sometimes our
data structures can be complex. For example, we might want to store multiple values
of different types in a single field, and we might want data to be keyed with labels
rather than stored sequentially. These are common issues with log-level data, as well
as alternative data.

JavaScript Object Notation (JSON) is an open standard text format for storing data
of varying complexity. It can be used to represent just about anything. Similar to
how a database table has column names, JSON data has keys. We can use JSON to
represent a record from our customers database easily by storing column names
as keys and row values as values. The row_to_json function transforms rows

to JSON:

SELECT row to json(c) FROM customers c limit 1;
Here is the output of the preceding query:

{"customer_id":1,"title" :null, "first_name":"Arlena","last_name":"Riveles","suffix":null,"email": "ariveles@@stumbleupon.com”,
"gender”:"F","ip_address":"98.36.172.246", "phone" :null, "street_address" :null, "C‘ity" :null,"state":null,"postal_code":null,"lat

itude" :null,"longitude":null, "date_added": "2017-04-23T00:00:00"}

Figure 5.11: A row converted to JSON

This is a little hard to read, but we can add the pretty bool flag to the row_to__
json function to generate a readable version:

SELECT row_to json(c, TRUE) FROM customers c¢ limit 1;

Using JSON Data Types in PostgreSQL | 233

Here is the output of the preceding query:

row_to_json

{"customer_id":1,

"title":null,
"first_name":"Arlena",
"last_name":"Riveles",

"suffix" :null,
"email":"ariveles@@stumbleupon.com",
"gender":"F",
"ip_address":"98.36.172.246",
"phone" :null,

"street_address" :null,

"city":null,

"state":null,

"postal_code":null,
"latitude":null,

"longitude":null,

"date_added": "2017-04-23T00:00:00"}

R SR T T S S S S S A

Figure 5.12: JSON output from row_to_json

As you can see, once we reformat the JSON output from the query, row_to_Jjson
presents a simple, readable, text representation of our row. The JSON structure
contains keys and values. In this example, the keys are simply the column names,
and the values come from the row values. JSON values can either be numeric values
(integers or floats), Boolean values (true or false), text values (wrapped with
double quotation marks), or simply null.

JSON can also include nested data structures. For example, consider a hypothetical
scenario in which we want to include purchased products in the table as well:

{
"customer id":1,
"example purchased products":["Lemon", "Bat Limited Edition"]

}

234 | Analytics Using Complex Data Types

Or, we can take this example one step further:

{
"customer id": 7,
"sales": [
{
"product id": 7,
"sales amount": 599.99,

"sales transaction date": "2019-04-25T04:00:30"

"product id": 1,
"sales amount": 399.99,

"sales transaction date": "2011-08-08T08:55:56"

"product id": 6,
"sales amount": 65500,

"sales transaction date": "2016-09-04T12:43:12"

1,
}

In this example, we have a JSON object with two keys: customer _idand sales.
As you can see, the sales key points to a JSON array of values, but each value is
another JSON object representing the sale. JSON objects that exist within a JSON
object are referred to as nested JSON. In this case, we have represented all of the
sales transactions for a customer using a nested array that contains nested JSON
objects for each sale.

While JSON is a universal format for storing data, it is inefficient because everything is
stored as one long text string. In order to retrieve a value associated with a key, you
would need to first parse the text, and this has a relatively high computational cost
associated with it. If you just have a few JSON objects, this performance overhead
might not be a big deal; however, it might become a burden if, for example, you are
trying to select the JSON object with "customer_id": 7 from millions of other
JSON objects in your database.

In the next section, we will introduce JSONB, a binary JSON format, which is optimized
for PostgreSQL and allows you to avoid a lot of the parsing overhead associated with
a standard JSON text string.

Using JSON Data Types in PostgreSQL | 235

JSONB: PRE-PARSED JSON

While a text JSON field needs to be parsed each time it is referenced, a JSONB value
is pre-parsed, and data is stored in a decomposed binary format. This requires
that the initial input be parsed upfront, and the benefit is that there is a significant
performance improvement when querying the keys or values in this field. This is
because the keys and values do not need to be parsed; they have already been
extracted and stored in an accessible binary format.

NOTE

JSONB differs from JSON in a few other ways as well. First, you cannot
have more than one key with the same name. Second, the key order is not
preserved. Third, semantically insignificant details, such as whitespace, are
not preserved.

ACCESSING DATA FROM A JSON OR JSONB FIELD

JSON keys can be used to access the associated value using the —> operator. Here's
an example:

SELECT
"{

ngn. 1,
"R 2,
"en. 3

}'::JSON -> 'b' AS data;

In this example, we had a three-key JSON value, and we are trying to access the value
for the b key. The output is a single output: 2. This is because the => 'b"' operation
gets the value for the b key from the preceding JSON format, {"a": 1, "b": 2,
"' 3}

236 | Analytics Using Complex Data Types

PostgreSQL also allows more complex operations to access the nested JSON format
using the #> operator. Take the following example:

SELECT
'
nan: 1,
"prs [
{"av. 4y},
{"d": 6},
{na": 4}
1,
nen: 3

}'::JSON #> ARRAY['b', 'l', 'd'] AS data;

On the right side of the #> operator, a text array defines the path to access the
desired value. In this case, we select the 'b' value, which is a list of nested JSON
objects. Then, we select the element in the list denoted by '1', which is the second
element because array indexes start at 0. Finally, we select the value associated with
the 'd' key, and the output is 6.

These functions work with JSON or JSONB fields (keep in mind that they will run much
faster on JSONB fields). JSONB, however, also enables additional functionality. For
example, say you want to filter rows based on a key-value pair. You could use the @>
operator, which checks whether the JSONB object on the left contains the key value
on the right. Here's an example:

SELECT * FROM customer sales WHERE customer json @> '{"customer
id":20}"'::JSONB;

The preceding query outputs the corresponding JSONB record:

{"email": "ihughillj@nationalgeographic.com", "phone": null, "sales": [],
"last name": "Hughill", "date added": "2012-08-08T00:00:00", "first name":
"Itch", "customer id": 20}

With JSONB, we can also make our output look pretty using the jsonb_pretty
function:

SELECT JSONB PRETTY (customer json) FROM customer sales WHERE customer
json @> '{"customer id":20}'::JSONB;

Using JSON Data Types in PostgreSQL | 237

Here is the output of the preceding query:

"email": "ihughillj@nationalgeographic.com",
"phone": null,
"sales": [

1,

"last_name": "Hughill",
"date_added": "2012-08-08T00:00:00",
"first_name": "Itch",

"customer_id": 20

+ 4+ + 4+ + 4+ + + +

}
(1 row)

Figure 5.13: Output from the JSONB_PRETTY function

We can also select just the keys from the JSONB field, and unnest them into multiple
rows using the JSONB_OBJECT _KEYS function. Using this function, we can also
extract the value associated with each key from the original JSONB field using the ->
operator. Here's an example:

SELECT

JSONB_OBJECT KEYS (customer json) AS keys,

customer json -> JSONB OBJECT KEYS (customer json) AS values
FROM customer sales
WHERE customer json @> '{"customer id":20}'::JSONB

The following is the output of the preceding query:

values

"ihughillj@nationalgeographic.com"
null

last_name "Hughill"

date_added "2012-08-08T00:00:00"
first_name "Ttch"

customer_id | 20

(7 rows)

Figure 5.14: Key-value pairs exploded into multiple rows
using the JSONB_OBJECT_KEYS function

238 | Analytics Using Complex Data Types

LEVERAGING THE JSON PATH LANGUAGE FOR JSONB FIELDS

In addition to the previous functions, PostgreSQL also offers a special JSON path
language that can be leveraged to query data within a JSONB field. The first of these
functions can check whether a path simply exists in your JSON object:

SELECT

jsonb path exists(customer json, 'S$.sales[0]')
FROM customer sales
LIMIT 3;

The following is the output of the document:

jsnob _path exists

~ ot ot ot

3 rows)

This simply returns a Boolean value of true or false for each row depending on
whether the JSON value contains a sale. The jsonb_path_exists function has two
required parameters: the JSONB value and the JSON path. The JSON path expression
uses a JSON path language. Here, $ represents the root of the JSON value, and the
.key notation is used to access the value for a given key. In this case, we can access
the sales using .sales. The [0] value represents that we want the first value
contained in the sales array. Alternatively, we could have specified [*] to represent
all elements in the sales array.

We can also add additional filters to this query. For example, we might want to check
whether there are any sales with a sale_amount value of over $400. We can do this
by adding a £ilter expression:

SELECT

jsonb path exists(customer json, '$.sales[*].sales amount ? (€@ >
400) ")
FROM customer sales

LIMIT 3;

Using JSON Data Types in PostgreSQL | 239

The following is the output of the document:

jsnob path exists

~ FhoHh ot

3 rows)

In this altered query, we added another element to the path, . sales_amount,
which gets the sale amount for each sale in the sales array. We also added a filter
expression using the ? operator. In this case, the filter expression, ? (@ > 400),
indicates that we only want to check for values greater than 400.

In addition to checking whether a JSON path exists (with or without additional filter
criteria), we can also query the result:

SELECT
jsonb path query(customer json, 'S.sales[0].sales amount')
FROM customer sales

LIMIT 3;
The following is the output of the document:

jsnob _path query
479.992
314.991
319.992

(3 rows)

In this case, the jsonb_path_query function grabs the first sale using the
positional index, [0] and grabs the value associated with the sales_amount key.
Similar to UNNEST, the jsonb_path query function will expand a result with more
than one match to multiple rows:

SELECT
jsonb path query('{"test":[1, 2, 3]}', 'S.test[*]")

240 | Analytics Using Complex Data Types

The following is the output of the code:

jsnob _path query

NOTE

If a path does not exist that meets the filter criteria (if any), jsonb__
path_query will actually remove that entire row from the output. This is
a bit counterintuitive because, normally, row filtering can only happen due
to expressions evaluated in the WHERE clause, so this functionality can
produce unexpected results.

But what if we want to grab the array of sales amounts in cases where there are
multiple sales or in cases where there are no sales? In these examples, we might want
to instead use jsonb_path query array. In the following example, we return
the entire array of sales amounts that are greater than 400:

SELECT
jsonb path query array(customer json,
'$.sales[*].sales _amount ? (@ > 400)")
FROM customer sales

LIMIT 3;

The following is the output of the code:

jsnob path query array

In this case, the first record had one sale over the threshold, and the second and third
rows had no sales over the threshold.

Using JSON Data Types in PostgreSQL | 241

CREATING AND MODIFYING DATA IN A JSONB FIELD

You can also add and remove elements from JSONB. For example, to add a new
key-value pair, "e¢": 2, you can do the following:

select jsonb insert ('{"a":1,"b":"foo"}', ARRAY['c'], '2');
Here is the output of the preceding query:

{"a": 1, "b": "foo", "c": 2}
If you wanted to insert values into a nested JSON object, you could do that too:

select jsonb insert('{"a":1,"b":"foo", "c":[1, 2, 3, 4]}', ARRAY['c',
111], '10');

This would return the following output:
{"a": 1, "b": "foo", "c": [1, 10, 2, 3, 41}

In this example, ARRAY['c', '1'] represents the path where the new value
should be inserted. In this case, it first grabs the 'c' key and corresponding array
value, then inserts the value (10 ') at position '1".

To remove a key, you can simply subtract the key that you want to remove. Here's an
example:

SELECT '{"a": 1, "b": 2}'::JSONB - 'b';
In this case, we have a JSON object with two keys: a and b. When we subtract b, we
are left with just the a key and its associated value:

{ llall . l }

In addition to the methodologies described here, we might want to search
through multiple layers of nested objects. We will learn how to do this in the
following exercise.

242 | Analytics Using Complex Data Types

EXERCISE 5.04: SEARCHING THROUGH JSONB

In this exercise, we will identify the values using data stored as JSONB. Suppose we
want to identify all customers who purchased a Blade scooter; we can do this using
data stored as JSONB. Complete the exercise by implementing the following steps:

1. Explode out each sale into its own row using the
JSONB_ARRAY ELEMENTS function:

CREATE TEMP TABLE customer sales single sale json AS (
SELECT
customer json,
JSONB_ARRAY ELEMENTS (customer json -> 'sales') AS sale json
FROM customer sales LIMIT 10
)i

2. Filter this output and grab the records where product name is 'Blade':

SELECT DISTINCT customer json FROM customer sales single sale json
WHERE sale json ->> 'product name' = 'Blade' ;

The ->> operator is similar to the —> operator, except it returns text output
rather than JSONB output. This outputs the following result:

{"email": "nespinaye@51.7a", "phone": "818-658-6748", '"sales":
[{"product_id": 5, "product_name": "Blade", "sales_amount":
559.992, "sales_transaction_date": "2014-07-19T06:33:44"}],

"last_name": "Espinay'", "date_added": "2014-07-05T00:00:00",
"first_name": "Nichols", "customer_id": 15}

Figure 5.15: Records where product_name is 'Blade'

3. Usethe JSONB_PRETTY () function to format the output and make the result
easier to read:

SELECT DISTINCT JSONB_ PRETTY (customer json) FROM customer sales
single sale json WHERE sale json ->> 'product name' = 'Blade' ;

Using JSON Data Types in PostgreSQL | 243

Here is the output of the preceding query:

jsonb_pretty

"email": "aabatev@3@flickr.com",

"phone": "269-168-7519",

"sales": [

{

"product_id": 5,
"product_name": "Blade",
"sales_amount": 699.99,
"sales_transaction_date": "2014-09-12T706:04:35"

b
1,
"last_name": "Abate",
"date_added": "2014-07-10T00:00:00",
"first_name": “Adriana",
"customer_id": 40180

+ +++ ++F A+ F A+

4+

Figure 5.16: Format the output using JSONB_PRETTY()

We can now easily read the formatted result after using the
JSONB_PRETTY () function.

4. Perform this same action with the JSON path expressions:

CREATE TEMP TABLE blade customer sales AS (
SELECT
jsonb path query(
customer json,
'$? (@.sales[*].product name == "Blade")'
) AS customer json
FROM customer sales
)i
SELECT JSONB_ PRETTY (customer json) FROM blade customer sales;

244 | Analytics Using Complex Data Types

5. Finally, count the number of customers who purchased a blade:
SELECT COUNT (1) FROM blade customer sales;

The following is the output of the code:

In this exercise, we identified the values using data stored as JSONB. We
used JSONB_PRETTY () and JSONB_ARRAY ELEMENTS () to complete
this exercise.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/37kTwnN.

While JSON data types allow us to store complex information using text, often, data
is stored in an unstructured text format. While it can be difficult to decode these text
fields if there is no predefined structure, we can often produce meaningful insights
from these fields. In the following section, we will look at various techniques for
interacting with text fields, and then examine how we can produce analytics-based
insights from pure text.

TEXT ANALYTICS USING POSTGRESQL

In addition to performing analytics using complex data structures within PostgreSQL,
we can also make use of the non-numeric data available to us. Often, the text
contains valuable insights. You can imagine a salesperson keeping notes on
prospective clients: "Very promising interaction, the customer is looking to make

a purchase tomorrow" contains valuable data, as does this note: "The customer

is uninterested. They no longer have a need for the product.” While this text can

be valuable for someone to manually read, it can also be valuable in the analysis.
Keywords in these statements, such as "promising," "purchase," "tomorrow,"
"uninterested," and "no," can be extracted using the right techniques to try to identify
top prospects in an automated fashion.

https://packt.live/37kTwnN

Text Analytics Using PostgreSQL | 245

Any block of text can have keywords that can be extracted to uncover trends—for
example, in customer reviews, email communications, or sales notes. In many
circumstances, text data might be the most relevant data available, and we need to
use it in order to create meaningful insights.

In this chapter, we will look at how we can use some PostgreSQL functionality to
extract keywords that will help us to identify trends. We will also leverage text search
capabilities in PostgreSQL to enable rapid searching.

TOKENIZING TEXT

While large blocks of text (for example, sentences and paragraphs) can provide useful
information to convey to a human reader, there are few analytical solutions that can
draw insights from unprocessed text. In almost all of these cases, it is helpful to parse
text into individual words. Often, the text is broken down into the component tokens,
where each token is a sequence of characters that are grouped together to form

a semantic unit. Usually, each token is simply a word in the sentence, although in
certain cases (such as the word "can't"), your parsing engine might parse two tokens:
"can"and "t."

NOTE

Even cutting-edge Natural Language Processing (NLP) techniques
usually involve tokenization before the text can be processed. NLP can be
useful to run an analysis that requires a deeper understanding of the text.

Words and tokens are useful because they can be matched across documents in
your data. This allows you to draw high-level conclusions at the aggregate level.
For example, if we have a dataset containing sales notes, and we parse out the
"interested" token, we can hypothesize that sales notes containing "interested" are
associated with customers who are more likely to make a purchase.

PostgreSQL has functionality that makes tokenization fairly easy. We can start by
using the STRING_TO_ARRAY function, which splits a string into an array using a
delimiter, for example, a space:

SELECT STRING TO ARRAY ('Danny and Matt are friends.', ' ');

246 | Analytics Using Complex Data Types

The following is the output of the preceding query:
{Danny,and,Matt,are, friends.}

In this example, the sentence Danny and Matt are friends. is split using the
space character.

In this example, we have punctuation, which might be better off removed. We can
do this easily using the REGEXP_REPLACE function. This function accepts four
arguments: the text you want to modify, the text pattern that you want to replace,
the text that should replace it, and any additional flags (most commonly, you will add
the 'g' flag, specifying that the replacement should happen globally, or as many
times as the pattern is encountered). We can remove the period using a pattern that
matches the punctuation defined in the \'@#$%*&* () -=_+, .<>/?| [] string and
replaces it with space:

SELECT REGEXP REPLACE ('Danny and Matt are friends.', '[!,.?-]', ' ',
LR |
g'):

The following is the output of the preceding query:
Danny and Matt are friends
The punctuation has been removed.

PostgreSQL also includes stemming functionality, which is useful for identifying the
root stem of the token. For example, the tokens "quick" and "quickly" or "run" and
"running" are not that different in terms of their meaning, and contain the same
stem. The ts_lexize function can help us to standardize our text by returning the
stem of the word, as demonstrated in the following example:

SELECT TS LEXIZE ('english stem', 'running'):;
The preceding code returns the following;:
{run}

We can use these techniques to identify tokens in text, as we will see in the
following exercise.

Text Analytics Using PostgreSQL | 247

EXERCISE 5.05: PERFORMING TEXT ANALYTICS

In this exercise, we want to quantitatively identify keywords that correspond with
higher-than-average ratings or lower-than-average ratings using text analytics. In
our ZoomZoom database, we have access to some customer survey feedback, along
with ratings for how likely the customer is to refer their friends to ZoomZoom. These
keywords will allow us to identify key strengths and weaknesses for the executive
team to consider in the future.

Follow these steps to complete the exercise:

1. Query the data from the customer survey table to gain some familiarity with
the dataset:

SELECT * FROM customer survey limit 5;
The following is the output of the preceding query:

feedback

highly recommend the lemon scooter. It's so fast
really enjoyed the sale - I was able to get the Bat for a 2% discount

I
I
Overall, the experience was ok. I don't think that the customer service rep was really understanding the issue.
The model epsilon has been a fantastic ride - one of the best cars I have ever driven.

I've been riding the scooter around town. It's been good in urban areas.

Figure 5.17: Example customer survey responses in our database

We can see that we have access to a numeric rating between 1 and 10, and
feedback in text format.

2. Analyze the text, by parsing it out into individual words and their associated
ratings. We can do this using the STRING_TO_ARRAY and UNNEST
array transformations:

SELECT UNNEST(STRING_TO_ARRAY(feedback, ' ")) AS word, rating FROM
customer survey limit 10;

248 | Analytics Using Complex Data Types

The following is the output of the preceding query:

9
9
9
9
9
9
9
9
9
0

[

(10 rows)

Figure 5.18: Transformed text output

As we can see from this output, the tokens are not standardized, and therefore
this is problematic. In particular, punctuation (for example, It's), capitalization
(for example, I and It's), word stems, and stop words (for example, I, the,
and so) can be addressed to make the results more relevant.

3. Standardize the text using the ts_lexize function and the English stemmer,
'english stem'. We will then remove characters that are not letters in our
original text using REGEXP_REPLACE. Pairing these two functions together with
our original query, we get the following:

SELECT
(TS LEXIZE ('english stem',
UNNEST (STRING TO_ ARRAY (
REGEXP REPLACE (feedback, '["a-zA-Z]+', ' ', 'g'),
)
))) [1] AS token,
rating
FROM customer survey
LIMIT 10;

Text Analytics Using PostgreSQL | 249

The following is the output of the code:

recommend
NULL
lemon

scooter
NULL
NULL
NULL
fast
(19 rows)

WWwWwWwwWwwwwww

Figure 5.19: Output from TS_LEXIZE and REGEX_REPLACE

NOTE

When we apply these transformations, we call the outputs tokens rather
than words. Tokens refer to each linguistic unit.

Now we have the key tokens and their associated ratings available. Note that
the output of this operation produces NULL values, so we will need to filter out
those rating pairs.

Find the average rating associated with each token using a GROUP BY clause:

SELECT
(TS LEXIZE ('english stem',
UNNEST (STRING TO_ ARRAY (
REGEXP REPLACE (feedback, '["a-zA-Z]+', ' ', 'g'),
)
))) [1] AS token,
AVG (rating) AS avg rating

250 | Analytics Using Complex Data Types

FROM customer survey
GROUP BY 1
HAVING COUNT (1) >= 3
ORDER BY 2

In this query, we group by the first expression in the SELECT statement where
we perform the tokenization. We can now take the average rating associated
with each token. We want to make sure that we only take tokens with more than
a couple of occurrences so that we can filter out the noise. In this case, due to
the small sample size of feedback responses, we only require that the token
occurs three or more times (HAVING COUNT (1) >= 3). Finally, we order the
results by the second expression—the average score:

avg_rating

.3333333333333333
.3333333333333333
.3333333333333333

servic
custom
issu
long
ship
email
help

one
littl
hook

get

work
NULL
realli
scooter
ride
model
lemon
great
fast
dealership
sale
discount
(25 rows)

. 6666666666666667
. 6666666666666667

.3333333333333333
. 6666666666666667

.1872659176029963

- 9090909090909091
« 7500000000000000
.3333333333333333
. 6666666666666667

WWWwWwoeo~N~N~N~NoOunnummuunumuds bbb WNNNNNNN

Figure 5.20: Average ratings associated with text tokens

Text Analytics Using PostgreSQL | 251

At one end of the spectrum, we see that we have quite a few results that are
negative: pop probably refers to popping tires, and batteri probably refers to
issues with battery life. On the positive side, we see that customers respond
favorably to discount, sale, and dealership.

2. Verify the assumptions by filtering survey responses that contain these tokens
using an ILIKE expression, as follows:

SELECT * FROM customer survey WHERE feedback ILIKE 'S%pop%';

This returns three relevant survey responses:

my second trip one of the tires popped. I would have really expected it to get repaired under the warranty.

was riding to work and one my wheels popped! It was going to cost $200 to fix it - what a scom!
popped a wheel, and can't seem to fix it.

Figure 5.21: Filtering survey responses using ILIKE

The ILIKE expression allows us to match text that contains a pattern. In this
example, we are trying to find text that contains the text pop, and the operation
is case-insensitive. By wrapping this in % symbols, we are specifying that the text
can contain any number of characters on the left or right.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/3fimGOW.

Upon receiving the results of our analysis, we can report the key issues to our product
team to review. We can also report the high-level findings that, first, the customers
like discounts and, second, the feedback has been positive following the introduction
of dealerships.

NOTE

ILIKE is similar to another SQL expression: LIKE. The ILIKE
expression is case-insensitive, and the LIKE expression is case-sensitive,
so, typically, it will make sense to use ILIKE. In situations where
performance is critical, LIKE might be slightly faster.

https://packt.live/3fimG9W

252 | Analytics Using Complex Data Types

PERFORMING TEXT SEARCH

While performing text analytics using aggregations as we did earlier, it might be
helpful to instead query our database for relevant posts, similar to how you might
query a search engine.

While you can do this using an ILIKE expression in your WHERE clause, this is not
terribly fast or extensible. For example, what if you wanted to search the text for
multiple keywords, correct searches with misspellings, or handle scenarios where one
of the words might be missing altogether?

For these situations, we can use the text search functionality in PostgreSQL. This
functionality scales up to millions of documents when it is fully optimized.

NOTE

"Documents" represent the individual records in a search database. Each
document represents the entity that we want to search for. For example, on
a personal website, this might be a blog post that includes the title, author,
and article for one entry. For a survey, it might include the survey responses
or perhaps the survey response combined with the survey question. A
document can span multiple fields or even multiple tables.

We can start with the to_tswvector function, which will perform a similar function
to the ts_lexize function. Rather than producing a token from a word, this will
tokenize the entire document. Here's an example:

SELECT

feedback,

to tsvector ('english', feedback) AS tsvectorized feedback
FROM customer survey

LIMIT 1;
This produces the following result:

feedback tsvectorized_feedback

I highly recommend the lemon scooter. It's so fast | 'fast':1@ 'high':2 'lemon':5 "recommend':3 'scooter':6

Figure 5.22: The tsvector tokenized representation of the original feedback

Text Analytics Using PostgreSQL | 253

In this case, the feedback, | highly recommend the lemon scooter. It's so fast,
was converted into a tokenized vector: 'fast':10 'high':2 'lemon':5
'recommend':3 'scooter':6.Similartothe ts_lexize function, less
meaningful "stop words" were removed, such as I, the, It's, and so. Other
words, such as highly were stemmed from their root (high). Word order was
not preserved.

The to_tsvector function can also take in JSON or JSONB syntax and tokenize the
values (no keys) as a tsvector object.

The output data type from this operation is a tsvector data type. The tsvector
data type is specialized and specifically designed for text search operations. In
addition to tsvector, the tsquery data type is useful for transforming a search
query into a useful data type that PostgreSQL can use to search. For example,
suppose we want to construct a search query with the 1lemon scooter keyword.
We can write it as follows:

SELECT to tsquery('english', 'lemon & scooter');

Or, if we don't want to specify the Boolean syntax, we can write it more simply:
SELECT plainto tsquery('english', 'lemon scooter');

Both of these queries produce the same result:

plainto tsquery
'lemon' & 'scooter'

(1 row)

NOTE

to_tsquery accepts Boolean syntax, such as | for or and & for and. It
also accepts ! for not.

You can also use Boolean operators to concatenate tsquery objects. For example,
the && operator will produce a query that requires the left query and the right query,
while the | | operator will produce a query that matches either the left or the right
tsquery object:

SELECT plainto tsquery('english', 'lemon') && plainto tsquery('english',
'bat') || plainto_tsquery('english', 'chi');

254 | Analytics Using Complex Data Types

This produces the following result:
'lemon' & 'bat' | 'chi'

We can query a ts_vector object using a ts_query object using the @@ operator.
For example, we can search all customer feedback for ' lemon scooter':

SELECT *
FROM customer survey

WHERE to tsvector ('english', feedback) @@ plainto tsquery('english',
'lemon scooter');

This returns the following three results:

9 | I highly recommend the lemon scooter. It's so fast

8 | The lemon scooter has been incredible! I love it!
6 | The lemon scooter was a little too fast for me. I will be returning this item,
(3 rows)

Figure 5.23: Search query output using the PostgreSQL search functionality

In the next section, we will learn how to optimize text search on PostgreSQL.

OPTIMIZING TEXT SEARCH ON POSTGRESQL

While the PostgreSQL search syntax in the previous example is straightforward,

it needs to convert all text documents into a tsvector object every time a new
search is performed. Additionally, the search engine needs to check each and every
document to see whether they match the query terms.

We can improve this in two ways:
+ Store the tsvector objects so that they do not need to be recomputed.

+ We can also store the tokens and their associated documents, similar to how
an index in the back of a book has words or phrases and their associated
page numbers so that we don't have to check each document to see whether
it matches.

In order to do these two things, we will need to precompute and store the tsvector
objects for each document and compute a Generalized Inverted Index (GIN).

In order to precompute the tsvector objects, we will use a materialized view. A

materialized view is defined as a query, but unlike a regular view, where the results
are queried every time, the results for a materialized view are persistent and stored
as a table.

Text Analytics Using PostgreSQL | 255

Because a materialized view stores the results in a stored table, it can get out of sync
with the underlying tables that it queries.

We can create a materialized view of our survey results using the following query:

CREATE MATERIALIZED VIEW customer survey search AS (
SELECT
rating,
feedback,
to_tsvector('english', feedback)
|| to_tsvector('english', rating::text) AS searchable
FROM customer survey
)

You can see that our searchable column is actually composed of two columns: the
rating and feedback columns. There are many scenarios where you will want to
search on multiple fields, and you can easily concatenate multiple tsvector objects
together with the | | operator.

We can test that the view worked by querying a row:
SELECT * FROM customer_survey_search LIMIT 1;

This produces the following output:

searchable

9 | I highly recommend the lemon scooter. It's so fast | '9':11 'fast':10 ' :2 "lemon’:5 'recommend’:3 ‘scooter':6
(1 row)

Figure 5.24: A record from our materialized view with tsvector

Whenever we need to refresh the view (for example, after an insert or update), we
can use the following syntax:

REFRESH MATERIALIZED VIEW customer survey search;

This will recompute the view concurrently while the old copy of the view remains
available and unlocked.

Additionally, we can add the GIN index with the following syntax:

CREATE INDEX idx customer survey search searchable ON customer survey
search USING GIN(searchable);

256 | Analytics Using Complex Data Types

With these two operations (creating the materialized view and creating the GIN
index), we can now easily query our feedback table using search terms:

SELECT rating, feedback FROM customer survey search WHERE searchable (@
plainto tsquery('dealership');

The following is the output of the preceding query:

feedback

8 | I really appreciated having a dealership so close to me - it made the transaction much easier!

9 | The sales people at the dealership were so nice and helpfull
1@ | The millburn dealership is the best! Those folks are great!
(3 rows)

Figure 5.25: Output from the materialized view optimized for search

While the query time improvement might be small or non-existent for a small table
of 32 rows, these operations greatly improve the speed for large tables (for example,
with millions of rows), and enable users to quickly search their database in a matter
of seconds.

In the following activity, we will put these ideas into practice by creating a searchable
sales database that will allow us to leverage text queries to find the information that
we need.

ACTIVITY 5.01: SALES SEARCH AND ANALYSIS

In this activity, you will set up a search materialized view and answer some business
guestions using what we have learned in the previous exercises. The head of sales
at ZoomZoom has identified a problem: there is no easy way for the sales team to
search for a customer. You volunteered to create a proof-of-concept internal search
engine that will make all customers searchable by their contact information and the
products that they have purchased in the past.

Perform the following steps to complete the activity:

1. Using the customer_sales table, create a searchable materialized view with
one record per customer. This view should be keyed off of the customer_id
column and searchable on everything related to that customer: name, email,
phone, and purchased products. It is OK to include other fields as well.

2. Create a searchable index on this materialized view.

Text Analytics Using PostgreSQL | 257

A salesperson asks you if you can use your new search prototype to find a
customer by the name of Danny who purchased the Bat scooter. Query your
new searchable view using the Danny Bat keywords. How many rows did
you get?

The sales team wants to know how common it is for someone to buy each
scooter and automobile combination. To do that, join the product table to itself
to get all distinct pairs of scooters and automobiles.

You can assume that limited-edition releases can be grouped together with

their standard model counterpart (for example, Bat and Bat Limited
Edition can be considered the same scooter). Simply filter out Bat Limited
Edition from the product pairs.

Using the results from the cross join, create a query that counts how many
customers were found to match each of the product pairs.

Expected Output:

"lemon' & 'model' & 'sigma'
'"lemon' & 'model' & "chi’
'bat' & "model' & 'epsilon'
'bat' & "model' & 'sigma"
'bat' & "model' & 'chi'
"lemon' & "model' & 'epsilon'
'bat' & "model' & 'gamma'
"lemon' & 'model' & "gamma'
"Llemon' & 'zester' & 'model' & 'chi'
"lemon' & 'zester' & 'model' & 'epsilon'
'blade' & 'model' & 'chi'
"lemon' & 'zester' & 'model' & 'sigma'
'blade' & 'model"' & 'sigma'
"lemon' & 'zester' & 'model' &
'blade' & 'model' & 'epsilon'
'blade' & 'model' & 'gamma'
(16 rows)

Figure 5.26: Customer counts for each scooter and automobile combination

NOTE

The solution for this activity can be found via this link.

258 | Analytics Using Complex Data Types

In this activity, we searched and analyzed the data using the materialized view. Then,
we used DISTINCT and JOINS to transform the query. Lastly, we learned how to
query our database using tsquery objects to get the final output.

SUMMARY

In this chapter, we covered special data types including date and time, geospatial,
complex data structures, and text data types. For date and time data types, we
explored how to manipulate time series data, extract components, and represent the
information in practical ways that would allow us to build analysis. For geospatial data
types, we learned how to convert latitude and longitude into point data types that
allow us to calculate distances between locations.

For complex data types, we discussed several powerful data types: arrays, JSON, and
JSONB. For these data types, we explored how to create these values, as well as how
to write complex queries to navigate their structure.

Finally, we learned that text data can be useful in analytics—first, in running an
analysis on keywords, and also in the context of text search, which can be a valuable
analytical tool.

As our datasets grow larger and larger, these complex analyses become slower

and slower. In the next chapter, we will take a deep look at how we can begin to
optimize these queries using an explanation and analysis of the query plan, as well as
additional tools, such as indexes, that can speed up our queries.

PERFORMANT SQL

OVERVIEW

By the end of this chapter, we will be able to optimize database use to allow
queries to be executed with fewer resources. First, we will look at how a
database engine performs basic queries by developing our understanding
of the sequential scan. Next, we will look at optimizing SELECT queries
by creating indexes on our tables that improve performance. We will

also examine the benefits of using joins in place of other functionality.

We will explore advanced functionality by creating custom functions for
special computations and examine how to apply custom constraints on
our database by leveraging triggers. Finally, we will learn about tools

and techniques for terminating inefficient queries that are consuming our
database resources.

262 | Performant SQL

INTRODUCTION

In the previous chapter, we developed the skills necessary to effectively analyze
data within a SQL database, and in this chapter, we will turn our attention to the
efficiency of this analysis, investigating how we can increase the performance of our
SQL queries. Efficiency and performance are key components of data analytics since
without considering these factors, physical constraints such as time and processing
power can significantly affect the outcome of an analysis. To elaborate on these
limitations, we can consider two separate scenarios.

Say that we are performing post hoc analysis (analysis after the fact or event). In

this first scenario, we have completed a study and have collected a large dataset of
individual observations of a variety of different factors or features. One such example
is described within our dealership sales database, which analyzes the sales data for
each customer.

With the data collection process, we want to analyze the data for patterns and
insights as specified by our problem statement. If our dataset was sufficiently large,
we could quickly encounter issues if we didn't optimize the queries first; the most
common issue would simply be the time taken to execute the queries. While this
doesn't sound like a significant issue, unnecessarily long processing times can cause:

+ Areduction in the depth of the completed analysis. As each query takes a long
time, the practicalities of project schedules may limit the number of queries, and
so the depth and complexity of the analysis may be limited.

+ The limiting of the selection of data for analysis. By artificially reducing the
dataset using sub-sampling, we may be able to complete the analysis in a
reasonable time but would have to sacrifice the number of observations being
used. This may, in turn, lead to biases being accidentally included in the analysis.

+ The need to use many more resources simultaneously to complete the analysis
in a reasonable time, thereby increasing the project cost.

Similarly, another potential issue with sub-optimal queries is an increase in the
required system memory and compute power. This can result in either of the
following two scenarios:

« The failure of the analysis due to insufficient resources

+ Asignificant increase in the cost of the project to recruit the required resources

Database Scanning Methods | 263

Analysis/queries are part of a service or product. Let's think of a second scenario,
where analysis is being completed as a component of a larger service or product, and
so database queries may need to be completed in real-time, or at least near real-time.
In such cases, optimization and efficiency are key for the product to be a success.
One such example is a GPS navigation system that incorporates the state of traffic as
reported by other users.

For such a system to be effective and provide up-to-date navigation information, the
database must be analyzed at a rate that keeps up with the speed of the car and the
progress of the journey. Any delays in the analysis that would prevent the navigation
from being updated in response to traffic would have a significant impact on the
commercial viability of the application.

After looking at this example, we can see that while efficiency is important in an
effective and thorough post hoc analysis, it is absolutely critical when incorporating
data analysis as a component of a separate product or service.

While it is certainly not the job of a data scientist or data analyst to ensure that the
production process and the database are working at optimal efficiency, it is critical
that the queries of the underlying analysis are as effective as possible. If we do not
have an efficient and current database in the first place, further refinements will not
help to improve the performance of the analysis. In the next section, we will discuss
methods for increasing the performance of scans for information throughout

a database.

DATABASE SCANNING METHODS

SQL-compliant databases provide a number of different methods for scanning,
searching, and selecting data. The right scan method to use is very much dependent
on the use case and the state of the database at the time of scanning. How many
records are in the database? Which fields are we interested in? How many records
do we expect to be returned? How often do we need to execute the query? These
are just some of the questions that we may want to ask when selecting the most
appropriate scanning method.

Throughout this section, we will describe some of the search methods available, how
they are used within SQL to execute scans, and a number of scenarios where they
should/should not be used.

264 | Performant SQL

QUERY PLANNING

Before investigating the different methods of executing queries or scanning a
database for information, it is useful to understand how the SQL server makes
various decisions about the types of queries to be used. SQL-compliant databases
possess a powerful tool known as a query planner, which implements a set of
features within the server to analyze a request and decides upon the execution path.

The query planner optimizes a number of different variables within the request
with the aim of reducing the overall execution time. These variables are described
in greater detail in the PostgreSQL documentation (https://www.postgresql.org/docs/
current/runtime-config-query.html) and include parameters that correspond with the
cost of sequential page fetches, CPU operations, and cache size.

In this chapter, we will not cover the details of how a query planner implements its
analysis since the technical details are quite involved. However, it is important to
understand how to interpret the plan reported by the query planner. Interpreting the
planner is critical if we want to get high performance from a database, as doing so
allows us to modify the contents and structure of queries to optimize performance.
So, before embarking on a discussion of the various scanning methods, we will gain
practical experience in using and interpreting the analysis of the query planner.

SCANNING AND SEQUENTIAL SCANS

When we want to retrieve information from a database, the query planner needs

to search through the available records in order to get the data we need. There

are various strategies employed within the database to order and allocate the
information for fast retrieval. The process that the SQL server uses to search through
a database is known as scanning.

For all of the examples in this chapter, we will be using a command line interface
or a shell.

We will start with the sequential scan, as this is the easiest to understand and is
guaranteed to work in every scenario. In some circumstances, the sequential scan
isn't the fastest or most efficient; however, it will always produce the correct result.
The other interesting thing to note about the sequential scan is that, though you
may not be aware of it, you have already executed a number of sequential scans in
the previous chapters. Do you recall entering the following command in Chapter 4,
Importing and Exporting Data?

SELECT * FROM customers LIMIT 5

https://www.postgresql.org/docs/current/runtime-config-query.html
https://www.postgresql.org/docs/current/runtime-config-query.html

Database Scanning Methods | 265

The following is the output of the preceding code:

customer_id | title | first_name | last_name | suffix

|
------------- e L
1| | Arlena | Riveles | | arivelesf@stumbleupon.com
2| or | Ode | Stovin | | ostovinl@npr.org
3] | Braden | Jordan | | bjordan2@geocities.com
4 | | Jessika | Nussen | | jnussen3@salon.com
5 | Lonnie | Rembaud | | lrembaud4@discovery.com

(5 rows)

Figure 6.1: The first six columns of output from the SELECT statement

Extracting data using the SELECT command directly from the database executes

a sequential scan, where the database server traverses through each record in the
database and compares each record to the criteria in the sequential scan, returning
those records that match the criteria. This is essentially a brute-force scan and, thus,
can always be called upon to execute a search. In many situations, a sequential scan
is also often the most efficient method and will be automatically selected by the SQL
server. This is particularly the case if any of the following is true:

+ The table is quite small.
« The field used in searching contains a large number of duplicates.

+ The planner determines that the sequential scan would be equally efficient or
more efficient for the given criteria than any other scan.

In this exercise, we will introduce the EXPLAIN command, which displays the plan for
a query before it is executed. When we use the EXPLAIN command in combination
with a SQL statement, the SQL interpreter will not execute the statement, but rather
return the steps that are going to be executed (a query plan) by the interpreter in
order to return the desired results.

There is a lot of information returned in a query plan, and being able to comprehend
the output is vital in tuning the performance of our database queries. Query planning
is itself a complex topic and can require some practice in order to be comfortable
with interpreting the output; even the PostgreSQL official documentation notes that
plan-reading is an art that deserves significant attention in its own right. We will start
with a simple plan and will work our way through more complicated queries and

query plans.

266 | Performant SQL

Now, let's perform an exercise to interpret the query planner.

NOTE

All the exercises and activities in this chapter are also available on GitHub
at https://packt.live/2XSiV56.

For all exercises and activities in this chapter, please note that query
analysis metrics will vary depending on system configuration. Thus, you
may get outputs that may vary with those presented in the exercises
and activites. The key point is that the outputs provided in this chapter
demonstrate the working of the principles.

EXERCISE 6.01: INTERPRETING THE QUERY PLANNER

In this exercise, we will interpret a query planner using the EXPLAIN command. We
will interpret the query planner of the emails table of the sqlda database. Then,
we will employ a more involved query, searching for dates between two specific
values in the clicked date field. We will need to ensure that the sqlda database
is loaded as described within the Preface.

Retrieve the Exercise 6.01.sql file from the accompanying source code. This
file will contain all the queries used throughout this exercise. However, we will enter
them manually using the SQL interpreter to reinforce our understanding of the query
planner's operation.

Follow these steps to complete the exercise:

1. Open the default command-line interface (CMD, Terminal) and connect to the
sglda database:

C:\> psgl sqglda

Upon successful connection, you will be presented with the interface to the
PostgreSQL database:

Type "help" for help
sglda=#

https://packt.live/2XSiV56

Database Scanning Methods | 267

2.

Enter the following command to get the query plan of the emails table:
sqlda=# EXPLAIN SELECT * FROM emails;
Information similar to the following will then be presented:

QUERY PLAN

Seq Scan on emails (cost=0.00..9606.58 rows=418158 width=79)
(1 row)

Figure 6.2: Query plan of the emails table

This information is returned by the query planner; while this is the simplest
example possible, there is quite a bit to unpack in the planner information, so
let's look through the output step by step:

QUERY PLAN

ISeq Scanlon emails (cost=0.00..9606.58 rows=418158 width=79)
row

Figure 6.3: Scan type

The first aspect of the plan that is provided is the type of scan executed by the
query. We will cover more of the scan types later in the chapter, but the Seq
Scan (see Figure 6.3), or sequential scan, is a simple yet robust type of query:

QUERY PLAN

Seq Scan on emails (cosy=0.00J.9606.58 rows=418158 width=79)
(1 row)

Figure 6.4: Start up cost

268 | Performant SQL

The first measurement reported by the planner, as shown in Figure 6.4, is the
start up cost, which is the time expended before the scan starts. This time may
be required to first sort the data or complete other pre-processing applications.
It is also important to note that the time measured is actually reported in cost
units (see Figure 6.4) as opposed to seconds or milliseconds. Often, the cost units
are an indication of the number of disk requests or page fetches made, rather
than this being a measure in absolute terms. The reported cost is typically more
useful as a means of comparing the performance of various queries, rather than
as an absolute measure of time:

QUERY PLAN

Seq Scan on emails (cost=0.00.]9606.58] rows=418158 width=79)
(1 row)

Figure 6.5: Total cost

The next number in the sequence (see Figure 6.5) indicates the total cost

of executing the query if all available rows are retrieved. There are some
circumstances in which not all the available rows may be retrieved, but we will
cover that soon:

QUERY PLAN

Seq Scan on emails (cost=0.00..9606.58 rows4418158jwidth=79)
(1 row)

Figure 6.6: Rows to be returned

The next figure in the plan (see Figure 6.6) indicates the total number of rows that
are available to be returned—again if the plan is completely executed:

QUERY PLAN

Seq Scan on emails (cost=0.00..9606.58 rows=418158 widthf79)
(1 row)

Figure 6.7: Width of each row

Database Scanning Methods | 269

The final figure (see Figure 6.7), as suggested by its caption, indicates the width of
each row in bytes.

NOTE

When executing the EXPLAIN command, PostgreSQL does not actually
implement the query or return the values. It does, however, return a
description, along with the processing costs involved in executing each
stage of the plan.

3. Query plan the emails table and set the limit as 5. Enter the following
statement in the PostgreSQL interpreter:

sglda=# EXPLAIN SELECT * FROM emails LIMIT 5;

This repeats the previous statement, where the planner is limited to the first five
records. This query will produce the following output from the planner:

QUERY PLAN

Limit (cost=0.00..0.11 rows=5 width=79)
-> Seqg Scan on emails (cost=0.00..9606.58 rows=418158 width=79)
(2 rows)

Figure 6.8: Query plan with limited rows

Referring to Figure 6.8, we can see that there are two individual rows in the plan.
This indicates that the plan is composed of two separate steps, with the lower
line of the plan (or, in this case, the first step to be executed) being a repeat

of that shown in Figure 6.7. The upper line of the plan is the component that
limits the result to only 5 rows. The Limit process is an additional cost of the
query; however, it is quite insignificant compared to the lower-level plan, which
retrieves approximately 418158 rows at a cost of 9606 page requests. The
Limit stage only returns 5 rows at a cost of 0. 11 page requests.

270 | Performant SQL

NOTE

The overall estimated cost of a request comprises the time taken to retrieve
the information from the disk and the number of rows that need to be
scanned. The internal parameters seq_page_cost and cpu_tuple
cost define the cost of the corresponding operations within the tablespace
for the database. While not recommended at this stage, these two variables
can be changed to modify the steps prepared by the planner.

For more information, refer to the PostgreSQL documentation:
https://www.postgresql.org/docs/current/runtime-config-query.html.

4. Now, employ a more involved query, searching for dates between two specific
values in the clicked date column. Enter the following statement into the
PostgreSQL interpreter:

sqlda=# EXPLAIN SELECT * FROM emails WHERE clicked date BETWEEN
'2011-01-01' and '2011-02-01"';

This will produce a query plan similar to this:

Gather (cost=1000.00..9051.49 rows=130 width=79)
Workers Planned: 2
-> Parallel Seq Scan on emails (cost=0.00..8038.49 rows=54 width=79)
Filter: ((clicked_date >= '2011-01-01 00:00:00'::timestamp without time zone) AND
(clicked_date <= '2011-02-01 00:00:00'::timestamp without time zone))
(4 rows)

Figure 6.9: Sequential scan for searching dates between two specific values

The first aspect of this query plan to note is that it comprises a few different
steps. The lower-level query is similar to the previous query in that it executes a
sequential scan. However, rather than limiting the output, we are filtering it on
the basis of the timestamp strings provided.

Notice that the sequential scan is to be completed in parallel, as indicated by the
Parallel Seq Scan, and the fact that two workers are planned to be used. Each
individual sequence scan should return approximately 54 rows, taking a cost

of 8038. 49 to complete. The upper level of the plan is a Gather state, which

is executed at the start of the query. We can see here for the first time that the
upfront costs are non-zero (1000) and total 9051 . 49, including the gather and
search steps.

https://www.postgresql.org/docs/current/runtime-config-query.html

Database Scanning Methods | 271

NOTE

To access the source code for this specific section, please refer
to https://packt.live/30BwWNIY.

In this exercise, we worked with the query planner and the output of the EXPLAIN
command. These relatively simple queries highlighted a number of the features

of the SQL query planner as well as the detailed information that is provided by it.
Having a good understanding of the query planner and the information it is returning
to you will serve you well in your data science endeavors. Just remember that this
understanding will come with time and practice; never hesitate to consult the
PostgreSQL documentation: https://www.postgresgl.org/docs/current/using-explain.html.

We will continue to practice reading query plans throughout this chapter as we look
at different scan types and the methods, they use to improve performance.

ACTIVITY 6.01: QUERY PLANNING

In this activity, we will query the plan for reading and interpreting the information
returned by the planner. Let's say that we are still dealing with our sqlda database
of customer records and that our finance team would like us to implement a system
to regularly generate a report of customer activity in a specific geographical region.
To ensure that our report can be run in a timely manner, we need an estimate of how
long the SQL queries will take. We will use the EXPLAIN command to find out how
long some of the report queries will take:

1. Open PostgreSQL and connect to the sqlda database.

2. Use the EXPLAIN command to return the query plan for selecting all available
records within the customers table.

3. Read the output of the plan and determine the total query cost, the setup cost,
the number of rows to be returned, and the width of each row. Looking at the
output, what are the units for each of the values returned from the plan after
performing this step?

https://packt.live/30BwNlY
https://www.postgresql.org/docs/current/using-explain.html

272 | Performant SQL

4. Repeat the query from step 2 of this activity, this time limiting the number of
returned records to 15.

Looking at the updated query plan, how many steps are involved in the query
plan? What is the cost of the limiting step?

5. Generate the query plan, selecting all rows where customers live within a
latitude of 30 and 40 degrees. What is the total plan cost as well as the number
of rows returned by the query?

Expected output:

QUERY PLAN

Seq Scan on customers (cost=0.00..1786.00 rows=26439 width=140)
Filter: ((latitude > '30'::double precision) AND (latitude < '40'::double precision))
(2 rows)

Figure 6.10: Plan for customers living within a latitude of 30 and 40 degrees

NOTE

The solution for this activity can be found via this link. For an additional
challenge, try completing this exercise in Python using psycopg?2.

In this activity, we practiced reading the plans returned by the query planner. As
discussed previously, plan reading requires substantial practice to master it. This
activity began this process and it is strongly recommended that you frequently use
the EXPLAIN command to improve your plan reading.

In the next section, we will learn how to improve the performance of our queries
using index scans.

Database Scanning Methods | 273

INDEX SCANNING

Index scans are one method of improving the performance of our database queries.
Index scans differ from sequential scans in that a pre-processing step is executed
before the search of database records can occur.

The simplest way to think of an index scan is just like the index of a text or reference
book. When creating a non-fiction book, a publisher parses through the contents

of the book and writes the page numbers corresponding with each alphabetically
sorted topic. Just as the publisher goes to the initial effort of creating an index for the
reader's reference, we can create a similar index within the PostgreSQL database.

This index within the database creates a prepared and organized set or a subset of
references to the data under specified conditions. When a query is executed and an
index is present that contains information relevant to the query, the planner may
elect to use the data that was pre-processed and pre-arranged within the index.
Without using an index, the database needs to repeatedly scan through all records,
checking each record for the information of interest.

Even if all of the desired information is at the start of the database, without indexing,
the search will still scan through all available records. Clearly, this would take a
significantly longer time than necessary.

There are a number of different indexing strategies that PostgreSQL can use to create
more efficient searches, including B-trees, hash indexes, Generalized Inverted
Indexes (GINs), and Generalized Search Trees (GISTs).

Each of these different index types has its own strengths and weaknesses and is
therefore used in different situations. One of the most frequently used indexes is the
B-tree, which is the default indexing strategy used by PostgreSQL and is available in
almost all database software. We will first spend some time investigating the B-tree
index, looking at what makes it useful, as well as some of its limitations.

274 | Performant SQL

B THE B-TREE INDEX

The B-tree index is a type of binary search tree and is characterized by the fact that it
is a self-balancing structure, maintaining its own data structure for efficient searching.
A generic B-tree structure can be found in Figure 6.71, in which we can see that each
node in the tree has no more than two elements (thus providing balance) and that
the first node has two children. These traits are common among B-trees, where each
node is limited to n components, thus forcing the split into child nodes. The branches
of the trees terminate at leaf nodes, which, by definition, have no children:

5 10
3 4 15 20
12 13 23 25

Figure 6.11: Generic B-tree

Using the preceding figure as an example, say we were looking for the number 13 in
the B-tree index. We would start at the first node and select whether the number was
less than 5 or greater than 10. This would lead us down the right-hand branch of the
tree, where we would again choose between less than 15 and greater than 20. We
would then select less than 15 and arrive at the location of 13 in the index.

We can see immediately that this operation would be much faster than looking
through all available values. We can also see that for performance, the tree must be
balanced to allow for an easy path for traversal. Additionally, there must be sufficient
information to allow splitting. If we had a tree index with only a few possible values to
split on and a large number of samples, we would simply divide the data into a

few groups.

Database Scanning Methods | 275

Considering B-trees in the context of database searching, we can see that we
require a condition to divide the information (or split) on, and we also need
sufficient information for a meaningful split. We do not need to worry about the
logic of following the tree, as that will be managed by the database itself and can
vary depending on the conditions for searching. Even so, it is important for us

to understand the strengths and weaknesses of the method to allow us to make
appropriate choices when creating the index for optimal performance.

To create an index for a set of data, we use the following syntax:
CREATE INDEX <index name> ON <table name> (table column) ;

We can also add additional conditions and constraints to make the index
more selective:

CREATE INDEX <index name> ON <table name> (table column) WHERE
[condition];

We can also specify the type of index:
CREATE INDEX <index name> ON <table name> USING TYPE (table column)

PostgreSQL supports multiple index types, such as B-tree, Hash, GiST, and so on. For
example, if we execute the following query to create a B-tree type index on a column:

CREATE INDEX ix customers ON customers USING BTREE (customer id);
This outputs the following simple message:

CREATE INDEX
This indicates that the index was created successfully.

In the next exercise, we will start with a simple plan and work our way through more
complicated queries and query plans, using index scans.

276 | Performant SQL

EXERCISE 6.02: CREATING AN INDEX SCAN

In this exercise, we will create a number of different index scans and will investigate
the performance characteristics of each of the scans.

Continuing with the scenario from the previous activity, say we had completed our
report service but wanted to make the queries faster. We will try to improve this
performance using indexing and index scans. You will recall that we are using a table
of customer information that includes contact details such as name, email address,
phone number, and address information, as well as the latitude and longitude details
of their address. Follow these steps:

1.

Ensure that the sqlda database is loaded as described within the Preface.
Retrieve the Exercise6.02. sql file from the accompanying source code. This
file will contain all the queries used throughout this exercise; however, we will
enter them manually using the SQL interpreter to reinforce our understanding of
the query planner's operation.

Open PostgreSQL and connect to the sqlda database:
C:\> psgl sqglda

Upon successful connection, you will be presented with the interface to the
PostgreSQL database:

Type "help" for help
sqgqlda=#

Starting with the customers database, use the EXPLAIN command to
determine the cost of the query and the number of rows returned in selecting all
of the entries with a state value of FO:

sglda=# EXPLAIN SELECT * FROM customers WHERE state='FO';

The output of the preceding code will be similar to the following. Please note
that the actual output may vary.

QUERY PLAN

Seq Scan on customers (cost=0.00..1661.00 rows=1 width=148)
Filter: (state = 'FO'::text)
(2 rows)

Figure 6.12: Query plan of a sequential scan with constraints

Database Scanning Methods | 277

Note that there is only 1 row returned and that the setup cost is 0, but the total
query costis 1661.

4. Determine how many unique state values there are, again using the
EXPLAIN command:

sglda=# EXPLAIN SELECT DISTINCT state FROM customers;

The output is similar to the following:

QUERY PLAN

HashAggregate (cost=1661.00..1661.51 rows=51 width=3)
Group Key: state
-> Seq Scan on customers (cost=0.00..1536.00 rows=50000 width=3)

Figure 6.13: Unique state values
So, there are 51 unique values within the state column.
5. Create anindex called ix_state using the state column of customers:
sglda=# CREATE INDEX ix state ON customers (state);
6. Rerun the EXPLAIN statement from step 5:
sglda=# EXPLAIN SELECT * FROM customers WHERE state='FO';

The output of the preceding code is similar to this:

QUERY PLAN

Index Scan using ix_state on customers (cost=0.29..8.31 rows=1 width=1480)
Index Cond: (state = 'FO'::text)

Figure 6.14: Query plan of an index scan on the customers table

Notice that an index scan is now being used with the index we just created in
step 5. We can also see that we have a non-zero setup cost (0. 29), but the total
cost is very much reduced from the previous 1661 to only 8. 31. This is the
power of the index scan.

Now, let's consider a slightly different example, looking at the time it takes to
return a search on the gender column.

278 | Performant SQL

7. Use the EXPLAIN command to return the query plan for a search for all records

of males within the database:
sqlda=# EXPLAIN SELECT * FROM customers WHERE gender='M';

The output is as follows:

QUERY PLAN

Seq Scan on customers (cost=0.00..1661.00 rows=24960 width=148)
Filter: (gender = 'M'::text)

Figure 6.15: Query plan of a sequential scan on the customers table
8. Create anindex called ix_gender using the gender column of customers:
sqlda=# CREATE INDEX ix gender ON customers (gender);
9. Confirm the presence of the index using \d:

\d customers;

Scrolling to the bottom, we can see the indexes using the ix_ prefix, as well as
the column from the table used to create the index:

state | text | |
postal_code | text | |
latitude | double precision |

longitude | double precision |

date_added | timestamp without time zone | |
Indexes:

"ix_gender" btree (gender)
"ix_state" btree (state)

Figure 6.16: Structure of the customers table
10. Rerun the EXPLAIN statement from step 10:
sglda=# EXPLAIN SELECT * FROM customers WHERE gender='M';

The following is the output of the preceding code:

QUERY PLAN

Seq Scan on customers (cost=0.00..1661.00 rows=24960 width=140)
Filter: (gender = 'M'::text)

Figure 6.17: Query plan output of a sequential scan with a condition statement

Database Scanning Methods | 279

Notice that the query plan has not changed at all, despite the use of the index
scan. This is because there is insufficient information to create a useful tree
within the gender column. There are only two possible values, M and F. The
gender index essentially splits the information in two: one branch for males and
one for females. The index has not split the data into branches of the tree well
enough to gain any benefit. The planner still needs to sequentially scan through
at least half of the data, and so it is not worth the overhead of the index. It is for
this reason that the query planner insists on not using the index.

11. Use EXPLAIN to return the query plan, searching for latitudes less than 38
degrees and greater than 30 degrees:

sglda=# EXPLAIN SELECT * FROM customers WHERE (latitude < 38) AND
(latitude > 30);

The following is the output of the preceding code:

QUERY PLAN

Seq Scan on customers (cost=0.00..1786.00 rows=17788 width=140)
Filter: ((latitude < '38'::double precision) AND (latitude > '30'::double precision))
(2 rows)

Figure 6.18: Query plan of a sequential scan on the customers table with a multi-factor
conditional statement

Notice that the query is using a sequential scan with a filter. The initial sequential
scan returns 17788 before the filter and costs 1786 with 0 start up cost.

12. Create an index called ix_latitude using the latitude column
of customers:

sqglda=# CREATE INDEX ix latitude ON customers (latitude);
13. Rerun the query of step 77 and observe the output of the plan:

QUERY PLAN
Bitmap Heap Scan on customers (cost=382.62..1685.44 rows=17788 width=140)
Recheck Cond: ((latitude < '38'::double precision) AND (latitude > '38'::double precision))
-> Bitmap Index Scan on ix_latitude (cost=0.00..378.17 rows=17788 width=0)
Index Cond: ((latitude < '38'::double precision) AND (latitude > '38'::double precision))
(4 rows)

Figure 6.19: Observe the plan after rerunning the query

280 | Performant SQL

We can see that the plan is a lot more involved than the previous one, with a
bitmap heap scan and a bitmap index scan being used. We will cover bitmap

scans soon, but first, let's get some more information by adding the ANALYZE
command to EXPLAIN.

14. Use EXPLAIN ANALYZE to query plan the content of the customers table with
latitude values of between 30 and 38:

sglda=# EXPLAIN ANALYZE SELECT * FROM customers WHERE (latitude < 38)
AND (latitude > 30);

The following output will be displayed:

QUERY PLAN

Bitmap Heap Scan on customers (cost=382.62..1685.44 rows=17788 width=140) (actual time=4.064..12.818 rows=17896 loops=1)
Recheck Cond: ((latitude < '38'::double precision) AND (latitude > '38'::double precision))
Heap Blocks: exact=1036

-> Bitmap Index Scan on ix_latitude (cost=0.00..378.17 rows=17788 width=0) (actual time=3.700..3.701 rows=17896 loops=1)
Index Cond: ((latitude < '38'::double precision) AND (latitude > '3@'::double precision))
Planning Time: 8.381 ms

Execution Time: 14.582 ms
(7 rows)

Figure 6.20: Query plan output containing additional EXPLAIN ANALYZE content

With this extra information, we can see that there is 0.3 ms of planning time
and 14.582 ms of execution time, with the index scan taking almost the same
amount of time to execute as the bitmap heat scan takes to start.

15. Create another index where latitude is between 30 and 38 on the
customers table:

sglda=# CREATE INDEX ix latitude less ON customers(latitude) WHERE
(latitude < 38) and (latitude > 30);

16. Re-execute the query of step 74 and compare the query plans:

QUERY PLAN

Bitmap Heap Scan on customers (cost=297.67..1600.49 rows=17788 width=140) (actual time=3.107..12.117 rows=17896 loops=1)

Recheck Cond: ((latitude < '38'::double precision) AND (latitude > '30'::double precision))

Heap Blocks: exact=1036

-> Bitmap Index Scan on ix_latitude_less (cost=0.08..293.23 rows=17788 width=0) (actual time=2.726..2.727 rows=17896 loops=1)
Planning Time: ©.681 ms
Execution Time: 13.905 ms
(6 rows)

Figure 6.21: Query plan displaying the trade-off between planning and execution time

Database Scanning Methods | 281

When we used a generic column index, the planning time was 0.301 ms and the
execution time was 14.582 ms. With a more targeted index, the numbers were
0.681 ms and 13.905 ms respectively. Using this more targeted index, we were
able to shave 0.681 ms off the execution time at the cost of an additional 0.3
ms of planning time.

NOTE

To access the source code for this specific section, please refer
to https://packt.live/2YuHeVI.

Thus, we have squeezed some additional performance out of our query as our
indexes have made the searching process more efficient. We may have had to pay an
upfront cost to create the index, but once created, repeat queries can be executed
more quickly.

ACTIVITY 6.02: IMPLEMENTING INDEX SCANS

In this activity, we will determine whether index scans can be used to reduce query
time. After creating our customer reporting system for the marketing department in
Activity 6.01, Query Planning, we have received another request to allow records to be
identified by their IP address or the associated customer names. We know that there
are a lot of different IP addresses and we need performant searches. Plan out the
queries required to search for records by IP address as well as for certain customers
with the suffix Jr in their name.

Here are the steps to follow:

1. Use the EXPLAIN and ANALYZE commands to profile the query plan to search
for all records with an IP address of 18.131.58. 65. How long does the query
take to plan and execute?

2. Create a generic index based on the IP address column.
3. Rerunthe query of step 1. How long does the query take to plan and execute?

4, Create a more detailed index based on the IP address column with the condition
that the IP addressis18.131.58.65.

5. Rerun the query of step 7. How long does the query take to plan and execute?
What are the differences between each of these queries?

https://packt.live/2YuHeVI

282 | Performant SQL

6. Use the EXPLAIN and ANALYZE commands to profile the query plan to search
for all records with a suffix of Jr. How long does the query take to plan
and execute?

7. Create a generic index based on the suffix address column.
8. Rerun the query of step 6. How long does the query take to plan and execute?

Expected output

QUERY PLAN
Bitmap Heap Scan on customers (cost=5.12..318.44 rows=187 width=140) (actual time=0.146..08.440 rows=102 loops=1)
Recheck Cond: (suffix = 'Jr'::text)
Heap Blocks: exact=100
-> Bitmap Index Scan on ix_jr (cost=0.00..5.89 rows=187 width=0) (actual time=0.092..0.892 rows=102 loops=1)
Index Cond: (suffix = 'Jr'::text)
Planning Time: 0.411 ms
Execution Time: ©.511 ms
(7 rows)

Figure 6.22: Query plan of the scan after creating an index on the suffix column

NOTE

The solution for this activity can be found via this link.

In this activity, we have squeezed some additional performance out of our query as
our indexes have made the searching process more efficient. We will learn how the
hash index works in the next section.

THE HASH INDEX

The final indexing type we will cover is the hash index. The hash index has only
recently gained stability as a feature within PostgreSQL, with previous versions
issuing warnings that the feature is unsafe and reporting that the method is typically
not as performant as B-tree indexes. At the time of writing, the hash index feature is
relatively limited in the comparative statements it can run, with equality (=) being the
only one available.

Database Scanning Methods | 283

So, given that the feature is only just stable and somewhat limited in options for use,
why would anyone use it? Well, hash indices are able to describe large datasets (in
the order of tens of thousands of rows or more) using very little data, allowing more
of the data to be kept in memory and reducing search times for some queries. This is
particularly important for databases that are at least several gigabytes in size.

A hash index is an indexing method that utilizes a hash function to achieve its
performance benefits. A hash function is a mathematical function that takes data or
a series of data and returns a unique length of alphanumeric characters depending
upon what information was provided and the unique hash code used.

Let's say we had a customer named "Josephine Marquez". We could pass this
information to a hash function, which could produce a hash result such as 07f38e. Say
we also had records for Josephine's husband, Julio; the corresponding hash for Julio
could be 43eb38a. A hash map uses a key-value pair relationship to find data.

We could (and are required to) use the values of a hash function to provide the key,
using the data contained in the corresponding row of the database as the value.

As long as the key is unique to the value, we can quickly access the information we
require. This method can also reduce the overall size of the index in memory if only
the corresponding hashes are stored, thereby dramatically reducing the search time
for a query.

Similar to the syntax for creating a B-tree index, a hash index can be created using the
following syntax:

CREATE INDEX <index name> ON <table name> USING HASH (table column)

The following example shows how to create a hash index on the gender columns in
the customers table:

sqlda=# CREATE INDEX ix gender ON customers USING HASH (gender) ;

You will recall that the query planner is able to ignore the indices created if it deems
them to be not significantly faster or more appropriate for the existing query. As the
hash scan is somewhat limited in use, it may not be uncommon for a different search
to ignore the indices. Now, let's perform an exercise to implement the hash index. By
doing the following exercise, you will also see the difference in performance between
different index types.

284 | Performant SQL

EXERCISE 6.03: GENERATING SEVERAL HASH INDEXES T0 INVESTIGATE PERFORMANCE

In this exercise, we will generate a number of hash indexes and investigate the
potential performance increases that can be gained from using them. We will start
the exercise by rerunning some of the queries of previous exercises and comparing
the execution times:

1. Drop all existing indexes using the DROP INDEX command for each of the
indexes that we have created previously (ix_gender, ix_state, and
ix latitude less):

DROP INDEX <index name>;

2. Use EXPLAIN and ANALYZE on the customer table where the gender is male,
but without using a hash index:

sqlda=# EXPLAIN ANALYZE SELECT * FROM customers WHERE gender='M';
An output similar to this will be displayed:

QUERY PLAN

Seq Scan on customers (cost=0.00..1661.00 rows=24960 width=140) (actual time=0.024..26.937 rows=24956 loops=1)
Filter: (gender = 'M'::text)
Rows Removed by Filter: 25044

Planning Time: 0.107 ms

Execution Time: 29.905 ms

(5 rows)

Figure 6.23: Standard sequential scan

We can see here that the estimated planning time is 0.107 ms and the
execution time is 29.905 ms. However, the same query plan is not executed to
always produce the same values.

3. Create a B-tree index on the gender column and repeat the query to determine
the performance using the default index:

sglda=# CREATE INDEX ix_gender ON customers USING btree (gender) ;

The following is the output of the preceding code:

QUERY PLAN
Seq Scan on customers (cost=0.00..1661.00 rows=24960 width=140) (actual time=0.028..21.504 rows=24956 loops=1)
Filter: (gender = 'M'::text)
Rows Removed by Filter: 25044
Planning Time: ©.444 ms
Execution Time: 23.955 ms
(5 rows)

Figure 6.24: Query planner ignoring the B-tree index

Database Scanning Methods | 285

We can see here that the query planner has not selected the B-tree index, but
rather the sequential scan. The costs of the scans do not differ, but the planning
and execution time estimates have been modified. This is not unexpected, as
these measures are exactly that - estimates based on a variety of different
conditions, such as data in memory and I/O constraints.

Repeat the following query at least five times manually and observe the time
estimates after each execution:

sqlda=# EXPLAIN ANALYZE SELECT * FROM customers WHERE gender='M';

The results of the five individual queries can be seen in the following screenshot;
note that the planning and execution times differ for each separate execution of
the query:

QUERY PLAN
Seq Scan on customers (cost=0.00..1661.00 rows=24960 width=148) (actual time=0.020..21.596 rows=24956 loops=1)
Filter: (gender = 'M'::text)
Rows Removed by Filter: 25044
Planning Time: 08.521 ms
Execution Time: 24.105 ms
(5 rows)

sqlda=# EXPLAIN ANALYZE SELECT * FROM customers WHERE gender='M';
QUERY PLAN
Seq Scan on customers (cost=0.00..1661.00 rows=24960 width=1408) (actual time=0.023..22.629 rows=24956 loops=1)
Filter: (gender = 'M'::text)
Rows Removed by Filter: 25044
Planning Time: 0.158 ms
Execution Time: 25.162 ms
(5 rows)

sqlda=# EXPLAIN ANALYZE SELECT * FROM customers WHERE gender='M';
QUERY PLAN
Seq Scan on customers (cost=0.00..1661.00 rows=24960 width=148) (actual time=0.023..21.765 rows=24956 loops=1)
Filter: (gender = 'M'::text)
Rows Removed by Filter: 25044
Planning Time: 08.153 ms
Execution Time: 24.198 ms
(5 rows)

sqlda=# EXPLAIN ANALYZE SELECT * FROM customers WHERE gender='M';
QUERY PLAN
Seq Scan on customers (cost=0.00..1661.00 rows=24960 width=148) (actual time=0.023..21.758 rows=24956 loops=1)
Filter: (gender = 'M'::text)
Rows Removed by Filter: 25044
Planning Time: ©.158 ms
Execution Time: 24.277 ms
(5 rows)

sqlda=# EXPLAIN ANALYZE SELECT * FROM customers WHERE gender='M';
QUERY PLAN
Seq Scan on customers (cost=0.00..1661.00 rows=24960 width=1408) (actual time=0.023..21.967 rows=24956 loops=1)
Filter: (gender = 'M'::text)
Rows Removed by Filter: 25044
Planning Time: 0.163 ms
Execution Time: 24.444 ms
(5 rows)

Figure 6.25: Five repetitions of the same sequential scan

286 | Performant SQL

5. Drop or remove the index:
sqlda=# DROP INDEX ix gender;
6. Create a hash index on the gender column:
sqlda=# CREATE INDEX ix gender ON customers USING HASH (gender) ;
7. Repeat the query from step 4 to see the execution time:
sgqlda=# EXPLAIN ANALYZE SELECT * FROM customers WHERE gender='M';
The following output will be displayed:

QUERY PLAN

Seq Scan on customers (cost=0.00..1661.00 rows=24960 width=140) (actual time=0.020..22.642 rows=24956 loops=1)
Filter: (gender = 'M'::text)
Rows Removed by Filter: 25044

Planning Time: ©.300 ms

Execution Time: 25.155 ms

(5 rows)

Figure 6.26: Query planner ignoring the hash index

As with the B-tree index, there was no benefit to using the hash index on the
gender column, and so it was not used by the planner. This is because the
gender column could have only two possible values.

8. Use the EXPLAIN ANALYZE command to profile the performance of the query
that selects all customers where the state is FO:

sglda=# EXPLAIN ANALYZE SELECT * FROM customers WHERE state='FO';
The following output will be displayed:

QUERY PLAN
Seq Scan on customers (cost=0.80..1661.00 rows=1 width=140) (actual time=22.293..22.293 rows=0 loops=1)
Filter: (state = 'FO'::text)
Rows Removed by Filter: 50000
Planning Time: ©.188 ms
Execution Time: 22.328 ms
(5 rows)

Figure 6.27: Sequential scan filtered by a specific state

Database Scanning Methods | 287

9. Create a B-tree index on the state column of the customers table and repeat
the query profiling:

sglda=# CREATE INDEX ix state ON customers USING BTREE (state);
sglda=# EXPLAIN ANALYZE SELECT * FROM customers WHERE state='FO';

The following is the output of the preceding code:

QUERY PLAN

Index Scan using ix_state on customers (cost=0.29..8.31 rows=1 width=148) (actual time=0.860..0.060 rows=0 loops=1)
Index Cond: (state = 'FO'::text)
Planning Time: ©.374 ms
Execution Time: 0.103 ms
(4 rows)

Figure 6.28: Performance benefit due to B-tree indexing

Here, we can see a significant performance increase due to the B-tree index with
a slight setup cost. How does the hash scan perform? Given that the execution
time has dropped from 22.3 ms to 0.103 ms, it is reasonable to conclude
that the planning cost has increased by approximately 50%.

10. Drop the ix_state B-tree index and create a hash scan:

sqlda=# DROP INDEX ix state;
sqlda=# CREATE INDEX ix state ON customers USING HASH (state);

11. Use EXPLAIN and ANALYZE to profile the performance of the hash scan:
sqlda=# EXPLAIN ANALYZE SELECT * FROM customers WHERE state='FO';
The following is the output of the preceding code:

QUERY PLAN
Index Scan using ix_state on customers (cost=0.00..8.02 rows=1 width=148) (actual time=0.814..0.014 rows=0 loops=1)
Index Cond: (state = 'FO'::text)
Planning Time: 0.271 ms
Execution Time: 0.048 ms
(4 rows)

Figure 6.29: Additional performance boost using a hash index

288 | Performant SQL

We can see that, for this specific query, a hash index is particularly effective,
reducing both the planning/setup time and cost of the B-tree index, as well as
reducing the execution time to less than 1 ms from approximately 25 ms.

NOTE

To access the source code for this specific section, please refer
to https://packt.live/37IcMS4.

In this exercise, we used hash indexes to find the effectiveness of a particular query.
We saw how the execution time goes down when using a hash index in a query.

ACTIVITY 6.03: IMPLEMENTING HASH INDEXES

In this activity, we will investigate the use of hash indexes to improve performance
using the emails table from the sqlda database. We have received another
request from the marketing department. This time, they would like us to analyze the
performance of an email marketing campaign.

Given that the success rate of email campaigns is low, many different emails are
sent to many customers at a time. Use the EXPLAIN and ANALYZE commands to
determine the planning time and cost, as well as the execution time and cost, of
selecting all rows where the email subject is Shocking Holiday Savings On
Electric Scooters:

1. Use the EXPLAIN and ANALYZE commands to determine the planning time and
cost, as well as the execution time and cost, of selecting all rows where the email
subjectis Shocking Holiday Savings On Electric Scootersinthe
first query and Black Friday. Green Cars. inthe second query.

2. Create a hash scan onthe email subject column.

3. Repeatstep 1. Compare the output of the query planner without the hash index
to the output with the hash index. What effect did the hash scan have on the
performance of the two queries?

4. Create a hash scan on the customer_id column.

https://packt.live/37lcMS4

Database Scanning Methods | 289

5. Use EXPLAIN and ANALYZE to estimate how long it would take to select all
rows with a customer_id value greater than 100. What type of scan was used
and why?

Expected output:

QUERY PLAN

Seq Scan on emails (cost=0.00..10651.98 rows=417309 width=79) (actual time=0.024..121.483 rows=417315 loops=1)
Filter: (customer_id > 180)
Rows Removed by Filter: 843

Planning Time: ©.199 ms

Execution Time: 152.656 ms

(5 rows)

Figure 6.30: Query planner ignoring the hash index due to limitations

NOTE

The solution for this activity can be found via this link.

In this activity, a sequential scan was used in this query rather than the hash scan
created due to the current limitations of hash scan usage. At the time of writing, the
use of the hash scan is limited to equality comparisons, which involve searching for
values equal to a given value.

EFFECTIVE INDEX USE

So far in this chapter, we have looked at a number of different scanning methods,
and the use of both B-trees and hash scans as a means of reducing query times. We
have also presented a number of different examples of where an index was created
for a field or condition and was explicitly not selected by the query planner when
executing the query as it was deemed a more inefficient choice.

In this section, we will spend some time discussing the appropriate use of indexes
to reduce query times, since, while indexes may seem like an obvious choice for
increasing query performance, this is not always the case.

290 | Performant SQL

Consider the following situations:

The field you have used for your index is frequently changing: In this
situation, where you are frequently inserting or deleting rows in a table, the
index that you have created may quickly become inefficient as it was constructed
for data that is either no longer relevant or has since had a change in value.

Consider the index at the back of this book. If you moved the order of the
chapters around, the index would no longer be valid and would need to be
republished. In such a situation, you may need to periodically re-index the data
to ensure the references to the data are up to date.

In SQL, we can rebuild the data indices by using the REINDEX command,

which leads to a scenario where you will need to consider the cost, means, and

strategy of frequent re-indexing versus other performance considerations, such
as the query benefits introduced by the index, the size of the database, or even
whether changes to the database structure could avoid the problem altogether.

The index is out of date and the existing references are either invalid or
there are segments of data without an index, preventing the use of the
index by the query planner: In such a situation, the index is so old that it
cannot be used and thus needs to be updated.

You are frequently looking for records containing the same search criteria
within a specific field: We considered an example similar to this when looking
for customers within a database whose records contained latitude values of less
than 38 and greater than 30, using SELECT * FROM customers WHERE
(latitude < 38) and (latitude > 30).

In this example, it may be more efficient to create a partial index using

the subset of data, like this: CREATE INDEX ix latitude less ON
customers (latitude) WHERE (latitude < 38) and

(latitude > 30). In this way, the index is only created using the data we are
interested in, and is thereby smaller in size, quicker to scan, easier to maintain
and can also be used in more complex queries.

The database isn't particularly large: In such a situation, the overhead of
creating and using the index may simply not be worth it. Sequential scans,
particularly those using data already in RAM, are quite fast, and if you create an
index on a small dataset, there is no guarantee that the query planner will use it
or get any significant benefit from using it.

In the next section, we will learn how to speed up table joins by leveraging indexes.

Performant Joins | 291

PERFORMANT JOINS

The JOIN functionality in SQL-compliant databases provides a very powerful and
efficient method of combining data from different sources, without the need for
complicated looping structures or a series of individual SQL statements. We covered
joins and join theory in detail in Chapter 2, SQL for Data Preparation.

As suggested by the name of the command, a join takes information from two or
more tables and uses the contents of the records within each table to combine the
two sets of information. Because we are combining this information without the use
of looping structures, this can be done very efficiently. In this section, we will consider
the use of joins as a more performant alternative to looping structures. The following
is the Customer Information table:

Customer ID First Name Last Name Address
1 Meat Hook Melee Island
2 Captain Blondebeard Puerto Pollo
3 Griswold Goodsoup Blood Island
Figure 6.31: Customer information
The following table shows the Order Information table:

Order ID Customer ID Product Code Qty

1618 3 GROG1 12

1619 2 POULET3 3

Figure 6.32: Order information

292 | Performant SQL

So, with this information, we may want to see whether there are some trends in the
items that are sold based on the customer's address. We can use JOIN to bring these
two sets of information together; we will use the Customer ID column to combine
the two datasets and produce the information shown in the following table:

Customer ID |First Name Last Name |Address Order ID Product Qty
Code

2 Captain Blondebeard |Puerto Pollo [1619 POULET3 3

3 Griswald Goodsoup Blood Island 1618 GROG1 12

Figure 6.33: Join by customer ID

We can see in the preceding example that the join included all of the records where
there was information available for both the customer and the order. As such,

the customer Meat Hook was omitted from the combined information since no
order information was available. In the example, we executed INNER JOIN; there
are, however, a number of different joins available, and we will spend some time
looking through each of them. The following is an example that shows the use of a
performant INNER JOIN:

smalljoins=# EXPLAIN ANALYZE SELECT customers.*, order info.order id,
order info.product code, order info.qty FROM customers INNER JOIN order
info ON customers.customer id=order info.customer id;

Here is the output of the query plan:

Hash Join (cost=24.18..172.89 rows=3560 width=140) (actual
time=0.100..0.103 rows=5 loops=1)

Hash Cond: (order info.customer id = customers.customer id)

-> Seq Scan on order info (cost=0.00..21.30 rows=1130 width=44)
(actual time=0.027..0.027 rows=5 loops=1l)

-> Hash (cost=16.30..16.30 rows=630 width=100) (actual
time=0.032..0.032 rows=5 loops=1)

Buckets: 1024 Batches: 1 Memory Usage: 9kB

-> Seqg Scan on customers (cost=0.00..16.30 rows=630 width=100)
(actual time=0.008..0.009 rows=5 loops=1)
Planning Time: 0.626 ms

Execution Time: 0.181 ms

(8 rows)

Refer to Chapter 2, SQL for Data Preparation, for more information on joins. In the next
exercise, we will investigate the use of performant inner joins.

Performant Joins | 293

EXERCISE 6.04: DETERMINING THE USE OF INNER JOINS

In this exercise, we will investigate the use of inner joins to efficiently select multiple
rows of data from two different tables. Let's say that our good friends in the
marketing department gave us two separate databases: one from SalesForce
and one from Oracle. We could use a JOIN statement to merge the corresponding
information from the two sources into a single source. Here are the steps to follow:

1. Create a database called smalljoins on the PostgreSQL server:
$ createdb -U postgres smalljoins

2. Loadthe smalljoins.dump file provided in the accompanying source code
from the GitHub repository, https://packt.live/3h16G8Y :

Spsgl smalljoins < smalljoins.dump

3. Open the database:
$ psgl -U postgres smalljoins

4. Inspect the information available for customers:
SELECT * FROM customers;

The following figure shows the output of the preceding code:
customer_id | first _name | last_name | address

4 | Guybrush | Threepwood | Melee Island

5 | Murray | Theskull | Plunder island

1 | Meat | Hook | Melee Island

2 | captain | Blondebeard | Puerto Pollo

3 | Griswold | Goodsoup | Blood Island
(5 rows)

Figure 6.34: Customer table

https://packt.live/3hl6G8Y

294 | Performant SQL

5. Inspect the information available for the order information column:
smalljoins=# SELECT * FROM order info;

This will display the following output:

order_id | customer_id | product code | qty

—————————— B e e
1620 | 4 | MON123 | 1
1621 | 4 | MONG636 | 3
1622 | 5 | MONG6G6 | 1
1618 | 3 | GROG1 | 12
1619 | 2 | POULET3 | 3
(5 rows)

Figure 6.35: Order information table

6. Execute an inner join where we retrieve all columns from both tables without
duplicating the customer_id column to replicate the results from Figure 6.33.
We will set the left table to be customers and the right table to be order__
info. So, to be clear, we want all columns from customers and the order__
id, product_code, and gty columns from order_info when a customer
has placed an order. Write this as a SQL statement:
smalljoins=# SELECT customers.*, order info.order id, order_ info.
product code, order info.qty FROM customers INNER JOIN order info ON

customers.customer id=order info.customer id;

The following figure shows the output of the preceding code:

customer_id | first_name | Tlast_name | address | order_id | product_code | qty
------------- T et e e T
4 | Guybrush | Threepwood | Melee Island | 1620 | MON123 | 1
4 | Guybrush | Threepwood | Melee Island | 1621 | MON636 | 3
5 | Murray | Theskull | Plunder island | 1622 | MONG66 | 1
3 | Griswold | Goodsoup | Blood Island | 1618 | GROG1 | 12
2 | Captain | Blondebeard | Puerto Pollo | 1619 | POULET3 | 3

(5 rows)

Figure 6.36 Join of customer and order information

Performant Joins | 295

7. Save the results of this query as a separate table by inserting the INTO table__
name keywords:

smalljoins=# SELECT customers.*, order info.order id, order info.

product code, order info.gty INTO join results FROM customers INNER
JOIN order info ON customers.customer id=order info.customer id;

The following figure shows the output of the preceding code:

smalljoins=# SELECT customers.*, order_info.order_id, order_info.product_code, order_info.qty INTO join_
results FROM customers INNER JOIN order_info ON customers.customer_id=order_info.customer_id;

SELECT 5
Figure 6.37: Save results of joining to a new table

8. Use EXPLAIN ANALYZE to get an estimate of the time taken to execute the
join. Now, how much faster is the join?

smalljoins=# EXPLAIN ANALYZE SELECT customers.*, order info.order id,
order info.product code, order info.qty FROM customers INNER JOIN
order info ON customers.customer id=order info.customer id;

This will display the following output which demonstrates that this query is
relatively inefficient:

QUERY PLAN

Hash Join (cost=24.18..172.89 rows=3560 width=140) (actual time=0.537..0.548 rows=10 loops=1)
Hash Cond: (order_info.customer_id = customers.customer_id)

-> Seq Scan on order_info (cost=0.00..21.30 rows=1130 width=44) (actual time=0.238..0.240 rows=10 loops=1)
-> Hash (cost=16.30..16.30 rows=630 width=100) (actual time=0.225..0.226 rows=5 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 9kB

-> Seq Scan on customers (cost=0.00..16.30 rows=630 width=100) (actual time=0.199..0.202 rows=5 loops=1)
Planning Time: 7.077 ms

Execution Time: 1.533 ms
(8 rows)

Figure 6.38: Baseline reading for comparing the performance of JOIN

9. Selectall of the customer_id values that are in order_info and use
EXPLAIN ANALYZE to find out how long it takes to execute these
individual queries:

smalljoins=# EXPLAIN ANALYZE SELECT * FROM customers WHERE customer
id IN (SELECT customer id FROM order info);

296 | Performant SQL

The following screenshot shows the output of the preceding code:

QUERY PLAN

Hash Join (cost=28.62..50.08 rows=315 width=180) (actual time=0.104..0.110 rows=4 loops=1)
Hash Cond: (customers.customer_id = order_info.customer_id)

->
->

Seq Scan on customers (cost=0.00..16.30 rows=630 width=100) (actual time=8.015..0.017 rows=5 loops=1)
Hash (cost=26.12..26.12 rows=200 width=4) (actual time=0.857..0.057 rows=4 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 9kB
-> HashAggregate (cost=24.12..26.12 rows=280 width=4) (actual time=0.026..0.038 rows=4 loops=1)
Group Key: order_info.customer_id
-> Seq Scan on order_info (cost=0.80..21.30 rows=1138 width=4) (actual time=0.808..0.011 rows=5 loops=1)

Planning Time: ©.199 ms
Execution Time: 0.177 ms
(10 rows)

10.

Figure 6.39: Improved performance of join using a hash index

Looking at the results of the two query planners, we can see that not only did
the inner join take about a third of the time of the sequential query (0.177 ms
compared with 1.533 ms), but also that we have returned more information
with the inner join, with order_id, product_code, and gty also

being returned.

Execute a left join using the customers table as the left table and order _
info as the right table:

smalljoins=# SELECT customers.*, order info.order id, order info.
product code, order info.gty FROM customers LEFT JOIN order info ON

customers.customer id=order info.customer id;

The following screenshot shows the output of the preceding code:

customer_1id | first_name | last_name | address | order_id | product_code | gty

————————————— B e S e i s e
4 | Guybrush | Threepwood | Melee Island | 1620 | MON123 | 1
4 | Guybrush | Threepwood | Melee Island | 1621 | MON636 | 3
5 | Murray | TheSkull | Plunder island | 1622 | MONG666 | 1
3 | Griswold | Goodsoup | Blood Island | 1618 | GROG1 | 12
2 | captain | Blondebeard | Puerto Pollo | 1619 | POULET3 | 3
1 | Meat | Hook | Melee Island | |

(6 rows)

Figure 6.40: Left join of the customers and order_info tables

Notice the differences between the left join and the inner join. The left join

has included the result for customer_id 4 twice and has included the result
for Meat Hook once, although there is no order information available. It has
included the results of the left table with blank entries for information that is not
present in the right table.

Performant Joins | 297

11. Use EXPLAIN ANALYZE to determine the time and cost of executing the join:

smalljoins=# EXPLAIN ANALYZE SELECT customers.*, order info.order_
id, order info.product code, order info.qty FROM customers LEFT JOIN
order info ON customers.customer id=order info.customer id;

This will display the following output:

QUERY PLAN
Hash Right Join (cost=24.18..172.89 rows=3560 width=140) (actual time=P.@68..0.089 rows=6 loops=1)
Hash Cond: (order_info.customer_1id = customers.customer_id)
-> Seq Scan on order_info (cost=0.80..21.30 rows=1130 width=44) (actual time=0.007..0.809 rows=5 loops=1)
-> Hash (cost=16.30..16.30 rows=630 width=100) (actual time=0.834..0.034 rows=5 loops=1)
Buckets: 1824 Batches: 1 Memory Usage: 9kB
-> Seq Scan on customers (cost=0.80..16.30 rows=630 width=160) (actual time=0.020..0.024 rows=5 loops=1)
Planning Time: ©.219 ms
Execution Time: 0.188 ms
(8 rows)

Figure 6.41: Query planner for executing the left join
12. Replace the left join of step 71 with a right join and observe the results:
smalljoins=# EXPLAIN ANALYZE SELECT customers.*, order info.order id,
order info.product code, order info.gty FROM customers RIGHT JOIN

order info ON customers.customer id=order info.customer id;

The following screenshot shows the output of the preceding code:

customer_id | first_name | last_name | address | order_id | product_code | gty
————————————— R e D T TR
4 | Guybrush | Threepwood | Melee Island | 1620 | MON123 | 1
4 | Guybrush | Threepwood | Melee Island | 1621 | MON636 | 3
5 | Murray | Theskull | Plunder island | 1622 | MON666 | 1
3 | Griswold | Goodsoup | Blood Island | 1618 | GROG1 | 12
2 | captain | Blondebeard | Puerto Pollo | 1619 | POULET3 | 3

(5 rows)
Figure 6.42: Results of a right join

Again, we have two entries for customer_id 4, Guybrush Threepwood,

but we can see that the entry for customer id 1, Meat Hook, is no longer
present as we have joined on the basis of the information within the contents of
the order_idtable.

298 | Performant SQL

13. Use EXPLAIN ANALYZE to determine the time and cost of the right join:

smalljoins=# EXPLAIN ANALYZE SELECT customers.*, order info.order_ id,
order info.product code, order info.qty FROM customers RIGHT JOIN
order info ON customers.customer id=order info.customer id;

The following screenshot shows the output of the preceding code:

QUERY PLAN

Hash Left Join

-> Seq Scan on order_info

-> Hash

(cost=24.18..172.89 rows=3560 width=140) (actual time=0.066..8.075 rows=5 loops=1)
Hash Cond: (order_info.customer_id = customers.customer_id)

Buckets: 1824 Batches: 1 Memory Usage: 9kB

->

Seq Scan on customers

Planning Time: ©.220 ms
0.141 ms

Execution Time:

(8 rows)

We can see that the right join was marginally faster and more cost-effective,

Figure 6.43: Query plan of a right join

which can be attributed to one less row being returned than in the left join.

(cost=0.80..21.30 rows=1130 width=44) (actual time=0.022..8.024 rows=5 loops=1)
(cost=16.30..16.30 rows=630 width=108) (actual time=0.821..0.022 rows=5 loops=1)

(cost=0.00..16.30 rows=630 width=100) (actual time=0.007..0.012 rows=5 loops=1)

14. Insert an additional row into order_info with a customer_id value thatis
not present in the customers table:

smalljoins=# INSERT INTO order info (order id, customer id, product

code,

qty) VALUES

(1621, 6, 'MEL386', 1);

15. Replace the left join of step 77 with a full outer join and observe the results:

smalljoins=# SELECT customers.?*,
product code,

order info.order id,
order info.qgty FROM customers FULL OUTER JOIN order

info ON customers.customer id=order info.customer id;

This will display the following output:

customer_id

(7 rows)

|
+
|
|
|
|
|
|
|

Guybrush
Guybrush
Murray
Griswold
Captain

Meat

| last_name | address | orde
R R e +
Threepwood	Melee Island
Threepwood	Melee Island
Theskull	Plunder island
Goodsoup	Blood Island
Blondebeard	Puerto Pollo
Hook	Melee Island

Figure 6.44: Results of a full outer join

order info

product_code | qty

MON123
MONG636
MONG666
GROG1
POULET3
MEL386

Performant Joins | 299

Notice the line that contains product_code MEL386, but no information
regarding the customer; there's a similar case for the line for customer_id
Meat Hook. The full outer join has combined all available information even if
some of the information is not available from either table.

16. Use the EXPLAIN ANALYZE command to determine the performance of
the query:

smalljoins=#
The following screenshot shows the output of the preceding code:

QUERY PLAN

Hash Full Join (cost=24.18..172.89 rows=3560 width=148) (actual time=0.126..0.148 rows=7 loops=1)
Hash Cond: (order_info.customer_id = customers.customer_id)
-> Seq Scan on order_info (cost=0.80..21.30 rows=1130 width=44) (actual time=0.009..0.012 rows=6 loops=1)
-> Hash (cost=16.30..16.30 rows=630 width=1080) (actual time=0.864..0.065 rows=5 loops=1)

Buckets: 1824 Batches: 1 Memory Usage: 9kB
-> Seq Scan on customers (cost=0.80..16.30 rows=630 width=180) (actual time=0.021..0.026 rows=5 loops=1)

Planning Time: ©.226 ms
Execution Time: 0.232 ms
(8 rows)

Figure 6.45: Query plan of a full outer join

The performance is very similar to that of the other queries, given that an
additional row is provided, which can be clearly seen in the final output.

NOTE

To access the source code for this specific section, please refer
to https://packt.live/2WYKQPI.

In this exercise, we were introduced to the usage and performance benefits of joins.
We observed the combination of information from two separate tables using fewer
resources than individual searches require, as well as the use of OUTER JOIN

to efficiently combine all information. In the next activity, we will build upon our
understanding of joins with a much larger dataset.

https://packt.live/2WYKQPI

300 | Performant SQL

ACTIVITY 6.04: IMPLEMENTING PERFORMANT JOINS

In this activity, our goal is to implement various performant joins. We will use joins
to combine information from a table of customers as well as information from a
marketing email dataset. Say we have just collated a number of different email
records from a variety of different databases. We would like to distill the information
down into a single table so that we can perform some more detailed analysis. Here
are the steps to follow:

1.
2.

Open PostgreSQL and connect to the sqlda database.

Determine a list of customers (customer_id, first name, and last_name)
who have been sent an email, including information about the subject of the
email and whether they opened and clicked on the email. The resulting table
should include the customer _id, first name, last name, email _
subject, opened, and clicked columns.

Save the resulting table to a new table, customer_emails.
Find those customers who opened or clicked on an email.

Find the customers who have a dealership in their city; customers who do not
have a dealership in their city should have a blank value for the eity columns.

List those customers who do not have dealerships in their city (hint: a blank field
is NULL).

Expected output

customer_id | first_name | last _name | city
————————————— e e

1 | Arlena | Riveles |

12 | Tyne | Duggan |

21 | Pryce | Geist |

24 | Barbi | Lanegran |

30 | Kath | Rivel |

38 | Carter | Lagneaux |

44 | Waldemar | Paroni |

49 | Hannah | McGlew |

56 | Riva | Cathesyed |

63 | Gweneth | Maior |

70 | Caty | Woolveridge |

72 | Jodi | Fautly |

Figure 6.46: Customers without city information

Functions and Triggers | 301

The output shows the final list of customers in the cities where we have no
dealerships.

NOTE

The solution for this activity can be found via this link.

In this activity, we used joins to combine information from a table of customers
as well as information from a marketing email dataset and helped the marketing
manager to solve their query.

In the next section, we will learn how to use functions and triggers in our SQL queries
and analyze data.

FUNCTIONS AND TRIGGERS

So far in this chapter, we have discovered how to quantify query performance via the
query planner, as well as the benefits of using joins to collate and extract information
from multiple database tables. In this section, we will construct reusable queries and
statements via functions, as well as automatic function execution via trigger callbacks.
The combination of these two SQL features can be used to not only run queries or
re-index tables as data is added to/updated in/removed from the database, but also
to run hypothesis tests and track their results throughout the life of the database.

FUNCTION DEFINITIONS

As in almost all other programming or scripting languages, functions in SQL are
contained sections of code, which provides a lot of benefits, such as efficient code
reuse and simplified troubleshooting processes. We can use functions to repeat/
modify statements or queries without re-entering the statement each time or
searching for its use throughout longer code segments. One of the most powerful
aspects of functions is also that they allow us to break code into smaller, testable
chunks. As the popular computer science expression goes "If the code is not tested, it
cannot be trusted."

302 | Performant SQL

So, how do we define functions in SQL? There is a relatively straightforward syntax,
with the SQL syntax keywords:

CREATE FUNCTION some function name (function arguments)

RETURNS return type AS S$return name$

DECLARE return name return type;
BEGIN

<function statements>;

RETURN <some value>;

END; S$return name$

LANGUAGE PLPGSQL;

The following is a short explanation of the functions used in the preceding code:

some_function_name is the name issued to the function and is used to call
the function at later stages.

function_arguments is an optional list of function arguments. This could
be empty, without any arguments provided, if we don't need any additional
information to be provided to the function. To provide additional information,
we can either use a list of different data types as the arguments (such as integer
and numeric data types) or a list of arguments with parameter names (such as
themin_ val integer and the max_wal numeric data type).

return_type is the data type being returned from the function.
return name is the name of the variable to be returned (optional).

The DECLARE return name return_type statementis only required
if return_name is provided and a variable is to be returned from the
function. If return_name is not required, this line can be omitted

from the function definition.

function statements are the SQL statements to be executed within
the function.

some_value is the data to be returned from the function.

PLPGSQL specifies the language to be used in the function. PostgreSQL allows
us to use other languages; however, their use in this context lies beyond the
scope of this book.

Functions and Triggers | 303

For example, we can create a simple function to add three numbers as follows:

CREATE FUNCTION add three(a integer, b integer, c integer)
RETURNS integer AS $S
BEGIN
RETURN a + b + c;
END;
$$ LANGUAGE PLPGSQL;

And we can then call it in our queries as follows:
SELECT add three (1, 2, 3);

The following is the output of the code:
add three
(1 row)

Now, we will implement an exercise to create a function without arguments.

NOTE

The complete PostgreSQL documentation for functions can be found at
https://www.postgresql.org/docs/current/extend.html.

EXERCISE 6.05: CREATING FUNCTIONS WITHOUT ARGUMENTS

In this exercise, we will create the most basic function—one that simply returns a
constant value—so we can build up a familiarity with the syntax. We will construct our
first SQL function that does not take any arguments as additional information. This
function may be used to repeat SQL query statements that provide basic statistics
about the data within the tables of the sqlda database. These are the steps

to follow:

1. Connect to the sqlda database via a command-line interface:

$ psgl sglda

https://www.postgresql.org/docs/current/extend.html

304 | Performant SQL

2. Create a function called £fixed_val that does not accept any arguments and
returns an integer. This is a multi-line process. Enter the following line first:

sglda=# CREATE FUNCTION fixed val() RETURNS integer AS $S

This line starts the function declaration for fixed val, and we can see
that there are no arguments to the function, as indicated by the open/closed
brackets, (), nor any returned variables.

3. Inthe next line, notice that the characters within the command prompt have
adjusted to indicate that it is awaiting input for the next line of the function:

sqldaS#

4. Enter the BEGIN keyword (notice that as we are not returning a variable, the line
containing the DECLARE statement has been omitted):

sgldas$# BEGIN

5. We want to return the value 1 from this function, so enter the statement
RETURN 1:

sqlda$# RETURN 1;
6. End the function definition:
sqglda$# END; $$
7. Add the LANGUAGE statement, as shown in the following function definition:
sqglda-# LANGUAGE PLPGSQL;
This will complete the function definition.

8. Now that the function is defined, we can use it. As with almost all other SQL
statements we have completed to date, we simply use the SELECT command:

sglda=# SELECT * FROM fixed val();
This will display the following output:
fixed val

(1 row)

Notice that the function is called using the open and closed brackets in the
SELECT statement.

Functions and Triggers | 305

9. Use EXPLAIN and ANALYZE in combination with this statement to characterize
the performance of the function:

sqlda=# EXPLAIN ANALYZE SELECT * FROM fixed val () ;
The following screenshot shows the output of the preceding code:

QUERY PLAN

Function Scan on fixed val (cost=0.25..0.26 rows=1 width=4) (actual time=0.0631..0.032 rows=1 loops=1)
Planning Time: 0.060 ms

Execution Time: 0.060 ms

(3 rows)

Figure 6.47: Performance of the function call

So far, we have seen how to create a simple function, but simply returning

a fixed value is not particularly useful. We will now create a function that
determines the number of samples in the sales table. Notice that the three
rows being referenced in the preceding screenshot refer not to the result of
SELECT * FROM fixed val () ; but rather to the result of the query
planner. Looking at the first line of the information returned by the query
planner, we can see that only one row of information is returned from the
SELECT statement.

10. Create a function called num_samples that does not take any arguments but
returns an integer called total that represents the number of samples in the
sales table:

sqglda=# CREATE FUNCTION num_ samples () RETURNS integer AS S$Stotal$

11. We want to return a variable called total, and thus we need to declare it.
Declare the total variable as an integer:

sqlda$# DECLARE total integer;
12. Enter the BEGIN keyword:
sqlda$# BEGIN

13. Enter the statement that determines the number of samples in the table and
assigns the result to the total variable:

sglda$# SELECT COUNT (*) INTO total FROM sales;
14. Return the value for total:

sglda$# RETURN total;

306 | Performant SQL

15.

16.

17.

End the function with the variable name:

sgldas# END; S$totals

Add the LANGUAGE statement as shown in the following function definition:
sqlda-# LANGUAGE PLPGSQL;

This will complete the function definition, and upon successful creation, the
CREATE FUNCTION statement will be shown.

Use the function to determine how many rows or samples there are in the
sales table:

sqlda=# SELECT num_samples () ;
The following figure shows the output of the preceding code:

num samples

37711

(1 row)

We can see that by using the SELECT statement in combination with our SQL
function, there are 37,711 records in the sales database.

NOTE

To access the source code for this specific section, please refer
to https://packt.live/2zgBi7H.

In this exercise, we have created our first user-defined SQL function and discovered
how to create and return information from variables within the function.

In the following activity, we will create a new function that can be called in
our queries.

https://packt.live/2zqBi7H

Functions and Triggers | 307

ACTIVITY 6.05: DEFINING A MAXIMUM SALE FUNCTION

In this activity, we will create a user-defined function so we can calculate the largest
sale amount in a single function call. We will reinforce our knowledge of functions as
we create a function that determines the highest sale amount in a database. At this
stage, our marketing department is starting to make a lot of data analysis requests,
and we need to be more efficient in fulfilling them, as they are currently just taking
too long. Perform the following steps:

1.
2.

N o v ok~ W

Connect to the sglda database.

Create a function called max_sale that does not take any input arguments but
returns a numeric value called big_sale.

Declare the big_sale variable and begin the function.

Insert the maximum sale amount into the big_sale variable.

Return the value for big_sale.

End the function with the LANGUAGE statement.

Call the function to find what the biggest sale amount in the database is.

Expected output

115000

(1 row)

NOTE

The solution for this activity can be found via this link.

In this activity, we created a user-defined function to calculate the largest sale amount
from a single function call using the MAX function. Next, we will create a function that
takes arguments.

308 | Performant SQL

EXERCISE 6.06: CREATING FUNCTIONS WITH ARGUMENTS

In this exercise, we will create a single function that will allow us to calculate
information from multiple tables. Let's create a function that determines the average
value from the sales amount column with respect to the value of the corresponding
channel. After creating our previous user-defined function to determine the biggest
sale in the database, we have observed a significant increase in the efficiency with
which we fulfill our marketing department's requests.

Perform the following steps to complete the exercise:

1.

Connect to the sqlda database:
$ psgl sglda

Create a function called avg_sales that takes a text argument input,
channel type, and returns a numeric output:

sqglda=# CREATE FUNCTION avg sales (channel type TEXT) RETURNS numeric
AS Schannel avgs

Declare the numeric channel avg variable and begin the function:

sglda$# DECLARE channel avg numeric;
sgldas$# BEGIN

Determine the average sales_amount only when the channel value is equal to
channel type:

sgldaS# SELECT AVG (sales amount) INTO channel avg FROM sales WHERE
channel=channel type;

Return channel avg:
sglda$# RETURN channel avg;
End the function and specify the LANGUAGE statement:

sgldas# END; S$channel avg$
sglda-# LANGUAGE PLPGSQL;

Functions and Triggers | 309

7. Determine the average sales amount for the internet channel:
sqlda=# SELECT avg_sales('internet');
The following figure shows the output of the preceding code:

avg sales

6413.11540412024

(1 row)

Now do the same for the dealership channel:

sqlda=# SELECT avg_sales('dealership');

The following figure shows the output of the preceding code:

avg sales

7939.33132075954

(1 row)

This output shows the average sales for a dealership, which is 7939 . 331.

NOTE

To access the source code for this specific section, please refer
to https://packt.live/3hrZ|TF.

In this exercise, we were introduced to using function arguments to further modify
the behavior of functions and the outputs they return. Next, we will learn about the
\df and \sf commands.

https://packt.live/3hrZJTF

310 | Performant SQL

THE \DF AND \SF COMMANDS

You can use the \df command in PostgreSQL to get a list of the functions available in
memory, including the variables and data types passed as arguments:

List of functions

Schema | Mame | Result data type | Argument data types | Type

———————— e i e s e
public | avg_sales | numeric | channel_type text | func
public | avg sales since | numeric | since date date | func
public | fixed val | integer | | func
public | max_sale | numeric | | func
public | num_samples | integer | | func
(5 rows)

Figure 6.48: Result of the \df command on the sqlda database

The \sf function_ name command in PostgreSQL can be used to review the
function definition for already-defined functions.

For example, imagine that we have a function called num_samples. In this case, if
we execute the following query:

\sf num samples

The output will be showing the definition of that function as follows:

CREATE OR REPLACE FUNCTION public.num_samples()
RETURNS integer
LANGUAGE plpgsql

AS Sfunction$

DECLARE total integer;

BEGIN

SELECT COUNT(*) INTO total FROM sales;

RETURN total;

END; Sfunction$

Figure 6.49: Contents of the function using \sf
Now that we have walked through several exercises to create functions with and

without arguments, we can apply our knowledge to real-world problems. In the
following activity, we will practice creating functions that take arguments.

Functions and Triggers | 311

ACTIVITY 6.06: CREATING FUNCTIONS WITH ARGUMENTS

In this activity, our goal is to create a function with arguments and compute the
output. We will construct a function that computes the average sales amount for
transaction sales within a specific date range. Each date is to be provided to the
function as a text string. These are the steps to follow:

1. Create the function definition for a function called avg_sales_window that
returns a numeric value and takes two DATE values to specify the from and to
dates in the form YYYY-MM-DD.

2. Declare the return variable as a numeric data type and begin the function.

3. Select the average sales amount as the return variable where the sales
transaction date is within the specified date.

4. Return the function variable, end the function, and specify the
LANGUAGE statement.

5. Use the function to determine the average sales values between 2013-04-12
and 2014-04-12.

Expected output

avg_sales window

477.6862463110066

(1 row)

NOTE

The solution for this activity can be found via this link.

In this activity, we constructed a function that computes the average sales amount for
transaction sales within a specific date range from the database.

In the next section, we will learn to create and run triggers to automate database
processes. We will also perform an exercise and activity using triggers.

312 | Performant SQL

TRIGGERS

Triggers, known as events or callbacks in other programming languages, are useful
features that, as the name suggests, trigger the execution of SQL statements or
functions in response to a specific event. Triggers can be initiated when one of the
following happens:

+ Arow isinserted into a table.

+ Afield within a row is updated.

+ Arow within a table is deleted.

+ Atable is truncated; that is, all rows are quickly removed from a table.
The timing of the trigger can also be specified to occur:

+ Before an insert, update, delete, or truncate operation

« After an insert, update, delete, or truncate operation

+ Instead of an insert, update, delete, or truncate operation

Depending upon the context and the purpose of the database, triggers can have a
wide variety of different use cases and applications. In a production environment
where a database is being used to store business information and make process
decisions (such as for a ride-sharing application or an e-commerce store), triggers can
be used before any operation to create access logs to the database.

These logs can then be used to determine who has accessed or modified the data
within the database. Alternatively, triggers could be used to re-map database
operations to a different database or table using the INSTEAD OF trigger.

In the context of a data analysis application, triggers can be used to either create
datasets of specific features in real-time (such as for determining the average of data
over time or a sample-to-sample difference), test hypotheses concerning the data, or
flag outliers being inserted/modified in a dataset.

Functions and Triggers | 313

Given that triggers are used frequently to execute SQL statements in response to
events or actions, we can also see why functions are often written specifically for or
paired with triggers. Self-contained, repeatable function blocks can be used for both
trialing/debugging the logic within the function as well as inserting the actual code
within the trigger. So, how do we create a trigger? Similar to the case with function
definitions, there is a standard syntax; again, they are SQL keywords:

CREATE TRIGGER some trigger name { BEFORE | AFTER | INSTEAD OF } { INSERT
| DELETE | UPDATE | TRUNCATE } ON table name
FOR EACH { ROW | STATEMENT }

EXECUTE PROCEDURE function name (function arguments)

Looking at this generic trigger definition, we can see that there are a few
individual components:

* We need to provide a name for the trigger in place of some_trigger name.

+ We need to select when the trigger is going to occur, either BEFORE, AFTER, or
INSTEAD OF an event.

+ We need to select what type of event we want to trigger on, either INSERT,
DELETE, UPDATE, or TRUNCATE.

* We need to provide the table we want to monitor for events in table name.

+ The FOR EACH statement is used to specify how the trigger is to be fired. We
can fire the trigger for each ROW that is within the scope of the trigger, or just
once per STATEMENT despite the number of rows being inserted into the table.

* Finally, we just need to provide function_name and any relevant/required
function_arguments to provide the functionality that we want to use on
each trigger.

Some other functions that we will use are as follows:

* The get_stock function takes a product code as a TEXT input and returns the
currently available stock for the specific product code.

* The insert_order function is used to add a new order to the order _info
table and takes customer id INTEGER, product_code TEXT, and gty
INTEGER as inputs; it will return the order_id instance generated for the
new record.

* The update_stock function will extract the information from the most recent
order and will update the corresponding stock information from the products
table for the corresponding product_code.

314 | Performant SQL

Look at the following example, in which we want to add a check that prevents us from
accidentally creating a sale for an amount less than half of the base MSRP. Before we
can create a trigger, we need to define a trigger function:

CREATE OR REPLACE FUNCTION check sale amt vs msrp()
RETURNS TRIGGER AS $$S

DECLARE min allowed price numeric;

BEGIN

SELECT base msrp * 0.5 INTO min allowed price FROM products WHERE
product id = NEW.product id;
IF NEW.sales amount < min allowed price THEN

RAISE EXCEPTION 'Sales amount cannot be less than half of MSRP';
END IF;
RETURN NEW;
END;
$$ LANGUAGE PLPGSQL;

Next, we need to create the trigger that will run if a record is added or updated:
CREATE TRIGGER sales product sales amount msrp AFTER INSERT OR UPDATE ON

sales
FOR EACH ROW

EXECUTE PROCEDURE check sale amt vs msrp ()

We can test that this works by testing an insertion into the sales table that doesn't
meet the minimum sales amount criteria:

INSERT INTO sales (SELECT customer id, product id, sales transaction_
date, sales _amount/3.0, channel, dealership id FROM sales LIMIT 1);

This gives us the following output:

ERROR: Sales amount cannot be less than half of MSRP
CONTEXT: PL/pgSQL function check sale amt vs msrp() line 6 at RAISE

Let's implement an exercise to create triggers for updating fields.

NOTE

There are a number of different options available for SQL triggers that lie
outside the scope of this book. For the complete trigger documentation, you
can refer to https://www.postgresql.org/docs/current/sql-createtrigger.html.

https://www.postgresql.org/docs/current/sql-createtrigger.html

Functions and Triggers | 315

EXERCISE 6.07: CREATING TRIGGERS TO UPDATE FIELDS

In this exercise, we will create a trigger that updates the fields whenever

data is added. For this exercise, we will use the smalljoins database from the
Performant Joins section of this chapter and will create a trigger that updates the
stock value within products for a product each time that an order is inserted into the
order_info table.

Using such a trigger, we can update our analysis in real-time as end-users interact
with the database. These triggers will remove the need for us to run the analysis for
the marketing department manually; instead, they will generate the results for us.

For this scenario, we will create a trigger to update the records for the available stock
within the database for each of our products. As items are bought, the triggers will
be fired, and the quantity of available stock will be updated. Here are the steps

to perform:

1. Load the prepared functions into the smalljoins database using the
Functions. sql file, which can be found in the accompanying source code. It
is also available on GitHub: https://packt.live/2BS3YrO0.

$ psgl smalljoins < Functions.sqgl
2. Connectto the smalljoins database:
$ psgl smalljoins postgres

3. Get a list of the functions using the \df command after loading the
function definitions:

smalljoins=# \df

This will display the following output:

List of functions

Schema | Mame | Result data type | Argument data types | Type
-------- R i i S e
public | get stock | integer | text | func
public | insert_order | integer | integer, text, integer | func
public | update stock | integer | | func

(3 rows)

Figure 6.50: List of functions

https://packt.live/2BS3Yr0

316 | Performant SQL

4. First, look at the current state of the products table:
smalljoins=# SELECT * FROM products;

The following figure shows the output of the preceding code:

product code | name | stock

______________ fommmemmeeeeeeeeee— e —————
MONG36 | Red Herring | 99
GROG1 | Grog | 65
POULET3 | EL Pollo Diablo | 2
MON123 | Rubber Chicken + Pulley | 7
MONGG66 | Murray"s Arm |]
(5 rows)

Figure 6.51: List of products
For the order_info table, we can write the following query:
smalljoins=# SELECT * FROM order info;

The following figure shows the output of the preceding code:

order_id | customer_id | product code | qty

—————————— e e
1618 | 3 | GROG1 | 12
1619 | 2 | POULET3 | 3
1620 | 4 | MON123 | 1
1621 | 4 | MON636 | 3
1622 | 5 | MONG666 | 1
(5 rows)

Figure 6.52: List of order information

5. Insert a new order using the insert order function with customer_id 4,
product code MON636, and gty 10:

smalljoins=# SELECT insert order (4, 'MON636', 10);
The following figure shows the output of the preceding code:

insert order

Functions and Triggers | 317

6. Review the entries for the order _info table:
smalljoins=# SELECT * FROM order info;

This will display the following output:

order_id | customer_id | product code | qty

—————————— e e e
1618 | 3 | GROG1 | 12
1619 | 2 | POULET3 | 3
1620 | 4 | MON123 | 1
1621 | 4 | MON636 | 3
1622 | 5 | MON666 | 1
1623 | 4 | MONG636 | 10

(6 rows)

Figure 6.53: List of updated order information
Notice the additional row with order_id 1623.

7. Update the products table to account for the newly sold 10 Red Herrings using
the update_stock function:

smalljoins=# SELECT update stock();
The following figure shows the output of the preceding code:

update stock

89

(1 row)

This function call will determine how many Red Herrings are left in the
inventory (after the sale of the 10 additional herrings) and will update the
table accordingly.

318 | Performant SQL

8. Review the products table and notice the updated stock value for
Red Herring:

smalljoins=# SELECT * FROM products;

The following figure shows the output of the preceding code:

product code | name | stock

______________ m m m e
GROG1 | Grog | 65
POULET3 | EL Pollo Diablo | 2
MON123 | Rubber Chicken + Pulley | 7
MONG66 | Murray"s Arm |]
MONG36 | Red Herring | B9
(5 rows)

Figure 6.54: List of updated product values

Updating the stock values manually will quickly become tedious. Let's create a
trigger to do this automatically whenever a new order is placed.

9. Delete (DROP) the previous update_stock function. Before we can create a
trigger, we must first adjust the update_stock function to return a trigger,
which has the benefit of allowing for some simplified code:

smalljoins=# DROP FUNCTION update stock;

10. Create a new update_stock function that returns a trigger. Note that the
function definition is also contained within the Trigger. sql file for reference
or direct loading into the database:

smalljoins=# CREATE FUNCTION update stock() RETURNS TRIGGER AS
S$stock triggers$

smalljoins$# DECLARE stock gty integer;

smalljoins$# BEGIN

smalljoins$# stock gty := get stock(NEW.product code) - NEW.qgty;

smalljoinsS$# UPDATE products SET stock=stock gty WHERE product
code=NEW.product code;
smalljoins$# RETURN NEW;

smalljoins$# END; Sstock trigger$
smalljoins-# LANGUAGE PLPGSQL;

Functions and Triggers | 319

11.

12.

Note that in this function definition, we are using the NEW keyword followed by
the dot operator (.) and the product_code (NEW.product_code)and gty
(NEW. gty) field names from the order info table. The NEW keyword refers
to the record that was recently inserted, updated, or deleted and provides a
reference to the information within the record.

In this exercise, we want the trigger to fire after the record is inserted into
order_info and thus the NEW reference will contain this information. So,

we can use the get_stock function with NEW. product_code to get the
currently available stock for the record and simply subtract the NEW. gty value
from the order record.

Finally, create the trigger. We want the trigger to occur AFTER an INSERT
operation on the order_info table. For each row, we want to execute the
newly modified update_stock function to update the stock values in the
product table:

smalljoins=# CREATE TRIGGER update trigger
smalljoins-# AFTER INSERT ON order info
smalljoins-# FOR EACH ROW

smalljoins-# EXECUTE PROCEDURE update stock();

Now that we have created a new trigger, let's test it. Call the insert order
function to insert a new record into the order _info table:

smalljoins=# SELECT insert order (4, 'MON123', 2);
The following figure shows the output of the preceding code:

insert order

320 | Performant SQL

13. Look at the records from the order_info table
smalljoins=# SELECT * FROM order info;

This will display the following output:

order_id | customer_id | product code | qty

—————————— R e S
1618 | 3 | GROG1 | 12
1619 | 2 | POULET3 | 3
1620 | 4 | MON123 | 1
1621 | 4 | MON636 | 3
1622 | 5 | MON666 | 1
1623 | 3 | MON636 | 10
1624 | 4 | MON123 | 2

(7 rows)
Figure 6.55: Order information with an update from the trigger
14. Look at the records for the products table:
smalljoins=# SELECT * FROM products;

The following figure shows the output of the preceding code:

product _code | name | stock

______________ e
MONGG6 | Murray"s Arm | 7]
GROG1 | Grog | 65
POULET3 | EL Pollo Diablo | 2
MONG36 | Red Herring | 89
MON123 | Rubber Chicken + Pulley | 5
(5 rows)

Figure 6.56: Updated product information from the trigger

Functions and Triggers | 321

Our trigger worked. We can see that the available stock for the Rubber
Chicken + Pulley MON123 has been reduced from 7 to 5, in accordance
with the quantity of the inserted order.

NOTE

To access the source code for this specific section, please refer
to https://packt.live/2YqG51v.

In this exercise, we have successfully constructed a trigger to execute a secondary
function following the insertion of a new record into the database. In the next activity,
we will create a trigger to keep track of the data.

ACTIVITY 6.07: CREATING A TRIGGER TO TRACK AVERAGE PURCHASES

Our goal here is to create a trigger for keeping track of the data that is updated.
Say you are working as a data scientist for Monkey Islands, the finest distributor of
guestionable and obscure items. The business is looking at trying a few different
strategies to increase the number of items in each sale. To simplify your analysis,
you decide to add a simple trigger that, for each new order, computes the

average quantity in all the orders and puts the result in a new table along with the
corresponding order_id. Here are the steps to follow:

1.
2.

Connect to the smalljoins database.

Create a new table called avg_qgty log thatis composed of an order id
integer field and an avg_qty numeric field.

Create a function called avg_qgty that does not take any arguments but
returns a trigger. The function computes the average value for all order
quantities (order _info.qty) and inserts the average value, along with the
most recent order_id, into avg_qty.

Create a trigger called avg_trigger that calls the avg_qty function AFTER
each row is inserted into the order_info table.

https://packt.live/2YqG51v

322 | Performant SQL

5. Insert some new rows into the order_info table with quantities of 6, 7, and 8.

6. Look at the entries in avg_qty_log. Is the average quantity of each
order increasing?

Expected output

order_id | avg_qty
__________ +____________________
1625 | 4.7500000000000000
1626 | 5.0000000000000000
1627 | 5.3000000000000000
(3 rows)

Figure 6.57: Average order quantity over time

NOTE

The solution for this activity can be found via this link.

In this activity, we created a trigger for continuously keeping track of the data that is
updated to analyze a product in the database.

KILLING QUERIES

Sometimes, you have a lot of data or perhaps insufficient hardware resources, and

a query just runs for a very long time. In such a situation, you may need to stop the
query—perhaps so you can implement an alternative query to get the information
you need, but without the delayed response. In this section of the chapter, we are
going to investigate how we can stop hanging or, at least, hanging extremely long-
running queries through the use of a secondary PostgreSQL interpreter. The following
are some of the commands that we will use to kill queries:

* pg_sleep is a command that allows you to tell the SQL interpreter to
essentially do nothing for the next period of time as defined by the input to the
function in seconds.

Functions and Triggers | 323

* Thepg_cancel backend command causes the interpreter to end the query
specified by the process ID (pid). The process will be terminated cleanly,
allowing for appropriate resource cleanup. Clean termination should also be the
first preference as it reduces the possibility of data corruption and damage to
the database.

* Thepg_terminate_background command stops an existing process but, as
opposed to pg_cancel background, forces the process to terminate without
cleaning up any resources being used by the query. The query is immediately
terminated, and data corruption may occur as a result.

In order to invoke these commands, you need the command to be evaluated, and one
common method is to use a simple select statement, such as the following:

SELECT pg terminate background (<PID>);

PID is the process ID of the query you would like to terminate. Assuming this runs
successfully, it would output the following:

pg_terminate backend

(1 row)

Now that we have learned how to kill a query both in a clean manner and in a forced
manner, we will step through an exercise to kill a long-running query.

EXERCISE 6.08: CANCELING A LONG-RUNNING QUERY

In this exercise, we will cancel a long-running query to save time when we are stuck
at query execution. You have been lucky enough to receive a large data store and you
decided to run what you originally thought was a simple enough query to get some
basic descriptive statistics of the data. For some reason, however, the query is taking
an extremely long time and you are not even sure that it is running.

You decide it is time to cancel the query, which means you would like to send a stop
signal to the query but allow it sufficient time to clean up its resources gracefully.

As there may be a wide variety of hardware available to us and the data required to
induce a long-running query could be quite a lot to download, we will simulate a long-
running query using the pg_sleep command.

324 | Performant SQL

For this exercise, you will require two separate SQL interpreter sessions running in
separate windows, as shown in the following figure:

1. Launch two separate interpreters by running psql sqgqlda:
C:\> psqgl sglda postgres

This will display the following output in two separate windows:

ben@hillvalley:~5% psql sqlda ~ ben@hillvalley:~$ psql sqlda

psql (11.4 (Ubuntu 11.4-Aubuntu®.19.04.1)) psql (11.4 (Ubuntu 11.4-0ubuntu®.19.04.1))
Type "help" for help. Type "help" for help.

sqlda=# D sqlda=# |

Figure 6.58: Running multiple terminals

2. Inthe first terminal, execute the sleep command with a parameter
of 1000 seconds:

sglda=# SELECT pg_sleep(1000);

After pressing Enter, you should notice that the cursor of the interpreter does
not return:

sqlda=# SELECT pg_sleep(1000);

Figure 6.59: Sleeping interpreter

3. Inthe second terminal, select the pid and query columns from the pg_stat__
activity table where the state is active:

sqglda=# SELECT pid, query FROM pg stat activity WHERE state =
'active';

The following figure shows the output of the preceding code:

14117 | SELECT pid, query FROM pg_stat activity WHERE state = 'active';
14131 | SELECT pg_sleep(1000);
(2 rows)

Figure 6.60: Active queries

Functions and Triggers | 325

In the second terminal, pass the process ID of the pg_sleep query to the pg_
cancel_ backend command to terminate the pg_sleep query with a graceful
cleanup. Note that the PID (14131) might be different, so use whatever PID

you have.

sqlda=# SELECT pg_ cancel backend(14131);

The following figure shows the output of the preceding code:
pg_cancel backend

(1 row)

Observe the first terminal and notice that the sleep command is no longer
executing, as indicated by the return message:

ERROR: canceling statement due to user request
sqlda=# |
Figure 6.61: Message indicating the cancelation of the query

This output screenshot shows an error as the query was canceled after the
user's request.

NOTE

To access the source code for this specific section, please refer
to https://packt.live/3dWLpQP.

In this exercise, we learned how to cancel a query that has taken a long time to
execute. In the next activity, we will try to terminate a long-running query using what
we learned here.

https://packt.live/3dWLpQP

326 | Performant SQL

ACTIVITY 6.08: TERMINATING A LONG-RUNNING QUERY

In this activity, we will terminate a long-running query using the pg_terminate _
background command just as we used pg_cancel backend to stop the
process. We will consider the scenario as being one in which the cancelation of the
guery was not enough to stop the excessively long process. In such a situation, we
require something a little more heavy-handed that, rather than requesting a clean
termination of the process, forces a process to be terminated. Launch two separate
SQL interpreters. Here are the steps to follow:

1. In the first terminal, execute the sleep command with a parameter
of 1000 seconds.

2. Inthe second terminal, identify the process ID of the sleep query.

3. Using the pid value, force the sleep command to terminate using the
pg_terminate background command.

4. Verify in the first terminal that the sleep command has been terminated.
Notice the message returned by the interpreter:

Expected output:

sqlda=# SELECT pg sleep(1000);
FATAL: terminating connection due to administrator command
server closed the connection unexpectedly
This probably means the server terminated abnormally
before or while processing the request.
The connection to the server was lost. Attempting reset: Succeeded.
sqlda=# |

Figure 6.62: Terminated pg_sleep process

NOTE

The solution for this activity can be found via this link.

In this activity, we terminated a long-running query using the
pg_terminate background command.

Summary | 327

SUMMARY

In this chapter, we have covered a wide variety of topics designed to help us
understand and improve the performance of our SQL queries. The chapter began
with a thorough discussion of the query planner, (including the EXPLAIN and
ANALYZE statements) as well as various indexing methods. We discussed a number
of different compromises and considerations that can be made to reduce the time
needed to execute queries.

We considered a number of scenarios where indexing methods would be of benefit
and others where the query planner may disregard the index, thus reducing the
efficiency of the query. We then moved on to the use of joins to efficiently combine
information from a number of different tables and ended with an in-depth look at
functions and automatic function calls through the use of triggers. We have also
covered the /df and /sf commands and learned how to kill long-running queries.

In the next chapter, we will combine all of the topics we have covered thus farin a
final case study, applying our SQL knowledge and the scientific method in general, as
we solve a real-world problem.

THE SCIENTIFIC METHOD AND
APPLIED PROBLEM SOLVING

OVERVIEW

By the end of this chapter, you will be able to solve real-world problems
outside of those described within this book by using the skills that you have
acquired. Using the scientific method and critical thinking, you will be able
to analyze your data and convert it into actionable tasks and information. To
accomplish these goals, we will examine an extensive and detailed real-
world case study of sales data. This case study will not only demonstrate
the processes used in SQL analysis to find solutions for actual problems
but will also provide you with confidence and experience in solving

such problems.

330 | The Scientific Method and Applied Problem Solving

INTRODUCTION

Throughout The Applied SQL Data Analytics Workshop, Second Edition, you have learned
a range of new skills (including basic descriptive statistics, SQL commands, and
importing and exporting data in PostgreSQL) as well as more advanced methods to
optimize and automate SQL (such as functions and triggers). In this final chapter of
this workshop, we will combine these new skills with the scientific method and critical
thinking to solve a real-world problem and determine the cause of an unexpected
drop in sales.

This chapter provides a case study and will help you build your confidence in applying
your new SQL skillset to your own problem domains. To solve the problem presented
in this use case, you will use the complete range of your newly developed skills, from
using basic SQL searches to filter out the available information to aggregating and
joining multiple sets of information and using windowing methods to group the data
in a logical manner. By completing case studies such as this, you will refine one of the
key tools in your data analysis toolkit, providing a boost to your data science career.

CASE STUDY

Throughout this chapter, we will cover the following case study. The new ZoomZoom
Bat Scooter is now available for sale exclusively through its website. Sales are looking
good, but suddenly, preorders start plunging by 20% after a couple of weeks. What's

going on? As the best data analyst at ZoomZoom, you've been assigned to figure

this out.

THE SCIENTIFIC METHOD

In this case study, we will be following the scientific method to help solve our
problem, which, at its heart, is about testing guesses (or hypotheses) using objectively
collected data. We can decompose the scientific method into the following key steps:

1. Define the question to answer what caused the drop in sales of the Bat Scooter
after approximately 2 weeks.

2. Complete background research to gather sufficient information to propose an
initial hypothesis for the event or phenomenon.

3. Construct a hypothesis to explain the event or answer the question.

4. Define and execute an objective experiment to test the hypothesis. In an ideal
scenario, all aspects of the experiment should be controlled and fixed, except for
the phenomenon that is being tested under the hypothesis.

Case Study | 331

5. Analyze the data that was collected during the experiment.

6. Report the result of the analysis, which will hopefully explain why there was a
drop in the sale of Bat Scooters.

Note that in this chapter, we are completing a post hoc analysis of the data; that

is, the event has happened, and all the available data has been collected. Post hoc
data analysis is particularly useful when events have been recorded that cannot be
repeated or when certain external factors cannot be controlled.

It is with this data that we are able to perform our analysis, and, as such, we will
extract information to support or refute our hypothesis. We will, however, be unable
to definitively confirm or reject the hypothesis without practical experimentation. The
guestion that will be the subject of this chapter and that we need to answer is this:
why did the sales of the ZoomZoom Bat Scooter drop by approximately 20% after
about 2 weeks?

So, let's start with the absolute basics.

EXERCISE 7.01: PRELIMINARY DATA COLLECTION USING SQL TECHNIQUES

In this exercise, we will collect preliminary data using SQL techniques. We have been
told that the preorders for the ZoomZoom Bat Scooter were good, but the orders
suddenly dropped by 20%. So, when was production started on the scooter, and
how much was it selling for? How does the Bat Scooter compare with other types

of scooters in terms of price? The goal of this exercise is to answer these questions.
Perform the following steps to complete this exercise:

1. Load the sqlda database from the accompanying source code located
at https://packt.live/2znKY2K:

$ psgl sglda

2. List the model, base_msrp (MSRP stands for manufacturer's suggested retail
price), and production_start_date fields within the product table for
product types matching scooter:

sglda=# SELECT model, base msrp, production start date FROM products
WHERE product type='scooter';

https://packt.live/2znKY2K

332 | The Scientific Method and Applied Problem Solving

The following table shows the details of all the products for the scooter

product type:
model | base msrp | production_start date
_______________________ +___________+_______________________
Lemon 399.99 20160-03-03 00:00:00
Lemon Limited Edition | 799.99 2011-01-03 00:00:00
Lemon 499,99 2013-05-01 00:00:00

| |
| |
| |
Blade | 699.99 | 2014-06-23 00:00:00
| |
| |
| |

Bat 599.99 2016-10-10 DO:00:00
Bat Limited Edition 699.99 2017-02-15 0O:00:00
Lemon Zester 349.99 2019-02-04 00:00:00

(7 rows)

Figure 7.1: Basic list of scooters with a base manufacturer suggesting
a retail price and production date

Looking at the results from the search, we can see that we have two scooter
products with Bat in the name: Bat and Bat Limited Edition.TheBat
Scooter, which started production on October 10, 2016, with a suggested retail
price of $599.99; and the Bat Limited Edition Scooter, which started
production approximately 4 months later, on February 15, 2017, at a price

of $699.99.

Looking at the product information supplied, we can see that the Bat Scooter
is somewhat unique from a price perspective, being the only scooter with a
suggested retail price of $599.99. There are two others at $699.99 and one
at $499.99.

Similarly, if we consider the production start date in isolation, the original Bat
Scooter is again unique in that it is the only scooter starting production in the
last quarter or even half of the year (date format: YYYY-MM-DD). All other scooters
start production in the first half of the year, with only the Blade Scooter starting
production in June.

In order to use the sales information in conjunction with the product information
available, we also need to get the product ID for each of the scooters.

Case Study | 333

Extract the model name and product IDs for the scooters available within the
database. We will need this information to reconcile the product information
with the available sales information:

sqlda=# SELECT model, product id FROM products WHERE product
type="'scooter';

The preceding query yields the product IDs shown in the following table:

model | product_id
_______________________ fommmmm——————
Lemon | 1
Lemon Limited Edition | 2
Lemon | 3
Blade | 5
Bat | 7
Bat Limited Edition | 8
|

Lemon Zester
(7 rows)

Figure 7.2: Scooter product ID codes

Insert the results of this query into a new table called product names and
then select the newly inserted content:

SELECT model, product id INTO product names FROM products WHERE
product type='scooter';
SELECT * FROM product names;

Inspect the contents of the product_names table shown in the
following screenshot:

model | product_id
_______________________ e — e
Lemon | 1
Lemon Limited Edition | 2
Lemon | 3
Blade | 5
Bat | 7
Bat Limited Edition | 8

|

Lemon Zester
(7 rows)

Figure 7.3: Contents of the new product_names table

334 | The Scientific Method and Applied Problem Solving

As described in the output, we can see that the Bat Scooter lies between the
price points of some of the other scooters and that it was also manufactured a
lot later in the year compared to the others.

NOTE

To access the source code for this specific section, please refer
to https://packt.live/2MQ2QXd.

In completing this very preliminary data collection step, we have obtained the
information that's required in order to collect sales data on the Bat Scooter, as well
as other scooter products for comparison. While this exercise involved using the
simplest SQL commands, it has already yielded some useful information.

This exercise has also demonstrated that even the simplest SQL commands can
reveal useful information and that they should not be underestimated. In the next
exercise, we will try to extract the sales information related to the reduction in sales
of the Bat Scooter.

EXERCISE 7.02: EXTRACTING THE SALES INFORMATION

In this exercise, we will use a combination of simple SELECT statements, as well as
aggregate and window functions, to examine the sales data. With the preliminary
information at hand, we can use it to extract the Bat Scooter sales records and
discover what is actually going on. We have a table, product_names, that contains
both the model names and product IDs. We will need to combine this information
with the sales records and extract only those for the Bat Scooter:

1. Load the sqlda database:
$ psgl sglda
2. List the available fields in the sqlda database:

sgqlda=# \d

https://packt.live/2MQ2QXd

Case Study | 335

The preceding query yields the following fields that are present in the database:

sqlda-# \d
List of relations

I

+

| closest dealerships postgres
| countries postgres
| countries2 postgres
| customer dealers postgres
| customer_emails postgres
| customer sales postgres
| customer_search materialized postgres
| customer_ search2 materialized postgres
| customer survey table postgres
| customer_survey search materialized postgres
| customer survey search2 materialized postgres
| customers table postgres
| dealerships table postgres
| emails table postgres
| product_names table postgres
| products table postgres
| public_transportation by zip | table postgres

Figure 7.4: Structure of the sales table

Here, we can see that we have references to customer and product IDs, as
well as the transaction date, sales information, the sales channel, and the
dealership ID.

Use an inner join on the product_id columns of both the product _names
table and the sales table. From the result of the inner join, select the model,
customer_id, sales_transaction_date, sales_amount, channel,
and dealership_id, and store the values in a separate table called
product_sales:

DROP TABLE IF EXISTS products sales;

SELECT model, customer id, sales transaction date, sales amount,
channel, dealership id INTO products sales FROM sales INNER JOIN
product names ON sales.product id=product names.product id;

336 | The Scientific Method and Applied Problem Solving

4. In case you get an error, please drop the products_sales table using the
DROP query (as included in the preceding code) and rerun the code.

The output of the preceding code can be seen in the next step.

NOTE

Throughout this chapter, we will be storing the results of queries and
calculations in separate tables as this will allow you to look at the results of
the individual steps in the analysis at any time. In a commercial/production
setting, we would typically only store the end result in a separate table,
depending on the context of the problem being solved.

5. Look at the first five rows of this new table by using the following query:
sglda=# SELECT * FROM products sales LIMIT 5;

The following table lists the top five customers who made a purchase. It shows
the sale amount and the transaction details, such as the date and time:

model | customer_id | sales_transaction_date | sales_amount | channel | dealership_id
——————— B e i s s e
Lemon | 41604 | 2012-03-30 22:45:29 | 399.99 | internet

Lemon | 41531 | 2010-09-07 22:53:16 | 399.99 | internet

Lemon | 41443 | 2011-085-24 02:19:11 | 399.99 | internet

Lemon | 41291 | 2010-08-08 14:12:52 | 319.992 | internet |

Lemon | 41084 | 2012-01-09 03:34:52 | 319.992 | internet |

(5 rows)

Figure 7.5: The combined product sales table

6. Select all the information from the product_sales table that is available for
the Bat Scooter and order the sales information by sales_transaction_
date in ascending order. By selecting the data in this way, we can look at the
first few days of the sales records in detail:

sqlda=# SELECT * FROM products sales WHERE model='Bat' ORDER BY
sales transaction date;

Case Study | 337

The preceding query generates the following output:

model customer_id sales_transaction_date sales_amount channel dealership_id

text bigint timestamp without time zone double precision text double precision

Bat 4319 2016-10-10 00:41:57 599.99 internet [null]
Bat 40250 2016-10-10 02:47:28 599.99 dealership 4
Bat 35497 2016-10-10 04:21:08 599.99 dealership 2
Bat 4553 2016-10-10 07:42:59 599.99 dealership 1
Bat 11678 2016-10-10 09:21:08 599.99 internet [null]
Bat 45868 2016-10-10 10:29:29 599.99 internet [null]
Bat 24125 2016-10-10 18:57:25 599.99 dealership 1
Bat 31307 2016-10-10 21:22:38 599.99 internet [null]
Bat 42213 2016-10-10 21:27:36 599.99 internet [null]
Bat 47790 2016-10-11 01:28:58 599.99 dealership 20
Bat 6342 2016-10-11 03:04:57 599.99 internet [null]
Bat 45880 2016-10-11 04:09:19 599.99 dealership 7
Bat 43477 2016-10-11 05:24:50 599.99 internet [null]

Figure 7.6: Ordered sales records
7. Count the number of records available by using the following query:
sglda=# SELECT COUNT (model) FROM products sales WHERE model='Bat';

The model count for the 'Bat' model is as follows:

So, we have 7328 sales, beginning on October 10, 2016. Check the date of the
final sales record by performing the next step.

338 | The Scientific Method and Applied Problem Solving

10.

11.

Determine the last sale date for the Bat Scooter by selecting the maximum
(using the MAX function) for sales_transaction_date:

sglda=# SELECT MAX (sales transaction date) FROM products_sales WHERE
model="'Bat';

The last sale date is as follows:

2019-05-31 22:15:30
The last sale in the database occurred on May 31, 2019.

Collect the daily sales volume for the Bat Scooter and place it in a new table
called bat_sales to confirm the information provided by the sales team
stating that sales dropped by 20% after the first 2 weeks:

sglda=# SELECT * INTO bat sales FROM products sales WHERE model='Bat'
ORDER BY sales transaction date;

Remove the time-related information to allow tracking of sales by date, since, at
this stage, we are not interested in the time each sale occurred. To do so, run the
following query, where the sales_transaction_date field is passed into
the DATE function to only leave day, month, and year information in this column:

sqlda=# UPDATE bat sales SET sales transaction date=DATE (sales
transaction date);

You will obtain the following output:
UPDATE 7328

Display the first five records of bat_sales ordered by sales__
transaction_date:

sglda=# SELECT * FROM bat sales ORDER BY sales transaction date LIMIT
5;

Case Study | 339

The following is the output of the preceding code:

model |

Bat
Bat
Bat
Bat

customer_id
4553

35497

40250

4319

11678

|
+
|
|
|
|
|

sales_transaction_date | sales_amount

2016-10-10
2016-10-10
2016-10-10
2016-10-10
2016-10-10

00:00:00 |
00:00:00 |
00:00:00 |
00:00:00 |
00:00:00 |

599.
599.
599.
599.
599.

99
99
99
99
99

channel | dealership_id
____________ .
dealership | 11
dealership | 2
dealership | 4
internet |
internet |

Figure 7.7: First five records of Bat Scooter sales

12. Create a new table (bat_sales_daily) containing the sales transaction dates
and a daily count of total sales:

sglda=# SELECT sales_ transaction date, COUNT (sales transaction date)
INTO bat sales daily FROM bat sales GROUP BY sales transaction date
ORDER BY sales transaction date;

13.

have dropped after approximately the first 2 weeks:

sglda=# SELECT * FROM bat sales daily LIMIT 22;

This will display the following output:

sales_transaction_date | count

2016-10-10
2016-10-11
2016-10-12
2016-16-13
2016-10-14
2016-10-15
2016-10-16
2016-10-17
2016-10-18
2016-10-19
2016-10-20
2016-10-21
2016-1@-22
2016-10-23
2016-10-24
2016-10-25
2016-10-26
2016-10-27
2016-10-28
2016-10-29
2016-10-30
2016-16-31
(22 rows)

00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00

W= & kWoo i

Figure 7.8: First 3 weeks of sales

Examine the first 22 records (a little over 3 weeks), as sales were reported to

340 | The Scientific Method and Applied Problem Solving

We can see a drop in sales after October 20, since there are 7 days in the first 11
rows that record double-digit sales and none over the next 11 days.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/3cVQffy.

At this stage, we can confirm that there has been a drop in sales, although we are yet
to quantify precisely the extent of the reduction or the reason for the drop in sales,
we will discover this in the next activity.

ACTIVITY 7.01: QUANTIFYING THE SALES DROP

In this activity, we will use our knowledge of the windowing methods that we learned
about in Chapter 3, Aggregate and Window Functions. In the previous exercise, we
identified the occurrence of the sales drop as being approximately 10 days after
launch. Here, we will try to quantify the drop in sales for the Bat Scooter.

Perform the following steps to complete this activity:

1.

Load the sqlda database again from the accompanying source code located at
https://packt.live/2znKY2K .

Using the OVER and ORDER BY statements, compute the daily cumulative sum
of sales. This provides us with a discrete count of sales over a period of time on a
daily basis. Insert the results into a new table called bat_sales_growth.

Compute a 7-day lag of the sum column, and then insert all the columns of
bat_sales_daily andthe new lag columninto a new table, bat_sales__
daily delay. This lag column indicates what sales were 1 week prior to the
given record, allowing us to compare sales with the previous week.

Inspect the first 15 rows of bat_sales_growth.

Compute the sales growth as a percentage, comparing the current sales
volume to that of 1 week prior. Insert the resulting table into a new table called
bat sales delay vol.

https://packt.live/3cVQffy
https://packt.live/2znKY2K

Case Study | 341

6. Compare the first 22 values of the bat_sales_delay_ vol table to ascertain
a sales drop.

Expected Output:

sales_transaction_date | count | sum | lag | volume
------------------------ R et T e
2016-10-10 00:00:00 | 9| 9 | |

2016-16-11 00:00:00 | 6 | 15 | |

2016-10-12 00:00:00 | 19 | 25 | |

2016-10-13 00:00:00 | 19 | 35 | |

2016-10-14 00:00:00 | 5| 40 | |

2016-10-15 00:00:00 | 10 | 50 | |

2016-10-16 00:00:00 | 14 | 64 | |

2016-10-17 00:00:00 | 9 | 73 | 9 | 7.1111111111111111
2016-10-18 00:00:00 | 11 | 84 | 15 | 4.6000000000000000
2016-10-19 00:00:00 | 12 | 96 | 25 | 2.8400000000000000
2016-10-20 00:00:00 | 1@ | 186 | 35 | 2.0285714285714286
2016-10-21 00:00:00 | 6 | 112 | 48 | 1.8000000000000000
2016-10-22 00:00:00 | 2| 114 | 58 | 1.2800000000000000
2016-10-23 00:00:00 | 5] 112 | 64 | 0.85937500000000000000
2016-10-24 00:00:00 | 6 | 125 | 73 | ©.71232876712328767123
2016-10-25 00:00:00 | 9 | 134 | 84 | ©.59523809523809523810
2016-10-26 00:00:00 | 2| 136 | 96 | 0.41666666666666666667
2016-10-27 00:00:00 | 4 | 140 | 106 | ©.32075471698113207547
2016-10-28 00:00:00 | 7| 147 | 112 | 0.31250000000000000000
2016-10-29 00:00:00 | 5 | 152 | 114 | ©.33333333333333333333
2016-10-30 00:00:00 | 5 | 157 | 119 | ©.31932773109243697479
2016-10-31 00:00:00 | 3 | 160 | 125 | 0.28000000000000000000

(22 rows)

Figure 7.9: Relative sales volume of the Bat Scooter over 3 weeks

NOTE

The solution for this activity can be found via this link.

While the count and cumulative sum columns are reasonably straightforward, why
do we need the 1ag and volume columns? We need them because we are looking
for drops in sales growth over the first couple of weeks; therefore, we compare the
daily sum of sales to the same values 7 days earlier (the lag). By subtracting the sum
and lag values and dividing by the lag, we obtain the volume value and can determine
sales growth compared to the previous week.

342 | The Scientific Method and Applied Problem Solving

Notice that the sales volume on October 17 is 700% above that of the launch date
of October 10. By October 22, the volume is over double that of the week prior. As
time passes, this relative difference begins to decrease dramatically. By the end

of October, the volume is 28% higher than the week prior. At this stage, we have
observed and confirmed the presence of a reduction in sales growth after the first 2
weeks. The next stage is to attempt to explain the causes of the reduction.

EXERCISE 7.03: LAUNCH TIMING ANALYSIS

In this exercise, we will try to identify the causes of a sales drop. Now that we have
confirmed the presence of the sales growth drop, we will try to explain the cause of
the event. We will test the hypothesis that the timing of the scooter launch attributed
to the reduction in sales. Remember from Exercise 7.01, Preliminary Data Collection
Using SQL Techniques, that the ZoomZoom Bat Scooter launched on October 10, 2016.
Perform the following steps to complete this exercise:

1. Load the sglda database:
S psqgl sglda

2. Examine the other products in the database. In order to determine whether the
launch date attributed to the sales drop, we need to compare the ZoomZoom
Bat Scooter to other scooter products according to the launch date. Execute the
following query to check the launch dates:

sgqlda=# SELECT * FROM products;

The following screenshot shows the launch dates for all the products:

product_id | model | year | product_type | base_msrp | production_start_date | production_end_date
------------ B e i S e e e
1 | Lemon | 2010 | scooter | 399.99 | 2010-03-03 00:00:00 | 2012-06-08 ©00:00:00
2 | Lemon Limited Edition | 2011 | scooter | 799.99 | 2611-01-03 00:00:00 | 2011-83-30 00:00:00
3 | Lemon | 2013 | scooter | 499.99 | 2013-05-01 00:00:00 | 2018-12-28 00:00:00
4 | Medel chi | 2014 | automebile | 115,000.00 | 2014-06-23 00:00:00 | 2018-12-28 00:00:00
5 | Blade | 2014 | scooter | 699.99 | 2014-06-23 00:00:00 | 2015-01-27 00:00:00
6 | Model Sigma | 2015 | automobile | 65,580.80 | 2815-84-15 00:00:00 | 2018-10-01 00:00:00
7 | Bat | 2016 | scooter | 599.99 | 2016-10-16 80:08:00 |
8 | Bat Limited Edition | 2017 | scooter | 699.99 | 2017-02-15 00:00:00 |
9 | Model Epsilon | 2017 | automobile | 35,000.00 | 2017-02-15 00:00:00 |
16 | Model Gamma | 2017 | automobile | 85,750.00 | 2017-02-15 00:00:00 |
11 | Model Chi | 2019 | automobile | 95,000.00 | 2019-02-04 60:00:00 |
12 | Lemon Zester | 2019 | scooter | 349.99 | 2019-02-04 00:00:00 |
(12 rows)

Figure 7.10: Products with launch dates

All the other products launched before July, compared to the Bat Scooter, which
launched in October.

Case Study | 343

3. List all the scooters from the products table, since we are only interested in
comparing scooters:

sglda=# SELECT * FROM products WHERE product type='scooter';

The following table shows all the information for products with the product type
of scooter:

product_id | model | year | product_type | base msrp | production_start _date | production_end_date
------------ B T e r T . T T T e T R T T
1 | Lemen | 2010 | scooter | 399.99 | 2010-03-03 ©0:00:00 | 2012-06-08 0O:00:00
2 | Lemon Limited Edition | 2011 | scooter | 799.99 | 2011-01-83 00:00:00 | 26011-03-30 00:00:00
3 | Lemon | 2813 | scooter | 499.99 | 2013-05-01 00:00:00 | 2018-12-28 00:00:00
5 | Blade | 2014 | scooter | 699.99 | 2014-06-23 00:00:00 | 2015-81-27 00:00:00
7 | Bat | 2016 | scooter | 599.99 | 2016-16-16 80:80:00
8 | Bat Limited Edition | 2017 | scooter | 699.99 | 2017-02-15 00:00:00
12 | Lemon Zester | 2019 | scooter | 349.99 | 2019-02-04 00:00:00

(7 rows)

Figure 7.11: Scooter product launch dates

To test the hypothesis that the time of year had an impact on sales performance,
we require a scooter model to use as the control or reference group. In an

ideal world, we could launch the ZoomZoom Bat Scooter in a different location
or region, for example, but just at a different time, and then compare the two.
However, we cannot do this here.

Instead, we will choose a similar scooter that was launched at a different time.
There are several different options in the product database, each with its own
similarities and differences to the experimental group (ZoomZoom Bat Scooter).
In our opinion, the Bat Limited Edition Scooter is suitable for comparison (the
control group). It is slightly more expensive, but it was launched only 4 months
after the Bat Scooter.

Looking at its name, the Bat Limited Edition Scooter seems to share most of the
same features, with a number of extras given that it's a Limited Edition.

4, Select the first five rows of the sales database:
sgqlda=# SELECT * FROM sales LIMIT 5;

The sales information for the first five customers is as follows:

customer_1id | product_id | sales_transaction_date | sales_amount | channel | dealership_id
————————————— B e e e D
1| 7 | 2017-07-19 08:38:41 | 479.992 | internet |
22 | 7 | 2017-88-14 09:59:02 | 599.99 | dealership | 20
145 | 7 | 2019-01-20 10:40:11 | 479.992 | internet |
289 | 7 | 2017-85-09 14:20:04 | 539.991 | dealership | 7
331 | 7 | 2019-85-21 20:03:21 | 539.991 | dealership | 4

(5 rows)

Figure 7.12: First five rows of the sales data

344 | The Scientific Method and Applied Problem Solving

5. Selectthemodel and sales_transaction_date columns from both the
products and sales tables for the Bat Limited Edition Scooter. Store the results
inatable, bat_1ltd sales, ordered by the sales transaction date
column, from the earliest date to the latest:
sglda=# SELECT products.model, sales.sales_transaction date INTO
bat 1td sales FROM sales INNER JOIN products ON sales.product

id=products.product id WHERE sales.product id=8 ORDER BY sales.sales
transaction date;

You will obtain the following output:
SELECT 5803

6. Select the first five lines of bat_1td sales using the following query:
sqlda=# SELECT * FROM bat 1ltd sales LIMIT 5;

The following table shows the transaction details for the first five entries of Bat
Limited Edition:

model | sales_transaction_date

Bat Limited Edition | 2017-82-15 61:49:82
Bat Limited Edition | 2017-82-15 09:42:37
Bat Limited Edition | 2017-02-15 18:48:31
Bat Limited Edition | 2017-02-15 12:22:41
Bat Limited Edition | 2017-82-15 13:51:34
(5 rows)

Figure 7.13: First five sales of the Bat Limited Edition Scooter

7. Calculate the total number of sales for Bat Limited Edition.We can check
this by using the COUNT function:

sqlda=# SELECT COUNT (model) FROM bat 1ltd sales;

The total sales count can be seen in the following screenshot:

This is compared to the original Bat Scooter, which sold 7,328 items.

Case Study | 345

10.

11.

Check the transaction details of the last Bat Limited Edition sale. We can check
this by using the MAX function:

sglda=# SELECT MAX(sales transaction date) FROM bat 1ltd sales;

The transaction details of the last Bat Limited Edition productare
as follows:

2019-05-31 15:08:03

Adjust the table to cast the transaction date column as a date, discarding the
time information. As with the original Bat Scooter, we are only interested in the
date of the sale, not the date and time of the sale. Write the following query:

sqglda=# ALTER TABLE bat 1ltd sales ALTER COLUMN sales_transaction_date
TYPE date;

Again, select the first five records of bat_1td sales to check that the type of
the sales_transaction_date column is changed to date:

sglda=# SELECT * FROM bat 1ltd sales LIMIT 5;

The following table shows the first five records of bat_1td sales:

model | sales_transaction_date
_____________________ +________________________
Bat Limited Edition 2017-02-15
Bat Limited Edition 2017-02-15

Bat Limited Edition 2017-02-15
Bat Limited Edition 2017-02-15
(5 rows)

|
|
Bat Limited Edition | 2017-02-15
|
|

Figure 7.14: Selecting the first five Bat Limited Edition sales by date

In a similar manner to the standard Bat Scooter, create a count of sales on a
daily basis. Insert the results into the bat_1td sales_count table by using
the following query:

sqlda=# SELECT sales transaction date, count(sales transaction
date) INTO bat 1td sales count FROM bat 1td sales GROUP BY sales
transaction date ORDER BY sales transaction date;

346 | The Scientific Method and Applied Problem Solving

12. List the sales count of all the Bat Limited products using the following query:
sqglda=# SELECT * FROM bat ltd sales_count;

The sales count is shown in the following screenshot:

2017-02-15 |
2017-02-16 |
2017-02-17 |
2017-02-18 |
2017-02-19 |
2017-02-20 |
2017-02-21 |
2017-02-22 |
2017-02-23 |
2017-02-24 |
2017-02-25 |
2017-02-26 |
2017-02-27 |
2017-02-28 |
2017-03-01 |
2017-03-02 |

[l 0 B N N L T N = VR Py B (R Y i N e]

Figure 7.15: Bat Limited Edition daily sales

13. Compute the cumulative sum of the daily sales figures and insert the resulting
tableintobat_ltd sales_growth:

sqlda=# SELECT *, sum(count) OVER (ORDER BY sales transaction date)
INTO bat 1td sales growth FROM bat 1ltd sales count;

14. Select the first 22 days of sales records frombat_ltd sales_growth:

sglda=# SELECT * FROM bat ltd sales_growth LIMIT 22;

Case Study | 347

The following table displays the first 22 records of sales growth:

________________________ +_______+_____
2017-02-15 | 6] 6
2017-82-16 | 2 | 8
2017-82-17 | 1] 9
2017-02-18 | 4 | 13
2017-82-19 | 5] 18
2017-82-20 | 6 | 24
2017-82-21 | 5] 29
2017-82-22 | 4] 33
2017-82-23 | 6 | 39
2017-02-24 | 2| 4
2017-82-25 | 2] 43
2017-02-26 | 2| 45
2017-082-27 | 4 | 49
2017-82-28 | 4 | 53
2017-03-01 | 5] 58
2017-83-02 | 1| 59
2017-83-03 | 3] 62
2017-03-04 | 8| 76O
2017-83-05 | 4 | 74
2017-03-06 | 7] 81
2017-083-07 | 7 | 88
2017-83-08 | B | 96

(22 rows)

Figure 7.16: Bat Limited Edition sales - cumulative sum

15. Compare this sales record with the one for the original Bat Scooter sales, as
shown in the following code:

sqglda=# SELECT * FROM bat sales growth LIMIT 22;

348 | The Scientific Method and Applied Problem Solving

16.

The following table shows the sales details for the first 22 records of the
bat sales_growth table:

sales_transaction_date | count | sum

________________________ fommmmmemmm e
2016-10-10 00:00:00 9 9
2016-10-11 00:00:00 6 15
2016-10-12 00:00:00 10 25
2016-10-13 00:00:00 10 35
2016-10-14 00:00:00 5 40
2016-10-15 00:00:00 10 50
2016-10-16 00:00:00 14 64
2016-10-17 00:00:00 9 73
2016-10-18 00:00:00 11 84
2016-10-19 00:00:00 12 96
2016-10-20 00:00:00 10 106

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
2016-10-21 00:00:00 | 6 | 112
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

2016-10-22 00:00:00 2 114
2016-10-23 00:00:00 5 119
2016-10-24 00:00:00 +] 125
2016-10-25 00:00:00 9 134
2016-10-26 00:00:00 2 136
2016-10-27 00:00:00 4 140
2016-10-28 00:00:00 7 147
2016-10-29 00:00:00 5 152
2016-10-30 00:00:00 5 157
2016-10-31 00:00:00 3 160

(22 rows)

Figure 7.17: Bat Scooter cumulative sales for 22 rows

Sales of the Limited Edition scooter did not reach double digits during the first
22 days, nor did the daily volume of sales fluctuate as much. In keeping with the
overall sales figure, the Limited Edition scooters sold 64 fewer units over the first
22 days.

Compute the 7-day lag function for the sum column and insert the results into
thebat ltd sales_delay table:

sglda=# SELECT *, lag(sum , 7) OVER (ORDER BY sales transaction date)
INTO bat 1td sales delay FROM bat 1td sales growth;

Case Study | 349

17. Compute the sales growth forbat_1td sales_delay in a similar manner to
the exercise we completed in Activity 7.01, Quantifying the Sales Drop. Label the
column for the results of this calculation volume and store the resulting table in
bat_1td sales vol

sqlda=# SELECT *,

bat 1td sales delay;

(sum-lag) /lag AS volume INTO bat ltd sales vol FROM

18. Look at the first 22 records of salesinbat_ltd_sales_vol:

sglda=# SELECT * FROM bat ltd sales_vol LIMIT 22;

The sales volume can be seen in the following screenshot:

2017-02-15
2017-02-16
2017-02-17
2017-02-18
2017-02-19
2017-02-20
2017-02-21
2017-02-22
2017-02-23
2017-02-24
2017-02-25
2017-02-26
2017-02-27
2017-02-28
2017-03-01
2017-03-02
2017-03-03
2017-03-04
2017-03-05
2017-03-06
2017-03-07
2017-03-08
(22 rows)

0O =~ = 5 00 Wk LA AR UL GLUL R RO

13
18
24
29
33
39
41
43
45
49
53
58
59
62
70
74
81
88
96

6

8

)
13
18
24
29
33
39
41
43
45
49
53
58

o020

volume

.5000000000000000
.8750000000000000
.5555555555555556
.3076923076923077
.5000000000000000
1.0416666666666667

[l I PSR VRN

.B2758620689655172414
LAS5T5T575757575757576
.51282051282051282051
.51215512195121951220
.62790697674418604651
.64444444444444444444
.65306122448979591837
.66037735849056603774
.65517241379310344828

Figure 7.18: Bat Scooter cumulative sales showing volume

350 | The Scientific Method and Applied Problem Solving

Looking at the volume column in the preceding screenshot, we can see that the
sales growth is more consistent than the original Bat Scooter. The growth within
the first week is less than that of the original model, but it is sustained over a
longer period. After 22 days of sales, the sales growth of the Limited Edition
scooter is 65% compared to the previous week, as compared with the 28%
growth we identified in Activity 7.01, Quantifying the Sales Drop.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/2YtulLS5.

At this stage, we have collected data from two similar products that were launched
at different time periods and found some differences in the trajectory of the sales
growth over the first 3 weeks of sales. In a professional setting, we may also consider
employing more sophisticated statistical comparison methods, such as tests for
differences of mean, variance, survival analysis, or other techniques. These methods
lie outside the scope of this book and, as such, limited comparative methods will

be used.

While we have shown there to be a difference in sales between the two Bat Scooters,
we also cannot rule out the fact that the sales differences can be attributed to the
difference in the sales price of the two scooters, with the limited edition scooter
being $100 more expensive. In the next activity, we will compare the sales of the Bat
Scooter to the 2013 Lemon, which is $100 cheaper, was launched 3 years prior, is no
longer in production, and started production in the first half of the calendar year.

https://packt.live/2YtuLS5

Case Study | 351

ACTIVITY 7.02: ANALYZING THE DIFFERENCE IN THE SALES PRICE HYPOTHESIS

In this activity, we are going to investigate the hypothesis that the reduction in

sales growth can be attributed to the price point of the Bat Scooter. Previously, we
considered the launch date. However, there could be another factor—the sales price
included. If we consider the product list of scooters shown in the following table and
exclude the Bat Scooter, we can see that there are two price categories: $699.99 and
above, or $499.99 and below. The Bat Scooter sits exactly between these two groups;
perhaps the reduction in sales growth can be attributed to the different pricing
models. In this activity, we will test this hypothesis by comparing Bat sales to

the 2013 Lemon:

product_id | model | year | product_type | base msrp | production_start_date | preduction_end_date
------------ B R S I et T e
12 | Lemon Zester | 2019 | scooter | 349.99 | 2019-02-04 @0:00:00 |
1 | Lemon | 2018 | scooter | 399.99 | 2010-03-03 00:00:00 | 2012-06-08 00:00:00
3 | Lemen | 2013 | scooter | 499.99 | 2013-05-01 00:00:00 | 2018-12-28 00:00:00
7 | Bat | 2016 | scooter | 599.99 | 2016-10-1@ @0:00:00 |
5 | Blade | 2014 | scooter | 699.99 | 2014-06-23 00:00:00 | 2015-01-27 ©0:00:00
8 | Bat Limited Edition | 2017 | scooter | 699.99 | 2017-02-15 00:00:00 |
2 | Lemon Limited Edition | 2011 | scooter | 799.99 | 2011-01-03 @O:00:00 | 2011-03-30 00:080:00
(7 rows)

Figure 7.19: List of scooter models
Perform the following steps to complete this activity:

1. Load the sqlda database from the accompanying source code located at
https://packt.live/2znKY2K .

2. Selectthe sales_transaction_date column from the year 2013 for Lemon
model sales and insert the column into a table called lemon_sales.

Count the sales records available for 2013 for the Lemon model.
Display the latest sales _transaction_ date column.

Convertthe sales_transaction_date columninto a date type.

o v M W

Count the number of sales per day within the lemon_sales table and insert
the data into a table called lemon_sales_count.

https://packt.live/2znKY2K

352 | The Scientific Method and Applied Problem Solving

7. Calculate the cumulative sum of sales and insert the corresponding table into a
new table labeled lemon_sales_sum.

8. Compute the 7-day 1ag function on the sum column and save the result to
lemon sales_delay.

9. Calculate the growth rate using the data from lemon_sales_delay and store
the resulting table in lemon_sales_growth.

10. Inspect the first 22 records of the lemon_sales_growth table by examining
the volume data.

Expected Output:

sales_transaction_date | count | sum | lag | volume
———————————————————————— e e
2013-85-01 | 6| 6| |
2013-05-02 | 8| 14 | |
2013-85-03 | 4 | 18 | |
2013-05-04 | 9 | 27 | |
2013-05-05 | 9 | 36 | |
2013-85-06 | 6 | 42 | |
2013-05-07 | 8 | 50| |
2013-05-08 | 6 | 56 | 6 | 8.3333333333333333
2013-05-09 | 6 | 62] 14 | 3.4285714285714286
2013-085-10 | 9] 71| 18 | 2.9444444444444444
2013-85-11 | 3| 74| 27 | 1.7407407407407407
2013-05-12 | 4 | 78] 36 | 1.1666666666666667
2013-85-13 | 7] 85 | 42 | 1.0238095238095238
2013-05-14 | 3| 88 | 508 | 9.76000000000000000000
2013-85-15 | 3] 91| 56 | 0.62500000000000000000
2013-05-16 | 4 | 95| 62 | ©.53225806451612903226
2013-085-17 | 6 | 101 | 71 | ©.42253521126760563380
2013-85-18 | 9 | 118 | 74 | 0.48648648648648648649
2013-05-19 | 6 | 116 | 78 | ©.48717948717948717949
2013-85-20 | 6 | 122 | 85 | 0.43529411764705882353
2013-05-21 | 11 | 133 | 88 | ©.51136363636363636364
2013-85-22 | 8 | 141 | 91 | 0.54945054945054945055
(22 rows)
Figure 7.20: Sales growth of the Lemon Scooter
NOTE

The solution for this activity can be found via this link.

Case Study | 353

Now that we have collected data to test the two hypotheses of timing and cost, what
observations can we make and what conclusions can we draw?

The first observation that we can make is regarding the total volume of sales for

the three different scooter products. The Lemon Scooter, over its production life
cycle of 4.5 years, sold 16,558 units, while the two Bat Scooters, the Original and
Limited Edition models, sold 7,328 and 5,803 units, respectively, and are still currently
in production, with the Bat Scooter launching about 4 months earlier and with
approximately 2.5 years of sales data available.

Looking at the sales growth of the three different scooters, we can also make a few
different observations:

The original Bat Scooter, which launched in October at a price of $599.99,
experienced a 700% sales growth in its second week of production and finished
the first 22 days with 28% growth and a sales figure of 160 units.

The Bat Limited Edition Scooter, which launched in February at a price of
$699.99, experienced 450% growth at the start of its second week of production
and finished with 96 sales and 66% growth over the first 22 days.

The 2013 Lemon Scooter, which launched in May at a price of $499.99,
experienced 830% growth in the second week of production and ended its first
22 days with 141 sales and 55% growth.

Based on this information, we can make a number of different conclusions:

The initial growth rate starting in the second week of sales correlates to the cost
of the scooter. As the cost increased to $699.99, the initial growth rate dropped
from 830% to 450%.

The number of units sold in the first 22 days does not directly correlate to the
cost. The $599.99 Bat Scooter sold more than the 2013 Lemon Scooter in that
first period, despite the price difference.

There is some evidence to suggest that the reduction in sales can be attributed
to seasonal variations, given the significant reduction in growth and the fact that
the original Bat Scooter is the only one released in October. So far, the evidence
suggests that the drop can be attributed to the difference in launch timing.

354 | The Scientific Method and Applied Problem Solving

Before we draw the conclusion that the difference can be attributed to seasonal
variations and launch timing, let's ensure that we have extensively tested a range
of possibilities. Perhaps marketing work, such as email campaigns (that is when the
emails were sent) and the frequency with which the emails were opened, made

a difference.

Now that we have considered both the launch timing and the suggested retail price
of the scooter as a possible cause of the reduction in sales, we will direct our efforts
to other potential causes, such as the rate of opening marketing emails. Does the
marketing email opening rate have an effect on sales growth throughout the first 3
weeks? We will find out in the next exercise.

EXERCISE 7.04: ANALYZING SALES GROWTH BY EMAIL OPENING RATE

In this exercise, we will analyze the sales growth using the email opening rate. To
investigate the hypothesis that a decrease in the rate of opening emails impacted the
Bat Scooter sales rate, we will again select the Bat and Lemon Scooters and compare
the email opening rate.

Perform the following steps to complete this exercise:

1. Load the sqglda database:
$ psgl sglda

2. Firstly, look at the emails table to see what information is available. Select the
first five rows of the emails table:

sglda=# SELECT * FROM emails LIMIT 5;

The following table displays the email information for the first five rows:

email_subject
—————————— +
| 18 | Introducing A Limited Edition
| 30 | Introducing A Limited Edition
| Introducing A Limited Edition
| Introducing A Limited Edition
|

Introducing A Limited Edition

2011-01-83 15:00:00 |
2011-01-83 15:00:00 |
2011-61-03 15:00:00 | 2011-01-04 10:41:11
2011-01-83 15:00:00 |
2011-01-83 15:00:00 |

41
52
59
(5 rows)

Figure 7.21: Sales growth of the Lemon Scooter

To investigate our hypothesis, we need to know whether an email was opened,
when it was opened, as well as who the customer was who opened the email
and whether that customer purchased a scooter. If the email marketing
campaign was successful in maintaining the sales growth rate, we would expect
a customer to open an email soon before a scooter was purchased.

Case Study | 355

The period in which the emails were sent, as well as the ID of customers who
received and opened an email, can help us determine whether a customer who
made a sale may have been encouraged to do so following the receipt of

an email.

To determine this hypothesis, we need to collect the customer _id column
from both the emails table and the bat_sales table for the Bat Scooter, the
opened, sent_date, opened _date, and email subject columns from
the emails table, as well as the sales_transaction_date column from
thebat_sales table. Since we only want the email records of customers who
purchased a Bat Scooter, we will join the customer_id column in both tables.
Then, we'll insert the results into a new table -bat_emails:

sglda=# SELECT emails.email subject, emails.customer id, emails.
opened, emails.sent date, emails.opened date, bat sales.sales
transaction date INTO bat emails FROM emails INNER JOIN bat sales ON

batisales.castomeriidZemazls.customeriid ORDER BY bat sales.sales
transaction date;

You will obtain the following output:
SELECT 40190

Select the first 10 rows of the bat_emails table, ordering the results by
sales_transaction_date:

sqlda=# SELECT * FROM bat emails LIMIT 10;

The following table shows the first 10 rows of the bat_emails table ordered by
sales_transaction_date:

email_subject

A New Year, And Some New EVs
A Brand New Scooter...and Car
We Really Outdid Ourselves this Year

Tis' the

Season for Savings

25% off all EVs. It's a Christmas Miracle!
Zoom Zoom Black Friday Sale

100:
100:
100:
100:
:00:

2015-11-27 04:55:07

sales_transaction_date

|

+

I :00:

| 2016-10-10 00:00:00
| 2016-10-10 ©0:00:00
| 2016-10-10 00:00:00
| 2016-16-10 00:00:00
| 2016-10-10 00:00:00
|

|

|

|

Save the Planet with some Holiday Savings. 4553 2018-11-23 15:00:00 2016-10-10 00:00:00
The 2013 Lemon Scooter is Here 24125 2013-03-01 15:00:00 2013-03-02 14:43:34 2016-10-10 00:00:00
The 2013 Lemon Scooter is Here 40250 2013-03-01 15:00:00 2016-10-10 00:00:00
Save the Planet with some Holiday Savings. 40250 2018-11-23 15:00:00 2016-10-10 00:00:00
(10 rows)

Figure 7.22: Email and sales information joined on customer_id

Here, we can see that there are several emails unopened, over a range of sent
dates, and that some customers have received multiple emails. Looking at the
subjects of the emails, some of them don't seem related to the Zoom scooters
at all.

356 | The Scientific Method and Applied Problem Solving

5. Select all rows where the sent_date email predates the sales__
transaction_date column, order by customer_ id, and limit the output
to the first 22 rows. This will help us find out which emails were sent to each
customer before they purchased their scooter. Write the following query to
do so:

sglda=# SELECT * FROM bat emails WHERE sent date < sales transaction
date ORDER BY customer id LIMIT 22;

The following table lists the emails that were sent to the customers before the
sales_transaction_date column:

email_subject opened

sent_date sales_transaction_date

2019-04-25 00:00:00
2019-04-25 00:00:00
2019-04-25 00:00:00
2019-64-25 00:00:00
2019-04-25 00:00:00
2019-04-25 00:00:00
2019-04-25 00:00:00
2019-04-25 00:00:00
2019-64-25 00:00:00
2019-64-25 00:00:00
2019-04-25 00:00:00
2019-04-25 00:00:00
2019-04-25 00:00:00

,,, | custonertd.

An Electric Car for a New Age

The 2813 Lemon Scooter is Here

Tis' the Season for Savings

Black Friday. Green Cars.

We cut you a deal: 20%% off a Blade

Zoom Zoom Black Friday Sale

Like a Bat out of Heaven

Save the Planet with some Holiday Savings.

Shocking Holiday savings On Electric Scooters |

25% off all EVs. It's a Christmas Miracle!

We Really Outdid Ourselves this Year

A Brand New Scooter...and Car

A New Year, And Some New EVs
|
|
|
|
|
|
|
|
|

| |
+ +
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 2016-11-25 15:
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

Tis' the season for Savings 22 2015-11-26 15 2017-08-14 00:00:00
Like a Bat out of Heaven 22 2016-09-21 15 2017-68-14 00:00:00
Zoom Zoom Black Friday Sale 22 2014-11-28 15 2017-08-14 00:00:00
The 2613 Lemon Scooter is Here 22 2013-03-61 15 2017-08-14 00:00:00
25% off all EVs. It's a Christmas Miracle! 22 2016-11-25 15 2017-08-14 006:00:00
We Really outdid ourselves this Year 22 2017-81-15 15 2017-08-14 00:00:00
Shocking Holiday savings On Electric Scooters 22 2013-11-29 15 2017-08-14 00:00:00
We cut you a deal: 20%% off a Blade 22 2014-09-18 15 2017-08-14 00:00:00
An Electric Car for a New Age 22 2015-04-01 15: 2017-08-14 00:00:00

(22 rows)
Figure 7.23: Emails sent to customers before the sale transaction date

6. Delete the rows of the bat _emails table where emails were sent more than 6
months prior to production. As we can see, there are some emails that were sent
years before the transaction date. We can easily remove some of the unwanted
emails by removing those sent before the Bat Scooter was in production. In the
products table, the production start date for the Bat Scooter is October 10, 2016:

sqlda=# DELETE FROM bat emails WHERE sent date < '2016-04-10';

NOTE

In this exercise, we are removing information that we no longer require
from an existing table. This differs from the previous exercises, where we
created multiple tables — each with slightly different information from others.
The technique you apply will differ, depending on the requirements of the
problem being solved; do you require a traceable record of analysis, or is
efficiency and reduced storage the key?

Case Study | 357

7. Delete the rows where the sent date is after the purchase date since they are not
relevant to the sales:

sglda=# DELETE FROM bat emails WHERE sent date > sales transaction
date;

8. Delete those rows where the difference between the transaction date and the
sent date exceeds 30 since we also only want those emails that were sent shortly
before the scooter purchase. An email 1 year beforehand is probably unlikely to
influence a purchasing decision, but one that is closer to the purchase date may
have influenced the sales decision. We will set a limit of 1 month (30 days) before
the purchase. Write the following query to do so:

sglda=# DELETE FROM bat emails WHERE (sales_transaction date-sent
date) > '30 days';

9. Examine the first 22 rows again, ordered by customer_id, by running the
following query:

sqlda=# SELECT * FROM bat emails ORDER BY customer id LIMIT 22;

The following table shows the emails where the difference between the
transaction date and the sent date is less than 30:

email_subject sent_date sales_transaction_date

25% off all EVs. It's a Christmas Miracle! 129 2016-11- 2016-11-26 06: 2016-11-28 :
A New Year, And Some New EVs 145 2019-01-07 15:00:00 2019-01-20 00:00:00
Black Friday. Green Cars. 150 2017-11-24 15:00:00 2017-12-19 00:00:00
Black Friday. Green Cars. 173 2017-11-24 15:00:00 2017-12-05 00:00:00
We Really Outdid Ourselves this Year 196 2017-01-15 15:00:00 2017-01-23 00:00:00
We Really Outdid Ourselves this Year 319 2017-01-15 15:00:00 2017-01-29
Like a Bat out of Heaven 369 2016-09-21 15:00:00 2016-10-13
Like a Bat out of Heaven 414 2016-09-21 15:00:00

2016-12-21 00:00:00
A New Year, And Some New EVs 2019-01-29 00:00:00
We Really Outdid Ourselves this Year 660 2017-01-15 15:00:00 2017-01-18 00:00:00

| | |
+ + +
25% off all EVs. It's a Christmas Miracle!	418
560	

| |
+ +
| |
| |
| |
| |
| |
| |
| |
| | 2016-10-28 00:00:00
| |
2019-01-07 15:00:00 | 2019-01-08 15:56:14 |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

A New Year, And Some New EVs 660 2019-01-07 15:00:00 2019-01-08 23:37:03 2019-01-08

A New Year, And Some New EVs 681 2019-01-07 15:00:00 2019-01-13

Black Friday. Green Cars. 806 2017-11-24 15:00:00 2017-11-25 16:59:40 2017-11-29 00:00:00
A New Year, And Some New EVs 881 2019-01-07 15:00:00 2019-01-08 21:07:28 2019-01-22 00:00:00
25% off all EVs. It's a Christmas Miracle! 934 2016-11-25 15:00:00 2016-11-26 ©9:22:45 2016-12-24 00:00:00
25% off all EVs. It's a Christmas Miracle! 983 2016-11-25 15:00:00 2016-11-29 00:00:00
A New Year, And Some New EVs 1060 2019-01-07 15:00:00 2019-01-27 00:00:00
25% off all EVs. It's a Christmas Miracle! 1288 2016-11-25 15:00:00 2016-12-11 00:00:00
25% off all EVs. It's a Christmas Miracle! 1317 2016-11-25 15:00:00 2016-12-13 00:00:00
A New Year, And Some New EVs 1400 2019-01-07 15:00:00 2019-01-08 15:01:00 2019-01-10 00:00:00
Save the Planet with some Holiday Savings. 1417 2018-11-23 15:00:00 2018-11-26 00:00:00

(22 rows)

Figure 7.24: Emails sent close to the date of sale

At this stage, we have reasonably filtered the available data based on the dates
the email was sent and opened. Looking at the preceding email subject
column, it also appears that there are a few emails unrelated to the Bat Scooter
(for example, 25% of all EVs. It's a Christmas Miracle! and
Black Friday. Green Cars). These emails seem more related to electric
car production than scooters, so we can remove them from our analysis.

358 | The Scientific Method and Applied Problem Solving

10. Select the distinct value from the email subject column to get a list of the
different emails that were sent to the customers:

sglda=# SELECT DISTINCT (email subject) FROM bat emails;
The following table shows a list of distinct email subjects:

emaill subject

Black Friday. Green Cars.

25% off all EVs. It's a Christmas Miracle!
A New Year, And Some New EVs

Like a Bat out of Heaven

save the Planet with some Holiday Savings.
We Really Outdid Ourselves this Year
(6 rows)

Figure 7.25: Unique email subjects sent to potential customers of the Bat Scooter

11. Delete all the records that have Black Friday in the email subject. These
emails do not appear to be relevant to the sale of the Bat Scooter:

sqlda=# DELETE FROM bat emails WHERE position('Black Friday' in
email subject)>0;

NOTE

The position function in the preceding example is used to find any
records where the Black Friday string is at the first character in the
mail or more in email structure. Thus, we are deleting any rows
where Black Friday is in the email subject. For more information on
PostgreSQL, refer to the following documentation regarding string functions:
https://www.postgresql.org/docs/current/functions-string.html.

12. Delete all rows where 25% off all EVs. It's a Christmas
Miracle! and A New Year, And Some New EVs can be found inthe
email subject column:

sglda=# DELETE FROM bat emails WHERE position('25% off all EV' in
email subject)>0;

sqlda=# DELETE FROM bat emails WHERE position('Some New EV' in email
subject) >0;

https://www.postgresql.org/docs/current/functions-string.html

Case Study | 359

13.

14.

15.

At this stage, we have our final dataset of emails that were sent to customers.
Count the number of rows that are left in the sample by writing the
following query:

sqlda=# SELECT count (sales transaction date) FROM bat emails;

We can see that 401 rows are left in the sample:

Now, we will compute the percentage of emails that were opened relative to
sales. Count the emails that were opened by writing the following query:

sqlda=# SELECT count (opened) FROM bat emails WHERE opened='t'

We can see that 98 emails were opened:

Count the customers who received emails and made a purchase. We will
determine this by counting the number of unique (or distinct) customers that are
inthebat_emails table:

sqlda=# SELECT COUNT (DISTINCT (customer id)) FROM bat emails;

We can see that 396 customers who received an email made a purchase:

360 | The Scientific Method and Applied Problem Solving

16.

17.

Count the unique (or distinct) customers who made a purchase by writing the
following query:

sglda=# SELECT COUNT (DISTINCT (customer id)) FROM bat sales;

The following is the output of the preceding code:

Calculate the percentage of customers who purchased a Bat Scooter after
receiving an email:

sglda=# SELECT 396.0/6659.0 AS email rate;
The output of the preceding query is as follows:

email rate
0.05946838864694398558

(1 row)

NOTE

In the preceding calculation, you can see that we included a decimal place
in the figures (for example, 396.0 instead of a simple integer value of
396). This is because the resulting value will be represented as less than

1 percentage point. If we excluded these decimal places, the SQL server
would have completed the division operation as integers and the result
would be 0.

Just under 6% of customers who made a purchase received an email regarding
the Bat Scooter. Since 18% of customers who received an email made a
purchase, there is a strong argument to be made that actively increasing the
size of the customer base who receive marketing emails could increase Bat
Scooter sales.

Case Study | 361

18.

19.

20.

Limit the scope of our data to all sales prior to November 1, 2016, and put the
data in a new table called bat_emails threewks. So far, we have examined
the email opening rate throughout all the available data for the Bat Scooter.
Check the rate throughout for the first 3 weeks, where we saw a reduction

in sales:

sglda=# SELECT * INTO bat emails threewks FROM bat emails WHERE
sales transaction date < '2016-11-01'";

You will obtain the following output:

SELECT 82

Now, count the number of emails that were opened during this period:
sqlda=# SELECT COUNT (opened) FROM bat emails threewks;

We can see that we sent 82 emails during this period:

Now, count the number of emails that were opened in the first 3 weeks:

sqlda=# SELECT COUNT (opened) FROM bat emails threewks WHERE
opened="t"';

The following is the output of the preceding code:

Here, we can see that 15 emails were opened in the first 3 weeks.

362 | The Scientific Method and Applied Problem Solving

21.

22.

23.

Count the number of customers who received emails during the first 3 weeks of
sales and who then made a purchase using the following query:

sglda=# SELECT COUNT (DISTINCT (customer id)) FROM bat emails threewks;

We can see that 82 customers received emails during the first 3 weeks:

Calculate the percentage of customers who opened emails pertaining to the Bat
Scooter and then made a purchase in the first 3 weeks using the following query:

sqglda=# SELECT 15.0/82.0 AS sale rate;
The following table shows the calculated percentage:

sale rate
0.18292682926829268293

(1 row)

Approximately 18% of customers who received an email about the Bat Scooter
made a purchase in the first 3 weeks. This is consistent with the rate for all the
available data for the Bat Scooter.

Calculate how many unique customers we have in total throughout the first 3
weeks. This information is a useful context when considering the percentages
we just calculated. 3 sales out of 4 equate to 75%, but, in this situation, we would
prefer a lower rate of the opening for a much larger customer base. Information
on larger customer bases is generally more useful as it is typically more
representative of the entire customer base, rather than a small sample of it. We
already know that 82 customers received emails:

sqlda=# SELECT COUNT (DISTINCT (customer id)) FROM bat sales WHERE
sales transaction date < '2016-11-01'";

Case Study | 363

The following output reflects 160 customers where the transaction took place
before November 1, 2016:

There were 160 customers in the first 3 weeks, 82 of whom received emails,
which is slightly over 50% of customers. This is much more than 6% of customers
over the entire period of availability of the scooter.

NOTE

To access the source code for this specific section, please refer
to https://packt.live/3hkH3Vw.

Now that we have examined the performance of the email marketing campaign for
the Bat Scooter, we need a control or comparison group to establish whether the
results were consistent with that of other products. Without a group to compare
against, we simply do not know whether the email campaign of the Bat Scooter was
good, bad, or neither. We will investigate performance in the next exercise.

EXERCISE 7.05: ANALYZING THE PERFORMANCE OF THE EMAIL MARKETING CAMPAIGN

In this exercise, we will investigate the performance of the email marketing campaign
for the Lemon Scooter to allow for a comparison with the Bat Scooter. Our hypothesis
is that if the email marketing campaign's performance of the Bat Scooter is consistent
with another, such as the 2013 Lemon, then the reduction in sales cannot be
attributed to differences in the email campaigns.

Perform the following steps to complete this exercise:
1. Load the sqglda database:
$ psql sqlda
2. Drop the existing Lemon_sales table:

sglda=# DROP TABLE lemon sales;

https://packt.live/3hkH3Vw

364 | The Scientific Method and Applied Problem Solving

3. The 2013 Lemon Scooter is product_id = 3. Select customer_idand
sales_transaction_date from the sales table for the 2013 Lemon Scooter.
Insert this information into a table called lemon_sales:

sqlda=# SELECT customer id, sales transaction date INTO lemon sales
FROM sales WHERE product id=3;

4. Select all the information from the emails database for customers who
purchased a 2013 Lemon Scooter. Place this information in a new table called
lemon emails:
sglda=# SELECT emails.customer id, emails.email subject, emails.
opened, emails.sent date, emails.opened date, lemon sales.sales

transaction date INTO lemon emails FROM emails INNER JOIN lemon sales
ON emails.customer id=lemon sales.customer id;

5. Remove all the emails that were sent before the start of the production of the
2013 Lemon Scooter. For this, we require the date when production started:

sglda=# SELECT production start date FROM products Where product
id=3;

The following table shows the production_start_ date column:

production start date

2013-05-01 00:00:00

(1 row)

6. Now, delete the emails that were sent before the start of production of the 2013
Lemon Scooter:

sqlda=# DELETE FROM lemon emails WHERE sent date < '2013-05-01';

7. Remove all the rows where the sent date occurred after the sales__
transaction_date column:

sglda=# DELETE FROM lemon emails WHERE sent date > sales transaction
date;

8. Remove all the rows where the sent date occurred more than 30 days before the
sales_transaction_date column:

sglda=# DELETE FROM lemon emails WHERE (sales_transaction date -
sent date) > '30 days';

Case Study | 365

9. Remove all the rows from lemon_emails where the email subject is
not related to a Lemon Scooter. Before doing this, we will search for all
distinct emails:

sqlda=# SELECT DISTINCT (email subject) FROM lemon emails;
The following table shows the distinct email subjects:

email_subject
Tis' the Season for Savings
25% off all EVs. It's a Christmas Miracle!
A Brand New Scooter...and Car
Like a Bat out of Heaven
Save the Planet with some Holiday Savings.
Shocking Holiday Savings On Electric Scooters
We Really Outdid Ourselves this Year
An Electric Car for a MNew Age
We cut you a deal: 20%% off a Blade
Black Friday. Green Cars.
Zoom Zoom Black Friday Sale
(11 rows)

Figure 7.26: Lemon Scooter campaign emails sent

10. Delete the email subjects not related to the Lemon Scooter using the
DELETE command:

sqlda=# DELETE FROM lemon emails WHERE POSITION ('25% off all EVs.' in
email subject)>0;

sglda=# DELETE FROM lemoniemails WHERE POSITION('Like a Bat out of
Heaven' in email subject)>0;

sqlda=# DELETE FROM lemon emails WHERE POSITION ('Save the Planet' in
email subject)>0;

sglda=# DELETE FROM lemon emails WHERE POSITION ('An Electric Car' in
email subject)>0;

sqlda=# DELETE FROM lemon emails WHERE POSITION ('We cut you a deal'
in email subject)>0;

sglda=# DELETE FROM lemon emails WHERE POSITION ('Black Friday. Green
Cars.' in email subject)>0;

sqlda=# DELETE FROM lemon emails WHERE POSITION ('Zoom' in email
subject) >0;

366 | The Scientific Method and Applied Problem Solving

11.

12.

13.

14.

Now, check how many emails for the lemon_scooter customers
were opened:

sglda=# SELECT COUNT (opened) FROM lemon emails WHERE opened='t';

We can see that 128 emails were opened:

List the number of customers who received emails and made a purchase:
sglda=# SELECT COUNT (DISTINCT (customer id)) FROM lemon emails;

The following screenshot shows that 506 customers made a purchase after
receiving emails:

Calculate the percentage of customers who opened the received emails and
made a purchase:

sqlda=# SELECT 128.0/506.0 AS email rate;
We can see that 25% of customers opened the emails and made a purchase:

email rate

0.25296442687747035573

(1 row)
Calculate the number of unique customers who made a purchase:
sqlda=# SELECT COUNT (DISTINCT (customer id)) FROM lemon sales;

We can see that 13854 customers made a purchase:

Case Study | 367

15. Calculate the percentage of customers who made a purchase having received an

16.

17.

email. This will enable a comparison with the corresponding figure for the
Bat Scooter:

sglda=# SELECT 506.0/13854.0 AS email sales;
The preceding calculation generates a 36% output:

email sales

0.03652374765410711708

(1 row)

Select all records from lemon_emails where a sale occurred within
the first 3 weeks of the start of production. Store the results in a new table,
lemon emails threewks:

sglda=# SELECT * INTO lemon emails threewks FROM lemon emails WHERE
sales transaction date < '2013-06-01'";

The following output will be shown:
SELECT 0;

Count the number of emails that were made for Lemon Scooters in the first
3 weeks:

sglda=# SELECT COUNT (sales_transaction date) FROM lemon emails_
threewks;

The following is the output of the preceding code:

368 | The Scientific Method and Applied Problem Solving

There is a lot of interesting information here. We can see that 25% of customers
who opened an email made a purchase, which is a lot higher than the 18% figure
for the Bat Scooter. We have also calculated that just over 3.6% of customers
who purchased a Lemon Scooter were sent an email, which is much lower than
almost 6% of Bat Scooter customers. The final interesting piece of information
we can see is that none of the Lemon Scooter customers received an email
during the first 3 weeks of product launch compared with the 82 Bat Scooter
customers, which is approximately 50% of all customers in the first 3 weeks.

NOTE

To access the source code for this specific section, please refer
to https://packt.live/3cTCY7p.

In this exercise, we investigated the performance of an email marketing campaign for
the Lemon Scooter to allow for a comparison with the Bat Scooter using various
SQL techniques.

CONCLUSIONS

Now that we have collected a range of information about the timing of the product
launches, the sales prices of the products, and the marketing campaigns, we can
make some conclusions regarding our hypotheses:

+ In Exercise 7.03, Launch Timing Analysis, we gathered some evidence to suggest
that launch timing could be related to the reduction in sales after the first 2
weeks, although this cannot be proven.

+ There is a correlation between the initial sales rate and the sales price of the
scooter, with a reduced sales price trending with a high sales rate (Activity 7.02,
Analyzing the Difference in the Sales Price Hypothesis).

« The number of units sold in the first 3 weeks does not directly correlate to the
sale price of the product (Activity 7.02, Analyzing the Difference in the Sales
Price Hypothesis).

https://packt.live/3cTCY7p

Case Study | 369

+ There is evidence to suggest that a successful marketing campaign could
increase the initial sales rate, with an increased email opening rate trending with
an increased sales rate (Exercise 7.04, Analyzing Sales Growth by Email Opening
Rate). Similarly, there's an increase in the number of customers receiving email
trends with increased sales (Exercise 7.05, Analyzing the Performance of the Email
Marketing Campaign).

+ The Bat Scooter sold more units in the first 3 weeks than the Lemon or
Bat Limited Scooters (Activity 7.02, Analyzing the Difference in the Sales
Price Hypothesis).

IN-FIELD TESTING

At this stage, we have completed our post hoc analysis (that is, data analysis
completed after an event) and have evidence to support a couple of theories as to
why the sales of the Bat Scooter dropped after the first 2 weeks. However, we cannot
confirm these hypotheses to be true, as we cannot isolate one from the other.

This is where we need to turn to another tool in our toolkit: in-field testing. As the
name suggests, in-field testing is testing hypotheses in the field (for instance, while a
new product is being launched or existing sales are being made).

One of the most common examples of in-field testing is A/B testing, whereby we
randomly divide our users or customers into two groups (A and B) and provide them
with a slightly modified experience or environment and observe the result. As an
example, let's say we randomly assigned customers in group A to a new marketing
campaign and customers in group B to the existing marketing campaign. We could
then monitor sales and interactions to see whether one campaign was better than
the other.

Similarly, if we wanted to test the launch timing, we could launch in Northern
California, for example, in early November, and Southern California in early
December, and observe the differences.

370 | The Scientific Method and Applied Problem Solving

The essence of in-field testing is that unless we test our post hoc data analysis
hypotheses, we will never know whether our hypothesis is true, and in order to test
the hypothesis, we must only alter the conditions to be tested - for example, the
launch date. To confirm our post hoc analysis, we could recommend that the sales
teams apply one or more of the following scenarios and monitor the sales records in
real-time to determine the cause of the reduction in sales:

+ Release the next scooter product at different times of the year in two regions
that have a similar climate and equivalent current sales record. This would help
determine whether launch timing had an effect.

+ Release the next scooter product at the same time in regions with equivalent
existing sales records at different price points and observe this for differences
in sales.

* Release the next scooter product at the same time and the same price point
in regions with equivalent existing sales records and apply two different email
marketing campaigns. Track the customers who participated in each campaign
and monitor the sales.

SUMMARY

You have just completed your first real-world data analysis problem using SQL. In
this chapter, you built the skills necessary to develop hypotheses for problems and
systematically gather the data required to support or reject them. You started this
case study with a reasonably difficult problem of explaining an observed discrepancy
in sales data and discovered two possible sources (launch timing and marketing
campaign) for the difference while rejecting one alternative explanation (sales price).

While being a required skill for any data analyst, being able to understand and

apply the scientific method in our exploration of problems will allow you to be more
effective and find interesting threads of investigation. In this chapter, you used the
SQL skills you've developed throughout this book; from simple SELECT statements
to aggregating complex data types, as well as windowing methods. After completing
this chapter, you will be able to continue and repeat this type of analysis in your own
data analysis projects to help find actionable insights.

Summary | 371

You have reached the end of this book. Throughout these chapters, you have learned
about data, and how we can find patterns within it. You have also learned how

SQL's powerful functionality can be used to organize data, process it, and identify
interesting patterns. Additionally, you saw how SQL can be connected to other
systems and optimized to analyze at scale. This all culminated in using SQL on a case
study to help improve a business.

However, these skills are only the beginning of your work. Relational databases are
constantly evolving, and new functionality is being developed all the time. There are
also a number of more advanced statistical techniques that this book did not cover.
So, while this book may serve as a guide to data analytics and an invaluable tool in
the form of SQL, it is only the first step in what is hopefully a rewarding journey.

APPENDIX

374 | Appendix

CHAPTER 01: INTRODUCTION TO SQL FOR ANALYTICS
ACTIVITY 1.01: CLASSIFYING A NEW DATASET

Solution

1.
2.
3.

The unit of observation is a car sale.
Date and Sales Amount are quantitative, while Make is qualitative.

While there could be many ways to convert Make into quantitative data, one
commonly accepted method would be to map each of the Make types to a
number. For instance, Ford could map to 1, Honda could map to 2, Mazda could
map to 3, Toyota could map to 4, Mercedes could map to 5, and Chevy could
map to 6.

ACTIVITY 1.02: EXPLORING DEALERSHIP SALES DATA

Solution

1.

2
3.
4

Open Microsoft Excel to a blank workbook.
Go to the Data tab and click on From Text.
Find the path to the dealerships.csv file and click on OK.

Choose the Delimited option in the Text Import Wizard dialog box and
make sure that you start the import at row 1. Now, click on Next.

Select the delimiter for your file. As this file is only one column, it has no
delimiters, although CSVs traditionally use commas as delimiters (in the future,
use whatever is appropriate for your dataset). Now, click on Next.

Select General for the Column Data Format option. Now, click on Finish.

Chapter 01: Introduction to SQL for Analytics | 375

7. Inthe dialog box asking Where do you want to put the data?, select
Existing Sheet, and leave what is in the textbox next to it as is. Now, click
on OK. You should see something similar to the following figure:

Location Net Annual Sales Number of Female Employees

Millburn, NJ 150803012 27
Los Angeles, CA 110872084 17
Houston, TX 183945873 22
Miami, FL 156355396 18
San Mateo, CA 143108603 17
Seattle, WA 142755480 33
Arlington VA 144772604 28
Portland, OR 179608438 32
Reno, NV 145101244 19
Chicago, IL 171491596 24
Atlanta, GA 198386988 27
Orlando, FL 180188054 24
Jacksonville, FL 158479693 32
Round Rock, TX 181820474 27
Phoenix, AZ 95512810.7 18
Charlotte, NC 199653776 32
Philadelphia, PA 193111679 31
Kansas City, MO 176816637 35
Dallas, TX 168769837 33
Boston, MA 350520724 20

Figure 1.50: The dealerships.csv file loaded

376 | Appendix

Histograms may vary a little bit depending on what parameters are chosen, but it
should look similar to the following:

Number of Female Employees

5
4
g3
o
o2
(el |
H Frequency
OIIIIIIII

OLqmmlou?quchmu?omqucE

o~ ~ T oA T e N N g OS5

— i (o] ~ [ag] o s

Bin

Figure 1.51: A histogram showing the number of female employees

8. Calculate the mean and median by following all the steps in Exercise 1.03,
Calculating the Central Tendency of Add-on Sales. The mean sales are calculated
tobe $171,603,750.13 and the median sales are calculated to be
$170,130,716.50.

9. Using steps similar to those found in Exercise 1.04, Dispersion of Add-on Sales, the
standard deviation of the sales is calculated to be $50,152,290.42.

10. The Boston, MA dealership is an outlier. This can be shown graphically or by
using the IQR method.

You should get the following four quintiles:

n-Quintile Value
1 144439803.80
2 157629974.20
3 177933357.40
4 185779034.20

Figure 1.52: Quintiles and their values

Chapter 01: Introduction to SQL for Analytics | 377

11. Removing the outlier of Boston, you should get a correlation coefficient of

0.55. This value implies that there is a strong correlation between the number
of female employees and the sales of a dealership. While this may be evidence
that more female employees lead to more revenue, it may also be a simple
consequence of a third effect. In this case, larger dealerships have a larger
number of employees in general, which also means that women will be at these
locations as well. There may be other correlational interpretations as well.

ACTIVITY 1.03: QUERYING THE CUSTOMERS TABLE USING BASIC KEYWORDS IN A SELECT
QUERY

Solution

1.

Open your favorite SQL client and connect to the sqlda database. Examine
the schema for the customers table from the schema drop-down list. Notice
the names of the columns, in the same way, that we did in Exercise 1.06,
Querying the salespeople Table Using Basic Keywords in a SELECT Query, for the
salespeople table.

Execute the following query to fetch customers in the state of Florida in
alphabetical order:

SELECT
email
FROM
customers
WHERE
state='FL'
ORDER BY

email;

378 | Appendix

The following is the output of the preceding code:

email
4 text

-

aachrameevu44@goo.gl

aambresinint@walmart.com
aanstiss12af@eepurl.com
aantonoveSl@last.fm
aarnaudet1v3@cisco.com
aarsmithxoe@dion.ne.jp
aastle11rg@slate.com

aaxelbey77x@cocolog-nifty.com

O o N o w E-Y w N

aazemary2f@washingtonpost.com

-
o

ababarm8m@ow.ly

11 abarkessi6f@wikimedia.org

Figure 1.53: Emails of customers from Florida in alphabetical order

3. Execute the following query to pull all the first names, last names, and email
addresses for ZoomZoom customers in New York City, New York. The customers
should be ordered alphabetically, with the last name followed by the first name:

SELECT
first name, last name, email
FROM
customers
WHERE
city="'New York City'
AND state='NY'
ORDER BY

last name, first name;

Chapter 01: Introduction to SQL for Analytics | 379

The following is the output of the preceding code:

first_name last_name email

4 text text text
1 Nell Abdy nabdyec4@fema.gov
2 Thomasine Absolon tabsolonomk@forbes.com
3 Ram Acheson rachesonlai@bloglovin.com
4 Pru Achrameev pachrameev2sr@example.com
5 Jandy Adamowicz jadamowiczb1w@clickbank.net
6 Kati Adrian kadrianeem@>51.la
7 Orly Aers oaersx6T1@redcross.org
8 Bradney Aglione baglionee5n@usgs.gov
9 Mellicent Ainslee mainsleeirO@abc.net.au
10 Fergus Aireton fairetonq16@yellowpages.com
11 Ugo Aldam ualdamhnc@wikimedia.org

Figure 1.54: Details of customers from New York City in alphabetical order

Execute the following query to fetch all customers that have a phone number
ordered by the date the customer was added to the database:

SELECT
*
FROM
customers
WHERE
phone IS NOT NULL
ORDER BY
date added;

380 | Appendix

The following is the output of the preceding code:

customer_id title first_name last_name suffix email gender ip_address phone street_address

bigint text text text text text text text text text
2625 [null] Binky Dawtrey [l bdawtr.. M 15.75.236.78 B04-990.. 03532 lowa Road
6173 [null] Danila Gristwood [rull] dgrist.. F 254.239.58.1... B832-157.. 79865 Hagan Terr..
13390 [null] Danika Lough [l dlough.. F 188.19.7.207 212-769.. 38463 Forest Dal..
7486 [nulll Ciro Ferencowicz [null] cferen.. M 8.151.167.184 7B6-458.. 61 Village Crossing
17099 [nulll Pearla Halksworth [ui] phalks.. F 114.138.82.24 541-198.. 130 Marcy Crossi...
18685 [nulll Ingram Crossman [rull] icross.. M 207.145.1.202 503-352.. 86 Michigan Junc..
30046 [nulll Nanete Hassur [rull] nhassu.. F 232115170... 209-364. 13961 Steensland...
35683 [nulll Betteanne Rulf [rul] brulfrjé.. F 52.208.248.90 503-396.. 1 Cordelia Crossing
22640 [null] Shana Nugent [rull] snuge.. F 207.239.127... 202-378.. 96725 Cordelia La..
34189 [null] Devlin Barhems [rull] dbarhe.. M 180.175.21.2.. 240-895.. 0 Park Meadow St...
46277 Mr Salomon Rillatt [rull] srillatt.. M 33.205.88.187 504-700.. 5799 Thackeray C...

Figure 1.55: Customers with a phone number ordered
by the date the customer was added to the database

The output in the figure will help the marketing manager to carry out campaigns
and promote sales.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/3cVSBLE.

ACTIVITY 1.04: CREATING AND MODIFYING TABLES FOR MARKETING OPERATIONS

Solution
1. Open your favorite SQL client and connect to the sqlda database.
2. Run the following query to create the table with New York City customers:

CREATE TABLE customers nyc AS (
SELECT
*
FROM
customers
WHERE
city="'New York City'
AND state='NY"');

https://packt.live/3cVSBLE

Chapter 01: Introduction to SQL for Analytics | 381

3. Run the following code to see the output:
SELECT * FROM customers nyc;

Following is the output of the code:

customer_id title firs_name last_name suffix email gender ip_address phone sireet_address city state
bigint text text text text text text text text text text text
52 [nul Giusto Backe [Pl gbacke1f@digg.com M 26.56.68.189 212:959.. 6 Onsgard Terrace Mew.. NY
162 [null] Artair Betchley [null abetchley4h@dagondesign.com M 108.147.128... [null] 7 Boyd Road New .. NY
374 [nul Verge Esel null veselad@vistaprint.com M 58.238.20.156 917-653.. & Algoma Park New .. NY
406 [null Rozina Jeal null rjealb9@howstuffworks.com F 50.23532.29 917-610. 64653 Homewoo.. MNew.. NY
456 Rev Cybil Noke [rul enokecn@ijigsy.com F 531.139.106 212-306.. 88 Sycamore Park.. New.. NY
472 [nul Rawley Yegorov [l ryegorovd3@google.es M 183.199.243... 212-560.. 872 0ld Shore Par.. New.. NY
496 [null Layton Spolton [null Ispaltondr@free.fr M 10B.112.8.165 646-900.. 7 Old Gate Drive Mew .. NY
1028 [null Issy Andrieux [Pl Iandrieuxsj@dell.com F 198.50.5.37 212-206.. 33337 Dahle Way New.. NY
1037 [nul Magdalene Veryard [Pl mveryardss{@behance.net F 93.201.129.2.. [null] 41028 Katie Junct.. New .. NY
1063 [null Juliet Beadles [null jbeadlesti@time.com F 47.96.88.226 212-645.. 34984 Goodland New .. NY

Figure 1.56: Table showing customers from New York City

4. Then, run the following query statement to delete users with the postal code
of 10014:

DELETE
FROM
customers nyc
WHERE
postal code='10014";

5. Execute the following query to add the new event column:
ALTER TABLE customers nyc ADD COLUMN event text;

6. Update the customers nyc table and set the event column to thank-you
party using the following query:

UPDATE
customers nyc
SET
event = 'thank-you party';

7. Run the following code to see the output:

SELECT

*

FROM

customers nyc;

382 | Appendix

The following is the output of the code:

customerid tile firstname lastname suffix
bigint et text text text
52 [l Giusto Backe ul
406 (null Rozina Jeal nul
456 Rev Gybil Noke ul
472 [l Rawley Yegorov ul
496 [l Layton Spotton ul
1028 [oull] sy Andrieux ul
1097 [l Magdalene Veryard ul
1063 (ol Juliet Beadies nul
1211 [l Gwyneth McCobb ul
1262 [l Conrado Escoffier ul

email
text

gbacke...

riealb.

enokec..

ryegor.
Ispolto.
iandrie.

mverya.

Jbeadie..

amcco.

cescoft

gender
text

M

F
F
M
M
F
F
F
F
M

ip_address
text

26.56.68.189
502353229
5.31.139.106
183.199.243
1081128165
19950537
932011292
4796.88.226
38.182.151.2.
2312012.44

phone
text

212:959,

917610,
212:306
212:560.
646-900
212:206

212:645..

nul

646-523

street_address
text

6 Onsgard Terrace
64653 Homewoo..

88 Sycamore Park.

872 0ld Shore Par...

70ld Gate Drive
33337 Dahle Way
41028 Katie Junet,
34984 Goodland ..
4 Jana Park

2 Atwood Court

postal_code
text

10131
10108
10260
10034
10024
10115
10039
10120
10160
10060

latitude
double precision

40.7808
10.7628
40.7808
40.8662
40.7864
408111
0.8265
40.7506
40.7808
40.7808

longitude
doudle precision

73.9772
73.9785
73.9772
73,9221

-73.9764

-73.9642

-73.0383
73.9894
73.9772
73.9772

date_added
timestamp without time zone

event
text

2017-01-21 00:00:00
20141124 00:00:00
2010-12:20 00:00:00

2017-11:27 00:00:00

thankyou party
thankyou party
thank-you party

thank-you party

20140817 00:00:00
2014-01-08 00:00:00
20150217 00:00:00

Figure 1.57: The customers_nyc table with event set to thank-you party

thank-you party
thank-you party
thanicyou porty

Now we will delete the customers_nyc table as asked by the manager using

DROP TABLE:

DROP TABLE customers nyc;

This will delete the customers_nyc table from the database.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/3dWtFVG.

https://packt.live/3dWtFVG

Chapter 02: SQL for Data Preparation | 383

CHAPTER 02: SQL FOR DATA PREPARATION
ACTIVITY 2.01: BUILDING A SALES MODEL USING SQL TECHNIQUES

Solution

1.
2.

Open your favorite SQL client and connect to the sqlda database.

Use INNER JOIN to join the customers table to the sales table, INNER
JOIN to join the products table to the sales table, and LEFT JOIN to join
the dealerships table to the sales table.

Now, return all columns of the customers table and the products table.
Then, return the dealership_id column from the sales table, butfill in
dealership idin sales with -1 if it is NULL.

Add a column called high savings that returns 1 if the sales amount was
500 less than base_msrp or lower. Otherwise, it returns 0. There are many
approaches to this query, but one of these approaches could be as follows:

SELECT
c.*,
p.*,
COALESCE (s.dealership id, -1),
CASE WHEN p.base msrp - s.sales amount >500
THEN 1
ELSE O
END AS high savings
FROM
sales s
INNER JOIN customers c
ON c.customer id=s.customer id
INNER JOIN products p
ON p.product id=s.product id
LEFT JOIN dealerships d
ON s.dealership id = d.dealership id;

384 | Appendix

The following is the output of the preceding code:

customerid ftitle firstname lastname suffix email gender ip.address phone streetaddress city state postalcode latitude longitude date_added
bigint text text text text text text text text text text text text double precision double precision timestamp without time zone

1 [null Arlena Riveles [null] arivele.. F 98.36.172.246 [null] [null] [nul] [null] [null] [null] [null] 2017-04-23 00:00:00

4 [ull Jessika Nussen [l jnusse.. F 159.165.138... 615-824.. 224Village Circle Nash.. TN 37215 36.0986 -86.8219 2017-09-03 00:00:00

5 [ul] Lonnie Rembaud [oul] Iremba.. F 181315865 786-499.. 38LindberghWay ~Miami FL 33124 25,5584 -80.4582 2014-03-06 00:00:00

6 [nul] Cortie Locksley [ul] clocksl.. M 140.194.59.82 [null] 6537 Delladonna .. Miami FL 33158 25.6364 -80.3187 2013-03-3100:00:00

7 [l Wood Kennham [l wkenn.. M 191.190.135... 407-552.. 001Onsgard Park Orla.. FL 32891 285663 -81.2608 2011-08-25 00:00:00

7 [l Wood Kennham [l wkenn.. M 191.190.135... 407-552.. 001Onsgard Park Orla.. FL 32891 285663 -81.2608 2011-08-25 00:00:00

7 [null Wood Kennham [ull wkenn.. M 191.190.135... 407-552.. 001Onsgard Park Orla.. FL 32891 28.5663 -81.2608 2011-08-25 00:00:00

11 Mrs Urbano Middlehurst [null] umiddl.. M 185118.623 918-339.. 5203 7th Trail Tulsa OK 74156 36.3024 -95.9605 2011-10-22 00:00:00

12 M Tyne Duggan [ul] tdugga.. F 1329231228 [null] fnull] (ool foul] | [oul] [oull] [null] 2017-10-25 00:00:00

Figure 2.27: Building a sales model query

Thus, we have the data to build a new model that will help the data science team
to predict which customers are the best prospects for remarketing from the

output generated.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/2MQDusb.

https://packt.live/2MQDusb

Chapter 03: Aggregate and Window Functions | 385

CHAPTER 03: AGGREGATE AND WINDOW FUNCTIONS
ACTIVITY 3.01: ANALYZING SALES DATA USING AGGREGATE FUNCTIONS

Solution

1. Open your favorite SQL client and connect to the sqlda database.

2. Calculate the number of unit sales the company has achieved using the
COUNT function:

SELECT
COUNT (*)
FROM

sales;
You should get 37,711 sales.

3. Determine the total sales amount in dollars for each state; we can use the SUM
aggregate function here;

SELECT

c.state, SUM(sales amount) as total sales amount
FROM

sales s
INNER JOIN

customers c

ON c.customer id=s.customer id

GROUP BY

1
ORDER BY

1;

386 | Appendix

You will get the following output:

state sales_amount

text double precision

AK 1124268.776
AL 4820333.791
AR 1487923.589
AZ 4109364.447
CA 27942722.0350006
co 5377388.30800006
CT 3038361.316
DC 7211615.1750001
DE 957264.298

Figure 3.30: Total sales in dollars by US state

4, Determine the top five dealerships in terms of most units sold using the GROUP
BY clause. Set the LIMIT to 5:

SELECT
s.dealership id,
COUNT (*)

FROM
sales s

WHERE
channel="'dealership'

GROUP BY
1

ORDER BY
2 DESC

LIMIT
5

Chapter 03: Aggregate and Window Functions | 387

You should get the following output:

dealership_id count
double precision bigint
10 1781
7 1583
18 1465
11 1312
1 1297

Figure 3.31: Top five dealerships by units sold

Calculate the average sales amount for each channel, as shown in the sales
table, and look at the average sales amount, first by channel sales, then by
product_id, and then by both together. This can be done using GROUPING
SETS, as follows:

SELECT
s.channel, s.product id,
AVG (sales _amount) as avg sales amount
FROM
sales s
GROUP BY
GROUPING SETS (
(s.channel), (s.product id),
(s.channel, s.product id)
)
ORDER BY
1, 2

388 | Appendix

You should get the following output:

channel product_id avg_sales_amount
text bigint double precision
dealership 3 477.253737607644
dealership 4 109822.274881517
dealership 5 664.330132075472
dealership 6 62563.3763837638
dealership 7 573.744146637002
dealership 8 668.850500463391
dealership 9 33402.6845637584
dealership 10 81270.1121794872
dealership 11 91589.7435897436

Figure 3.32: Sales after the GROUPING SETS channel and product_id

In the preceding screenshot, we can see the channel and product ID of all the
products, as well as the sales amount that was generated by each product.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/2AXOXnc.

ACTIVITY 3.02: ANALYZING SALES USING WINDOW FRAMES AND WINDOW FUNCTIONS

Solution
1. Open your favorite SQL client and connect to the sqlda database.

2. Calculate the total sales amount for all individual months in 2018 using the
SUM function:

SELECT
sales transaction date::DATE,
SUM (sales amount) as total sales amount

FROM

https://packt.live/2AXOXnc

Chapter 03: Aggregate and Window Functions | 389

sales
WHERE
sales transaction date>='2018-01-01"
AND sales transaction date<'2019-01-01"
GROUP BY
1
ORDER BY
1;

The following is the output of the preceding code:

sales_transaction_date total_sales_amount
date double precision
2018-01-01 123689.951
2018-01-02 183859.79
2018-01-03 40029.854
2018-01-04 187119.878
2018-01-05 186459.904
2018-01-06 100479.888
2018-01-07 42989.864
2018-01-08 11089.815
2018-01-09 98119.878
2018-01-10 10449.823
2018-01-11 6449.891
2018-01-12 160659.838
2018-01-13 77789.869
2018-01-14 234429.898
2018-01-15 74429.847
2018-01-16 129189.854
2018-01-17 153839.873
2018-01-18 255529.864

Figure 3.33: Total sales amount by month

390 | Appendix

3. Calculate the rolling 30-day average for the daily number of sales deals using a
window frame:

WITH daily deals as (

SELECT sales_ transaction date::DATE,
COUNT (*) as total deals

FROM sales

GROUP BY 1

)

moving average calculation 30 AS (
SELECT sales transaction date, total deals,

AVG (total deals) OVER (ORDER BY sales transaction date ROWS BETWEEN
30 PRECEDING and CURRENT ROW) AS deals moving average,
ROW NUMBER () OVER (ORDER BY sales transaction date) as row number

FROM daily deals
ORDER BY 1)

SELECT sales transaction date,

CASE WHEN row number>=30 THEN deals moving average ELSE NULL END
AS deals moving average 30

FROM moving average calculation 30

WHERE sales transaction date>='2018-01-01"

AND sales transaction date<'2019-01-01'";

Chapter 03: Aggregate and Window Functions | 391

sales_transaction_date

The following is the output of the preceding code:

deals_moving_average_30

date numeric

2018-01-01 17.9354838709677419
2018-01-02 18.3548387096774194
2018-01-03 18.3548387096774194
2018-01-04 18.1290322580645161
2018-01-05 17.9354838709677419
2018-01-06 17.5806451612903226
2018-01-07 17.5161290322580645
2018-01-08 17.8064516129032258
2018-01-09 17.8709677419354839
2018-01-10 17.8387096774193548
2018-01-11 17.4193548387096774
2018-01-12 17.1935483870967742

Figure 3.34: Rolling 30-day average of sales

Calculate which decile each dealership is in compared to other dealerships based
on the total sales amount using window functions:

WITH total dealership sales AS
(
SELECT dealership id,
SUM (sales amount) AS total sales amount
FROM sales
WHERE
sales transaction date>='2018-01-01"
AND sales transaction date<'2019-01-01"
AND channel='dealership'
GROUP BY 1

392 | Appendix

SELECT *,
NTILE (10) OVER (ORDER BY total sales amount)
FROM

total dealership sales;

The following is the output of the preceding code:

dealership_id total_sales_amount ntile
double precision double precision integer
13 538079.414 1
9 618263.995 1
8 671619.251 2
4 905158.609 2
17 907058.842 3
20 949849.053 3
12 1086033.376 4
15 1197118.234 4
6 1316253.465 5
14 1551108.481 5
3 1622872.801 6
16 1981062.341 6

Figure 3.35: Deciles for dealership sales amount

Now we have a list of the deciles for each of the dealerships in terms of total sales.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/2UAiOce.

https://packt.live/2UAiOce

Chapter 04: Importing and Exporting Data | 393

CHAPTER 04: IMPORTING AND EXPORTING DATA
ACTIVITY 4.01: USING AN EXTERNAL DATASET TO DISCOVER SALES TRENDS

Solution

1.

Before we can begin the rest of the analysis, we will need to properly load

the dataset into Python, and export it to our database. First, download the
dataset from GitHub using the link provided: https://github.com/PacktWorkshops/
The-Applied-SQL-Workshop/blob/master/Datasets/public_transportation_statistics_by

zip_code.csv.

If you are Linux user, you can use wget command like this:

wget https://github.com/PacktWorkshops/The-Applied-SQL-Workshop/blob/
master/Datasets/public_transportation statistics by zip code.csv

Alternatively, you can navigate to the link via the browser. Once you navigate to
the web page, click on Save Page As... using the menus on your browser:

& Chrome Edit View History Bookmarks People Window Help
New Tab BT
Ot New window £

New Incognito Window {+3N

& C { Reopen Closed Tab 08T tnt.com/TrainingByPackt/SQL-for-Data-Analytics/master/chapter6/public_transportation_statistics_by_zip_code.csv
: . OpenFile...] ; :
zi%;?g?g?ggn S N ansportation_population
01440,0.4,34
01505,0.9,23 Close Window 38w
01524,0.5,20 Close Tab BW
01583,0.7,19 Eagelio= %3
01588,0.0,0
01609,3.3,275 S o
01721,6.9,684)
01731,3.5,28 Lulits #E
01740,3.2,88
Figure 4.23: Saving the public transportation .csv file
3. Next, create a new Jupyter notebook. At the command line, type in jupyter

notebook (if you do not have a notebook server running already). In the
browser window that pops up, create a new Python 3 notebook. In the
first cell, type in the standard import statements and the connection
information (replacing your_X with the appropriate parameter for your
database connection):

from sglalchemy import create engine
import pandas as pd

%matplotlib inline

cnxn_string = ("postgresgl+psycopg2://{username}:{pswd}"
"@{host}:{port}/{database}")

print (cnxn string)

https://github.com/PacktWorkshops/The-Applied-SQL-Workshop/blob/master/Datasets/public_transportation_statistics_by_zip_code.csv
https://github.com/PacktWorkshops/The-Applied-SQL-Workshop/blob/master/Datasets/public_transportation_statistics_by_zip_code.csv
https://github.com/PacktWorkshops/The-Applied-SQL-Workshop/blob/master/Datasets/public_transportation_statistics_by_zip_code.csv
https://github.com/PacktWorkshops/The-Applied-SQL-Workshop/blob/master/Datasets/public_transportation_statistics_by_zip_code.csv
https://github.com/PacktWorkshops/The-Applied-SQL-Workshop/blob/master/Datasets/public_transportation_statistics_by_zip_code.csv

394 | Appendix

Following is the output of the code:

postgresqgl+psycopg?2://{username}: {pswd}@{host}: {port}/{database}

Creating engine:

engine = create engine(cnxn string.format (
username="your username",
pswd="your password",
host="your host",
port=5432,

database=" sqglda"))

4. Read the data using a command such as the following (replacing the path
specified with the path to the file on your local computer):

data = pd.read csv("~/Downloads/public_transportation statistics by
zip code.csv", dtype={'zip code':str})

5. Check that the data looks correct by creating a new cell, entering data, and
then hitting Shift + Enter to view the contents of data. You can also use data.
head () to see only the first few rows.

data.head()

Following is the output of the code:

zip_code | public_transportation_pct | public_transportation_population
0(01379 3.3 13
101440 0.4 34
2|01505 0.9 23
3|01524 0.5 20
401529 1.8 32

Figure 4.24: Reading the public transportation data into pandas

Chapter 04: Importing and Exporting Data | 395

Next, transfer data to the database using data.to_sql (). Usingthe
psql_insert copy function, you can speed this up considerably; however,
it is not necessary:

import csv

from io import StringIO

def psql insert copy(table, conn, keys, data iter):
gets a DBAPI connection that can provide a cursor
dbapi conn = conn.connection
with dbapi conn.cursor() as cur:
s_buf = StringIO()
writer = csv.writer(s_buf)
writer.writerows (data iter)

s_buf.seek (0)

columns = ', '.join('"{}"'.format (k) for k in keys)

if table.schema:

table name = '{}.{}'.format (table.schema, table.name)
else:

table name = table.name

sgl = 'COPY {} ({}) FROM STDIN WITH CSV'.format (

table name, columns)

cur.copy expert (sqgl=sql, file=s buf)

data.to _sqgl('public transportation by zip', engine, if
exists='replace', method=psqgl insert copy)

Alternatively, you could have just performed the slower version of this:

data.to sqgl('public transportation by zip', engine, if
exists="'replace')

At this stage, we now have our data in our database, ready for querying.

396 | Appendix

7. Execute the max () function to see the maximum value in the data frame:
data.max ()

8. Execute themin () function to see the minimum value in the data frame:
data.min ()

9. Inorderto see the range of public_transportation_pct values, we can
simply query this from the database. First, we need to query the database:

engine.execute ("""
SELECT
MAX (public transportation pct) AS max pct,
MIN (public_ transportation pct) AS min pct
FROM public transportation by zip;
") L fetchall ()

We get the following result from our query:

max_pct min_pct
100 -666666666

Figure 4.25: Showing the minimum and maximum values

Looking at the maximum and minimum values, we do see something strange:
the minimum value is -666666666. We can assume that the values are missing,
and we can remove them from the dataset.

10. Calculate the requested sales amounts by running a query in our database. Note
that we will have to filter out the erroneous percentages that are less than 0
based on our analysis. There are several ways to do this; however, the following
solution is a single succinct query:

engine.execute ("""
SELECT
(public transportation pct > 10) AS is high public transport,

COUNT (s.customer id) * 1.0 / COUNT(DISTINCT c.customer id) AS
sales _per customer

FROM
customers c

INNER JOIN public transportation by zip t
ON t.zip code = c.postal code

LEFT JOIN sales s

Chapter 04: Importing and Exporting Data | 397

ON s.customer id = c.customer id
WHERE

public transportation pct >= 0
GROUP BY

1
LIMIT

10;

") fetchall ()
Here's an explanation of this query:

We can identify customers living in an area with public transportation by looking
at the public transportation data associated with their postal code. If public_
transportation_pct > 10, then the customer is in a high usage public
transportation area. We can group by this expression to identify the population
that is or is not in a high usage public transportation area.

We can look at sales per customer by counting the sales (for example, using the
COUNT (s.customer_id) aggregate) and dividing by the unique number of
customers (for example, using the COUNT (DISTINCT c.customer_id)
aggregate). We want to make sure that we retain fractional values, so we can
multiply by 1.0 to cast the entire expression to a float: COUNT (s . customer _
id) * 1.0 / COUNT(DISTINCT c.customer_ id).

In order to do this, we need to join our customer data to the public
transportation data, and then, finally, to the sales data. We need to exclude all
zip codes where public_transportation_pctis greater than, or equal to,
0 so that we exclude the missing data (denoted by -666666666).

Finally, we end up with the following output:

|
__________________________ e
f | ©0.71703932151117964534
t | @.80502739284563325814
(2 rows)

Figure 4.26: Calculating the requested sales amount

398 | Appendix

From this, we see that customers in high public transportation usage areas
have 12% more product purchases than customers in low usage public
transportation areas.

11. Read this data from our database, and add a WHERE clause to remove the outlier
values. We can then plot the results from this query:

data = pd.read sqgl query ("""

SELECT *

FROM public transportation by zip

WHERE public transportation pct > 0O

AND public transportation pct < 50""", engine)
data.plot.hist (y='public transportation pct')

You will obtain an output similar to the following:

nnn

In [13]: data = pd.read_sql_guery(
SELECT *
FROM public transportation by =zip
WHERE public transportation pct > 0
AND public transportation pct < 50""", engine)
data.plot.hist(y='public_transportation_pct')|

Out[13]: <matplotlib.axes. subplots.AxesSubplot at 0x1193efl160>

12000 - BN public_transportation_pct

10000 -
8000 -

6000 1

Frequency

4000 1

2000 4

Figure 4.27: Jupyter notebook with an analysis of the public transportation data

Chapter 04: Importing and Exporting Data | 399

12. Rerun our command from Step 4 to get the timing of the standard
to_sql () function:

%time data.to sqgl('public transportation by zip', engine, if
exists="'replace')

The following is the output of the code:

In [4]: import csv
from io import StringIO

def psql_insert_copy(table, conn, keys, data_iter):
gets a DBAPI connection that can provide a cursor
dbapi_conn = conn.connection
with dbapi_conn.cursor() as cur:
s_buf = StringIO()
writer = csv.writer(s_buf)
writer.writerows(data_iter)
s_buf.seek(0)

columns = ', '.join('"{}"'.format(k) for k in keys)
if table.schema:

table name = '{}.{}'.format(table.schema, table.name)
else:

table name = table.name

sql = 'COPY {} ({}) FROM STDIN WITH CSV'.format(
table_name, columns)
cur.copy_expert(sql=sql, file=s_buf)

%$time data.to_sql('public_transportation by zip', engine, method=psql_insert_ copy, if exists='replace')
CPU times: user 102 ms, sys: 21.1 ms, total: 123 ms = .
ol tieer ST With COPY: ~1 Second
In [5]: %time data.to_sql('public_transportation by zip', engine, if_exists='replace')
CPU times: user 4.58 s, sys: 4.16 s, total: 8.75 s WlthOUt COPY ~9 minutes
Wall time: 9min 15s

Figure 4.28: Inserting records with COPY and without COPY is much faster

13. Group customers based on their zip code public transportation usage rounded
to the nearest 10%, and then look at the average number of transactions
per customer. Export this data into Excel and create a scatterplot to better
understand the relationship between public transportation usage and sales. For
this analysis, we can actually tweak the query from Step 6:

data = pd.read sql query("""
SELECT
10 * ROUND (public_ transportation pct/10)
AS public transport,
COUNT (s.customer id) * 1.0 / COUNT (DISTINCT c.customer id)
AS sales per customer
FROM customers c
INNER JOIN public_ transportation by zip t
ON t.zip code = c.postal code
LEFT JOIN sales s ON s.customer id = c.customer id

WHERE public transportation pct >= 0

400 | Appendix

GROUP BY 1
wun , engine)

data.to csv('sales vs public transport pct.csv')

First, we want to put our query results in a Python variable data so that we easily
write the result to a CSV file later.

Next is the tricky part: we want to aggregate the public transportation statistics
somehow. What we can do is round this percentage to the nearest 10%, so 22%
would become 20%, and 39% would become 40%. We can do this by dividing
the percentage number (represented as 0.0-100.0) by 10, rounding off, and
then multiplying it back by 10: 10 * ROUND (public_transportation
pct/10).

The logic for the remainder of the query is explained in Step 6.

14. Next, we open up the sales_vs_public_transport pct.csvfilein Excel:

«A public_transport_distribution

Home Insert Draw Page Layout Formulas Data Review View

E':r;) @ Vrév%?;: B cet Add-ins D]?v %:Eﬁznﬂﬂnv@v

PivotTable Recommended Table Pictures Shapes Icons - My Add-i Recommended A = = Maps
PivotTables @i v & My 1 a Charts & y l— ¥ I

Scatter
€ Possible Data Loss Some features might be lost if you save this workbook in the comma-delimited (.csv) format. To

E3 = fx
A B (8 D E F G H]

public_trans| sales_per_customer
0 0.7157101
10 073323615 —
20 0.81127242 Bubble
30 0.88128773
40 0.75547445
50 1.20634921 OO

Q0 NV A WN P

Figure 4.29: Excel workbook containing the data from our query

Chapter 04: Importing and Exporting Data | 401

After creating the scatterplot, we get the following result, which shows a
clear positive relationship between public transportation and sales in the
geographical area:

sales_per_customer

1.4

L
0.8 FY
0.6
0.4

0.2

0 10 20 30 40 50 60

Figure 4.30: Sales per customer versus public transportation usage percentage

Based on all of this analysis, we can say that there is a positive relationship
between "geographies with public transportation" and "the demand for electric
vehicles." Intuitively, this makes sense, because electric vehicles could provide
an alternative transportation option to public transport for getting around cities.
As a result of this analysis, we would recommend that ZoomZoom management
should consider expanding in regions with high public transportation usage and
urban areas.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/3hnigYk.

https://packt.live/3hniqYk

402 | Appendix

CHAPTER 05: ANALYTICS USING COMPLEX DATA TYPES
ACTIVITY 5.01: SALES SEARCH AND ANALYSIS

Solution

1. First, create the materialized view on the customer sales table. In case a
view with the same name already exists, execute DROP IF EXISTS statement
prior to the CREATE statement.

DROP MATERIALIZED VIEW IF EXISTS customer search;

CREATE MATERIALIZED VIEW customer_search AS (
SELECT
customer json -> 'customer id' AS customer id,
customer json,
to tsvector ('english', customer json) AS search vector
FROM customer sales

)7
This gives us a table of the following format (output shortened for readability):
SELECT * FROM customer search LIMIT 1;

The following is the output of the code:

customer_id | 1

customer_json | {"email": "ariveles@@stumbleupon.com", "phone": null, "sales": [{"product_id": 7, "produ
ct_name": "Bat", "sales_amount": 479.992, "sales_transaction_date": "2017-07-19T08:38:41"}], "last_name"
. "Riveles", "date_added": "2017-@4-23T00:00:00", "first_name": "Arlena", "customer_id": 1}
search_vector | "-@4':15 '-@7':6 '-19':7 '-23':16 '00':18,19 '2017':5,14 '38':9 '41':10 'ariveles@@stumb
leupon.com':1 "arlena':21 "bat':3 "rivel’':12 't@0':17 't@8':8

Time: 1.678 ms
Figure 5.27: Sample record from the customer_search table

2. We can now search records based on the salesperson's request for a customer
named Danny who purchased a Bat scooter using the following simple query
with the Danny Bat keywords:

SELECT

customer json
FROM

customer search
WHERE

search vector @@ plainto tsquery('english', 'Danny Bat');

Chapter 05: Analytics Using Complex Data Types | 403

This results in eight matching rows:

{"email": "darundale87e@nytimes.com", "phone": null, "sales": [{"product_id": 8, "product_name": "Bat Limited Edition", "sale
s_amount": 699.99, "sales_transaction_date": "2017-05-16T08:41:03"}], "last_name": "Arundale", "date_added": "2016-10-15T00:00
:00", "first_name": "Danni", "customer_id": 10635}

{"email": "dsinkins8vv@theatlantic.com", "phone": null, "sales": [{"product_id": 7, "product_name": "Bat", "sales_amount": 59
9.99, "sales_transaction_date": "2018-01-10T14:25:09"}], "last_name": "Sinkins", "date_added": "2018-01-20T00:00:00", "first_n
ame": "Danny", "customer_id": 11516}

{"email": "dfalkusrnr@mysql.com", "phone": "360-138-1212", "sales": [{"product_id": 7, "product_name": "Bat", "sales_amount":

599.99, "sales_transaction_date": "2018-08-07T01:05:05"}, {"product_id": 3, "product_name": "Lemon", "sales_amount": 399.992,

"sales_transaction_date": "2018-07-05T@9:51:51"}], "last_name": "Falkus", "date_added": "2018-06-16T00:00:00", "first_name":
"Dan
nie", "customer_id": 35848}

{"email": "dtyddwax@weebly.com", "phone": "626-781-3263", "sales": [{"product_id": 7, "product_name": "Bat", "sales_amount":
479.992, "sales_transaction_date": "2016-12-15T@7:12:57"}], "last_name": "Tydd", "date_added": "2016-12-08T00:00:00", "first_n
ame": "Dannie", "customer_id": 41866}

{"email": "dberthelmotxt5@jigsy.com", "phone": "559-535-5@99", "sales": [{"product_id": 8, "product_name": "Bat Limited Editi
on", "sales_amount": 699.99, "sales_transaction_date": "2019-01-30T12:58:20"}], "last_name": "Berthelmot", "date_added": "2018
-01-09T00:00:00", "first_name": "Danni", "customer_id": 43818}

{"email": "ddanevlbS5@geocities.com", "phone": "415-491-7645", "sales": [{"product_id": 7, "product_name": "Bat", "sales_amoun
t": 479.992, "sales_transaction_date": "2017-07-12T701:07:30"}, {"product_id": 3, "product_name": "Lemon", "sales_amount": 499.
99, "sales_transaction_date": "2016-12-09T08:02:24"}, {"product_id": 3, "product_name": "Lemon", "sales_amount": 499.99, "sale
s_transaction_date": "2015-08-09T15:56:15"}], "last_name": "Danev", "date_added": "2015-08-21T00:00:00", "first_name": "Danni"
, "customer_id": 1698}

{"email": "dlamondpy@@soundcloud.com", "phone": "585-779-9709", "sales": [{"product_id": 7, "product_name": "Bat", "sales_amo
unt": 599.99, "sales_transaction_date": "2017-01-01T722:30:02"}, {"product_id": 3, "product_name": "Lemon", "sales_amount": 499
.99, "sales_transaction_date": "2016-12-19T03:55:45"}], "last_name": "Lamond", "date_added": "2016-12-17T00:00:00", "first_nam
e": "Danny", "customer_id": 33625}

{"email": "dmagisterll3r@canalblog.com", "phone": "860-336-0719", "sales": [{"product_id": 8, "product_name": "Bat Limited Ed
ition", "sales_amount": 699.99, "sales_transaction_date": "2017-03-14T02:25:39"}], "last_name": "Magister", "date_added": "201
7-02-27T700:00:00", "first_name": "Danni", "customer_id": 43088}

(8 rows)

Figure 5.28: Resulting matches for our Danny Bat query

3. In this complex task, we need to find customers who match with both a
scooter and an automobile. That means we need to perform a query for each
combination of scooter and automobile. To get every unique combination
of scooter and automobile, we can perform a simple cross join:

SELECT DISTINCT
pl.model,
p2.model
FROM
products pl
CROSS JOIN products p2
WHERE pl.product type = 'scooter'
AND p2.product type = 'automobile'
AND pl.model NOT ILIKE '$Limited Edition%';

404 | Appendix

This produces the following output:

model | model
______________ o m e e
Bat | Model Chi
Bat | Model Epsilon
Bat | Model Gamma
Bat | Model Sigma
Blade | Model Chi
Blade | Model Epsilon
Blade | Model Gamma
Blade | Model Sigma
Lemon | Model Chi
Lemon | Model Epsilon
Lemon | Model Gamma
Lemon | Model Sigma
Lemon Zester | Model Chi
Lemon Zester | Model Epsilon
Lemon Zester | Model Gamma
Lemon Zester | Model Sigma

(16 rows)

Figure 5.29: All combinations of scooters and automobiles
4. Transform the output into the query:

SELECT DISTINCT
plainto tsquery('english', pl.model) &&
plainto _tsquery('english', p2.model)
FROM
products pl
LEFT JOIN
products p2 ON TRUE
WHERE pl.product type = 'scooter'
AND p2.product type = 'automobile'
AND pl.model NOT ILIKE 'S$Limited Edition%';

Chapter 05: Analytics Using Complex Data Types | 405

This produces the following result:

'bat' & 'model' & 'chi'
'bat' & 'model' & 'sigma’
'blade’ & 'model' & 'chi’
"lemon' & 'model' & 'chi’
'bat' & 'model' & 'gamma'
'blade’ & 'model' & 'sigma’
"lemon' & 'model' & 'sigma’
'bat' & 'model’ & 'epsilon'

'blade’ & 'model' & 'gamma'

"lemon' & 'model' & 'gamma'

'blade’ & 'model' & 'epsilon'

"Lemon' & 'model' & 'epsilon'

"lemon' & 'zester' & 'model' & 'chi'

"lemon' & 'zester' & 'model' & 'sigma’

"lemon' & 'zester' & 'model' & 'gamma'

"lemon' & 'zester' & 'model' & 'epsilon'
(16 rows)

Figure 5.30: Queries for each scooter and automobile combination

Query our database using each of these tsquery objects and count the
occurrences for each object:

SELECT
sub.query,
(
SELECT COUNT (1)
FROM customer search
WHERE customer search.search vector @QQ sub.query)
FROM (
SELECT DISTINCT
plainto tsquery('english', pl.model) &&
plainto tsquery('english', p2.model) AS query
FROM products pl
LEFT JOIN products p2 ON TRUE
WHERE pl.product type = 'scooter'
AND p2.product type = 'automobile'

406 | Appendix

AND pl.model NOT ILIKE '$Limited Edition%'
) sub
ORDER BY 2 DESC;

The following is the output of the preceding query:

|

__ +

"lemon' & 'model' & 'sigma' I

"lemon' & 'model' & 'chi' I

'bat' & 'model’ & 'epsilon’ I

'bat' & 'model' & 'sigma’ I

'bat' & 'model’ & 'chi’ I
"Lemon' & 'model' & 'epsilon' | 217

I

I

I

|

I

I

I

I

I

I

'bat' & 'model’ & 'gamma' 153
"lemon' & 'model' & 'gamma' 133
"lemon' & 'zester' & 'model' & 'chi' 28
'lemon' & 'zester' & 'model' & 'epsilon' 22
'blade' & "model' & 'chi' 21
"lemon’ & 'zester' & 'model' & 'sigma' 17
'blade' & 'model' & 'sigma' 12
"lemon' & 'zester' & 'model' & 'gamma' 11
'blade' & 'model' & 'epsilon' 4
'blade' & 'model' & 'gamma' 4
(16 rows)

Figure 5.31: Customer counts for each scooter and automobile combination

While there could be a multitude of factors at play here, we see that the lemon
scooter and the model sigma automobile is the combination most frequently
purchased together, followed by the lemon and chi models. The Bat is also fairly
frequently purchased with both of those models, as well as the epsilon model.
The other combinations are much less common, and it seems that customers
rarely purchase the lemon zester, the blade, or the gamma model.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/30HelCS.

https://packt.live/30HeICS

Chapter 06: Performant SQL | 407

CHAPTER 06: PERFORMANT SQL
ACTIVITY 6.01: QUERY PLANNING

Note that the performance metrics produced by the output of query execution plan
will vary based on system configuration.

Solution
1. Open PostgreSQL and connect to the sqlda database:
C:\> psqgl sqglda

2. Use the EXPLAIN command to return the query plan for selecting all available
records within the customers table:

sglda=# EXPLAIN SELECT * FROM customers;

This query will produce the following output from the planner:

QUERY PLAN

Seq Scan on customers (cost=0.00..1536.00 rows=50000 width=140)
(1 row)

Figure 6.63: Plan for all records within the customers table

The setup cost is 0, the total query cost is 1536, the number of rows is 50000,
and the width of each row is 140. The cost is actually in cost units, the number
of rows is in rows, and the width is in bytes.

3. Repeat the query from step 2 of this activity, this time limiting the number of
returned records to 15:

sglda=# EXPLAIN SELECT * FROM customers LIMIT 15;

This query will produce the following output from the planner:

QUERY PLAN

Limit (cost=0.00..0.46 rows=15 width=140)
-> Seq Scan on customers (cost=0.00..1536.00 rows=50000 width=140)
(2 rows)

Figure 6.64: Plan for all records within the customers table with the limit set to 15

Two steps are involved in the query, and the limiting step costs 0.46 units within
the plan.

408 | Appendix

4. Generate the query plan, selecting all rows where customers live within a
latitude of 30 and 40 degrees:

sglda=# EXPLAIN SELECT *
FROM customers

WHERE latitude > 30 and latitude < 40;
This query will produce the following output from the planner:

QUERY PLAN

Seq Scan on customers (cost=0.00..1786.00 rows=26439 width=140)
Filter: ((latitude > '30'::double precision) AND (latitude < '40'::double precision))
(2 rows)
Figure 6.65: Plan for customers living within a latitude of 30 and 40 degrees

The total plan cost is 1786 units, and it returns 26439 rows.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/3hkx5n3.

ACTIVITY 6.02: IMPLEMENTING INDEX SCANS

Solution

1. Use the EXPLAIN and ANALYZE commands to profile the query plan to search
for all records with an IP address of 18.131.58.65:

EXPLAIN ANALYZE SELECT *
FROM customers
WHERE ip address = '18.131.58.65"';

The following output will be displayed:

QUERY PLAN

Seq Scan on customers (cost=0.00..1661.00 rows=1 width=140) (actual time=0.019..15.592 rows=1 loops=1)
Filter: (ip_address = '18.131.58.65'::text)
Rows Removed by Filter: 49999

Planning Time: 8.191 ms

Execution Time: 15.625 ms

(5 rows)

Figure 6.66: Sequential scan with a filter on ip_address

https://packt.live/3hkx5n3

Chapter 06: Performant SQL | 409

The query takes 0.191 ms to plan and 15.625 ms to execute.
2. Create a generic index based on the IP address column:
CREATE INDEX ON customers (ip address) ;

3. Rerunthe query of step T and note the time it takes to execute:

EXPLAIN ANALYZE SELECT *
FROM customers

WHERE ip address = '18.131.58.65"';
The following is the output of the preceding code:

QUERY PLAN

Index Scan using customers_ip_address_idx on customers (cost=0.29..8.31 rows=1 width=140) (actual time=0.872..0.075 rows=1 loops=1)
Index Cond: (ip_address = '18.131.58.65'::text)

Planning Time: 0.467 ms

Execution Time: 0.123 ms

(4 rows)

Figure 6.67: Index scan with a filter on ip_address
The query takes 0.467 ms to planand 0.123 ms to execute.

4. Create a more detailed index based on the IP address column with the condition
that the IP addressis18.131.58.65:

CREATE INDEX ix ip where ON customers (ip address)
WHERE ip_address = '18.131.58.65';

5. Rerun the query of step 7 and note the time it takes to execute:

EXPLAIN ANALYZE SELECT *
FROM customers

WHERE ip address = '18.131.58.65';
The following is the output of the preceding code:

QUERY PLAN

Index Scan using ix_ip_where on customers (cost=0.12..8.14 rows=1 width=140) (actual time=0.021..8.023 rows=1 loops=1)
Planning Time: 0.458 ms

Execution Time: 0.056 ms

(3 rows)

Figure 6.68: Query plan with reduced execution time due to a more specific index

The query takes 0.458 ms to plan and 0.056 ms to execute. We can see that
both indices took around the same amount of time to plan, with the index that
specifies the exact IP address being much faster to execute and slightly quicker
to plan as well.

410 | Appendix

6. Use the EXPLAIN and ANALYZE commands to profile the query plan to search
for all records with a suffix of Jr:

EXPLAIN ANALYZE SELECT *
FROM customers
WHERE suffix = 'Jr';

The following output will be displayed:

QUERY PLAN

Seq Scan on customers (cost=0.00..1661.00 rows=107 width=140) (actual time=0.823..14.191 rows=102 loops=1)
Filter: (suffix = 'Jr'::text)
Rows Removed by Filter: 49898

Planning Time: 0.153 ms

Execution Time: 14.238 ms

(5 rows)

Figure 6.69: Query plan of sequential scan filtering using a suffix
The query takes 0.153 ms of planning and 14.238 ms of execution.
7. Create a generic index based on the suffix address column:
CREATE INDEX ix jr ON customers (suffix) ;

8. Rerun the query of step 6 and note the time it takes to execute:

EXPLAIN ANALYZE SELECT *
FROM customers
WHERE suffix = 'Jr';

The following output will be displayed:

QUERY PLAN
Bitmap Heap Scan on customers (cost=5.12..318.44 rows=107 width=140) (actual time=0.146..0.440 rows=102 loops=1)
Recheck Cond: (suffix = 'Jr'::text)
Heap Blocks: exact=100
-> Bitmap Index Scan on ix_jr (cost=0.00..5.09 rows=187 width=0) (actual time=0.092..0.092 rows=102 loops=1)
Index Cond: (suffix = 'Jr'::text)
Planning Time: ©.411 ms
Execution Time: 0.511 ms
(7 rows)

Figure 6.70: Query plan of the scan after creating an index on the suffix column

Chapter 06: Performant SQL | 411

Again, the planning time is significantly elevated, but this cost is more than
outweighed by the improvement in the execution time, which is reduced from
14.238 msto 0.511 ms.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/3fkj72G.

ACTIVITY 6.03: IMPLEMENTING HASH INDEXES

Solution

1. Use the EXPLAIN and ANALYZE commands to determine the planning time and
cost, as well as the execution time and cost, of selecting all rows where the email
subjectis Shocking Holiday Savings On Electric Scooters:

EXPLAIN ANALYZE SELECT *
FROM emails
WHERE

email subject='Shocking Holiday Savings On Electric
Scooters';

The following output will be displayed:

QUERY PLAN

Seq Scan on emails (cost=0.00..10651.98 rows=19863 width=79) (actual time=7.843..117.840 rows=19873 loops=1)
Filter: (email_subject = 'Shocking Holiday Savings On Electric Scooters'::text)
Rows Removed by Filter: 398285

Planning Time: ©.117 ms

Execution Time: 119.801 ms

(5 rows)

Figure 6.71: Performance of sequential scan on the emails table

The planning time is 0.117 ms and the execution timeis 119.801 ms. There
is no cost in setting up the query, but there is a cost of 10, 652 in executing it.

https://packt.live/3fkj72G

412 | Appendix

2. Use the EXPLAIN and ANALYZE commands to determine the planning time and
cost, as well as the execution time and cost, of selecting all rows where the email
subjectisBlack Friday. Green Cars.:

EXPLAIN ANALYZE SELECT *
FROM emails
WHERE email subject='Black Friday. Green Cars.';

The following output will be displayed:

QUERY PLAN

Seq Scan on emalls (cost=0.00..10651.98 rows=40645 width=79) (actual time=65.643..124.249 rows=41399 loops=1)
Filter: (email_subject = 'Black Friday. Green Cars.'::text)
Rows Removed by Filter: 376759

Planning Time: 0.097 ms

Execution Time: 127.736 ms

(5 rows)

Figure 6.72: Performance of a sequential scan looking for different email subject values

Approximately 0.097 ms is spent on planning the query, with 127.736 ms
being spent on executing it. This elevated execution time can be partially
attributed to an increase in the number of rows being returned. Again, there is
no setup cost, but a similar execution cost of 10, 652.

3. Create a hash scan of the email subject field:

CREATE INDEX ix email subject ON emails
USING HASH (email subject);

4. Repeatstep 1 from the solution and compare both the outputs:

EXPLAIN ANALYZE SELECT *
FROM emails

WHERE email subject='Shocking Holiday Savings On Electric
Scooters';

The following output will be displayed:

QUERY PLAN

Bitmap Heap Scan on emails (cost=641.94..6315.23 rows=19863 width=79) (actual time=2.096..15.0861 rows=19873 loops=1)

Recheck Cond: (email_subject = 'Shocking Holiday Savings On Electric Scooters'::text)

Heap Blocks: exact=289

-> Bitmap Index Scan on ix_email_subject (cost=0.00..636.97 rows=19863 width=0) (actual time=1.936..1.936 rows=19873 loops=1)

Index Cond: (email_subject = 'Shocking Holiday Savings On Electric Scooters'::text)

Planning Time: 0.130 ms
Execution Time: 17.028 ms
(7 rows)

Figure 6.73: Output of the query planner using a hash index

Chapter 06: Performant SQL | 413

The query plan shows that our newly created hash index is being used and has
significantly reduced the execution time by over 100 ms, as well as the cost.
There is a minor increase in the planning time and planning cost, both of which
are easily outweighed by the reduction in execution time.

5. Repeat step 2 from the solution and compare both the outputs:

EXPLAIN ANALYZE SELECT *
FROM emails
WHERE email subject='Black Friday. Green Cars.';

The following is the output of the preceding code:

QUERY PLAN

Bitmap Heap Scan on emails (cost=1311.80..7244.06 rows=48645 width=79) (actual time=4.085..29.296 rows=41399 loops=1)
Recheck Cond: (email_subject = 'Black Friday. Green Cars.'::text)
Heap Blocks: exact=531
-> Bitmap Index Scan on ix_email_subject (cost=0.00..1300.84 rows=40645 width=0) (actual time=3.817..3.817 rows=41399 loops=1)
Index Cond: (email_subject = 'Black Friday. Green Cars.'::text)
Planning Time: 0.483 ms
Execution Time: 33.216 ms
(7 rows)

Figure 6.74: Output of the query planner for a less-performant hash index

Again, we can see a reduction in both planning and execution expenses.
However, the reductions in the "Black Friday..." search is not as good as those
achieved in the "Shocking Holiday Savings..." search. If we look in more detail, we
can see that the scan on the index is approximately two times longer, but there
are also about twice as many records in the latter example. From this, we can
conclude that the increase is simply due to the increase in the number of records
being returned by the query.

6. Create a hash scan of the customer_id field:

CREATE INDEX ix customer id ON emails
USING HASH (customer id);

7. Use EXPLAIN and ANALYZE to estimate the time required to select all rows
with a customer_id value greater than 100. What type of scan was used
and why?

EXPLAIN ANALYZE SELECT *
FROM emails
WHERE customer id > 100;

414 | Appendix

The following output will be displayed:

QUERY PLAN

Seq Scan on emails (cost=0.00..10651.98 rows=417309 width=79) (actual time=0.024..121.483 rows=417315 loops=1)
Filter: (customer_id > 180)
Rows Removed by Filter: 843

Planning Time: ©.199 ms

Execution Time: 152.656 ms

(5 rows)

Figure 6.75: Query planner ignoring the hash index due to limitations

So, the final execution time comes to 152. 656 ms and the planning time
comesto 0.199 ms.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/2YgkWVf.

ACTIVITY 6.04: IMPLEMENTING PERFORMANT JOINS
Solution
1. Open PostgreSQL and connect to the sqlda database:
$ psql sglda

2. Determine a list of customers (customer_id, first name, and last_name)
who had been sent an email, including information for ‘the subject of the email
and whether they opened and clicked on the email. The resulting table should
include the customer_id, first name, last name, email subject,
opened, and clicked columns:

sglda=# SELECT customers.customer id, customers.first name, customers.
last name, emails.opened, emails.clicked

FROM customers INNER JOIN emails ON customers.customer id=emails.
customer id;

https://packt.live/2YqkWVf

Chapter 06: Performant SQL | 415

The following screenshot shows the output of the preceding code:

customer_id | first_name
_____________ fommmmmm e

18 | Mareah

30 | Kath

41 | Rycca

52 | Glusto

59 | Laurene

78 | West

82 | Claudie

84 | HNels

103 | Natalina

119 | Hugibert

132 | Orrin

134 | Emmalyn

135 | Myrilla

137 | Cindee

last_name

Hampson
Cancott
Beefon
Dell 'Orto
Bullocke
Evennett
Hackney
Starcks
Prandi

Figure 6.76: Customers and emails join

=h =h —h —h —h —h —h —h —h —h —h + —h —h
=h =h =h =h =h =h —h —h —h —h —h —h —h —h

3. Savethe resulting table to a new table, customer emails:

sqlda=# SELECT customers.customer id, customers.first name, customers.
emails.clicked
INTO customer emails FROM customers INNER JOIN emails ON customers.
customer id=emails.customer id;

last name, emails.opened,

4. Find those customers who opened or clicked on an email:

SELECT *

FROM customer emails

WHERE clicked='t' and opened='t';

416 | Appendix

The following figure shows the output of the preceding code:

customer_id

| first_name

| chet
| Hirsch
| rRandi

| Gabrielle
| Augie

| Natale
| Wilton
| Aidan

| Myrah

| Dalton
| Benson
| Krystle
| Valaree

last_name

Melchier
Kulver
Benzing
Skeermer
Rhymer
Ruddiman
Silversmid
Hinzer
Capstack
Turrill
Pruvost
Roiz
Wedmore

| opened | clicked

[i o o o S o o e o o

[i o o o S o o e o o

Figure 6.77: Customers who had clicked on and opened emails

5. Find the customers who have a dealership in their city; customers who do not
have a dealership in their city should have a blank value for the eity column:

sglda=# SELECT customers.customer id, customers.first name, customers.

last name,

FROM customers

customers.city

LEFT JOIN dealerships on customers.city=dealerships.city;

This will display the following output:

customer_id

[l Y= = B s RV R WY I N

I

first_name

Arlena
Ode
Braden
Jessika
Lonnie
Cortie
Wood
Rutger
Melantha
Barbara-anne
Urbano

last_name

Riveles
Stovin
Jordan
Nussen
Rembaud
Locksley
Kennham
Humblestone
Tibb
Gowlett
Middlehurst

Saint Louis
Pensacola
Nashville

Miami

Miami

orlando

New Hawven
Shawnee Mission
El Paso

Tulsa

Figure 6.78: Left join of customers and dealerships

Chapter 06: Performant SQL | 417

Save these results to a table called customer_dealers:
sglda=# SELECT customers.customer id, customers.first name, customers.

last name, customers.city INTO customer dealers FROM customers LEFT
JOIN dealerships on customers.city=dealerships.city;

List those customers who do not have dealers in their city (hint: a blank field
is NULL):

sqgqlda=# SELECT * from customer dealers WHERE city is NULL;

The following figure shows the output of the preceding code:

customer_id | first_name | last _name | city
————————————— i s s
1 | Arlena | Riveles
12 | Tyne | Duggan |
21 | Pryce | Geist |
24 | Barbi | Lanegran |
30 | Kath | Rivel |
38 | Carter | Lagneaux
44 | Waldemar | Paroni |
49 | Hannah | McGlew |
56 | Riva | Cathesyed |
63 | Gweneth | Maior |
78 | Caty | Woolveridge |
72 | Jodi | Fautly |

Figure 6.79: Customers without city information

The output shows the final list of customers in the cities where we have
no dealerships.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/3ffCSZq.

https://packt.live/3ffCSZq

418 | Appendix

ACTIVITY 6.05: DEFINING A MAXIMUM SALE FUNCTION

Solution

1.

Connect to the sqlda database. The following command will only run in SQL
CMD and not in pgadmin:

$ psgl sglda postgres

Create a function called max_sale that does not take any input arguments but
returns a numeric value called big_sale:

sglda=# CREATE FUNCTION max sale() RETURNS integer AS S$big sale$
Declare the big_sale variable and begin the function:

sglda$# DECLARE big sale numeric;
sgldas$# BEGIN

Insert the maximum sale amount into the big_sale variable:
sqldaS# SELECT MAX (sales amount) INTO big sale FROM sales;
Return the value for big_sale:

sqldaS# RETURN big sale;

Closeout the function with the LANGUAGE statement:

sqldaS# END; S$big sale$
sglda-# LANGUAGE PLPGSQL;

Call the function to find what the biggest sale amount in the database is:
sqglda=# SELECT MAX (sales amount) FROM sales;

The following is the output of the preceding code:

115000

(1 row)

Chapter 06: Performant SQL | 419

The output is created from a function that determines the highest sale amount,
thatis, 115000, in the database.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/2ztZshK.

ACTIVITY 6.06: CREATING FUNCTIONS WITH ARGUMENTS

Solution

1. Create the function definition for a function called avg_sales_window that
returns a numeric value and takes a DATE value to specify the date in the form
YYYY-MM-DD:

sqlda=# CREATE FUNCTION avg sales window (from date DATE, to date
DATE) RETURNS numeric AS $sales avgs$

2. Declare the return variable as a numeric data type and begin the function:

sqldaS# DECLARE sales avg numeric;
sgldas$# BEGIN

3. Select the average sales amount in the return variable where the sales
transaction date is greater than the specified date:

sglda$# SELECT AVG (sales amount) FROM sales INTO sales avg WHERE
sales transaction date > from date AND sales transaction date < to_
date;

4. Return the function variable, end the function, and specify the
LANGUAGE statement:

sgldas# RETURN sales_ avg;
sglda$# END; $sales_avg$
sglda-# LANGUAGE PLPGSQL;

https://packt.live/2ztZshK

420 | Appendix

Use the function to determine the average sales value since 2013-04-12:
sqlda=# SELECT avg_sales window('2013-04-12', '2014-04-12");
The following is the output of the preceding code:

avg sales window

477.686246311006

(1 row)

The final output shows the average sales within specific dates, which comes to
around 477 .687.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/2UCxY0A.

ACTIVITY 6.07: CREATING A TRIGGER TO TRACK AVERAGE PURCHASES

Solution

1.

Connect to the smalljoins database:
$ psgl smalljoins

Create a new table called avg_qgty_ log thatis composed of an order id
integer field and an avg_qty numeric field:

smalljoins=# CREATE TABLE avg gty log (order id integer, avg gty
numeric) ;

Create a function called avg_qty that does not take any arguments but
returns a trigger. The function computes the average value for all order
quantities (order_info.qty) and inserts the average value along with the
most recent order_idinto avg_qty:

smalljoins=# CREATE FUNCTION avg gty () RETURNS TRIGGER AS $ avg$
smalljoins$# DECLARE _avg numeric;

smalljoins$# BEGIN

smalljoinsS$# SELECT AVG(gty) INTO avg FROM order info;

smalljoins$# INSERT INTO avg gty log (order id, avg gty) VALUES (NEW.
order id, _avg);
smalljoins$# RETURN NEW;

https://packt.live/2UCxY0A

Chapter 06: Performant SQL | 421

smalljoins$# END; $ avgs
smalljoins-# LANGUAGE PLPGSQL;

Create a trigger called avg_trigger that calls the avg_qty function AFTER
each row is inserted into the order_info table:

smalljoins=# CREATE TRIGGER avg_ trigger
smalljoins-# AFTER INSERT ON order info
smalljoins-# FOR EACH ROW

smalljoins—-# EXECUTE PROCEDURE avg gty();

Insert some new rows into the order_info table with quantities of 6, 7, and 8:

smalljoins=# SELECT insert order (3, 'GROGl', 6);
smalljoins=# SELECT insert order (4, 'GROGl', 7);
smalljoins=# SELECT insert order(l, 'GROGl', 8);

Look at the entries in avg_qgty log to see whether the average quantity of
each order is increasing:

smalljoins=# SELECT * FROM avg gty log;

The following figure shows the output of the preceding code:

order_id | avg_qty
__________ +____________________
1625 | 4.7500000000000000
1626 | 5.0000000000000000
1627 | 5.3000000000000008
(3 rows)

Figure 6.80: Average order quantity over time

With these orders and the entries in the log, we can see an increase in the
average quantity of items per order.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/2MUJVdG.

https://packt.live/2MUJVdG

422 | Appendix

ACTIVITY 6.08: TERMINATING A LONG-RUNNING QUERY

Solution
1. Launch two separate SQL interpreters:
C:\> psql sglda

2. Inthe first terminal, execute the sleep command with a parameter of
1000 seconds:

sglda=# SELECT pg_sleep(1000);
3. Inthe second terminal, identify the process ID of the sleep query:

sglda=# SELECT pid, query FROM pg stat activity WHERE state =
'active';

Following is the output of the query:

14117 | SELECT pid, query FROM pg stat activity WHERE state = 'active';
14131 | SELECT pg_sleep(1060);
(2 rows)

Figure 6.81: Finding the pid value of pg_sleep

4. Using the pid value, force the sleep command to terminate using the
pg_terminate background command:

sqlda=# SELECT pg terminate backend(14131);

The following figure shows the output of the preceding code:
pg terminate backend

(1 row)

5. Verify in the first terminal that the sleep command has been terminated.
Notice the message returned by the interpreter:

sqlda=# SELECT pg_sleep(1000);

Chapter 06: Performant SQL | 423

This will display the following output:

sqlda=# SELECT pg_sleep(1000);
FATAL: terminating connection due to administrator command
server closed the connection unexpectedly
This probably means the server terminated abnormally
before or while processing the request.
The connection to the server was lost. Attempting reset: Succeeded.
sqlda=t |}

Figure 6.82: Terminated pg_sleep process

We can see that the query is now terminated from the screenshot after using the
pPg_sleep command.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/3hj8E9H.

https://packt.live/3hj8E9H

424 | Appendix

CHAPTER 07: THE SCIENTIFIC METHOD AND APPLIED PROBLEM SOLVING
ACTIVITY 7.01: QUANTIFYING THE SALES DROP

Solution

1.

Load the sqlda database:
$ psqgl sqglda

Compute the daily cumulative sum of sales using the OVER and ORDER BY
statements. Insert the results into a new table called bat_sales_growth:

sqlda=# SELECT *, sum(count) OVER (ORDER BY sales transaction date)
INTO bat sales growth FROM bat sales daily;

The following output should be produced:
SELECT 964

Compute a 7-day 1ag function of the sum column and insert all the columns of
bat sales daily andthe new lag columninto a new table, called bat__
sales_daily delay. This 1lag column indicates what the sales were 1 week
before the given record:

sqglda=# SELECT *, lag(sum, 7) OVER (ORDER BY sales transaction date)
INTO bat sales daily delay FROM bat sales growth;

Inspect the first 15 rows of bat_sales_growth:

sglda=# SELECT * FROM bat sales daily delay LIMIT 15;

Chapter 07: The Scientific Method and Applied Problem Solving | 425

The following is the output of the preceding code:

sales_transaction_date | count | sum | lag
------------------------ R et e
2016-10-10 00:00:00 | 91 9|
2016-10-11 00:00:00 | 6 | 15 |
2016-10-12 00:00:00 | 10 | 25 |
2016-10-13 00:00:00 | 10 | 35 |
2016-10-14 00:00:00 | 5| 40 |
2016-10-15 00:00:00 | 10 | 50 |
2016-10-16 00:00:00 | 14 | 64 |
2016-10-17 00:00:00 | 9| 73| 9
2016-10-18 00:00:00 | 11 | 84 | 15
2016-10-19 00:00:00 | 2] 9| 25
2016-10-20 00:00:00 | 10 | 106 | 35
2016-10-21 00:00:00 | 6 | 112 | 40
2016-10-22 00:00:00 | 2 | 114 | 50
2016-10-23 00:00:00 | 5] 119 | 64
2016-10-24 00:00:00 | 6§ 125 §, 73
(15 rows)

Figure 7.27: Daily sales delay with lag

Compute the sales growth as a percentage, comparing the current sales
volume to that of 1 week prior. Insert the resulting table into a new table
calledbat_sales_delay vol:

sglda=# SELECT *, (sum-lag)/lag AS volume INTO bat sales delay vol
FROM bat sales daily delay ;

NOTE

The percentage of sales volume can be calculated via the
following equation:

(new_volume - old_volume) / old_volume

426 | Appendix

5. Compare the first 22 values of thebat_sales_delay vol table:
sglda=# SELECT * FROM bat sales _delay vol LIMIT 22;

The delay volume for the first 22 entries can be seen in the following screenshot:

sales_transaction_date | count | sum | lag | volume
------------------------ R e e S
2016-10-10 00:00:00 | 9 | 9 |

2016-10-11 00:00:00 | 6] 15 | |

2016-10-12 00:00:00 | 16, | 25 | |

2016-10-13 00:00:00 I 10 | 35 | |

2016-10-14 00:00:00 | S| 40 | |

2016-10-15 00:00:00 | 10 | 50 | |

2016-10-16 00:00:00 | 14 | 64 | |

2016-10-17 00:00:00 |] 73] 9 | 7.111111171111311111
2016-10-18 00:00:00 | 11| 84 | 15 | 4.6000000000000000
2016-10-19 00:00:00 | 12| 96 | 25 | 2.8400000000000000
2016-10-20 00:00:00 | 10 | 166 | 35 | 2.0285714285714286
2016-10-21 00:00:00 | 6 | 112 | 40 | 1.8000000000000000
2016-10-22 00:00:00 | 2] 114 | 50 | 1.2800000000000000
2016-10-23 00:00:00 | 5] 119 | 64 | 0.85937500000000000000
2016-10-24 00:00:00 | 6 | 125 | 73 | ©.71232876712328767123
2016-10-25 00:00:00 | 9 | 134 | 84 | 0.59523809523809523810
2016-10-26 00:00:00 | 2| 136 | 96 | ©0.41666666666666666667
2016-10-27 00:00:00 | 4 | 140 | 106 | 0.32075471698113207547
2016-10-28 00:00:00 | 7 | 147 | 112 | 0.31250000000000000000
2016-10-29 00:00:00 | 5] 152 | 114 | ©0.33333333333333333333
2016-10-30 00:00:00 | 5 | 157 | 119 | ©.31932773109243697479
2016-10-31 00:00:00 | 3 | 160 | 125 | 0.28000000000000000000

(22 rows)

Figure 7.28: Relative sales volume of the scooter over 3 weeks

Looking at the output table, we can see four sets of information: the daily sales
count, the cumulative sum of the daily sales count, the cumulative sum offset by
1 week (the lag), and the relative daily sales volume.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/2BXrV09.

https://packt.live/2BXrV09

Chapter 07: The Scientific Method and Applied Problem Solving | 427

ACTIVITY 7.02: ANALYZING THE DIFFERENCE IN THE SALES PRICE HYPOTHESIS
Solution
1. Load the sglda database:
$ psql sqglda

2. Selectthe sales_transaction_date column from the 2013 Lemon sales
and insert the column into a table called lemon_sales:

sglda=# SELECT sales_ transaction date INTO lemon sales FROM sales
WHERE product id=3;

3. Count the sales records available for the 2013 Lemon by running the
following query:

sqlda=# SELECT count (sales transaction date) FROM lemon sales;

We can see that 16558 records are available:

4. Use the max function to check the latest sales_transaction_date column:
sqlda=# SELECT max (sales_ transaction date) FROM lemon sales;

The following screenshot shows the sales_transaction_date column:

2018-12-17 19:12:10

(1 row)

428 | Appendix

5.

10.

Convert the sales_transaction_date column into a date type using the
following query:

sglda=# ALTER TABLE lemon sales ALTER COLUMN sales transaction date
TYPE DATE;

We are converting the data type from DATE _TIME to DATE so as to remove
the time information from the field. We are only interested in accumulating
numbers, but just the date and not the time. Hence, it is easier just to remove
the time information from the field.

Count the number of sales per day within the lemon_sales table and insert
this figure into a table called lemon_sales_count:

sglda=# SELECT *, COUNT (sales transaction date) INTO lemon sales
count FROM lemon sales GROUP BY sales transaction date ORDER BY
sales transaction date;

Calculate the cumulative sum of sales and insert the corresponding table into a
new table labeled lemon_sales_sum:

sglda=# SELECT *, sum(count) OVER (ORDER BY sales transaction date)
INTO lemon sales sum FROM lemon sales count;

Compute the 7-day 1lag function on the sum column and save the result to
lemon_sales_delay:

sqlda=# SELECT *, lag(sum, 7) OVER (ORDER BY sales transaction date)
INTO lemon sales delay FROM lemon sales sum;

Calculate the growth rate using the data from lemon_sales_delay and
store the resulting table in lemon_sales_growth. Label the growth rate
column volume:

sglda=# SELECT *, (sum-lag)/lag AS volume INTO lemon sales growth
FROM lemon sales delay;

Inspect the first 22 records of the lemon_sales_growth table by examining
the volume data:

sglda=# SELECT * FROM lemon sales_growth LIMIT 22;

Chapter 07: The Scientific Method and Applied Problem Solving | 429

The following table shows the sales growth:

sales_transaction_date | count | sum | lag | volume
------------------------ e S e e
2013-05-01 | 6| 6| [

2013-05-02 | 8| 14 | |

2013-05-03 | 4| 18 | |

2013-05-04 | 9 | 27| |

2013-05-05 | 9| 36 | |

2013-05-06 | 6 | 42 | |

2013-05-07 | 8| 50 | [

2013-05-08 | 6| 56 | 6 | 8.3333333333333333
2013-05-09 | 6] 82] 14 | 3.4285714285714286
2013-05-10 |] M A8 2.9444444444444444
2013-05-11 | 31 4| 27] 1.7407407407407407
2013-05-12 | 4] 78| 35 | 1.1666666666666667
2013-05-13 | 7| 85| 42 | 1.0238095238095238
2013-05-14 | 3| 88 | 50 | 0.76000000000000000000
2013-05-15 | 3] 91| 56 | 0.62500000000000000000
2013-05-16 | 4 | 95| 62 | ©.53225806451612903226
2013-05-17 | 6 | 101 | 71 | ©.42253521126760563380
2013-05-18 | 9 | 110 | 74 | 0.48648648648648648649
2013-05-19 | 6 | 116 | 78 | 0.48717948717948717949
2013-05-20 | 6 | 122 | 85 | ©.43529411764705882353
2013-05-21 | 11 | 133 | 88 | ©.51136363636363636364
2013-05-22 | 8 | 141 | 91 | 06.54945054945054945055
(22 rows)

Figure 7.29: Sales growth of the Lemon Scooter

Similar to the previous exercise, we have calculated the cumulative sum, lag,
and relative sales growth of the Lemon Scooter. We can see that the initial sales
volume is much larger than the other scooters, at over 800%, and again finishes
higher at 55%.

NOTE

To access the source code for this specific section, please refer to
https://packt.live/30CeOMm.

https://packt.live/30CeOMm

INDEX

A

accurate: 142-143

actions: 313

add-on: 14-15,
18-19, 22-23

aggfunc: 128-129, 139

aggregate: 48,

121-129, 134-135,

137-139, 144,
146-149, 157,
166, 218, 227,
245, 334, 340
aliasing: 156
analyses: 82, 182,

186, 191, 206, 258

arbitrary: 3
argument: 308, 360
arrays: 47, 209-210,
226-227,
229-232, 258
attribute: 44
automatic: 301, 327

B

biases: 262
bitmap: 280
bivariate: 1, 23,
28-29, 34-37,75
b-tree: 273-275,
282-288

C

callbacks: 301, 312
casting: 112
categories: 3-4, 42,
89, 137, 351
caution: 199

coalesce: 80,

108-110, 118

column: 6, 9, 14-15,
40, 43, 45-46, 48-50,

52-54, 56, 61-68, 70,
73, 82, 85, 90-91,
98, 101, 104-106,
108, 111-117,
122,127-130, 133,
137-139, 142-144,
148-149, 152,
158-160, 179,

181, 196, 199,
201-202, 210, 225,
230, 232-233,
255-256, 270, 275,
277-279, 281-284,
286-288, 292, 294,
308, 338, 340,
344-345, 348-352,
355-358, 364

command: 80, 166,

169-174, 176,
178-179, 182,
186-188, 191-194,
196, 199-200, 204,
206, 211, 227,
264-267, 269,
271-272, 276-278,
280, 284, 286,
290-291, 299,
304, 310, 315,
322-326, 365

commit: 176
component: 214,

245, 263, 269

condition: 48, 50-51,

85-86, 92, 105,
107, 139, 275,
278, 281, 289

configured: 126
connect: 58, 60, 62,

69, 72,74, 96, 101,
106, 117,126, 134,
140, 144, 154, 158,
163, 165, 178, 182,
186-190, 204, 266,
271, 276, 300, 303,
307-308, 315, 321

coordinate:; 223
createdb: 293

database: 1-2, 42-44,

47-50, 53, 58,

60, 62-63, 68-69,
72-73, 81, 95-96,
98, 101, 104, 106,
110,117,126, 134,
140, 144, 154,
158, 163, 165-166,
169-170, 172-173,
175-179, 182,
184-185, 187-195,
198-206, 210-211,
220, 232, 234, 247,
252, 256, 258,
261-266, 270-271,
273, 275-276, 278,
283, 288, 290,
293, 300-301, 303,
306-308, 310-312,
315, 318, 321-323,
331, 333-335, 338,
340, 342-343, 351,
354, 363-364

dataframe: 184-185,

190, 194-197,
199, 202, 205

dataset: 3-7, 9, 14,
16-18, 20-22, 32,
38-40, 50, 74,

79, 86, 96, 113,
117-118, 128, 138,
141,151, 154,
158-159, 170, 180,
202-203, 205, 245,
247,262, 290,
299-301, 312, 359

datatype: 112

dbconnect: 184

dbgetquery: 184

debugging: 313

declare: 302,
304-305, 307-308,
311,314, 318

delimited: 9, 14

develop: 370

distinct: 79-80, 83,
113-118, 123, 127,
143-144, 225,
227,242, 257-258,
277, 358-360,
362, 365-366

drop-down: 58, 60

E

embedded: 204
encoding: 175
encompass: 151, 160
entity: 252
errors: 185, 201, 203
exception: 87,314
execute: 44, 59, 62,
101,121,187,
189-190, 194, 196,
201, 206, 262-263,
265, 275, 280-282,

294-296, 310,
313-314, 319, 321,
324-327, 330, 342

extend: 303

F

feature: 3, 104,

282-283
fetches: 189, 264, 268
fields: 76, 111, 154,

175, 236, 238,

244, 252, 255-256,

263, 314-315,

331, 334-335
filesystem: 202
frontend: 172
function: 25, 105-106,

108, 110-112, 122,

124, 128-129,

138-139, 143,

146-149, 151,

157-160, 166, 195,

199-201, 206, 213,

215-216, 227-228,

232, 236-239,

242-243, 245-246,

248, 252-253, 283,

301-311, 313-319,

321-322, 327,

338, 344-345,

348, 352, 358

G

ggplot: 185

gigabytes: 283

github: 8-9, 14, 32, 39,
96, 125, 177, 205,
217, 266, 293, 315

H

herring: 318

hypothesis: 41, 301,
330-331, 342-343,
351, 354-355,
363, 368-370

indexes: 236, 258, 261,
273, 278, 281-282,
284, 288-290

instance: 3, 44, 52-54,
56, 63, 71, 82, 88,
94, 113, 126, 137,
200, 211, 313, 369

interpret: 4, 34, 39,
182, 264, 266

inventory: 317

invokes: 172-173

J

jupyter: 191-195,
198-199, 206

K

keywords: 48-49,
57-58, 60-61, 86,
89, 104, 118, 121,
153, 212, 244-245,
247,252, 257-258,
295,302, 313

L

layers: 241

M

matplotlib: 193
method: 2, 31, 53, 65,
75, 83, 201-203,

206, 217-218, 263,
265, 273, 275,
282-283, 291, 323,
327,329-330, 370

models: 43, 51-52, 54,
68, 80, 227-228,
351, 353

module: 192, 222-223

multimodal: 17

N

navigate: 14, 258
nullif: 80, 110-111,
118,196

O

object: 2, 44, 47,
188-189, 191,
193-195, 232,

234, 236-238,
241, 253-254

operation: 44, 48-49,
89, 130, 134, 139,
228-229, 235, 249,
251, 253, 266, 274,
276,312,319, 360

optimize: 254, 258,
261-262, 264, 330

outlier: 17, 22, 36, 39

P

packages: 183,

185-186,

189-192, 222
parameter: 177,

184, 189, 199,

201-204, 206, 211,

302, 324,326
pattern: 24, 27,

49, 246, 251
performant: 300
pgadmin: 58, 96,

125,154
plotting: 23
postgres: 170-173,

176-177, 186-187,

190, 293, 315, 324
postgresql: 46, 82, 95,

125-126, 171-172,

184,187,191, 193,

201, 204, 210-214,

220-223, 226-227,

229, 232, 234,

236, 238, 244-246,

252-254, 264-266,

269-271, 273,

275-276, 282, 293,

300, 302-303, 310,

314, 322, 330, 358
predefined: 244
prefix: 278
procedure: 13, 16,

313-314, 319
production: 53-57,

65,67, 111-112,

185-186, 263,

312,331-332,

336, 350, 353,

356-357, 364, 367

proportion: 7, 41
psycopg: 187-190,
193, 272

Q

quadratic: 25, 34

quantities: 321-322

queries: 42-43, 51, 53,
58, 60-61, 79-80,
83, 96, 98-99, 101,
103-104, 118, 131,
137,139, 144,
155-156, 173-174,
190, 253, 255-256,
258, 261-266, 268,
271-273, 275-276,
281, 283-285, 288,
290, 295, 299, 301,
303, 306, 322,
324,327,336

R

recall: 44, 264,

276, 283
recursive: 104
regexp: 246, 248-249
repository: 9,

14,39, 293

S

scalar: 104, 108
schema: 43, 58,

60, 177, 200
skewed: 17-18
smalljoins: 292-299,

315-321
sorted: 15, 19, 59, 273

splitting: 228, 274

sqglalchemy: 166, 169,
190-192, 194-195,
199-200, 205-206

stddev: 126, 134-135

stdout: 170-173, 176

stringio: 200

strings: 175, 193,
196, 202, 211-212,
229, 270

suffix: 90, 92, 110,
226, 281-282

syntax: 2, 66, 71, 87,
93, 115, 147, 156,
174,184, 189,
253-255, 275, 283,
302-303, 313

T

techniques: 4,7, 17,
28, 79-80, 99, 117,
141, 185, 209,
244-246, 261, 331,
342, 350, 368, 371

terminals: 324

terminate: 274,

323, 325-326
threshold: 240
timestamp: 213,

215-217, 270
tokenize: 252-253
transform: 43,

74, 79-80, 104,

143, 213, 258
traversal: 274
trigger: 301, 312-315,

318-322

truncate: 71, 215-216,

312-313
tuples: 42, 194

U

upload: 166, 170,
175-176
utilize: 166

Vv

validate: 85

values: 3-4, 7, 13-20,
23, 33, 39-40, 46,
48, 52-53, 56, 59,
65-68, 70, 90, 92,
104-106, 108-109,
111,113, 122, 124,
127, 141-143, 150,
160, 162, 175, 202,
205, 210, 213,
221-222, 226-227,
231-235, 237, 239,
241-242, 244, 249,
253, 258, 266,
269-271, 274, 277,
279-280, 283-284,
286, 289-290,
295, 298, 311,
318-319, 335, 341

variable: 3-4, 7,
12-13, 16-18, 20,
23-24, 32, 40, 75,
111, 184-185, 189,
195, 197, 302,
304-308, 311

W

wrapped: 175,
189, 233

Y

yielded: 334

	Cover
	FM
	Copyright
	Table of Contents
	Preface
	Chapter 1: Introduction to SQL for Analytics
	Introduction
	The World of Data
	Types of Data
	Data Analytics and Statistics
	Types of Statistics
	Activity 1.01: Classifying a New Dataset

	Methods of Descriptive Statistics
	Univariate Analysis
	Data Frequency Distribution
	Exercise 1.01: Creating a Histogram
	Quantiles

	Exercise 1.02: Calculating the Quartiles for Add-on Sales
	Central Tendency
	Exercise 1.03: Calculating the Central Tendency of Add-on Sales
	Dispersion
	Exercise 1.04: Dispersion of Add-on Sales
	Bivariate Analysis
	Scatterplots
	Pearson Correlation Coefficient

	Exercise 1.05: Calculating the Pearson Correlation Coefficient for Two Variables
	Interpreting and Analyzing the Correlation Coefficient

	Activity 1.02: Exploring Dealership Sales Data
	Working with Missing Data

	Statistical Significance Testing
	Common Statistical Significance Tests

	Relational Databases and SQL
	Advantages and Disadvantages of SQL Databases

	Basic Data Types of SQL
	Numeric
	Character
	Boolean
	Datetime
	Data Structures: JSON and Arrays

	Reading Tables: The SELECT Query
	Basic Anatomy and Working of a SELECT Query
	Basic Keywords in a SELECT Query
	The SELECT and FROM Statements
	The WHERE Clause
	The AND/OR Clause
	The IN/NOT IN Clause
	The ORDER BY Clause
	The LIMIT Clause
	The IS NULL/IS NOT NULL Clause

	Exercise 1.06: Querying the salespeople Table Using Basic Keywords in a SELECT Query
	Activity 1.03: Querying the customers Table Using Basic Keywords in a SELECT Query

	Creating Tables
	Creating Blank Tables
	Exercise 1.07: Creating a Table in SQL
	Creating Tables with SELECT

	Updating Tables
	Adding and Removing Columns
	Adding New Data
	Updating Existing Rows
	Exercise 1.08: Updating the Table to Increase the Price of a Vehicle

	Deleting Data and Tables
	Deleting Values from a Row
	Deleting Rows from a Table
	Deleting Tables
	Exercise 1.09: Deleting an Unnecessary Reference Table
	Activity 1.04: Creating and Modifying Tables for Marketing Operations

	SQL and Analytics
	Summary

	Chapter 2: SQL for Data Preparation
	Introduction
	Assembling Data
	Connecting Tables Using JOIN
	Types of Joins
	Inner Joins
	Outer Joins
	Cross Joins

	Exercise 2.01: Using Joins to Analyze a Sales Dealership
	Subqueries
	Unions
	Exercise 2.02: Generating an Elite Customer Party Guest List Using UNION
	Common Table Expressions

	Transforming Data
	The CASE WHEN Function
	Exercise 2.03: Using the CASE WHEN Function to Get Regional Lists
	The COALESCE Function
	The NULLIF Function
	The LEAST/GREATEST Function
	The Casting Function
	The DISTINCT and DISTINCT ON Functions
	Activity 2.01: Building a Sales Model Using SQL Techniques

	Summary

	Chapter 3: Aggregate and Window Functions
	Introduction
	Aggregate Functions
	Exercise 3.01: Using Aggregate Functions to Analyze Data

	Aggregate Functions with GROUP BY
	The GROUP BY Clause
	Multiple Column GROUP BY
	Exercise 3.02: Calculating the Cost by Product Type Using GROUP BY
	Grouping Sets
	Ordered Set Aggregates

	The HAVING Clause
	Exercise 3.03: Calculating and Displaying Data Using the HAVING Clause

	Using Aggregates to Clean Data and Examine Data Quality
	Finding Missing Values with GROUP BY
	Measuring Data Quality with Aggregates
	Activity 3.01: Analyzing Sales Data Using Aggregate Functions

	Window Functions
	The Basics of Window Functions
	Exercise 3.04: Analyzing Customer Data Fill Rates over Time
	The WINDOW Keyword

	Statistics with Window Functions
	Exercise 3.05: Rank Order of Hiring
	Window Frame
	Exercise 3.06: Team Lunch Motivation
	Activity 3.02: Analyzing Sales Using Window Frames and Window Functions

	Summary

	Chapter 4: Importing and Exporting Data
	Introduction
	The COPY Command
	Copying Data with psql
	Configuring COPY and \copy
	Using COPY and \copy to Bulk Upload Data to Your Database
	Exercise 4.01: Exporting Data to a File for Further Processing in Excel

	Using R with Our Database
	Why Use R?
	Getting Started with R

	Using Python with Our Database
	Why Use Python?
	Getting Started with Python
	Improving Postgres Access in Python with SQLAlchemy and pandas
	What is SQLAlchemy?
	Using Python with Jupyter Notebook
	Reading and Writing to our Database with pandas
	Exercise 4.02: Reading Data and Visualizing Data in Python
	Writing Data to the Database Using Python
	Improving Python Write Speed with COPY
	Reading and Writing CSV File with Python

	Best Practices for Importing and Exporting Data
	Going Passwordless
	Activity 4.01: Using an External Dataset to Discover Sales Trends

	Summary

	Chapter 5: Analytics Using Complex Data Types
	Introduction
	Date and Time Data Types for Analysis
	Starting with the date Type
	Transforming Date Types
	Intervals
	Exercise 5.01: Analytics with Time Series Data

	Performing Geospatial Analysis in PostgreSQL
	Latitude and Longitude
	Representing Latitude and Longitude in PostgreSQL
	Exercise 5.02: Geospatial Analysis

	Using Array Data Types in PostgreSQL
	Starting with Arrays
	Exercise 5.03: Analyzing Sequences Using Arrays

	Using JSON Data Types in PostgreSQL
	JSONB: Pre-Parsed JSON
	Accessing Data from a JSON or JSONB Field
	Leveraging the JSON Path Language for JSONB Fields
	Creating and Modifying Data in a JSONB Field
	Exercise 5.04: Searching through JSONB

	Text Analytics Using PostgreSQL
	Tokenizing Text
	Exercise 5.05: Performing Text Analytics
	Performing Text Search
	Optimizing Text Search on PostgreSQL
	Activity 5.01: Sales Search and Analysis

	Summary

	Chapter 6: Performant SQL
	Introduction
	Database Scanning Methods
	Query Planning
	Scanning and Sequential Scans
	Exercise 6.01: Interpreting the Query Planner
	Activity 6.01: Query Planning
	Index Scanning
	B The B-tree Index
	Exercise 6.02: Creating an Index Scan
	Activity 6.02: Implementing Index Scans
	The Hash Index
	Exercise 6.03: Generating Several Hash Indexes to Investigate Performance
	Activity 6.03: Implementing Hash Indexes
	Effective Index Use

	Performant Joins
	Exercise 6.04: Determining the Use of Inner Joins
	Activity 6.04: Implementing Performant Joins

	Functions and Triggers
	Function Definitions
	Exercise 6.05: Creating Functions without Arguments
	Activity 6.05: Defining a Maximum Sale Function
	Exercise 6.06: Creating Functions with Arguments
	The \df and \sf commands

	Activity 6.06: Creating Functions with Arguments
	Triggers
	Exercise 6.07: Creating Triggers to Update Fields
	Activity 6.07: Creating a Trigger to Track Average Purchases
	Killing Queries
	Exercise 6.08: Canceling a Long-Running Query
	Activity 6.08: Terminating a Long-Running Query

	Summary

	Chapter 7: The Scientific Method and Applied Problem Solving
	Introduction
	Case Study
	The Scientific Method
	Exercise 7.01: Preliminary Data Collection Using SQL Techniques
	Exercise 7.02: Extracting the Sales Information
	Activity 7.01: Quantifying the Sales Drop
	Exercise 7.03: Launch Timing Analysis
	Activity 7.02: Analyzing the Difference in the Sales Price Hypothesis
	Exercise 7.04: Analyzing Sales Growth by Email Opening Rate
	Exercise 7.05: Analyzing the Performance of the Email Marketing Campaign
	Conclusions
	In-Field Testing

	Summary

	Appendix
	Index

